
Oracle® Cloud
Developing Applications with Oracle Visual
Builder in Oracle Integration 3

Release 24.04.1
F88914-04
April 2024

Oracle Cloud Developing Applications with Oracle Visual Builder in Oracle Integration 3, Release 24.04.1

F88914-04

Copyright © 2023, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

Part I Get Started with Oracle Visual Builder

1 Welcome to Oracle Visual Builder

What is Oracle Visual Builder? 1-1

Access Oracle Visual Builder 1-3

2 Create Visual Applications

Typical Visual Application Workflow 2-1

Create a Visual Application 2-2

Create a New Visual Application 2-3

Create a Copy of an Application 2-7

Export and Import Visual Applications 2-8

Export a Visual Application 2-8

Import a Visual Application 2-10

About Classic Applications 2-12

Import Classic Applications 2-12

Add Web (and Mobile) Apps to Your Visual Application 2-15

Create a New Web Application 2-15

Import an Existing Mobile Application 2-21

Tour the Designer 2-21

Common Tasks for Visual Applications 2-30

Manage Visual Application Settings 2-30

Add Team Members 2-31

Export and Import Application Resources 2-33

Export Application Resources 2-33

Import Application Resources 2-35

3 Anatomy of Visual Applications

Understand Variables 3-2

Variables and Parameter Passing 3-3

iii

Expressions 3-4

Variables and Lifecycles 3-5

Variables and Events 3-6

Understand Actions and Action Chains 3-6

Action Chain Context and Contract 3-6

Built-in Actions 3-7

Event Handling for Action Chains 3-7

Understand Page Flows and Lifecycles 3-7

The Lifecycle of a Page 3-8

Page Navigation 3-9

Understand UI Components 3-9

The Component Contract 3-10

Properties 3-10

Events 3-11

Child Slots 3-11

Methods 3-11

Component IDs and Styles 3-11

Understand Data Access Through REST 3-11

Data Binding 3-12

Mapping to and from REST 3-12

Part II Connect Applications to Data

4 Work with Business Objects

About the Business Objects Pane 4-1

Create and Edit Business Objects 4-2

Create a Business Object 4-3

Add Fields to Business Objects 4-4

Edit Business Object Fields 4-5

Change a Field's Data Type 4-9

Set a Default Value for a Field 4-10

Add a Formula to a Field 4-11

Add a Field for Aggregating Data 4-13

Index a Field 4-16

View, Create, and Edit Business Object Relationships 4-16

Create a Business Object Relationship 4-16

Edit a Business Object Relationship 4-19

Secure Business Objects 4-21

Create Rules for Business Objects 4-22

About Adding Business Rules 4-22

iv

Access the Current User's Details in Your Groovy Script 4-23

Triggers for Business Objects 4-23

Object Triggers 4-24

Field Triggers 4-30

Add an Action to Send Email Notifications 4-32

Convert a Trigger to Editable Code 4-35

Build Conditions for Triggers 4-36

Object Validators for Business Objects 4-38

Field Validators for Business Objects 4-39

Object Functions for Business Objects 4-41

Log Diagnostic Messages From Your Scripts 4-43

Work with Endpoints to Access Business Objects 4-43

View a Business Object's Endpoints 4-44

About the Endpoints Tab 4-44

Add or Remove Exposed Endpoints 4-46

View and Edit Data in Business Objects 4-48

Edit the Data in Business Objects 4-49

Import Data to a Business Object 4-50

Reload Data from Application Sources 4-51

Work with the Data Manager 4-51

Manage Data During the Development Lifecycle 4-51

Import Data From a File Using the Data Manager 4-53

Import Data From a Database 4-55

Export the Data to a File from the Data Manager 4-56

Resolve Problems When Importing Data 4-56

Import and Export Data From the Command Line 4-57

Import Data from the Command Line 4-57

Export Data from the Command Line 4-59

Create Business Objects From a File 4-60

Set Your Own Audit Fields For Imported Business Objects 4-64

Optimize Business Object Performance 4-65

Override Default Timeout for Groovy Scripts 4-65

Enable Polling for Endpoint Requests 4-66

Control Data Caching for Business Objects 4-67

Data Caching Options 4-67

Define a Data Caching Strategy 4-67

Work with the Business Object Diagrammer 4-69

Create Business Objects with the Diagrammer 4-71

Create Relationships with the Diagrammer 4-72

Switch to Your Own Database Schema for Business Objects 4-72

Create a Business Object Based on a DB Table or View 4-73

v

Add Fields to a Business Object Based on a DB Table or View 4-80

Change the Data Type of a Field Based on a DB Column 4-81

Create Calculated Fields for a Business Object Based on a DB Table or View 4-82

Set a Field for Auditing 4-83

Use a Sequence for a Primary Key Field 4-84

Switch Schemas Used During an App's Lifecycle 4-85

5 Work with Services

Manage Backends in Your Visual Application 5-1

What Are Backends? 5-3

What Are Application Profiles? 5-4

Set the Backend's Authentication Method and Connection Type 5-6

How Does the Identity Propagation Authentication Method Work? 5-8

How Does the Fixed Credentials Authentication Method Work? 5-9

What is CORS? 5-12

Use an Appropriate Connection Type to Handle CORS for REST Services 5-12

Work with HTTP-based Endpoints 5-14

Allow Anonymous Access to the Service Data 5-14

Create a Backend 5-15

Add Server Variables for Backends 5-15

Create a Custom Backend 5-18

Create a Child Backend 5-20

Edit a Backend 5-22

Add Transforms 5-23

Manage Service Connections 5-35

What Are Service Connections? 5-35

Service Connections: Static Versus Dynamic 5-36

Create a Service Connection 5-40

Create a Service Connection from a Catalog 5-41

Create a Service Connection from a Service Specification 5-48

Create a Service Connection from an Endpoint 5-53

Edit a Service Connection 5-58

Add a Server to a Service Connection 5-59

Edit Service Endpoints for a Static Service Connection 5-60

Retrieve Service Metadata for a Dynamic Service Connection 5-62

Add Server Variables for Service Connections 5-64

Add More Endpoints to a Service Connection 5-65

Edit a Server's Authentication Details 5-69

Add Transforms to a Service Connection or an Endpoint 5-70

Convert a Service Connection (Static to Dynamic or Dynamic to Static) 5-70

vi

Test Service Connection Responses 5-73

Update Schema of the Request or Response 5-77

Connect to Oracle Cloud Services 5-79

Connect to Oracle Cloud Applications APIs 5-79

Connect to Oracle Cloud Applications APIs With User Propagation for
Authenticated Flows 5-79

Connect to Oracle Cloud Applications APIs Not in the Catalog Using Fixed
Credentials 5-80

Connect to Oracle Integration APIs 5-81

Connect to Oracle Integration APIs Using Identity Propagation 5-81

Connect to Oracle Integration APIs Using Fixed Credentials 5-83

Connect to Oracle Cloud Infrastructure Process Automation APIs 5-84

Connect to Oracle Content Management REST APIs 5-87

Connect to Oracle Content Management REST APIs Using Identity Propagation 5-87

Connect to Oracle Content Management REST APIs Using Fixed Credentials 5-88

Connect to ORDS APIs Using Fixed Credentials 5-89

Part III Develop Applications

6 Develop Your Application

How Are Applications Structured? 6-2

Which Editor Do I Use? 6-4

What Are Scopes? 6-6

Manage App Settings 6-7

7 Work with Pages and Flows

Use the Page Designer 7-1

The Components Palette 7-6

The Structure View 7-8

The Data Palette 7-11

The Properties Pane 7-14

Create and Manage Pages 7-15

Manage Page Settings 7-17

Customize Page Headers 7-18

Set a Page's Layout 7-21

Create Pages From Templates 7-25

Create Pages From Patterns 7-25

Create Pages From Fragments 7-27

Change Page Templates 7-29

vii

Add Components to Pages 7-30

How Do Quick Starts Work? 7-34

Add Data to a Table or List 7-36

Add a Create Page With a Quick Start 7-39

Add an Edit Page With the Quick Start 7-41

Add a Details Page With the Quick Start 7-43

Quick Starts for Dynamic Forms and Tables 7-45

Add an Image to a Page 7-45

Add an Icon Component to a Page 7-46

Add a Camera Component to a Page 7-47

Filter Data Displayed in a Component 7-53

Filter Data by Filter Criteria 7-54

Filter Component Data by Text 7-56

Filter Component Data by URL 7-59

Use Conditions to Show or Hide Components 7-61

Add Dynamic Components to Pages 7-65

What are Dynamic Components? 7-65

How to Create Layouts With Dynamic Components 7-66

Add a Dynamic Table to a Page 7-68

Add a Dynamic Form to a Page 7-72

Add Display Logic to Determine What's Displayed at Runtime 7-76

Responsive App Display Logic Example 7-81

Define Custom Contexts for Components in a Layout 7-83

Create a Layout for a Dynamic Table or Form 7-86

Preview Different Layouts 7-90

Use Field and Form Templates 7-92

Control How a Field is Rendered with Field Templates 7-92

Apply a Template to a Field 7-94

Start an Action Chain from a Field 7-97

Control How a Form Layout is Rendered 7-100

Apply a Template to a Form 7-104

Add and Group Fields in Dynamic Form Layouts 7-106

Edit a Field's Properties 7-108

Set a Field to be Read Only 7-108

Set How User Assistance is Rendered in a Layout 7-110

Set a Field as Required 7-112

Use Conditions to Show or Hide Fields in a Layout 7-115

Configure How Columns Render in a Dynamic Table's Layout 7-116

Set a Field to Display as a Text Area in a Form 7-117

Add Converters and Validators to a Field 7-120

Add a Dynamic Container to a Page 7-123

viii

Add Fragments as Sections in a Dynamic Container 7-133

Re-Order a Dynamic Container's Content 7-138

Guidelines for Working with Sections 7-138

Change a Dynamic Container's Layout 7-138

Create Fields For a Layout 7-141

Create a Calculated Field 7-142

Create a Virtual Field 7-145

Create and Manage Flows 7-148

Manage Flow Settings 7-149

Embed a Flow Within a Page 7-150

Customize Your App's Root Page 7-152

Edit an App's Header, Footer, and Navigation Items 7-153

Add a Navigation Item for Navigation Drawer Apps 7-157

Work With Custom Web Components 7-159

Work with the Component Exchange 7-161

Get Components From the Component Exchange 7-162

Update a Component from the Component Exchange 7-163

Uninstall a Component 7-164

Import a Web Component Archive 7-164

Create a Web Component 7-166

Navigate Between Pages and Flows 7-167

Navigate Between Pages in the Same Flow 7-167

Navigate Between Pages in Different Flows 7-168

Navigate Between Flows in the Root Page 7-170

Work With Code Editors 7-172

Work in Code View 7-173

Work with the JSON Editor 7-174

Work with the JavaScript Editor 7-175

Add a Custom JavaScript Function 7-176

Use RequireJS to Reference External JavaScript Files 7-179

Use Variables with a JavaScript Module 7-180

Trigger Code Insight 7-181

Manage Code Editor Settings 7-181

Use the Diagram View 7-186

View a Flow's Navigation in Diagram View 7-187

Add Pages and Action Chains to a Flow in Diagram View 7-188

Add a Page in the Flow Diagram 7-189

Create an Action Chain in the Flow Diagram 7-192

Bind an Action Chain in the Flow Diagram to an Existing Event Listener 7-195

Show or Hide an Action Chain in the Flow Diagram 7-196

ix

8 Work with Variables and Types

What are Variables and Types? 8-1

Create Variables in Artifacts 8-6

Enable Variables as Input Parameters 8-9

Track Variables to Detect Unsaved Changes 8-11

Enable a Variable for Tracking 8-11

Query Tracked Variables for Changed State 8-12

Reset State for Tracked Variables 8-14

Create Variables to Temporarily Store Data Changes in a Buffer 8-15

Create Types 8-17

Create a Custom Type 8-18

Create a Custom Object or Array 8-18

Create a Custom Enumeration 8-20

Create a Type From an Endpoint 8-23

Create a Type From Code 8-25

Service Data Provider 8-30

Creating a Custom Fetch Action Chain - An Example 8-30

Delay Display of SDP Data 8-38

9 Work with JavaScript Action Chains

About Action Chains 9-3

About the Action Chain Editor 9-5

Create Action Chains in Design Mode 9-7

Create Action Chains in Code Mode 9-13

About the Action Chain Code 9-15

Visually Create an Action Chain 9-18

Built-In Actions 9-32

Add an Assign Variable Action 9-34

Use Filter Builder to Create Filter Criteria for an SDP 9-36

Filter Builder's Code Editor 9-38

Add a Call Action Chain Action 9-39

Add a Call Component Action 9-42

Add a Call Function Action 9-43

Add a Call REST Action 9-44

Service Definitions 9-49

Transform Functions 9-49

Add a Call Variable Action 9-49

Add a Code Action 9-50

Add a Fire Data Provider Event Action 9-51

Add a Fire Event Action 9-53

x

Add a Fire Notification Action 9-55

Add a For Each Action 9-57

Add a Get Dirty Data Status Action 9-59

Add a Get Location Action 9-68

Add an If Action 9-70

Add a Login Action 9-72

Add a Logout Action 9-73

Add a Navigate Back Action 9-74

Add a Navigate To Flow Action 9-75

Add a Navigate To Page Action 9-76

Add an Open URL Action 9-78

Add a Reset Dirty Data Status Action 9-79

Add a Reset Variables Action 9-79

Add a Return Action 9-80

Add a Run In Parallel Action 9-81

Add a Scan Barcode Action 9-84

Add a Share Action 9-87

Add a Switch Action 9-88

Add a Try-Catch Action 9-88

Custom Actions 9-91

Create a Custom Action 9-91

Create the Action Files 9-91

Add the Metadata 9-93

Add the Code 9-97

Specify Path to Code 9-99

Start an Action Chain 9-99

Start an Action Chain From a Component 9-99

Start an Action Chain When a Variable Changes 9-103

Start an Action Chain From a Lifecycle Event 9-104

Start an Action Chain By Firing a Custom Event 9-107

Test Action Chains 9-112

Create a Test for a Test Case 9-115

Run the Tests 9-120

Use the Tests Footer in a Visual Application 9-121

Test Action Chains Using the vb-test Grunt Task 9-122

10

Work with JSON Action Chains

About Action Chains 10-1

Create an Action Chain 10-2

Built-in Actions 10-10

xi

Add an Assign Variables Action 10-12

Filter Builder's Code Editor 10-16

Add a Call Action Chain Action 10-17

Add a Call Component Action 10-19

Add a Call Function Action 10-21

Add a Call REST Action 10-22

Add a Call Variable Action 10-26

Add a Fire Data Provider Event Action 10-27

Add a Fire Event Action 10-29

Add a Fire Notification Action 10-30

Add a Get Location Action 10-31

Add a Reset Variables Action 10-32

Add a Login Action 10-33

Add a Logout Action 10-33

Add a Scan Barcode Action 10-34

Add a Take Photo Action 10-37

Add a Share Action 10-38

Add a For Each Action 10-39

Add an If Action 10-42

Add a Return Action 10-44

Add a Run In Parallel Action 10-45

Add a Switch Action 10-46

Add a Navigate Action 10-47

Add a Navigate Back Action 10-50

Add an Open URL Action 10-50

Custom Actions 10-51

Create a Custom Action 10-52

Create the Action Files 10-52

Add the Metadata 10-54

Add the Code 10-58

Specify Path to Code 10-60

Test Action Chains 10-60

Manage All Tests in a Visual Application 10-62

Test Action Chains Using the vb-test Grunt Task 10-63

Start an Action Chain 10-64

Start an Action Chain From a Component 10-64

Start an Action Chain When a Variable Changes 10-68

Start an Action Chain From a Lifecycle Event 10-69

Start an Action Chain By Firing a Custom Event 10-72

xii

11

Work with Events and Event Listeners

Define Events in Your Application 11-1

Create Event Listeners for Events 11-2

Choose How Custom Events Call Event Listeners 11-6

Raise Fragment or Layout Events that Emit to the Parent Container 11-7

12

Work With Application Resources

Import Resources 12-2

Manage Custom Component, CSS, and Module Imports 12-4

Work with the Image Gallery 12-6

13

Work with Fragments

Create and Add a Fragment to a Page 13-1

Manage Fragment Settings 13-7

Reuse a Fragment 13-9

Pass Data Between a Fragment and Its Parent Container 13-10

Enable Fragment Variables as Input Parameters 13-11

Enable Page Variables to Provide Initial Values for a Fragment's Input Parameters 13-15

Automatically Write Back a Fragment Variable's Value to Its Container Variable 13-19

Automatically Create and Wire a Fragment Variable on Its Container 13-20

Sample Scenario: Create a Fragment and Pass Values 13-23

Create Custom Events that Emit to a Fragment's Parent Container 13-35

Set the Binding Type for Variables in Dynamic Components 13-44

Pass a Fragment's Context to VDOM or Custom Web Components 13-45

Defer Rendering of a Fragment's Content 13-46

Add Slots to a Fragment 13-49

Add Default Content to a Fragment Slot 13-54

Set Data Context for a Fragment Slot 13-55

Customize How Fragment Properties Display in the Properties Pane 13-59

Customize How a Fragment Variable is Displayed in the Properties Pane 13-60

Section Fragment Properties for Display in the Properties Pane 13-85

Part IV Augment Applications

14

Enable Progressive Web App Support

Guidelines for Using PWA Support 14-1

Configure Progressive Web App Support 14-2

xiii

Deep Linking on Android 14-6

Run Mobile Applications as PWAs 14-7

Configure Mobile Application Settings 14-8

Build a Mobile Application as a PWA 14-9

Convert a Mobile PWA to a Web PWA 14-13

15

Secure the Application

Security for Web Apps 15-1

Authentication Roles Versus User Roles 15-2

Manage User Roles and Access 15-3

Test Role-Based Access 15-6

Access and Secure Business Objects 15-7

Secure Business Objects 15-7

Allow External Access to Your Business Objects 15-10

Get an Access Token for Authentication 15-12

Allow Anonymous Access 15-13

Embed a Web Application 15-16

16

Add Offline Capabilities to Your Application

Add Offline Support Using the Oracle Offline Persistence Kit 16-1

17

Optimize Your App for Search Engines

Create a Sitemap for a Web App 17-1

Add a Sitemap to a Web App's Resources 17-2

Warm the Cache for URLs in a Sitemap 17-5

Move Your Sitemap to a Visual Application's Root Directory 17-6

18

Work with Translations

About Translation Resources 18-1

Understand the Structure of Translation Bundles 18-1

Understand Translation Keys for Display Texts 18-3

Generate Translation Keys for Display Texts 18-4

Download Bundles for Translation 18-6

Use Translation Strings in JavaScript Files 18-8

Upload Translated Files 18-10

Create Translation Bundles 18-12

xiv

Part V Manage Applications

19

Manage Your Visual Application

View an Application's Status 19-2

Create a New Version of an Application 19-3

Delete a Visual Application 19-5

Restore a Deleted Application 19-7

Manage Applications Created in Visual Builder Studio 19-8

20

Integrate Your Visual Application With a Git Repository

Add Credentials for Your Oracle Visual Builder Studio Account 20-1

Link Your Visual Application to a Git Repository 20-2

Pull Files From Your Git Repository 20-3

Push Your Changes to Your Git Repository 20-3

Change the Local Branch HEAD in a Linked Git Repository 20-3

21

Test and Debug Applications

Audit Application Code 21-2

Preview an App in Debug Mode 21-6

Troubleshoot Build Issues 21-7

Debug Business Objects 21-7

Enable Tracing to Monitor Endpoint Calls 21-8

View Trace Details 21-9

Manage Tracing to Control Disk Usage 21-11

Export and Import a Trace File 21-11

Enable Logging for Scripting Events 21-12

Change an Application's Log Level 21-13

22

Stage and Publish Visual Applications

What Happens When You Stage and Publish Visual Applications? 22-1

Stage a Visual Application 22-2

Publish a Visual Application 22-5

View Database Schemas Used During an App's Lifecycle 22-8

Update a Published Visual Application 22-9

Roll Back Application to the Previously Published Version 22-11

xv

23

Manage Runtime Dependencies for Visual Applications

Upgrade Your App 23-2

After Upgrading 23-5

Set a Custom Version 23-6

Understand What’s Happening in visual-application.json 23-7

Resolve Upgrade Issues 23-8

What Happens During Software Maintenance? 23-9

24

Optimize Your Builds and Audit Your Code Using Grunt

Overview 24-1

Build Your Application Using Oracle Visual Builder Studio 24-2

Build Your Application Locally 24-2

Build and Deploy Your Application 24-3

Authentication 24-4

Grunt Tasks to Build Your Visual Application 24-6

About Visual Builder Grunt Build Tasks 24-6

vb-clean 24-6

vb-process-local 24-7

vb-deploy 24-13

vb-optimize-cdn 24-15

vb-optimize 24-16

vb-prepare 24-17

vb-prerender-cache-warm 24-18

vb-test 24-20

vb-require-bundle 24-21

vb-require-bundle-clean 24-23

vb-css-minify 24-23

vb-image-minify 24-24

vb-json-minify 24-24

vb-export 24-25

vb-manifest 24-26

vb-package 24-27

vb-archive 24-27

vb-process-raw 24-28

vb-process-raw-index-html 24-28

vb-application 24-29

vb-serve 24-31

vb-pwa 24-32

vb-fa-generate-base-app-config 24-33

vb-pwa-splashscreen 24-34

xvi

vb-watch 24-35

Customize Your Grunt Build Process 24-36

Add Custom Functionality to Existing Tasks 24-36

Override Existing Grunt Tasks 24-36

Optimize a Specific Web Application 24-37

Host an Application on a Content Delivery Network (CDN) 24-38

Run and Configure a Multitask 24-38

Customize Bundle Modules 24-39

Specify Options of Non-multitasks 24-41

Specify Options for All Tasks 24-41

Audit Your Application Using the vb-audit Grunt Task 24-42

Configure Audit Options in Gruntfile.js 24-43

Override Configuration Options in Gruntfile.js 24-45

Part VI Use Cases & Troubleshooting

25

Common Use Cases

Work With Code Samples 25-1

Change an Application's Logo 25-2

Style and Theme Visual Builder Applications 25-3

Transition a Web (or Mobile) App's Theme to Redwood 25-4

Customize the Redwood Theme for a Web Application 25-5

Override the Redwood Theme for a Mobile Application 25-7

Add a Custom Style to a Component 25-8

Add Login and Logout Capabilities to an Application 25-9

Create a Custom Lock Page 25-12

Apply a Custom Lock Page to a Visual Application 25-13

Apply a Custom Lock Page to a Web Application 25-14

Access Data in an Existing Oracle Database Using ORDS 25-16

Use a SOAP Web Service With Visual Builder 25-16

Run Visual Builder Applications On Other Servers 25-16

Embed a Web App in an Oracle Cloud Application 25-17

Make Your Web App Ready for Embedding 25-18

Embed a Web App Using Page Composer 25-19

Embed a Web App Using Application Composer 25-22

Call Server-side Functionality from Visual Builder 25-23

Add the Oracle Digital Assistant to Your Web App 25-24

Abort Pending REST Calls in Visual Builder 25-25

Forms 25-31

Enable Client-Side Validation for a Form 25-31

xvii

Validate Dates in Forms 25-33

Tables 25-33

Modify a Table's Default Display 25-34

Reorder Columns in a Table 25-41

Sort Data in Table Columns 25-43

Enable Resizing of a Table Column 25-46

Wrap Table Text 25-47

Add Columns to an Existing Table 25-47

Format Row Values in a Table Conditionally 25-48

Create a Search Filter for a Table 25-49

Create an Editable Table 25-50

Update Pagination Behavior for a Table 25-56

Enable Text Selection in a Table 25-60

Pages and Flows 25-61

Restrict User Access to an Application, Flow, or Page 25-62

Print Multiple Pages 25-63

Components 25-63

Conditionally Show or Hide UI Components 25-63

Enable Time Zone Specification 25-64

Validate the Length of an Entry in an Input Text Field 25-66

Filter Multiple Attributes in a Search 25-66

Set an Initial Value for the Select (Single) Component 25-67

Business Objects 25-68

Format a Date Field 25-68

Apply an Aggregate Function to a Calculated Field From a Child Business Object 25-68

26

Troubleshooting & FAQs

How Do I Find the URL of My Visual Builder Instance? 26-1

How Do I Find My Application's Runtime Version? 26-2

How Do I Clear My App's Resource Cache? 26-2

How Do I View Details of Client Apps in IDCS? 26-3

How Do I Write Expressions If a Referenced Field Might Not Be Available Or Its Value
Could Be Null? 26-4

How Do I Resolve Web Component Loader Issues? 26-4

How Do I Resolve a 'Method Not Allowed' Error? 26-5

How Do I Resolve a 'No Such File' Error for the URI.js File? 26-5

How Do I Fix a Missing Scroll Bar in a Table? 26-6

How Do I Access Components After Upgrading? 26-6

How Do I Set a Custom Content-Security-Policy Header? 26-6

Troubleshooting Access Issues 26-7

How Do I Control the Session Duration For My Visual App? 26-7

xviii

Why Does a Live App That Allowed Anonymous Access Prompt for Login? 26-7

How Can I Recover Apps Linked to a Deleted User Account? 26-8

Troubleshooting Service Connections 26-8

Why Was a Certificate in the Remote Path Reported as Invalid? 26-9

How Do I Resolve an 'Unknown Host' Error? 26-9

How Do I Resolve a 'Cannot Process Service Scope' Error? 26-10

Troubleshooting Business Objects 26-10

What Is The Maximum Data Limit for Business Objects? 26-11

How Do I Resolve Database Connection Problems? 26-11

How Do I Resolve a "Failed to verify the target database" Error When Switching the
Tenant's Database 26-11

How Can I Access Business Object Data? 26-12

xix

Preface

This guide describes how to use a web-based visual development tool to create and
publish custom applications that can integrate business objects and Oracle Cloud
Applications REST services to extend SaaS services.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

• Information About Cookies

Audience
This guide is intended for developers who want to create and publish modern
enterprise applications using a visual development tool and still have full access to the
source code of their applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/
accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://support.oracle.com/
portal/ or visit Oracle Accessibility Learning and Support if you are hearing
impaired.

Keyboard Shortcuts
When working in the Page Designer, you can use these keyboard shortcuts to help
you move around quickly:

To do this: Use this on Mac: Use this on Windows:

Find and open a file in an app Command-P Ctrl+P

Find a given string in a file (or
in the Code editor)

Command-Shift-F Ctrl+F

Audience

20

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

To do this: Use this on Mac: Use this on Windows:

Undo/redo Command-Shift-Z Ctrl+Z

Except for common Windows
shortcuts such as cut, copy,
and paste, Visual Builder does
not support shortcuts like the
ones described here.

Keyboard Shortcuts for Code Editors
To help you work efficiently, Visual Builder supports the following keyboard shortcuts when
working with code editors in the Designer (HTML, JSON, JavaScript, and Code view in the
Page Designer).

Tab behavior shortcut

To do this: Use this on Mac: Use this on Windows:

Change the code editor's default
behavior for the Tab key;
pressing Tab adds four spaces in
the editor by default

Control-Shift-M Ctrl+M

Show Command Palette and Save shortcuts

To do this: Use this on Mac: Use this on Windows:

Show Command Palette F1 F1

Save Command-S Ctrl+S

Basic Editing shortcuts

To do this: Use this on Mac: Use this on Windows:

Cut line if there is no selection;
cut selection if there is one

Command-X Ctrl+X

Copy line if there is no selection;
copy selection if there is one

Command-C Ctrl+C

Move line up Option-Up Alt+Up

Move line down Option-Down Alt+Down

Copy line up Shift-Option-Up Shift+Alt+Up

Copy line down Shift-Option-Down Shift+Alt+Down

Delete line Shift-Command-K Ctrl+Shift+K

Insert line below Command-Enter Ctrl+Enter

Insert line above Shift-Command-Enter Ctrl+Shift+Enter

Jump to matching bracket Shift-Command-\ Ctrl+Shift+\

Indent line Command-] Ctrl+]

Outdent line Command-[Ctrl+[

Go to beginning of line Home or Fn-Left Home

Go to end of line End or Fn-Right End

Documentation Accessibility

21

https://support.microsoft.com/en-us/windows/keyboard-shortcuts-in-windows-dcc61a57-8ff0-cffe-9796-cb9706c75eec

To do this: Use this on Mac: Use this on Windows:

Go to beginning of file Command-Home Ctrl+Home

Go to end of file Command-End Ctrl+End

Scroll line up Command-Up Ctrl+Up

Scroll line down Command-Down Ctrl+Down

Scroll page up Option-PgUp Alt+PgUp

Scroll page down Option-PgDn Alt+PgDn

Fold (collapse) region Command-Shift-[Ctrl+Shift+[

Unfold region Command-Shift-] Ctrl+Shift+]

Toggle line comment Command-/ Ctrl+/

Toggle block comment Shift-Option-A Shift+Alt+A

Toggle word wrap Option-Z Alt+Z

Navigation shortcuts

To do this: Use this on Mac: Use this on Windows:

Go to line ... Command-G Ctrl+G

Go to symbol ... Shift-Command-O Ctrl+Shift+O

Go to next error or warning F8 F8

Go to previous error or
warning

Shift+F8 Shift+F8

Go back Control-- Alt+Left

Go forward Control-Shift-- Alt+Right

Search and Replace shortcuts

To do this: Use this on Mac: Use this on Windows:

Find Command-F Ctrl+F

Replace Option-Command-F Ctrl+H

Find next Command-G F3

Find previous Shift-Command-G Shift+F3

Select all occurrences of Find
match

Option-Enter Alt+Enter

Add selection to find matches Command-D Ctrl+D

Multi-cursor and Selection shortcuts

To do this: Use this on Mac: Use this on Windows:

Insert cursor Option-Click Alt+Click

Insert cursor above Option-Command-Up Ctrl+Alt+Up

Insert cursor below Option-Command-Down Ctrl+Alt+Down

Undo last cursor operation Command-U Ctrl+U

Insert cursor at end of each
line selected

Shift-Option-I Shift+Alt+I

Select current line Command-L Ctrl+L

Documentation Accessibility

22

To do this: Use this on Mac: Use this on Windows:

Select all occurrences of
current selection

Shift-Command-L Ctrl+Shift+L

Select all occurrences of
current word

Command-F2 Ctrl+F2

Expand selection Control-Shift-Command-Right Shift+Alt+Right

Shrink selection Control-Shift-Command-Left Shift+Alt+Left

Column (box) selection Shift-Option- (drag mouse) Shift+Alt + (drag mouse)
Ctrl+Shift+Alt+(arrow key)

Column (box) selection page
up

Shift-Option-Command-PgUp Ctrl+Shift+Alt+PgUp

Column (box) selection page
down

Shift-Option-Command-PgDn Ctrl+Shift+Alt+PgDn

Rich Languages Editing shortcuts

To do this: Use this on Mac: Use this on Windows:

Trigger suggestion Command-Space Ctrl+Space

Format document Shift-Option-F Shift+Alt+F

Go to definition F12 F12

Peek definition Option-F12 Alt+F12

Show references Shift+F12 Shift+F12

Rename symbol F2 F2

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Oracle Public Cloud

http://cloud.oracle.com
• Manage Instance Settings in Administering Oracle Visual Builder in Oracle Integration 3

Conventions
The following text conventions are used in this document.

Diversity and Inclusion

23

http://cloud.oracle.com

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Information About Cookies
When a user visits a published web application, a combination of cookies are used for
storing authentication and session information.

The following cookies are used to store information about sessions, visits, and
authentication. The information we observe about visitor behavior is stored on our
servers, not in the cookie placed on the browser. The cookies we use are usually an
anonymous unique identifier, which provides a means of determining whether a visitor
has visited the application before but does not provide any means of identifying the
visitor. None of the cookies contain personally identifiable information, although, in
accordance with standard HTTP protocol, the visitor’s IP address is passed to our
servers as part of the HTTP request. All cookies are secured with encryption and sent
over HTTPS. The following table describes the cookies that are saved to the browser
of visitors visiting a published application:

Name Description

JSESSIONID The JSESSIONID cookie is a transient cookie
used for session management. It only has a
session identifier and does not contain any
personal details.

OAMAuthnCookie The OAMAuthnCookie cookie is generated by
Oracle Access Manager for all clients using an
Oracle Cloud service. A valid
OAMAuthnCookie is required for a session.

• Authenticated User Identity (User DN)
• Authentication Level
• IP Address
• SessionID
• Session Validity (Start Time, Refresh

Time)
• Session InActivity Timeouts (Global

Inactivity, Max Inactivity)
• Validation Hash
Removing the cookie will cause the user to be
logged out. The user will need to re-
authenticate the next time they request a
protected resource.

Information About Cookies

24

Name Description

X-AppBuilder-SessionId The X-AppBuilder-SessionId cookie is a
persistent cookie that expires 24 hours after it
is created and contains a unique user ID
(UUID) and time stamp. This cookie is only
used to store visitor behavior information
across sessions for billing purposes. This
cookie is used for published Classic
applications.

Removing the cookie might result in each new
session being recorded as a new visit.

VBCS_METRICS_<app name>_<app
version>

The VBCS_METRICS cookie is a persistent
cookie that expires at midnight on the day it is
created and contains a time stamp. The
purpose is to count unique visits, and to
ensure that multiple visits by the same user
between when the cookie is created and when
it expires are counted as one unique visit. If
the cookie is removed before it expires, a new
cookie is created on the next visit and the visit
will be counted as a new unique visit. This
cookie is only used for internal metrics and is
not used for billing purposes.

This cookie is used for staged and published
visual applications.

VBCS_HOURLY_METRICS_<tenant id> The VBCS_HOURLY_METRICS is a
persistent cookie that expires at midnight on
the day it is created and contains a time
stamp. The purpose is to count unique visits
per hour, and to ensure that multiple visits by
the same user between when the cookie is
created and when it expires are counted as
one unique visit. If the cookie is removed
before it expires, a new cookie is created on
the next visit and the visit will be counted as a
new unique visit. This cookie is only used for
internal metrics and is not used for billing
purposes.

This cookie is used for staged and published
visual applications.

Information About Cookies

25

Part I
Get Started with Oracle Visual Builder

Look here for everything you need to know to start using Oracle Visual Builder.

Topics:

• Welcome to Oracle Visual Builder

• Create Visual Applications

• Anatomy of Visual Applications

1
Welcome to Oracle Visual Builder

With increased demand for modern applications that serve specific business needs, quickly
turning ideas into powerful apps that help run your business is critical. Oracle Visual Builder
helps you do just that, by providing a cloud-hosted solution that empowers you to create and
host applications with ease.

What is Oracle Visual Builder?
Oracle Visual Builder is an intuitive development experience on top of a development and
hosting platform that empowers you to create engaging responsive applications. Focusing on
ease of use and a visual development approach, it provides an easy way for you to create
applications that are hosted in Oracle’s secure and scalable cloud platform.

Visual Development Experience

Visual Builder provides simple but powerful visual development tools to create responsive
apps—all without the need to install any additional software. This rich set of visual tools help
you quickly design your app by dragging and dropping UI components and customizing their
attributes to define behavior. While these tools lend themselves to low-code developers,
experienced developers can just as easily access the underlying source code, even extend it
using standard HTML5, JavaScript, and CSS techniques for complex needs.

Easy Access to Data

Visual Builder makes it easy to access your app’s data through REST-based services. So you
can create reusable business objects to implement your app’s business logic and store its
data, which can then be managed through REST endpoints that Visual Builder generates for
you. Or you can pick data objects exposed by Oracle SaaS or Oracle Integration applications
in an integrated catalog of REST services. You can also access data from any external REST
service with just a few clicks.

Development and Hosting Platform

Visual Builder is a complete development tool as well as a hosting platform, which means you
can manage your application’s lifecycle right from development to test and final publishing.
Version management and data migration are built into an app’s lifecycle, making it easy for
you to stage and publish your app and manage its data in every phase.

What’s more, Visual Builder is a managed service. This means that once you provision a
Visual Builder instance, there’s very little you need to do beyond developing and publishing
your app. Everything the app needs to run successfully (including a web server to host your
application and to secure data access) is taken care of. Thus, as a development team, you
can take your app from development to stage and publish it in a very short time. Here’s a
high-level walkthrough of how you’d go about developing an app using Visual Builder:

1-1

Your Visual Builder instance (represented by the square in the middle of the image)
provides capabilities for your visual application both as a visual development tool (at
the top) as well as an app hosting platform with a built-in web server (indicated by
server-side components at the bottom):

• As a visual development tool, Visual Builder provides access to UI components
and WYSIWYG interfaces that leverage the open-source Oracle JavaScript
Extension Toolkit (JET). This visual environment, known as the Designer, features
several visual editors that a development team can use to collaboratively build rich
UIs that span multiple devices. It also supports Redwood, the Oracle standard for
user experience, that lets you develop apps that provide the same look and feel as
apps delivered from Oracle.

Within this environment, you can develop browser-based responsive apps,
including progressive web apps, which combine the on-device mobile experience
with a web app’s ease of distribution—eliminating the need to download updates
from app stores.

• As an app hosting platform, Visual Builder provides various capabilities to publish
and run your app in the cloud, including an embedded database that stores your
app’s business objects—essentially Oracle tables with business logic exposed
through REST APIs—and their data.

It also includes a REST proxy service to manage access to external REST
endpoints. When your app’s data comes from REST APIs in Oracle catalogs such
as Oracle SaaS or Oracle Integration, the proxy service uses server-side
integration with the Oracle Identity Cloud Service (IDCS) to manage authentication
and authorization (by default) through identity propagation. When your app’s data
comes from other REST endpoints, authenticated REST mechanisms are used to
manage credentials.

Together, these components provide the resources required to host your visual
app and manage its data.

When your apps are published, they become available to your users in the cloud, from
any desktop or mobile device, with communication to the app’s underlying JET
components secured over HTTPS and REST.

Chapter 1
What is Oracle Visual Builder?

1-2

Access Oracle Visual Builder
To develop applications using Oracle Visual Builder, you access the service from the Oracle
Integration Home page.

1. When you sign in to Oracle Integration, click Show/Hide Navigation menu in the top
corner of the Home page.

2. In the navigation pane, click Visual Builder to open the Visual Applications Home page.

You can now use Visual Builder to create and develop visual applications.

Note:

If you see a message that Visual Builder is not enabled for your Oracle
Integration instance, talk to your administrator. See Enable Visual Builder in
Oracle Integration.

3. To return to Oracle Integration, click the header menu (next to ORACLE Visual

Builder), then click Navigate to Home .

Once you create apps, they also become available to you on the Oracle Integration
Home page. Click the Visual Applications tile to access your apps in Visual Builder.

Chapter 1
Access Oracle Visual Builder

1-3

2
Create Visual Applications

As a developer, you use Visual Builder to create visual applications, each of which contains
web (and mobile) applications that can be deployed to desktop as well as mobile devices.
Let’s take a look at how you can create these visual applications and add web (and mobile)
apps to them.

Typical Visual Application Workflow
A visual application is a collection of resources that you use to develop web (and mobile)
apps. It includes metadata in JSON files that describe data sources (business objects and
services) as well as the HTML and JavaScript files of your web (and mobile) apps.

To develop your application, you define its data sources and design an interface for users to
work with. Visual Builder does not impose any specific order for building your application.
How you proceed is personal preference and determined by the way you planned your
application. If you already know the data sources that you will use, or the structure of objects
that you have, you might want to start by defining the service connections and business
objects. However you decide to proceed, you always start with a visual application, which is
your ticket into the Designer.

This table provides a high-level description of the tasks that you typically perform when
building your application:

Task Description More Information

Create a new visual application Use the wizard on the Home
page to create a new visual
application, import an existing
visual application as the basis for
a new one, or create a new
version of an existing visual
application

Create a Visual Application

Export and Import Visual
Applications

Create a New Version of an
Application

Create service connections Create connections to external
REST web services and select
and configure the endpoints that
you want to use in your
application.

What Are Service Connections?

Create business objects Define your own custom REST
endpoints for data in your
database based on the needs of
your applications.

Create a Business Object

Add web (and mobile) apps Add web (and mobile) apps to
your visual application

Add Web (and Mobile) Apps to
Your Visual Application

Develop the web (or mobile) app Use the Designer's tools to lay
out pages and develop your web
(or mobile) app.

Develop Your Application

2-1

Task Description More Information

Secure the application Create application roles and
configure the permissions for
business objects.

Secure the Application

Stage and test the application Use the Application Options
menu to stage the application
when you are ready to do more
thorough testing. You can share
staged application's URL with
other people for testing.

Stage a Visual Application

Import real data and check the
schema

Use the Data Manager to import
data into your databases from a
file or from the live database.

Manage Data During the
Development Lifecycle

Publish the application Publish the staged version and
either import data or use your
live database.

Publish a Visual Application

Create a Visual Application
You can create a new visual application and build it from the ground up, or start with
an existing application that someone else has already worked on. Either way, you start
with a visual application on the Visual Applications Home page.

The Home page is the primary console for creating and managing your applications. It
serves as the entry point for your applications and is the first page you see whenever
you log in to Visual Builder.

If you don't have any applications when you log in, you'll see the landing page as
shown here (you might see additional options if all your apps were previously deleted
or if you're an admin user):

Chapter 2
Create a Visual Application

2-2

To get started, you need to create a new application, import an existing one, or have
someone add you as a team member to their application. You can then manage the
application from the Home page.

Create a New Visual Application
Create a visual application when you want to start building an application from scratch.

1. On the Visual Applications Home page, click New:

Chapter 2
Create a Visual Application

2-3

Note:

If you don't see the Visual Applications Home page, select Visual
Applications in the menu on the Home page:

2. Enter the application name in the Create Application dialog box. Click Finish if you
want to use the default empty application template. If you want to change the
application template, click Change Template, select the template in the dialog that
appears, and then click Finish.

The Empty Application template does not create any artifacts, apps or other
resources. Other templates might create resources or apps that already include
artifacts.

The Application ID field is automatically populated based on the application name
that you provide. You can modify the Application ID if you wish, but the Application
ID must be unique in your identity domain:

Chapter 2
Create a Visual Application

2-4

Your new visual application opens in the Designer, on the Welcome screen. Your new
application does not contain any artifacts, but the application's file structure and some
resources are created for you by default. You can use the Welcome screen to help you
decide which artifacts you want to create first:

Chapter 2
Create a Visual Application

2-5

Click any tile in the Welcome screen to open the corresponding panel in the Navigator,
where you can create and manage the artifacts. For example, if you click Responsive
Apps, the Web Apps tab opens in the Navigator:

Chapter 2
Create a Visual Application

2-6

Note:

All users who want to collaborate on the app, including admins, must be added to
the app as a team member. See Add Team Members.

Create a Copy of an Application
You can duplicate an existing application to create a copy that you can work with. A copy of
an application contains all the resources and the database schema of the source, but will
have a different name, application ID, and URI.

You can use the copy option if the application you want to copy is visible on the Home page.
To create a copy of an application:

1. On the Visual Applications Home page, locate the version of the application that you want
to copy.

Chapter 2
Create a Visual Application

2-7

2. Open the Application Options menu, then select Duplicate:

3. Enter the application name and application ID in the Duplicate Application dialog
box. Click Duplicate.

The application ID that you enter will be exposed in the URI for the new
application.

Export and Import Visual Applications
You can export a visual application as an archive to your local system, then import the
archive to create a new visual application. Use the import and export mechanism to
share source files and to move applications between instances.

Export a Visual Application
You can use the Export action to download an archive of a visual application and its
resources to your local system. After exporting the archive, you can import it to create
a copy of the application and share the archive with team members.

When you export the application, some information, such as credentials for external
REST endpoints. This information needs to be provided after the archive is imported.

Chapter 2
Export and Import Visual Applications

2-8

Note:

The instance from which you export the archive must be on the same or earlier
version of Visual Builder as the instance to which you plan to import it. If it isn't, you
won't be able to import successfully.

To export a visual application:

1. On the Visual Applications Home page, open the Application Options menu for the
application version you want to export and select Export.

If there are multiple versions of an application you must use the Options menu of the
version that you want to export.

Alternatively, when a visual application is open in the Designer, you can choose Export in
the application’s Menu in the toolbar.

2. If the application contains business objects, you can choose to include the data stored in
the objects when exporting the application. To do this, click Export with Data:

Chapter 2
Export and Import Visual Applications

2-9

The visual application and its resources are exported as an archive file. The archive is
saved to your local system in the location specified for your browser’s downloads.
If you exported the application with data, the archive will include a JSON file
(entity.json) and a spreadsheet (entity-data.csv) for each business object. The
JSON file describes the business object and the spreadsheet contains the business
object data. If you chose to export the application without data, the archive will only
contain the JSON file describing the business objects.

The archive will always include the data for any business objects that are identified as
containing Application Setup Data.

If user roles are defined for the application, the role-mapping definition (which maps
user roles to IDCS groups) will be copied to a JSON file (role-mapping.json) and
included in the exported application archive.

Import a Visual Application
You can use the Import action to import an archive of a visual application, for example,
to create a new application from the archive.

To import a visual application, you need an archive: Either a teammate must share the
archive with you, or you can export one yourself, as long as you have access to the
application.

Note:

To successfully import a visual application, the instance from which you
export the archive must be on the same or earlier version of Visual Builder
than the instance to which you import it. You'll get an error if the source
instance is running a later version of Visual Builder than the target instance.

Chapter 2
Export and Import Visual Applications

2-10

To import a visual application:

1. Navigate to your Visual Applications Home page and click Import.

2. Click Application from file in the Import dialog box.

3. Drag your visual application archive file on your local system into the dialog box.

Alternatively, click the upload area in the dialog box and use the file browser to locate the
archive on your local system.

4. Enter a valid application name and ID in the dialog. Click Import.

Chapter 2
Export and Import Visual Applications

2-11

After you import a visual application, you might need to provide additional details such
as service credentials in the new application.

Any user roles that were defined for the exported application are re-created for the
new app in the Settings editor on the User Roles tab (based on the role-
mapping.json file in the exported application archive). If this doesn't happen (say,
because you're importing an older app whose users and groups no longer exist in
IDCS), you'll need to set up the user roles again in the new application. See Manage
User Roles and Access.

About Classic Applications
Classic applications were created in earlier versions of Oracle Visual Builder and used
a structure that is not compatible with the visual application structure now used in
Oracle Visual Builder. There will be no additional feature development work to support
classic applications. If you have any classic applications, you should migrate them to
use the visual applications structure if you want to retain the business objects defined
in the classic application.

Some older Oracle Visual Builder instances might still allow you to manage classic
applications, but newer instances will not provide the tools for viewing and managing
classic applications. If your Oracle Visual Builder instance supports classic
applications, you can export your classic applications as archives and then import
them as visual applications, but the UI of web and mobile apps cannot be migrated.
Importing a classic application archive only preserves the details of business objects.

Import Classic Applications
You can use the import tool to create a new visual application that contains a copy of
the business objects and data in an archived classic application. Importing a classic

Chapter 2
Export and Import Visual Applications

2-12

application will not recreate the pages in the application, and the credentials and settings
used in the application are not imported. To import an archived classic application, the
archive must be exported using the most current version of Oracle Visual Builder.

If you have an archived classic application that was exported using an earlier version of
Oracle Visual Builder, you might need to import the application as a classic application and
export it again as a newer archive before you can import it as a visual application. An archive
of a classic application created using earlier versions of Oracle Visual Builder will not be
recognized when you try to import it as a visual application. You will see an error message
that an archive is “outdated” if you try to import an older archive of a classic application.

Note:

If you see an error message similar to Failed to import application
myClassicApp. The file is an invalid application export file,
you'll need to change the extension of the file you want to import from .zip
to .ovb.

Chapter 2
Export and Import Visual Applications

2-13

You should contact your service administrator if your Oracle Visual Builder instance
does not support viewing and managing classic applications and you need to import or
export a classic application.

To import an outdated archive of a classic application:

1. Open the Oracle Visual Builder Home page.

2. Open the Application Switcher menu and select Classic Applications to switch to
the Home page for Classic Applications.

3. On the Classic Applications Home page, click Import.

Use the Import Application dialog box to upload the archive of the application.

4. Upload the classic application archive from your local system.

You can drag the archive from your local system into the dialog box or click
Upload a file to navigate to the location of the archive.

5. Type the application name and application ID. Click Import.

The Application Name and ID are automatically populated based on the archive,
but you might need to modify the name and ID because they must be unique in
your identity domain.

Chapter 2
Export and Import Visual Applications

2-14

6. Open the Application Options menu of the application you imported and click Export.

The application is exported as a .zip file to your local system.

7. Select the .zip file imported to your local system and change its file extension to .ovb.

8. Open the Application Switcher menu and select Visual Applications to switch back to
the Home page for Visual Applications.

You can now import the new archive as a visual application (see Import a Visual Application).

When you import the new archive of the classic application, the dialog displays a warning
message that only the business objects and data in the archive will be imported into the new
visual application:

Add Web (and Mobile) Apps to Your Visual Application
A visual application is a container for all your web (and mobile) applications. You can have
any numbers of apps in your visual application, even both web and mobile apps in the same
visual application.

Create a New Web Application
You can create multiple web apps within your visual application. Each web app is
independent, but they can all use the data sources defined in the visual application.

To create a new web application:

Chapter 2
Add Web (and Mobile) Apps to Your Visual Application

2-15

1. Click Web Applications in the Navigator to open the Web Apps pane.

Structural representations of each web application in your visual application show
in the Web Apps pane. If no web applications have been created, you'll see a
message and a + Web Application button.

2. Click + Web Application, or the Create Web Application icon (), in the Web
Apps pane.

3. In the Create Web Application dialog box, enter a name in the Application Name
field under General Information. The name you enter will be used as the app's
display name in the Web Apps pane. You can specify uppercase as well as
lowercase characters, but the name will be converted to lowercase.

Chapter 2
Add Web (and Mobile) Apps to Your Visual Application

2-16

4. Select a navigational style for the app based on the available templates:

• Select None to create a web app without any navigational components, if you want to
design the app's navigation on your own later.

• Select Navigation Drawer to create a web app with a Navigation Drawer, which
shows the app's main navigation menu in a separate panel (users would get to this
navigation menu by clicking in the application header).

• Select Bottom Tabs to create a web app with a tab bar at the bottom that enables
navigation between items.

5. If you chose Navigation Drawer or Bottom Tabs, specify a name for each item under

Navigation Items. Click Add Item to add as many as you need or to remove those you
don't need.

Each navigation item serves to group related pages under a separate flow. A flow can
have one or more pages and is typically used to group pages by business function. For
example, if you were creating an expenses app, you might have two navigation items:
one called My Expense Reports to group the pages that summarize expenses and let
users create and edit expense reports, and another called Administration to group
the pages where managers approve or reject expense reports.

6. Click Create.

Your new web app shows up in the Web Apps pane and opens the flowname-start page,
created by default as your application's home page. This page is the default page in the
default flow (badged as default next to the page and flow) and is what users will first see
when the app is run.

Chapter 2
Add Web (and Mobile) Apps to Your Visual Application

2-17

Expand the application node in the Web Apps pane to see the app's structure, with
nodes and subnodes representing its artifacts and files. For example, here's a tree
view of a web app that uses the Navigation Drawer template (with the default
navigation items):

Because a flow is generated for each navigation item, you see multiple flows (item-1,
item-2, and so on), each with its own starter page (item-1-start, item-2-
start, etc). If you chose None as your template, you would see a single page flow
(main).

Irrespective of the template used, all web apps include reusable fragments that define
common components that appear throughout your application. Fragments prefixed by
shell- provide a common set of interactions throughout your application and helps
users navigate and interact with your UI:

Chapter 2
Add Web (and Mobile) Apps to Your Visual Application

2-18

• The shell-header defines the global header which appears as the topmost element in
the browser. It includes your company logo, application name, and user profile, besides
other actions and utilities.

• The shell-footer defines informational components, such as contact details and
copyright information, and appears at the bottom of the browser.

• The shell-drawer is specific to the Navigation Drawer template and defines the items
that form the app's navigation menu in a separate panel.

In addition to shell fragments, a page-header fragment defines page-specific content that
appears above a page's main content. You would not work with the page-header fragment
directly, but you can customize this fragment on your page to create a custom page-level
header.

With your app now created, you are ready to design and develop its pages. You might also
want to familiarize yourself with the Designer.

Chapter 2
Add Web (and Mobile) Apps to Your Visual Application

2-19

Tip:

Web app templates lend themselves to responsive layouts and can adjust to
the size of the user's screen, ranging from small phones to wide-screen
desktops. Here's an example of a web app that uses the Navigation Drawer
template:

When the form factor is changed to a mobile device, notice how the header
items move into the drawer panel when the user clicks . Additionally, the
application title (My Application in the example) is replaced by the page
title (Item 1). The global header (which contains the company logo and
application title) is displayed only in desktop mode. To customize your app's
navigation items as well as elements in the header and footer, see Edit an
App's Header, Footer, and Navigation Items.

Chapter 2
Add Web (and Mobile) Apps to Your Visual Application

2-20

Import an Existing Mobile Application
Starting with version 23.10, mobile apps have been replaced by Progressive Web Apps
(PWAs). You can no longer create a mobile app, but you can import an existing mobile app
and work on it—though you must deploy it as a PWA to be able to use it.

To import an existing mobile app, you must import the visual app containing the mobile app
you want to work on. See Import a Visual Application.

When you import mobile app, your mobile app will show up in the Mobile Apps pane (which
won't appear otherwise):

Once you import your mobile app, you can work on it as before, but you must enable PWA
support to allow users to install the app on mobile devices. See Run Mobile Applications as
PWAs.

Tour the Designer
A visual application is your ticket to the Designer, a declarative environment that you use to
design and develop apps within your visual application.

The Designer has five distinct areas (as highlighted in this image):

Chapter 2
Tour the Designer

2-21

Label Element

1 Header

2 Navigator

3 Canvas/Editors

4 Properties pane

5 Footer

Let's take a look at each of these areas to learn more about what each one does.

The Header

The header contains information about your current Visual Builder session, as well as
access to the tools you need to develop your application.

Label/Icon Element Description

Toggle main
menu

Open a side panel, where you can select All Applications to
go to the Home page. If you're an administrator, you'll see
additional options to manage Settings and Certificates. You

can also click to navigate to the Oracle Integration Home
page.

MyFirstVisu
alApp

Visual app name Name of the visual application you're working with.

Chapter 2
Tour the Designer

2-22

Label/Icon Element Description

Developme
nt, Stage, or
Live

Status indicator Status of the visual application.

1.0 Version Version of the visual application.

Undo Undo one or more of your changes. To undo your most
recent change, click the Undo icon (hover your cursor over
the icon to view the action that will be undone). To undo
multiple changes, click the Undo drop-down list and select
the actions you want to undo. For example, selecting the
Insert Heading action in this image will remove the heading
and undo other changes you made after adding the heading:

Tip:

You can undo up to 10 of your
changes at a time (your last
500 actions are stored in the
browser and will be lost if you
clear the browsing cache). To
undo more than 10 actions,
simply undo a few items, then
open the drop-down list again.

Chapter 2
Tour the Designer

2-23

Label/Icon Element Description

Redo Redo one or more changes after undoing them. To redo your
most recent change, click the Redo icon (hover your cursor
over the icon to view the action that will redone). To redo
multiple changes, click the Redo drop-down list and select
the actions you want to redo. For example, selecting the Set
text of Heading action in this image will revert two of the
previously undone actions:

Git Integrate your visual application with a Git repository.

Go to File Search the Git repository by file name.

Preview Use the Preview icon to see how your pages look and
behave in a browser. Typically, you'd use Preview mode, but
you can also use the Debug Preview mode to debug issues
with your application.

Menu Open a menu containing the Share, Import, and Export
actions, as well as options to open the Settings editor. You
can also navigate to the Visual Builder Help Center and
discussion forum.

The Navigator

The Navigator helps you move between the artifacts in your extension, and provides
access to the Visual Builder editors:

Icon Element Description

Web Apps This is where you:
• Create a web app;
• Create a fragment, if you need a reusable piece of UI

you can use in your app;
• Import resources to use in your app.

Chapter 2
Tour the Designer

2-24

Icon Element Description

Services To interact with external REST APIs in your visual app, you
can create connections to the services that provide access to
these API endpoints.

You also have access to a catalog of predefined services
through backends such as Oracle Cloud Applications and
Oracle Integration. The Oracle Cloud Applications backend,
for example, exposes REST APIs—from Human Capital
Management, Sales, and more—that your visual app can
consume right out of the box. You can also connect to
services that aren't listed in this catalog. See Manage
Service Connections.

Business Objects Business objects are custom data objects that implement
your app's business logic. Your visual app can access and
interact with the business objects you create through REST
endpoints that Visual Builder generates for you. By default,
this data is stored in an embedded database associated with
your environment's Visual Builder instance. See Work with
Business Objects.

Layouts A Layout represents a set of data fields that can appear in
one or more related dynamic components, like a table or
form. Create a new Layout here by choosing a data source,
then defining the rule set that governs how that data looks
and behaves. See How to Create Layouts With Dynamic
Components.

Components The Components tab helps you to install and manage custom
web components that you download from the Component
Exchange, a repository of components that can be installed
in your Visual Builder instance. See Work with the
Component Exchange.

Source Although the Designer is primarily a visual editor, you can
always work with source code if you prefer. See Work With
Code Editors.

The Canvas/Editors

The canvas, which appears to the right of the Navigator when you open a page, is where you
do the bulk of your work in Visual Builder. When you open a page, you'll see different editors
along the top to help you modify and create artifacts used in the page, like Page Designer,
Actions, Event Listeners, and so on:

Chapter 2
Tour the Designer

2-25

Depending on which aspect of the page you're customizing or building, Visual Builder
invokes the proper editor to provide the experience you need, and displays that editor
in the canvas. Perhaps the most important editor is the Page Designer, described in
detail in Use the Page Designer.

All of the changes you make through the editors—the Page Designer, Actions, Event
Listeners, etc.—are saved as JSON, which you can access through the JSON pane,
next to Settings. In addition, you can use the JavaScript pane to enter any custom
functions you may need. For details about the different editors, see Which Editor Do I
Use?.

Chapter 2
Tour the Designer

2-26

Tip:

When working with multiple artifacts (pages, flows, business objects, and so on),
each artifact opens as a separate tab on the tab bar. Here's how you can better
manage these in your work area:

• Right-click a tab to see options to close the particular tab, close other tabs,
close tabs to the right, or close all tabs. You can also use this menu to select a
particular tab in the Navigator:

If the tabs overflow available space on the tab bar, click at the edge of the
tab bar and select the tab you want to open. Note that the active tab always
stays in focus.

• Right-click the empty space on the tab bar and select the option to reopen
closed tabs. Recently closed tabs are saved in session history, so you can keep
reopening tabs until you get to the one you want.

The Properties Pane

As the name suggests, the Properties pane lets you specify the properties that control the
appearance and behavior of whatever is currently selected in the canvas. While you're in the
Variables editor, for example, you use the Properties pane to set the variable's default value,
type, and other attributes. When you click a component on a page in the Page Designer, the
Properties pane is immediately updated to reflect the component's properties. Depending on
the component, the Properties pane might display additional tabs for modifying the
component’s attributes or its behavior.

When you add a collection component to the canvas, like a table or list, you'll see a Quick
Start tab added to the Properties pane:

Chapter 2
Tour the Designer

2-27

Quick Start wizards help you add some actions and components that are typically
associated with the component, such as mapping the collection to data and adding
Create and Detail pages.
To hide or show the Properties pane, just click the tab itself.

The Footer

At the bottom of the Designer, you have several tools that can help you debug your
visual application:

Element Description

Audits Scan your visual application's code for errors and warnings. Your code is
scanned when you open the Audits pane. See Audit Application Code.

Find in Files Search your application's Git repository for a text string.

Logs View build logs when a visual application is staged or published. See
Troubleshoot Build Issues.
Also, enable logging to assist with debugging when developing rules for a
business object. See Enable Logging for Scripting Events.

Tests Run all test cases defined for action chains in a visual app and run them to
make sure code changes haven’t broken any functionality. See Use the
Tests Footer in a Visual Application.

Trace Enable tracing of a business object's endpoint requests to diagnose
performance bottlenecks. See Enable Tracing to Monitor Endpoint Calls.

Chapter 2
Tour the Designer

2-28

Note:

The Designer, by default, uses a light theme based on Redwood to set the color
palette for your work environment. You can personalize this theme to switch to a
dark theme or sync with your OS settings.

1. Click the Menu option in the upper-right corner of the Designer.

2. Select Theme, then choose an option:

• Select Dark to use a dark color display, more suited for low-light conditions.
This option switches the background and text used in all the editors, except
the Page Designer canvas, where application pages continue to display
against a lighter background with dark text.

• Select OS Default to inherit the theme used in your operating system's
settings. If your system settings are configured to use dark mode, the
Designer will also use those settings.

• If you changed the default, select Light to switch back to a lighter
background with dark text display.

Chapter 2
Tour the Designer

2-29

Common Tasks for Visual Applications
Because a visual application is a container for your web (and mobile) apps, you can
manage things at the visual application level, meaning settings at this level will apply
to all the web (and mobile) apps within the visual application.

Manage Visual Application Settings
You configure settings for a visual application in the Settings editor. To access the
Settings editor, locate the application whose settings you want to change on the Visual
Builder Home page. Click the Menu option in the upper-right corner, then select
Settings:

The Settings editor includes several tabs that group related settings. Here's how you
use the different settings tabs for a visual application:

Chapter 2
Common Tasks for Visual Applications

2-30

Tab Description

Application Manage general and runtime dependency settings:
• General: Read-only values appear for settings such as your application ID.
• Runtime Dependency: Client-side libraries that, along with the

accompanying version of Oracle JET, determine features and enhancements
available to your visual application. See Manage Runtime Dependencies for
Visual Applications.

Translations Download the strings that appear in the user interface of your visual application's
web (and mobile) apps to import into a third-party translation tool for translation.
You then upload the translated strings from the translation tool to use for those
apps that support different languages. See Work with Translations.

Application
Profiles

Deploy your app with different settings depending on the environment. For
example, you won’t want to use a production REST service with access to live
customer data when developing an app. Instead, you’ll use a development or test
instance of the service. Once you complete development and your app is
deployed to production, you’ll want it to connect to the production REST service.
Application profiles help manage the switch between the different instances of the
REST service.
Application profiles can be associated with your application's backends and
service connections, as well as user roles. They can also be mapped to
environment-specific schema when you bring your own database schema for
business objects.

Note:

Application profiles belonging to visual applications
created on Visual Builder Studio and deployed to a
Visual Builder instance may at times be marked as
disabled on your instance. While you won't be able
to readily remove disabled profiles, you can't
duplicate, rename, or change their configuration
either.

Team Collaborate with others on the visual application. Only users who have been
added to the app as team members can edit an app or perform lifecycle
operations. See Add Team Members.

User Roles Control access to business objects and data in your apps based on a person’s
user role. See Authentication Roles Versus User Roles.

Business Objects Retrieve the API for the catalog of endpoints exposed by business objects in your
visual application. Other settings in this tab configure client’s access to this API.
You can configure anonymous access, basic authentication, or get an access
token that a client can use. See Allow External Access to Your Business Objects
and Get an Access Token for Authentication.

Add Team Members
Add team members to an application to enable other developers in the identity domain to
contribute to developing the application.

To allow other team members to collaborate on the same application, you need to explicitly
add the name of each team member in the application’s Settings editor. As an admin, you can
see all applications, but you cannot act on the app unless you are a team member. Your

Chapter 2
Common Tasks for Visual Applications

2-31

admin access, however, will let you add yourself to the app when you want to edit it or
perform other lifecycle operations.
To add a team member to an application:

1. Open your web (or mobile) and choose Settings in the application’s Menu in the
toolbar.

Alternatively, on the Oracle Visual Builder Home page, locate the application
where you want to change the settings and choose Settings in the Application
Options menu.

2. Open the Team tab in the Settings editor.

The Team tab contains a Members panel that displays a list of current team
members. The tab also displays a History panel that displays the time of the last
update to the application and the name of the team member who made the
update.

Chapter 2
Common Tasks for Visual Applications

2-32

3. In the Members panel, select a team member’s email from the dropdown list. Click Add.

The drop-down list displays the email addresses of all the members in your identity
domain who can be added to the application as developers.

Export and Import Application Resources
You can import and export a visual application's resources to share source files and to move
applications between instances.

Export Application Resources
You might want to export an application’s resources when you want to import them into
another application or share them with a team member. Exporting an application downloads
its resources as a ZIP archive to your local file system.

To export an application’s resources:

1. Open your web (or mobile) application and choose Export in the application’s Menu
option in the toolbar.

Chapter 2
Common Tasks for Visual Applications

2-33

Alternatively, on the Visual Builder Home page, locate the application and choose
Export in the Application Options menu.

2. If your application contains business objects, you can choose to include the data
stored in the objects when exporting the application:

Chapter 2
Common Tasks for Visual Applications

2-34

An archive that includes the application's resources is downloaded to your local file system, in
the location specified for your browser’s downloads.
If you exported the application with data, the archive will include a JSON file (entity.json)
and a spreadsheet (entity-data.csv) for each business object. The JSON file describes the
business object and the spreadsheet contains the business object data. If you chose to
export the application without data, the archive will only contain the JSON file describing the
business objects.

The archive will always include the data for any business objects that are identified as
containing Application Setup Data.

If user roles are defined for the application, the role-mapping definition (which maps user
roles to IDCS groups) will be copied to a JSON file (role-mapping.json) and included in
the exported application archive.

Import Application Resources
You can import resources to replace an existing visual application's source files with those
from an archive of another visual application.

To import resources from one application to another:

1. Click Import.

2. In the Import Resources dialog box, drag the ZIP archive of an exported visual
application into the Drag and Drop area, or click in the drop area to locate the archive on
your local system.

3. If you to want to replace all the existing files (and prevent duplication), select Delete
existing files and resources to delete all files in the existing visual application.

4. Click Import.

The resources are imported into the root directory of your visual application.

Chapter 2
Common Tasks for Visual Applications

2-35

3
Anatomy of Visual Applications

To develop applications with Oracle Visual Builder, you need to understand a few basic
concepts.

The basic components of a visual application are web apps, services, business objects, and
processes. The basic building blocks of an app are user interface (UI) components, variables,
action chains, page flows and page navigation, and data access through REST endpoints.

The building blocks and their interactions can be summarized as follows:

• Variables are the mechanism used to store and manage client state. Every variable has a
type and a scope.

• An action chain is composed of a set of one or more individual actions. The action chain
is triggered by an event. (For example, a button click can trigger navigation to a page.)
Each action represents a single asynchronous unit of work. An action chain can define
input parameters and local variables that are available only in the context of that action
chain, and can also access application-scoped input parameters and variables.

• Page flows and page navigation govern the transmission of information from one page to
another. Each individual page has a lifecycle, as does an application. Each lifecycle event
(entry or exit from a page, for example) can provide a trigger for an action chain.

• A UI component encapsulates a unit of user interface through a defined contract,
specifically, the Oracle JavaScript Extension Toolkit (JET) component contract.
Component attributes are bound to variables, and component events and variable
changes trigger action chains.

• All data access is based on REST. This data can come from business objects and service
connections. Actions and variables control how data is sent to and from a REST endpoint
in an app. A developer can create a type that matches the REST payload and pass the
data using a variable of that type.

The following figure shows the interactions among these building blocks.

3-1

Understand Variables
A variable is the basic building block for managing client state. It is of a specific type
and exists in a specific scope.

Variables store intermediate state on the client between the Visual Builder user
interface and REST services. Components are principally bound to these variables,
and the behavior of the variables is governed by actions.

A variable's type can be a primitive, a structured type (which can consist of other
types), a dynamic type, or a builtin type.

A scope defines the lifecycle of a variable, and the framework automatically creates
and destroys the variables depending on the semantics of the scope. The following
scopes are supported:

• Page scope: State is accessible only within the context of the specified page. All
state is initialized with default values when the page is entered, and destroyed
when the page is exited.

• Application scope: State is accessible in all parts of the application and in all
pages.

• Flow scope: State is accessible in all pages contained in the current flow.

• Action chain scope: State is accessible in the current action chain.

The initial value of a variable is determined using the defaultValue property set on the
variable, along with its type.

Constants are a type of variable of the Constants namespace and are used to store
values that do not need to change over time such as company name or measurement
conversion values. Constants are typed like other variables and are supported in the
same scopes. But they differ from other variables in that you can't change their values

Chapter 3
Understand Variables

3-2

after they are initialized. For more information, see Constants in the Oracle Visual Builder
Page Model Reference.

A variable value that has not yet been instantiated is undefined. A variable is guaranteed to
be instantiated and its initial value set just before the vbEnter event is raised (see The
Lifecycle of a Page).

When its value changes, a variable emits an event. This event may trigger an action chain.
You can define variables as input parameters, with their value determined by the inputs to the
page or module. These inputs can be URL parameters for bookmarking, for example.

For more information, see Variables in the Oracle Visual Builder Page Model Reference.

Variables and Parameter Passing
You can use a variable to pass a parameter between pages. You can mark a page variable as
an input, specifying how it becomes part of the contract in order to navigate to that page. You
can then further mark it as required, implying that it must be set in order to navigate to that
page.

The following table lists the available properties for variables.

Property Required? Description

type Yes A specific primitive type (string, boolean, number,and so
on); a structured type such as an array or object, for which
each field can either be a primitive or a structure; a
dynamic type (any); or a built-in type, such as
ServiceDataProvider or ArrayDataProvider (see
Built-in Extended Types).

input No; applicable only if the
property is within the
page scope

How the variable becomes part of the page contract for
incoming navigation. The value is either none (the default),
fromCaller (indicating that it will be passed internally), or
fromURL (indicating that it will be passed via the URL).

required No Whether or not the variable must be set

defaultValue No The default value for the variable to be initialized. If no
default value is provided, the value is "not set" or
undefined. The defaultValue can be bound to an
expression, or it can be a structure that uses expressions
that reference other variables.

Chapter 3
Understand Variables

3-3

Property Required? Description

persisted No Use persisted variables to extend a variable's lifespan
beyond its defined scope. For example, when you want to
keep an authorization token for the duration of a session,
set this property to make sure the token is available
throughout the session, even if the page is refreshed. Can
be set to:
• device: Stores the variable in the browser's local

storage and persists it on the device where the
application is running, even if the browser is closed. If
you want to store a variable across sessions, use this
setting.

• session: Stores the variable but only during the
current browser session.

• history: Stores the variable on the browser history.
When navigating back to a page in the browser history
using the browser back button, the value of the
variable is restored to its value at the time the
application navigated away from this page.

• none: Variable is not stored (default).

Expressions
An expression may refer to other variables including constants, system properties,
statics, and the like. For example:

$variables.total = $variables.sum * (1 + $variables.taxRate)

The Visual Builder user interface performs dependency analysis of the expressions to
correctly order expression evaluation and detect cycles.

If the value of any variable referenced in an expression changes, the expression is
immediately reevaluated.

An expression can be used in the default value of a variable or constant.

You can use the following implicit objects in expressions (all are prefixed by a dollar
sign ($):

Name Where Available Description

$application Everywhere Application object

$page In the current
page

Current page instance

$flow In the current flow Current flow instance

$variables Every scope that
has a variables
property

A shortcut for $most_specific_scope.variables in
the current scope. In a page, $variables is a shortcut
for $page.variables.

$chains Every scope that
has a chains
property

A shortcut for $most_specific_scope.chains

$chain Actions executing
in an action chain

Chain in which the action is executing

Chapter 3
Understand Variables

3-4

Name Where Available Description

$parameters In the
beforeEnter
event

Input parameters for the page. This object is needed
because page variables do not exist yet in the
vbBeforeEnter event.

$listeners In a flow or page Event listeners of a flow or page

$event Event listeners
and variable
onValueChange
listeners

For an event listener on a component, $event contains
the Event JavaScript object that the component passes
to the listener. For an event listener on a custom
event, $event contains the payload for that event. For
an onValueChange listener on a variable,$event is a
structure with the properties name, oldValue, value,
and diff (itself a structure).

$initParams Everywhere Declarative initialization parameters which can be used
in expressions. Initialization parameters—or
initParams—are evaluated early and can be used in
expressions that are evaluated before variables exist (for
example, in service declarations or translation bundle
paths). The initParams are defined within a
configuration block in app-flow.json, for
example:

"configuration": {
 "initParams": {
 "myServicePath": "some/path/",
 "anotherPath": "http://somehost/foo"
 }
},
"services": {
 "myservice":
"{{ $application.initParams.myServicePath
 + 'myservice.json' }}"
},
"requirejs": {
 "paths": {
 "myPrefix":
"{{ $initParams.anotherPath }}"
 }
}

Variables and Lifecycles
Application and page variables are constructed automatically in a specific application or page
lifecycle stage.

Input parameters that are passed by means of navigation rules, or bookmarkable variables
that are provided on the URL, are automatically assigned to their corresponding variables.
When you modify the value of a bookmarkable variable, the URL is automatically adjusted to
match that new value (that is, a new history state is pushed). In this way the page is always
bookmarkable and does not require any specific user action in order to be bookmarked.

Chapter 3
Understand Variables

3-5

Variables and Events
A variable triggers an onValueChanged event when it is modified. This event is
triggered only when the value is actually changed; setting a variable value to the same
value does not trigger an event. The variable must be explicitly changed to send the
event. For example, if a variable is a complex type, modifying an inner property does
not fire this event; the entire variable must be set by means of an API call. In this case,
the framework can add to the payload those parts of the structure that have changed.
For example, if you changed the name property of an Employee and then reset the
Employee, the framework would send an event that the Employee changed, and as
part of the payload indicate that the name has changed.

An onValueChanged event can trigger a user-defined action chain. The trigger has the
payload of the former and new values of the variable.

For more information, see Understanding Actions and Action Chains.

Understand Actions and Action Chains
An action chain is made up of one or more individual actions, each of which represents
a single asynchronous unit of work. Action chains are triggered by events.

An action chain, like a variable, has a scope: it can be defined at the application level
or the page level. You can call an application-scoped action chain from any page. You
can call a page-scoped action chain only from the page on which it is defined.

To create an action chain, you can define your own actions and can also use
predefined actions. Actions within a particular chain run serially, and multiple action
chains can run concurrently. Action chains simplify the coordination of asynchronous
activities.

A single event may simultaneously trigger multiple action chains. For example, the
page enter event may trigger multiple data fetch action chains simultaneously.

An action is a specific function that performs a task. In JavaScript terms, an action is a
Promise factory. An action can exist only within an action chain, not independently.

Action Chain Context and Contract
Action chains have a well-defined context and contract: an action chain orchestrates
its underlying actions, coordinating state flow and the execution path. The action chain
can define input parameters and local variables that are only available in that context.
An example of an action chain is one that makes a REST call (first action), then takes
the result of that and stores that in a variable (second action).

An action chain maintains its own context, which is accessible through an implicit
object called $chain. Actions may export new state to that context, but it is only
available to future actions along that same action chain. An action chain can be
created in the context of a page or the application and exists within the scope of the
page or the application. It has a defined interface and contract and can be called by
event triggers using its ID.

The action chain contract has three parts.

Chapter 3
Understand Actions and Action Chains

3-6

Action Chain Part Description

ID String identifier for the action chain

Input parameters Zero or more variables that can be passed into the action chain and
added to the action chain context

Variables Zero or more variables that are internal to the action chain and usable
internally by actions

For more information, see Action Chains in the Oracle Visual Builder Page Model Reference.

Built-in Actions
Visual Builder comes with a set of built-in (or predefined) actions for an action chain, used for
example navigation or assigning variable values. An action has the following parts that the
developer can define:

Action Part Description

ID String identifier for this action instance. This action part is optional, since
the ID is necessary only if you wish to refer to the action’s results later in
the action chain.

Configuration Any properties of the action that the user can configure. For example, for
the Navigate action, the page to navigate to and any parameters required
for that navigation.

Outcomes and Results An action may have multiple potential outcomes (such as success or
failure, or a branch). It can also return results.

Exported State An action may export state that is available to future actions within the
context of the same action chain.

The predefined actions include conditionals and other processing instructions. For example,
you can use if and switch actions that take an expression and offer multiple different chain
continuations depending on the result.

For details about predefined actions, see JavaScript Actionsin the Oracle Visual Builder Page
Model Reference.

Event Handling for Action Chains
Action chains are defined at the application or page level and triggered by a specific event,
such as onValueChange (for a variable), or vbEnter. An event may include a payload, which
can then be used within the action chain. A payload may be passed into an action chain
through the input parameters. The Visual Builder user interface can help you create action
chains automatically (with appropriate input parameters) based on a particular event.

Understand Page Flows and Lifecycles
The page flow governs how information is transferred between pages. The page lifecycle
governs the state of an individual page.

A page has a defined lifecycle that permits you to listen to certain events that are triggered as
part of the lifecycle. Examples of page lifecycle events are enter and beforeExit.

Chapter 3
Understand Page Flows and Lifecycles

3-7

One or more pages form a page flow. Within a flow, you can set up navigation from
page to page.

Navigation actions can be internal or external. An internal navigation action is
composed of the ID of the page to navigate to along with any parameters that are
specified for that page. An external navigation action is defined by an external URL.
These actions are defined in the page model.

An application also has a lifecycle and flow. An application can contain multiple page
flows.

The Lifecycle of a Page
An individual page has defined lifecycle states upon entering and leaving, and each
state has a trigger. For some states, you can provide action chains in response to the
triggers. Other states are internal, but help illustrate what happens and when in the
system.

Event Applies To Can Cancel
Navigation

Returns Description

vbBeforeEn
ter

Page Yes None or
{ cancelle
d: true }
to cancel
navigation

Dispatched to a page before
navigating to it. Visual Builder will
navigate to this page, but has not yet
started the navigation and has not
torn down the previous page's state.
A developer can cancel navigation for
this event (for example, if the user
does not have permission to enter
this page) by returning an object with
the property cancelled set to true.
A developer can also redirect the
user to another page instead (for
example, it can take the user to a
login screen).

After this state is exited, the previous
page’s state can be torn down.

Page state is not available.

The following variable scopes are
available:

• $application: All application
variables

• $flow: All parent flow variables

• $parameters: All page input
parameters from the URL

Chapter 3
Understand Page Flows and Lifecycles

3-8

Event Applies To Can Cancel
Navigation

Returns Description

vbEnter Page or flow No None Dispatched after all container-scoped
variables have been added and
initialized to their default values,
values from URL parameters, or
persisted values.
The following variable scopes are
available:

• $application: All application
variables

• $flow: All parent flow variables

• $page: All page variables

This state is generally used to trigger
data fetches, which may occur
concurrently.

vbBeforeEx
it

Page Yes None or
{ cancelle
d: true }
to cancel
navigation

Dispatched to a page before exiting
it.
A developer can cancel navigation for
this event by returning to the listener
chain an object with the property
cancelled set to true. This can be
useful if the page has to be saved
before the user exits it.

vbExit Page or flow No None Dispatched when exiting the page.
This event can be used to clean up
resources before leaving the page.

Page Navigation
Every page in the application has a name, which you can specify and change. You use the
page name to navigate from one page to another within a page flow.

To configure a Navigate action, specify the following parameters:

• The page to navigate to, or an expression that resolves to that value

• Values for required input parameters and for any optional input parameters that you use.
(You can only set the value of page input parameters.)

There are two possible results:

• Navigation was successful

• Navigation was canceled from the page we are navigating to

Understand UI Components
User interface (UI) components encapsulate a unit of user interface interaction through a
defined contract.

The Web Component contract exposes the functionality of a component through the user
interface, enabling the component to interact with other parts of the application. Visual Builder
supports the Oracle JavaScript Extension Toolkit (JET) components contract, which adds
data binding, component metadata, and dependencies on top of the Web Component

Chapter 3
Understand UI Components

3-9

contract. The Oracle JET components contract exposes a custom Document Object
Model (DOM) HTML element with custom properties, events, and methods. The
property binding added by Oracle JET supports both one-way (read-only) and two-way
(read/write) binding. In general, the component properties are bound to variables, and
the component events trigger action chains.

A component can have zero or more slots that can hold one or more children of that
component. For example, a toolbar can contain a number of buttons.

You can add components to an application from the Component Palette. You can also
use custom JET components, including those supplied by the Component Exchange.
See Work with the Component Exchange for details.

For simple use cases, you can use a simple HTML component and corresponding
view model implementation.

For details about Oracle JET, see http://www.oracle.com/webfolder/technetwork/jet/
index.html. The Oracle JET Cookbook provides detailed information about using all the
supported components at http://www.oracle.com/webfolder/technetwork/jet/
jetCookbook.html

The Component Contract
A UI component, whether shipped by Visual Builder, provided by a partner, or created
by you, must follow the same component contract. This contract allows Visual Builder
to expose the functionality of a component declaratively through the Visual Builder
user interface. If you need to add functionality to a component, you can expand the
capabilities of that component, and the new functionality is then expressed in that
component’s interface.

The component contract has four aspects: properties, events, child slots, and
methods.

Properties
A component has properties that you can bind to variables or expressions by means of
the Visual Builder user interface. These properties can affect the state of a component
(for example, the value of an input text field) or affect its rendering (for example,
enabled or disabled). A component property has a specific type, which matches the
types available for a variable, and may itself be structured or a collection. A property
may also be required as part of the component interface.

In addition to a type, a component property may also have additional metadata (as
defined in the JET design time metadata for properties), such as a display name or
description.

There are two kinds of properties, one-way and two-way.

Property
Type

Description Can Be Bound To

One-way
(read-only)

The component reads the value of this property. If the
expression that the property is bound to changes, the
component will be notified of this change.

Expressions (which
may contain variables)

Chapter 3
Understand UI Components

3-10

http://www.oracle.com/webfolder/technetwork/jet/index.html
http://www.oracle.com/webfolder/technetwork/jet/index.html
http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html
http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html

Property
Type

Description Can Be Bound To

Two-way
(read/write)

The component can read the value of this property
and can also write back to that property. If the variable
is modified externally, the component will be notified of
this change.

Variables

Events
A component can fire zero or more events (for example, an onClick event for a button). Each
event has a payload. The Visual Builder user interface allows the developer to listen for any
of these events and to expose the event payload. An action chain can then process the
event.

Child Slots
A slot is a placeholder inside a web component that you can fill with your own markup. A
component can have zero or more slots that can hold one or more children. Any children not
assigned to a specific slot are assigned to the default slot.

Methods
A component can have zero or more methods that can be called on the component to
perform an action (for example, to flip a card). These methods may have parameters that are
defined as part of the component interface. The Visual Builder user interface provides an
action within an action chain that allows the user to call a component method and fill in the
parameters using expressions.

Component IDs and Styles
A component can have a configurable ID to allow it to be referenced from an action. In
addition, you can bind component style classes to an expression.

Understand Data Access Through REST
All data access to and from a client application occurs through REpresentational State
Transfer (REST) calls.

The Visual Builder user interface provides access to two basic kinds of data:

• Business objects in Visual Builder, which you can create yourself and use in applications

• Service connections, which can be Oracle services or external REST services

When you create a business object, a REST API is automatically created for you, with GET,
POST, PATCH, and DELETE endpoints.

When you create a service connection, you can obtain REST APIs in one of the following
ways:

• Select objects from a service catalog

• Provide a service specification document in OpenAPI/Swagger or Oracle Application
Developer Framework (ADF) Describe format

Chapter 3
Understand Data Access Through REST

3-11

• Specify an endpoint URL, an HTTP method, and an action hint

Each of these mechanisms generates REST APIs for you to use. You can specify
request and response payload structures in JSON format, and you can provide a
subset of query parameters to expose to the Visual Builder user interface. Parameters
can have a type (but are assumed to be primitives). You can also use the provided
REST helper utility to call REST endpoints.

For full details on using REST for data access in Visual Builder, see Introduction to
Accessing Business Objects in Accessing Business Objects Using REST APIs.

Data Binding
You can create variables and action chains to call REST endpoints from your
applications, retrieving and sending data to and from the endpoints. Typically, the type
of the variable matches the structure of the REST payload. You have the option of
defining your own type that more closely matches your use case, and then mapping
from the REST payload to a variable instance that uses that type. For example, for
advanced cases, you could define a variable type that matches your own page design,
and then map one or more REST payloads to that type. To send that data back to a
service or services, you would again map the data of that variable to the REST
payloads.

Components are bound to variables. These variables do not have any intrinsic
knowledge of where their data is derived from or what their data is used for. To
populate a variable from a REST call, you assemble an action chain from an action
making that REST call and an action assigning the result to that variable. In the
common case, the Visual Builder user interface automates the creation of that variable
to match the payload of the REST call, enabling you to quickly bind the REST call's
payload in your application pages. To handle a POST or DELETE action, you compose
an action chain with the REST action, passing in the variable as the payload.

Mapping to and from REST
In more advanced cases, you may wish to define a model (through the use of a
variable) that more closely matches your specific application. In other cases, the GET
and POST (or equivalent methods) may be asymmetrical or may be from different
services entirely. In these cases, you can map the REST payload to and from that
variable.

Chapter 3
Understand Data Access Through REST

3-12

Part II
Connect Applications to Data

All business applications require some type of data, and when working with applications in
Oracle Visual Builder, you can connect to multiple sources of data—as long as you're able to
access them through REST.

Visual Builder provides easy access to two basic data sources:

• Business objects which are data objects you create to implement your app's business
logic. A business object is a complex data type that groups together related data. For
example, if you’re creating an application that requires information about an employee,
you might create a business object that stores the name, address, salary, and other
information about the employee.

When you create a business object, a REST API is automatically created for you (with
GET, POST, PATCH, and DELETE endpoints). You interact with the data in your business
object through these REST endpoints. Your data is by default stored in an embedded
database associated with your Visual Builder instance, but you can use your own Oracle
database if an administrator has configured one for you.

• Service connections which are data objects that you connect to. They can be endpoints
exposed by Oracle services, like Oracle Cloud Applications or Oracle Integration, as well
as external REST services. For example, your employee application can use a service
connection to access data exposed by HCM endpoints in the built-in service catalog,
even access an external REST service to get information about the country that an
employee works from.

No matter what form your data takes (business objects or service connections), the basic
principles of creating an application are the same. The key difference between the two data
sources: business objects store data as part of the app itself, service connections receive
data from REST APIs.

If you know the structure of your objects or the data sources you want to use in your
application, you can start defining your application's business objects, service connections, or
both.

Topics:

• Work with Business Objects

• Manage Service Connections

4
Work with Business Objects

A business object is a resource, such as an invoice or purchase order, similar to a database
table; it has fields that hold the data for your application. Like a database table, a business
object provides the structure for data. Business objects are stored in a database. The apps in
your visual application and other clients access the business objects via their REST
endpoints.

About the Business Objects Pane
The Business Objects pane in the Navigator lists all the business objects that are available
for use in your application.

You can view your business objects, create new ones, and open pages where you can edit
object details. You can also create diagrams to visually represent business objects and their
relationships (see Work with the Business Object Diagrammer).

Use the + button on the Business Objects pane to create business objects and business
object diagrams. Use the Menu option to open the Data Manager, where you can work with
business object data (see Work with the Data Manager).

After a business object is created, you can select it in the Business Objects pane to view and
edit details such as fields and data, related objects, and security settings. The following table
describes the tabs in a business object's editor:

4-1

Tab Description

Overvie
w

Displays the business object Id and contains fields for specifying the singular and
plural forms for the label used to identify the business object. It also includes the
following options:

• Relationships. Displays the relationships between the business object and other
business objects in your application. See View, Create, and Edit Business Object
Relationships.

• Contains Application Setup Data. When enabled, the data in the business
object is considered to be required for the application to function properly, for
example, data used in a list of values (LOV) referenced by another business
object. When enabled, the data in the business object will always be included
when you export or publish the application. See Export a Visual Application and
Stage and Publish Visual Applications.

Fields Contains a table displaying the fields defined for the business object. The tab
contains a + Field button for defining new fields. You can select a field in the table to
edit its properties in the editor. See Edit Business Object Fields.

Every business object you create includes these default fields: an id plus audit fields
that provide information on who created and updated the object and when. It also
includes a version number used in the generation of an entity tag (ETag) which
protects against users overwriting changes.

Security Used to enable role-based security for the business object, and, when enabled, to
specify the operations that can be performed by users based on the user role they
are assigned. See Secure Business Objects.

Busines
s Rules

Contains a visual editor for creating custom business rules that can perform
functions, such as field validation, that can be triggered by object events and actions.
See About Adding Business Rules.

Endpoin
ts

Displays a list of endpoints for the business object. It also contains the resource APIs,
the URLs that can be used to access the metadata and data of the business object.
See View a Business Object's Endpoints.

To expose only those endpoints that your application requires, see Add or Remove
Exposed Endpoints.

To define a caching strategy that safely stores the business object's data, see Control
Data Caching for Business Objects.

To allow other clients and applications access to the APIs using basic authentication,
see Manage User Roles and Access and Allow External Access to Your Business
Objects.

Data Displays data stored in the business object's fields. The tab contains tools for adding
and editing the data. See View and Edit Data in Business Objects.

Source Displays JSON metadata that describes the business object. This source view is
typically read-only and you won't make changes here, except to fix issues such as
merge conflicts.

Create and Edit Business Objects
You use business objects to store data that is not provided by a service connection. As
you develop your applications, you can create business objects and edit the business
object fields to meet your needs.

Chapter 4
Create and Edit Business Objects

4-2

Tip:

The Business Objects pane in the Navigator is where you'll create and manage
your business objects. While the Objects tab provides a standard view of business
objects, you can use the Diagram tab to view a visual representation of business
objects and their relationships. You can also create and manage business objects
using the Diagrammer. See Create Business Objects with the Diagrammer.

Create a Business Object
You can create business objects to store data in the database that was provisioned for your
service instance.

When you create business objects, you specify the fields that your application needs. As you
develop your application, you can modify your business objects to add and modify fields as
needed. Your business object will be exposed as a set of endpoints that provide REST APIs
for operations that you can call from page components.

To create a business object:

1. Open the Business Objects tab.

The Business Objects pane opens. By default, the Objects tab is selected.

2. Click the + sign and select Business Object.

Chapter 4
Create and Edit Business Objects

4-3

3. In the New Business Object dialog box, enter a Name for the business object (for
example, MyObject). The Display Label is automatically populated based on the
name you enter (for example, My Object); update it as needed. Click Create.

The newly created business object opens in the main window and displays the
Overview tab. The window contains additional tabs for viewing and editing the various
attributes of the business object: Fields, Security, Business Rules, Endpoints, and
Data. The Endpoints tab shows the endpoints that are created by default for the
business object.

To delete a business object, right-click the business object and select Delete.

Add Fields to Business Objects
You can use the Fields tab of the Business Object editor to create fields for your
business objects.

You can create new fields for your business object while it is in Development status.

To add a new field:

1. Open the Fields tab of the business object that you want to edit.

2. Click the + Field button, then select Field.

Chapter 4
Create and Edit Business Objects

4-4

3. In the Label field, enter the name of the field (which is set as the display label).

The Field Name, by default, is filled in based on the field label, but can be changed if you
want.

Note:

Do not use "items" as a field name; it's a reserved keyword used for the array
that contains the fields in the business object's endpoint description and should
not be used as a field name.

4. Select the Type of the field.

Available types are String, Number, Boolean, Datetime, Date, Time, Reference, Email,
Percentage, Phone, and Uri. For a Reference type, you’ll need to specify the Referenced
Business Object and the Display Field.

For a string type field, make sure your data doesn't exceed 4000 bytes.

5. Click Create.

Edit Business Object Fields
You can use the Fields tab of the Business Object editor to modify your business object's
fields. You can do this to add functionality to a field, or even to fix errors relating to invalid
property values. Fields that contain errors will be underlined in red on the Fields tab.

You can edit the fields of business objects when your application is in Development status.
To edit the properties of a field:

1. Open the Fields tab of the business object that you want to edit.

The Fields tab displays a table that lists all the fields that are defined for the business
object.

2. Select the row of the field that you want to edit.

When you select a row in the table, the editor displays the properties that you can edit:

Chapter 4
Create and Edit Business Objects

4-5

3. Edit the field's properties.

Chapter 4
Create and Edit Business Objects

4-6

The properties that are available will depend upon the data type of the field. You might be
able to specify a default value for the field using a static value, an expression, or a
formula. You can also specify one or more of the following field constraints: Required,
Unique, Indexed, Updatable, and Searchable.

Chapter 4
Create and Edit Business Objects

4-7

Depending on the field's data type, you can set values for the Minimum Length,
Maximum Length, and so on. If invalid values are used, the field's name will be
underlined in red on the Fields tab.

When your business object references other objects, you can view and edit (if
necessary) the properties of the accessor that lets you access the related
business object.

Note:

Depending on the field's data type, you might also see the History Type
property, used to audit a business object's history. While the option does
exist, it isn't particularly relevant for objects you create because audit
fields are automatically added for every business object you create. The
property is more useful when you want to set your own audit fields for
business objects created from a file or those that use your own database
schema.

Chapter 4
Create and Edit Business Objects

4-8

Change a Field's Data Type
You can change a field's data type even after it's been created. This option is useful when
you want to create a business object that uses a non-numeric key.

Caution:

Consider the impact of changing an existing field's data type, especially that of a
key field. When a field's data type is changed, Visual Builder tries to convert the
existing data into the new type, for example, converting a string "10.5" to its
numeric equivalent 10.5. In the development phase, on a record-by-record basis, if
the data cannot be converted to the new type, it will be set to null—other than for a
key field. If the key field's data cannot be converted, the entire record will be
deleted. If data in an existing deployment schema cannot be converted, you won't
be able to stage or publish your app unless you undo the type change, fix the data
in the deployment schema to remove any incompatible data, or redeploy choosing
the option to create a new schema.

To change the data type of a field:

1. Open your business object's Fields editor and select the field whose type you want to
change.

2. Under Type in the Properties pane, click next to the current data type.

Type changes for a business object's key field are not allowed if the object has incoming
relationships. For example, when a department field in the Employee business object
references the Department object (via its Id field), Department is said to have an
incoming relationship with Employee. In this case, you won't be able to change the data
type of the Employee object's department field as well as the Department object's Id
field.

Chapter 4
Create and Edit Business Objects

4-9

3. Select the type you want to change to and click Update.

Set a Default Value for a Field
You can set a default value for a field if the user does not provide a value for it. Based
on the field's data type, you might be able to set a static value or an expression as the
default.

To set a default value for a field:

1. Open your business object's Fields editor and select the field you want to modify.

2. In the field's Properties pane, select Set to default if value not provided.

3. Choose to define a static value or construct an expression:

• To set a static value, select Static Value (selected by default) and enter a
value:

• To set an expression, select Expression from the drop-down list, then
construct an expression in the Expression Builder.

Specify operands by typing in the text area or click an operator in the toolbar
to add it to your expression. You can also select the Insert arrow for a field in
the Business Objects tab or for a function in the Functions tab.

For example, to set the current date as the default hire date for an employee,
you might enter now() as the expression for the Hire Date field:

Chapter 4
Create and Edit Business Objects

4-10

Click OK.

A field's default value won't be visible to users when they access the field. That's because the
value is added just before the record is stored in the business object's database.
If you defined a Groovy expression for a field's default value, you can optionally override the

default Groovy timeout by clicking the icon in the Properties pane.

Add a Formula to a Field
You can add a formula to calculate the value of a business object's field. You can create a
formula to calculate a numerical value, such as a percentage, or you can create a Groovy
expression that uses available fields to generate a value. For example, you can concatenate
strings stored in local fields (firstName + ‘ ‘ + lastName) or determine a value based on a
comparison or logical expression (qualityLevel != 5).

You calculate a field's value with a formula in one of two ways: by creating a new formula field
or by editing an existing field and adding a formula to calculate its value.

• To create a new formula field:

1. Open your business object's Fields editor.

2. Click the + Field button, then select Formula Field.

3. In the Create Formula Field dialog box, enter a label for the formula field you want to
create, then select the field's Type.

(The Field Name is automatically filled in based on the field label.)

4. Enter a valid expression for the formula in the text area.

The formula you enter must be a valid expression. You can specify operands by
typing in the text area or by selecting the Insert arrow for a field in the list of Available
Fields. You can also click an operator in the toolbar to add it to the formula.

Chapter 4
Create and Edit Business Objects

4-11

Click Create Field.

The new field is created and its formula displayed in the Properties pane.

• To add a formula to an existing field:

1. Open your business object's Fields editor and select the field you want to
modify.

2. In the field's Properties pane, select Calculate value with a formula.

3. In the Field Formula expression builder, enter a valid expression for the
formula in the text area. You can specify operands by typing in the text area or
by selecting the Insert arrow for a field in the list of Available Fields. You can
also click an operator in the toolbar to add it to the formula.

Chapter 4
Create and Edit Business Objects

4-12

Click OK.

The formula is saved and displayed in the Properties pane.

Once your formula is created, it will be displayed in the Properties pane:

Click next to the formula to edit it in the Expression Builder. The expression you supply is
evaluated at runtime to return the field’s value each time it is accessed. And when the field is
populated, you'll see the value on the Data tab. A field whose value is calculated using a
formula is read-only.

When you define a Groovy expression for formula fields, you can optionally override the

default Groovy timeout by clicking the icon in the Properties pane.

Add a Field for Aggregating Data
Use aggregation fields in your business objects to aggregate the data of related business
objects, for example, to calculate and store the total number of items in an order. You can

Chapter 4
Create and Edit Business Objects

4-13

calculate and store the values of simple operations such as calculating an average or
sum, or counting the number of related business objects.

You aggregate a field's data in one of two ways: by creating a new aggregation field or
by editing an existing field and adding an aggregation function. For both options, your
business object must have a related object with fields that can be aggregated; in other
words, a business object with incoming relationships. Let's say you create a field in the
Employee business object that refers to the Department object; Employee is the
source object and Department is the target object. Department, in this case, is said to
have an incoming relationship with Employee.

• To create a new aggregation field:

1. Open your business object's Fields editor.

2. Click the + Field button, then select Aggregation Field.

3. In the Create Aggregation Field dialog box, enter a label for the aggregation
field you want to create.

(The Field Name is automatically filled in based on the field label.)

4. Select the object to aggregate (for example, the Employee business object
which uses Department as a target business object), the aggregation function
(which can be Average, Count, Maximum, Minimum, or Total), and the field to
aggregate (for example, Salary):

You can also select the Filter Related Object Records check box to create a
filter to limit the fields that are aggregated.

Chapter 4
Create and Edit Business Objects

4-14

Click Create Field.

• To create an aggregation for an existing field:

1. Open your business object's Fields editor and select a field that can be aggregated.

2. In the field's Properties pane, select Aggregate from related object data.

3. In the Create Aggregation dialog box, select the object to aggregate (for example, the
LineItem business object which is referenced by the customerOrder object), the
aggregation function (which can be Average, Count, Maximum, Minimum, or Total),
and the field to aggregate (for example, Quantity):

You can also select the Filter Related Object Records check box to create a filter to
limit the fields that are aggregated.
Click Save Aggregation.

Once your aggregation formula is created, it will be displayed in the Properties pane:

Chapter 4
Create and Edit Business Objects

4-15

Click next to the aggregation formula if you want to edit it. When the field is
populated, you'll see the aggregated value in the Data tab.

Index a Field
You can index a business object's fields to speed up searches, especially if the field
contains thousands of records that are frequently accessed. Indexing a field adds a
non-unique index to the field's database column and improves performance when you
search for the field's value via REST requests or Groovy code.

To index a business object's field:

1. Open your business object's Fields editor and select the field you want to index.

2. Under Constraints in the Properties pane, select the Indexed check box.

This property does not show for the Id field, a Reference type field, or one that's
marked unique because these fields are implicitly indexed.

View, Create, and Edit Business Object Relationships
Define business object relationships to more easily create pages with master-detail
relationships or drop-down lists that reference another business object's values.

You can create, edit, and delete relationships from the business object's Overview
page as well as in the Diagrammer, both of which show all relationships of the current
object. When a business object field references another object, you can also edit the
specific relationship from the referenced field's Properties pane.

Create a Business Object Relationship
You can create a business object relationship from the Relationships area of an
object's Overview tab.

You can also define a relationship using the Diagrammer. See Create Relationships
with the Diagrammer.

To create a new relationship:

1. In the Business Objects tab, select the business object that you want to view.

The contents of the Overview tab are displayed.

Chapter 4
View, Create, and Edit Business Object Relationships

4-16

2. Click + Relationship next to Relationships.

3. In the dialog box, select the business object you want to create a relationship with.

4. Select the cardinality for each object (Many or One). The default is many-to-one.

You can click the Reverse Relationship button to switch between one-to-many and
many-to-one. You can specify cardinalities of one-to-one and many-to-many between
business objects, in addition to many-to-one and one-to-many.
If you specify many-to-many, an intersection business object with two reference fields (in
our example, EmployeeProject with the project and employee fields) is automatically
created. Its default name is a concatenation of the two business objects (which can be
changed if you want). For an intersection business object, you can't deselect the
Required check box in either of the reference fields, and the default delete rule is
Cascade.

Tip:

If an existing business object has many-to-one relationships with both source
and target of the many-to-many relationship, the business object will appear in
the Select a business object drop-down list. You can use this object instead of
creating a new intersection business object.

The Enable Accessor check box is selected by default for the Many side of the
relationship. Keep the check box selected unless you want to disable access to the other
business object.

Chapter 4
View, Create, and Edit Business Object Relationships

4-17

5. Edit the properties of the relationship field (Field Name, Display Label, Required
check box, Delete Rule, and Display Field). Whether you can edit a property and
what values are available depends on the nature of the relationship and the
objects.

The Delete Rule determines what happens when a record that has a relationship
to another record is deleted. The available choices are:

• Restrict: you aren't allowed to delete a parent that has children (the default
rule for a one-to-many relationship)

• Cascade: when you delete a parent, the children of that parent are
automatically deleted (the default rule for an intersection object)

• Set To Null: when you delete a parent, the parent relationship field in the
children is set to null

6. Click Create Relationship.

The new relationship is displayed in the Relationships list on the Overview page, along
with the accessor that lets you access the business object at the other end of the
relationship. Clicking the accessor name will take you to the Fields tab, where you'll
see the accessor listed along with standard fields.

For referenced business objects, the relationship between the current business object
and the one being referenced is, by default, many-to-one. When you create a
reference from, say, an Employee business object to a Department business object, an
Employee can belong to only one Department, but a Department normally has many
employees. Such a relationship is first shown as a dotted line for the object that
represents the one side. When you click the line, the details from the many business
object are loaded and the relationship is shown:

Chapter 4
View, Create, and Edit Business Object Relationships

4-18

The referenced business object, Department, also appears in the Endpoints tab for the
Employee business object.

Edit a Business Object Relationship
You can edit the details of a business object's relationship to make changes as required.
Whether you can edit a property and what values are available depend on the nature of the
relationship and the objects.

To edit a relationship:

1. Locate the business object relationship to edit. You can edit a relationship from many
contexts:

• From a business object's Overview tab:

• From a business object's properties in the Diagrammer (see Work with the Business
Object Diagrammer):

Chapter 4
View, Create, and Edit Business Object Relationships

4-19

• From a referenced field's Properties pane:

Chapter 4
View, Create, and Edit Business Object Relationships

4-20

2. Click the Edit icon next to the relationship name and make the desired changes.

Some fields cannot be edited and are disabled. Enable or disable the Enable Accessor
check box if needed. Note that disabling the accessor means you won't be able to access
the related business object's information. Additionally, you can specify the Display Label,
select the Display Field, and change the selection that makes the field required. You can
also specify a Delete Rule.

3. Click Done.

Secure Business Objects
Configure a business object's security settings to control the user roles that can access the
endpoints and the types of operations they can perform. See Access and Secure Business
Objects.

Chapter 4
Secure Business Objects

4-21

Create Rules for Business Objects
Most applications require rules for business objects to execute business logic that
deals with the data. For each business object in your application, you can create
business rules that validate objects and fields and that trigger actions based on events
or field changes.

To define business rules for each business object, you can create:

• Object and Field triggers that let you react to data events (for example, when a
record is inserted, updated, or deleted). You can use the trigger designer to
visually define the conditions and actions that will be executed in those events, or
write custom Groovy scripts that define more complex logic.

• Object and field validators that make sure data at the field or record level is
correct.

• Object functions that encapsulate logic relating to a business object.

Business rules always run on the server and work the same way no matter how a
business object is updated (whether through REST API calls or Groovy scripts).

About Adding Business Rules
You can use the trigger designer and code editors in the Business Rules tab to create
business rules for your business objects.

On the Business Objects page, you use the Business Rules tab to create and edit
business rules for your business objects. The rules for the selected business object
are grouped under the following tabs in the Business Rules tab:

• Object Triggers

• Field Triggers

• Object Validators

• Field Validators

• Object Functions

Each tab displays a list of the existing business rules and contains a button for
creating a new rule. For each business rule, you can use the Business Rules options
menu to copy and delete rules or to open the editor. You can toggle the state of a rule
by selecting and deselecting the Active check box.

Chapter 4
Create Rules for Business Objects

4-22

To add a new rule for a business object, select the object for which you want to add your rule
and then open the Business Rules tab. In the Business Rules tab, open the tab for the type of
rule that you want to add and click the button to create a new rule, for example, New Field
Trigger. When creating a rule, you need to specify a name, and, depending on the type, you
might also need to specify other rule properties.

To define validation rules and object functions, you can use a code editor to write your
Groovy scripts. To create triggers, you use the trigger designer, a visual editor for creating
sequences that execute actions on your business objects. For additional help on writing
Groovy scripts, see the Groovy Scripting Reference.

Access the Current User's Details in Your Groovy Script
The recommended way to access the current username in your Groovy script is
adf.context.getSecurityContext().getUserName(). The only method in the UserProfile
object that returns a non-null result is getUserName(), which is the same value as what is
returned from the API above. There is no reason to use UserProfile when using Groovy in
Visual Builder. For more details, see Referencing Information About the Current User in the
Groovy Scripting Reference.

Triggers for Business Objects
Triggers are scripts that you can write to complement the default processing logic for
business objects. A trigger defines behavior that happens in response to a specific business
object event, for example, inserting or updating a record, or in response to a field value
change.

In the Business Rules tab of a business object, an object trigger refers to the sequence of
actions that starts when a specific event occurs.

Chapter 4
Create Rules for Business Objects

4-23

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=visual-builder-groovyref
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/visual-builder-groovy/groovy-tips-and-techniques.html#to_referencing_information_about_the_current_user

A field trigger refers to the sequence of actions that starts when a field value changes.

The trigger designer provides a visual representation of your sequence where you can
define the conditions that determine the actions that will be executed. For each
criterion you can assemble a list of actions composed of functions and Groovy scripts.

Object Triggers
You can create an object trigger to specify a sequence of actions that starts when a
specific event occurs.

A typical event triggering a sequence is adding or updating a record in the business
object. When you create a trigger, you specify the trigger event and the actions that
are then executed. You can refine the sequence so that actions are executed only
when some criteria is met. A sequence can define multiple criteria and multiple
actions.

To create an object trigger for a business object:

1. Select the business object to which you want to add an object trigger.

2. Select the object's Business Rules tab.

3. Click the Object Triggers tab to see a list of all object triggers that are defined for
the business object.

4. Click + New Object Trigger, and in the Create Object Trigger dialog box, enter a
name to identify the trigger, and select a Start Event for the sequence. You can
modify these later if you want.

Chapter 4
Create Rules for Business Objects

4-24

5. Click Create Object Trigger to open the trigger designer.

You use the designer to build a sequence of criteria and actions that are triggered by the
Start Event. No criteria or actions are defined when you first open the designer.

Chapter 4
Create Rules for Business Objects

4-25

6. Click Create New Criteria (the + sign) and choose a criteria type.

Three types of criteria are available in the dialog box. If you select Execute
Conditionally, you can define the conditions that must be met to execute actions
that you define. If the conditions are not met, the actions are skipped and the
sequence advances to the next step.

Chapter 4
Create Rules for Business Objects

4-26

7. If you specify Execute Conditionally, follow the instructions to build conditions for the
trigger.

8. Click the Add Actions box, then specify a Name for the Action Group and click Add
Actions.
The Configure Actions page opens when you click Add Actions. You can add one or more
actions to the list by dragging predefined functions (such as create a record or perform a
process task action) and custom Groovy scripts into the list.

Chapter 4
Create Rules for Business Objects

4-27

If you drag Custom Groovy Code into the list of actions, you’ll need to click Edit
Custom Code and type your script in the editor. If you drag Send eMail
Notification into the list, you’ll need to specify email details such as the recipients,
the sender, and the contents of the message.

9. Click Done when you complete your list of actions.

You can continue to add more criteria nodes and actions to build up the sequence
for the trigger. When you select a criteria node in your sequence you can use the
Properties pane to edit the criteria name, type, and conditions. Depending on the
criteria type that you select, you might need to specify conditions that need to be
satisfied before the corresponding actions are executed. You can use the
Conditions Builder to set conditions, or you can use the code editor to write
custom code.

Chapter 4
Create Rules for Business Objects

4-28

Click Code Editor to view the read-only code that is generated by the designer.

Chapter 4
Create Rules for Business Objects

4-29

When you define Groovy code for object triggers, you have the option of overriding
the default Groovy timeout specified in the Timeout Override field.

10. When you are finished designing the trigger, click the Object Triggers tab to
return to the Object Triggers page.

Field Triggers
You can create a field-level trigger to define conditions that apply whenever a specific
business object field changes in value.

In contrast to an object trigger, which defines conditions that apply when a specific
event happens, a field trigger applies conditions when a field value changes.

To create a field-level trigger for a business object:

1. Select the business object to which you want to add a trigger.

2. Select the Business Rules tab of the business object.

3. Click the Field Triggers tab to see a list of all field triggers that are defined for the
business object.

Chapter 4
Create Rules for Business Objects

4-30

4. Click + New Field Trigger, and in the Create Field Trigger dialog box, enter a name to
identify the trigger, and select the field name from the Field drop-down list.

5. Click Create Field Trigger to open the trigger designer.

You use the designer to build a sequence of criteria and actions that are triggered by a
change in the field value. No criteria or actions are defined when you first open the
designer.

6. Click Create New Criteria (the + sign) and choose a criteria type.

7. If you specify Execute Conditionally, follow the instructions to build conditions for the
trigger.

8. Click the Add Actions box, then specify a Name for the Action Group and click Add
Actions.

The Configure Actions page opens when you click Add Actions. You can add one or more
actions to the list by dragging predefined functions and custom Groovy scripts into the
list.

If you drag Custom Groovy Code into the list of actions, you’ll need to click Edit Custom
Code and type your script in the editor. If you drag Send eMail Notification into the list,
you’ll need to specify email details such as the recipients, the sender and the contents of
the message.

9. Click Done when you complete your list of actions.

Chapter 4
Create Rules for Business Objects

4-31

You can continue to add more criteria nodes and actions to build up the sequence
for the trigger. When you select a criteria node in your sequence you can use the
Properties pane to edit the criteria name, type and conditions. Depending on the
criteria type that you select, you might need to specify conditions that need to be
satisfied before the corresponding actions are executed. You can use the
Conditions Builder to set conditions, or you can use the code editor to write
custom code.

Click Code Editor to view the read-only code that is generated by the designer.

When you define Groovy code for field triggers, you have the option of overriding
the default Groovy timeout specified in the Timeout Override field.

10. When you are finished designing the trigger, click the Field Triggers tab to return
to the Field Triggers page.

Add an Action to Send Email Notifications
Drag Send eMail Notification into your list of actions when you want to send an email
notification that is triggered by a business object event.

If you add Send eMail Notification to your list of actions, you’ll need to specify the
email template for the message and the message recipients in the Configure Actions
dialog box. You can create your own email template or use an existing one.

To add a Send eMail Notification action to your list of actions:

1. For new and existing triggers, click Add Actions in the trigger designer to open
the Configure Actions dialog box.
The Send eMail Notification action is available in the list of Suggested actions and
under Other Scripting actions.

Chapter 4
Create Rules for Business Objects

4-32

2. Drag the Send eMail Notification action into the list.
After adding the action to the list, select the email template that you want to use, and then
specify the email Recipients. Note that the sender's email address is always
nobody@oracle.com and cannot be changed.

Chapter 4
Create Rules for Business Objects

4-33

3. Select the email template.
You can select an existing email template from the drop-down list or create a new
email template. If you select an existing template, you can click Edit to modify the
template.

Depending on the template that you select, you might need to supply additional
parameters that are used when generating the email. For example, you might want
to specify a reference as a parameter used to generate the email subject or in the
body of the message. If a template uses parameters, you’ll need to define the
values of the parameters, or you can edit the template to remove the parameters
that you do not want to use. Parameter values can be a static value, a Groovy
expression or a reference to a field in the business object. In the following
example, you could replace Parameter1 and Parameter2 with field names from
your business object.

Chapter 4
Create Rules for Business Objects

4-34

4. Define values for the Recipients.
You can use static values for the Recipients, or the values can be generated with a
Groovy expression or reference to a field in the business object. You can use the drop-
down list next to the Recipients field to select the type of value in the field.

Convert a Trigger to Editable Code
To edit the entire trigger script in a code editor instead of using the visual trigger designer,
you need to convert the script generated by the trigger designer.

When you create a trigger script in the visual trigger designer, you build up the sequence by
creating groups of actions that are performed when criteria are met. The trigger designer
provides tools to help you build the sequence, and you can use custom code to define criteria
and actions individually, but you cannot edit the entire trigger script. If you want to freely edit
the entire script in a code editor, you need to convert to code the script generated by the
trigger designer.

Chapter 4
Create Rules for Business Objects

4-35

Note:

You will not be able to edit the trigger script in the visual trigger designer after
it is converted to code. After a script is converted, it cannot be converted
back to script that can be edited in the visual designer.

You can view the entire script generated by the trigger designer by clicking in the
designer. The script displayed in the code editor is read-only. To edit the script in a
code editor, click Convert to Custom Code Trigger.

Build Conditions for Triggers
If you select Execute Conditionally as the criteria type for a trigger, the Conditions
Builder can help you specify the conditions that need to be satisfied before the actions
are executed.

When you set a criterion to execute conditionally, you use the Conditions Builder to
define the set of conditions that determine when actions will be executed. You open
the Conditions Builder by selecting the criterion in the designer and clicking Add
Conditions in the Properties pane.

Chapter 4
Create Rules for Business Objects

4-36

To set up conditions in the Conditions Builder, you must select a field, select an operator, and
set a value. The Condition Builder provides menus for selecting the fields in the business
object, selecting operators, and helping you specify values. When specifying values, you can
choose to use a static value, a field reference or an expression. You can create complex
conditions by adding multiple conditions and grouping conditions together.

Chapter 4
Create Rules for Business Objects

4-37

Object Validators for Business Objects
An object-level validation rule is a constraint you can define on any custom object. The
rule is used to evaluate the object when attempting to submit an object.

An object-level rule is appropriate when validation requires using two or more fields.
Validation using an object-level rule ensures that regardless of the order in which the
user assigns the values, the rule will be consistently enforced.

The expression or script that defines the rule must return a boolean value that
indicates whether the object is valid. The object is saved if all the rules validating the
object return true. If any of the rules return false, the error message of the failed rule is
displayed and the object is not saved. If the rule returns true, then the object validation
will succeed so long as all other object-level rules on the same object return true. For
example, this type of validation would be needed when specifying a value for one field
in a form requires that a value is also assigned to another field (for example, selecting
‘High’ in a Priority field requires a name is entered in the Assignee field).

To create a validation rule for a business object:

1. Select the business object for which you want to create the rule.

2. Select the Business Rules tab of the business object.

3. Click the Object Validators tab.

Chapter 4
Create Rules for Business Objects

4-38

You see a list of all object validators that are defined for the business object.

4. Click + New Object Validator and enter a validator name to identify the rule, and then
enter the error message to be displayed if validation fails.

You can optionally override the default Groovy timeout specified in the Timeout Override
field.

It's possible to modify all of these later if you want.

5. Click Create Object Validator in the dialog box to open the editor.

6. Create your rule by typing in the editor and by using the business object fields and
functions in the palettes. Use the palettes to help you add fields and functions that you
might use to create your rule.

Click the arrow next to the function or field in the palette to insert it at your insert cursor in
the editor. When you select a function in the palette, a description of the function and an
example of how to use it are displayed in the palette. Any object functions that you
created for the business object will be listed in the Functions palette.

7. Click the Object Validators tab again to apply your rule to the object and exit the editor.

Field Validators for Business Objects
A field-level validation rule is a constraint you can define on any custom field. The rule is
used to evaluate the value of the corresponding field each time a new value is submitted.

A field-level rule is appropriate when the rule that is to be enforced depends only on the new
value being set. At runtime your field validation rule is executed before the field’s value is
saved.

The expression or script that defines the rule must return a boolean value. The value is saved
if all the rules validating the field return true. If any of the rules returns false, the error
message of the failed rule is displayed and the new value is not saved. For example, when a
form has several fields, the values for all the fields must pass all the validation rules before
any new values are saved.

Chapter 4
Create Rules for Business Objects

4-39

To create a field validation rule for a business object:

1. Select the business object for which you want to add the new rule.

2. Select the Business Rules tab of the business object.

3. Click the Field Validators tab.

You see a list of all field validators that are defined for the business object.

4. Click + New Field Validator and type a name to identify the rule, the field that the
rule will validate and the error message that is displayed if validation fails. You can
modify these later if you want.

5. Click Create Field Validator in the dialog box to open the editor.

6. Create your rule by typing in the editor and by using the values and functions in
the palettes. Use the palettes to help you add field values and functions that you
might use to create your rule.

Click the arrow next to the function or value in the palette to insert it at your insert
cursor in the editor. When you select a function in the palette a description of the
function and example of how to use it are displayed in the palette. Any object
functions that you created for the business object will be listed in the Functions
palette.

Chapter 4
Create Rules for Business Objects

4-40

The Field Values palette contains the variables newValue and oldValue. Your script can
use newValue to reference the new value that will be assigned if validation passes. To
reference the existing field value, use oldValue.

You can optionally override the default Groovy timeout specified in the Timeout Override
field.

7. Click the Field Validators tab again to apply your rule to the field and exit the editor.

Object Functions for Business Objects
An object function is useful for encapsulating business logic for a specific business object.
After you define an object function, you can call the function by name from other scripts
related to the business object.

To create an object function rule for a business object:

1. Select the business object for which you want to create the rule.

2. Select the object's Business Rules tab.

3. Click the Object Functions tab.

You see a list of all object functions that are defined for the business object.

4. Click + New Object Function and enter a name to identify the object function. You can
modify this later if you want.

5. Click Create Object Function in the dialog box to open the editor.

6. In the Properties pane, click Parameters and add parameters for your function.

Chapter 4
Create Rules for Business Objects

4-41

When you are done, click All Properties.

7. Create your function by typing in the editor and by using the Business Object and
Functions palettes. Use the palettes to help you add fields and functions that you
might use to create your function.

Click the arrow next to the function or value in the palette to insert it at your insert
cursor in the editor. When you select a function in the palette, a description of the
function and example of how to use it are displayed in the palette.

When you create an object function on an object named Department, the following
are true by default:

• Other scripts on the same object can call it.

• Any script written on another object that obtains a row of type Department can
call it.

Chapter 4
Create Rules for Business Objects

4-42

You can alter some of this default behavior by changing some of the properties in the
Properties pane.

• If the Callable by External Systems property is enabled, an external system
working with a Department object will be able to invoke your object function. Enable
this when the business logic it contains should be accessible to external systems. If
you do not enable this property, then the object function can only be called by some
other script on the Department object.

If you call an object function via REST API from an external system, you'll need to set
the value of the Content-Type header to application/vnd.oracle.adf.action+json.
Note that this Content-type value is not the same as the value used for actions on a
business object, for example, a POST action (application/
vnd.oracle.adf.resourceitem+json).

When the Callable by External Systems property is enabled, you can optionally
override the default Groovy timeout specified in the Timeout Override field.

• Enable the Privileged property to indicate that the object function should run with the
data security visibility of a privileged user. This can be necessary to enable the
business logic to see rows of business object data when the current user might not
have the right to access the data. If the Privileged property is not enabled, the script
can only query rows that the current user has the right to access.

8. Click the Object Functions tab again to add your function and exit the editor.

Log Diagnostic Messages From Your Scripts
When you're developing rules for a business object, you can add a print or println function
to custom Groovy code when you want messages logged by your own script to be written to
the diagnostic log.

For example, you might have a Before Update trigger script that calls several object
functions. You can add the print or println function to your object functions to print a
message to the log each time the function is called.

• If you're using the code editor, you can add a print or println statement. The former
writes its value without any newline character, while the latter writes its value along with a
newline. For example:

// Write a diagnostic message to the log
println("[In: BeforeUpdate] Status = ${Status}")

• If you are using the Configure Actions window to create and edit triggers, you can drag
the Log Message action in the Other Scripting category into your action group to add a
println to the action chain.

You can now enable logging to see the functions that were triggered based on the messages,
as well as any runtime exceptions. Note that you don't need to do anything special to log
trigger starts and trigger ends; these actions are always recorded in the logs.

Work with Endpoints to Access Business Objects
Apps in your visual application and other clients access your business objects through REST
endpoints, which are available to you through a business object’s Endpoints tab.

Chapter 4
Work with Endpoints to Access Business Objects

4-43

View a Business Object's Endpoints
To view the endpoints for your business object:

1. Select the business object in the Business Objects tab in the Navigator.

2. Open the Endpoints tab for the business object.

If you can't view endpoints, the business object is likely missing a resource file that
defines endpoints, or its source file is corrupt (say, because of invalid syntax or
merge conflicts in a Git repository).

• If you see a message that there's no resource for a business object, click
Create Resource to create a business-object-name.json file that
defines the default endpoints.

• If you see a message that endpoints cannot be displayed because of errors in
the source file, click Open Source Editor and resolve the issue.

About the Endpoints Tab
For each business object, the Endpoints tab displays information about the endpoints
you can call in code.

Resource APIs

The Resource APIs node displays the URLs you can use to retrieve business object
metadata and data in the Development, Staging, and Live databases.

• Use the Metadata URLs to retrieve metadata about the business object using its /
describe endpoint.

• Use the Data URLs to modify business object data through CRUD operations.

Chapter 4
Work with Endpoints to Access Business Objects

4-44

It's important to use the correct URLs for each phase of your application: Development,
Staging, or Live. Development URLs are meant to be used only during your app's
development phase and typically take this format:

https://{host-name}/ic/builder/design/{app-name}/{app-version}/
This URL is a pointer to your app's design-time version (as indicated by /ic/builder/
design/ in the path) and is simply a preview of your app. It is not meant to allow access to
your app from other apps or tools. For example, you might copy the development metadata
URL and use it with REST API tools similar to Postman to test the metadata URL during
development.

When your app is staged, the URL changes to https://{host-name}/ic/builder/rt/{app-
name}/{app-version}/, where /ic/builder/rt/ indicates the runtime version of your app.
This URL points to your staged application and can be used from other apps or tools.

When your app is published, Visual Builder generates a permanent URL for your application,
something like https://{host-name}/ic/builder/rt/{app-name}/live/, where live
replaces {app-version} to indicate that the app is now live.

Resource Cache Control

The Resource Cache Control node displays the caching strategy used to store the business
object's data. See Control Data Caching for Business Objects.

Endpoints

The Endpoints node displays the business object's endpoints in a tabular format. The
display includes the HTTP method, the endpoint URI, an endpoint name that you can use in
code, and a description of the endpoint. A filter field at the top of the page allows you to view
a subset of the endpoints.

For each business object, five default endpoints are created:

• Two GET endpoints, to retrieve one or all business object instances

• A POST endpoint, to create a business object instance

• A PATCH endpoint, to update a business object instance

• A DELETE endpoint, to delete a business object instance

If the business object refers to other business objects, endpoints that enable you to retrieve,
create, delete, and update those business objects are also provided. You can control the
endpoints exposed for each business object by adding or removing them in a resource editor
(see Add or Remove Exposed Endpoints).

You can click an endpoint in the list to view the endpoint’s details, for example, details about
the endpoint’s settings and the headers sent in the request. The details are displayed in read-
only mode, but you can use the Test tab to see the response to requests sent with parameter
values that you supply.

Chapter 4
Work with Endpoints to Access Business Objects

4-45

Note:

The REST endpoints for business objects support using URL parameters
when retrieving resources, for example, to filter payloads using a query
parameter to control the behavior of the data retrieved.

Add or Remove Exposed Endpoints
When your application has many inter-related business objects, you can add or
remove endpoints that these business objects expose. Tailoring the endpoints to
expose only those that you require controls the size of the metadata file that describes
your endpoints and maximizes application performance, both at design time and
runtime.

Endpoints for a business object are generated by traversing accessors in a tree
structure. By default, only the first level of accessors (those owned by the business
object) are added to the object's resource definition. You can change this default
definition to add deeper endpoints when related objects are nested several levels
down or to remove unwanted endpoints.
Let’s say your application uses the Employee, Department, Location, and Project
business objects, which refer to one other as follows:

Chapter 4
Work with Endpoints to Access Business Objects

4-46

With this relationship, the first level of accessor endpoints for the main Employee object (/
departmentObject and /projectObject) are included by default in the Employee object's
resource definition. Other deeper endpoints are not included. Now, if you want to show the
department and location names in a Table of Employees, you need to add endpoints that are
not included by default, but which are required to expose this data. For example, you must
add the nested /departmentObject/locationObject endpoint (not selected by default) to show
an employee's location.

Optionally, if you want to restrict access to employee project information, you can remove
the /projectObject endpoint (selected by default).

To select the endpoints you want to expose for a business object:

1. Open the business object's Endpoints tab.

2. In the Endpoints node, click Edit Endpoints.

3. In the Business Object Resource Editor, drill down to each related business object to
view available endpoints. The endpoints are uniquely identified by their accessors,

Chapter 4
Work with Endpoints to Access Business Objects

4-47

enabled when one business object references another (see View, Create, and Edit
Business Object Relationships).

4. For each related business object, select or deselect endpoints to add or remove
them.

By default, only endpoints that are one level down from the parent node are
selected. This example adds the deeper Employee/departmentObject/
locationObject endpoint and removes the Employee/projectObject endpoint.

5. Click Save. To take the default setting, click Apply Defaults.

View and Edit Data in Business Objects
You can use the Data tab to view the data associated with your business objects in
any of your databases (Development, Staging, and Live).

To view the data in a business object:

1. Select the business object that you want to view and open the Data tab.

The table in the Data tab uses columns to display the data stored in the business
object's fields. The table displays the data for editable and read-only fields.

2. To sort data in a column, click the column's header arrows, or expand the Query
node and enter search criteria to display only the rows that meet your criteria.

Chapter 4
View and Edit Data in Business Objects

4-48

Edit the Data in Business Objects
You can directly edit business object data stored in your databases, by using a business
object's Data tab to modify, export, and import the data.

The Data tab displays a table with the data for each of the business objects in your
application. You can add data by creating new rows and adding data to the fields in business
objects. Use the tools in the toolbar to perform the following functions:

• For business objects marked as containing application setup data, reload setup data from
application sources

• Import a CSV file or Excel spreadsheet (.xls or .xlsx) to replace or append data

• Export the entire table as a CSV file

• Refresh the data display

• Select the fields to be displayed (by default, only the Id field and user-created fields are
displayed)

• Edit the data stored in the editable fields of an object by editing individual rows

• Delete a row

• Duplicate a row

To edit the data in a single row:

1. Select the business object you want to edit and open the Data tab.

The table in the Data tab displays the data stored in the business object's fields.

2. Select the row that you want to edit and click the Edit Row icon in the table toolbar to
open the Edit Row dialog.

The Edit Row dialog displays the editable fields in the business object and the current
data stored in the selected record. Some fields, such as the creation date, are populated
automatically and are not displayed in the edit dialog.

Chapter 4
View and Edit Data in Business Objects

4-49

3. Make your changes in the dialog. Click Save.

The validation rules for fields are enforced when you edit the data stored in the
records.

Import Data to a Business Object
You can edit the data stored in a business object by importing a CSV file or an Excel
spreadsheet (XLS or XLSX). When you import the file, you can choose to replace all
the current data or add the data in the file as new rows to your existing data.

Use this import option to update the data in a particular business object. To
simultaneously update the data for one or more business objects, you can import data
from the Data Manager (see Work with the Data Manager).

To import data to a business object:

1. Open the Data tab of the business object that you want to edit.

The table in the Data tab displays the data stored in the fields of the business
object.

2. Click Import From File in the toolbar.

The Import Data dialog provides options to either replace the existing data or to
append the data in the file to the existing data.

When you append the data from a file, the IDs for the new data are renumbered to
prevent duplicating IDs.

3. Upload the file by browsing your local file system or by dragging the file into the
dialog box.

4. Select Append or Replace in the dialog box. Click Import.

Chapter 4
View and Edit Data in Business Objects

4-50

5. Click OK.

Reload Data from Application Sources
For business objects marked as application setup data, if your development database
schema does not show the most up-to-date data (say, because the object's data was updated
as part of a Git merge), you'll need to reload data from the application's sources.

When a business object is identified as containing application setup data, its data is
considered application metadata and is stored in the entity-data.csv file as part of the
application's sources. Any time you update the object's data, either by editing it directly in the
Data tab or by importing files through the Data Manager, your updates take effect in the
entity-data.csv file and reflect automatically in your development database schema.
Sometimes though, if this data is updated as part of a Git merge, your database might not
show those updates. This can happen when two users update data on their own Git branches
and then merge those updates to the default branch (main, for example), or even when you
switch branches in your Git repository. You'll then need to get these updates by reloading the
entity-data.csv file from the application's sources to your database schema.
To reload data from the application's sources:

1. Select the business object marked as containing application setup data.

2. Click Data.

3. Click the option to reload setup data from application sources ().

4. After data is imported from the entity-data.csv file, click Close.

Your development database schema reflects the current version of the entity-data.csv
file.

Work with the Data Manager
Visual Builder provides tools such as the Data Manager to help you manage the data stored
in business objects while developing your visual applications.

To open the Data Manager, click the Options menu in the Navigator's Business Objects pane
and select Data Manager.

Manage Data During the Development Lifecycle
Visual Builder provides tools to help you migrate data between your databases and to import
and export data.

When developing your application you might have three versions of your application, each in
a different status: development, staging, live. Each version uses an independent database
that is used for that phase of development, and during the development lifecycle you need to

Chapter 4
Work with the Data Manager

4-51

manage the data that is stored in each database. To populate your databases you can
add data manually, migrate data between the development, staging and live
databases, or import data from files. See Export the Data to a File from the Data
Manager and Import Data From a File Using the Data Manager.

Note:

If you want to access data in an existing database, see how you can bring
your own schema when working with business objects.

Each database uses a schema to describe the fields of the business objects. In the
development phase, the schema of your development database is modified as you
modify the business objects in the application. The development database schema
replaces the schema of the staging database when you stage the application, and the
staging database schema replaces the schema of the live database when you publish
the application.

Note:

You cannot use the Data Manager to manage the data for business objects
for external services. The definitions for business objects provided by
external services are stored in your database schema, but the data from the
service is not stored in your database.

The following table describes the data typically stored in the database for each phase
of the development lifecycle and the data management tasks performed during the
phase.

Phase Description

Development Your development database will typically only contain some basic data to
help you while you build your pages. To check the behavior of the
application, you might add some sample data manually by using the forms
you created in your application or by editing the data in the Data tab.

You will typically perform the following tasks with the data in your
development database:

• Manually add and modify data in Live mode using the forms in your
application

• Import sample data from a file

Chapter 4
Work with the Data Manager

4-52

Phase Description

Staging Your staging database will typically contain a set of data that is as realistic
as possible to be used when testing the staged version of the application.
You can add data manually using your application’s user interface or
import data from a file or database.

When you are ready to publish your application, if the database schema
has changed since the previous version, you will want to import the data
from the live database into your staging database. This data is then copied
to the live database when you publish the application.

You will typically perform the following tasks in your staging database:

• Add and modify data to test the application’s UI behavior and
business logic

• Import data from a file to test that the data and schema are
compatible

• Import data from the live database

Live Usually you will not want to modify the data in your live database except
as part of the publishing process if the data is copied from the staging
database.

If it is necessary to modify your data because you changed the structure of
your application, it is important to make and test the changes on your
staging database before you publish the application.

During this stage you will typically perform the following tasks:

• Export the data as a file or copy the data to the staging database
using the Data Manager

• Lock the application to prevent changes to the data
• Unlock the application to enable changes to the data

Import Data From a File Using the Data Manager
You can replace the data in one or more of your business objects by importing CSV files and
Excel spreadsheets. Use the Import from File option in the Data Manager to simultaneously
update the data for one or more business objects, for example, to import data for testing the
application or in preparation for publishing the application.

To import data from a CSV file, you need one CSV file for each of the business objects that
you want to update. The name of the CSV file must be the same as the business object. You
can upload CSV files individually or upload a zip archive that contains multiple CSV files.
When importing an Excel spreadsheet (.xls or .xlsx), the spreadsheet can contain one or
more sheets. The title of each sheet must be the same as the name of the business object
that you want to update. If the data in a cell is calculated using a formula, only the data is
imported; the formula is not imported.

When you use the import option to replace the data in a business object, all its data is deleted
from the database. If a field is defined in the schema for the object but no data for the field is
contained in the file, the field is set to the default value, if there is one.

Each business object has some default fields—id, creationDate, lastUpdateDate,
createdBy, lastUpdatedBy, and versionNumber—which are automatically created for you
and assigned values. If you include id in your file (as shown here), those values are used:

Chapter 4
Work with the Data Manager

4-53

Note:

The correct format for a Date field is yyyy-mm-dd (for example, 2006–06–17).
If you edit a .csv file in Excel, Excel converts it to an incorrect format (like
6/17/2006). To resolve this problem, you can use Format Cells in Excel to
change the date format for the column; you need to specify a locale that
supports yyyy-mm-dd, such as English (United States). Alternatively, edit the
file in a text editor. You can't import a column that contains dates formatted
dd/MM/yy HH:mm.

The import option does not create or remove fields for business objects. You can use
the Business Objects editor to create or remove fields and to edit data. Note also that
the import option replaces existing data in your database. If you want to append data
to a business object, you can import a file using the import option in the Business
Objects editor.

To import data into a database:

1. Click Menu in the Business Objects pane and select Data Manager.

2. Select the database that you want to update.

3. Click Import from File.

4. Drag the file into the drop area in the Import Data dialog. Alternatively, click and
locate the file on your local system.

Chapter 4
Work with the Data Manager

4-54

5. Click Import.

If the import is successful, you'll see a success message. If there are problems importing the
data, you'll see a message that describes the problem. For example, the message might list
fields that were not imported because the fields were not defined in the schema. Try to
resolve the problem by comparing the fields in the schema to the columns in the CSV or
spreadsheet, then either modify the schema in the Fields tab or modify the data in the file.
Import the file again to correct the data.

Import Data From a Database
You can import data by using the import tool to copy data from one database to another.

Each phase in the development lifecycle of your application uses an independent database
for storing data. You can use the import tools in the Data Manager to import data from one
database into another, for example, to import the data in your live database into your staging
database.

To import data into a database:

1. Click the Options menu on the Business Objects page and select Data Manager.

2. Select the database that you want to update in the drop-down list at the top of the page.

Unavailable databases are grayed out. After you select the database, the page will
display the import and export tools for the database.

3. Click the tile to import data into your database.

Chapter 4
Work with the Data Manager

4-55

The page contains several import options. Unavailable options are grayed out.

4. Click Import in the Import Data dialog.

All the data in the target database is deleted and replaced when you import data.
When the task is complete, a dialog opens that confirms that the data was
successfully imported or warns you that there was a problem.

Export the Data to a File from the Data Manager
You can export all the data contained in your database as CSV files. The export tool
creates one CSV file for each of the business objects in your database and packages
the files as a ZIP archive.

To export the database data as a CSV file:

1. Click the Options menu in the Navigator's Business Objects pane and select Data
Manager.

2. Select the database that you want to export from the drop-down list.

3. Click the Export All Data tile to download a ZIP archive that contains CSV files
with the data.

Alternatively, you can export the data contained in an individual business object from
the object's Data tab.

Resolve Problems When Importing Data
When you import data from a file, if you see a warning message that the data was not
imported or only partially imported, you might need to make changes to the file and
import the file again.

To resolve problems during import, you might want to compare the data in your file to
the data in the database. You can see the actual data in the database in the Data tab
of your business object. You can also export the current data as a CSV file and
compare the data using a tool on your local system.

When you import a CSV file with a Date field, dates must be in the standard ISO
format, for example, 2017-09-31. For files with string type fields, the data in each string
field must not exceed 4000 bytes.

When you see a warning message:

1. Confirm that the name of the file or Excel workbook is the same as the name of
the business object.

2. Compare the columns in the files to the fields in the business objects.

Importing a file will not create fields in the database schema. Columns in the file
are ignored if a field with that name does not exist in the business object. The
import tool expects the data in the first row of the CSV file or Excel workbook to be
the name of the field.

3. Confirm that the format and type of the data in the file are the same as those
specified in the schema.

Chapter 4
Work with the Data Manager

4-56

4. Make sure that the MIME type of the file is compatible with the browser you're using. The
following MIME type is accepted by most browsers:

[[["application/vnd.ms-excel","text/csv"]]]

Import and Export Data From the Command Line
You can perform bulk import and export of data from the command line using Visual Builder
APIs.

The Visual Builder APIs are accessible from the command line to an application’s team
members using basic authentication, just as the data APIs can be used to query individual
objects and perform single-row operations. For example, you can set up a daily cron job to
import and export data and synchronize the data in your business objects with data in
another table.

Import Data from the Command Line
To import data into a business object from the command line, you use a POST method with
the /resources/datamgr/import endpoint.

You will need to upload .csv, .xls, or .xlsx files containing the data. The file name must
match the object ID of the business object that you want to update. To import data for a single
business object, you can upload a single file. When importing data for multiple business
objects, you will need to upload a ZIP archive containing one or more .csv, .xls, or .xlsx
files.

Query Parameter

The import endpoint only accepts the append parameter:

Parameter Description

append Boolean, which if true adds the rows in your file as new rows to the
business object. The default value is false, which results in your file's data
replacing existing data in the business object.

Syntax

To import data for all business objects in an application, you would use a POST method as
follows:

POST https://host:port/ic/builder/design/yourApp/appVersion/resources/
datamgr/import

For example, to import data into all business objects for version 1.0 of the MyApp application,
use:

POST https://myserver:myport/ic/builder/design/MyApp/1.0/resources/datamgr/
import

Remember to upload the data file you want to import and indicate its content type in the
request body. If you were using REST API tools similar to Postman, for example, you would

Chapter 4
Work with the Data Manager

4-57

use the Body tab to upload the data file (say, MyObject.zip) and select binary as
the content type.

To import data for a specific business object, you would use a POST method as
follows:

POST https://host:port/ic/builder/design/yourApp/appVersion/resources/
datamgr/import/objectId

For example, to import data into the MyObject business object in version 1.0 of the
MyApp application, use:

POST https://myserver:myport/ic/builder/design/MyApp/1.0/resources/
datamgr/import/MyObject

Note:

To import data to the staging or live database, replace /design/ with /
deployment/ in the endpoint path.
If your application is live, use the options menu to lock the application before
you import data. Unlock the application after you finish.

cURL Commands

If you were using the cURL command-line tool to import development data for a
business object named MyObject in version 1.0 of the MyApp application, you would
use a POST method as follows:

curl -X POST -u user:password https://host:port/ic/builder/design/
MyApp/1.0/resources/datamgr/import/MyObject -H Content-Type:text/csv -
T MyObject.csv -v

To import development data for multiple business objects in version 1.0 of the MyApp
application, you would use a POST method as follows:

curl -X POST -u user:password https://host:port/ic/builder/design/
MyApp/1.0/resources/datamgr/import -H Content-Type:application/zip -T
myObject.zip -v

If you were using the cURL command-line tool to import data to the staging or live
database for a business object named MyObject in version 1.0 of the MyApp
application, you would use a POST method as follows:

curl -X POST -u user:password https://host:port/ic/builder/deployment/
MyApp/1.0/resources/datamgr/import/MyObject -H Content-Type:text/csv -
T MyObject.csv -v

Chapter 4
Work with the Data Manager

4-58

Export Data from the Command Line
To export a business object's data from the command line, you use a GET method with the /
resources/datamgr/export endpoint.

Syntax

To export development data from all business objects in an application, you would use a GET
method as follows:

GET https://host:port/ic/builder/design/yourApp/appVersion/resources/datamgr/
export

For example, to export development data from business objects in version 1.0 of the MyApp
application, use:

GET https://myhost:myport/ic/builder/design/MyApp/1.0/resources/datamgr/
export

Exporting the application's data results in a ZIP archive that contains a .csv file for each
business object in the application.

To export development data for a specific business object, you would use a GET method as
follows:

GET https://host:port/ic/builder/design/yourApp/appVersion/resources/datamgr/
export/objectId

For example, to export development data from the MyObject business object in version 1.0 of
the MyApp application, use:

GET https://myhost:myport/ic/builder/design/MyApp/1.0/resources/datamgr/
export/myObject

Exporting the data in a single business object results is a .csv file containing the data in the
specified business object.

Note:

To export data to the staging or live database, replace /design/ with /deployment/
in the endpoint path.
If your application is live, use the options menu to lock the application before you
export data. Unlock the application after you finish.

Chapter 4
Work with the Data Manager

4-59

cURL Commands

If you were using the cURL command-line tool to export development data for version
1.0 of the MyApp application to a ZIP archive named myapp.zip, you would use a
GET method as follows:

curl -u user:password https://host:port/ic/builder/design/MyApp/1.0/
resources/datamgr/export > myapp.zip

This command creates a .zip file, myapp.zip, which will contain a .csv file for each
business object in MyApp.

If you were using the cURL command-line tool to export staging or live data for version
1.0 of the MyApp application to a ZIP archive named myapp.zip, you would use a
GET method as follows:

curl -u user:password https://host:port/ic/builder/deployment/
MyApp/1.0/resources/datamgr/export > myapp.zip

Create Business Objects From a File
You can create new business objects by importing spreadsheet files and .csv files
using the Import New Business Objects wizard.

The files that you upload are analyzed to determine the business objects that can be
created. You may upload comma-separated value text files (.csv) or Excel
spreadsheets (.xls, .xlsx). When using .csv files to create business objects, one
business object is created for each file, and the name of the business object is based
on the file name. When using .xls or .xlsx files to create business objects, one
business object is created for each worksheet in the file, and the name of the business
object is based on the worksheet name. If the worksheet contains one or more tables,
a business object is created for each table based on the table name, and the
worksheet name is ignored. The first row of .csv files, worksheets, and tables must be
a header row, and the column headers are used to determine the names of the fields.
The data in each column is parsed to help determine the data type for the field, but
you should confirm the suggested data type is correct in the Fields step of the wizard.

To upload multiple files, you need to create a ZIP archive containing the files you want
to import.

To create business objects in the Import New Business Objects wizard:

1. Click the Options menu in the Navigator's Business Objects pane and select Data
Manager.

2. On the Data Manager page, click Import Business Objects to open the Import
New Business Objects wizard.

3. In the Upload File step of the wizard, drag the file from your local system into the
wizard, or click in the upload box and locate the file on your local system.

Chapter 4
Work with the Data Manager

4-60

Note:

It is recommended that you keep the size of the file you upload small,
representative of your entire data set and only what's required to create your
business object model. Once your business object model is created, you can
always import all your data, even large datasets, as described in Import Data
From a Database.

The default character encoding format for an imported file is UTF-8. If a value isn't
specified in the Character Encoding field or if the specified value is invalid, the default is
used. See https://www.iana.org/assignments/character-sets/character-
sets.xhtml for a list of encoding formats you can use.

Click Upload. After the upload is complete, the wizard displays a list of the business
objects and records found in the upload.

Click Next.

4. In the Business Objects step of the wizard, select the business objects that you want to
create.

The wizard displays a list of the business objects that can be created and the files in your
upload that they are based on. You can select which business objects you want to create,
and edit the display labels and names of the new business objects.

Chapter 4
Work with the Data Manager

4-61

Click Next.

5. In the Fields step of the wizard, click the business object name to edit the names
and types for each of the fields in the business object.

The wizard displays tabs for each new business object. Each tab displays the
fields that will be created in the business object, and a sample of the values stored
in the field. You can edit each field name, display label, its data type, and specify
whether it is required.

Chapter 4
Work with the Data Manager

4-62

To change the data type, click the Type icon for each field to open a pop-up box where
you can modify the type. For Reference fields, you can select the related business object
from an existing business object or from those that you are importing, and select the field
in the related object to display.

If your business object's definition contains a field to uniquely identify each record (the
primary key field), you can use that field as the key instead of the system-generated id
field. To change the primary key field, select the Key icon for the field you want to use.
This option is enabled only for non-blank data containing numeric fields. Once you
switch, the default id field will no longer be selected; you can then safely delete this field
after the business object is created.

Click Finish.

The wizard displays a list of the new business objects that were successfully imported.

Chapter 4
Work with the Data Manager

4-63

Set Your Own Audit Fields For Imported Business Objects
When you create a business object, including those imported from a file, fields that
audit your business object's history are automatically created for you. If your file
contains audit information, you can use that data to track your object's history, instead
of the default audit fields.

Audit fields maintain a history of changes made to your business object by tracking
who created and updated an object when. They also include a version number used in
the generation of an entity tag (ETag) which protects against users overwriting
changes. Because audits can help you verify changes, you might want to set audit
fields for each of these history types: Created By, Updated By, Time Created,
Time Updated, and Version Number. A warning will be logged in your app's
Audits pane for each history type that isn't assigned to a field. You'll also see an error if
the same history type is assigned to more than one field.

To set a field for auditing:

1. Open your business object's Fields editor and select the field you want to use for
auditing.

2. In the field's Properties pane, select an option in the History Type list.

Chapter 4
Work with the Data Manager

4-64

Your options depend on the field's data type. For a string-type field, you see Created By
and Updated By (as shown here). For a datetime-type field, you see Time Created and
Time Updated, and Version Number for a number field.

Optimize Business Object Performance
When working with business objects, you might want to tune settings for your business
object's fields and functions to optimize performance and enhance your application's user
experience.

Override Default Timeout for Groovy Scripts
When you use Groovy code (whether short expressions or multi-line scripts) for business
logic, you have the option of overriding the default timeout configured for Groovy processing.
You might want to do this if you expect your script's processing time to exceed the default
Groovy timeout at runtime.

You can specify your own timeout for Groovy code that calculates a formula field's value or a
field's default value. You can also change this setting in business rules when you define field-
level or object-level validation rules, field or object triggers, and object functions.

The default timeout for each of these options varies and should work for most scenarios.
Consider changing the default timeout only if your script's processing time will overrun the
default duration and you run the risk of the connection timing out before your business logic
can be executed. If you anticipate a fairly long processing time, you might also want to enable
polling to prevent endpoint requests from being terminated because of (say) gateway or
browser timeouts.

This table describes the default timeouts predefined for Groovy. To override the default
timeout, you use the Timeout Override property, either in a field's Properties pane or in a
business rule's editor.

Chapter 4
Optimize Business Object Performance

4-65

Business Object Functionality Default Timeout (in
seconds)

To Change the Default
Timeout, See:

Calculate a field's default value when
using an expression

60 seconds Set a Default Value for a
Field

Calculate a field's value using a
formula

5 seconds Add a Formula to a Field

Object and field triggers 60 seconds Object Triggers
Field Triggers

Object and field validators 60 seconds Object Validators for
Business Objects
Field Validators for
Business Objects

Object function 60 seconds Object Functions for
Business Objects

Enable Polling for Endpoint Requests
If you run into timeout issues when working with business objects, you might want to
enable polling for long-running endpoint requests.

Polling is useful in many contexts involving long-running processes, where you run the
risk of breaking the client/server connection because of gateway or browser timeouts.
A process can be long running, say, when your application integrates with external
services, perhaps through a trigger that makes API calls to an external service. It can
also involve endpoint requests that import a large volume of data from a file or from
one database (development, staging, or live) to another during your application's
lifecycle. Most data-related endpoint requests, including those to create, query, update,
and delete business object data, are long-running processes that can benefit from
polling.

You can enable polling by adding the vb-poll=true query parameter to an endpoint
request URL. Now when the client makes an endpoint request, the server—instead of
waiting for the request to complete and then return an HTTP response (status 200 or
otherwise)—returns an HTTP response (status 202) with details of a new URL for the
client to poll. This allows the server to continue processing the request in the
background and the client to poll the new URL as and when it wants to find out if the
request is complete and get the response (or error).

To enable polling for long-running endpoint requests:

1. Add the vb-poll=true query parameter to your endpoint request URL, for
example:

POST https://server.example.com/ic/builder/rt/hrapp/1.0/
resources/data/Employee?vb-poll=true

2. When you receive the HTTP response with status 202, look for the Polling-
Location header whose value will be the polling URL.

The client can poll this URL and check the response, which will either contain the
Polling-Location header to indicate that the process is still running, or will be the
final response.

When the long-running process completes, the response remains available for a
limited time period, after which it is removed. The process itself is not affected by

Chapter 4
Optimize Business Object Performance

4-66

this, but the result is not available beyond this period—two minutes by default. The client
should take this setting into account when determining the frequency of polling requests.

Control Data Caching for Business Objects
When application resources don't include sensitive data, you can define a caching strategy to
safely store your business object's data and improve performance. Caching enables data to
be retrieved from the browser cache, instead of the business object on the server, thus
speeding up subsequent requests for this data.

Data Caching Options
Caching for each business object is controlled by its data caching strategy. You can choose
predefined options (Sensitive, Private, or Public Shared) which combine flags used by the
Cache-Control HTTP header to meet common caching scenarios. Or, you can use a
combination of Cache-Control flags to build a custom caching strategy.

Here's a look at the different caching options in Visual Builder:

• Sensitive: Indicates that data must never be stored in any cache (private or otherwise).
Select this option if your business object contains sensitive data, for example, banking
transactions or personally identifiable information, that must not be cached and you want
the latest most up-to-date information to be served every time.
The Sensitive option is a combination of the no-cache, no-store, and must-
revalidate flags that guarantee data is never cached. When a request is made for the
data, the browser always checks with the server for the latest data.

• Public Shared: Indicates that data can be cached by the client's browser and other
caches (like those from ISPs or other parties) for a specified duration. While this option is
the least secure of all the available policies, select this one if your data is not sensitive
and is not likely to change often, for example, country codes.
The Public Shared option is a combination of the public and max-age flags that allow
data to be stored in any cache for a maximum length of time.

• Private: Indicates that data can be cached, but only by the client's browser for a specified
duration. Select this option if your data is user-specific, for example, a user's purchase
order history that must not be stored in public caches but can stay in the client's browser
cache. Remember though that anybody with access to the client would have access to
the data as well.
The Private option is a combination of the private and max-age flags that allow data
to be stored only by the client's browser for a maximum length of time.

• Custom: (For advanced users) Specifies a custom option based on the no-cache,
public, or private flags, each of which can be augmented by the no-store, must-
revalidate, and max-age flags. Custom settings are not validated; select this option
only if you are familiar with the Cache-Control header options and are confident of
your choices.

Define a Data Caching Strategy
Configure the Resource Cache Control setting to define a caching strategy that safely stores
a business object's data. Because all application data is deemed sensitive, by default, no
data is cached.

Whether you cache data between the server and the browser or not at all depends on factors
such as whether your data is sensitive, how often it is updated, and so on. Before you decide

Chapter 4
Optimize Business Object Performance

4-67

on a caching strategy, check whether it is safe to cache your data. If it is, decide on an
option that makes the most sense for your data and specifies where, and for how long,
the data can be cached. See Data Caching Options.

You can apply a different caching strategy for each business object, but be aware that
the strategy applies uniformly to all its endpoints.

1. Select the business object's Endpoints tab.

2. Expand Resource Cache Control and select a suitable Data caching strategy:

Option Steps

Sensitive Select Sensitive if your data is sensitive and must never be cached (for
example, banking transactions or personally identifiable information).
This option is the default setting that disables caching.

Public shared a. Select Public shared if your data isn't sensitive, is not likely to
change often (for example, a list of country code values), and can
be cached by the browser as well as other intermediary caches.

b. In the Max Age field, enter how long the data can be cached. To
cache your data for, say, a month, enter 2629746 as the max age
in seconds. After this duration, the data will be considered stale and
if a user is offline, they will continue to see the stale data.

If you don't want this behavior, use the Custom option and add
must-revalidate in addition to max-age. In this case, after the
max-age duration, the data must be re-validated or downloaded
again from the origin server.

Private a. Select Private if your data is user-specific (for example, someone's
purchase order history that must not be in public caches but can be
stored in the client's browser cache).

b. In the Max Age field, enter how long the data can be cached. To
cache your data for, say, 24 hours, enter 89999 as the max age in
seconds. After this duration, the data will be considered stale and if
a user is offline, they will continue to see the stale data.

If you don't want this behavior, use the Custom option and add
must-revalidate in addition to max-age. In this case, after the
max-age duration, the data must be re-validated or downloaded
again from the origin server.

Custom a. Select Custom to build your own caching strategy.

b. Select one or more of the available flags: no-cache, public,
private, no-store, must-revalidate, and max-age.

c. If you chose max-age, enter a value in the Max age field.

Note:

Custom settings are not validated. It is your responsibility to
ensure the flags you select are valid combinations.

Your caching strategy is applied to data requests at runtime, when your web server
adds the Cache-Control header to each endpoint response.

Chapter 4
Optimize Business Object Performance

4-68

Note:

You can see your caching setting take effect only when an application is staged or
published, not when you preview the application during development.

Work with the Business Object Diagrammer
With the Diagrammer, you can create diagrams for your business objects to show their fields
and relationships.

To create a Business Object Diagram:

1. In the Business Objects pane, click the + sign and select Business Object Diagram.

2. In the Create Business Object Diagram dialog box, enter a name in the Diagram name
field and click Create.
An empty page for the diagram opens, along with the Properties pane.

3. In the diagram's Properties pane, select the check boxes for the business objects you
want to display, or click Select All to display all of them. If you have many business
objects, you can create multiple diagrams to display them.

The Diagrammer shows the selected business objects and their fields (in alphabetical order).
The name and type of each field are displayed. The Diagrammer also shows the relationships
between the objects and the object accessor names through which you access referenced
business objects:

You can use the Diagrammer to perform the following tasks:

• Click the name of a business object to see the object's Properties pane, where you can
view or edit overview information. Double-click the business object name to go to the
object's Overview tab.

• Click a business object field to see the field's Properties pane, where you can edit its
properties.

• Click the triangle next to a business object name to show or hide fields.

• Right-click a business object to see a menu that lets you create a new field or a new
relationship, edit or delete the business object, add related business objects, or remove
the business object from the diagram:

Chapter 4
Work with the Business Object Diagrammer

4-69

• Click a relationship line between two business objects to see the Properties pane
for the relationship, where you can edit or delete the relationship.

• To specify how business object fields are displayed, right-click the Diagram page
and select Fields to display the Fields menu:

By default, reference fields are displayed (along with their object accessor names),
and field names that match what you'll use in REST API calls or Groovy code are

Chapter 4
Work with the Business Object Diagrammer

4-70

shown instead of display labels. The number of fields displayed is 10 (though you can
scroll to view more).

– Select Show Audit Fields to display the fields that are automatically created when
you create a business object.

– Select 20 to display up to 20 fields by default.

– Select Show All to display all fields, or select Hide All to hide all fields.

– Deselect Show Field Names to display fields by their display labels.

• To change the default display from horizontal to vertical, right-click the Diagram page,
click Layout, then select Vertical.

• To update the display, right-click the Diagram page and click Refresh.

• If the diagram displays many business objects, right-click the Diagram page, then click
Find to select one of them.

• To export the diagram to your file system, right-click the Diagram page, click Save As,
and select either PNG (Portable Network Graphics) or SVG (Scalable Vector Graphics)
as the format.

To delete a diagram, right-click the diagram in the Diagrams tab and select Delete.

Create Business Objects with the Diagrammer
You can use the Diagrammer to create new business objects.

To create a new business object:

1. Right-click in the Diagram page and select + New Business Object from the menu.
Alternatively, select + New Business Object from the Options menu in the Diagram's
Properties pane.

2. In the New Business Object dialog box, enter the business object name in the Label field
and click Create.

The Name value is filled in automatically based on the Label value.

3. To add a field to the new business object, right-click the object and select + New Field. In
the dialog box, enter the field name in the Label field and select the type, then click
Create.

To delete a field, right-click the field and select Delete.

4. Click a field to open the field's Properties pane, where you can edit its name, data type,
and other properties.

Chapter 4
Work with the Business Object Diagrammer

4-71

Create Relationships with the Diagrammer
You can use the diagrammer to create new relationships between business objects.

To create a new relationship:

1. Right-click a business object name and select + New Relationship.

A dotted red line appears in the business object.

2. Drag the red line to the business object you want to connect to.

The Create Relationship dialog box appears, with a new Reference field in the
source business object that includes the name of the target business object.

3. Select the cardinality for each object in the relationship (Many or One).

In addition to many-to-one and one-to-many, you can specify cardinalities of one-
to-one and many-to-many between business objects. If you specify Many-to-Many,
an intersection business object with two reference fields is automatically created.
Its default name is a concatenation of the two business objects; change this name
as you want for better usability. For an intersection business object, you can't
deselect the Required check box in either of the reference fields, and the default
delete rule is Cascade.

4. Edit the properties of the relationship field (the Id, the Display Label, the Default
Display Field, the Required check box, the Delete Rule).

For the Delete Rule, the available choices are Cascade, Restrict, and Set To Null.
Whether you can edit a property and what values are available depends on the
nature of the relationship and the objects.

5. Click Create.

A relationship line in "crow's feet" notation that matches the cardinality you
selected appears between the object nodes. Mouse over the relationship line to
see a description of the relationship.

Right-click a relationship line and select Edit to modify the relationship, or select
Delete to remove the relationship.

The new relationship appears on the Overview page for each business object. You can
edit and delete the relationship on that page as well as in the diagrammer.

Switch to Your Own Database Schema for Business Objects
If you connected your Visual Builder instance to an Oracle database (instead of the
default embedded database), you can use your own schema in the tenant database to
create business objects.

When you switch to a database such as DBaaS or Autonomous Transaction
Processing (ATP), Visual Builder automatically manages the schemas and tables it
uses for apps and business objects in your DB. In addition, this will let you build apps
that can connect to a schema that already exists in the database and create business
objects based on existing DB tables and views.

At the instance level, you can have some apps based on internal tables and some
based on external tables, but within a visual app, you can have only one type of
business object: either native business objects or those based on existing DB tables
and views.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-72

Business objects based on existing DB tables (including those backing materialized views)
and views are, in general, similar to native business objects. You can create fields for all
existing columns of supported data types (CHAR, VARCHAR, VARCHAR2, NCHAR,
NVARCHAR2, NUMBER, BINARY_DOUBLE, BINARY_FLOAT, DATE, and TIMESTAMP
without timezone specifications)—though foreign key columns that reference other DB tables
need the related business object to be created first. Any foreign key column that links to
another DB table can be used to build business object relationships. It's also possible to add
calculated fields, business rules, cache control definitions, and security settings, much like
what you'd do when working with native business objects.

However, keep these restrictions in mind when creating business objects based on existing
schema:

• The PRIMARY KEY constraint, used to manage a table's primary key, is limited to a single
column. Similarly, only single-column unique and foreign keys are supported.

• Audit fields (that track who created or updated a field when) and the ETag mechanism
(that protects against users overwriting changes) are not added automatically as they are
in native business objects, but you can set your own fields for auditing based on existing
columns.

Create a Business Object Based on a DB Table or View
To create business objects based on tables and views in your DB schema, you switch your
visual application's database schema, then use the Create Business Object wizard to create
a business object based on an existing table or view.

Before you begin:

• Your Visual Builder instance must be configured to use another Oracle DB and the
schema must already exist in the tenant DB. Talk to your administrator to confirm this
setup.

• Your visual application must not have any business objects defined.

To create a business object based on an existing table or view:

1. From the visual application’s menu, choose Settings, then click the Business Objects
tab.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-73

2. From the Schema Selection list, select your schema.

The list of schemas available to you is defined by your administrator in the Tenant
Settings of your Visual Builder instance. If a particular schema isn't listed, talk to
your administrator to add it as an available schema for your instance.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-74

Note:

Details of the tables and views available for use in a schema are fetched once

and cached. If the schema (or tables/views within it) was changed, click to
pick up the latest updates for a particular schema. You can also do this when
creating a table or view for a schema during development.

3. Optional: To simplify the task of changing schemas when your app is deployed to
different environments like development, test, or production, you can add additional
available schemas and associate them with different application profiles (see Switch
Schemas Used During an App's Lifecycle). If you don't add additional schemas, the
schema you selected in the previous step is used as the default schema for all
deployments.

4. Click Business Objects in the Navigator, then click + and select Business Object from
Table.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-75

5. In the Create Business Object wizard, select a table or view.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-76

6. Look over the table and column data that displays based on your selection.

The Business Object Name and Display Label fields under General are populated based
on your table's name and can be edited. If you selected a view or if the primary key
cannot be identified for some reason, select the field that should be the primary key in the
Select Primary Key field. The primary key does not have to be numeric, but it must be a
column that contains unique data and no NULL values.

A list of Fields on the right shows the table's columns that you can add as fields to your
business object. A check mark in the first column indicates the column's fields that will be
added.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-77

This Fields list does not include unsupported data type columns or foreign key
columns that link to tables that don't yet have a business object; for example, the
DEPARTMENT_ID column in the image can't be added as a field because a
business object based on the referenced DEPARTMENT table doesn't exist yet.

The Field Name and Display Label are based on the table's column name. If you

want to change the default values, double-click the field or click in the row and
make changes. You can also update the Required property. If you don't want a
particular column to be included as a field, deselect the check mark in the first
column, or deselect Include Field when the row is in edit mode:

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-78

7. Click Create.

A business object created based on your schema shows in the Business Objects tab. You
can add new fields to this object (including calculated fields) based on the existing table/
view and modify existing fields. If a field's metadata is not compatible with the table/view
column properties, you'll see validation messages, similar to those for native business
objects. For example, when a field is based on a VARCHAR2(20) column but the
Maximum Length property is set to a higher value, you'll see a warning around the
property and in the Audits pane:

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-79

You can also set up business rules, security, and call REST API endpoints from
components. In general, you manage these business objects similar to how you'd
manage a native business object, but because you cannot use the Business
Objects editor to make changes that would (in native business objects) update the
schema, some options in the editor won't be available for objects based on
existing DB tables or views:

Option in Business Objects Editor Native
Business
Object

Business
Object
Based on
Own
Schema

New Relationship (+) button in Overview tab ✓ X

Contains Application Setup Data property in Overview tab ✓ X

Unique and Indexed fields in Properties pane ✓ X

Convert an existing field to a calculated field: Calculate value
with a formula and Aggregate from related object data
fields in Properties Pane

✓ X

Change cardinality, target business object, or Delete Rule in
the Relationship editor

✓ X

Data Manager in the Business Objects pane's Options menu ✓ X

Import From File and Export CSV options in Data tab ✓ X

Add Fields to a Business Object Based on a DB Table or View
After a business object has been created from an existing table or view, you can add
fields based on other existing columns in the table or view. You typically do this when

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-80

the table or view has been modified, or because a referenced business object is now
available.

Note:

You cannot use the Business Object editor to add fields that would require a new
column to be created. To add such a field, you must add a new column to the
database table (or redefine the view), then add the field for that column.

To add a field to a business object based on an existing table or view:

1. Open the Business Objects page and click your business object's Fields tab.

2. Click the + Field button, then select Field From Column.

3. In the Create Field from Column wizard, look for the field you want to add. Fields that
don't already exist and can be added show in the wizard automatically. Select the check

mark in the field's first column, or click and select Include Field; update other values
as needed.

If you want to see the fields already added to the business object, select Show Existing
Fields in the left pane.

Click Create Field.

Change the Data Type of a Field Based on a DB Column
When you add a field based on an existing DB column, the field's type is set to the column's
default data type. You can change this data type after creation if needed. For example, when

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-81

you have a field of type Datetime (where a date or time is stored in a TIMESTAMP or
DATE column), you might want to change the field's type from Datetime to Date.

Caution:

Before changing an existing field's data type, ensure that the new type is
appropriate for the data type of the column on which it is based.

To change the default data type of a field added to a business object based on an
existing table or view:

1. From your business object's Fields editor, select the field whose type you want to
change.

2. Under Type in the Properties pane, click next to the current data type.

3. Select the type you want to change to and click Update.

Create Calculated Fields for a Business Object Based on a DB Table
or View

You can create formula and aggregate fields for a business object based on an
existing DB table or view to calculate a field's value.

• To create a field that calculates its value based on a formula:

1. Select + Field, then Formula Field from your business object's Fields editor.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-82

2. In the Formula Field dialog box, enter a label for the formula field you want to create,
then select the field's Type.

3. Enter a valid expression for the formula in the text area. You can specify operands by
typing in the text area or by selecting the Insert arrow for a field in the list of available
fields. Click an operator in the toolbar to add it to the formula.

You can create a formula to calculate a numerical value such as a percentage, or you
can create a Groovy expression that uses available fields to generate a value. For
example, you can concatenate strings stored in local fields (firstName + ‘ ‘ +
lastName) or determine a value based on a comparison or logical expression
(qualityLevel != 5).

4. Click Create Field.

5. Optional: When you define a Groovy expression, you can click the icon in the
Properties pane to override the default Groovy timeout.

• To create a field that aggregates the data of related business objects:

1. Select + Field, then Aggregation Field from your business object's Fields editor.

The Aggregation Field option won't show if your business object doesn't have
incoming relationships. For example, if you created a field in the Employee business
object that refers to the Department object, Employee is considered the source object
and Department the target object. Department, in this case, is said to have an
incoming relationship with Employee.

2. In the Aggregation Field dialog box, enter a label for the aggregation field you want to
create.

3. Select the object to aggregate (for example, the Employee business object which
uses Department as a target business object), the aggregation function (which can
be Average, Count, Maximum, Minimum, or Total), and the field to aggregate (for
example, Salary).

4. Click Create Field.

Set a Field for Auditing
Audit your business object's history using fields based on existing columns in your DB table
or view. For example, let's say your table has the DATETIME_CREATED,
DATETIME_MODIFIED, USER_CREATED_BY, USER_MODIFIED_BY, and VERSION_NUM
columns; you can add these columns as fields to your business object and use them to track
history.

Audit fields maintain a history of changes made to your business object by tracking who
created and updated an object when. They also include a version number used in the
generation of an entity tag (ETag) which protects against users overwriting changes. Because
audits can help you verify changes, you might want to set audit fields for each of these history
types: Created By, Updated By, Time Created, Time Updated, and Version
Number. A warning will be logged in your app's Audits pane for each history type that isn't
assigned to a field. You'll also see an error if the same history type is assigned to more than
one field.

Before you use your own fields for auditing, make sure the column data types used by those
fields are compatible:

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-83

Purpose Column Data Type

Created By VARCHAR2(200)1

Creation Date TIMESTAMP(6)

Updated By VARCHAR2(200)1

Updated Date TIMESTAMP(6)

ETag NUMBER

1 200 is an example.

To set a field added to a business object based on an existing table or view as an audit
field:

1. From your business object's Fields editor, select the field you want to use for
auditing.

2. In the field's Properties pane, select an option in the History Type list.

Your options depend on the field's data type. For a datetime-type field, you see
Time Created and Time Updated (as shown here). For a string-type field, you see
Created By and Updated By, and Version Number for a number field.

Use a Sequence for a Primary Key Field
The primary key in a DB table is a single field that uniquely identifies a record. When
your primary key column is not an Identity Column or if a "Before Insert" database

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-84

trigger that could be used to populate its value isn't defined, you can specify a database
sequence to populate the primary key field's value.

To set a sequence to populate the primary key field:

1. From your business object's Fields editor, select the primary key field. If necessary, click
Properties to open the Properties pane.

2. From the Sequence Name list, select the sequence you want to use to populate the field.
The Sequence Name field shows the list of all available sequences in the schema.

Switch Schemas Used During an App's Lifecycle
When you use your own DB schema, you can switch the schema that your app connects to
during its lifecycle. For example, you might want to use a particular schema during the
development phase, but switch to another one for testing or for production. You do this using
application profiles.

Application profiles help to define combinations of servers and security settings for every
environment that you want to deploy your visual app to. You define multiple profiles for an
app, with each one containing a different configuration appropriate for the environment. For
example, you can have a profile for testing that connects to a test environment, then
associate it with the schema used to access testing data. Similarly, you can associate a
production profile with a schema for live data.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-85

If a profile isn't explicitly mapped to a particular schema, it will always use the default
schema.

To associate a schema with a profile:

1. Create the application profile you want to use with your schema.

Visual Builder provides a ready-to-use application profile (Base configuration) that
is used by default for development, stage, and production deployments. You can
duplicate the default one to create another profile, then associate it with the
schema you want to use. If you've already defined the profile you want to use, skip
this step.

a. From the visual application’s menu, click Settings, then click the Application
Profiles tab.

b. From the Base configuration's menu, click Duplicate, then provide a new
name (for example, Prod configuration) and description in the Duplicate
Application Profile dialog. Click Duplicate.

c. From the newly created profile menu, select Make publish default to use this
profile as the default when the app is published.

2. Associate the profile with the schema to be used during a particular phase.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-86

Note:

Make sure the schema you want to use is defined in the Tenant Settings of your
Visual Builder instance. If it isn't listed, talk to your administrator to add it as an
available schema for your instance.

It's possible to map a profile to a schema in the Application Profiles page by selecting the
profile you want to manage, then using the profile's Business Objects tab to associate a
schema, as shown here:

But the Business Objects tab on the Settings editor provides a more visual way to map
schemas to profiles, as described here:

a. Click Settings from the visual application’s menu (if necessary), then click the
Business Objects tab.

b. Under Schema Selection, with your schema already selected, click next to
Additional Schemas.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-87

c. Select an available schema (for example, HR), then from the Used in profiles
list, select the profile you want to associate the schema with. You can add
more than one profile if you want.

d. Click Add.

The schema (mapped to the profile) appears under Additional Schemas. If you

want to update the profile, click in the schema's row and make changes in
the Used in profiles column. You can change the selected profile as well as
add other profiles.

Note:

Details of the tables and views available for use in a schema are fetched
once and cached. If the schema (or tables/views within it) was changed,

click to pick up the latest updates for a particular schema.

Chapter 4
Switch to Your Own Database Schema for Business Objects

4-88

5
Work with Services

Many of the UI components in your application are bound to data that comes from REST
APIs, which in turn are provided by services, like Oracle Cloud Applications. These services
are made available to your visual application through backends and service connections.

A backend is a representation of an external system whose data you wish to consume. A
service connection provides basic information about a service, including the REST endpoints
and schema provided by the service, in an Open API-compliant format.

Service connections are defined at the visual application level, which means that all the web
apps in your visual application can use them.

Backends help you manage the servers on which the REST APIs are hosted. By gathering
server details together in one place, backends make it easier to create service connections,
as well as to manage the server details themselves. For example, the "Oracle Cloud
Applications" backend, which is automatically provided for most visual applications, points to
the servers hosting the Enterprise Resource Planning and Supply Chain APIs, the Human
Capital Management APIs, and more:

Manage Backends in Your Visual Application
Backends define servers that your visual application can access. You can view and manage
the backends available to your application on the Backends tab, which you access from the
Services tab in the Navigator.

The following image shows the built-in Integration Applications (ICS) and Oracle Cloud
Applications backends, which have been defined in the tenant-level catalog:

5-1

The administrator for this Visual Builder instance has configured the Oracle Cloud
Applications backend to connect to an Oracle Cloud Applications instance that
provides access to the three child backends shown under the top-level backend:
Enterprise Resource Planning Supply Chain, Sales and Service, and Human Capital
Management. You can create custom backends to map to other types of servers,
either by providing an OpenAPI/Swagger file or by pointing to the URL of a custom
Oracle ADF Describe.

If a backend hasn't been defined for your Visual Builder instance or you want to
override the settings for your Visual Builder instance and create a catalog just for a
particular application, use the Services tab to create a new backend or edit an existing
backend.

For each backend, you can use the following tabs to view and edit the backend's
details:

Tab Description

Overview Displays the name and type of the backend (which can be Integration
Applications, Oracle Cloud Applications, or a custom backend).
You can use the + Service Connection button to create a service
connection based on the backend.

If any service connections have been defined for the backend, they'll
be listed below the + Service Connection button. Dynamic service
connections, which are defined in the catalog.json file, are
automatically loaded and displayed below the button. Static services
can be loaded by selecting the Load more related connections link,
after which all openapi3.json files will be loaded and parsed,
locating all services connections that were defined from the backend.

Chapter 5
Manage Backends in Your Visual Application

5-2

Tab Description

Servers Displays the servers associated with the backend and includes the
instance URL and the application profile associated with the instance.
You can add, edit, or remove backend servers. You may have one or
more servers if the backend is hosted on different instances.
You use the Add Server button to add new servers where you specify
details such as:
• The application profile to associate with the server
• Headers
• Security and connection details

Headers Displays the static headers defined for the backend at the server level.
You can add and edit headers in the tab.

Source Displays the description of the backend stored in the tenant-level
catalog.json file. If you override the tenant-level definition, this file
shows the contents of the application-level catalog from the
services/catalog.json file. You can edit the entries in the
Source tab, if you want.

Note:

If you do not see any services in your catalog after confirming the URL and
authentication method are correct, contact your administrator to confirm that you
have the proper credentials and that your user role is authorized to access services
from the backend instance.

What Are Backends?
A backend is a collection of servers that your visual application uses to access REST
endpoints in a known resource, like Oracle Cloud Applications or Oracle Integration.

Each backend is associated with one or more servers, and each server has different
instances for development, test, and production. These backend instances are defined in the
Tenant Settings of your Visual Builder instance by your administrator and provide the out-of-
the-box catalog that all visual applications in your instance can access. Your application uses
these backend definitions (instance URL, authentication type, and so on), in association with
application profiles, to connect to the right server, so you can successfully develop, test, and

Chapter 5
Manage Backends in Your Visual Application

5-3

deploy your application, as shown here:

A typical backend catalog includes the built-in Integration, Oracle Cloud Applications,
and Process backends. You can also create backends that map to other types of
custom servers.

The catalog is described in an OpenAPI-compliant file called catalog.json, which
contains the list of backends and their details at the tenant level. Because this
definition applies to all visual applications, you can easily connect to REST APIs from
the predefined catalog without having to specify instance URLs, authentication, and
other details every time you create a visual application. You can choose to override the
tenant-level definition for a single application, either to customize an existing backend
(say, connect to a different instance or change the authentication method) or to create
your own—all of which is then stored at the application level in the services/
catalog.json file.

When you create a service connection from a catalog, the service connection resolves
using the backend configured at the application level and, if not present, it resolves to
the backend configured at the tenant level.

All new service connections will require a backend. If a backend doesn't exist, you'll be
prompted to create one. Service connections created previously without a backend will
continue to work and their configuration settings can be changed as well. You can
create a custom backend when you create a service connection or create the backend
first, and add the service connections to it later. You'll know when services are
"derived" from a backend because you’ll see something like this:

Clicking the backend will take you to the Backends editor, where you can edit the
backend’s details if you want.

What Are Application Profiles?
Application profiles in Visual Builder facilitate the development of applications that
consume REST services.

As you develop your web (and mobile) apps, you need access to the REST services
that your app will consume when it goes into production. Given that it may not be

Chapter 5
Manage Backends in Your Visual Application

5-4

possible or appropriate to use production instances of the service as you develop your app,
you use development and test instances that provide the same APIs as the production
instance of the service for the development and test phases of application development.

To make the task of changing between development, test, and production instances easier,
Visual Builder provides you with the ability to define application profiles in your visual
application where you specify the appropriate details to use for an app when you deploy it to
a development, test, or production environment. For example, basic authentication may be
acceptable to use during the development of your application, but it is not recommended that
you use this authentication type when you deploy your app to production. In this scenario,
you can configure an application profile for development where you use the basic
authentication method that is less onerous to implement. The application profile that you use
to deploy the app to production uses a more secure authentication method.

You access application profiles from the Application Profiles tab of your visual application’s
Settings page. Visual Builder provides one ready-to-use application profile (Base
configuration) that is the default application profile to use when you deploy web (and mobile)
apps in this visual application to development, stage, and production.

To create additional application profiles, click Duplicate and provide a new name (for
example, Production configuration), ID, and description in the Duplicate Application
Profile dialog. Having created the new profile, you can make it the default to use when you
stage or publish your visual app by selecting the appropriate option from the menu that
appears to the right of the newly created application profile:

Chapter 5
Manage Backends in Your Visual Application

5-5

The application profiles that you create can be associated with the various servers
(dev, test, and prod) used by the REST service that your app consumes.

In the following example, a backend that returns contact information
(contactsBackend) lists three servers that host the relevant REST service. The
development server uses the base configuration application profile while the test and
production servers use the corresponding application profiles.

Set the Backend's Authentication Method and Connection Type
A backend represents an external system that has REST APIs you want to use in your
web app, and to access them, you'll need to specify the required authentication
method and connection type for the access.

The authentication method determines how to obtain permission to access the REST
APIs. The connection type determines how the REST APIs are reached: either directly
through JavaScript, or through a server-side component called a proxy.

The dialogs for creating and editing a backend's server details allow you to:

• Override authentication settings set at the environment's tenant settings.

• Manage the credentials for accessing the service (if credentials are required).

• Manage identity propagation of the end user logged into the web app (if the
service supports the standard IDCS OAuth flows).

• Manage how your application connects to the service (via proxy or via Direct call);
to bypass CORS, the "Always use proxy, irrespective of CORS support"
connection type is provided.

• Manage how anonymous users can access the application.

To connect to a service that is available through HTTPS, authentication is not required,
and there's no CORS requirement. The default setting of None for the Authentication
field is sufficient. In this case, any end user (anonymous or authenticated) of the web
app can access the service.

To connect to a service that requires authentication, you need to select the appropriate
authentication method from the Authentication drop-down list. There are two types of
authentication methods that can be used for a backend, distinguished by whether the
user’s identity is passed to the service (identity propagation) or not (fixed credentials).

Chapter 5
Manage Backends in Your Visual Application

5-6

To use different server details (URL, authentication methods, and connection types) for a
service during development, testing, and publication:

1. Create the different server definitions that you’ll need for the backend:

2. Create the application profiles you’ll need, and set which backend server definition to use
for each.

To create a new application profile and set which backend server definitions to use for it,
go to your visual application’s Settings editor. Use the Duplicate button to duplicate an
existing profile and provide a name and description for the new profile. Select the new
profile and use the drop-downs to select which server definitions to use:

3. Switch between the application profiles as needed, to switch between the different
backend server definitions.

You can also select authentication methods for logged in users (authenticated users) and
non-logged in users (anonymous users). For a description of user roles, see Authentication
Roles Versus User Roles.

Chapter 5
Manage Backends in Your Visual Application

5-7

Note:

Before you connect to a service, an administrator may need to configure the
VB Studio environment settings for backend services, or the settings for the
external service or identity provider.

How Does the Identity Propagation Authentication Method Work?
Authentication methods that use identity propagation pass the identity of the logged in
user to the service for authentication.

To use identity propagation, the service must be able to understand the IDCS identity
token coming from Visual Builder and extract the user (or subject) from it. Visual
Builder supports JWT tokens issued by IDCS procured using OAuth 2.0-user assertion
flows.

Tokens are a way of encoding the calling user identity into a string according to
different specifications, like SAML or the JWT format. For example, if the user is
John.Doe, the corresponding JWT token takes the format <header.body.signature>
and looks like this:

Decoding the body of the token reveals details about the user identity and possibly the
resources to which that user is allowed access. The signature part is encrypted by the
authority that authenticated the user, and can be easily verified by using the authority's
public key. A valid user's identity is encoded into the token so services (namely REST
APIs) that receive this token can consider the user as authenticated. This token is
usually passed to REST services by passing it as a "Bearer <token>" in the
Authorization header.

Here are the authentication methods that use identity propagation:

Authentication
method

Description

Oracle Cloud
Account

Select this method to communicate with Oracle Cloud Applications
services. When you select this method, the user must sign in with the
credentials of a valid account in the Oracle Identity Cloud Service (IDCS)
associated with Visual Builder. The user's identity is converted into a user
assertion, then into an IDCS-issued JWT token for the scope that is
equivalent to the base URL of the service being called. For example, if the
service's URL is https://fa.oraclecloud.com/myservice, the
token is created for the scope of https://fa.oraclecloud.com.

Chapter 5
Manage Backends in Your Visual Application

5-8

Authentication
method

Description

OAuth 2.0 User
Assertion

Select this method to call an external system's services that can be
represented as a resource app with a particular scope in Oracle Identity
Cloud Service (IDCS). This also requires the user to sign with a valid Oracle
Identity Cloud Service user account. As with Oracle Cloud Account
authentication, the user's identity is first converted into an assertion, then
into an IDCS-issued JWT token for the configured scope. The difference is
that with this method you can specify your own scope, rather than using the
service's URL.

Delegate
Authentication

This method was previously called Propagate Current User Identity.

With this method, the service connection doesn't have its own
authentication, but delegates the authentication to the web (or mobile) app
that is calling it. The following apply:

• A web app can only use the Oracle Cloud Account option for its
security (set with web app > Settings > Security). When the service is
called from a web app, by default, Oracle Cloud Account authentication
applies. The user's identity is converted into an assertion, then into an
IDCS-issued JWT token. If the web app has the "Enable implicit grant
for Service Connections" option enabled, the resulting JWT token is
procured by an OAuth 2.0 implicit grant flow instead of through an
assertion.

• If the service is called from the Service Tester (from the Service
Connection's Test tab), the identity of the user that's logged into Visual
Builder is converted into a token and passed to the service. This is
similar to what is done with Oracle Cloud Account authentication.

Since the actual authentication used at runtime depends on the calling web
app's security settings, it is only recommended for use with web apps that
use OAuth-based implicit grant authentication.

How Does the Fixed Credentials Authentication Method Work?
An authentication method that uses fixed credentials passes a fixed identity to the service,
ignoring the signed-in end user's identity or credentials. All requests to the service use the
same app ID for authentication.

For example, if the logged-in user is abc.xyz, but the backend is using Basic Auth with the
user credentials def.xyz, the REST APIs connected by the backend will see only def.xyz in
their Authorization headers.

Here are the authentication methods that use fixed credentials:

Authentication
methods

Description

None Select this for services that don't need authentication and
don't accept Authorization headers.

Chapter 5
Manage Backends in Your Visual Application

5-9

Authentication
methods

Description

Basic Select this for services that require a fixed username and
password for authentication. The signed-in user's credentials
aren't used for authentication. This option uses the Visual
Builder authentication proxy, irrespective of the connection
type you choose.

Note:

Basic authentication is not
supported in US government
realms.

Due to the limitations of basic authentication, it's
recommended that you use this method during development
only, and here's why: Suppose you set basic authentication
with a particular username and password, and later need to
revoke the basic authentication for one specific application.
Your only option is to revoke that particular user, which
affects all applications that use basic authentication for that
user.

OAuth-based methods use scopes (with the client identifier
and client secret) to offer you better control for managing
credentials.

OAuth 2.0 Client
Credentials

This method is recommended if you want to use a fixed
credentials method and the service supports OAuth 2.0
Client Credentials. This method is part of the OAuth 2.0 grant
types and is used for application-to-application authentication
scenarios where you don't need a specific user's credentials
to connect to the service.

Consult the service’s OAuth 2.0 documentation for the
values for the Client ID, Client Secret and token URL fields. If
no values are supplied, they are interpreted as the visual
application's client ID and secret, and the token URL is
interpreted as IDCS's token URL.

OAuth 2.0
Resource Owner
Password
Credentials

This method is part of the OAuth 2.0 grant types and is used
when you need a specific user’s credentials to connect to the
service.

Consult the service’s OAuth 2.0 documentation for the
values for the Client ID, Client Secret and token URL fields. If
no values are supplied, they are interpreted as the visual
application’s client ID and secret, and the token URL is
interpreted as IDCS’s token URL.

Chapter 5
Manage Backends in Your Visual Application

5-10

Authentication
methods

Description

OCI Signature
Authentication

This method uses a signature method to create an
Application ID flow using a single Oracle Cloud Infrastructure
(OCI) user to connect to OCI endpoints. All requests go
through a proxy because of the requirement to sign the
outgoing message.

To use this authentication in Visual Builder, you'll need these
user details from the OCI console:
• Fingerprint of the public key associated with your OCI

account, available on the Profile > User Settings page.
Click API Keys and copy the fingerprint value.

• User's OCID, available on the Profile > User Settings
page. The OCID is shown under User Information; click
Copy to copy it to your clipboard.

• Tenancy's OCID, available on the Administration >
Tenancy Details page. The OCID is shown under
Tenancy Information; click Copy to copy it to your
clipboard.

• The contents of your certificate's private key in PEM
format.

For more information, see Request Signatures in the OCI
documentation.

Once you have the details of the OCI user you want to use to
connect to OCI endpoints, set up authentication in Visual
Builder as follows:

1. Select Oracle Cloud Infrastructure API Signature 1.0
as the authentication method.

2. Click Enter the API Key and Private Key ().

3. Construct the API key in the following format, then copy
and paste it as the API Key:
tenancy-ocid/user-ocid/fingerprint

4. Paste the PEM file contents as the Private Key. Copy
the entire file, starting with -----BEGIN PUBLIC
KEY----- right up to -----END PUBLIC KEY-----.

5. Select Always use proxy, irrespective of CORS is
selected as the connection type.

The Connection Type indicates how the actual REST API should be connected to: directly
from the web app’s JavaScript or from the server proxy. You should make this decision based
on the CORS support your REST API has.

Chapter 5
Manage Backends in Your Visual Application

5-11

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/signingrequests.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/signingrequests.htm

Note:

When using the fixed credentials authentication method, keep in mind these
limitations:

• When using the OAuth 2.0 authentication method, which uses token
relay, you're limited by what the browser can send and receive.

• When using a proxy you're limited by the browser as stated above, with
the exception of Oracle Cloud Infrastructure API Signature 1.0. For this
method, the maximum message body size is two gigabytes (because the
proxy needs to cache the entire message to sign it).

• When using a proxy, the REST call will time out after 234 seconds if no
data has been sent.

What is CORS?
CORS (Cross-origin request sharing) is a mechanism that restricts a web page on one
domain calling APIs hosted on another domain from browser-based JavaScript.

To allow such calls, the server hosting the APIs has to allow the domain of the web
page to call by enabling CORS for the web page domain. The rules for CORS are built
within the browser and are used to secure the user from arbitrary hosted scripts calling
any APIs. See this blog for more details. If the API server has not enabled CORS for
the web page, then calling the API via Fetch or AJAX from the browser results in a
JavaScript error.

Use an Appropriate Connection Type to Handle CORS for REST Services
Web apps can call external REST services directly or through the Visual Builder proxy.
The value you choose for the connection type and your choice of authentication
method when you create or modify a service connection determines which option your
app uses.

Direct calls

In this method, the REST service is called directly from the browser JavaScript using
the browser's Fetch API. This method can have a performance benefit, as the call is
routed directly from the browser to the REST service in question without any
intermediary. However, the external REST service that you call must add your app’s
domain to its CORS allowlist. A direct call can only be made for the following
authentication types:

• Oracle Cloud Account

• Delegate Authentication

• OAuth 2.0 (all types)

• None

Calls via proxy

The Visual Builder proxy is a trusted server-side component that calls external REST
services hosted on external domains on behalf of your app. One benefit is that you, or
a system administrator, don't need to configure CORS settings for the external REST

Chapter 5
Manage Backends in Your Visual Application

5-12

https://blogs.oracle.com/vbcs/post/visual-builder-service-connections-connection-types
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

service. However, you incur the cost of an extra network call, as each request and response
must first go through the Visual Builder proxy.

All authentication types can be used with the Visual Builder proxy. When you use some
authentication types, such as Basic authentication and OCI Signature, authentication is
always routed through the Visual Builder proxy. (Note that the proxy times out if the REST
API doesn’t respond within 234 seconds.)

Connection type options

The type of REST service call to make (either direct or through the Visual Builder proxy) is
controlled by the option you choose in the Connection Type drop-down menu (located in the
dialog where you edit or add a server to a service connection) and includes:

• Dynamic, the service supports CORS: Visual Builder decides the best route to connect
to the external REST service assuming that the external REST service has enabled
CORS for the Visual Builder domain. If the authentication supports direct calls (None,
Oracle Cloud Account, Delegate Authentication, OAuth 2.0), the external REST service is
called directly from the app.

• Dynamic, the service does not support CORS: Visual Builder decides the best route to
connect to the external REST service assuming that the external REST service has not
enabled CORS for the Visual Builder domain. All calls are routed through the Visual
Builder proxy.

• Always use proxy, irrespective of CORS support: REST service calls from your apps
always go through the Visual Builder proxy.

Review this table to understand what happens when you use different combinations of
authentication and connection types:

Application type Authentication type Connection type Result

Any Any Always use Proxy Through Visual Builder
proxy

Visual Builder Design
time environment

Any Dynamic – Service
doesn’t support CORS

Through Visual Builder
proxy

Web app running on
browser

Any Dynamic – Service
doesn’t support CORS

Through Visual Builder
proxy

Progressive Web App Any Dynamic – Service
doesn’t support CORS

Through Visual Builder
proxy

Any All except basic
authentication and OCI
Infrastructure API
Signature 1.0

Dynamic – Service
supports CORS

Direct

Any Basic authentication or
OCI Infrastructure API
Signature 1.0

Dynamic – Service
supports CORS

Through Visual Builder
proxy

Here's an example of how different choices work when your application calls Sales and
Service (CRM) REST APIs from an Oracle Cloud Applications instance. For this scenario,
let's say your Visual Builder instance is hosted on vb.oracle.com and the crmRestApi is
hosted on fa.oraclecloud.com.

If you chose Dynamic, the service supports CORS and the selected Authentication Type
supports direct calls, the direct call goes like this: vb.oracle.com (browser) →
fa.oraclecloud.com.

Chapter 5
Manage Backends in Your Visual Application

5-13

If you chose Dynamic, the service does not support CORS or Always use the
Proxy, the call is routed through the proxy and goes like this: vb.oracle.com
(browser) → vb.oracle.com proxy → fa.oraclecloud.com.

It's recommended that you use the Dynamic options, where Visual Builder decides the
best route based on whether the external service supports CORS or not for this
particular domain. However, you have the flexibility of choosing Always use the
Proxy to route all requests via the proxy.

If you don't want to use the Visual Builder proxy, you must enable CORS in Oracle
Cloud Applications for your particular domain (vb.oracle.com in our example) by
adding the Access-Control-Allow-Origin CORS header for the CORS profile option.
To view the profile option, go to the Setup and Maintenance work area and use the
Manage Applications Core Administrator Profile Values task in the Application
Extensions functional area. See Configure Cross-Origin Resource Sharing in REST
API for Common Features in Oracle Fusion Cloud Applications.

Work with HTTP-based Endpoints
Visual Builder uses HTTPS for its applications, and we recommend also using HTTPS
for all service connections to external endpoints.

If you use an HTTP-based URL to create a service connection for development
purposes, it will always be routed via the VB Proxy irrespective of the connection type
and then to the actual HTTP service. This is because visual applications run on
HTTPS and are not allowed to call an HTTP endpoint directly, that is using browser
JavaScript. From the VB Proxy to the HTTP endpoint, the call is routed through HTTP.
You will get a warning in the Server tab (shown below) when you provide an instance
URL that uses HTTP.

Use of HTTP is discouraged because the credentials that access the HTTP service
are visible over the network. These credentials are not encrypted, as in case of
HTTPS). This makes HTTP services vulnerable.

Allow Anonymous Access to the Service Data
Select the Allow anonymous access to the Service Connection Infrastructure
checkbox in the Edit Server dialog if you want to allow anonymous users access to the
data from services.

Chapter 5
Manage Backends in Your Visual Application

5-14

https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=u30231707

If you allow anonymous access to the service data, you must also allow anonymous users
access to the app. You enable anonymous access to the app in the Security tab of the app’s
Settings editor. See Allow Anonymous Access.

Create a Backend
If your environment does not include Oracle-provided backends such as Integration
Applications, Oracle Cloud Applications, or Process Automation, you can add these
backends to create an application-level catalog for your visual application. You can create
only one instance of each backend in your visual application.

The high-level steps to add a backend are the same for each backend and involve providing
the URL of the instance that hosts the backend service, authentication method to access the
instance, and so on.

Let's say you want to add the Oracle Cloud Applications backend: You supply the URL of
your Oracle Cloud Applications instance (for example, https://my-oracle-cloud-app-
instance.example.com). This will automatically discover the interfaceCatalogs endpoint
(typically Oracle Cloud Applications Base URL/helpPortalApi/otherResources/latest/
interfaceCatalogs) of your Oracle Cloud Applications instance and retrieve the list of
available services from the most recent ADF Describe.

To create a backend that connects you to the Integration Applications, Oracle Cloud
Applications, or Process Automation catalog:

1. Click Services in the Navigator.

2. In the Services pane, click + sign and select Backend.

3. In the Create Backend wizard, select the backend you want to create:

• To register an Oracle Cloud Applications instance as a backend, click Oracle Cloud
Applications Instance.

• To register an Integrations instance as a backend, click Integrations.

• To register an Oracle Process Automation instance as a backend, click Oracle
Process Automation.

4. Enter the instance URL and other information, such as authentication details and
headers, that your visual application requires to successfully connect to the backend.

5. Click Create.

The newly registered backend shows up in the Backends tab.
It is possible to edit all the server details (instance URL, authentication method, headers,
connection type, and so on) after the backend is registered. You can also specify more than
one server that provides access to the backend by adding additional servers that host the
backend. See Edit a Backend.

To create a service connection to your backend, click + Service Connection. See Create
Service Connections from the Oracle Cloud Applications or Integration Applications Catalog.

Add Server Variables for Backends
When creating or editing a backend, you can add server variables to the instance URL on the
Servers tab.

When you enter a valid URI template expression, such as {version}, in an instance URL, a
server variable will be created automatically and displayed in the Server editor's Server

Chapter 5
Manage Backends in Your Visual Application

5-15

Variables section. You can also create, edit, or reorder a list of variables. A default
value must be set for each server variable.

Let's take a look at how this works, using https://restcountries.com/v3.1/
lang/german as an example:

1. The server instance URL can be represented as https://
restcountries.com/{version}/lang.
Here, there's just one server variable, {version}, which has a default value of
v3.1, as shown in the server of a backend called countryBackend:

2. The endpoint is /{language}.
We define the service connection on the countryBackend by defining the
endpoint and adding /{language} to the URL path.

Chapter 5
Manage Backends in Your Visual Application

5-16

In this example, language is a path parameter, because it's a part of the endpoint path.
It can't be a server variable, in this example, because it's outside the instance URL. Its
default value is german and its type is string.

3. The full URL becomes https://restcountries.com/{version}/lang/
{language}.
After substituting (v3.1 for the server variable {version} and german for the
language path parameter), this represents the instance URL we started with, https://
restcountries.com/v3.1/lang/german.

Here's how you can add or change a variable (or multiple variables) in a server URL:

1. Open the Servers tab of the backend.

2. Click Edit to the right of the server instance to which you want to add a new server
variable (or modify an existing one) to the instance URL.

The Edit Server dialog is displayed.

3. In the Instance URL field, add a variable where one is needed.

For example, you may want to replace a version number in the URL, such as "1.2" with
the variable {version}. After you do this, you'll see the variable you added to the URL
displayed in Server Variables, below the instance URL's Description field. The variable
you added is shown in the Name field.

4. Enter a description in the Description field and set the default value in the Default field.

Click Done if you are finished or click + Add Value to add another value. To create a list

with multiple values, click Menu and select Create Value List. Then, after adding

values, use the or controls to set the default value or reorder the list of values. The

default value will be the one at the top of the list. You can use Delete to discard
values you don't need.

5. Add another variable in the URL, if needed.

Note that you must set a value for each variable you define. If you don't, you'll see a
message indicating that a value is required. Enter the default value and click Done.

6. Click Save.

Chapter 5
Manage Backends in Your Visual Application

5-17

Create a Custom Backend
You can create your own backend to map to a custom server other than the built-in
Integration and Oracle Cloud Application backends.

A custom backend lets you access a service when you know its URL. You can create a
custom backend with a free-form URL, or create a custom ADF backend when you
know the Describe URL that points to an ADF Describe service.
To create a custom backend:

1. Click Services in the Navigator.

2. In the Services pane, click + sign and select Backend.

3. In the Create Backend wizard, select the type of backend you want to create:

• To create a backend with a free-form URL, click Custom.

• To create a backend with the Describe URL of an ADF service, click Custom
ADF Describe. Use this option only when your custom ADF Describe
endpoint does not have any child backends.

4. Enter a name and description for the custom backend. Your description will be the
backend's display name in your application.

5. Optionally, add static headers:

a. To add a static header that is passed from the browser to the service (for
example, a REST-Framework-Version header), click Add Header under
Custom Headers. Enter a name for the header and its value, then click OK.

Chapter 5
Manage Backends in Your Visual Application

5-18

Custom headers become available to you from the browser's Developer Tools
console.

b. To add a static header that isn't passed from the browser to the service and is
automatically inserted only at the server, click Add Header under Secure Headers.
Click the Create Secure Header icon, enter a name and value for the header, then
click Save.

Secure headers are useful when you want to apply a credential to a header and
never want it to be available on the browser.

6. Click Next to display the second page in the wizard:

7. Enter the instance URL and other information that your visual app requires to connect to
the custom backend.

Note:

If you're using an IP address instead of a proper DNS-based URL in a
production environment, you're probably using self-signed certificates. Be
aware that certificates based on IP addresses are less secure and more difficult
to maintain than DNS-based URLs. To avoid potential security issues, self-
signed certificates should never be used in production environments. For this
reason, an audit warning is displayed whenever an IP address-based service
connection is used.

Chapter 5
Manage Backends in Your Visual Application

5-19

8. If you need more information about the options in the Authentication drop-down,
see Set the Backend's Authentication Method and Connection Type.

9. To add server variables, see Add Server Variables for Backends

10. Click Create.

A new custom backend displays in the Backends tab on the Services pane. Click the
newly created custom backend to view and edit its details. See Edit a Backend.

Now that your custom backend is registered, you can click + Service Connection to
create a service connection to your backend, either by providing a service specification
document or by pointing to the URL of a service endpoint. See Create a Service
Connection from a Service Specification or Create a Service Connection from an
Endpoint.

Create a Child Backend
You can create child backends to extend the functionality provided by custom
backends that have been registered in your extension, or by the Oracle Cloud
Applications backend.

A child backend inherits the parent backend's definition, which you can override as
required. Its server URL is derived from the top-level backend, with vb-catalog://
backends/ as the base URL. For example, the Sales and Service backend, which is
a child of the Oracle Cloud Applications backend, has the server URL vb-
catalog://backends/fa/crmRestApi/resources, where fa represents the
parent backend.

Child backends can be created only for custom backends, or for Oracle Cloud
Applications.

Create a Child Backend for a Top-Level Custom Backend
To create a child backend for a custom backend:

1. Open the Backends tab from the Services tab in the Navigator.

2. Click the + sign next to the intended parent backend:

Chapter 5
Manage Backends in Your Visual Application

5-20

3. Select Custom ADF Describe to create a backend with an ADF Describe URL. For a
backend that doesn't have a Describe URL, select Custom.

4. Enter a name and description for the child backend. Optionally, click + Add Header to
add custom static headers. To add a static header that won't be available in the browser
and will only be inserted at the server, click + Add Header under Secure Headers.
Secure headers are useful to apply a credential to a header without it being available in
the browser.

5. Click Next.

6. Enter the instance URL for the child backend, beginning with the slash (/) that follows the
grayed out portion of the inherited parent URL.
You can click the Info icon to see the complete URL that the backend resolves to.

7. Enter other settings, as needed.

8. Click Create.

Create a Child Backend for the Oracle Cloud Applications Backend
The process for creating a child backend based on the Oracle Cloud Applications backend is
slightly different, as the parent and the child backends are in different extensions.

To create a child backend for the Oracle Cloud Applications backend:

1. Open the Backends tab from the Services tab in the Navigator.

2. Click the + sign for the top-level Oracle Cloud Applications backend:

Chapter 5
Manage Backends in Your Visual Application

5-21

3. Select Custom ADF Describe to create a backend with an ADF Describe URL.
For a backend that doesn't have a Describe URL, select Custom.

4. Enter a name and description for the child backend. Optionally, to add custom
static headers, click + Add Header. To add a static header that won't be available
in the browser and will only be inserted at the server, click + Add Header under
Secure Headers. Secure headers are useful when you want to apply a credential
to a header without it being available in the browser.

5. Click Next.

6. For Instance URL, enter the rest of the path for your new backend after the slash
(/) that follows the grayed out portion of the parent.
Click the Info icon to see the complete URL that the backend resolves to.

7. Enter other settings, as needed.

8. Click Create.

Edit a Backend
You can edit any backend that you've added, and for the backends that were
automatically added to your visual application upon its creation, you can override their
configurations set at the tenant level for your Visual Builder instance.

When you override a provided backend's configuration, you are essentially adding a
backend with the same ID from the environment catalog to the application catalog and
customizing some detail (for example, the authentication method specified for a
backend server) just for that particular application.

To edit and customize a backend service:

1. Open the Backends tab from the Services tab in the Navigator.

Chapter 5
Manage Backends in Your Visual Application

5-22

2. Select the backend you want to modify, then click the Servers tab.

Tip:

Click the View Information icon () to view backend details, such as server
and authentication inherited from your Visual Builder instance's tenant-level
settings.

3. To edit an Oracle cloud services backend, you'll need to click Override Backend to
modify the settings specified by your administrator:

4. Edit the backend service's details as required:

• Use the Overview tab to change the description, if desired, or to change the
transforms attached to the backend (see Add Transforms for more information).

• Use the Servers tab to add a new server that hosts the backend service, or modify
an existing server. In both cases, a dialog appears where you can identify the server,
specify an application profile that will use the server, add headers, and configure
security options. These options are the same as those you configure when you
define a service connection.

• Use the Headers tab to add static headers.

Under Custom Headers, you can add headers that are passed from the browser to
the service (for example, a REST-Framework-Version header). Under Secure
Headers, you can add headers that are inserted only at the server end (for example,
a credential that you never want to be available on the browser).

• Use the Source tab to view the contents of the services/catalog.json at the
application level, and to edit the file if needed.
You can also access this file under services in the Navigator's Source View tab.

Add Transforms
Transforms are JavaScript functions that transform the format of data and parameters for
REST requests and the format of data from REST responses. Request transforms are
typically for sorting, filtering, and so on, while response transforms are typically for formatting
data and retrieving paging metadata.

Transforms perform these actions:

• Filtering, to specify the data to be returned and displayed.

• Sorting, to sort items returned from a collection resource.

Chapter 5
Manage Backends in Your Visual Application

5-23

• Pagination, to limit the number of records that are displayed on a page.

A transform can be a:

• Require.js module, such as vb/BusinessObjectTransforms (default transform for an
Oracle Cloud Applications backend)

• File path that's relative to the service connection, such as ./transforms.js
• URL, such as https://cdn.oracle.com/static/vb/

businessobjecttransforms
The Oracle Cloud Applications backend has built-in business object REST API
transforms (vb/BusinessObjectTransforms) that are applied by default. When you
create a related service connection using the Select from Catalog option of the
Create a Service Connection wizard, the service connection and its endpoints inherit
the backend's built-in transforms. Similarly, ADF Describe backends have pre-defined
transforms that are applied by default.

Transforms can be applied at the service level or the instance level:

• Service Level Transforms: Applied to a backend, child backend, service
connection, or endpoint.

• Instance Level Transforms: Applied to a Service Data Provider (SDP) or a Call
REST action as individual functions.

For the sake of consolidation and simplification, it's best to use only service level
transforms, with one exception. Visual Builder business objects are pre-configured with
out-of-the-box transforms (vb/BusinessObjectTransforms) and can’t be changed. If you
need to change a transform for a business object, you can use instance level
transforms.

You can find more details about adding transforms to an SDP or a Call REST action
here:

• SDP Request Transformation Functions

• SDP Response Transformation Functions

• Call REST Action

Service Level Transforms
Service level transforms are typically applied to a backend so that they can be
inherited by the backend's service connections and by the service connection's
endpoints. However, if you need to differentiate between the REST resources or
between the endpoints (GET vs POST) of a system, for the service connection or its
endpoints, you can choose a different .js transforms file or create a new one.

Within the hierarchy of service level transforms, an endpoint is first checked for a
transform file, then the service connection, then the child backend (if there is one), and
lastly, the backend. The first transform file that is found is used; any at the upper levels
are ignored.

To see a backend, service connection, or endpoint's provided transform functions,
navigate to its Overview tab, then click the Go to File link in the Transforms section.
To create new transform functions, click the Source drop-down list and select Create.

Chapter 5
Manage Backends in Your Visual Application

5-24

Example of Creating Service Level Transforms

These steps show how to create a backend for service connections and how to create the file
with the template transform functions for your new backend and its service connection
endpoints:

1. Open the Services panel, select the Backends tab, click the Add (+) icon and select
Backend:

Chapter 5
Manage Backends in Your Visual Application

5-25

2. In the Create Backend window, select Custom to create a custom backend.

3. Provide a name for your custom backend, and optionally, enter its description.

4. Enter the instance URL and any other required details. Later, when creating a
service connection for the backend, this URL is used as the base for defining the
endpoint. Click Create to create the backend.

Chapter 5
Manage Backends in Your Visual Application

5-26

5. You can now create the file with the template transform functions for your new backend.
On the Overview tab, in the Transforms section, click the Source field’s down-arrow
and select Create:

6. Provide the file name for the transforms file:

Chapter 5
Manage Backends in Your Visual Application

5-27

7. For the Base transform dropdown, select the file to supply the base code for all of
your transform functions. For ADF REST APIs, this file is always chosen for you.

8. In the Override functions select the function(s) you want to add to the transforms
file and click OK. Functions that you don't select won't be added to the transforms
file.

9. To open the transforms file, click Go to File under the Source field:

10. Override the relevant transform functions as required. The provided built-in
transform functions are: sort, filter, paginate, select, query (commonly used with

Chapter 5
Manage Backends in Your Visual Application

5-28

GET collection endpoints), body (commonly used with POST and PATCH endpoints), and
fetchByKeys.
The transformsContext input parameter is a context object that is passed to every
transform function by the associated SDP, so that you can retrieve and store contextual
information for the current REST call. SDP variables have a transformsContext property
that is passed to the transform functions. For more about an SDP's transformsContext
property, see Oracle Visual Builder Page Model Reference - transformsContext SDP
Property.

Here's an example for the body(result) transform function, which adds text to all of the
mass and height fields:

 body(result) {

Chapter 5
Manage Backends in Your Visual Application

5-29

 let tr = {};
 if (result.body) {
 tr = result.body.results;
 for (let i = 0; i < tr.length; i++) {
 tr[i].mass = tr[i].mass + " kilos (kg)";
 tr[i].height = tr[i].height + " cm";
 }
 }
 // return tr;
 }

The created transforms file is inherited by its related service connections, which
are created by using the + Service Connection button on the Overview tab. To
view the related service connections, click the Load related service connections
link:

For details about creating a service connection from an endpoint, including how to
get an example of the body of the response, see Create a Service Connection
from an Endpoint.

11. To add a related service connection for your backend, click the + Service
Connection button:

Chapter 5
Manage Backends in Your Visual Application

5-30

12. Complete the URL for the service connection endpoint and provide the required details.

13. To create a transform file for the endpoint, click the Source field’s down-arrow and select
Create:

Chapter 5
Manage Backends in Your Visual Application

5-31

14. To open the transforms file, click Go to File under the Source field.

Examples for Endpoints that Are Not from Oracle Cloud Applications

Here are examples of request and response transform functions for endpoints that
aren't from Oracle Cloud Applications:

Request
A request transform function is called right before a request is made to the server/
endpoint. It provides a chance for page authors to transform the options (filter,
paginate, sort, and so on) and build the final request configuration. Here are some
samples of how to write filter, paginate, and sort transform functions:

filter

/**
 * Filter Transform Function Implementation
 * @param configuration
 * @param options the JSON payload that defines the filterCriterion
 * @param context an object to store/retrieve any contextual
information for the

Chapter 5
Manage Backends in Your Visual Application

5-32

 * current request lifecycle
 * @returns {object} configuration object. the url looks like ?
filter=foo eq 'bar'
 */

PageModule.prototype.filter = function (configuration, options, context)
{
 const c = configuration;
 const filterCriterion = options;

 function jetFilterOpToScim(fop) {
 switch (fop) {
 case '$eq':
 return 'eq';
 case '$ne':
 return 'ne';
 case '$co':
 return 'co';
 default:
 console.warn('unable to interpret the op ' + fop);
 return null;
 }
 }

 function isEmpty(val) {
 return (val === undefined || val === null || val === '');
 }

 if (typeof filterCriterion === 'object' &&
Object.keys(filterCriterion).length > 0) {
 if (filterCriterion.op && filterCriterion.attribute &&
 !isEmpty(filterCriterion.value)) {
 const atomicExpr = {};
 atomicExpr.op = jetFilterOpToScim(filterCriterion.op);
 atomicExpr.attribute = filterCriterion.attribute;
 atomicExpr.value = filterCriterion.value;

 if (atomicExpr.op && atomicExpr.attribute) {
 c.url = URI(c.url).addQuery({
 filter: `${atomicExpr.attribute} ${atomicExpr.op} $
{atomicExpr.value}`,
 }).toString();
 }
 }
 }

 return c;
};

Chapter 5
Manage Backends in Your Visual Application

5-33

paginate

// paginate Transform Function
// Transform function appends limit and offset parameters to the
URL
PageModule.prototype.paginate = function (configuration, options,
context) {
 const c = configuration;
 let newUrl = c.url;
 newUrl = `${newUrl}&limit=${options.size}&offset=$
{options.offset}`;
 c.url = newUrl;
 return c;
};

sort

/**
 * Sort Transform Function Implementation
 * @param configuration
 * @param options the JSON payload that defines the sortCriteria
 * @param context an object to store/retrieve any contextual
information for the
 * current request lifecycle.
 * @returns {object} configuration object. the url looks like ?
orderBy=foo:asc
 */
PageModule.prototype.sort = function (configuration, options,
context) {
 const c = configuration;

 if (options && Array.isArray(options) && options.length > 0) {
 const firstItem = options[0];
 if (firstItem.name) {
 const dir = firstItem.direction
=== 'descending' ? 'desc' : 'asc'
 let newUrl = c.url;
 newUrl = `${newUrl}&orderBy=${firstItem.attribute}:${dir}`;
 c.url = newUrl;
 }
 }
 return c;
};

Response
A response transform function is called right after a request returns successfully. Here
is a sample of how to write a paginate transform function:

// paginate() Response Transform Function
PageModule.prototype.paginateResponse = function (result, context) {
 const ps = {}; const tr = {};

Chapter 5
Manage Backends in Your Visual Application

5-34

 if (result.body) {
 const rb = result.body;
 if (rb.totalCount) {
 tr.totalSize = rb.totalCount;
 }
 if (rb.totalCount > 0) {
 tr.hasMore = !!rb.hasMore;
 } else {
 tr.hasMore = false;
 }
 }
 return tr;
};

Manage Service Connections
To access external REST APIs in your visual application, you create connections to the
services that provide access to these API endpoints.

What Are Service Connections?
To work with an external service's REST API, Visual Builder needs basic information about
that service. A service connection provides this information by describing the connection to
the service, including connection details, properties, and the REST endpoints provided by the
service that you want to use in your application.

You can create a service connection in the following ways:

• By selecting a service from a catalog of preconfigured Oracle SaaS/PaaS REST
services

• By providing a Swagger or ADF-Describe specification that describes the external
service

• By providing the location of a REST endpoint for the external service

A Visual Builder catalog of predefined services includes backends, such as Oracle Cloud
Applications and Integration Applications. These backends expose REST APIs that your
visual application can consume right out of the box. You can also create custom backends to
access services that aren't listed in this catalog, either by providing the service specification
or by providing the URL of a REST endpoint of the service.

Use the Services tab in the Navigator to add new service connections and manage your
existing ones. You can also manage your application’s catalog of backends here:

Chapter 5
Manage Service Connections

5-35

Service Connections: Static Versus Dynamic
Service connections in Visual Builder are defined by the service's OpenAPI metadata,
which describes the available endpoints and details required to connect to the service.
How you want your connection to retrieve this service metadata—either statically or
dynamically—is entirely up to you. Both options have their advantages and
disadvantages.

Let’s say a service's OpenAPI definition is located at https://service.com/
openapidef. You can set up your service connection to retrieve this definition in one
of two ways:

• Copy the service definition from https://service.com/openapidef at the
time of development and save it to the visual application's sources. That is,
statically retrieve the service metadata saved to the application when the service
connection was first created—a static service connection.

Chapter 5
Manage Service Connections

5-36

• Always get the service definition from https://service.com/openapidef. That is,
dynamically retrieve the service metadata from the source URL each time you open the
application—a dynamic service connection. The service definition in this case is only a
"reference", a pointer to the OpenAPI document located outside Visual Builder.

In the service connection wizard, you can use the Metadata Retrieval Option to specify how
you want to retrieve service metadata:

Here's what each option provides:

• Choose Dynamically retrieve metadata if your service definition changes frequently and
you want to include these updates, especially during development, when things are
rapidly evolving. In other words, by creating a dynamic service connection, you guarantee
that a new field added to the service definition will be available to your application,
because the service metadata is fetched every time the application is opened. This picks
up all changes made to endpoints, including the new field. The metadata will always be
up to date.

Note:

You can dynamically retrieve metadata only for service connections that provide
a service specification or those derived from a catalog, specifically the Oracle
Cloud Applications backend.

• For better runtime performance, consider the Copy full OpenAPI to your application to
your application option. Dynamic service connections pull entire resources, not just
individual endpoints, which can make the openapi3.json metadata file unwieldy. If you
check the Automatically include list of values (LOV) check box as well, the size of the
file increases even more. Coupled with factors such as complexity of the schema and
network latency, dynamically retrieving metadata may take a while to retrieve and
process. Using the Copy full OpenAPI option and selecting just the endpoints you need
for your application can improve performance, as your endpoint definitions are stored
locally in the application for faster retrieval.

• While you might consider creating a dynamic service connection for development, then
converting the connection to a static one when your application is ready for production,
there’s a better option: Copy minimal OpenAPI to the application. This option provides
the best of both worlds when you create a service connection that points to an ADF
Describe.

Chapter 5
Manage Service Connections

5-37

The Copy minimal OpenAPI to the application option is available only for services
that are based on ADF Describe (like Oracle Cloud Applications' ADF BC-based REST
APIs) and have a minimal describe endpoint to get limited metadata. This option
stores service metadata for the endpoints you select in your extension's sources,
much like a static service connection, but it only copies the minimal describe for those
endpoints. It also dynamically retrieves the parameter or request/response schema
similar to a dynamic service connection. But it does this only when required (say, when
a user tries to bind a table with an endpoint's response), not every time the extension
is opened. Because only the minimal OpenAPI is copied to your application only for
the endpoints you select, the size of the metadata file is reduced. And because the
schema object is still referenced, the latest service definition is dynamically retrieved
whenever required. For optimal performance, this is the recommended option for ADF
Describe-based services.

Here's a quick breakdown of the advantages and disadvantages of each metadata
retrieval option:

Service Connection
Option

Advantage Disadvantage

Copy full OpenAPI to
your application (Static)

Better performance as service
metadata is retrieved locally
from the application's sources

Application is out of sync from
the latest service definition and
might not have recent
customizations. Also, because
full service metadata (including
child objects) is saved to the
application's sources, runtime
performance may be impacted if
this metadata is very large.
Optimizing your resources can
help in reducing the fetch time
of the static OpenAPI.

Dynamically retrieve
metadata (Dynamic)

Provides the most up-to-date
service definition for your
application

Performance may be impacted,
though not always

Chapter 5
Manage Service Connections

5-38

Service Connection
Option

Advantage Disadvantage

Copy minimal OpenAPI
to the application
(recommended) (Static +
Dynamic)

N

o

t

e

:

A
v
a
i
l
a
b
l
e
o
n
l
y
f
o
r
A
D
F
D
e
s
c
r
i
b
e
-
b
a
s
e
d
s
e
r
v
i
c
e

Optimal performance as
minimal service metadata is
stored and can be retrieved
faster from the application's
sources; granular endpoint
selection is also possible.
Dynamically referenced schema
objects provide the ability to
retrieve the most up-to-date
request/responses schema.

Performance may be impacted
when schema objects are
retrieved

Chapter 5
Manage Service Connections

5-39

Service Connection
Option

Advantage Disadvantage

s
l
i
k
e
O
r
a
c
l
e
C
l
o
u
d
A
p
p
l
i
c
a
t
i
o
n
s

No matter which option you choose to create your service connection, you can switch
it up any time you want, as described in Convert a Service Connection (Static to
Dynamic or Dynamic to Static). You can also change things when you edit a service
connection to add endpoints, as described in Add More Endpoints to a Service
Connection.

Create a Service Connection
You can create service connections by selecting a service in your catalog, by providing
a specification document for a service, or by providing the location of a service
endpoint. After specifying the service you want to use, you can select which service
endpoints you want to expose.

You can create service connections to REST services that support both the OpenAPI
3.0 and Swagger 2.0 specifications. If the service description that you use to create
the service connection includes an error, Visual Builder displays it.

Your service connection can be derived from an existing backend (either predefined or
custom) or you can register a backend when you create a service connection. To re-
use existing backends, choose from a list of existing backends that is displayed based

Chapter 5
Manage Service Connections

5-40

on what you enter in the URL, as shown here:

You'll see this list when you register service connections via a service specification document
or an endpoint URL. For connections to services in a catalog, the backends list appears only
when you choose custom backends registered by specifying a service specification
document.

Note:

All URLs in backends and service connections should be HTTPS with a valid
certificate.

Create a Service Connection from a Catalog
A catalog provides a list of services and their endpoints from an Oracle cloud service
backend or a custom backend. Using a catalog to create a service connection saves you
time, as common configuration tasks like authentication, connection type, and headers are
predefined for you.

Chapter 5
Manage Service Connections

5-41

To have a catalog of Oracle cloud services, such as Oracle Cloud Applications,
Integration Applications, or Oracle Cloud Infrastructure Process Automation services,
you need to have an instance of that service provisioned, and you need to have a
backend that represents that service. To have a catalog of custom services, you need
to have a custom backend for the services. For details on how to create a backend for
an Oracle service, see Create a Backend, and for details on how to create a custom
backend, see Create a Custom Backend.

Chapter 5
Manage Service Connections

5-42

Note:

For App-Driven Orchestration integrations with Visual Builder, use integrations that
have a published REST specification, Active status and a /metadata endpoint. You
can also de-activate, then activate the integration, and it will be visible in the
catalog.

To access a service that isn't listed in your catalog, you can create the service connection by
using a service specification (ADF BC REST, OpenAPI/Swagger), or by specifying an
endpoint URL.

If you do not see any services in the catalog, confirm the following:

• You have supplied all the details for a given backend service including base URL,
required headers, authentication, and connection type. If you are connecting to an Oracle
service instance, use the Backends tab in the Services pane to check the URL and
authentication method in the backend service.

• You are authorized to access the service with your credentials. Contact the service's
administrator to confirm that your credentials are authorized.

Chapter 5
Manage Service Connections

5-43

• The service is currently available. Check the connection status of the service
manually using a tool such as cURL or Postman.

Create Service Connections from the Oracle Cloud Applications or Integration Applications
Catalog

The Oracle Cloud Applications and Integration Applications catalog provides a list of
services and their endpoints for you to quickly create needed service connections.

To create service connections from one of these catalogs:

1. Click Services in the Navigator.

2. In the Services pane, click the + sign and select Service Connection.

3. Click Select from Catalog in the Select Source step of the Create Service
Connection wizard:

4. Select the Oracle Cloud Applications or Integration Applications catalog you want
to browse.

5. Enter a Service Name, and select the REST endpoints you want to add from the
list of endpoints available for each resource provided by the service.

• If you want your endpoint definitions to be stored in your visual application's
sources, select Copy full OpenAPI to the application in the Metadata
Retrieval Option drop-down list, then select the endpoints that you require for
your application. This way, you create a static service connection:

Chapter 5
Manage Service Connections

5-44

Tip:

You can select a top-level object to select all endpoints for that object, or
select individual endpoints to improve performance.

• If you want your endpoint definitions to always be dynamically retrieved from the
service metadata, select Dynamically retrieve metadata in the Metadata Retrieval
Option drop-down list, then select the top-level resource that you require for your
application. This option changes the resource selection to include complete objects
instead of individual endpoints:

Chapter 5
Manage Service Connections

5-45

Note:

For ADF Describe-based services, the recommended option for
metadata retrieval is Copy minimal OpenAPI to the application
(default). This option is a happy medium between copying the full
OpenAPI endpoint definition to your application's sources and always
retrieving the OpenAPI definition from the source URL. It copies a
minimal OpenAPI definition for the endpoints you select and dynamically
retrieves the request/response schema only when required.

6. Optional: If you want all list of values (LOV) for the selected objects/endpoints in
an Oracle Cloud Applications catalog to be automatically included in the service
metadata, select Automatically include list of values (LOV). Take note that
selecting this option may increase the size of the openapi3.json file that holds
service metadata and potentially impact performance.

7. Click Create.

Create Service Connections from the Oracle Cloud Infrastructure Process Automation
Catalog

The Oracle Cloud Infrastructure Process Automation (OCI Process Automation)
catalog provides a list of services and their endpoints for you to quickly create needed
service connections.

To create service connections from the OCI Process Automation catalog:

1. Click Services in the Navigator.

2. In the Services pane, click the + sign and select Service Connection.

3. Click Select from Catalog in the Select Source step of the Create Service
Connection wizard:

4. Select the OCI Process Automation catalog.

5. Enter these details for the OCI Process Automation service:

a. Service Name: Enter a name for the service.

Chapter 5
Manage Service Connections

5-46

b. Applications: Select the process application with the OCI Process Automation
process you want to use.

c. Processes: Select the OCI Process Automation process, in the process application,
to which you want to connect.

6. Click Create.

Your new OCI Process Automation service is added to the Service Connections tab of the
Services pane. Its details are shown on a tab to the right of the pane, for you to further
configure the connection, if necessary:

Chapter 5
Manage Service Connections

5-47

https://docs.oracle.com/en/cloud/paas/process-automation/user-process-automation/create-process-application.html

You can now use the new service as required in your application.

Create a Service Connection from a Service Specification
You create a connection from a service specification when you know the URL of the
OpenAPI/Swagger or Oracle ADF Describe file that describes the service. You can
also upload the specification file from your local system.

To create a connection from a service specification:

1. Click Services in the Navigator.

2. In the Services pane, click the + sign and select Service Connection.

3. Click Define by Specification in the Select Source step of the Create Service
Connection wizard:

Chapter 5
Manage Service Connections

5-48

4. Enter a name for the connection in the Service Name field.

The name you specify will be the connection's display name in your application.

5. Select the API Type for the service you want to connect to:

• Select OpenAPI / Swagger if you have an OpenAPI/Swagger specification for your
service.

• Select ADF Describe for any REST API that has an ADF Describe file, including
Oracle Cloud Applications REST API.

• Select ADF Describe (cache-enabled) if you need to create a service connection to
an Oracle Cloud Applications REST API that has a Describe URL.

6. Select the location of the Service Specification document.

• If you're creating a service connection to an Oracle Cloud Applications REST API (for
example, CRM, FSCM, HCM), select Web address, click the URL text box and

Chapter 5
Manage Service Connections

5-49

select the appropriate backend to fill in the service description's URL.

Then type in the rest of the Describe URL to the resource using this format:

<backend URL path>/<REST-API-version>/<resource-name>/describe

For example, for the HCM absences resource, you'd add /11.13.08.05/
absences/describe to the selected HCM URL in the text box, where
11.13.18.05 is the REST API version.

To ensure that the metadata is cached efficiently, specify the actual REST API
version (for example, 11.13.18.05) instead of using “latest” for the version. To
figure out the latest REST API version, consult the product's Oracle Cloud
Applications REST API documentation.

Tip:

To specify multiple resources (for example, both contracts and
expenses), you'll need to use a slightly different URL. Use this format
if you're specifying the contracts and expenses resources:

<backend URL path>/<REST-API-version>/describe?
resources=contracts,expenses

• If you have an external URL representing the service specification (for
example, an OpenAPI3 URL), select Web address and enter the service
descriptor's URL in the URL field.
If you're using an IP address instead of a proper DNS-based URL in a
production environment, you're probably using self-signed certificates.
Certificates based on IP addresses are less secure and more difficult to
maintain than DNS-based ones. To avoid potential security issues, self-signed
certificates should never be used in production environments. An audit
warning will be displayed whenever you use an IP address-based service
connection.

Chapter 5
Manage Service Connections

5-50

• If you have a document that contains the service specification, select Document,
then either drag and drop the file that describes the service from your local system to
the dialog or use the file browser to locate and select it on your system.

Note:

If the service specification URL does not match an existing backend, you will
need to create a new backend. Instructions for creating a new backend from a
service specification URL are covered in a later step.

7. Select a Metadata Retrieval Option.

If you entered a web address, you can select Dynamically retrieve metadata to create a
dynamic service connection that always pulls in the most up-to-date service definition for
your application or you can select Copy full OpenAPI to the application to copy the
complete service metadata during development and statically store it in your visual
application's sources.

If your API type is ADF Describe, you may want to select Copy minimal OpenAPI to the
application (recommended) to copy the minimal metadata for the endpoints you'll select
in the next step and dynamically retrieve the request/response schema, when required.

8. If you did not have a backend to match your service specification URL, add service
connection details as needed, then create a backend:

a. Update the Security and Connection Type settings as needed.

b. Click Create Backend.

c. In Backend URL, use the slider to specify which part of the URL you want to use for
the backend.

Chapter 5
Manage Service Connections

5-51

d. Add a name and optional description for the backend.

e. Update the Security and Connection Type settings for the backend as
needed.

9. Do one of the following:

• If you have an ADF Describe API type, continue to the next step.

• If you have an OpenAPI/Swagger API type, click Create. The procedure is
complete.

10. Click Next and select the resources and endpoints you want to add.

The Select Endpoints pane displays a list of the endpoints and child objects
available for each resource provided by the service.

a. Select a top-level object to select all endpoints for that object or expand the
top-level object node and select individual endpoints to improve performance.

b. Click Create.

After creating a service connection, you can select it in the Navigator to open the
connection in the editor and edit the endpoints associated with the service and other
connection details.

You can also test the service connection like this:

1. From the Endpoints tab, select one of the resource's methods to test.

2. Go to the Test tab and, under Response, enter an integer for a query parameter.

Chapter 5
Manage Service Connections

5-52

3. Click Send Request.

4. Check the Send Request status. A status of 200 indicates success.

Create a Service Connection from an Endpoint
You can create a connection from an endpoint when you know the base URI of a service and
can provide the necessary parameters for connecting to the service, such as authentication
details and an example of the Response body.

To create a service connection from an endpoint's URL:

1. Click Services in the Navigator.

2. In the Services pane, click the + sign and select Service Connection.

3. Click Define by Endpoint in the Select Source step of the Create Service Connection
wizard.

4. Select the HTTP method and enter the endpoint URL.

Note:

If you're using an IP address instead of a proper DNS-based URL in a
production environment, you're probably using self-signed certificates. You
need to be aware that certificates based on IP addresses are less secure and
more difficult to maintain than DNS-based ones and, to avoid potential security
issues, self-signed certificates should never be used in production
environments.
An audit warning will be displayed whenever you use an IP address-based
service connection.

If you know the result expected from the endpoint URL, select it in the Action Hint drop-
down list to indicate what the endpoint does. For example, when you select GET as the
Method, select Get One as the Action Hint if the endpoint URL will retrieve a single
record, or Get Many if the endpoint will retrieve multiple records. If the endpoint URL will

Chapter 5
Manage Service Connections

5-53

create a record, you would select POST as the method and Create as the Action
Hint.

If an existing backend match is found, the URL will fill the field automatically;
otherwise, you will need to create a new backend. See the following step for more
details.

When you're done, click Next.

5. If you did not have a backend to match your service specification URL, click
Create Backend.

a. In Backend URL, use the slider to specify which part of the URL you want to
use for the backend.

b. Add a name and optional description for the backend.

c. (Optional) Change the Security and Connection Type settings for the
backend.

d. Click Next.

6. In the Overview tab, add a Service name, and confirm the title and version.
Optionally, enter a description.

7. If you want the service connection to only be used by the server (for example, from
a Groovy script), select Server Only Connection.

Chapter 5
Manage Service Connections

5-54

8. Click the Server tab. If you selected a pre-existing backend in Step 4, all the details here
will be read-only. If you created a new backend, complete the following details:

• Specify an application profile if you want to use the server that is specified here for a
specific phase of an application’s development.

• Add any static headers (custom and secure) to be used when the service connection
connects to the REST service using this server.

• If your service requires authentication, select an authentication option for logged-in
users.
Authentication is None by default.

• Choose a connection type, set by default to Dynamic, the service supports CORS.

9. Click the Operation tab to view the Endpoint ID that Visual Builder will use to identify the
REST API endpoint you specified at the start of this task.

10. Click the Request tab to add headers and URL parameters to the request.

Depending on the endpoint, you might want to add custom headers or path or query
parameters that are passed as part of the request.

11. Click the Response tab and enter the response body for the endpoint.

The Response tab displays the media type's OpenAPI3 metadata artifacts that can be
represented: the example and the schema. You paste in an example of the body of the
response into the text area and then click the Save Example button to commit your input
or click the Reset button to clear it and start over. These buttons will stay disabled until
you add or edit the example text.

Chapter 5
Manage Service Connections

5-55

After you click the Save Example button, your new example content is saved, the
schema is generated, and the Type Structure panel displays.

If you don't have an example to add, you can use the Test tab to send a request to
the service, then save and use the response that is returned as your example (or
edit it as needed) in the tab's text area.

Chapter 5
Manage Service Connections

5-56

Note:

The panels you see in the Response tab are determined by the presence or
absence of the example and the schema:

• If neither the schema nor the example exist, such as when you're creating a
new service by using the Define by Endpoint flow in the wizard, the tab
displays just the Example text area.

• If you arrive at a tab for an existing service whose endpoint already has the
schema and example defined, the Type Structure panel and the Example
text area are both displayed.

• You may also encounter cases where existing endpoints have a schema
defined, but there is no example. In most of these cases, it's either
undesirable or potentially detrimental to include the Example text field on
the page, so a placeholder panel with a boilerplate message that says there
is no example is displayed instead.

12. Click the Test tab to test your request (based on the settings in the other tabs) and view
the response from the endpoint.

Click Send Request to view the Response body and headers and confirm that the data
you receive is what you're expecting.

You can experiment with different request parameters until you achieve the response you
want. If your response returns an error, check the details of your connection, for example,
ensure that you're using the correct credentials or that the service uses a valid SSL
certificate.

13. Click Create when you are satisfied with the parameters of your request and the
response.

Chapter 5
Manage Service Connections

5-57

Tip:

After you add an endpoint from the service, you can add more endpoints
from the same service by clicking + Endpoints in the Endpoints tab of the
connection. For example, defining a Get Many endpoint is enough if you only
want to view records, but you'll need to create more endpoints to create, edit,
or delete records.

Edit a Service Connection
After you create a service connection, you can edit it to add and remove endpoints,
modify requests, add functions for filtering and sorting responses, and more.

For each of your service connections, you can use the following tabs in the connection
editor to view and edit the connection’s details. What you see depends on whether
your service connection is static or dynamic:

Tab Description

Overview Displays the title and version of the REST API that you create a service
connection to. You can edit the title of the service as it appears in your visual
application editors.

You can also use this tab to add transform functions to the service connection,
which would override any corresponding transforms applied to its backend.

Server If a service connection was created with an association to a backend, the
backend is displayed. Server details can be updated from the backend. See Edit
a Backend.

Note:

Starting with release 23.10, all service connections
used in extensions must be associated with a
backend. If you have older service connections
that you still want to use, create a new backend,
then migrate your existing service connections to it.

You can select the authentication method you want to use when connecting to
the service. See Set the Backend's Authentication Method and Connection
Type.

Headers Displays the headers written in the REST call to the service. You can add and
edit headers in the tab.

Source Displays the OpenAPI description of the service’s REST API. The file contains
the details about the connection settings, response and request definitions, and
other parameters that are used in your applications. You can edit the entries in
the Source tab.

Chapter 5
Manage Service Connections

5-58

Tab Description

Endpoints • For static service connections, displays a list of the service endpoints that
you selected when you created the connection.
Each endpoint in the list has an options menu where you can choose to edit,
duplicate, or delete the endpoint. To add another endpoint from the service,
click + Endpoint.

You can add transform functions to an endpoint, which would override any
corresponding transforms applied to its service connection and backend, by
editing it and using its Overview tab.

See Understand Data Access Through REST for more on the options and
parameters that you can use to configure service connections.

• For dynamic service connections, the tab provides a read-only view of all
endpoints in the service's OpenAPI metadata, as retrieved from the source
URL.
You can click Edit Object Selection to add more objects. You can also
select or deselect the option to automatically include all related list of values
for the selected objects.

Metadata For a dynamic service connection, displays a read-only view of service metadata
that is contained in the OpenAPI3 document, which was dynamically retrieved
from the source URL.

Add a Server to a Service Connection
After you create a service connection, you can add more servers that host the same REST
service to the service connection. Used in conjunction with application profiles, this can
simplify the development, testing, and publication of apps that consume the REST service.

Note:

For service connections created after the 23.10 release, servers must be added
from the backend associated with the service connection. For more information, see
Edit a Backend.

For example, you might add a development server that hosts an instance of the REST
service where non-customer data is used, and an authentication method like basic
authentication is acceptable. This development server can be used to develop your
application, but once you publish it to production, your apps need to connect to the REST
service using a production server with more stringent authentication requirements and access
to customer data.

To add a server to a service connection:

Chapter 5
Manage Service Connections

5-59

1. Open the Servers tab of the service connection where you want to add the server:

2. Click the + Server button to open the New Server dialog. Alternatively, click the
Copy icon to make a copy of an existing server and modify some of its entries.

In both cases, a dialog appears where you can identify the server, specify an
application profile that will use the server, add headers, and configure security
options. These options are the same as those you configure when you initially
created the service connection.

3. Once you complete the definition of the server options, click Save or Copy
depending on the option you chose to add the server.

The first server in the List of Servers is the default server. It will be associated with all
application profiles unless you configure the other servers in the list to use another
application profile.

Edit Service Endpoints for a Static Service Connection
After you create a service connection and select the service endpoints, you can edit
the endpoint settings, request parameters, and the response for each endpoint in the
Endpoints tab. Endpoints can be edited only for static service connections (identified

by the icon that appears in front of the service name).

If you edit an endpoint after you have created a type from it, you will need to manually
edit the type to use any of the changes to the endpoint. A type created from an
endpoint is not updated automatically when the endpoint is modified.

To edit a service endpoint:

1. Open the Endpoints tab of a service connection.

Chapter 5
Manage Service Connections

5-60

Tip:

You can use the Replace button to update the service definitions of all selected
endpoints with the latest definitions from the service. The Replace button is
available when the service connection is registered via the Catalog or a service
specification document. This capability is available for both OpenAPI3 style
services as well as ADF Describe services:

For static Integrations service connections, using the Replace button lets you
update all endpoint definitions without manually creating a new connection and
deleting the old one. When you see the confirmation dialog, click Replace to
proceed.

2. Click the endpoint you want to edit.

For each endpoint, the editor provides tabs for editing the endpoint’s settings, the request
sent to the endpoint, and the structure of the response.

Chapter 5
Manage Service Connections

5-61

If your service connection was created from an OpenAPI3 specification that
includes request and response examples specified in the example or examples
keys, the examples will show up within the Request and Response tabs.

The examples key takes precedence over example and if multiple examples
exist, only one will be shown. If you created an example where one didn't exist
(say, if you used the Test tab to send a request to the service and saved the
response as an example), that's the example you'll see; otherwise, you'll see the
first example in the examples key list.

3. Click the service connection link in the breadcrumb to return to the list of service
endpoints.

Retrieve Service Metadata for a Dynamic Service Connection
After a dynamic service connection is created, you can retrieve the service's most
recent metadata for your application to use the latest service definition.

To retrieve the service metadata for a dynamic service connection:

1. Open the Overview tab of a dynamic service connection:

Chapter 5
Manage Service Connections

5-62

The Metadata Retrieval section defines the method and URL to be used to retrieve the
OpenAPI document that describes the REST APIs for the dynamic service connection. In
the example shown here, the GET method is used to fetch the most recent ADF Describe
available on the vb-catalog://backends/fa/crmRestApi/resources/latest
server.

2. Click Retrieve Metadata.

The Endpoints tab opens, showing a read-only view of the endpoints for the service
connection's objects dynamically retrieved from the service's openapi3.json metadata
file in the source URL.

3. Click the Metadata tab to view the complete contents of this file, including endpoints and
type definitions.

Chapter 5
Manage Service Connections

5-63

Add Server Variables for Service Connections
After creating a service connection, you can go to the Servers tab and edit the server's
instance URL and add server variables.

Note:

For service connections created after the 23.10 release, server variables
must be updated from the backend associated with the service connection.
For more information, see Add Server Variables for Backends.

When you enter a valid URI template expression, such as {version}, in an instance
URL, a server variable will be created automatically and displayed in the Server
editor's Server Variables section. You can also create, edit, or reorder a list of
variables. A default value must be set for each server variable.

Let's take a look at how this works, using https://restcountries.com/v3.1/
lang/german as an example:

1. The server instance URL can be represented as https://
restcountries.com/{version}/lang.
Here, there's just one server variable, {version}, which has a default value of
v3.1, as shown:

2. The endpoint is /{language}.
Here, language is a path parameter, because it's a part of the endpoint path. It
can't be a server variable, in this example, because it's outside the instance URL.
Its default value is german and its type is string.

Chapter 5
Manage Service Connections

5-64

3. The full URL becomes https://restcountries.com/{version}/lang/
{language}.
After substitution (v3.1 for the server variable {version} and german for the
language path parameter), this represents the instance URL we started with, https://
restcountries.com/v3.1/lang/german.

Here's how you can add or change a variable (or multiple variables) in a server URL:

1. Open the Servers tab of the service connection.

2. Click Edit to the right of the server instance to which you want to add a new server
variable (or modify an existing one) to the instance URL.

The Edit Server dialog is displayed.

3. In the Instance URL field, add a variable where one is needed.

For example, you may want to replace a version number in the URL, such as "1.2" with
the variable {version}. After you do this, you'll see the variable you added to the URL
displayed in Server Variables, below the instance URL's Description field. The variable
you added is shown in the Name field.

4. Enter a description in the Description field and set the default value in the Default field.

Click Done if you are finished or click + Add Value to add another value. To create a list

with multiple values, click Menu and select Create Value List. Then, after adding

values, use the or controls to set the default value or reorder the list of values. The

default value will be the one at the top of the list. You can use Delete to discard
values you don't need.

5. Add another variable in the URL, if needed.

Note that you must set a value for each variable you define. If you don't, you'll see a
message indicating that a value is required. Enter the default value and click Done.

6. Click Save.

Tip:

There's a new Server Variables tab in the Endpoint editor's Test tab. You can use
this tab to test the value of server variables when you're testing an endpoint. With a
defined value list, you can effectively change the URL and test each version. The
process for using this functionality is very similar to what was described here.

Add More Endpoints to a Service Connection
After you create a service connection, you can add more endpoints. For a static service
connection, you can add endpoints from the same source or add custom endpoints.

• To add endpoints to a static service connection:

1. Open the Endpoints tab of a static service connection:

Chapter 5
Manage Service Connections

5-65

2. Click + Endpoint. If your service connection was created for a service from
the catalog, select Custom or From original_service in the drop-down list:

3. Select or define the new endpoint in the Add Endpoint dialog box. Your options
depend upon the type of service connection and if you choose Custom or
From original_service.

For example, if your service connection was created for a service from the
catalog and you choose to add an endpoint from the original service, you can
choose from the list of endpoints available in that service.

If your service connection was created from an endpoint, you will need to
specify details about the request and response to add a new endpoint from the
same source, as shown here:

Chapter 5
Manage Service Connections

5-66

4. Optional: If you chose to add an endpoint from the original service, you can change
how your connection's service metadata is retrieved in the Metadata Retrieval
Option drop-down. Select Dynamically retrieve metadata to convert your service
connection to a dynamic one. For ADF Describe-based services, select Copy
minimal OpenAPI to the application (recommended) to leverage both static and
dynamic capabilities for your connection.

5. Click Save.

• To add endpoints to a dynamic service connection:

1. Open the Endpoints tab of a dynamic service connection:

Chapter 5
Manage Service Connections

5-67

2. Click Edit Object Selection.

3. Select one or more objects in the Add Endpoint dialog box.

4. Optional: Change how your connection's service metadata is retrieved in the
Metadata Retrieval Option drop-down. Select Dynamically retrieve
metadata to convert your dynamic service connection to a static one. For ADF
Describe-based services, select Copy minimal OpenAPI to the application
(recommended) to leverage both static and dynamic capabilities for your
connection.

5. Click Add.

Chapter 5
Manage Service Connections

5-68

Edit a Server's Authentication Details
After a service connection is created, you can edit the server's authentication details from the
Servers tab.

Note:

For service connections created after the 23.10 release, server authentication
details must be updated from the backend associated with the service connection.
For more information, see Set the Backend's Authentication Method and
Connection Type

You might want to edit the authentication details when the authorization requirements of your
app change, for example, you need to allow anonymous access to the service or you need to
override the settings for the backend service. If you have multiple servers added to your
service connection, you may need to make changes in more than one server.

To edit a service's authentication settings:

1. Open the service connection's Servers tab.

2. Click the Edit

icon beside the server instance you want to edit.

3. In the Edit Server dialog, you can use the Authentication drop-down list to change the
authentication method.

If the connection is to a service in your Service Catalog, click Override security to
display the Authentication drop-down list, where you can override settings inherited from
the backend. To change the connection type inherited from the backend, click Override
Connection Type and make changes.

4. (Optional) Select Allow anonymous access to the Service Connection Infrastructure
and select the authentication method for anonymous users in the Authentication for
anonymous users drop-down list.

Chapter 5
Manage Service Connections

5-69

Add Transforms to a Service Connection or an Endpoint
Transforms are JavaScript functions that you can use to alter:

• REST requests, to customize sorting, filtering, and pagination.

• REST responses, to reformat the data and retrieve paging metadata.

Transforms can be applied to a backend, child backend, service connection, or
endpoint. These are known as service level transforms, and they are hierarchical.
Typically, these transforms are applied to a backend so that they can be inherited by
the backend's service connections and by the service connection's endpoints. Being
hierarchical, transforms applied at higher levels override any transforms at lower
levels. Endpoints are at the top of the hierarchy, then service connections, child
backends, and lastly, backends.

For more about service level transforms, see Service Level Transforms.

Convert a Service Connection (Static to Dynamic or Dynamic to Static)
You can convert an existing service connection, either from static to dynamic or
dynamic to static, to suit your application's requirements that may change over the
course of its lifecycle.

Typically, it's useful to create a dynamic service connection during an application's
development stage, when endpoints defined in the service metadata are still evolving.
A dynamic connection fetches the service's OpenAPI3 metadata from the source URL
whenever the app is opened, enabling your application to get all the updates included
in the current version of the metadata. When you deem the service metadata to be
stable and your application ready for production, you might want to switch the dynamic
service connection to static—because while dynamic connections provide the most

Chapter 5
Manage Service Connections

5-70

recent updates, they may impact performance. A static connection, on the other hand, has
better performance because the service metadata is part of your application's code.

Conversely, if your application's service metadata is changing and you want to include these
updates as you work on your app, you can convert your static service connection to a
dynamic one. In this case, the service metadata is copied from the source URL and saved to
the application's sources.

For ADF Describe services, however, always choose the recommended option for optimal
runtime performance. This option copies minimal service metadata for the endpoints you
select from the source URL to the application and dynamically retrieves the request/response
schema when required. It provides the benefits of a static and a dynamic service connection
and is recommended for both static and dynamic ADF Describe-based service connections:

• To convert your service connection to dynamic:

1. Open the Overview tab of a static service connection, then click the dynamically
retrieving metadata link.

2. In the Edit Service Connection dialog box, notice the Dynamically retrieve
metadata option that's selected. You'll also see a message about the number of
endpoints that will be added to the connection. Remember that dynamic service
connections always include whole resources, rather than individual endpoints.

If you want all LOVs for the selected objects/endpoints in an Oracle Cloud
Applications catalog to be automatically included in the service metadata, select
Automatically include list of values (LOV).

Chapter 5
Manage Service Connections

5-71

3. Click Convert.

The static service connection becomes dynamic.

• To convert your service connection to static:

1. Open the Overview tab of a dynamic service connection, then click the
copying full OpenAPI link.

2. In the Edit Object Selection dialog box, select the endpoints you want to use in
your application.

Chapter 5
Manage Service Connections

5-72

Notice the Copy full OpenAPI to the application option that's selected and a
message about the number of endpoints that will be removed from the connection.

3. Click Convert.

The dynamic service connection becomes static.

Test Service Connection Responses
You can configure a POST/PATCH/PUT REST API with application/octet-stream or multipart/
form-data format and test it from the service connection's endpoint's Test tab before
proceeding with it. You can also use the form-data's schema when you call the REST
endpoint.

You can access this functionality from two places, where you can use radio buttons to select
the payload type to test:

• From the Body tab under the Endpoint editor's Request tab:

• From the Body panel under the Test tab:

Chapter 5
Manage Service Connections

5-73

In both screenshots, the Text payload option is selected. The body input area beneath
the radio buttons looks and operates the same way it has in all prior releases.

Test Responses Using the Form Data Option

When you select the Form-Data payload option, the Media Type is automatically
changed to multipart/form-data and you're presented with a form for defining input
elements that provide the data values in a multipart request body:

Two types of input elements can be created:

• String, for providing a user-entered text value.

• File, for selectiing a file to provide a binary data value.

As elements are added to the form, corresponding properties will be added to the
media type's schema in the OpenAPI metadata:

Chapter 5
Manage Service Connections

5-74

When the request is submitted from the Test tab, the names and values of the inputs are
used to generate a FormData object that defines the multipart payload.

When form elements are created and displayed in the Request tab, the input elements
themselves (that is, the text field or file picker) aren't rendered, because testing and
submitting the form data can't be performed in this context:

Test Responses Using the Binary Option

When you select the Binary payload option, the media type defaults to application/octet-
stream, although you could manually enter any binary content type you want:

Chapter 5
Manage Service Connections

5-75

After you click the Create Binary-Compatible Schema button, the corresponding
schema will be generated.

After the schema has been created, you can use the file picker to select the file that'll
be used as binary payload when the request is submitted:

The file picker for the Binary payload type isn't shown in the Request tab:

Instead, a message indicates that the schema has been created.

Service endpoints support downloading binary or text responses in the endpoint's Test
tab. You can use the Download button to save the response body. If the response is
non-text, you'll see a message that tells you that the response body contains binary
data:

Chapter 5
Manage Service Connections

5-76

You can also use the Download button to download or save text responses:

Update Schema of the Request or Response
If there have been changes to the schema of the request or response, you can follow either
of these three procedures to update it:

Chapter 5
Manage Service Connections

5-77

• Option 1: Open the Request or Response tab and supply a new example body
representing the schema. A notification, near the bottom of the window, will notify
you of the schema’s successful update.

• Option 2: Open the Source tab, which uses the openapi3 specification and JSON
format, and edit the schema (or other details) directly.

• Option 3: Open the Test tab, and in the Request section, ensure the URL for the
request is correct. If it isn't, update the request using the Request tab. Click the
Send Request button to get the response. In the Response section, on the Body
tab, click the Save as Example Response button to update the response
schema. A notification, near the bottom of the window, will notify you of the
schema’s successful update.

Chapter 5
Manage Service Connections

5-78

Connect to Oracle Cloud Services
Provided here are topics on how to connect to the Oracle cloud services using the various
authentication methods.

Connect to Oracle Cloud Applications APIs
You can connect to Oracle Cloud Applications APIs using either identity propagation or fixed
credentials.

Connect to Oracle Cloud Applications APIs With User Propagation for Authenticated
Flows

To connect to Oracle Cloud Applications APIs using user propagation, the identity provider
used by Oracle Cloud Applications and the IDCS used by Visual Builder must be federated.

Oracle Cloud Applications use their own identity provider (IdP), whereas Visual Builder uses
IDCS only as its identity provider. The identity providers used by each service must be
federated to establish a trust relationship. The list of users can be maintained in either identity
provider, but not in both, but it is recommended that you use the Oracle Cloud Applications
IdP, which can use SAML to provide additional integration with other identity providers.

In most cases, your Oracle Cloud Applications instance will already be federated to an IDCS
instance, which also applies to the Visual Builder instance. If this isn't the case, an
administrator will need to set up federation between the Oracle Cloud Applications and
Identity Cloud Service instances by following the steps in this document: Oracle Fusion
Applications Release 13.

If the federation has already been done, an administrator needs to go to the Services tab in
the Tenant Settings page in the Visual Builder instance, and create an Oracle Cloud
Applications backend service. See Add a Connection to Oracle Cloud Applications. The
instance URL used for creating the backend service is the same as the Oracle Cloud
Applications Base URL.

When creating the service connection, you use the following authentication method:

Chapter 5
Connect to Oracle Cloud Services

5-79

https://docs.oracle.com/en/cloud/paas/identity-cloud/idcsc/oraclefusionapplicationsrelease13.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/idcsc/oraclefusionapplicationsrelease13.html

Authentication
method

Details

Oracle Cloud Account The default authentication and connection type for the service
connection is determined by the backend service settings from which
the service was added from the catalog. For example, if the service
was chosen from the Oracle Cloud Applications > Sales and Service
catalog, then the settings will be inherited from the backend
representing Sales and Service.

Typically, your service administrator will define the backend service
settings in Tenant Settings. These settings can be overridden at the
application level (with Application Backend Settings).

You can choose to override these inherited settings by navigating to
Services in the Navigator, then clicking Backends. You can:

• Add or override headers
• Allow anonymous access to Service Connection infrastructure.

You can either enable or disable this.
• Authentication for logged-in users.
• Authentication for anonymous users.
• Connection type: You see an Inherited from Backend label,

which means the value defined at the backend is inherited. You'll
need to choose a different connection type if you decide to
override the configuration that was inherited from the backend.

To connect to Oracle Cloud Applications APIs with user propagation:

1. Open Services in the Navigator, click the + sign, and select Service Connection.

2. Click Select from Catalog in the Create Service Connection wizard.

3. Click Oracle Cloud Applications and select an endpoint. Click Create.

4. Test the service connection.

5. Optional: If you want to make the service connection accessible to the
application's anonymous users, click Override security, then select the Allow
anonymous access to the Service Connection Infrastructure check box in the
Edit Server dialog that you invoke from the Servers tab. Use the Authentication
for anonymous users drop-down list to configure an authentication type for
anonymous users.

Connect to Oracle Cloud Applications APIs Not in the Catalog Using Fixed
Credentials

To connect to a service in an Oracle Cloud Applications instance that is not associated
with your Visual Builder instance, you can create a connection using the credentials of
a fixed user registered in the Oracle Cloud Applications instance.

To create the connection, you need to have the credentials of a fixed Oracle Cloud
Applications user of the instance, or an administrator will need to create the Oracle
Cloud Applications user with the necessary privileges for you. When you use this user
to create the connection, all requests to the Oracle Cloud Applications REST APIs will
use the fixed user's credentials. The credentials of the logged-in user are not used
when communicating with the service.

Oracle Cloud Applications instances are usually associated with your Visual Builder
instance in the Tenant Settings. If your instance is already associated with an Oracle

Chapter 5
Connect to Oracle Cloud Services

5-80

Cloud Applications instance and you want to connect to a different instance in your visual
application using the Service Catalog, you can open your visual application's Settings editor
and override the Tenant Settings to edit the application's Oracle Cloud Applications instance
settings. When you override the default instance settings, your application will not be able to
access any services provided by the default instance because a visual application can only
have one default Oracle Cloud Applications instance to populate the Service Catalog.

If you do not want to change the default Oracle Cloud Applications instance for your
application, you can create a service connection by selecting the Define by Endpoint option in
the Create Service Connection wizard.

When creating the service connection, you can use the following authentication method for
the service connection:

Authentication
method

Details

Basic To use this option you need to provide the following details:

• User name and Password. These can be the valid credentials of any
user that has access to the Oracle Cloud Applications REST APIs.

To connect to an Oracle Cloud Applications service that is not in your catalog:

1. Open Services in the Navigator, then click the Backends tab.

2. Select Oracle Cloud Applications, then click Override Backend.

3. In the Servers tab, click the server's Edit icon.

4. In the Edit Server dialog box, provide the Instance URL of the Oracle Cloud Applications
instance.

5. Select Basic as the authentication method, provide the username and password of the
fixed user, and click Save.

6. In the Services pane, click the + sign and select Service Connection.

7. Click Select from Catalog in the Create Service Connection wizard.

If you did not change the default Oracle Cloud Applications instance of your application,
you can choose Define by Endpoint and provide the URL of the endpoint.

8. Click a service under Oracle Cloud Applications, then select an endpoint. Click Create.

9. Confirm the connection is working.

10. Optional: If you want to make the service connection accessible to anonymous users of
the app, select the Allow anonymous access to the Service Connection
Infrastructure check box in the Edit Server dialog that you invoke from the Servers tab.
Use the Authentication for anonymous users drop-down list to configure an
authentication type for anonymous users.

Connect to Oracle Integration APIs
You can connect to Oracle Integration APIs using identity propagation or fixed credentials.

Connect to Oracle Integration APIs Using Identity Propagation
To connect to Oracle Integration using identity propagation, the Oracle Integration and Visual
Builder instances should be in the same domain. If Visual Builder was provisioned with

Chapter 5
Connect to Oracle Cloud Services

5-81

Oracle Integration, both services are accessible from the Oracle Integration home
page and menu.

An administrator will need to confirm that the Oracle Integration URL is correct in the
Visual Builder Tenant Settings. The Oracle Integration URL in the Tenant Settings
should be similar to https://<Integration Cloud Instance full URL>:443 and the
authentication method should be Oracle Cloud Account. This will appear as the
default URL and authentication method in the visual application's Backends editor from
the Navigator's Services tab. Using the Oracle Cloud Account authentication method
provides identity propagation from Visual Builder to Oracle Integration without any
additional configuration.

When creating the service connection, you use the following authentication method:

Authentication
method

Details

Oracle Cloud Account The default authentication for the connection is determined by the
authentication set in the Backends editor and in the Tenant Settings.
You can view the connection details in the Backends editor that you
access from the Navigator's Services tab.

You can choose to override these inherited settings:
• Add or override headers
• Allow anonymous access to Service Connection infrastructure

(you can either enable or disable this)
• Authentication for logged-in users
• Authentication for anonymous users
• Connection type: You see an Inherited from Backend label,

which means the value defined at the backend will be inherited.
Choose a different connection type if you decide to override the
configuration inherited from the backend.

To connect to Oracle Integration APIs using identity propagation:

1. Open Services in the Navigator, click the + sign, and select Service Connection.

2. Select Integration Applications in the Backends tab and review its configuration
to confirm that Oracle Cloud Account is selected as the default authentication
method.

You can override the URL coming from Tenant settings, but keep in mind that the
identity propagation will only happen for the co-located Integration instance. No
additional CORS configuration is needed when Visual Builder and Oracle
Integration are in the same domain.

3. Open Services in the Navigator, click the + sign, and select Service Connection.

4. Click Select from Catalog in the Create Service Connection wizard.

Alternatively, you can click Define by endpoint, provide the URL of the sample
Integration endpoint, select Oracle Cloud Account as the authentication method,
and select your preferred connection type.

5. Select the sample integration endpoint from the list of catalog endpoints. Click
Create.

6. Test the Service Connection.

7. Optional: If you want to make the service connection accessible to anonymous
users of the app, click Override security, then select the Allow anonymous
access to the Service Connection Infrastructure check box in the Edit Server

Chapter 5
Connect to Oracle Cloud Services

5-82

dialog that you invoke from the Servers tab. Use the Authentication for anonymous
users drop-down list to configure an authentication type for anonymous users.

Connect to Oracle Integration APIs Using Fixed Credentials
To connect to Oracle Integration APIs using fixed credentials, you can choose to use either
Basic Auth or OAuth 2.0 Resource Owner Password as the authentication method.

To access the Oracle Integration APIs using fixed credentials, the Oracle Integration and
Visual Builder instances do not need to be located in the same domain or governed by the
same IDCS instance. Configuration is the same in both cases.

When you create the service connection in the Create Service Connection wizard, you
choose the service by either selecting it in the Service Catalog or by defining its endpoint or
specification. If you want to select a service from the catalog, you will first need to open the
Backends tab from the Navigator's Services tab and override the tenant-level settings for
Integrations and select the authentication method you want to use instead of the default
Oracle Cloud Account method.

You do not need to override the tenant-level settings if you are defining the service
connection by endpoint or specification in the Create Service Connection wizard. The
authentication methods are the same in both cases.

If you want to use OAuth 2.0 Resource Owner Password as the authentication method, a
service administrator needs to perform the following steps in the IDCS instance governing the
Oracle Integration instance to get its Client ID, Client Secret, and Scope. These details are
not needed when using Basic authentication.

1. Open Applications in IDCS and locate the Oracle Integration application which frontends
the Integration instance.

2. Open the application and copy the Client ID and Client Secret in the General Information
panel of the Configuration tab.

3. Expand the Resources panel of the Configuration tab and copy the Primary Audience
and the scope that corresponds to the REST APIs. These are combined to give the full
scope, and might be similar to https://<primary-audience-unique-
id>.integration.ocp.oraclecloud.com:443/ic/api.

When creating the service connection, you can use either of the following authentication
methods:

Authentication
method

Details

Basic To use this option you need to provide the following details:

• User name and Password. These can be the valid credentials of any
user that has access to the Integration REST endpoint.

OAuth 2.0 Resource
Owner Password

To use this option you need to provide the following details:

• Client ID and Secret. This is from the IDCS of Oracle Integration
• User name and Password. These can be the valid credentials of any

user that has access to the Integration REST endpoint.
• Token URL. The URL will be similar to https://<base url of IDCS

of Integration Cloud>/oauth2/v1/token
• Scope. This is from the IDCS of Oracle Integration

Chapter 5
Connect to Oracle Cloud Services

5-83

If you do not have access to IDCS, you will need to request the connection details
from an administrator if you want to use the OAuth 2.0 Resource Owner Password
authentication method.

To connect to Oracle Integration APIs using fixed credentials:

1. Open Services in the Navigator, click the + sign, and select Service Connection.

2. Select the source in the Create Service Connection wizard.

You can choose Select from Catalog if the Integrations service you want to
access is in your Service Catalog and you have overridden the tenant-level
settings in the application's Backends editor. If it is not in your Service Catalog,
choose Define by Specification or Define by Endpoint.

3. Step through the wizard to define the service connection.

4. Select one of the supported authentication methods and provide the authentication
details.

If you chose a service from your Service Catalog, you can override the default
authentication settings in the Edit Server dialog that you invoke from the Servers
tab of the service connection.

5. Test the service connection.

6. Optional: If you want to make the service connection accessible to anonymous
users of the app, select the Allow anonymous access to the Service
Connection Infrastructure check box in the Edit Server dialog that you invoke
from the Servers tab. Use the Authentication for anonymous users drop-down
list to configure an authentication type for anonymous users.

Connect to Oracle Cloud Infrastructure Process Automation APIs
You use Oracle Cloud Infrastructure Process Automation (also know as Process
Automation and OCI Process Automation) APIs to develop, automate and monitor
your business processes. In this topic, it's explained how you can create a Process
Automation backend, if one hasn't been made available to you, and how you can
create a service connection to a Process Automation process in a Process Application
using the Process Automation catalog and the Create Service Connection wizard. For
more about Process Automation, check here.

If you don't have an OCI Process Automation instance, an administrator needs to
provide one, following the instructions in Provision and Manage Oracle Cloud
Infrastructure Process Automation Instances.

You can connect to the Process Automation APIs using both Identity Propagation or
Fixed Credentials:

Chapter 5
Connect to Oracle Cloud Services

5-84

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/process-automation/user-process-automation&id=PRMTT-GUID-FADEBBA7-6DCD-45C6-B328-8355A735BF1A
https://docs.oracle.com/en/cloud/paas/process-automation/index.html
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/process-automation/admin-process-automation&id=PRMTT-GUID-40F999E3-E409-4F6C-8E02-40775408145F
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/process-automation/admin-process-automation&id=PRMTT-GUID-40F999E3-E409-4F6C-8E02-40775408145F

Use Case Prerequisites Authentication
method

Details

Connect to Process
Automation REST APIs
using Identity
Propagation

• The Process
Automation
instance is created
in the same IDCS
stripe or OCI IAM
Identity domain as
Visual Builder.

• Full scope of the
Process Automation
instance from its
IDCS/OCI IAM is
available.

OAuth 2.0 User
Assertion

To use this option you
need to provide the
following details:
• Client ID and secret

kept blank
• Token URL kept

blank
• Scope from

IDCS/OCI IAM,
typically
https://
<opa_instance
>/process

The Process Automation
instance has been co-
provisioned with Oracle
Integration Cloud and
Visual Builder.

Oracle Cloud Account When the Process
Automation instance is
co-provisioned with
Oracle Integration Cloud
and Visual Builder, a
backend is automatically
created in the Visual
Builder Tenant Settings
with "Oracle Cloud
Account" authentication.

Connect to Process
Automation REST APIs
using Fixed Credentials

Client ID, secret, and the
full scope of the Process
Automation instance
from its IDCS/OCI IAM
is available.

OAuth 2.0 Resource
Owner Password

To use this option you
need to provide the
following details:
• Client ID and secret

as per IDCS/OCI
IAM

• Token URL,
typically
https://
<idcs_or_iam>
/oauth2/v1/
token

• Username and
password of a valid
user having access
to the Process
Automation REST
APIs

• Scope from
IDCS/OCI IAM,
typically
https://
<opa_instance
>/process

First, to create a service connection to a Process Automation API, you need a Process
Automation backend representing a provisioned Process Automation instance. If you have a
Process Automation backend, you can see it on the Backends tab of the Services pane
(shows as Oracle Process Automation or Process Automation Artifacts):

Chapter 5
Connect to Oracle Cloud Services

5-85

If you need to create a Process Automation backend, it can be done at the tenant
level, making it available to all applications, or at the application level, making it only
available to the current application:

• To create a Process Automation backend at the tenant level, you need to have
someone with administrator privileges create a tenant-level backend, as explained
in Visual Builder - Understanding Backends and Servers. This is recommended,
as it'll be available to all of the applications. Also, refer to the table given above for
details about using the Identity Propagation or Fixed Credentials authentication
method.

• To create a Process Automation backend at the application level:

1. On the Services pane, click the add (+) button on the pane's top-right and
select the Backends option to create a new backend using the Create
Backend wizard.

2. On the Select Backend step of the wizard, select the Oracle Process
Automation tile and proceed to provide the backend's details.

For more about how to create a backend, see Create a Backend, and refer to
the table given above for details about using the Identity Propagation or Fixed
Credentials authentication method.

Chapter 5
Connect to Oracle Cloud Services

5-86

https://blogs.oracle.com/vbcs/post/visual-builder-understanding-backends-and-servers

Once the Process Automation backend is available, you can use the Process Automation
catalog to create a service connection to a Process Automation process in a Process
Application, using a wizard. To do so, see Create Service Connections from the Oracle Cloud
Infrastructure Process Automation Catalog.

Connect to Oracle Content Management REST APIs
You can connect to Oracle Content Management REST APIs using identity propagation or
fixed credentials.

Connect to Oracle Content Management REST APIs Using Identity Propagation
Oracle Content Management and Visual Builder are not provisioned together sothe service
administrator needs to perform the following steps in IDCS to add Oracle Content
Management as a resource of the Visual Builder application.

This adds Oracle Content Management as a resource to a specific application, so the
administrator would need to perform these steps again for each new Visual Builder
application, as well as for each new version of an application and duplicate of an application
that connects to Oracle Content Management using identity propagation.

1. In the Configuration tab for the Visual Builder application in IDCS, expand the Client
Configuration panel, and click Add Scope in the Token Issuance Policy section.

2. In the Select Scope dialog box, choose the scope corresponding to the Oracle Content
Management instance "/documents" endpoint and save the application. The added scope
should now be visible in the Application in the Resources list.
If other Oracle Content Management functionality (for example, Social) is required, the
corresponding scope will need to be added.

After the administrator has added the resource in IDCS, you can create a connection to
Oracle Content Management with identity propagation. If you don't have access to IDCS, the
administrator will need to provide you with the Oracle Content Management scope that you
need to enter in the Authentication tab.

When creating the service connection, you use the following authentication method for the
service connection:

Authentication
method

Details

OAuth 2.0 User
Assertion

To use this option you need to provide the following details:

• Client ID and Secret: Leave blank.
• Token URL: Leave blank.
• Scope: The scope added from IDCS that corresponds to the Oracle

Content Management instance. This is the full scope, including "/
documents".

To connect to Oracle Content Management:

1. Open Services in the Navigator, click the + sign, and select Service Connection.

2. Click Define by Endpoint in the Select Source step of the Create Service Connection
wizard.

3. Select the HTTP method and enter the URL of the Oracle Content Management
endpoint.

Chapter 5
Connect to Oracle Cloud Services

5-87

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/process-automation/user-process-automation&id=PRMTT-GUID-FADEBBA7-6DCD-45C6-B328-8355A735BF1A
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/process-automation/user-process-automation&id=PRMTT-GUID-FADEBBA7-6DCD-45C6-B328-8355A735BF1A

For example, the URL of your endpoint might be similar to the following: https://
<Oracle_Content_Management_instance>/documents/api/<VERSION>/folders/
{folderId}

4. In the Authentication section of the Server tab, select OAuth 2.0 User Assertion
as the authentication method.

5. In the Scope field, enter the scope corresponding to the Oracle Content
Management instance that was added in IDCS.

The Client Id, Secret, and Token URL fields are blank.

6. Test the service connection.

7. Optional: If you want to make the service connection accessible to anonymous
users of the app, select the Allow anonymous access to the Service
Connection Infrastructure check box in the Edit Server dialog that you invoke
from the Servers tab. Use the Authentication for anonymous users drop-down
list to configure an authentication type for anonymous users.

Connect to Oracle Content Management REST APIs Using Fixed Credentials
To connect to Oracle Content Management using fixed credentials, the Oracle Content
Management and Visual Builder instances do not need to be located in the same
domain or governed by the same IDCS instance. You can use Basic or OAuth 2.0
Resource Owner Password authentication for the service connection.

If you want to use Basic authentication for the connection to Oracle Content
Management, you need to provide a user name and password that are valid in IDCS.

If you want to use OAuth flows for authenticating your connection to Oracle Content
Management, you need to retrieve details about the Client Secret, Client Id, and the
URL associated with the scope that you want to access. Typically, the scope you will
want to access will be "/documents", but if you want to access other Oracle Content
Management functionality (for example, Social), you'll need the URL that corresponds
to its scope. If you don't have access to the IDCS instance used by Oracle Content
Management, you'll need to request the details from a user with access to the
instance.

To retrieve the details of the Oracle Content Management application from IDCS:

1. In the Configuration tab for the Oracle Content Management application in IDCS
that represents the Oracle Content Management instance, expand the General
Information panel and note the Client ID and Client Secret.
The name of the Oracle Content Management application will usually be similar to
CECSXXX_<instance name>.

2. Expand the Resources panel in the Configuration tab and note the URL for the
scope you want, typically the scope corresponding to the Oracle Content
Management instance "/documents" endpoint. The URL will be similar to https://
<primary audience url>/documents.
If other Oracle Content Management functionality (for example, Social) is required,
you'll need to note the URL for the corresponding scope.

When creating the service connection, you can use one of the following authentication
methods for the service connection:

Chapter 5
Connect to Oracle Cloud Services

5-88

Authentication
method

Details

Basic To use this option you need to provide the following details:

• User name and Password: Valid credentials of any user from IDCS.

OAuth 2.0 Resource
Owner Password

To use this option you need to provide the following details:

• Client ID and Secret: Get from the Oracle Content Management
application in IDCS.

• User name and Password: Valid credentials of any user with access to
the Oracle Content Management REST endpoint.

• Token URL: The URL for the endpoint used to obtain an access token
from IDCS, in the form of
<base_URL_corresponding_to_Oracle_Content_Management_in
_IDCS>/oauth2/v1/token.

• Scope. Get from the Oracle Content Management application in IDCS.

If you don't have access to IDCS, get the Oracle Content Management application details
from an administrator.

To connect to Oracle Content Management using fixed credentials:

1. Open Services in the Navigator, click the + sign, and select Service Connection.

2. Click Define by Endpoint in the Select Source step of the Create Service Connection
wizard.

3. Select the HTTP method and enter the URL of the Oracle Content Management
endpoint.

For example, the URL of your endpoint might be similar to the following: https://
<Oracle_Content_Management_instance>/documents/api/<VERSION>/folders/
{folderId}

4. In the Authentication section of the Server tab, select OAuth 2.0 Resource Owner
Credentials as the authentication method.

5. Enter the details for the Client Id, Client Secret, Scope, and Token URL.

The Client Id, Client Secret, and Scope details are the ones that you noted for the Oracle
Content Management application in IDCS.

6. Test the service connection.

7. Optional: If you want to make the service connection accessible to anonymous user of
the app, select the Allow anonymous access to the Service Connection
Infrastructure check box in the Edit Server dialog that you invoke from the Servers tab.
Use the Authentication for anonymous users drop-down list to configure an
authentication type for anonymous users.

Connect to ORDS APIs Using Fixed Credentials
To connect to Oracle REST Data Services (ORDS) using fixed credentials, you can use
OAuth 2.0 Client Credentials for authentication.

Before creating a connection to ORDS, a role and privilege to protect your REST service
need to be created and the OAuth client needs to be registered in the ORDS service. The
following steps briefly describe this process. See Protecting and Accessing Resources.

Chapter 5
Connect to Oracle Cloud Services

5-89

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/18.4/aelig/developing-REST-applications.html#GUID-1E914685-2E05-4380-955D-F8232815E365

When creating the service connection, you can use the following authentication
method for the service connection:

Authentication
method

Details

OAuth 2.0 Client
Credentials

This is the recommended authentication option.

To use this option you need to provide the following details:

• Client ID and Secret. From ORDS
• Token URL. From ORDS, for example, https://example.com/

ords/ordstest/oauth/token
• Scope. This is blank.

1. Create a role and privilege to protect your REST service in ORDS:

begin ords.create_role('HR Administrator');
 ords.create_privilege(
 p_name => 'example.employees',
 p_role_name => 'HR Administrator',
 p_label => 'Employee Data',
 p_description => 'Provide access to employee HR data');
 commit;end;

2. Associate the privilege with resources (i.e. your ORDS REST APIs):

begin ords.create_privilege_mapping(
 p_privilege_name => 'example.employees',
 p_pattern => '/examples/employees/*');
 commit;end;

Accessing the /example/employees REST resource should now result in a 401
unauthorized as shown here:

curl -i https://example.com/ords/ordstest/examples/employees/
HTTP/1.1 401 Unauthorized
Content-Type: text/html
Transfer-Encoding: chunked

<!DOCTYPE html>
<html>
...
</html>

3. Register the OAuth client with grant type Client Credentials:

begin oauth.create_client(
 p_name => 'Client Credentials Example',
 p_grant_type => 'client_credentials',
 p_privilege_names => 'example.employees',
 p_support_email => 'support@example.com');
 commit;end;

Chapter 5
Connect to Oracle Cloud Services

5-90

4. Grant this newly created client the required role:

begin oauth.grant_client_role(
 p_client_name => 'Client Credentials Example',
 p_role_name => 'HR Administrator');
 commit;
end;

5. Check the registered client ID and secret:

select client_id,client_secret from user_ords_clients where name =
'Client Credentials Example';

To create a connection to ORDS using fixed credentials:

1. Open Services in the Navigator, click the + sign, and select Service Connection.

2. Click Define by Endpoint in the Select Source step of the Create Service Connection
wizard.

3. Select the HTTP method and type the URL of the endpoint in ORDS.

4. In the Authentication section of the Server tab, select OAuth 2.0 Client Credentials as
the authentication method.

5. Provide the details for the Client Id, Secret, and Token URL fields based on your ORDS
configuration.

6. Test the service connection.

Chapter 5
Connect to Oracle Cloud Services

5-91

Part III
Develop Applications

Take a closer look at how you design and develop web (or mobile) in Oracle Visual Builder.
Your application can include pages and flows, as well as fragments, which are modular
pieces of UI that can be reused in multiple pages.

Topics:

• Develop Your Application

• Work with Pages and Flows

• Work with Variables and Types

• Work with JavaScript Action Chains

• Work with Events and Event Listeners

• Work With Application Resources

• Work with Fragments

6
Develop Your Application

To develop your application, you must have a visual application. The visual application
provides all the resources you need to start building your application.

If you're already in the Designer (with your screen looking something like this), that means
you have a visual application and can get to work:

If your screen doesn't look like this, you need to create a visual application and add web (and
mobile) apps to it.

To develop your web (or mobile) application, you create and edit the building blocks that
determine how your application looks and behaves. The basic building blocks of an
application are user interface components, variables, action chains, page flows and page
navigation, JavaScript functions, and data access through REST endpoints.

Visual Builder doesn't impose any particular order for developing your application. How you
proceed is entirely up to you and determined by the way you planned your application. If you
already know the structure of your objects or the data sources you want to use, you might
want to start by defining business objects and service connections. Alternatively, you can
start with your application's pages and create the artifacts that add functionality to your
pages. For example, you might start by defining page variables and creating action chains, in

6-1

addition to positioning components on the page. All of this can be done effortlessly in
the Designer. Keep reading to familiarize yourself with how apps are structured, what
scopes are, and which editors you'd use to work with different artifacts.

Further, as you work on your app and progress through the app dev lifecycle:

• Learn how to manage a visual application,

• Optionally, integrate your visual application with a Git repository,

• Take steps to test and debug your app,

• When you're done making changes, stage and publish your app to deploy the
app's resources to the Visual Builder runtime environment.

How Are Applications Structured?
Your visual application can contain multiple web (and mobile) applications. Each app's
structure and the artifacts required to add functionality to it are created by default when
you create or import the app.

Open Web Applications (or Mobile Applications) in the Navigator to see a visual
representation of your app's structure and to navigate to its artifacts. The artifacts are
represented as one object in the Navigator, but they actually represent two or three
separate files that describe the artifact’s behavior and properties. The properties and
behavior of an artifact are built by creating and combining the building blocks
described in these files. For example, when you edit a flow, its variables and event
listeners are described in the flow artifact’s JSON file, while functions are defined in
the artifact’s JavaScript file.

When you open an application in the Navigator, the structure of the application is
displayed as nodes and subnodes representing the application’s artifacts and files.
You can collapse and expand nodes to hide and reveal the contents. Selecting an
artifact or file in the Navigator opens the artifact in the one of the editors in the
Designer.

Chapter 6
How Are Applications Structured?

6-2

Here's a look at the nodes and artifacts you might see when a web (or mobile) application is
open in the Navigator:

Item Description

application All the artifacts of an application are grouped under the application node in the
Navigator. You will see an application node for each app in your visual application. For
example, if your visual application has three web apps, you will see three application
nodes in the Web Apps pane.

You can select the application node to view the application artifact in the Designer. The
application artifact represents the files and metadata that describe your application. It
has the same name as your app. The descriptions of the application artifact are
contained in the app-flow.json, app-flow.js, and index.html source files. The
metadata in these files defines the artifacts that can be used by every artifact in your
application, for example, the variables that are application-scoped, types that describe
data structures, and security settings for the application.

See Which Editor Do I Use?.

Chapter 6
How Are Applications Structured?

6-3

Item Description

flow All individual flows in your app are grouped under a flow node. Your app can have
multiple flows (including sub-flows that are grouped under a flows node) and each
flow can contain multiple pages. Depending on the type of application, one or more
flows are created by default when you create the application. In web apps, the default
flow is named main when you use the None navigation style. For imported mobile
apps, the default flow is named item-1. The default flow is badged default for
easier identification.

A flow consists of a flow artifact and the pages within the flow. The descriptions of the
flow are contained in the flowname-flow.json and flowname-flow.js source files.

See Create and Manage Flows.

page All pages in your application are grouped under a flow. Each page uses a HTML file to
specify the page elements, a JavaScript file that determines the page’s functions, and
a JSON file for the page’s metadata. The default page in a flow is badged default
for easier identification.

See Work with Pages and Flows.

Fragments (Only web apps) The fragments node contains artifacts for modular pieces of UI that
can be reused in multiple pages of an application. Each fragment is developed just like
a page and contains its own HTML file for elements, JavaScript file for functions, and
JSON file for metadata.

See Work with Fragments.

Resources The resources node contains resources available to your application, such as images,
style sheets (css) and translation files (strings).

See Work With Application Resources.

Root pages The root pages node contains one or more root page artifacts which describe elements
such as a header or title area, a navigation toolbar, and a footer. An application
typically contains one root page artifact. By default, a root page artifact named shell
is created for a web application. For imported mobile apps, the root page artifact is
named app.

See Customize Your App's Root Page.

Note:

You can open the Source View in the Navigator to view all the source files in
the visual application.

Which Editor Do I Use?
The Designer has dedicated editors for each of the building blocks used to develop
your application. Each editor provides an easy-to-use interface for editing the files that
describe your artifacts and pages.

For example, when designing a page, you might need to define page variables and
create action chains, in addition to positioning page components in the page and
specifying component properties. The Designer provides editors to help you perform
these tasks, so you don’t need to edit the source code of the HTML, JavaScript, and
JSON files used to describe the layout and behavior. But if you want to edit the JSON
files directly, you have access to a JSON editor.

Chapter 6
Which Editor Do I Use?

6-4

The Designer's editors provide forms and wizards to help you create and edit the building
blocks, for example, to create action chains and to map parameters to variables. When
designing pages, you can use a visual editor to compose your pages and use the Quick
Starts to help you create the building blocks needed to add some of the functionality
commonly used in applications.

When you open an artifact, each artifact opens in a separate tab in the Designer. You switch
between editors for the artifact by selecting the appropriate tab in the artifact. The tabs that
appear for the artifact depend on the artifact. A Diagram tab appears for application and flow
artifacts while a Page Designer tab appears when you open a page. A number in the tab
indicates the number of incidences; for example, the hrapp application in this image includes
two action chains and one event listener (in addition to types and variables), while the main-
start page includes four action chains, four event listeners, and a single type:

Here's an overview of the editors available in the Designer:

Tab Description

Diagram The Diagram view, shown only for application and flow artifacts, provides a visual
representation of how an application is structured in terms of flows and pages. It visualizes
an application's root pages, flows, and pages within a flow to provide a quick look at default
pages, navigation, and more. For an application artifact, this view displays the application's
root page as well as a hierarchical view of the artifact's flows and subflows. For a flow
artifact, this view displays the pages contained in the flow and navigation between those
pages. See Use the Diagram View.

Page
Designer

The Page Designer, shown only for page artifacts, lets you compose the layout of a page. It
contains a canvas that represents the page layout and a palette with page components that
you drag onto the canvas to add to the page. It also includes a Properties pane that you use
to specify the properties of the page’s components and to open Quick Starts. See Use the
Page Designer and How Do Quick Starts Work?.

If you're looking to design and develop pages based on your data sources, the Data palette
is a handy option. It lets you work with REST endpoints that expose data in your application,
letting you drag and drop them onto your canvas and display their data in suitable UI
components. See The Data Palette.

Action
Chains

The Action Chains editor displays a list of the action chains that are defined within the scope
of the artifact. You can use this editor to create new action chains and to open action chains
in the editor. See About Action Chains.

Event
Listener
s

The Event Listeners editor displays a list of lifecycle events that are defined for the artifact,
the type of event, and the action chain that the event starts. You can use the editor to create
new events. See Start an Action Chain From a Lifecycle Event.

Events The Events editor displays a list of custom events that are defined for the artifact, the type of
event, and the action chain that the event starts. You can use the editor to create new events
and action chains. See Start an Action Chain From a Lifecycle Event.

Types The Types editor displays the data types that are defined within the scope of the artifact. You
can use the Types editor to create and edit types. See What are Variables and Types?.

Chapter 6
Which Editor Do I Use?

6-5

Tab Description

Variable
s

The Variables editor displays the variables and data types that are defined within the scope
of the artifact. You can use the Variables editor to create and edit variables. See What are
Variables and Types?.

HTML The HTML editor displays the code for an application’s index.html file when the
application artifact is open in the Designer. Use Code view in the Page Designer to view and
edit the HTML of pages in apps. See Work With Code Editors.

JavaScri
pt

The JavaScript editor contains a code editor for editing the artifact’s JavaScript functions. By
default, application artifacts use a file named app-flow.js, flow artifacts use a file named
<FLOWNAME>-flow.js, and page artifacts use a file named <PAGENAME>-page.js
to define their JavaScript functions. See Work with the JavaScript Editor.

JSON The JSON editor contains an editor for editing the JSON file that contains the artifact’s
metadata, including descriptions of variables and action chains. By default, application
artifacts use a file named app-flow.json, flow artifacts use a file named
<FLOWNAME>-flow.json, and page artifacts use a file named <PAGENAME>-
page.json. See Work with the JSON Editor.

Settings The Settings editor contains tabs for editing an artifact’s settings. The options available
depend upon the artifact. The Settings editor for flow and application artifacts includes a
Security tab, which you can use to set the artifact's security. You can use the Imports tab to
import components, custom modules, and CSS files for application artifacts, flows, and
pages, and the Translation tab to create additional translation bundles for application
artifacts, flows, and pages. See Manage Custom Component, CSS, and Module Imports
and Create Translation Bundles.

What Are Scopes?
Scope refers to how and where certain artifacts—like variables, action chains, root
pages, and more—can be used within Visual Builder.

In a nutshell, where you define something determines where it can be referenced; in
other words, artifacts can be scoped at different levels:

• Visual application scope: Artifacts defined through the far left ribbon in the
Navigator—Layouts, service connections, business objects, components, and so
on—are available to all apps within the visual application.

• App scope: Artifacts are available to all the page flows and pages in a standalone
app. Examples: Resources at the app level, as well as action chains, events, event
listeners, types, and variables defined at the app or fragment level.

• Flow scope: Artifacts are available only to the flow (and pages) in which they are
defined.

• Page: Artifacts are defined at the page level, and thus are available to only that
page.

You can also define settings that are scoped to various entities, which control how the
entity looks and behaves:

• Visual Application Settings

• App Settings

• Page Settings

• Flow Settings

Chapter 6
What Are Scopes?

6-6

Manage App Settings
Because an app can include multiple pages and flows, settings at the app level apply to all
the pages and flows within it.

To configure an app's settings, open the app, then click Settings to open the Settings editor:

Here's how you can use the different app-level settings:

Tab/Setting Description

General tab Manage general app settings:

Default Page Default root page which provides the entry point for your app. It typically contains
a shell with common elements like a header, footer, and a container that embeds
your app's flow.

The default root page is named shell for web apps and is automatically
generated when you create an app. It embeds the default flow that is invoked
when your app is first launched. This means that when the app is run, the default
page in the default flow (for example, main-start in main) is rendered. If you
want any other page to be rendered, change the Default Page setting in the
flow's Settings editor. If you want to render the default page in a completely
different flow, change the Default Flow in the root page's Settings editor.

You can use your own custom root page, instead of the default shell page. To
create the page directly from here and set it as the app's default page, click
Create, then use the Go to Page link to design the page in the Page Designer.
See Customize Your App's Root Page.

Theme UI theme that provides a consistent look and feel across the app. The default
theme is Redwood. See Style and Theme Visual Builder Applications.

Favicon (Light
Theme)

Default favicon used with the default light theme to uniquely identify your
application in browser tabs, bookmarks, shortcuts, and more. To change the
default favicon used in the light theme, add your icon to the image gallery, then
switch the icon used in this setting.

Chapter 6
Manage App Settings

6-7

Tab/Setting Description

Favicon (Dark
Theme)

Default favicon used with the dark theme to uniquely identify your application in
browser tabs, bookmarks, shortcuts, and more. To change the default favicon
used in the dark theme, add your icon to the image gallery, then switch the icon
used in this setting.

Description Optional description of the app.

Imports tab Manage resources such as custom CSS files, modules, and components
imported at the app level, allowing you to create declarative references in your
app's pages to those resources. See Manage Custom Component, CSS, and
Module Imports.

PWA tab Enable Progressive Web Support (PWA) support, allowing your app to be
installed on user devices for a more native experience. See Enable Progressive
Web App Support.

Security tab Manage authentication to prevent unauthorized access to the app. By default,
users must sign in using their Oracle Cloud credentials to access the app. You
can further restrict access to the app (as well as its flows and pages) based on
user roles defined at the visual application level. See Restrict User Access to an
Application, Flow, or Page. Alternatively, you can allow anonymous access if you
don't require users to sign in. See Allow Anonymous Access.

While user roles can be added in the Settings editor at the app, flow, or page
level, permissions are inherited from the parent. So a page inherits permissions
from the parent flow, and a flow inherits permissions from the app.

You can also use settings here to embed your web app in another app as well as
delegate authentication for service connections.

Translations Create translation bundles for the app, in addition to the default one, to use with a
third-party translation tool. See Create Translation Bundles.

If you're working with imported mobile apps, your settings might be slightly different.
See Configure Mobile Application Settings.

Chapter 6
Manage App Settings

6-8

7
Work with Pages and Flows

Your web (or mobile) application can have multiple flows, each of which can contain multiple
pages. Every application has a default flow, and every flow has a default page.

A flow is a group of one or more pages that you treat as an independent unit. It provides a
way for you to split your application's logic into modules; for example, an expenses app might
have one flow to group the pages where users create and edit expense reports, and another
to group the pages where managers approve or reject expense reports

Your application's pages are what your users see and interact with. You can build just about
any type of page in Visual Builder—simply drag and drop UI components onto the page,
customize their behavior, and arrange them however you want. To display your data, you'd
connect these components to REST services through your own business objects or service
connections.

Visual Builder gives you access to a rich set of UI components to build your page, from static
ones like heading and avatar to charts and gauges that visualize data, even dynamic
components that display content based on rules you define. You also have access to
Redwood layouts, styles, and templates based on the Oracle standard for user experience.
You can use these components—all based on Oracle JET—to create rich, attractive pages.

Typically, you'll design an overview page (using collection components like a table or list) to
display your data, then add other pages to let users interact with that data. Once you have
your overview page, you can use quick starts to add pages that provide common functionality,
for example, a page to create a new record or one that displays the details of a row selected
in a table or list.

All of this is done within a declarative and visual development environment known as the
Page Designer, where what you see is really what you get. For advanced use cases, you can
always write custom code using standard HTML5, JavaScript, and CSS techniques.

Use the Page Designer
While there are several editors available to you in the Designer, the one you'll likely use most
frequently is the Page Designer. To open the Page Designer, click a page in the Navigator's
Web Apps (or Mobile Apps) pane:

7-1

The Page Designer offers several different ways for you to interact with your page.
Specifically, you can:

• Drag and drop components on to the page using the Components palette;

• Work with components from a hierarchical perspective, in Structure view;

• Start with your data and decide how to represent the data in the user interface,
using the Data palette;

• View and update the properties that control the appearance and behavior of
whatever is currently selected in the canvas, using the Properties pane.

Right-click any of these panels to open a menu that lets you reposition the
Components, Data, Structure, and Properties panels for your convenience. Each panel
can be moved to the top left, bottom left, top right, or bottom right of the canvas (as
shown here for the Structure view):

Chapter 7
Use the Page Designer

7-2

Tip:

You can hide or show any of these panes by clicking the Components, Data,
Structure, or Properties tab.

To design your pages, you'll drag components from the Components palette to the canvas.
Once you add components, the Structure view provides a hierarchical view of the
components on the canvas. Use the Properties pane to view or edit a component's properties
as well as open any Quick Starts that can be used with a selected component.

Right-clicking a component opens a pop-up menu that lets you perform several actions on
the component, such as selecting its parent component, surrounding it with another
component or element, or deleting it. You can also insert a component before, inside, or after
the selected component.

You can also bring up the right-click menu without selecting any component, both on the
canvas or in Structure view. When a component isn't selected, the options in the menu will
vary.

Along the top of the Page Designer is a toolbar, which lets you configure the Page Designer
itself:

Chapter 7
Use the Page Designer

7-3

Toolbar
Item

Description

Reloads the page

Opens a dialog box for entering input parameters for the page.

Opens a dialog for selecting the user roles that are used when previewing pages
in Live mode.

Opens a menu for selecting the screen size represented by the canvas. This
menu includes the default Fit to Canvas option that resizes the canvas to always
take up all available space between the left and right panes. You can also use
the Custom option to set the minimum and maximum values for viewport
resolution and resize the canvas to whatever size you want.

For an imported mobile app, shows or hides a mobile device's bezel (the border
between a device's screen and its frame).

Opens a dialog box for changing the magnification of the canvas.

Chapter 7
Use the Page Designer

7-4

Toolbar
Item

Description

Toggles between the Live, Design, and Code modes:
• Live mode: Displays the page as it will look and behave when it is published.

You use Live mode to interact with the pages in your application to navigate
to different pages, create and modify business objects, and confirm that
your application is behaving as you expect.

• Design mode: Contains a canvas area that you use to place and position
components in the page. This is the mode you use most frequently.

• Code mode: Use to edit the page's code. In Code mode, you can drag
components from the Components palette and drop them directly into valid
places in the code in the editor. When you use the Structure view to edit and
reposition elements, the changes are automatically reflected in the code.

The Components palette, Structure view, and the Properties pane can be used
the same way in each mode. When you select an item in one mode, the item
remains selected when you switch to a different mode. When you switch from
Design to Code mode (for example), the source code of a component selected
on the canvas will be highlighted in the code editor. All the modes are
synchronized, so changes you make in the Properties pane or Structure view
are visible when you switch to a different mode.

Tip:

Hold the Ctrl key (Cmd on Mac) to momentarily
switch between Live and Design modes. Make
sure the cursor is on the canvas, then hold the Ctrl
key. For example, you can check the values in a
drop-down menu by simply holding the Ctrl key
and clicking the menu on the canvas.

At the bottom of the canvas (not in the toolbar), a breadcrumb path that displays
a hierarchical list of links for a selected component to indicate its placement in
the page's structure. Clicking a link in the breadcrumb path selects that
component on the canvas and in Structure view and lets you view its details in
the Properties pane. To hide breadcrumbs (shown by default), select Hide
Breadcrumbs in the right-click menu.

Chapter 7
Use the Page Designer

7-5

Toolbar
Item

Description

Displays time taken to render and display the page in the canvas. Clicking the
icon will show a breakdown of how long different tasks (such as bootstrapping
and loading a shell page) take in order to display the page, as shown in this
example:

Rendering is done in runtime execution mode, with the Page Designer serving
the resources needed to display the page. Because each resource is requested
in a different phase of runtime initialization, the time between these resource
requests is measured and summarized. This information can thus help you
isolate runtime issues that may cause your app to load slowly. For example, if a
page takes time because of long REST calls, you might decide to defer the calls
or run them in parallel.

If the page contains runtime errors, an error message will show instead. Click
the message to get details about the errors and resolve them for the page to
render correctly.

The Components Palette
The Components palette contains UI components and organizational elements that
leverage the Oracle JavaScript Extension Toolkit (JET) to help you build pages. To add
a component to a page, simply drag it from the palette onto the canvas.

Components by default show in list view and are organized by categories. You can
scroll to locate a component, although it's simpler to use the Filter field. Hover your
cursor over a component's Info icon to get hints about the component.

Chapter 7
Use the Page Designer

7-6

Note:

JET Core Pack components, written entirely using the VComponent API and the
JET Virtual DOM architecture, are available under the Early Access category.
While you can choose when you want to move to the new components in your
development cycle, take note that no updates are planned for legacy JET
components; all updates and new functionality will be available only through the
Core Pack. For more information, see Core Pack overview in JET documentation.

For ease of use, all JET components show in the Components palette, including
those without design-time properties. These components show under the
Advanced category and typically require you to manually code different aspects of
their functionality. Use tooltips to access JET documentation on how to use these
advanced components.

Click Components to show or hide the Components palette.

If you want to customize the palette's default settings, click Components Menu ():

• To view components laid out as a grid, select Grid (default is List).

• To always show components in every category, select Expand All; to hide them, select
Collapse All (default is Expanded By Default).
If you want to change the default view with components collapsed, deselect Expanded
By Default. Changing this setting when working in a page editor won't change your
current view, but it will take effect when you open a new editor. To change this setting in
your current view, use Expand All and Collapse All.

• To hide categories and view all components in a flat list, deselect Show Categories.

You can also:

• Click Get Components to access your instance's Component Exchange, from which you
can add JET web components to your page.

Chapter 7
Use the Page Designer

7-7

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/CorePackOverview.html

• Click Show Deprecated to view components that have been deprecated (badged
 for easier identification). Deprecated components are flagged in your

application's audit and are retained only to allow existing applications to continue
to run. It's recommended that you move away from these components as soon as
possible. Use the component's tooltip to view details of the version it was
deprecated in, as well as a suitable alternative.

• Click Show Maintenance to view components in maintenance mode (badged
 for easier identification). As with deprecated components, you should

transition away from components in maintenance mode as they will eventually be
deprecated. Use the component's tooltip to view a suitable alternative.

The Structure View
The Structure view provides a structural view of components on the canvas. You can
use it to see the hierarchy of a page's components and to reposition components
within the page's structure. You can also add components in the Structure view. Click
Structure in the Page Designer to show or hide the Structure view.

Selecting a component in the Structure view also selects it on the canvas and displays
its properties in the Properties pane. You can organize and reposition components on
the page either by dragging them into position in the Structure view or by dragging
them from the Structure view directly to the canvas. You can also select multiple
components in the Structure view to simultaneously reposition them (for example, to
move them into a new container).

It's also possible to add components to a page by dragging components from the
Components palette or the canvas into the Structure view; you can also click Insert
Component in the right-click menu. This option can help you position a component
exactly where you want to add it, especially if you're working with complex layouts.
When you select Insert Component on a selected component, you'll be able to add a
component before, inside, or after the selected one. If the selected component has
multiple slots, you will have the option to drop the component into a particular slot; if
it's a single slot, the component is dropped directly into the slot.

Use the Page Structure Menu () to set your Structure view preferences.

Chapter 7
Use the Page Designer

7-8

You can choose to display a component's details, for example, its id, classes, or hints about
its content (enabled by default). You can use Show Visible Components Only to view only
the nodes of the components visible on the page. When combined with the default view that
fades into the background components that are not currently displayed on the page, this
option can trim background information and allow you to focus on parts of the page, a section
at a time.

You can also enable Show Slots to display the location of empty as well as occupied slots.
When slots are visible, you can easily locate the slot where you want to drop a component,
as shown here:

Chapter 7
Use the Page Designer

7-9

Even if you don't enable the option to show slots, it's possible to locate available slots
by pausing over a component node when dragging a component into Structure view. If
the component node has slots, a pop-up menu that lists the available slots opens; you
can then drop your component into the desired slot in the pop-up menu.

You can also right-click a slot and select Insert Component to drop a component
directly into a slot. Doing this brings up the list of components, including a set of
recommended ones. Recommended components show under a Preferred category

Chapter 7
Use the Page Designer

7-10

and are based on the type of component that can be used in the slot. For example,
components recommended for a button's startImage and endImage slots are icons and
images:

The Data Palette
The Data palette provides a data-centric approach to application design. Instead of you
choosing UI components and binding each component to a data source, this design approach
starts with your data sources and suggests UI options that optimally display your application's
data.

Data is the basis of any application, and when creating an application in Visual Builder you
can work with multiple sources of data, all of which is based on REST. You can create
business objects and use the REST endpoints automatically generated for the object to fetch
your data, define service connections that link your application with external REST APIs to
retrieve data, or consume services from multiple sources in combination with your own
business objects.

The Data palette brings all these data elements together, allowing you to drag and drop them
onto the canvas and render their data in components tailored to display that data. You also
have access to quick starts that simplify the task of binding that component to fields in your
data sources.

Here's a Data palette example, showing an Employee object's endpoints as well as the
accounts endpoints (available through a connection to the Sales and Service
(crmRestApi) service in the Oracle Cloud Applications catalog):

Chapter 7
Use the Page Designer

7-11

Now let's say you want to show employee data on a page: you would simply drag the
Employee business object from the Data palette and drop it on the canvas. (You can
drop a data element on the page canvas, in the Structure view, or in Code view.) When
the Render as pop-up appears, you can choose from the list of components that
Visual Builder suggests based on the available REST endpoints:

Chapter 7
Use the Page Designer

7-12

Notice how both dynamic and standard options are shown. Once you select an option, the
corresponding quick start opens, to walk you through the required configuration tasks.

You use the Data palette in much the same way to fetch data from a service connection's
endpoints, except when a service contains multiple endpoints of the same type—for example,
two Get Many endpoints—you'll be additionally prompted to select the correct endpoint:

You don't always have to work with whole objects or services; if you know what kind of data
interaction you want, you can drag and drop a particular endpoint. For example, to let your
users create new employees, you only need the create employee endpoint, not the whole
Employee object.

Because endpoints enable CRUD operations, your component suggestions reflect endpoint
functionality. For example, data from a Get Many endpoint lends itself to a table or list view.
Similarly, a Create endpoint will render a form. Here's a summary of the components
suggested (standard and dynamic) for a particular type of endpoint:

Chapter 7
Use the Page Designer

7-13

Endpoint Type Component Associated Quick Start

Get Many Table, Table Dynamic, List, List
Dynamic

Standard: Add Data
Dynamic: Configure Layout

Create Create Form, Create Form Dynamic Standard: Configure as Create Form
Dynamic: Configure as Create Form

Get One Detail Form, Detail Form Dynamic Standard: Configure as Detail Form
Dynamic: Configure as Detail Form

Update Edit Form, Edit Form Dynamic Standard: Configure as Edit Form
Dynamic: Configure as Edit Form

When working with quick starts in the Data palette, keep in mind that both standard
and dynamic component quick starts add a form or a table to the existing page and
configure it; they don't add pages to your application like they do for standard
components or configure an existing form or table, as in the case of dynamic
components. Except for this key difference, the quick starts are similar to those used
for standard and dynamic components.

The Properties Pane
The Properties pane (the vertical tab along the right-most edge of your browser)
displays the properties of a component that is currently selected on the canvas or in
Code view and can be used to set metadata attributes such as ID, display name, and
description. It also provides various properties to customize a component's layout,
style, and behavior.

Component properties are organized in tabs in the Properties pane and can vary
depending on the component. For example, here's the Properties pane of an input text
component, showing the General, Data, Events, and All tabs; some components
such as a table or list view collection component have an additional Quick Starts tab:

Here's an overview of what you can do in the different tabs:

Chapter 7
Use the Page Designer

7-14

Compo
nent
Properti
es

Description

General Contains the most important properties of the selected component, such as layout and style.
The slot value of a component inside a parent component's slot also shows here. Select the
sub-component added to a slot (for example, a button's icon) and change its slot value to
move it from the startIcon slot to the endIcon slot. This way, you can modify the slots
of dropped components without accessing the HTML code.

The slot used by the sub-component is also visible in the sub-component's All tab and can
be modified there (for example, to bind it to a variable).

Data Contains properties that are expected to be bound to data. The General tab and All tab also
contain properties that can be bound to variables and expressions.

Events Used to bind a component’s events to trigger action chains that define its behavior (for
example, to open a URL when a button is clicked). See Start an Action Chain From a
Component.

All Contains more advanced component properties and shows all properties, including custom
properties. Custom properties are those not defined in component metadata, for example,
data-* attributes, and can be added by clicking + next to General Attributes.

Quick
Starts

Contains a list of Quick Start wizards available for the component. When you add a
collection component such as a table or list, this tab contains a list of wizards to help you
add some actions that are typically associated with the component, such as mapping the
collection to data and adding Create and Detail pages.

You can toggle Properties to hide or show the Properties pane.

Create and Manage Pages
When you first create an application, one or more starter pages called flow-start are
created for you within the flow. You can create more pages under the flow, or create a new
flow and add pages to that flow. Every flow you create, by default, has its own starter page.

Tip:

New pages are by default empty. Instead of empty pages that you must design and
develop, you can create pages with some initial content. These pages can be based
on prebuilt Redwood template patterns or fragments in your application.

To create an empty page in a flow:

1. Open a web (or mobile) application in the Navigator and expand the app node.

2. Expand the flow where you want to add a page.

Chapter 7
Create and Manage Pages

7-15

3. Click the Create Page icon () next to the flow where you want to create the
page, then select Create Page.

4. Enter the name of the new page in the Page ID field of the Create Page dialog
box. Click Create.

After a page is created, you can duplicate, rename, even delete it if needed. Right-
click the newly created page and select an action.

By default, the starter page in a particular flow is set as the flow's default page and that
flow is set as the app's default flow. For example, when the main-start page is the
starter page in the main flow, main-start is set as the default page in the main flow,
and the main flow is set as the default flow for your app. The default flow is embedded
within the app's root page, which is invoked when your app is first launched. This
means that when the app is run, the default page in the default flow is rendered, which
is main-start in this case. If you want any other page to be rendered, change the
Default Page setting in the flow's Settings editor.

Chapter 7
Create and Manage Pages

7-16

Tip:

The default page and flow in your app are badged as default to help you quickly
identify the default page in the default flow. Default pages in all flows are also
badged for easier identification.

Manage Page Settings
Each page in your application includes a Settings editor, which you use to primarily manage
imported resources such as custom components, CSS files, and modules. You can also
manage security and create page-scoped translation bundles.

To configure settings for an application's page, open the page, then click Settings to open
the Settings editor:

Here's how you can use the different page-level settings:

Chapter 7
Create and Manage Pages

7-17

Setting Description

General tab Manage general page settings:

Page Title Title of the page to be used in the browser and in browser history.
If you use a quick start to create pages, this is populated for you.

Description Description of the page. If you use a quick start to create pages,
this is populated for you.

Default Flow Default flow when you create sub-flows to embed in the page the
content of another page or flow. Sub-flows (or nested flows) allow
you to change the content displayed in a page without leaving the
page. See Embed a Flow Within a Page.

For root pages, this setting defines the flow that opens when your
app is first run. See Customize Your App's Root Page.

Imports tab Manage resources such as custom CSS files, modules, and
components imported at the page level, allowing you to create
declarative references in the page to those resources. See
Manage Custom Component, CSS, and Module Imports.

Security tab Add user roles (defined at the visual application level) to control
access to the page. Only users granted one of the assigned roles
can navigate to the page. Note that permissions are inherited from
the parent, so the page inherits permissions from the parent flow.
See Restrict User Access to an Application, Flow, or Page.

Translations tab Create translation bundles for the page, in addition to the app-
level translation bundles, for use with a third-party translation tool.
If you create a translation bundle for a page, strings and keys are
added to the page’s bundle when you externalize strings in the
page. Strings in other pages are not added to that bundle when
they are externalized. See Create Translation Bundles.

Customize Page Headers
All pages in your app include a page header, separated from page content by a visual
stripe, that provides users with page-specific information. This default header is
defined by the page-header fragment and can be customized to suit your
requirements.

1. Open your page, then select the area above the horizontal stripe on the page
canvas. Alternatively, select page-header in Structure view.

Chapter 7
Create and Manage Pages

7-18

2. In the page-header fragment's Properties pane, use the title property under Input
Parameters to set a page title. You can also remove the title text. By default, the page's
flow name is used as the title.

3. Optional: To add page-specific actions, add components of your choice to the Actions
slot. For example, you might add a Button Set to the fragment slot and configure it to
display some options.

To do this, simply drag the Button Set (One) component from the Components palette
onto the page-header fragment on the canvas, onto Template (actions) in Structure
view, or onto Actions in the fragment's Properties pane.

Alternatively, hover over Actions in the fragment's Properties pane, click the Insert

Component icon (), and select a component.

Chapter 7
Create and Manage Pages

7-19

Here's an example of a page with some page-specific actions in the page header:

Chapter 7
Create and Manage Pages

7-20

Set a Page's Layout
All pages have a preferred layout, and you can add additional layout containers and
components within this layout to design your pages.

When you select a page (in other words, when no component on the canvas is selected), you
use the Preferred Layout options in the Properties pane to set a layout for your page: Grid
(default), Flex, or Block. Here's an overview of each page layout:

Layout Type Image Description

Flex The Flex layout lets you add components in rows of any size. In a flex
layout, you can lay out the children of a flex container in any direction,
and the children will grow to fill unused space or shrink to avoid
overflowing the parent. You can also nest boxes (for example,
horizontal inside vertical or vertical inside horizontal) to build layouts in
two dimensions.
The Flex layout provides the most flexibility and you can adjust several
properties for alignment, justification, and so on, in the Properties pane.

Grid (default) The Grid layout builds on the Flex layout, but adds a 12-column grid
and rows that make it easier to align elements when you position them.
The pages in your application incorporate responsive design to resize
gracefully based on the size of the display area of the device.

Block The Block layout displays components that you drop on a page as
blocks; each component starts on a new line and takes up as much
horizontal space as it can. This layout is useful when your app already
includes hand-coded pages, or when you want to drop a few
components on a new page and manually adjust the layout.

Every component you add to the page is placed in a row in the page's layout—or in a layout
component that you've placed on the page's layout. Layout components are predefined
Oracle JET components and patterns that let you control the initial data display and allow the
user to access additional content by expanding sections, selecting tabs, or displaying dialogs
and pop-ups. Available under several Layout categories in the Components palette, they are
various containers and components that you can drag and drop on to the canvas or in
Structure view. Some are specifically designed to help you with design styles; for example,
the accordion to display a set of collapsible child elements, a navigation list to navigate
between different content sections, or a masonry layout that lays out its children in a grid of
tiles. Here's a list of some commonly used layout containers and components:

Container
Components

Description

Flex Container The flex container is a flexible container which is useful for responsive
designs that optimize the use of the available space.

Grid Container The grid container is a 12-column grid that is useful when you want to align
components precisely according to the grid.

Bar Container The bar container is a three-section layout containing a start and end section
sized to its content and a middle section that stretches.

Form Layout The form layout is optimized to display the label and input pairs commonly
used in forms.

Masonry Layout The masonry layout is a responsive grid of tiles containing arbitrary content.
You can specify the size of each tile in the Properties pane.

Chapter 7
Create and Manage Pages

7-21

See the Layout & Nav section in the Oracle JET Developer Cookbook for examples of
how you can use various layout components.

To add a layout container or component to a page:

1. Drag the layout container or component from the Components palette and place it
on the canvas.

When a container is dragged onto the canvas, the locations where the component
can be placed are highlighted on the canvas. If you do not place the component in
an existing row, a new row containing the component is created when you place it
on the page. For example, here's what your canvas might look when you're
dragging a Flex container on a Grid layout:

If you were dragging the same components on a page that uses the Block layout,
your view might be something like this:

Chapter 7
Create and Manage Pages

7-22

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html

Notice how the Grid Container and Masonry Layout components in the Structure view
aren't automatically enclosed in rows. That's because unlike the Grid or Flex layout,
components dropped on a page that uses the Block layout aren't automatically wrapped
in Grid or Flex rows.

It's also possible to combine layout types in your page by creating new rows in the page,
placing multiple layouts within rows, and by nesting layouts. Each row in a page can have
a Flex, Grid, or Bar container. When you drag an element onto the canvas, some
elements will expand to fit all the available columns in the row. Other elements have a
default column span that you can adjust.

Chapter 7
Create and Manage Pages

7-23

2. Select the component and modify its properties in the Properties pane. You can
modify the display settings of each row in a layout to control the layout of the
components within the row.

You can drag additional components into the container, or place them above or below
an existing row to create new rows.

Chapter 7
Create and Manage Pages

7-24

Create Pages From Templates
Instead of starting with empty pages for your application, it's possible to create pages
prepopulated with the contents of a pattern or fragment.

• Redwood patterns are designed for high-fidelity interactions and responsive performance
and can be useful in creating pages that provide a consistent user experience across
your app. It's also easy to customize these pages to suit your business requirements.

• A fragment is a reuseable piece of UI that you can include in your application's pages.
You can add fragments as sections to a page as well as multiple pages, even use them
as page templates to create entirely new pages. Fragments created for one page can
also be reused in other pages.

Create Pages From Patterns
You can leverage Redwood resources in your application to create pages based on Redwood
patterns.

Redwood provides several page templates, some of which are also available as patterns. A
pattern defines the basic constructs of a page for common use cases and adds variables,
actions, and event listeners to your page. Such patterns make it easier for you to create
pages by eliminating time-consuming and error-prone work, where you might need to add
individual components to a page and manually wire up the necessary actions.

Note:

Creating a page based on a pattern is supported only if your app is leveraging
version 2301 or later of the Redwood components.

1. To add a pattern to your application:

a. Open the Components tab () in the Navigator.

b. Select the Browse tab and search for "redwood pattern". Click a pattern to learn
more about it.

c. When you know which pattern you want to use, click Install (or Install Component
in the canvas area). If prompted, make sure you install or update other dependent
components.

Once you install a pattern, it becomes available to you when creating a page.

2. To create a page based on a pattern:

a. Open your application and expand the flow where you want to add a page.

b. Click the Create Page icon () next to the flow, then select Create Page.

Chapter 7
Create Pages From Templates

7-25

c. Enter the name of the new page in the Page ID field of the Create Page dialog
box. By convention, a page name has its flow name as a prefix.

d. Under Choose Page Content, select the pattern that you want to use with the
page. If there are too many patterns, filter to find the one you want.

If your application includes fragments for use in pages, those will also be
available to you in the Create Page dialog.

e. Click Create.

A new page, with the contents of the pattern added to it, opens in the Page Designer.
The page contains all the variables, events, listeners, and action chains required by
the pattern to work and can now be customized as needed.

Chapter 7
Create Pages From Templates

7-26

Create Pages From Fragments
You can create pages starting with the contents of a fragment, essentially using the fragment
as a page template. You can do this so long as the fragment is available for use in pages.

1. To make your fragment available as page-level content:

a. Open the fragment and click Settings to open the Settings editor.

b. In the Used For field, select page.

c. Set a custom icon for the fragment. The icon can then be used to identify the
fragment in the Create Page dialog as well as the Flow Diagram.

2. To create a page using a fragment as the page's template:

a. Open your application and expand the flow where you want to add a page.

b. Click the Create Page icon () next to the flow, then select Create Page.

c. Enter the name of the new page in the Page ID field of the Create Page dialog box.
By convention, a page name has its flow name as a prefix.

d. Under Choose Page Content, select the fragment that you want to use with the
page.

Chapter 7
Create Pages From Templates

7-27

e. Click Create.

A new page, with the contents of the selected fragment added to it, opens in the Page
Designer. You can now wire up the page for the necessary fragment parameters.
If your fragment's properties were customized, what you see on the page's Properties
pane will be different. Instead of the standard page-level properties, you'll see
fragment properties that the fragment author chose to highlight. Here's an example
where the author has customized the fragment's properties, so that its business object,
dynamic components, and input parameters show in separate sections when the page
is selected:

(To view the page's Properties pane, make sure no component or element is selected
on the page. If you need to, simply click an empty area on the page.)

Chapter 7
Create Pages From Templates

7-28

The page's Structure view also changes, with the fragment considered the root element,
instead of the page.

Change Page Templates
When you create pages from templates, you can change patterns and fragments associated
with a page, even remove them completely if you want. This way, you keep the same page
name but change whatever else is on the page.

Caution:

Applying a new template removes everything on the page, including associated files
—it's as if the page was deleted and a new one created with the same name.
Previous user work is removed and all content is reset to an initial state (which may
be an empty page or a basic template). Proceed with caution.

To update or remove a pattern or fragment on a page:

1. Open the page with the associated pattern or fragment. For example, here's a page that
was created with the employee-contact-details fragment as a page template:

2. To view the page's Properties pane, make sure no component or element is selected on
the page. If you need to, simply click an empty area on the page.

3. Click Select Page Template in the Properties pane.

4. In the Page Templates dialog, make your choice:

Chapter 7
Create Pages From Templates

7-29

• To clear all existing content on the page, select No Page Content.

• To replace existing content with a fragment, select the fragment you want to
use. The fragment you want to use must be tagged with the page metadata in
the Used For field, which allows it to surface as page content.

• To replace existing content with a pattern, select the pattern you want to use.
The pattern you want to use must be installed to your application from the
Components tab in the Navigator.

5. Click Select.

If you replaced page content with a new pattern or fragment, you can now wire up the
page for the necessary parameters.

Add Components to Pages
You use page components to build the layout of your pages and to add elements that
can be used to display content or accept input from a user. You add a component to a
page usually by dragging it from the Components palette in the Page Designer and
dropping it onto the canvas or in Structure view.

The Components palette contains an extensive list of Oracle JET components that you
can add to your page, including dynamic components. Because dynamic components
help you develop UIs that dynamically change what's displayed to users based on your
own rules, working with them also involves layouts and display logic. See Add
Dynamic Components to Pages.

Visual Builder also gives you access to Redwood resources based on the Oracle
standard for user experience. If you create a page using a Redwood pattern, the
components of that pattern become available to you in the page's Components palette.
You also have access to individual Redwood components that provide a rich user
experience—from single UI elements, such as a button, to complex modules

Chapter 7
Add Components to Pages

7-30

connected to backend services, such as a form—but you must install them from the
Component Exchange before you can use them in your page.

Note:

The next generation of JET components, known as Core Pack components, are
available under the Early Access category. Core Pack components, written entirely
using the VComponent API and the JET Virtual DOM architecture, are available as
a completely new set of components. As a result, developers can use both Core
Pack and legacy components side by side. (Core Pack components have a DOM
element prefix of oj-c-* instead of the existing oj-* prefix used by legacy
components, and are badged for easier identification.)

You can choose when you want to move to the new components in your
development cycle—but take note that no updates are planned for legacy
components; all updates and new functionality will be available only through the
Core Pack. For more information, see Core Pack overview in JET documentation.

1. If you want to use Redwood components in your page, follow these steps:

a. Explore the Redwood catalog of components, templates, and patterns and take note
of what you'd like to use in your page.

b. Open the Components tab () in the Navigator.

c. Select the Browse tab and search for the component you want to use. For example,
you might use "redwood input phone" to look for the Input Phone Number
component:

You can double-click the component to open it in the canvas area and learn more
about it.

d. Click Install (or Install Component in the canvas).

Once you install a component, it will become available to you in your page's
Components palette. Simply filter to find the component.

2. Open the page you want to work with in the Page Designer.

Chapter 7
Add Components to Pages

7-31

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/CorePackOverview.html
https://redwood.oracle.com/?pageId=CORE6CE1FA0A24ED4DC68345E7E282654819&shell=simple-content

When the page opens in the Page Designer, you'll see a canvas used to display
the page’s layout, a Components palette containing a list of components, and a
Structure view that displays a structural view of the page’s components. You'll
work primarily with these, though you can switch to the Data palette to display data
in components suggested by Visual Builder.

3. Drag the component from the Components palette and drop it into position on the
canvas or in the Structure view. It is sometimes easier to locate, select, and
position components in the Structure view:

Elements in the Components palette are organized by type. For each type, there
are some rules that determine where they can be used on the canvas, as well as
the types of pages where they can be placed. An error message will be displayed
if you try to place a component on the canvas where the component is not
allowed.

Chapter 7
Add Components to Pages

7-32

Tip:

You can also add a component by clicking Insert Component in the right-click
menu. This option is available when you right-click anywhere on the canvas and
in Structure view, both with and without a component selected. It's most useful
in Structure view, especially in complex layouts, to help you position the
component exactly where you want to add it. When you choose this option on a
selected component, you'll be able to add a component before, inside, or after
the selected one. If the selected component has multiple slots, you will have the
option to drop the component into a particular slot as shown here:

Chapter 7
Add Components to Pages

7-33

4. After adding the component, you can define its behavior by editing properties that
show in the Properties pane when the component is selected. Component
properties are organized in tabs in the Properties pane. The component type will
determine the tabs that show.

Comp
onent
Proper
ties

Description

Genera
l

Contains the most important properties of the selected component, such as
layout and style. The slot value of a component inside a parent component's slot
also shows here. Select the sub-component added to a slot (for example, a
button's icon) and change its slot value to move it from the startIcon slot to
the endIcon slot. This way, you can modify the slots of dropped components
without accessing the HTML code.

The slot used by the sub-component is also visible in the sub-component's All tab
and can be modified there (for example, to bind it to a variable).

Data Contains properties that are expected to be bound to data. The General tab and
All tab also contain properties that can be bound to variables and expressions.

Events Used to bind a component’s events to trigger action chains that define its
behavior (for example, to open a URL when a button is clicked). See Start an
Action Chain From a Component.

All Contains more advanced component properties and shows all properties,
including custom properties. Custom properties are those not defined in
component metadata, for example, data-* attributes, and can be added by
clicking + next to General Attributes.

Quick
Starts

Contains a list of Quick Start wizards available for the component. When you add
a collection component such as a table or list, this tab contains a list of wizards to
help you add some actions that are typically associated with the component,
such as mapping the collection to data and adding Create and Detail pages.

How Do Quick Starts Work?
A quick start, as the name suggests, provides a way for you to build the basics of your
application quickly. It's a wizard that walks you through complex processes, helping
you do the tasks required to quickly build your application's functionality.

A variety of Quick Starts are available to help you perform some of the tasks required
to add common application functions and behavior, for example, binding a table or a
list in a page to a data source or adding a page to create new records. To add
functionality, you need to create the artifacts that perform that function. And depending
on how complex the behavior is, adding a functionality might involve creating several
variables, types, action chains, and page events. If there's a quick start for your task,
you can use it to quickly create many of the artifacts for you.

So how would you know if a quick start is available for what you want to do? Just look
for the Quick Starts tab in a selected component's Properties pane when designing
pages in the Page Designer. The Quick Starts tab will display a list of tasks that are
typically used to add functionality or behavior to the selected component. These tasks
are based on common tasks that developers typically do when creating applications.
For example, here's a list of quick start tasks available for you when you are working
with a List View component:

Chapter 7
Add Components to Pages

7-34

You'd start, for example, with the Add Data quick start to populate the list with data from your
data source (typically, a GET MANY REST endpoint). Once that's done, other quick starts
that let you generate other pages or set up functionality are enabled for you.

Tip:

If you cannot find the endpoint you want in the quick start or prefer to manually set

up your endpoint, click the Manual Setup of Endpoint icon () in the wizard to
complete your endpoint configuration.

Control the Layout

It's possible to customize the fields you want to show as part of a component on a page. The
steps to customize fields in a layout are the same, whether you’re selecting endpoint
attributes from a service connection or a business object in your application.

When you use collection components such as a table or list view to display data, you're
binding the component to an endpoint, exposed by a service connection or a business object.
The easiest way to do this is by using quick starts—and if you’re looking to customize the

Chapter 7
Add Components to Pages

7-35

layout, you can use the Bind Data page of the wizard to select only the fields you want
to display.

Here's an example of what you’ll see in a quick start when you’ve got business objects
and a service connection as the source of your data. When you bind data, you’ll see
the attributes of the source you select – this is where you can customize your
collection component’s layout:

Quick starts automatically create the variables and types you need for a particular
functionality, but if you decide to add an endpoint attribute that you didn't include
originally, you'll need to modify the type (using the Edit From Endpoint link next to the
type on the Types tab), then modify the UI. In this case, it might be simpler to delete
the table or list view and start over with the quick start.

Add Data to a Table or List
Use the Add Data Quick Start to populate a table or list in a page with data from a
business object.

When a page with a collection component loads, a request to get data is automatically
sent to an endpoint, and the response is mapped to the fields in the collection
component. You will typically choose a data source that provides a GET MANY endpoint.

The Add Data Quick Start does the following for you.

• The Quick Start automatically modifies the collection component to add the fields
necessary to display the fields in the data source that you selected. Each field is
mapped to the corresponding attribute of the variable bound to the component.

Chapter 7
Add Components to Pages

7-36

• The Quick Start creates a variable that is bound to the collection component. For the
business object Contact, a new page-scoped variable named contactListSDP that
stores details about the endpoint, the request, and the response type. When the
collection is selected on the canvas, you can see the variable bound to the component in
the Data field of the Data tab of the Properties pane:

You can see the details of the new variable if you open the Variables editor of the page.
In the General tab of the Properties pane, you can see the ID of the variable, the type,
and the endpoint that is called. The variable’s type is Service Data Provider, a specific
type that is designed for variables that are used to send a request to an endpoint.

Chapter 7
Add Components to Pages

7-37

• The Quick Start creates a page-scoped type that describes the data structure of
the response. The fields in the response are mapped to the field in the component.
When you select the new variable in the Variables editor, in the Properties pane
you can see that the type for the response is a new custom type named
getallContactResponse. The data structure defined by the type is based on the
fields in the endpoint that you selected in the Quick Start.

The new custom type is added to the list of types available in the page. You can
see the details of the new type in the Types tab of the page’s Types editor.

Use the Add Data Quick Start
To use the Quick Start, you must first add an endpoint for a service connection or
business object to your visual application. After adding the endpoint, you can step
through the Add Data Quick Start to quickly create the artifacts needed to bind a table
or list to the endpoint. The Quick Start will create a page variable for storing the data
and a custom type that defines the data structure of the response to the request.

To bind an endpoint to a collection component:

1. Drag a table or list component from the palette onto the canvas.

2. Select the component and click Add Data in the list of Quick Starts.

3. Select the data source that you want to bind to the collection. Click Next.

4. Select the fields you want to add from the Endpoint Structure. (You can also drag
the fields you want from the Endpoint Structure on the left onto the Fields pane in
the middle).

If you are binding data to a List component, you select a list template before
binding the data from the endpoint to the fields.

5. Select the field to use as the Primary Key. Typically this is the Id field. Click Next.

6. Define the parameters for querying the endpoint. Click Finish.

The collection is now bound to the endpoint you selected.

Chapter 7
Add Components to Pages

7-38

Add a Create Page With a Quick Start
Use the Add Create Page Quick Start to create a new page with a form that interacts with an
endpoint to create a new object.

The Add Create Page Quick Start adds a Create button to the page with the collection.
Clicking the Create button starts an action chain that navigates to a Create page containing a
form for adding data. Clicking the Save button in the Create page starts an action chain that
sends a request to the CREATE endpoint of the data source. The data in the page’s fields are
stored in a variable that is mapped to the parameters of the request. If the request is
successful, the user is navigated back to the page with the collection.

In the page with the collection component, the Quick Start does the following:

• Creates an action chain for navigating to a page.

• Adds a button component with an ojAction event that starts the action chain.

In the new Create page, the Quick Start does the following:

• Creates a page variable for storing the data for the new business object. The variable’s
attributes are mapped to the parameters that are included in the request to the endpoint.

• Creates a variable type for defining the data structure of the variable.

• Adds a form with field components for the fields in the new business object. The fields
are bound to fields in the new variable.

• Adds a Save button and Cancel button with ojAction events that start action chains.

• Creates an action chain to create the new business object. The action chain is started
when the Save button is clicked.

The action chain sends a request to the CREATE endpoint of the business object. The
data stored in the page variable is mapped to parameters that are sent as a request to
the endpoint. The action chain includes actions that navigate to the previous page if the
request is success or displays a warning if the request fails:

Chapter 7
Add Components to Pages

7-39

• Creates an action chain to navigate back to the previous page when the Cancel
button is clicked.

Use the Create Page Quick Start
To use the Add Create Page Quick Start, you start from a page where a table or list is
already bound to an endpoint. As you step through the Quick Start, you select the
fields that you want to include in the Create page when you create the new object. The
Quick Start will add a button to navigate to a Create page with a form for adding data
to create a new object.

When you create a new object, you use a data source endpoint with a POST method.
When your data source is a business object or a service with expected endpoints
(such as GET, POST, PATCH, or DELETE), Visual Builder automatically selects the data
source endpoint for you.

To add a page to create a new business object:

1. In the page containing the collection component, select the component on the
canvas and open the Quick Start tab in the Properties pane.

2. Click Add Create Page.

3. If you land on the Select Endpoint step, select the data source where you want to
create a row and click Next.

4. On the Page Detail step, select the fields you want to add from the Endpoint
Structure. (You can also drag the fields you want from the Endpoint Structure on
the left onto the Fields pane in the middle). The Create page will include these
fields in the form.

5. Modify the label for the button, the page title and the page name, if desired. Click
Finish.

A new page is created with a form for creating a new business object.

Chapter 7
Add Components to Pages

7-40

Add an Edit Page With the Quick Start
Use the Add Edit Page Quick Start to create a page for editing the details of an object.

Selecting an object in the component triggers a component event that stores the id of the
selected object in a page variable. Clicking the Edit button triggers an action chain that
navigates to an Edit page, and the id value stored in the variable is passed as an input
parameter to the page. When the Edit page is loaded, a page event triggers an action chain
that sends a request to the endpoint to get the data from the source, and the input parameter
passed to the page is mapped to the input parameter required by the request. The response
is mapped to a variable that is bound to the components in the page for editing the data.

Clicking the Save button in the Edit page starts an action chain that sends a request to the
Update endpoint of the data source. The data in the page’s fields is stored in a variable and
mapped to the parameters of the request sent to the Update endpoint.

In addition to creating the Edit page with a form containing the fields, the Quick Start creates
various variables for the data and action chains to navigate to the page and call endpoints.

The Quick Start does the following in the page containing the collection:

• Adds a button to the page. An ojAction event is added to trigger an action chain.

• Adds a select event to the collection component that triggers an action chain.

• Creates a variable to store the id of the selected object.

• Creates an action chain that assigns the id of the selected object to a variable.

• Creates an action chain to navigate to the Edit page. The action chain passes the object
id as an input parameter. Creates an action chain for navigating to a page.

The Quick Start does the following in the Edit page.

• Adds a form with fields bound to a variable.

• Adds a Back button. A click event is added to trigger an action chain.

• Creates an action chain that navigates back to the previous page triggered by an event
on the Back button.

• Creates a page variable to store the object id as an input parameter.

• Creates a page variable to store the response from the endpoint. The Quick Start also
creates a new Type that defines the structure of the variable.

• Creates an action chain that calls an endpoint when the page is loading and assign the
response to a page variable. The action chain has an input parameter mapped to a page
variable

• Creates an action chain to update the business object. The action chain is started when
the Save button is clicked.

The action chain sends a request to the Update endpoint of the data source. The action
chain includes actions that displays a message if the request succeeds or a warning if the
request fails:

Chapter 7
Add Components to Pages

7-41

The data stored in the page variable is mapped to parameters that are sent as a
request to the endpoint.

Use the Add Edit Page Quick Start
When you have a page with a table or list component, you can use the Add Edit Page
Quick Start to add an Edit button to the page that is enabled when you select an object

Chapter 7
Add Components to Pages

7-42

in the table or list. Clicking the Edit button opens a page that displays a form with fields for
editing the selected object.

You can open the Add Edit Page Quick Start from pages that use a table or list component to
display a collection. When adding an edit button, you use the endpoint with the GET method
(Get One) to request the data to display in the Edit page, and then the endpoint with thePATCH
method (Update) where the request to update the data is sent. When your data source is a
business object or a service with expected endpoints (such as GET, POST, PATCH, or DELETE),
Visual Builder automatically selects the correct endpoints for you. You only need to select the
fields that you want to display in the Edit page.

To create an Edit page:

1. Select the table or list on the canvas.

2. Open the Quick Start tab in the Properties pane, if not already open.

3. Click Add Edit Page.

4. If you land on the Select Read Endpoint step, select the data source containing the GET
endpoint to get the data you want to edit. Click Next.

5. If you see the Select Update Endpoint step, select the data source containing the
UPDATE endpoint to send a request to update the selected record.

6. On the Page Details step, select the fields you want to include in the Edit page from the
Endpoint Structure. (You can also drag the fields from the Endpoint Structure on the left
onto the Fields pane in the middle). The Edit page will include these fields in the form.

7. Specify the name of the button that will open the Edit page, and the title and name of the
new page. Click Finish.

The page now has a new button that will navigate to a page that contains a form for editing
the data of the object that is selected in the collection.

Add a Details Page With the Quick Start
Use the Add Detail Page Quick Start to create a page that displays the details of an object
selected in a table or list.

After you use the Quick Start to add the Detail page, clicking the Details button opens a page
that displays details of the selected object. Selecting an object in the component triggers a
component event that stores the id of the selected object in a page variable. Clicking the
Details button triggers an action chain that navigates to the Detail page, and the id value
stored in the variable is passed as an input parameter to the page.

When the Detail page is loaded, a page event triggers an action chain that sends a request to
the endpoint to get the data, and the input parameter passed to the page is mapped to the
input parameter required by the request. The response from calling the endpoint is mapped
to a variable that is bound to the components in the page that display the data.

In addition to creating the details page with a form containing the fields, the Quick Start
creates various variables for the data and action chains to navigate to the page and call the
endpoint.

The Quick Start does the following in the page containing the collection.

• Adds a button to the page. An ojAction event is added to trigger an action chain.

• Adds a select event to the collection component that triggers an action chain.

• Creates a variable to store the id of the selected object.

Chapter 7
Add Components to Pages

7-43

• Creates an action chain that saves the id of the selected object in a variable.

• Creates an action chain to navigate to the Detail page. The action chain passes
the object id as an input parameter.

The Quick Start does the following in the Detail page.

• Adds a form with fields bound to a variable.

• Adds a Back button. An ojAction event is added to trigger an action chain.

• Creates an action chain that navigates back to the previous page triggered by an
event on the Back button.

• Creates a page variable to store the object id as an input parameter.

• Creates a page variable to store the response from the endpoint. The Quick Start
also creates a new Type that defines the structure of the variable.

• Creates an action chain that calls an endpoint when the page is loading and
assigns the response to a page variable. The action chain has an input parameter
mapped to a page variable.

Use the Add Detail Page Quick Start
When you have a page with a table or list component, you can use the Add Detail
Page Quick Start to create a Detail page for a record and add a Details button to open
the new page. The button is enabled when you select an object in the table or list.

You can open the Add Details Page Quick Start from pages that use a table or list
component to display a collection. When adding a detail button, you use the endpoint
with the GET method (Get One) to display data. When your data source is a business
object or a service with expected endpoints (such as GET, POST, PATCH, or DELETE),
Visual Builder automatically selects the correct endpoint for you. You only need to
select the fields that you want to display in the Details page.

To create a Detail page:

1. Select the table or list on the canvas.

2. Open the Quick Start tab in the Properties pane, if not already open.

3. Click Add Detail Page.

4. If you land on the Select Endpoint step, select the data source containing the Get
One endpoint to get the data you want to display in the Detail page. Click Next.

5. On the Page Details step, select the fields you want to include in the Detail page
from the Endpoint Structure. (You can also drag the fields you want from the
Endpoint Structure on the left onto the Fields pane in the middle). The Detail page
will include these fields in the form.

6. Specify the name of the button that will open the Detail page, and the title and
name of the new page. Click Finish.

The page now has a new button that will navigate to a page that shows details of the
selected object.

Chapter 7
Add Components to Pages

7-44

Quick Starts for Dynamic Forms and Tables
When you add a dynamic form or table to a page, you have access to quick starts that help
you configure data connections and layouts to dynamically display content based on rules
that you've defined.

The quick starts for dynamic components walk you through similar steps as those for a
standard component. For example, a dynamic table's Configure Layout quick start prompts
you to select a data source and define parameters to query an endpoint, much like a
standard table's Add Data quick start. Though instead of selecting fields to bind to the table
collection component, you'll need to define a rule set to show fields in the dynamic table's
layout based on conditions.

Here are the dynamic component quick starts that with the exception of rule sets, provide
functionality similar to that of standard components:

Dynamic component Associated Quick Start Similar to:

Dynamic table Configure Layout Add Data

Dynamic form Configure as Create Form Add Create Page

Configure as Edit Form Add Edit Page

Configure as Detail Form Add Detail Page

When working with either set of quick starts, keep one key difference in mind: standard
component quick starts add pages to your visual application (for example, the Add Edit Page
quick start creates a separate page for editing an object's details); dynamic component quick
starts configure an existing form or table on the current page.

Add an Image to a Page
To add an image to a page, you position an image component on the canvas and specify the
path to the image in the Properties pane. You can select an existing image in the Image
Gallery or import a new image from your local system. Use the tabs in the Properties pane to
specify the image’s display properties, the path to the image source, and any component
events for triggering action chains.

The images used in pages in your app are stored in an images resource folder. The app
contains a default images resource folder, and each flow in your app can also contain an
images resource folder. When adding an image to a page, you can use the Image Gallery to
select an image that was already imported, or add a new image to the Image Gallery directly
from the component’s Data tab in the Properties pane. When you add an image to the Image
Gallery, you can choose to import an image as an application resource or a flow resource. If
you want to select an image that was already imported into the app, you can click the Image
Gallery button in the Data tab and use the Image Gallery dialog box to locate and select the
image. When you select images from the Image Gallery, you can select application resources
or flow resources.

When you drag an image into the drop target area in the Data tab, the image is imported into
the images folder for the flow, and the path to the image location is added to the Source URL
field. For example, the path to an image stored in a flow’s images folder will be similar to the
following:{{ $flow.path + 'resources/images/myimage.png' }}.

To ensure that the relative path to the image resource is built correctly when the app is
staged and published, the path to the image in the Source URL field needs to include the

Chapter 7
Add Components to Pages

7-45

builtin variable $flow.path or $application.path to identify the location of the
resource folder. You can use Audits window to help you locate image paths in your app
that might not be formed correctly.

To add an image to a page:

1. Open the page in the Page Designer and drag an image component from the
Components palette onto the canvas.

2. Open the component’s General tab in the Properties pane and specify the height,
width and alt text for the image.

3. Open the component’s Data tab in the Properties pane.

The Data tab contains a Source URL field that contains the path to the image. You
can use a string or a variable to specify the path to the image source.

4. Drag your image into the drop target area in the Data tab.

5. Open the component’s All tab in the Properties pane to view and edit all of the
component’s attributes.

Add an Icon Component to a Page
Visual Builder includes a set of icons that you can add to your pages using the Icon
component in the Components palette.

After adding the Icon component to the canvas, you use the Properties pane to select
an icon from the Icon Gallery, specify the display properties of the icon and configure
any component events for triggering action chains.

To add an Icon component to a page:

Chapter 7
Add Components to Pages

7-46

1. Open the page in the Page Designer and drag an Icon component from the Components
palette onto the canvas.

2. Select the component on the canvas and click the Image button () in the General tab
of the Properties pane.

3. Select the icon in the Icon Gallery window. Click Select.

4. Specify properties or events in the Properties pane.

Add a Camera Component to a Page
When you want your application to access the camera capabilities of the devices on which it
is installed, you can add the camera component to your application’s page for users to take a
photo or a video from the device's camera.

The camera capture works only on physical devices that actually support media captures. On
other devices (like desktops), it works as a regular file picker that lets users select files from
the device's storage.

1. Open the page in the Page Designer and drag the camera component from the
Components palette onto the page canvas:

Chapter 7
Add Components to Pages

7-47

2. In the General tab of the Properties pane, configure the component's properties
for your use case:

a. Use the Camera capture property to launch the camera on the user's device
in a preferred camera mode:

• To let the user take a selfie photo or video, select Front (Selfie). This
option will directly launch the front-facing camera on the user's device.

• To let the user take a photo or video of their environment, select Rear.
This option will directly launch the rear-facing camera on the user's device.

Chapter 7
Add Components to Pages

7-48

• To enable the device's default behavior for the preferred camera mode, select
Default. This option will directly launch the camera on the user's device in the
default camera mode, which on iOS devices (for example) is to open the rear
camera.

• To provide the user with choices, say, choose from the photo library or take a
photo or video (instead of directly launching the camera), select None.

b. Set the Accept property to the file types you want to accept from the device: photos,
videos, or both. By default, both Photos and Videos are selected to provide the user
with options to take either a photo or a video once the camera is launched.

c. Optional: The camera component is preconfigured to use a Take Photo/Video
button. This button acts both as a clickable control to activate the camera component
and as a file drop zone for devices that support drag and drop. You can customize
this button or replace it with other trigger components.

To replace the default Take Photo/Video trigger button, click + next to trigger and
select an option from the Preferred components:

• To add an Upload button that users click to upload files, select 'Upload' Button.

• To create a basic drop zone/trigger that can be further customized with other
components, select Custom Drop Zone.

• To add a placeholder for an image that users click to upload images, select
Image.

Chapter 7
Add Components to Pages

7-49

Remember to delete the original Take Photo/Video trigger button:

3. In the Events tab of the Properties pane, configure the camera component's
Selected Files event to trigger an action chain when a user selects the
camera component. Make sure to select the Camera (File Picker) component, not
the button component within the camera component.

a. Click + Event Listener, and select On 'Selected Files':

Chapter 7
Add Components to Pages

7-50

This creates the CameraFilePickerSelectChain action chain, which receives the
files taken from the device. You can configure the action chain to upload the files to a
server (via user-created JavaScript) or assign it to a variable, as we'll do next.

b. Add the Assign Variable action to the canvas. For the Variable property, select the
variable to hold the data from the Camera component (for example, FileArrayADP
of type Array Data Provider):

Chapter 7
Add Components to Pages

7-51

Note:

The items in the array are of type File (https://
developer.mozilla.org/en-US/docs/Web/API/File). Each file is itself a
Blob for the image or video, with properties such as name, size, and
type. In Visual Builder, the files are passed to the action chain as an
Array of type Object. When assigning to another variable, it is
important that the type isn't changed to a custom type; otherwise,
Blob data may be lost.

c. Hover over the far-right side of the Value property and click the down arrow
that appears to choose the action chain's files input parameter, which
contains the Camera components data:

d. Click the Page Designer tab to confirm that the array of files taken from the
device is mapped to the CameraFilePickerSelectChain action chain:

Chapter 7
Add Components to Pages

7-52

https://developer.mozilla.org/en-US/docs/Web/API/File
https://developer.mozilla.org/en-US/docs/Web/API/File

4. Click Preview to test the camera functionality.

Filter Data Displayed in a Component
When you bind a component to an endpoint, you can filter the data displayed in the
component by defining filter expressions in the Service Data Provider used to retrieve the
data. You can use expressions and static content to set the filter criteria values and Oracle
JET operators to define the logic.

To display data in a collection component such as a list or table, you usually bind the
component to an endpoint using a variable that is assigned the built-in Service Data Provider
(SDP) type. This variable is created for you when you use the Add Data Quick Start to bind
the component to an endpoint. The SDP type manages requesting and receiving data from
an endpoint, and supports a filterCriterion property that can be configured to filter the
data stored in the variable and displayed in the component. The filterCriterion structure
can be used to express many of the filter expressions you might want to use when retrieving
data. For more details, see Service Data Provider.

Note:

For more advanced filtering you can write JavaScript filtering functions that you can
call from an action chain. See Work with the JavaScript Editor and Add a Call
Function Action.

You build a filter expression by defining the properties of the three filterCriterion
attributes (attribute, op, value). The filter expression is converted into an appropriate "q"
query string when sent to the endpoint. You can make complex filters by combining multiple
filter expressions. You can create a filter expression using the Assign Variables window of an

Chapter 7
Add Components to Pages

7-53

action, or you can edit the JSON file where the action is defined (for example, main-
start-page.json). The following table describes the filterCriterion attributes that
you define in a filter expression.

Attributes Description

attribute Name of the attribute. Typically this is the
name of the field that the filter will process.

op Supported Oracle JET operator. Common
operators are, for example, $co (The entire
operator value must be a substring of the
attribute value for a match.), $eq (The attribute
and operator values must be identical for a
match.) and $ne (The attribute and operator
values are not identical.). The
operator $regex is not supported.

For a list of Oracle JET operators, see Oracle
JavaScript Extension Toolkit (JET) API
Reference.

value Value of the attribute. This is the value that is
used to filter the request. This value can be
mapped to an expression (for example, a page
variable) or a static value (for example, a string
or number).

You can define filterCriterion attributes by editing the SDP properties in the
Variables editor, or you can build a filter function in the page using variables,
components and action chains. For example, you can create a filter for a collection
such as a table using filterCriterion and use a page variable to store a string that a
user enters in an input field. When the SDP sends a request to the endpoint, the filter
processes the request and only the records that meet the filter criteria are returned
and displayed.

Filter Data by Filter Criteria
You filter the data displayed in a collection component, such as a list or table, by
defining the filterCriterion property of the Service Data Provider (SDP) used to
retrieve the data. You can use the Filter Builder to help define the filter criteria values
and Oracle JET operators used to define the logic of the filter.

When you use the Add Data Quick Start to bind a collection component to a data
source, you can use the Filter Builder in the Define Query step to filter data that you do
not need to retrieve. For example, you might want to build a filter to only retrieve the
records where the value of a column named "Active" equals "true", or equals some
page variable's value.

In summary, to create a filter for your table or list, you'll need to:

1. Create a page variable to hold the user's value for the filter criterion:

• The filter criterion is a condition that each record must satisfy in order for it to
be shown, for example, "If name contains user-value".

• The user's value is the text that's used to evaluate the filter criterion for each
record, to check if the record should be shown.

Chapter 7
Add Components to Pages

7-54

https://docs.oracle.com/en/middleware/developer-tools/jet/15.1/reference-api/AttributeFilterDef.html
https://docs.oracle.com/en/middleware/developer-tools/jet/15.1/reference-api/AttributeFilterDef.html
https://docs.oracle.com/en/middleware/developer-tools/jet/15.1/reference-api/AttributeFilterDef.html

2. Add a UI component and an event to trigger an action chain that filters an SDP's data
using the filter criterion.

3. Create an action chain to handle the filtering.

Here's how you can create a filter:

1. Create a page variable of string type (for example, filterVar) to store the user's value
for the filter criterion.
The value of the page variable can be predefined (for example, an input parameter), or
you can bind it to a page component such as an Input Text (shown below) or Combobox
component to allow users to enter text, or to select a value from a Combobox. In this
example, we'll use an Input Text component to enter a value for the filter criterion and to
trigger an action chain to filter the displayed data.

2. In the Page Designer, add an Input Text component to the page with the table or list. In
the Properties pane, use the Data tab to bind the Input Text component to the variable
that stores the user's value for the criterion:

3. Select the Events tab, click the New Event button, and select on 'value':

Chapter 7
Add Components to Pages

7-55

A new action chain is created and associated to the event. You're now taken to the
Action Chain editor to implement the action chain for filtering. See Use Filter
Builder to Create Filter Criteria for an SDP on how to create the action chain using
an Add Variable action.

Filter Component Data by Text
When you want user-specified text to filter results shown in a list component like
Select Single, you can configure the TextFilterAttributes property on the
Service Data Provider (SDP) used to retrieve the list's data. The
TextFilterAttributes property lets you specify data fields whose values you
want to search for the text a user enters. Only values that match the user's text in each
of those fields will be shown in the list.

Chapter 7
Add Components to Pages

7-56

Say you've set up a Select Single component to display employee data in a list and you'd like
the user to filter the data as they enter some text string in the Select Employee field:

To achieve this, you need to configure the TextFilterAttributes property on the SDP
variable used to bind the component to an endpoint. For example, your Select Single
component might use the employeeListSDP variable to request and receive data from the
getall_Employees endpoint. This variable is usually created for you when you use the
Add Data Quick Start to bind a component to an endpoint and can be found on the page's
Variables tab. Update the variable's TextFilterAttributes property to specify one or
more data fields, for example, name and country:

Chapter 7
Add Components to Pages

7-57

A list that's based on an SDP doesn't hold a client-side array of data, so filtering is
done by sending a "q" query string to the endpoint. The endpoint returns the matching
values to the client, populating the SDP. So now if the user were to enter us in the
Select Employee field, Visual Builder searches for values in the Name and Country
fields that match us. The results (as shown here) include three employees who belong
to the Country USA as well as one employee whose name includes those letters:

You can also include data fields that don't display to the user—as long as those fields
are included in the SDP's definition. For example, if you selected salary and
phoneNumber as the text filter attributes, a user who entered 50 would see three
results because the text matches the Salary field of John Doe and Shelley White as
well as the phone number of Albert Cain, although Phone Number isn't displayed as a
column in the list.

Chapter 7
Add Components to Pages

7-58

Filter Component Data by URL
You can specify filter criteria for a collection component, such as a list or table, and append
the parameter to the application page URL to apply the filter. This makes it easy to share the
page URL with the filter already applied.

To enable the search criteria, set the filterCriterion attribute. In this example, we bind the
value of the variable p_categoryId to the productCategory field of the business object.
To assign a page variable as a filter criterion for a table:

1. Click the Variables tab for your page.

2. Click + Variable, then enter the ID, select the Type, and click Create.

3. Select the variable and, in the Properties pane, set the Input Parameter to Enabled or
Required and check the Pass On URL box.

4. Open the Page Designer and drag a Table component onto your page.

5. Click the table, then click the Add Data quick start to populate the table.

6. On the Add Data page, specify the business object you want to use and click Next.

7. On the Bind Data page, bind the fields you want to display and click Next.

Chapter 7
Add Components to Pages

7-59

8. On the Define Query page of the quick start, expand the filterCriterion builder
icon on the Target pane and build your filter by specifying values for attribute, op,
and value individually.

9. Click Finish.

To filter the table, add ?paramName=Value to the end of the app URL.

Chapter 7
Add Components to Pages

7-60

Use Conditions to Show or Hide Components
You can use an oj-bind-if component to conditionally show or hide UI components in your
visual application. Use oj-bind-if to surround other components and set conditions to
determine whether the components should be displayed on a page.

Let's say you have a form for users to submit expense reports with fields like Country and
Amount (in US currency). When users from countries other than the United States submit
expenses, we want to show additional fields like Exchange Rate and Amount in USD. In other
words, we want these fields to show only when the country selected is not United States. You
can do this by surrounding these fields in an oj-bind-if component (available as If in the
Components palette).

When you add an oj-bind-if component, you also set the conditions under which the
component should be displayed by entering an expression in its Test property in the
Properties pane. For example, you can use an expression that evaluates if the value of a
page variable does not equal a predefined value. The surrounded content is displayed if the
values are not equal (the expression is true), and hidden if the values are equal.

In our example, we’ll build an expression using variables to show the surrounded content
when the value selected for Country is something other than United States and to hide these
fields when the selected Country is United States.

You can also use oj-bind-if to dynamically control what components a user sees based on
the user's role, for example, to hide buttons or navigational elements, by
using $application.user.roles.role_name in the expression. You can set restrictions on
entire pages, or just on certain components in a page. The visibility of components based on
roles is only enforced on the client, and the value of the role could be changed in the client.
For this reason, in addition to hiding components, you should also use role-based security to
secure the application and the data in a page.

To use an oj-bind-if component to control when a component is displayed in a page:

1. In Design mode, locate the component that you want to control dynamically.

2. Right-click the component on the canvas or in the Structure view and select Surround >
If in the pop-up menu. In our example, we’ll select the two oj-input-number components
for the Exchange Rate and Amount in USD fields that we want to control dynamically.

Chapter 7
Add Components to Pages

7-61

In the Structure view, you'll see the components that are surrounded by a Bind If
component. (In Code mode, you'll see oj-bind-if.)

Chapter 7
Add Components to Pages

7-62

3. Select the Bind If component on the canvas or in the Structure view and open the
Properties pane.

You’ll see the Test property which you use to set the condition. The default expression is
[[True]].

Chapter 7
Add Components to Pages

7-63

4. Enter the condition that controls the component’s visibility. You can enter the
condition in the Test field, or use the Expression Editor to build an expression
using available variables, as shown here:

In our example where the country variable is of type number, the above
expression is used to hide the Exchange Rate and Amount in USD fields when the
Country field's value is United States. If you want those fields to be hidden even
when the Country field is empty, you can extend your expression as follows:

[[$variables.expenseReport.country !== 1 &&
 $variables.expenseReport.country]]

If the variable type is not a number, remember to use quotation marks (' ') around
the value in the Expression Editor.

Chapter 7
Add Components to Pages

7-64

5. Optional: In the Properties pane, use the Temporary Override property to temporarily
set the result of the test condition to True or False. For example, when designing your
page, if some content is hidden on the canvas because the test condition result is False,
you can set Temporary Override to True so the content is visible on the canvas, or select
Off to temporarily disable the test. This setting is temporary and will revert to Off when
you reload the page.

You can set the Temporary Override in the Properties pane or in the component's popup
menu in the Structure view or on the canvas.

6. Test your application in Live mode. Here’s what our example form looks like with dynamic
UI controls enabled:

Add Dynamic Components to Pages
You can add dynamic components, such as a table, form, or container, to your visual
application's pages to define rules that control what's displayed at runtime to the user.
Dynamic components help to show different items in a page's layout based on conditions in a
rule. For example, you might configure a dynamic table so that certain columns are hidden
and others are added when the user viewing the page is a manager. Or show a particular
layout only when users viewing the page are on a tablet-sized screen or larger.

Note:

Dynamic components (oj-dynamic-*) and the If component (oj-bind-if) both use
conditions to determine what's displayed on a page. While you can use oj-bind-if
with JavaScript functions to do this, dynamic components provide a more
declarative approach, making it easy for you to create layouts and to maintain and
modify them after they've been created.

What are Dynamic Components?
A dynamic component, such as a form or table, does not render static content. Instead, it
uses rule sets with display logic to determine what fields should be displayed on the page.

Chapter 7
Add Dynamic Components to Pages

7-65

Display logic is simply a set of conditions that you define. At runtime, the conditions
are evaluated based on the viewer’s current circumstances (for example, the user's
role) or the current data context (for example, the value of a field) to determine what is
displayed.

You have two main objectives when creating pages using dynamic components: one,
to configure the component's content the way you want it using layouts and templates,
and two, to define the display logic that determines the layout and templates displayed
in the component. In most cases you define the logic first, then configure the content
that will be used in your logic.

There are three types of dynamic components that can be used in visual applications:
tables, forms, and containers. What is displayed in a component and how you
customize it depends on what type of component it is:

Dynamic
Component

Description

Dynamic table,
dynamic form

In dynamic tables and forms, you customize which fields are displayed
and how they are rendered. In most cases, you can hide, show, or re-
order these fields, and can even create new fields based on existing
ones. You can also apply field templates to control how certain fields
are rendered at runtime.

Dynamic container Dynamic containers are predefined areas in a page that can be used
to display various types of content. Unlike a dynamic table or form,
which can appear on multiple pages, a dynamic container is scoped to
the page and can only ever appear on that page.

How to Create Layouts With Dynamic Components
Dynamic components provide a declarative way for you to bind a component's content
to fields from your data sources. They serve as the building blocks for UIs that
dynamically change what content is shown and how it is presented based on rules that
you define.

Dynamic components are listed in the Components palette under Dynamic
Components (you can enter dynamic in the palette's filter field to locate them). When
you use dynamic components to show or hide content, you're defining layouts, all of

which show up on the Layouts tab () in the Navigator.

Chapter 7
Add Dynamic Components to Pages

7-66

You have the option of creating a layout from scratch on the Layouts tab, where you can
choose your data source, create a rule set with your own layouts and display logic, then
associate the rule set with a dynamic form or table. It's simpler though to start by adding a
dynamic form or table to a page, then using quick starts to walk you through the basics.

Because a layout represents a set of data fields that can appear in one or more related
dynamic components, you'll need to have your component's data source ready before you
can work with layouts. Your data source can be a business object that stores your app's data
or a service connection that receives data from REST APIs.

Here are the high-level steps you need to take to create a simple layout using a dynamic form
or table:

To perform this action: See this:

1. Add a dynamic form or table to a visual
application's page

• Add a Dynamic Table to a Page
• Add a Dynamic Form to a Page

2. Configure the rule set's display logic and
layouts.

• Add Display Logic to Determine What's
Displayed at Runtime

• Create a Layout for a Dynamic Table or Form

For each dynamic component, you usually have a default rule and an accompanying layout.
This default set is created for you when you configure a dynamic component on a page using
a Quick Start (or, when you create a rule set in the Layouts' Rule Sets tab). You can then add
additional rules (with matching layouts) to cover other scenarios. The default set is displayed
if none of the conditions you define are met.

Besides layouts that control what's displayed on a page, you can control how something's
displayed by using templates to visually design the field's area in a dynamic form or table.
You can also set fields to be read-only for specific users and updatable for others.

In addition to rule sets, fields, and templates, the Layouts tab provides access to variables,
actions, events, and event listeners, much like what's available when you add standard
components to a page:

Chapter 7
Add Dynamic Components to Pages

7-67

You can use these dynamic component editors just as you would use the editors for
standard components, for example, to define events that you can hook action chains
to.

Add a Dynamic Table to a Page
Add a dynamic table component to your application's page when you want to display
data in a table and use conditions to determine what's displayed to your users. Once
you add a dynamic table to a page, you can use the Quick Start to create a rule set
that you can configure with your own layouts and display logic.

Note:

Before you begin, make sure you've defined a data source, such as a
business object or an external service that calls a business object through a
service connection. See Work with Business Objects or Manage Service
Connections.

To add a dynamic table component to a page:

1. With your page open in the Page Designer, drag the Dynamic Table from the
Components palette onto your canvas.

You can also drag the Get Many endpoint for the data source you want to bind to
the table from the Data palette onto the canvas. After dropping the endpoint on the
canvas, select Table Dynamic in the Render as menu:

Chapter 7
Add Dynamic Components to Pages

7-68

Selecting the item in the menu will open the Select Rule Set page in the Configure Layout
wizard.

2. Click the Configure Layout Quick Start in the Properties pane.

3. In the wizard's Locate Data page, select the data source to bind to the dynamic
component. Click Next.

This example uses the Employee business object as the data source:

Chapter 7
Add Dynamic Components to Pages

7-69

4. In the Select Rule Set page, select New Rule Set (if necessary) and enter a label,
ID, and description to associate the dynamic table with a rule set.

Let's say you want to show one layout with some employee fields (for example,
salary) when the user is a manager, and another layout (without the Salary field)
for all other users. To do this, you'd start by creating a rule set (labeled
RoleBasedTable for example), then select the fields you want to show by default
for all users. This set of fields will be added to your initial layout (labeled
default).

The Fields palette lists all the fields and objects you can add to your layout. You
can add a field or object by selecting its check box in the Fields palette or by
dragging it from the palette onto the drop target area on the right. The columns
appear in the order selected; use the handles to the left of each field if you want to
re-order them. You can also remove a field by clicking its Delete icon, as shown
here:

Chapter 7
Add Dynamic Components to Pages

7-70

When you are done, click Next.

5. To limit the number of records returned, define a query on the Define Query page, then
click Finish.

The dynamic table is created to use the layout with the fields you selected. You'll also see the
newly created rule set under the General tab in the table's Properties pane.

You can configure the dynamic table's properties much like you would a standard table. For
example, you can enable a single table row to be selected and set up an event that triggers
an action chain to fetch the data of the selected row.

Click Go to Rule Set to open the rule set in the Rule Sets tab and configure it with your own
display logic and layouts. For example, you might configure the display logic to show the

Chapter 7
Add Dynamic Components to Pages

7-71

default layout when the user has the Employee role. You could then add another rule to
show a different layout when the user has the Manager role. See Add Display Logic to
Determine What's Displayed at Runtime.

Add a Dynamic Form to a Page
Add a dynamic form component to your application's page when you want to display
data in a form and use conditions to determine what's displayed to your users. Once
you add a dynamic form to a page, you can use Quick Starts to create a rule set that
you can configure with your own layouts and display logic.

Note:

Before you begin, make sure you've defined a data source, such as a
business object or an external service that calls a business object through a
service connection. See Work with Business Objects or Manage Service
Connections.

To add a dynamic form component to a page:

1. With your page open in the Page Designer, drag the Dynamic Form from the
Components palette onto your canvas.

You can also drag an endpoint for the data source you want to bind to the form
from the Data palette onto the canvas. After dropping the endpoint on the canvas,
select the dynamic form or list component in the Render as menu:

Chapter 7
Add Dynamic Components to Pages

7-72

Selecting the item in the menu will open the Select Rule Set page in the Configure Layout
wizard.

2. Select the Quick Start you want to use for the dynamic form in the Properties pane.

• Click Configure as Create Form to create a form that interacts with the CREATE
endpoint to create a new field in the data source.

• Click Configure as Edit Form to create a form that interacts with the GET and
UPDATE endpoints to edit a field's details in the data source.

• Click Configure as Detail Form to create a form that interacts with the GET ONE
endpoint to view details of a selected field.

If you plan to use the Configure as Edit Form and Configure as Detail Form quick
starts, you'll be prompted to provide endpoint parameters to be able to fetch and update
the data of a particular row in the form. Make sure you create variables that you can map
to these parameters before you use the quick start.

Follow the quick start prompts to select a data source, rule set and fields to display in the
form. Depending on the quick start you selected, you might have additional steps to
complete.

3. Select the data source you want associated with the form.

4. In the Select Rule Set page, select New Rule Set (if necessary) to create a rule set, and
provide a label and ID (and optionally, a description) for the rule set.

You can choose an existing rule set if you've already create one you want to use. If you
select an existing rule set, the quick start will open the rule set in an editor where you can
add rules for the new form.

5. Select Select fields to display under Use Simple Layout.

This example shows the Select Rule Set step in the Configure as Detail Form quick
start when a form template is also available. If you choose a template, the quick start will
show you the fields defined in the template, and you can then add more fields.

Chapter 7
Add Dynamic Components to Pages

7-73

If you select a template and it isn't right for this form, you can return to this pane
and choose a different template, or click Select fields to display to create a
layout without a template.

6. Select the fields to display in the form.

This example shows the Configure as Detail Form quick start with fields selected
from an Employee business object. These fields are added to the form's default
layout. The form is also configured to fetch the data of a particular row in the form.

Chapter 7
Add Dynamic Components to Pages

7-74

Click Next when you are done.

7. Map the sources to the target variables in your form, as needed. Click Finish.

The dynamic form is created with the fields you selected. You'll also see the newly created
rule set under the General tab in the Properties pane.

Chapter 7
Add Dynamic Components to Pages

7-75

Click Go to Rule Set to open the rule set in the Rule Sets tab. From here, you can
configure your form's display logic and layouts; for example to show employee data to
authenticated users viewing the page on a tablet-sized screen or larger.

Add Display Logic to Determine What's Displayed at Runtime
You control what’s displayed at runtime on a page through the use of display logic,
which you configure on the Layouts' Rule Sets tab.

Suppose you want to show employee data (say, an employee's salary) only when the
user viewing the page is a manager. You'd then create a dynamic table or form and
associate it with a rule set that checks the user's role. If the user has, for example, the
Payroll Manager role, the page shows the layout that includes the Salary field. All
other users would see the page with the default layout.

You can have more than one rule for a given component, and the rules are listed in a
display logic tree when you select the dynamic form or table in the Rule Sets tab. The
order in which they appear in the display logic tree is important because at runtime the
rules are evaluated from top to bottom. The first rule where all the conditions are met
—in this case, the user is a manager—is the one that's used, and the associated
layout is applied to the component. No other rules are tested. Keep this in mind as
you’re working in the Rule Sets tab.

To configure the display logic for a dynamic component:

1. From a dynamic table or form's Properties pane, click Go to Rule Set to open the
component's rule set in the Layouts' Rule Sets tab.

2. In the Rule Set editor, create a rule by clicking + Rule to and giving it a name.

The rule set for a dynamic component always contains a default rule. You can
choose to edit it, copy it and use it as the basis for your own rules, or you can
create a rule from scratch.

Chapter 7
Add Dynamic Components to Pages

7-76

Tip:

It's helpful to give your rules meaningful names. For example, to show a
particular layout only when the user is in Canada, you might call the rule

inCanada. To edit a rule's name, hover near the name, then click , and click

when you are done.

a. In your new or default rule, click Click to add condition.

b. Select an Attribute and Operator from the drop-down lists, and select or enter a
Value.

The Attributes drop-down list contains the fields and variables that you can use in
your layout, and the Operators list contains the operators (for example, '=' and '<=')
that are valid for the attribute you select. The Values list shows values already
defined for the attribute (for example, 'true' and 'false'), if any, but you can also enter
your own value.

You can select built-in context variables that provide a way to access various pieces
of information when building conditions for a rule. For example, you can check the
size of the device accessing your app, or information about the user using the app
such as their role or email. Built-in context variables include:

• $fields variables determined by the fields displayed in the Fields editor. For
example, the $fields.firstName.value lets you access the value of the
First Name field in your data source. Look for these variables under the Fields
group in the condition builder.

Note:

For each field, regardless of type, you can choose $numberValue (for
example, $fields.ConflictId.numberValue()) or $value
($fields.ConflictId.value()). You should use $numberValue
when you know the field's value should contain a number. For example,
if the ConflictId field's type is a string and you choose $numberValue,
the field's value will be converted to a number, if possible. If the value
can't be converted, the $numberValue will be NaN (Not a Number).
The only limitation is that $numberValue is limited by the maximum
precision allowed by the Number type in Javascript.

• $responsive variables determined by the screen size of the device the app is
currently displayed on. For example, the responsive.mdUp variable's value is
True if the current user is using a device where the screen width is 768 pixels or
more, such as a tablet. Look for these variables under the Responsive group in
the condition builder.

• $user variables determined by the current user. For example, the
user.isAuthenticated variable's value is True if the current user is an
authenticated user. You can use the user.roles variable to check the role of
the user using the app. Look for these variables under the User group in the
condition builder.

Chapter 7
Add Dynamic Components to Pages

7-77

Note:

When using user.roles, the Value drop-down lists the
available Oracle Cloud Applications job and abstract roles. (The
drop-down will not list any duty roles. If you want to specify a
duty role, you can manually type the duty role name in the Value
field.)

You can also define your own context to augment your rules with values
provided by your application, as described in Define Custom Contexts for
Components in a Layout. These contexts will then become available through
the $componentContext system variable. Look for these under the Contexts
group in the condition builder.

Here's the condition to check whether the current user has the Employee role:

c. You can add more conditions and group conditions if you want to use more
attributes to make the rule more precise, for example, you can make sure the
user has the Employee role AND is authenticated. You would then create a
rule with two conditions, and select Match All to require that both conditions
be true.

d. Click Done.

Chapter 7
Add Dynamic Components to Pages

7-78

e. In the return field, select the layout you want to apply when the rule is true.

If you created a copy of a layout when you created the rule, it is selected by default in
the return field. You can use the same layout with multiple rules.

3. Create more rules as required, for example, to display a Manager layout only to
authenticated users who have the Manager role:

a. Click the Duplicate icon (), then enter a name for the new rule in the Duplicate
Rule dialog box.

To also create a copy of the layout to use as a starting point, make sure that check
box is selected. Click Duplicate.

b. Edit the new rule and define its conditions. To continue our example, you might set
the rule to show the Manager layout when the current user's role is Manager and
extend it to show only to authenticated users:

If you click , you can see and edit the rule's expression. For the rule above, you'd
see the following expression:

$user.roles.includes('Manager') && $user.isAuthenticated === true ?
'Manager' : null

c. Use the Move Up and Move Down buttons to make sure you have the rules in the
order you want them evaluated.

Chapter 7
Add Dynamic Components to Pages

7-79

The order and precision of your rules is important. The rules are evaluated
from the top down, so the first rule evaluated as true will determine the layout
that is used. When configuring the display logic, it's not a problem if there are
rules that will never be used or evaluated.

The default layout is usually the last rule in the display logic tree and is
displayed if none of the conditions you've defined are met.

d. As part of configuring the new rule, click the newly created layout in the
Layouts tab (Manager, in our example), then select the fields you want to
show when the user is a manager (for example, the fields you included in the
default layout plus salary):

Chapter 7
Add Dynamic Components to Pages

7-80

4. Test your application to preview it in different roles (for example, as Employee and
Manager). See Test Role-Based Access.

Here’s an example of a dynamic table with role-based logic enabled. On the left is what a
user with the Employee role sees; on the right is what's shown to a user with the
Manager role:

Responsive App Display Logic Example
The following example shows how to configure display logic for responsive apps. Suppose
you want a dynamic component that shows different fields based on the device's screen size,
say, small, medium, and large screens. You’d then create a rule that checks the current user's
device screen size and applies the layout that contains the desired fields for that screen size.

To illustrate, consider a dynamic form that displays the following employee fields in the
default layout: Id, Name, Department, Email, and Hire Date. If the user's device screen is
small, you might want the page to show a particular layout (say, the SmallScreen layout)
with only the Name and Email fields. If the user's device screen is medium, you might want
the page to show another layout (for example, the MediumScreen layout) with the Name,
Department, and Email fields. If the user's device screen is large, you might show the
default layout.

To configure a rule set for responsive logic:

1. Update the default rule to show the default layout when the device's screen size is large:

a. In the Rule Set's Display Logic section, click Click to add condition.

b. Choose lgOnly under Responsive in the Attributes drop-down list, select === from
the Operators list, then remove one of the equal signs, and select true as the Value.

c. Click Done.

Chapter 7
Add Dynamic Components to Pages

7-81

2. Duplicate the existing rule as required and use it as the basis to create more rules,
in our case, the MediumScreen and SmallScreen rules. During this step, you
have the option of creating copies of a particular layout which you can then update
to show the fields you want when the device screen is small and when it is
medium.

a. Click the Duplicate icon (), then enter a name for the new rule in the
Duplicate Rule dialog box.

To also create a copy of the layout to use as a starting point, make sure that
check box is selected. Click Duplicate.

b. Edit the new rule and define its conditions. To continue our example, you might
use the mdOnly attribute to show the MediumScreen layout when the current
user's screen size is medium and the smOnly attribute to show the
SmallScreen layout when the current user's screen size is small.

c. As part of configuring the new rules, click the newly created layouts in the
Layouts tab (MediumScreen and SmallScreen), then select the fields
you want to show when the device screen is small (Name and Email) and
when it is medium (Name, Department, and Email).

Chapter 7
Add Dynamic Components to Pages

7-82

3. Use the Move Up and Move Down buttons to make sure you have the rules in the order
you want them evaluated.

4. Test your application using different screen sizes in the Page Designer toolbar. For
example, use iPhone to test the display logic on a small screen, iPad to test a medium-
sized screen's display, and desktop to test a large screen's display.

Define Custom Contexts for Components in a Layout
In addition to built-in system variables that can be used within a dynamic component (for
example, device size or user role), you can define a context to pass information that might
otherwise be inaccessible to a dynamic component. This information can be values produced
by your application that come from outside your layout, such as page variables, or details
from other parts of your application.

For example, your application might have some preferences that could be useful when you're
using a dynamic table or form to build a layout. These preferences can be any arbitrary value,
but as a layout developer, you don't want your layout to consume values that might not be
valid. So Visual Builder provides a componentContextType, a contract that helps you define
the shape—or parameters—that the component context will accept. Once the
componentContextType is defined, these parameters become part of the $componentContext
system variable and can be used anywhere in the layout. Here's an example
of $componentContext parameters in the rule set condition builder:

Visual Builder also provides the baseComponentContextType to define parameters at the
service level. Much like componentContextType, parameters defined by the
baseComponentContextType contract can be used anywhere in the layout where
the $componentContext variable is available. But unlike component context parameters, base
component context parameters can also be used in OpenAPI schema.

Let's say you want to control access to your layout based on whether OAuth 2 authentication
is enabled for the user. You could use $componentContext to pass external information
through the isOAuth2enabled field, then bind that to the query parameter of the URL in the
openapi.json file:

"employees": {
 "operationRef": "http://example.com/hrApi/resources/1.0/employees/
describe#/paths/~1employees/get",
 "parameters": {
 "token":
"AUTH_TOKEN=[[$componentContext.securityInfoMap.isOAuth2Enabled ? 'foo' :

Chapter 7
Add Dynamic Components to Pages

7-83

'bar']]"
 }
}

The baseComponentContextType is the contract that makes it valid to
use $componentContext.securityInfoMap.isOAuth2Enabled in openapi.json.

To define parameters that can be passed to a layout:

1. Choose the type of parameters you want to define: component context or base
component context.

• To define component context parameters, go to your layout's Rule Set editor.
Then in the Properties pane, click the Parameters tab.

• To define base component context parameters, go to your layout's Fields
editor and view the Parameters tab in the Properties pane.

Chapter 7
Add Dynamic Components to Pages

7-84

2. Click + Parameter (or Add Parameter if other parameters exist).

3. Enter a name and description, then select the type (for example, select object if you want
the parameter to have sub-fields). Because your parameters can be referenced by
anyone extending your app, it's important to provide a description of the parameter and
values it accepts.

4. If you chose array or object, click Add Field, then enter the name and description and
select a type.

5. Repeat the steps to add as many parameters and fields as you need. Here's an example
showing component context parameters (set in the Rule Sets tab) on the left and base
component context parameters (set in the Fields tab) on the right:

Chapter 7
Add Dynamic Components to Pages

7-85

The parameters, now available to all rule sets in a layout, will be accessible in the
expression editor and the condition builder.

Create a Layout for a Dynamic Table or Form
A layout defines the fields that are displayed in a dynamic component at runtime. You
create and configure the layouts for a component's rule set in the Layouts' Rule Sets
tab.

You can create multiple layouts for a single component, but only the layout associated
with the rule that is found to be true first is the one applied to the component. For
example, you might have three layouts that show different fields in a dynamic form
based on a device's screen size. At runtime, the rules associated with the component
are evaluated in the order they appear to see if the conditions set in that rule are met.
If the condition is true—say, the current device's screen size is small—then the layout
you selected for that rule is applied to the component and the user will only see the
fields he needs in the form.

The fields you can display in a layout are determined by the fields available in the
artifact's data source, say, a business object that has five fields. You can choose which
of these five fields that you want to display in the dynamic component—and the order
in which they should appear—but you can't include fields from other data sources.

To create a new layout:

1. When your page is open in the Page Designer, click the dynamic form or table you
want to work with in the canvas area, or select it in the Properties pane.

2. Click Go to Rule Set in the Properties pane for the dynamic form or table:

Chapter 7
Add Dynamic Components to Pages

7-86

3. Click in the rule set's Layouts pane, then enter a name for the new layout.

To illustrate, consider a dynamic form for employee data that displays the following fields
in the default layout: Id, Name, Department, Email, and Hire Date. Now, say we want the
form to show data based on screen size. To do this, we'll create two other layouts:

• A SmallScreen layout configured to show only Name and Email

• A MediumScreen layout configured to show Name, Department, and Email

4. Click the new layout name, then click Select fields to display to open the layout editor.

Chapter 7
Add Dynamic Components to Pages

7-87

When you create a layout and haven't selected any fields for it yet, you'll see the
Select fields to display option when you open the layout. (You won't see this
option if the layout is a duplicate.) You'll also see the templates that already exist
in the rule set listed as layout options. Click a template name if you want apply the
template to the layout, otherwise, click Select fields to display.

5. Add fields from the Fields palette to the layout.

The Fields palette lists all the fields and objects you can add to your layout.
Required fields (those that have the Required property set in the Fields tab) are
added to the layout by default. They also show as Suggested Fields in the Fields
palette, emphasizing that they might be important or relevant to include in your
layout.

To add a field or object, select its check box in the Fields palette or drag it from the
palette onto the drop target area on the right. The columns appear in the order
selected; use the handles to the left of each field if you want to re-order them. You
can also remove a field by clicking its Delete icon.

For example, here's what our SmallScreen layout might look like:

Chapter 7
Add Dynamic Components to Pages

7-88

Because Hire Date and Name are required fields, they've been added automatically to
the layout. For the purposes of this layout, we'll keep the Name field and remove Hire
Date. (Salary, another required field, has already been removed).

6. Return to the component's rule set and repeat the steps as required to create other
layouts, in our case, the MediumScreen layout.

Chapter 7
Add Dynamic Components to Pages

7-89

After a layout is created, you can include it in a display logic rule. You can use the
same layout in multiple logic rules.

Preview Different Layouts
When you define multiple layouts for a dynamic table or form, you might want to
preview how different layouts look when applied to your page. You can do this using
Layout Preview in a dynamic component's Properties pane.

Layout Preview forces the Page Designer to render the layout you select and ignore
the rules in the rule set. For example, if you created a layout that only managers can
see, you won't see it in the Page Designer if you're not logged in as a manager. But
you can use Layout Preview to override the display logic and render the page as it
would to managers.

To preview a dynamic component's layout:

1. Open the page in the Page Designer and select the dynamic table or form you
want to work with.

2. In the component's Properties pane, select the layout you want to preview in the
Layout Preview list.

Chapter 7
Add Dynamic Components to Pages

7-90

Selecting a layout will render it on the page. For example, when the manager layout is
selected, the page shows the Salary field, meant only for managers:

A preview icon () also appears next to the dynamic component, indicating that a layout
preview is currently active. Click the icon to see which layout is being previewed.

3. If you want to make changes to the layout, click Configure Layout in the Properties pane
and update the layout in the editor. Then return to this page to preview the layout again.

4. When you are done, click Reset to return to the default Resolved by display logic
option.

Chapter 7
Add Dynamic Components to Pages

7-91

Use Field and Form Templates
You can customize how a dynamic component is rendered on the page by editing
layouts to group fields together and to apply templates to the layout and fields.

Control How a Field is Rendered with Field Templates
You can customize how a field is rendered in a layout for a dynamic form or table by
applying a field template. A field template contains UI components, for example, text
fields or images, and defines their properties, such as styling details. Components in a
template can access the variables, constants, action chains, and event listeners
defined in the layout.

You might define a default template for a field, which is then applied to the field in
every layout. You can override the default template if you want to apply your own
template. Suppose the visual app has applied a template called BoldType to the
Update field. The Update field will have the BoldType template applied in every layout
where it appears. However, you can create a field template called Italics and override
the BoldType template, either in specific layouts or across all the layouts that you
create. You can apply your Italics template to multiple fields, as long as they are part of
the same layout.

To create a field template for a field in a dynamic form or table:

1. Open the layout's Templates tab.

The Templates tab displays a list of field and form templates that are already
defined for the artifact.

2. Click + Template. Select Field, specify the Label (the ID is generated for you), and
click Create.

Chapter 7
Add Dynamic Components to Pages

7-92

The new field template opens in the template editor, which contains a Components
palette, Structure view, canvas, and a Properties pane. In the Structure view, you'll see
that your new field template includes an automatically generated Input Text component.
This is used to display the data and display name when you apply the template to a field
in the layout.

3. In the Templates editor, add any other UI components you want to display in the template
by dragging them from the Components palette onto the canvas or the Structure view.

You can add more UI components above or below the Input Text component, or replace
the Input Text component with a different one, for example, to render a field using a
Rating Gauge component instead of an Input Text component.

In this image, you can see in the Structure view that the template contains an Icon
component and an Input Text component:

Chapter 7
Add Dynamic Components to Pages

7-93

4. Select a component on the canvas or in the Structure view, then edit its properties
in the Properties pane.

Just like when you are working in the Page Designer, the Properties pane might
contain several tabs for editing the component's properties. For example, if you
added an icon component to your template, you might decide to also create an
event in the Events tab. If you did this, an event listener and action chain would be
created for you, and you would then need to edit the action chain to define the
behavior.

Alternatively, you can edit the field template's code directly in the Code editor, and
use the editor's code completion to help you. For example:

<!-- Contains Dynamic UI layout templates -->
<template id="emailTemplate">

 <oj-input-text value="{{ $value }}" label-
hint="[[$metadata.labelHint]]"></oj-input-text>
</template>

After you've created the template, click < Templates to view your template added to
the list of field templates in the Templates tab. From here, you can open and duplicate
the templates you've created.

Apply a Template to a Field
Once you've defined a field template, you can apply it to a field in a dynamic form or
table's layout, making it the default template applied to that field in every layout in that
rule set.

To apply a template to a field in a layout:

1. In the rule set editor, click the name of the layout name you want to work on.

The center pane of the layout editor lists the fields that will be displayed in the
layout and any templates that are applied to them (as shown in the image for the
phoneNumber field). If you duplicated an existing layout, your new layout might
already list some fields, or have templates already applied to fields.

Chapter 7
Add Dynamic Components to Pages

7-94

2. Select the field you want to apply a template to.

3. In the field's Properties pane, select a template from the Template drop-down list.

If no template has been applied to the field, you can select a template in the list (as in this
image):

Chapter 7
Add Dynamic Components to Pages

7-95

If the field already has a field template applied to it (you'll see the template name
next to the field name), you'll see a notification in the Properties pane that a
default template has been defined for the field:

If you want to change the field's template only in the current layout, click Override
in the Properties pane, then select another template from the drop-down list. Or,
click Create to define a new template. If you don't want a template applied to the
field, select None in the drop-down list.

Chapter 7
Add Dynamic Components to Pages

7-96

If you want the changed template applied to the field in every layout in the rule set, click
Set as rule set default in the Properties pane. You can click Reset at any time to re-
apply the default template.

Start an Action Chain from a Field
You can start an action chain when an event occurs in a field by adding a component event to
the field in a field template.

For example, you might want to display some additional details or options when someone
changes the value in one of your form fields. You can add an event that's triggered when the
value changes, and start an action chain that retrieves the data and displays it in your page.
The Quick Start option in the component's Properties pane can help you quickly create the
event, event listener, and action chain. You can also use the event to start action chains that
are already defined in the layout.

When creating an action chain, you can use variables and constants defined in your layout,
and create new ones if you need them.

To start an action chain from a field:

1. Open the Templates editor for your layout and click the field template you want to edit.

The field template opens in the Template editor.

2. Select the text field, then open the Events tab in the Properties pane.

3. Click + Event Listener and select the On 'value' option.

Chapter 7
Add Dynamic Components to Pages

7-97

The event listener for the On 'value' event is a quick start that suggests an event
for your component. In the case of a text field, the suggested event is value, which
is triggered when the text field's value changes, for example, when someone types
in the field. If you don't want to use the suggested event, you can select + Create
in the drop-down list and select a different event. Make sure the event name starts
with a lowercase letter, though camel case is allowed. Hyphens are not supported.

When you select the Quick Start option:

• an event is defined for the text field

• a new action chain is created

• an event listener is created that will trigger the new action chain when the
event occurs

• you are navigated to the new action chain in the Action Chain editor.

Chapter 7
Add Dynamic Components to Pages

7-98

4. In the Action Chain editor, define the action chain's properties in the Properties pane. You
can edit the default ID, add a description, and configure the action chain's input
parameters and return type.

5. Create the action chain by adding actions from the palette. Depending on the actions you
add, you might also need to create variables used in the action chain or layout and define
other properties for the actions.

If you navigate back to the template editor, you'll see the event details in the field's Events tab
in the Properties pane. You can add more action chains that will be triggered by the same
event, or you can add different events to the same component.

Chapter 7
Add Dynamic Components to Pages

7-99

Control How a Form Layout is Rendered
You can apply a form template to layouts to control how it's rendered, including which
fields you want the layout to contain and how they are displayed in the layout.

For example, you might have a page that uses a dynamic form (not table) to display a
detail view that includes sales figures, and you want the form to always display a
Rating Gauge component, regardless of which fields are defined in the layout. You
could create a 'Sales' form template that includes the Rating Gauge component, and
then apply the template to the form. You can re-use the template in other dynamic
forms in the layout's rule sets, but templates can't be shared between rule sets in
different layouts.

To create a form template for a dynamic form:

1. Open the layout's Templates tab.

The Templates tab displays a list of field and form templates that are already
defined for the artifact.

Tip:

If you've already created a form layout and want to create a template for
it, you can open the layout in the rule set editor, click Use Template, and
then select Create a New Template in the Use Layout Template window.

2. Click + Template. Select Form, specify the Label (the ID is generated for you),
and click Create.

Chapter 7
Add Dynamic Components to Pages

7-100

The form template opens in the template editor, which contains a Components palette,
Structure view, canvas, and a Properties pane.

In this image, you can see that the canvas has two read-only template sections that are
generated automatically: Additional Fields and Remaining Required Fields. These
fields are used to display the data and display names for the fields defined in the layout.
These template fields render all the fields in the layout, so you don't need to modify the
template each time you change a layout.

3. In the Form Template's Properties pane, click + Add item under Extra and select a field.
Extra fields are defined in the template, not in the layout. You will want to add a field as
an Extra field when you know it will be needed by the layout. Each field you add in the
Extra section can be used in the form and will always be available when the template is
applied.

Each Extra field must be mapped to a component if you want it to appear in the form.
This image shows the Properties pane after the certifications field has been added to
the template as an Extra.

Chapter 7
Add Dynamic Components to Pages

7-101

4. Drag the component you want to add from the Components palette and position it
in the Structure view or on the canvas.

Chapter 7
Add Dynamic Components to Pages

7-102

You can add components above and below the read-only template fields, but not within
them. In the Structure view of this template, you can see an Input Text component that
was positioned above the Additional Fields template in the Form Layout.

5. While the component is selected on the canvas or in the Structure view, open the
component's Data tab in the Properties pane and bind the component to the Extra
reference field.

To help you select the reference field, you can click to open the Expression Editor, or
 to open the Variables picker.

Chapter 7
Add Dynamic Components to Pages

7-103

To write efficient expressions that handle situations where a referenced field might
not be available or the field's value could be null, see How Do I Write Expressions
If a Referenced Field Might Not Be Available Or Its Value Could Be Null?

After you've added the components and fields to your form template, you can apply the
template when you edit a layout in the Rule Sets editor.

Apply a Template to a Form
To apply a form template to a dynamic form:

1. In the rule set editor, click the name of the layout you want to work on.

2. While the form is selected, click Use Template in the Properties pane.

If a template has already been applied to the form and you want to switch to a
different one (or remove it), click Select in the Properties pane.

3. Select the template you want to apply in the Use Layout Template window. Click
Select.

Chapter 7
Add Dynamic Components to Pages

7-104

The Use Layout Template window lists the available templates you can apply to your form
layout.

You can select Create a New Template to create a new form template.

When a template is applied to a form layout, the template name and the fields defined in the
template are displayed above the list of fields in the layout. In this image of the layout editor,
you can see the header displays the name of the template applied to the form layout
(advFormTemplate) and the fields defined by the template (name).

If the template displays a field you don't want to appear in your form, you'll need to select a
different template, or click Select in the Properties pane and select No Template in the Use
Layout Template window to remove the template.

Chapter 7
Add Dynamic Components to Pages

7-105

Add and Group Fields in Dynamic Form Layouts
When creating a layout for a dynamic form, you can group the form's fields so that they
are displayed together as a single entity in the layout.

For example, you might create an address group that contains the name, address, city,
state, country, and postal code fields. You can then apply conditions to the group that
control when the group is displayed. A group also makes it easy to add several fields
to a different layout in one step, rather than adding them individually.

You can define properties for a group (for example, a group label) and for individual
fields in a group (for example, to specify column spans for fields to create complex
dynamic form layouts).

To group fields in a dynamic form layout:

1. Open the Rule Sets tab for the dynamic form you want to work with. You can
select a standalone dynamic form or one that's part of a dynamic container.

To do this, select a layout in the Navigator's Layouts tab, then find the dynamic
form in the Rule Sets tab (as shown here); click the form on a rendered page in
the canvas area; or select the form from the Properties pane.

2. Open the form you want to edit.

Use the icon in the toolbar if you want to duplicate the current layout.

3. In the layout diagram, select the fields that you want to group together, either by
holding down the CMD key (on macOS) or the Ctrl key (on Windows).

4. Click Group Fields in the Properties pane, or in the toolbar.

Chapter 7
Add Dynamic Components to Pages

7-106

The selected fields are grouped under a new folder in the layout diagram:

Chapter 7
Add Dynamic Components to Pages

7-107

5. Enter a name for the new group. Click to save the group name.

6. Optionally, use the Properties pane to set properties for the group. You might even
click the Always link to set conditions that determine when the group is displayed
in a layout. The default setting is to always display the group.

After a group is created, you can still use the handles for fields to drag them into and
out of a group.

Edit a Field's Properties
When you edit a field's properties in a layout, your changes only apply to the field in
the current layout. You might want to do this to override a field's properties in a specific
layout, for example, to mark a field as Read Only. If you want to edit a property so that
it's the same in all layouts—for example, if you want it to be Read Only always— you
should edit the field's properties in the Fields tab.

Set a Field to be Read Only
You can set a field to be Read Only when you don't want its value to be changed by
everybody. For example, you might want only managers to be able to change an
employee's hire date. You would then set the field to be Read Only in all layouts,
except the one seen by managers.

• To edit a field's Read Only property for all layouts:

Chapter 7
Add Dynamic Components to Pages

7-108

1. In the layout's Fields tab, select the field you want to work with.

2. Edit the field's Read Only property in the Properties pane.

• To edit a field's Read Only property in a particular layout:

1. In the Rule Set editor, open the layout and select the field in the center pane.

2. Edit the field's Read Only property in the Properties pane.

If the field's Read Only property was set in the Fields editor to apply to all layouts,
you would see a warning as shown here when you try to edit the property in a
particular layout:

Chapter 7
Add Dynamic Components to Pages

7-109

The Read Only property might not be editable if you select a field that has a
template applied to it. You would need to remove the template if you want to
edit the property in the layout.

Set How User Assistance is Rendered in a Layout
You use the User Assistance Density property to set how a field's user assistance text
such as messages, help text and hints are displayed in the form.

To edit a field's User Assistance Density property in a layout:

1. In the Rule Set editor, open the layout and select the field in the center pane.

2. Select the field's User Assistance Density property from the dropdown list in the
Properties pane.

Chapter 7
Add Dynamic Components to Pages

7-110

You can choose from three options:

• compact - With this option, user assistance text is displayed so that the layout is more
compact, such as using a popup for messages and a required icon to indicate a
Required field.

• efficient - With this option, any user assistance text is shown inline under the field.
The form is rendered with space under the field for the user assistance text. This is
the default option.

• reflow - With this option, any user assistance text is shown inline under the field. The
form is rendered with no space under the field for the user assistance text. The space
below the field expands to display the user assisstance text when the insert cursor is
in the field.

This image of a form can help you visualize how these settings affect how fields are
rendered:

Chapter 7
Add Dynamic Components to Pages

7-111

In this form, the User Assistance Density property for the fields are set to different
values:

• the Name field is set to efficient,

• the Job Title field is set to reflow,

• the Last Updated By field is set to reflow, and

• the Id field is set to compact.

You can see that both the Job Title and Last Updated By fields are set to reflow,
but that the space below the Last Updated By field, where the insert cursor is) has
expanded so that the user assistance text can be rendered below it.

Set a Field as Required
When you set a field as required, users won't be able to save a record until the field's
value is entered. You can set a dynamic form's field to be required in all layouts or in a
particular layout, but the Required property for a dynamic table applies to all layouts
and can only be set from the Fields tab.

• To edit a field's Required property for all layouts (dynamic forms and tables):

1. In the layout's Fields tab, select the field you want to work with.

2. Edit the field's Required property in the Properties pane.

Chapter 7
Add Dynamic Components to Pages

7-112

Fields that are marked as required show as Suggested Fields when you're building a
layout to emphasize that they might be important or relevant to include in your layout:

• To edit a field's Required property in a particular layout (only for dynamic forms):

Chapter 7
Add Dynamic Components to Pages

7-113

1. In the dynamic form's Rule Set editor, open the layout and select the field in
the center pane.

2. Edit the field's Required property in the Properties pane.

If the field's Required property was set in the Fields editor to apply to all
layouts, you would see a warning as shown here:

The Required property might not be editable if you select a field that has a
template applied to it. You would need to remove the template to edit the
property in the layout.

Chapter 7
Add Dynamic Components to Pages

7-114

Use Conditions to Show or Hide Fields in a Layout
Fields in the active layout are displayed by default, but if you want to hide a field or group in a
layout in some cases, for example, to hide it from everyone except managers, you can use
the field's Show Field property to set conditions that determine when it is displayed. When
you add conditions, the field is displayed only when the conditions you set are true. The
conditions are only applied to the field in the layout you are editing.

To set display settings for a field in a layout:

1. In the Rule Set editor, open the layout and select the field in the center pane.

When you select the field, you can see the field's properties in the Properties pane. By
default, the Show Field property is set to Always, so the field is always displayed.

2. In the Properties pane, click Always under the Show Field property to open the Edit
Show Field Condition dialog box.

3. Define the field's conditions by selecting attributes, operators, and values in the condition
builder in the dialog box. Click Save.

You can add more conditions and group conditions to make the rule more precise. For
example, you may want to display an extra field only if the user is authenticated AND is a
manager. You would then create a rule with two conditions, and select Match All to
require that both conditions are true.

Chapter 7
Add Dynamic Components to Pages

7-115

Configure How Columns Render in a Dynamic Table's Layout
When you use a dynamic table in a layout, you can specify whether a field's data in the
table should be sortable by its column header, and configure the field column's width to
change the overall table display. You can also "freeze" table columns, so that a
column's content remains visible, and a horizontal scroll bar is used to scroll the table's
content.

Setting these properties for a field in a layout only applies to the current layout. Other
layouts are not affected.

To configure columns in a dynamic table's layout:

1. In the Rule Set editor, open the layout and select the field in the center pane.

2. To manage the field's sortability, set a value for the Sortable property.

• Select enabled to enable sorting on the column.

• Select disabled to disable sorting on the column.

• Select auto to enable column if the underlying model supports sorting.

3. To set the default width for the field's column on the table, set a value for the
Width property. It can be a percentage or px value (for example, 100px).

You can also use expressions to control a column's size. For example, let's say
you want a column to be 50 percent of the entire table. In this case, you could
define a constant in the layout's Variables tab (for example, a string type constant
called Default_Width, with a default value of 50%). Then, hover over the Width
property and open the expression editor, define an expression using the
Default_Width constant, and click Save:

Chapter 7
Add Dynamic Components to Pages

7-116

To further control the column's width, use the Minimum Width and Maximum Width
properties to set the minimum and maximum widths of the column when the table is first
rendered on the page. A user can manually resize the column width to make it narrower
or wider.

4. To "freeze" a column, select a value for the Frozen Edge property:

• Select start to pin the column at the beginning, so that a user won't scroll horizontally
past the column.

• Select end to freeze the column at the end, so that the column is locked in view.

For details on how to set frozen columns in a table, see Frozen Columns in the Oracle
JET Developer Cookbook

Set a Field to Display as a Text Area in a Form
If a field's value is a long string, for example, when a field is used to display a long
description, you can configure the field so that it is rendered as a multi-line text area in forms
instead of the default single-line text field.

• To set a field to display as a text area in all layouts:

1. In the layout's Fields tab, select the field you want to work with.

2. Set the Format property in the Properties pane to long-text.

Chapter 7
Add Dynamic Components to Pages

7-117

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=table&demo=frozenColumnTable
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=table&demo=frozenColumnTable

Notice that the field now has a blue dot bar next to it to indicate the field has
been modified.

When you switch the format to long-text, two additional properties are
displayed in the Properties pane.

3. Set the Rows property to the number of rows to display in the form by default.

4. Set the Max Rows property to the maximum number of rows you want to be
displayed in the form. The text area will expand to the Max Row number if
needed. The maximum number of rows defaults to three if you don't set a
number in the Max Rows property.

Chapter 7
Add Dynamic Components to Pages

7-118

• To set a field to display as a text area in a particular form layout:

1. In the Rule Set editor, open the layout and select the field in the center pane.

2. Set the Rows property to the number of rows to display in the form by default.

3. Set the Max Rows property to the maximum number of rows you want to be
displayed in the form. The text area will expand to the Max Row number if needed.
The maximum number of rows defaults to three if you don't set a number in the Max
Rows property.

Chapter 7
Add Dynamic Components to Pages

7-119

Add Converters and Validators to a Field
You can add converters and validators to a field, including some built-in ones provided
by Oracle JET. You might want to add a converter to a field to change how the field's
data is displayed in your page, for example, to display a date as month, day, and year
instead of numerically. You might also want to add a validator to check if a value
entered in a field is valid, for example, to check if a date is not earlier than the current
date.

You can find details and examples in the Oracle JET Developer Cookbook:

• Built-in Oracle JET converters

• Built-in Oracle JET validators

To add a converter or validator to a field:

1. In the Fields tab, select the field you want to work with.

2. In the Properties pane, click Add next to Converter or Validators, then select one
from the list.

Chapter 7
Add Dynamic Components to Pages

7-120

https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=converters&demo=dateTimeConverter
https://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=validators&demo=dateTimeRangeValidator

A default option is selected based on the field's type. For example, the default validator
for an employee's Email field that uses the Email format is the Expression Validator:

Chapter 7
Add Dynamic Components to Pages

7-121

3. Change the type if needed, enter additional details, then click Add Validator or
Add Converter.

The details you'll need to enter will depend on the validator or converter you use,
so you might need to consult the samples and documentation for the specific
options. Use the JSON editor if you want to add options other than those shown
on the UI. For the Length Validator shown here, the options specify how to count
the characters and the minimum and maximum string lengths allowed:

You can also create your own validator or converter by selecting the From Code
option. With this type, the path field specifies the location of a JavaScript file that
implements the custom validator or converter; the name field specifies the name
of the constructor; and the Option field specifies the options specific to the custom
validator or converter, as shown here:

Chapter 7
Add Dynamic Components to Pages

7-122

In this example, the RelativeDateTimeConverter JS file implements a converter with a
constructor named RelativeDateTimeConverter and a relativeField option whose
value can be, for example, day, week, month, and year. The implementation would
convert a date value like 2014-01-02T20:00:00 to a relative date value, like Today,
Tomorrow, This Week, Next Week, and so on, based on the value of the relativeField.

It's possible to update your validator and converter options any time after they've been

added. Hover near the validator or converter name, click , and make your updates.
You can add as many validators as you want, but a converter can only be replaced
because a field can have only one converter.

Add a Dynamic Container to a Page
A dynamic container lets you display content in individual sections, or logical regions of the
page based on conditions that are evaluated at runtime. You define the UI elements or

Chapter 7
Add Dynamic Components to Pages

7-123

components displayed in each section, and then set the display logic conditions to
determine which sections are displayed.

The display logic for determining what's displayed in a dynamic container is defined
using cases. A case is similar to the rule sets used in dynamic forms and tables, but
instead of selecting which fields to display, you select which sections to display. When
you define a case, you specify the conditions for the case, and the sections you want
displayed in the container when that condition is met. For each case, you can display
any number of sections, so if a case defined two sections, you’d see two sections in
the container.

The easiest way to learn how to configure a dynamic container is to examine a real
use case. Let's say you want to create a page that lets users toggle two layouts, one
showing a form for adding an employee and another showing a table of employees. To
do this, you'd create a dynamic container with two sections: one for a dynamic form
and another for a dynamic table. You'd then add a button that the user can click to
toggle the sections displayed in the dynamic container.

Note:

Before you begin, make sure you've defined a data source, such as a
business object or a service that calls a data object through a service
connection. See Work with Business Objects or Manage Service
Connections.

To add a dynamic container component to a page:

1. With your page open in the Page Designer, drag the Dynamic Container from the
Components palette onto your canvas.

In this image, you can see one section (Default Section) automatically
created for you when you added the dynamic container. The Default Section
section doesn't have any content yet, so you see the section's name on the
canvas instead.

Chapter 7
Add Dynamic Components to Pages

7-124

2. Create sections for the dynamic container. In our example, we'll create two sections, one
for a dynamic form and another for a dynamic table.

a. In the Display Logic section in the Properties pane, click next to Sections under
Case 1, then click + New Section to create a new section.

Tip:

You also have the option to use existing fragments as sections in your
dynamic container. Fragments tagged as pageContent (default tag) are
automatically listed in the Add Section drop-down (see Add Fragments as
Sections in a Dynamic Container).
You'll also see existing but unused sections, in addition to the Default
Section.

b. In the Create Section dialog box, give the section a name (for example,
DynamicFormSection) and click OK.

c. From the Components palette, drag the Dynamic Form and drop it onto the section
on the canvas, select the Quick Start you want to use in the Properties pane, and
follow the prompts to associate the dynamic form with a data source and a rule set.
Click Finish.

Chapter 7
Add Dynamic Components to Pages

7-125

Tip:

Use the Data palette to try an alternative design approach, where
you start with your data source's REST endpoints and leverage
components that Visual Builder deems best to optimally display your
data. For example, to display a create employee form, you can drag
the Create endpoint from the Data palette onto the canvas. When
the Render as pop-up appears, select an option (in this case,
Create Form Dynamic), then follow the steps in the Configure as
Create Form quick start to set up your form.

If you used the quick start to bind your dynamic form to a data source, the
form will be rendered on the page with the fields you selected. You can
change the form's fields by editing the dynamic form's layout in its rule set. If
the form isn't bound to a data source, the section will contain a placeholder for
the form because there won't be any data to render the form.

Click Dynamic Container in the Structure view to see the dynamic form
added as a component to the page and its properties displayed in the
Properties pane:

Chapter 7
Add Dynamic Components to Pages

7-126

d. In Case 1 in the Properties pane, click again, then click + New Section to create
more sections; in our case, a section for a dynamic table.

e. In the Create Section dialog box, give the section a name (for example,
DynamicTableSection) and click OK.

f. Drag the Dynamic Table from the Components palette onto the new section, click the
Configure Layout quick start in the Properties pane, and follow the prompts to
complete the setup. Click Finish.

Chapter 7
Add Dynamic Components to Pages

7-127

Tip:

Similar to using the Create endpoint to display a create form, you
can use the Get Many endpoint to display your employee data in a
dynamic table. From the Data palette, drag the Get Many endpoint
onto the canvas, choose Table Dynamic in the Render as pop-up,
then follow the steps in the Configure Layout wizard to set up your
table.

After using the quick start to bind the dynamic table to a data source, the Page
Designer will render the table with the fields you selected. Again, if you don't
bind the component to a data source, your dynamic table won't have any data
to actually render on the page. Click Dynamic Container in the Structure view
to see the newly added section:

3. Set up the UI component and add the case logic to display your sections. Here,
we'll add a Button component and a page variable to toggle the sections in the
dynamic container.

a. In the Variables tab, create a variable that you can use in your conditions. For
example, a Boolean-type variable called layoutFlag, with the default value
set to true.

b. In the Page Designer tab, drag a Button component from the Components
palette and drop it just above the Dynamic Container. Change its Text in the
Properties pane to Toggle Layout.

c. In the Button's Events tab, add an event listener for the ojAction event.

d. Set the name of the new action chain as ToggleLayout, then build the action
chain:

• Drag and drop an If action onto the canvas and set its Condition to
[[$page.variables.layoutFlag === true]] in the Properties pane.

Chapter 7
Add Dynamic Components to Pages

7-128

• Drag and drop an Assign Variable action onto the Add Action area of the if
{{ $page.variables.layoutFlag === true }} block. Select layoutFlag from
the Variable list and set the Value to false.

• Drag another Assign Variable action and drop it onto the Create Branch area at
the bottom of the if {{ $page.variables.layoutFlag === true }} block (the
Create Branch area appears when you hover over the If action with another
action). Select Assign Variable in the else block, then select layoutFlag from
the Variable list and set the Value to true.

4. Return to the Page Designer to create another case in the dynamic container.

a. Select the Dynamic Container component to view its properties in the Properties
pane.

b. In the container's General tab, click + Case to create another display logic condition,

called Case 2. You can use to update the name as required.

You can also duplicate a case if you want to create a new case containing the same
sections.

When you create the new case, it is added as the first case in the Display Logic tree,
before Case 1. Remember cases are evaluated from the top down. So in our
example, at runtime the conditions for Case 2 will be evaluated first.

c. In Case 2, click + next to Sections and select the sections you want to display,
DynamicTableSection in our example. Note how this previously defined section is
available for selection.

When you do this, you'll only see Case 2 rendered in the Page Designer, so in the
dynamic container you'll only see DynamicTableSection, which contains the dynamic
table:

Chapter 7
Add Dynamic Components to Pages

7-129

d. In Case 1, click next to DynamicTableSection in the list of sections to
remove it from Case 1.

Chapter 7
Add Dynamic Components to Pages

7-130

5. Preview how the different cases in your dynamic container will look using Layout Preview.
Layout Preview forces a case to be temporarily rendered in the page for design
purposes, regardless of its position in the case order and its condition.

a. Click the icon for Case 1 in the Display Logic section:

Chapter 7
Add Dynamic Components to Pages

7-131

Now the sections in Case 1 (Default Section and DynamicFormSection) are
rendered on the canvas instead of the section in Case 2
(DynamicTableSection).

b. Click Reset Override (or again) to remove the preview.

6. In the Condition field for Case 1, click to open the Expression Editor and
change the default condition Always Show to the
expression $variables.layoutFlag == true. In the Condition field for Case
2, enter $variables.layoutFlag == false:

Chapter 7
Add Dynamic Components to Pages

7-132

7. Click Preview to preview the page, then click Toggle Layout to toggle the sections
displayed in the dynamic container.

Add Fragments as Sections in a Dynamic Container
You can use existing fragments to define sections in a dynamic container. You also have the
option to define a fragment as preferred content for sections.

1. With your page open in the Page Designer, drag the Dynamic Container from the
Components palette onto your canvas. Here's a dynamic container with the Default
Section removed.

Chapter 7
Add Dynamic Components to Pages

7-133

2. Add a fragment as a section to the dynamic container. Make sure the fragment
already exists and is tagged pageContent, so it becomes available for selection
in a dynamic container.

• To add an existing fragment as a section, in the Display Logic section, click

 next to Sections under Case 1 (or other Cases as defined), then select a
fragment in the drop-down list. This list displays all pageContent fragments
(default tag), including the Shell Header and Shell Footer created
automatically by web app templates. Other unused sections (including the
Default Section) are also listed.

Chapter 7
Add Dynamic Components to Pages

7-134

• To set a particular fragment as preferred content for all sections in the dynamic
container:

a. From the Section Fragment list, select the fragment you want to make available
to a section. This list displays all pageContent fragments (default tag).

Chapter 7
Add Dynamic Components to Pages

7-135

b. In the Display Logic section, click next to Sections under Case 1 (or
other Cases as defined), then select the preferred fragment in the drop-
down list. Only the fragment specified as the Section Fragment can be
added to the section (in addition to any unused sections).

Let's say you have a foldout layout with a dynamic container and you want to use
fragments as sections to define different foldout panels. You would simply select
your fragment (Panel Fragment, in our example) as a section. Here's an
example of a panel fragment used to add two sections, each to define two panels
in a foldout layout:

Chapter 7
Add Dynamic Components to Pages

7-136

3. Select each section and configure its content (fragment) to suit your requirements. For
example, select the first Panel Fragment and change its title to make the panel more
identifiable, say, to User Panel. Then click Fragment Container in the Structure view
to view the contents of the fragment being used as the User Panel and configure it as
desired.

Repeat the steps to configure the second Panel Fragment; this time, say as Contact
Panel.

If you click Return to Page, your dynamic container now displays the two panels as
configured:

Chapter 7
Add Dynamic Components to Pages

7-137

Re-Order a Dynamic Container's Content
Besides defining new cases and sections for a container, you can also change the
order the sections are displayed in the container. Just use the Move Up and Move
Down arrows under Sections for a case:

You can also use the icon to remove a section from a case. The removed section
will still be available to use in other cases for dynamic containers in the page.

Guidelines for Working with Sections
Here are some things to keep in mind while working with sections:

• A section is the full width of the container. That is, while you can't have two
sections side-by-side, the container can stretch to any height required to
accommodate all the sections you define. If you want to lay out sections side-by-
side, you'll need to change the container's default layout.

• In addition to simple components like text fields and images, you can also add
more complex components to your sections. For example, you might include fields
for displaying data from a service, a button that starts an action chain in your
visual app, a page fragment, or even other dynamic components.

• Components in a section can access variables and constants, and trigger events
to start action chains.

• When working with sections, sometimes it’s easier to work in the Structure view,
which helps you more readily visualize the position of components. You can also
drag components within the Structure view to reorganize them.

Change a Dynamic Container's Layout
Dynamic containers display sections vertically by default. That is, sections are
rendered in a single column, one on top of the other. You can change this layout to
show them instead in a row using container templates.

Container templates help lay out sections in any layout other than the default. You can
use them to arrange sections within a dynamic container however you like, even
adding other components, including dynamic components and fragments. So you
could include a fragment in your container template, and that fragment could include a
dynamic form and other components.

Chapter 7
Add Dynamic Components to Pages

7-138

The preceding image shows a dynamic container's sections stacked vertically. Once you
create a container template and switch its layout, the sections are placed next to each other.
When they run out of space on the row, they automatically wrap to the next row (as shown at
the bottom of the image).

To change the layout of sections in a dynamic container:

1. With your page open in the Page Designer, select the Dynamic Container component to
view its properties in the Properties pane.

2. In the General tab, click Create next to Container Template.

Chapter 7
Add Dynamic Components to Pages

7-139

3. Enter a name for the container template (for example, Row Template) and click
OK, then click Go to Template.

4. When the template opens in the template designer, click Flex Row next to
Template Content in the Properties pane.

5. In the Flex Row's properties, look for the Direction field, which by default is set to
Vertical.

Chapter 7
Add Dynamic Components to Pages

7-140

6. Select Horizontal. Take note of the oj-sm-flex-direction-column class, which sets the
direction to a column and is included by default, is removed from the Class field.

7. Click Return to Page to see your sections laid out horizontally in a row, rather than
vertically in a column.

Create Fields For a Layout
If you'd like to use a field in your layout that isn't defined in your data source (either a
business object or a service definition), you can create fields that you can set to variables, or
to expressions that reference other fields.

If the existing fields don't meet your needs, you could create calculated fields or virtual fields.
You would use a calculated field when you want to use an expression, set a default value,
modify labels, and set read-only and required properties. You would use a virtual field if you
want a field that has editable sub-fields.

Chapter 7
Add Dynamic Components to Pages

7-141

Note:

The fields you create are only used in your layouts; creating a field doesn't
create a field in your business object or your Oracle Cloud Application, and
doesn't change the service definition. For details on creating fields in your
business object, see Create and Edit Business Objects. For details on
creating fields in an Oracle Cloud Application, see Define Fields in
Configuring Applications Using Application Composer.

Create a Calculated Field
You can use a calculated field when you want to have a single field in your layout that,
for example, contains some static string or an expression that is computed from the
values of other referenced fields or objects.

Suppose your data source has separate fields for a user's first name and last name.
You could create a custom field that combines these fields into a single field called
fullName and use that in your layouts instead. The value of this new field is calculated
using an expression like [['Name: ' + $fields.firstName.value()
+ $fields.lastName.value()]]. In a calculated field, referenced fields defined in the
expression are read-only, so they can't be edited in a layout.

To create a calculated field:

1. Open the dynamic table or form you want to work with in the Layouts tab.

2. Click the Fields tab, then + Custom Field.

Chapter 7
Add Dynamic Components to Pages

7-142

https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=s20032784

3. Enter a label for the field (the field's display name). When you enter the label, a
suggested ID is generated for you. The ID can't be changed later.

4. Select the field type. When selecting a type for a calculated field, you should consider the
types of the referenced fields you'll include in the expression.

5. If you want to create an expression and use an existing field, click Add next to
Referenced Fields, then select a field in the list. Click Add Field to add it.

6. Define an expression in the Value property. The expression can include variables, static
strings, and referenced fields.

If you want to use a single variable, click the arrow to open the Variables picker.

Chapter 7
Add Dynamic Components to Pages

7-143

If you want to use an expression, click to open the Expression Editor. In the
Expression Editor, you can select field variables in the Variables pane to add them
to your expression. You can also add text strings to your expression by typing in
the editor. Click Save.

For example, here's an expression that combines the firstName and lastName
fields:

Chapter 7
Add Dynamic Components to Pages

7-144

The expression you create in the editor is added to the Value field, for example:

[[$fields.firstName + ' ' $fields.lastName]]

You can also use the $fieldmetadata variable to access field-level metadata. For
example, to invoke a function to calculate a field's default value based on its metadata,
your expression might look something like this:

[[$functions.getDefaultValue($fieldMetadata, $componentContext)]]

where $fieldMetadata represents the metadata of the field.

To write efficient expressions that handle situations where a referenced field might not be
available or the field's value could be null, see How Do I Write Expressions If a
Referenced Field Might Not Be Available Or Its Value Could Be Null?

7. Optionally, you can click Add next to Converter and Validator to add suitable built-in
convertors or validators, or create a custom one. If you're using a referenced field, you
might want to add converters or validators so that, for example, dates are formatted the
way you want, or to make sure a string in a field is not too long.

Your custom fields (and any fields that you have modified, for example, in the Properties
pane) are indicated by a gray bar to the left of the field name. In this screenshot, you can see
the gray bar next to fullName:

Create a Virtual Field
You might want to create a virtual field if you would like to combine multiple fields together
into a single field that you can add to your layouts. For example, you can create a single field
that combines several contact details stored in different fields in the layout. A virtual field is
similar to a calculated field, except:

• the referenced fields can be edited in the layout; and

• the virtual field is rendered using a field template.

When you add a virtual field to a layout, you'll define a field template to display it. You'll need
to create the field template if it doesn't exist. The template will contain components for each
of the referenced fields that you want to display in the layout.

To create a custom virtual field:

1. Open the dynamic table or form you want to work with in the Layouts tab.

Chapter 7
Add Dynamic Components to Pages

7-145

2. Click the Fields tab, then + Custom Field.

3. Enter a label for the field (the field's display name) and select the Object (Virtual
Field) type. Click Create.

4. In the Properties pane, click Add next to Fields and select the fields you want to
include as reference fields. You can add any field in your layout as a reference
field, including sub-fields of objects.

Chapter 7
Add Dynamic Components to Pages

7-146

5. Select a field in the Sort By drop-down list to define the field that should be used for
sorting when the virtual field is used in a table.

Only one field in a virtual field can be used for sorting. For example, if the virtual field
FullName consists of a FirstName and LastName field, select LastName if you want it to be
used when the table is sorted by FullName. The Sort By field will be used for sorting
regardless of how the virtual field is rendered in the table by the template. Remember,
you need to use a field template to display a virtual field in a component.

The table won't be sortable by the virtual field if you don't select a Sort By field.

6. In the Rule Sets tab, open the layout in the dynamic component where you want to add
your field.

7. Add the virtual field to the layout. You can drag it from the Fields palette into the center
pane, or select it in the list and then adjust its position in the center pane.

8. While your virtual field is selected, define a field template for the virtual field when you
add it to a layout.

If a suitable field template for the virtual field already exists, you can select it in the
Template drop-down list in the Properties pane.

If no template exists, click Create and enter a name for the template in the Label field.
Click Create to open the new template in the editor.

Chapter 7
Add Dynamic Components to Pages

7-147

In the template editor, add a component and define the properties for each
referenced field in the virtual field that you want the template to display. Click
Return to layout when you're finished.

The template is applied to your virtual field.

You can add the virtual field to other layouts and apply the same field template, or
create other field templates that you apply to the virtual field.

Create and Manage Flows
You can create a flow to group pages that you want to treat as an independent unit
that performs some function in your application, for example, a flow that contains
pages and artifacts to register a new user. Your application can have multiple flows,
even a flow within a flow.

Note:

Typically, you create flows in the Page Designer, but if you want to visually
build flows with pages and action chains, use the Flow Diagram view. See
Add Pages and Action Chains to a Flow in Diagram View.

To create a flow in your application:

1. Open your web (or mobile) application in the Navigator, then click the Create Flow

icon () next to the application node:

2. In the Create Flow dialog box, enter a name for the flow and click Create.
Creating a flow creates a start page for that flow automatically and sets it as the
flow's default page.

Depending on your application type, one or more flows are created by default
when you create an application. For example, in web apps that use the None
navigation style, the default flow is named main. The main-start page (created
as the start page for the main flow) is set as the default page for that flow, and the
main flow is set as your application's default flow, details you can view in the app's
Settings editor.

You can expand a web (or mobile) application's flow in the Navigator to see pages
and artifacts within a flow:

Chapter 7
Create and Manage Flows

7-148

Artifact Description

Flow artifact Open the flow artifact in the Designer to edit metadata such as variables,
types, action chains, and JavaScript functions that can be used on every page
in the flow. Click the flow's Settings editor to set the default page in the flow.

You can expand the flow artifact in the Navigator to see pages contained in

the flow. To create a new page in the flow, click the Create Page icon ()
next to the flow artifact, then Create Page.

To embed pages within other pages, you can create sub-flows (see Embed a
Flow Within a Page).

Page artifact Open each page artifact in the Designer to edit the page’s layout and other
page metadata.

Each flow has access to the application's Resources folder containing images and
translation files that can be used in the flow's pages. See Work With Application
Resources.

Manage Flow Settings
Each flow in your application includes a Settings editor, which you use to manage its default
page as well as imported resources such as custom components, CSS files, and modules.
Just as with page-level settings, you can manage security and create flow-scoped translation
bundles. When you create a flow, a start page is automatically created and set as the entry
page for the flow. You can change the flow’s default entry page in the flow artifact's Settings
editor.

Because an application can have multiple flows, you configure settings for each flow
individually, so your settings apply only to pages within that flow.

To configure settings for an application's flow, open the flow, then click Settings to open the
Settings editor:

Here's how you can use the different flow-level settings:

Chapter 7
Create and Manage Flows

7-149

Setting Description

General tab Manage general flow settings:

Default Page Default page of the flow. Every application has a default flow
(defined in the root page's settings), and every flow has a default
page. The default page serves as the entry page for the flow and,
by default, is set to the start page created automatically when the
flow was created (for example, the main-start page created
for the main flow). When the app is run, the default page of the
default flow is rendered.

Select a page to change the flow's default page. You can click
Create to create a page directly from here and set it as the flow's
default page, then use the Go to Page link to design the page in
the Page Designer.

Description Optional description of the flow.

Imports tab Manage resources such as custom CSS files, modules, and
components imported at the flow level, allowing you to create
declarative references in the flow's pages to those resources. See
Manage Custom Component, CSS, and Module Imports.

Security tab Add user roles (defined at the visual application level) to control
access to the flow. Only users granted one of the assigned roles
can navigate to the flow. Note that permissions are inherited from
the parent, so the flow inherits permissions from the application.
See Restrict User Access to an Application, Flow, or Page.

Translations tab Create translation bundles for the flow, in addition to the app-level
translation bundles, for use with a third-party translation tool. If
you create a translation bundle for a flow, strings and keys are
added to the flow’s bundle when you externalize strings in the
flow's pages. Strings in other flow's pages are not added to that
bundle when they are externalized. See Create Translation
Bundles.

1. Open the flow artifact's Settings editor.

2. In the General tab, use the Default Page drop-down list to select the page in the
flow that you want to be the default. If you want, click Create to create a new page
and set it as your default.

Embed a Flow Within a Page
Each flow in your app can contain multiple sub-flows, enabling you to embed pages
within other pages. You use the Flow Container component to create a container in the
page where you can then embed sub-flows. After adding the container, you set the
default sub-flow displayed in the container in the General tab of the page's Settings
editor.

In the page containing the embedded flow, you can only edit the page content outside
the Flow Container component, and the embedded pages are not visible on the
canvas. After setting the default sub-flow for the page, you can run the app to see the
embedded content in the page.

To edit a page in a sub-flow, you need to open it in the Page Designer. To help you
visualize the page, the canvas displays the content embedded in the Flow Container
component and the content of the parent page, but you can only edit the content in the

Chapter 7
Create and Manage Flows

7-150

Flow Container. You set the default page for the sub-flow in the General tab of the sub-flow's
Settings editor.

You can use an embedded flow to isolate content from the page containing the flow, and to
allow navigation between pages in the sub-flow without leaving the page containing the sub-
flow.

To embed a flow in a page:

1. In the Navigator, locate the flow containing the page where you want to embed the flow.

2. Click Create Page () next to the flow containing the page, click Create Flow.

3. Enter a name for the new sub-flow in the Create Flow dialog box and click Create.

4. Open the page where you want to embed the new flow.

5. In the Page Designer, drag the Flow Container component from the Layout category in
the Components palette and place it on the canvas.

Chapter 7
Create and Manage Flows

7-151

6. In the page's Settings editor, select the default sub-flow in the General tab.

The Default Flow drop-down list displays all flows within the current flow.

Customize Your App's Root Page
A root page is a special type of page which provides the entry point for your app. It
typically contains a shell with common elements such as the header (with the
application title and logged-in user info), the footer, and a container for the content you
create.

All pages in your application are created within flows, except for root pages. If you look
at your app's tree view, you'll see the Root Pages node at the same level as your
app's flows (main, for example):

Chapter 7
Customize Your App's Root Page

7-152

The Root Pages node contains the default root page, which is named shell for web apps
and app for imported mobile apps. The root page embeds the flow that is invoked when your
app is first launched. It also describes areas outside the page flow for elements such as the
header, footer, and other navigational elements.

An application typically contains one root page which can be completely customized, but you
can choose to create a custom root page, say to provide your own header that will appear on
all your application's pages. Root pages are created similar to standard pages, except that

you click next to the Root Pages node in the Navigator. After the root page is created, you
can design it as needed. The default root page for all web apps includes a header and a
footer, defined in separate fragments for reusability. Your custom root page will not
automatically include these elements.

Note:

When your application first runs, it launches the default root page (defined in the
app-level Settings editor), which in turn opens the default page in the default flow
(defined in the root page's Settings editor). Remember to change these settings if
you create custom root pages or want to use a different flow as the starting flow for
your app.

Edit an App's Header, Footer, and Navigation Items
You can edit your app's default header and footer elements to add a description, add
graphics like a company-specific logo, or insert text functions. You can also customize
navigation items built into the web app templates, even add new ones after the app is
created.

1. Select the root page under the Root Pages node in the Navigator.

The header and footer elements for these apps are defined in separate fragments and
consumed by the app's root page in fragment containers. The default root page is named

Chapter 7
Customize Your App's Root Page

7-153

shell and set as the default entry page when a web app is first created. This
entry page contains fragments that define the header, the footer, and navigation
items such as tabs and navigation drawers. It also contains a flow container where
the app's default flow is embedded.

For example, here's the shell page for an app that uses the Navigation Drawer
template:

When the entire page is in focus without any component selected, you can use the
options in the Properties pane to customize the app's header elements. By default,
the header includes the Settings, Like, Bookmark, and Avatar elements. You can
also customize the navigation items built into the Navigation Drawer and Bottom
Tabs templates or add new items if you use the None template.

For each option, you can:

• Update the default label in the text box.

• Click the icon to choose a different one from the Redwood icon gallery.

• Click to add a new item.

• Click to delete an item.

• Drag to reorder an item.

Here's an example:

Chapter 7
Customize Your App's Root Page

7-154

2. Select a fragment to view and edit its properties. You can select the component on the
canvas, but sometimes, it might be easier to select the component in the Structure view,
as shown here for the Shell Drawer fragment that defines the navigation drawer:

Chapter 7
Customize Your App's Root Page

7-155

Because fragment variables can be enabled as input parameters to a page, input
parameters defined for the fragment become available to you under Input
Parameters in the fragment's Properties pane. You can click Go to Fragment if
you want to access and update the fragment in an editor.

You select different fragments to access the editor for the header and footer
fragments. Alternatively, you can access each fragment directly from the
Fragments node in the Navigator, as described in the next step.

3. If you want to further customize header, footer, and navigation items, click the
Fragments node in the Navigator, then select the fragment you want to edit. To
update header elements, select shell-header; to update footer elements, select
shell-footer. Use shell-drawer to update the main navigation panel that
comes with the Navigation Drawer template.

For example, here's the shell-footer fragment for a web app:

In the Design view of the Fragment Designer, you can select a component and edit
its properties in the Properties pane.

The Fragment Designer is similar to the Page Designer, except that it builds a
fragment instead of a page. You can add components to your fragment and bind
them to events, action chains, variables, and functions, much like what you'd do

Chapter 7
Customize Your App's Root Page

7-156

when developing a page. You can also pass parameters from a fragment to the pages
consuming it, so you have the option of overriding the default parameter value with an
alternate value on a particular page. For more on fragments, see Work with Fragments.

Add a Navigation Item for Navigation Drawer Apps
To create a new navigation item for your web app based on the Navigation Drawer Template,
and to add it to the Navigation Drawer panel:

1. Click the Create Flow (+) icon next to the application node in the Web Apps pane.

2. In the Flow ID field, enter a name for the new navigation item and click Create.

3. In the Web Apps pane, expand the Root Pages node and select the shell page.

4. In the Properties pane, click the Add Navigation Item (+) icon in the Navigation Items
section:

Chapter 7
Customize Your App's Root Page

7-157

5. In the pop-up, select the appropriate page flow and click Select.

6. Click the Select (+) icon next to the new navigation item to select its icon, which
users see in the Navigation Drawer panel.

Chapter 7
Customize Your App's Root Page

7-158

7. If necessary, change the label for the new item, which users see in the Navigation Drawer
panel.

To view the action chain that handles the navigation, on the shell page, click the Action
Chains tab and select the navigationHandler action chain:

Work With Custom Web Components
Oracle JET web components are reusable pieces of UI that can be composed of multiple
component types. Web components that you create can be used in your app or they can be
uploaded to the Oracle Component Exchange to share with other developers.

There's a variety of supported web component types (as described in Design Custom Web
Components). For an example of a web component, see Web Components in the JET
Cookbook.

You can import web components in two ways: as a ZIP archive or directly from the
Component Exchange associated with your instance. Likewise, web components can be
published to a Component Exchange to share with other developers, or shared via a ZIP
archive.

To view the web components that have been imported into your web (or mobile) app, expand
the Resources node in the Navigator:

Chapter 7
Work With Custom Web Components

7-159

http://www.oracle.com/webfolder/technetwork/jet/jetCookbook.html?component=composite&demo=basic

A web component must contain the following files. It may also contain additional files
and folders, for example, a SCSS file or resources such as translation files. For a more
detailed description of the JET web component architecture, see About Web
Components in Developing Applications with Oracle JET.

File Description

loade
r.js

A RequireJS module that defines the web component dependencies for its metadata,
View, ViewModel, and CSS. The naming convention for web components requires
that the name of the file is loader.js.

compo
nent.
json

A web component metadata file that defines its available properties and methods.
The naming convention for web components requires that the name of the file is
component.js.

view.
html

The view for the web component

Chapter 7
Work With Custom Web Components

7-160

File Description

viewM
odel.
js

Describes the ViewModel for the web component where methods defined in the web
component metadata are defined

style
s.css

Contains the custom styling for this web component

Note:

Web components are currently not backward-compatible. When importing web
components, and when upgrading web components or your app, you need to
ensure that your application and all web components that you use in your
application are using the same version of JET.

Work with the Component Exchange
The Component Exchange is a repository of components that can be installed in your Visual
Builder instance.

Your Visual Builder instance administrator specifies the Component Exchange that is
associated with the instance. All developers in the instance are able to use the same set of
components. The exchange contains a set of default components that have been provided by
Oracle, and any components that other developers have published to your exchange.

The Components tab in the Navigator helps you to install and manage the components that
you download from the Component Exchange.

Chapter 7
Work With Custom Web Components

7-161

The Components tab has the following tabs for locating and managing components
from the exchange:

• Browse: Use to search the Component Exchange for components that can be
installed, to open a component's details page, and to install components.

• Installed: Use to view a list of installed components. The tab displays details
about each component, and components are badged to indicate warnings or
available updates.

• Updates: Use to view a list of available updates and to update components to the
latest version.

• Recommended: Use to view suggested components based on what you've
installed. For example, if you installed the Input text with type-ahead component,
other components in the oj-sample JET pack might be recommended. By
default, components in the Dynamic UI pack are always listed.

Get Components From the Component Exchange
If your administrator has associated your instance with the Component Exchange, you
can use the Components tab in the Navigator to add and manage those components.

To add a component from the Component Exchange:

1. Open the Components tab in the Navigator.

Alternatively, in the Components palette in the Designer you can click Get
Components in the Options menu, or click the Search Exchange button that is
displayed in the palette when you use the palette’s filter field.

2. Locate the component you want to install and click Install.

You can click the component in the Components tab to open a tab containing
details about the component, including a description and examples of how to use
the component.

After you install the component, it's added to your Components palette. You can now
drag the new component onto the canvas and use it in your pages.

Chapter 7
Work With Custom Web Components

7-162

Update a Component from the Component Exchange
When a newer version of an installed component is available, you can install it in the Updates
tab in the Components pane. You'll know an update is available when you see a notification
in your browser window or a badge over the Components icon in the Navigator.

To update a component from the Component Exchange:

1. Open the Components tab in the Navigator.

2. Open the Updates tab in the Components tab.

If you installed a component that is part of a pack, the Updates tab displays the name of
the pack containing the newer version of your component:

3. Click Update All to install all updates available for installed components.

To update an individual component, click the component's name to open its detail page,
then click the Update button.

If the installed component is not compatible with the JET version in your Visual Builder
instance, you'll see a notice to that effect.

Chapter 7
Work With Custom Web Components

7-163

Uninstall a Component
When you no longer want to use an installed component in your application, you can
uninstall it to remove it from your Components palette.

To uninstall a component:

1. Open the Components tab in the Navigator and locate the component you want to
uninstall.

If you know the name or details about the component you can use the Search field
to filter the list of components.

2. Click the component to open the component's details page.

3. Click Uninstall Component in the details page.

Import a Web Component Archive
If you want to use a web component that's not available in your Component Exchange,
you can import the component as a ZIP archive. For example, when your team
member is developing a component, they can give it to you as an archive so you can
try it in your application.

To import a custom web component archive:

1. Open the application into which you want to import the component.

2. Open a page in your application in the Page Designer.

3. Locate the Custom section in the Components palette and click Import Web

Component ().

4. Upload your ZIP archive in the Import Web Component dialog box. Click Import.

You can add the ZIP archive by dragging it into the upload area or clicking the area
and locating the file on your local system.

Chapter 7
Work With Custom Web Components

7-164

The imported web component is added to your app's resources/components folder and
displayed in the Custom Components category of the Components palette or in the category
specified by the component’s metadata. After importing the web component, you can position
it in your page and configure its properties in the Properties pane as you would a standard
component.

Chapter 7
Work With Custom Web Components

7-165

Note:

Importing web components makes them a part of your application. Because
these components are not cached, you're likely to run into performance
issues when they are downloaded each time you reload the Page Designer
for preview, or at runtime when you publish an update to your app. As a best
practice then, it helps to publish your components to a CDN (Content
Delivery Network) or an external location that your browser can cache
requests from. This is useful especially when you have multiple apps that
use the same components. Talk to your administrator for site-specific
information on how to publish these components externally.

Create a Web Component
Oracle JavaScript Extension Toolkit (JET) web components are reusable pieces of
user interface code that you can embed as custom HTML elements. You can create a
web component from a template that comes with Visual Builder.

When you use the Create Component dialog box to create a component, the new
component contains the JavaScript, HTML, stylesheet,and JSON files required. The
files contain sample code to help you get started. After you create the web component,
you can click the component artifact in the Navigator to edit each of the component’s
files.

To create a web component:

1. Expand the Resources node of your web (or mobile) application in the Navigator.

2. Click Create Component () next to the components node.

3. Type the ID for the component in the Create Component dialog box. Click Create.

The new web component is added to your app's resources/components folder.

Chapter 7
Work With Custom Web Components

7-166

Note:

Manually creating web components makes them a part of your application. Because
these components are not cached, you're likely to run into performance issues
when they are downloaded each time you reload the Page Designer for preview, or
at runtime when you publish an update to your app. As a best practice then, it helps
to publish your components to a CDN (Content Delivery Network) or an external
location that your browser can cache requests from. This is useful especially when
you have multiple apps that use the same components. Talk to your administrator
for site-specific information on how to publish these components externally.

Navigate Between Pages and Flows
When you create multiple pages and flows, you can set up navigation to go from one page to
another or from one flow to another.

Navigate Between Pages in the Same Flow
To navigate between pages in the same flow, you associate a page component with an event
that sets off a navigation action chain.

Let's say you've defined two pages within a particular flow: main-start and main-other
within the main flow. And you want users to click a button on the main-start page to get to
the main-other page. To do this:

1. Open the page you want to navigate from (main-start, for example).

2. In the Page Designer, drag a component that you want to set off navigation and drop it
onto the page canvas. Here's an example of a button on a page:

3. Select the page component, then click the Events tab in the Properties pane.

4. Click the + Event Listener button and select On 'ojAction', the default action for a
button click. You might see other options suggested for your particular component.

5. When a new action chain is created, drag the Navigate to Page action from the
Navigation section of the Actions palette and drop it onto the canvas.

Chapter 7
Navigate Between Pages and Flows

7-167

6. In the Navigate action's properties, select Page (if necessary), then select the
page you want to navigate to from the Page drop-down list (for example, main-
other).

7. Optional: To enable users to navigate back to the original page, associate a page
component with an event that sets off a Navigate Back action chain:

a. Go to the page that you set up navigation to (for example, main-other).

b. Drag and drop a component onto the page canvas (for example, a button with
the label Back).

c. Click the + Event Listener button and select On 'ojAction'.

d. When a new action chain is created, drag the Navigate Back action from the
Navigation section of the Actions palette onto the canvas.

8. Preview your application to test navigation between the two pages.

Navigate Between Pages in Different Flows
Navigating between pages in different flows within an application is similar to how
you'd navigate pages within the same flow, but instead of selecting the page to
navigate to, you select the flow containing the page.

To navigate between pages in different flows within an application (for example, to
navigate from myApp/main/main-start to myApp/otherflow/otherflow-
newpage):

1. Open the page you want to navigate from (main-start, for example).

2. In the Page Designer, drag a component that you want to set off navigation and
drop it onto the page canvas. Here's an example of a tab bar, with each tab meant
to navigate to a different flow:

Chapter 7
Navigate Between Pages and Flows

7-168

3. Select the page component, then click the Events tab in the Properties pane. In the tab
example, you select the hyperlink nested within the tab bar component.

4. Click the + Event Listener button and select On 'click'.

5. When a new action chain is created, drag the Navigate to Flow action from the
Navigation section of the Actions palette and drop it onto the canvas.

6. In the Navigate to Flow action's properties, select Flow in Parent Page, then select the
flow containing the page you want to navigate to from the Flow drop-down list (for
example, otherflow).

7. By default, navigation to a flow navigates to the flow's default page. If you want to
navigate to a page other than the default, select the page from the Page in Flow list (for
example, otherflow-newpage).

Chapter 7
Navigate Between Pages and Flows

7-169

8. Preview your application to test navigation from one page to another in a different
flow.

Navigate Between Flows in the Root Page
You can use the navigateToItem event in an action chain to open the start page of a
flow in your application's root page. You typically invoke the action chain from the
drawer or tab elements used to navigate the app.

To use the navigateToItem event in an action chain, you add the Fire Event action to
the chain and then select the event and assign the name of the target flow to the
event's payload. To use the navigateToItem event, the current page needs to have a
flow container that is configured to hold the target flow. Firing the event loads the start
page of the target flow into the flow container of the root page.

For example, when you create an app from a template that uses navigation elements
such as a tabs or a drawer, the app will contain separate flows that can be loaded into

Chapter 7
Navigate Between Pages and Flows

7-170

the app's root page. If you create a web app with two flows (for example, "item-1" and
"item-2"), and you want to use tabs in your root page to select the flow that is displayed in the
flow container, you can create an action chain that fires the navigateToItem custom event.
You would create an action chain for each of the flows, and add a click event listener to each
tab to trigger the action chain.

First, for the UI component that's to open the start page of the flow, you need to create an
event that starts an action chain to handle the navigation:

1. In the Designer, open the root page containing the flow container and select the
component on the canvas that will open the flow.

For example, to navigate between flows displayed in the main flow container of a web
app, you'll need to open the root page and select one of the navigation tabs.

2. In the Events tab of the Properties pane, click + Event Listener and select the suggested
option (for example, On 'selection').

A new action chain is created and associated to the event, and you're taken to the Action
Chain editor to implement the action chain.

3. Now create the action chain:

Chapter 7
Navigate Between Pages and Flows

7-171

a. Enter a name for the action chain in the Properties pane's Id field.

b. Add the Fire Event action to the canvas.

c. In the Properties pane, select navigateToItem in the Event Name drop-down
list.

The drop-down list contains a list of custom events that can be invoked by the
action. The navigateToItem event is prepended with "application:" in the
drop-down list and can be used in any page in your app because it is
application-scoped.

d. Under Parameters, hover over the far-right side of the item property and click
the down arrow that appears. In the Variables dialog, select the target flow (for
example, ojTabBar3010995061SelectedItem).

Work With Code Editors
Most application development in Visual Builder is visual and declarative. Sometimes
though you might want to update your application's source code or add custom code to
make your application richer—and code editors in the Designer let you do just that.

The HTML, JavaScript, JSON, and Code view editors give you direct access to the
code created by visual tools when you develop your application. For example, when
designing a page, you can choose to directly edit the source code of the HTML,
JavaScript, and JSON files used to describe a page's layout and behavior. Here's a
look at the different code editors and what each is used for:

Tab Description

Code mode in
Page Designer

Contains a code editor that displays a page's HTML.

HTML Contains a code editor that displays an application’s index.html file.

JavaScript Contains a code editor to manage JavaScript functions at the application,
flow, or page level as well as at the layout and fragment level.

JSON Contains a code editor to display the JSON file that describes the artifact’s
metadata (including variables and action chains) at the application, flow, or
page level as well as at the layout and fragment level.

Chapter 7
Work With Code Editors

7-172

Visual Builder's code editors are based on Monaco, a JavaScript library bundled from the
Visual Studio Code source, which provides a variety of code-editing features, including
tooltips and hints, parameter information, and code completion. See how you can trigger
code insights in each editor.

Work in Code View
You use the Code mode in the Page Designer to edit a page’s HTML source.

The code editor provides code completion to add Oracle JET components to your page,
especially if they're not included in the Components palette. You can also drag components
from the Components palette and drop them directly into valid places in the code editor. It's
also possible to use standard HTML5 tags to extend functionality.
To add a component to a page in Code view:

1. Open the page in the Page Designer.

2. Click Code to open the page in Code view.

3. Insert your cursor in the code where you want to add the component.

4. Start typing the tag for the component you want to add and use the editor’s code
completion to help you add the tag for the component.

For example, when you start typing <oj in the editor, the code completion window
appears with a list of component tags that match the text you type:

5. Select the component in the list. Press Enter on your keyboard to add the tag.

Chapter 7
Work With Code Editors

7-173

https://microsoft.github.io/monaco-editor/

Tip:

Add a component using the code editor's right-click menu, where you can
insert a component before, inside, or after an existing component. You can
then choose from a list of components, identical to what's shown in the
Components palette. If the component you're working with has multiple slots,
selecting Insert Component will give you the option of dropping the
component into a particular slot, as shown here for a button component:

Once the component tag is added to the HTML code, you can define its properties
using code completion. Alternatively, use the Properties pane in Design mode.

Work with the JSON Editor
When you're building an application, everything that you do in the visual editors—
creating and modifying variables, types, action chains, and so on—is saved as JSON
metadata. The JSON editor displays this metadata, allowing you to modify it manually
if needed.

Each application, flow, and page has its own JSON file to store metadata, as does
each layout and fragment. By default, an application uses app-flow.json, a flow
uses flow-name-flow.json, and a page uses page-name-page.json. A layout
uses layout.json and a fragment uses fragment-name-fragment.json.

To work with an artifact's JSON metadata:

1. Select the artifact, then click the JSON tab. For example, here's a view of the
page-level JSON editor:

Chapter 7
Work With Code Editors

7-174

2. Update the metadata as required.

Work with the JavaScript Editor
Use the JavaScript editor to add custom JavaScript functions that meet your business
requirements, for example, a JavaScript function to validate whether required fields in a form
have values.

Any JavaScript code that you add will have a defined scope based on the editor where you
write the code. If your code will only be called from within a specific page (for example, to
load some data when the page loads), you can write your code in the page-level JavaScript
editor. If you want a JavaScript function to be used on multiple pages (for example, to load
libraries for customizing navigation elements or custom web components), then you'll need to
use the JavaScript editor for the flow or the application. You can also define JavaScript
functions at the layout and fragment level.

The JavaScript editor displays a particular artifact's JS file. So if you open the main flow's
JavaScript editor (for example), you're seeing the contents of the main-flow.js file. Each
artifact has its own JS file: an application artifact uses the app-flow.js file, a flow uses

Chapter 7
Work With Code Editors

7-175

flow-name-flow.js, and a page uses page-name-page.js. A layout uses
layout.js and a fragment uses fragment-name-fragment.js.

The JavaScript editor provides extensive suggestions as you enter text to provide
code-completion capabilities. This includes code snippets for common JavaScript
structures, such as "for" and "while" loops and conditional statements. For example,
typing for in the JavaScript editor will show you various "for" loop structures:

Selecting a structure will let you easily switch the variables in the structure.

The editor also provides code validation and identifies the lines that contain syntax
warnings and errors in the right margin of the editor. A light bulb icon in the left margin
indicates a hint for correcting invalid JavaScript code. Note that the auto-save function
will not save a JavaScript file that has invalid code. For help with JavaScript syntax,
see https://developer.mozilla.org/en-US/docs/Web/JavaScript#reference. These
additional resources can be helpful as well:

• https://www.w3schools.com/js/js_es6.asp

• https://www.javascripttutorial.net/es6/

Add a Custom JavaScript Function
To add a custom JavaScript function, you define the function within the class provided
in the JavaScript editor for your page, flow, or application. You can also add JavaScript
functions to layouts and fragments.

1. Select the artifact for which you want to add a JavaScript function, then click its
JavaScript tab.

Chapter 7
Work With Code Editors

7-176

https://developer.mozilla.org/en-US/docs/Web/JavaScript#reference
https://www.w3schools.com/js/js_es6.asp
https://www.javascripttutorial.net/es6/

For example, to open the JavaScript editor for the main flow, select the main node, then
click the JavaScript tab. Or go directly to the main-flow.js file in the Navigator's
Source, as shown here:

An application uses the app-flow.js file, a flow uses flow-name-flow.js, and a
page uses page-name-page.js. A layout uses layout.js and a fragment
fragment-name-fragment.js.

2. Define your JavaScript function within the class provided in the JavaScript editor. Visual
Builder supports RequireJS (a JavaScript file and module loader that simplifies managing
library references), so when defining a new flow-level function, define your function in the
editor as shown here:

define([], () => {
 'use strict';

 class FlowModule {
 // write your function here
 }

 return FlowModule;
});

Just as flow-level functions use FlowModule, application functions use AppModule and
page-level functions use PageModule.

If any of the functions within the class need to access the application context, create a
constructor for the class and include the context as an input parameter:

constructor(context){}

Chapter 7
Work With Code Editors

7-177

In this example, two functions have been created in the PageModule class: a
constructor and a custom JavaScript function (module function). When the page,
main-some-page, is opened, the corresponding instance of the PageModule
class (shown below) is created for the page. Also, the instance's constructor is
automatically called and the application context is automatically passed to the
constructor:

After you've defined your custom JavaScript functions, you can call them in action
chains as well as UI components:

• In an action chain, use the Call Function action. See Add a Call Function Action.

• In a component's Properties pane, select the function in the Expression editor or
Variables picker of a property:

Chapter 7
Work With Code Editors

7-178

To write efficient expressions that handle situations where a referenced field might not be
available or the field's value could be null, see How Do I Write Expressions If a Referenced
Field Might Not Be Available Or Its Value Could Be Null?

Use RequireJS to Reference External JavaScript Files
If you want to use RequireJS to refer to external JavaScript libraries in your application, you
can add a requirejs statement to your application's definition, then import the library.

1. Open the app-flow.json file for your application.

• In the Web Apps pane, select your application node, then click the JSON tab, or

• In the Source view, locate the file for your application under webapps.

Chapter 7
Work With Code Editors

7-179

2. Add a requirejs statement to the application's definition. For example, if you've
added myLib.js to your application's resources under …/applications/
<your-app-id>/resources/js/, add:

 "requirejs": {
 "paths": {
 "myLib": "resources/js/myLib"
 }
 }

You can also use an expression as the value. For example, instead of
resources/js/myLib, enter:

 "requirejs": {
 "paths": {
 "myLib": "{{ 'resources/js/' + $initParams.resourceFolder }}"
 }
 }

Either way, make sure the requirejs entry is a sibling of the id or description
entries. If a requirejs section already exists, simply add your entry under paths.

3. To load and use your library in a module, use the define statement to make your
library a dependency for your module. In your JS file, enter, for example:

define(['myLib'], (MyLib) => {
 'use strict';
 ...

Use Variables with a JavaScript Module
You can't directly get or set variables from within your JavaScript modules. However,
you can use the Call Module Function action to access your JS module. This action
takes an array of parameters which can include variables and can return a result that
you can assign to a variable.

This approach ensures that the variable has a consistent state from the beginning to
the end of your action chain's execution.

To "get" a value, pass the variable in as a parameter to the module function that you
are calling using a callModuleFunction action in the action chain.

To "set" a variable based on the return value from that callModuleFunction, use an
Assign Variables action to copy the result of the function into the desired variable in
whatever scope.

Chapter 7
Work With Code Editors

7-180

Trigger Code Insight
When working with code editors, you can invoke insights either by pressing Ctrl+Space or by
entering a trigger character such as the dot (.) in the JavaScript editor. Here's how you can
use insights in the different editors:

Editor Use this to trigger insight:

HTML • Enter the left-angle bracket (<) to trigger HTML tag insight.
• Press Ctrl+Space to trigger HTML attribute name insight. Insight

automatically kicks in after you enter two characters from the attribute name.
• Press Ctrl+Space to trigger attribute value insight inside an HTML attribute

value, double brackets ([[]]), or double braces ({{ }}).

If the HTML is well formed, insight kicks in after you enter two characters of
the expression. For example, entering <div title="[[$a]]"> triggers
attribute value insight for expressions after $a, as shown here:

• Enter any character to trigger insight in CSS files.

JavaScript Enter any character to trigger insight. URL selector and standard imports for a
module are not supported.

JSON Enter any character to trigger insight based on the file's associated JSON
schema.

Manage Code Editor Settings
To customize a code editor to your liking or to enforce consistent code formatting styles for
everyone who works on an application, use the Editor Settings option in a code editor's
right-click menu. Doing this brings up the settings.json file, which you can use to control
how a code editor functions:

Chapter 7
Work With Code Editors

7-181

Use settings.json to control tab width, font size, and more. By default, only a
handful of settings show, but you can include several more properties as listed here.

Setting Description Default

editor.acceptSuggesti
onOnEnter

Whether insight suggestions should be accepted on
pressing the Enter key, in addition to the Tab key:
• on: Accept a suggestion with Enter as well as

Tab
• off: Accept a suggestion only with Tab
• smart: Accept a suggestion with Enter only

when the change is textual

on

editor.accessibilityP
ageSize

Number of lines read out by a screen reader None

editor.accessibilityS
upport

Whether the editor should be optimized for use with
screen readers:
• on: Keep editor optimized for usage with a

screen reader
• off: Do not optimize editor for usage with a

screen reader
• auto: Optimize editor only when a screen

reader is detected

on

Chapter 7
Work With Code Editors

7-182

Setting Description Default

editor.autoIndent Control automatic indentation while typing:
• none: Do not automatically insert indentation
• advanced: Keep the current line's indentation,

honor language-defined brackets, and invoke
special onEnterRules defined by
languages

• full: Keep the current line's indentation,
honor language-defined brackets, invoke
special onEnterRules defined by
languages, and honor indentationRules
defined by languages

• brackets: Keep the current line's indentation
and honor language-defined brackets

• keep: Keep the current line's indentation

advanc
ed

editor.cursorBlinking Control cursor blinking:
• blink, smooth, phase, or expand: Provide

various degrees of the blinking animation
• solid: No blinking

blink

editor.cursorStyle Control the appearance of the cursor:
• line: A line at the current position
• line-thin: A thinner version of line at the

current position
• block: A solid block that covers the current

character
• block-outline: A block that outlines the

current character
• underline: An underline at the current

position
• underline-thin: A thinner version of

underline at the current position

line

editor.cursorWidth When cursorStyle is set to line, controls the
width of the line

2

editor.cursorSurround
ingLines

Minimum number of lines visible above and below
the cursor, starting with 0

0

editor.cursorSurround
ingLinesStyle

Whether cursorSurroundingLines should
be enforced:
• default: Enforce

cursorSurroundingLines only when
cursor is changed using the mouse

• all: Enforce cursorSurroundingLines
always

defaul
t

editor.dragAndDrop Enable or disable drag and drop of a selection:
true or false

false

editor.emptySelection
Clipboard

Whether copying without selection should copy the
current line: true or false

true

editor.folding Enable or disable code folding: true or false.
The folding margin disappears when folding is
disabled.

true

editor.fontFamily Font family to use in the editor monosp
ace

Chapter 7
Work With Code Editors

7-183

Setting Description Default

editor.fontSize Control text font size in pixels, starting with 10. A
value under 10 may be difficult to read.

14

editor.fontWeight Weight of the font used in the editor: normal,
bold, or numbers between 1 and 1000

normal

editor.formatOnPaste Whether pasted content should be automatically
formatted: true or false

false

editor.formatOnType Whether a line should be automatically formatted
while typing: true or false

false

editor.insertSpaces Insert spaces (instead of tabs) when the Tab key is
used for indentation

true

editor.letterSpacing Control spacing between letters, in pixels None

editor.lineHeight Control height of a line None

editor.matchBrackets Whether matching brackets should be highlighted
when the cursor is at a brace: always, never, or
near

always

editor.mouseWheelScro
llSensitivity

Numbers of lines to scroll when the mouse wheel is
used

1

editor.mouseWheelZoom Whether pressing the Control key and the mouse
wheel should change font size: true or false

false

editor.multiCursorMod
ifier

Modifier to be used with a mouse click to create
multiple cursors:
• alt: Maps to the Alt key on Windows and to

the Option key on Mac
• ctrlCmd: Maps to the Control key on

Windows and the Command key on Mac

alt

editor.occurrencesHig
hlight

Whether to track cursor and highlight other
occurrences of the current word or variable: true
or false

true

editor.renderLineHigh
light

Controls how the current line is highlighted:
• all: Highlight the current line as well as the

gutter
• line: Only highlight the current line
• gutter: Only highlight the current line's gutter
• none: Do not highlight the current line

all

editor.renderWhitespa
ce

Control how the editor should render whitespace
characters:
• none: Do not render whitespace characters
• boundary: Render whitespace characters

except for single spaces between words
• selection: Render whitespace characters

only on selected text
• trailing: Render only trailing whitespace

characters
• all: Render all whitespace characters

select
ion

editor.selectOnLineNu
mbers

Whether the line should be selected if the line
number is clicked: true or false

true

editor.showFoldingCon
trols

Control when folding controls show:
• always: Always show the folding controls
• mouseover: Show the folding controls only

when the mouse is over the gutter

mouseo
ver

Chapter 7
Work With Code Editors

7-184

Setting Description Default

editor.showUnused Whether unused variables should be faded out:
true or false

None

editor.suggestFontSiz
e

Font size for insight suggestions None

editor.suggestLineHei
ght

Line height for insight suggestions None

editor.suggestOnTrigg
erCharacters

Whether insight should be triggered by special
characters: true or false

true

editor.suggestSelecti
on

Controls how suggestion history works:
• first: Always select the first suggestion
• recentlyUsed: Select recent suggestions
• recentlyUsedByPrefix: Select

suggestions based on previous prefixes that
have completed those suggestions

None

editor.tabCompletion Enable or disable completion by pressing the Tab
key:
• on: Insert the best matching suggestion when

pressing Tab
• off: Disable Tab completion
• onlySnippets: Tab complete snippets when

their prefixes match

None

editor.tabSize Number of spaces a tab is equal to, starting with 1 2
editor.theme Changes the editor's color theme: redwood, vs,

vs-dark, or hc-black
redwoo
d

editor.wordWrap Controls word wrap in the editor:
• on: Wrap lines at the viewport width
• off: Do not wrap lines
• wordWrapColumn: Wrap lines at

wordWrapColumn
• bounded: Wrap lines at the minimum of

viewport and wordWrapColumn

off

editor.wordWrapColumn Number of columns to use when wordWrap is set
to wordWrapColumn, starting with 20

None

editor.wrappingIndent Controls how a wrapped line is rendered:
• none: No indentation. Wrapped lines begin at

column 1
• same: Wrapped lines use the same indentation

as the parent
• indent: Wrapped lines get +1 indentation

toward the parent
• deepIndent: Wrapped lines get +2

indentation toward the parent

same

editor.minimap.enable
d

Show or hide the code minimap. true

Chapter 7
Work With Code Editors

7-185

Setting Description Default

editor.minimap.size Control the size of the minimap:
• proportional: The minimap has the same

size as the editor contents (and might scroll)
• fill: The minimap will stretch or shrink as

necessary to fill the height of the editor (no
scrolling)

• fit: The minimap will shrink as necessary to
never be larger than the editor (no scrolling)

fit

editor.minimap.side Where to render the minimap: right or left right
editor.minimap.render
Characters

Render characters on a line as opposed to color
blocks: true or false

true

editor.minimap.scale Scale for rendering the minimap, starting with 1 1

Use the Diagram View
As your application takes shape in the Designer, you can use the Diagram view for a
visual representation of your application's structure.

The Diagram view, shown only for application and flow artifacts, displays an
application's root pages, flows, and pages within flows. It's a handy tool that lets you
view default pages, navigation flows, even audit status at a glance. You can also use
this view to update your application in context; for example, you can change the
default root page or the default flow and see how your updates change your
application's structure.

When you open an application artifact, the Diagram view displays the application's root
page as well as a hierarchical view of the artifact's flows and sub-flows. When you
open a flow artifact, the Diagram view displays the pages contained in the flow as well
as their navigational relationships. A Properties pane displays by default, showing
additional information about the selected artifact. There's also a Components palette
that you can use to add pages (and actions for a flow artifact).

Here's an example of what you might see when you open the Diagram tab at the
application level:

Chapter 7
Use the Diagram View

7-186

You can expand or collapse a flow to show or hide its pages (and optionally, sub-flows). Click
a page to view its navigational relationships in the diagram as well as in the Properties pane.
For example, clicking the customer-start page shows navigation icons () on the
accounts and contacts page tiles, indicating that you can navigate from customer-
start to those pages and back. When navigation is one way, meaning you can go from one
page to another but not navigate back, you'll only see the icon, as shown on the side-
banner-start page. You'll see similar navigation details in the Properties pane under
Navigates to and Navigated From when the page is selected. Notice how flows or pages that
don't have any relationship with the selected page fade into the background.

It's possible to make changes to your application from the Properties pane. You can change
page titles and descriptions as well as update the app's default root page, the default flow,
and the default page in a flow. You can even open, duplicate, and delete selected items.
Alternatively, you can double-click an artifact (a root page, a flow, or a page) to open up the
artifact's editor and make changes as required.

The Diagram view also flags pages with audit issues (or). These issues also show at
the flow level, a useful indicator when the flow is collapsed that audit issues exist in the flow's
pages.

View a Flow's Navigation in Diagram View

When you open a flow artifact in the Diagram tab, the Flow Diagram view () displays all
pages within the flow and their navigational relationships. You can use this high-level view to
focus on principal navigation between pages in the flow.

Here's an example of what you might see in the Flow Diagram view:

Chapter 7
Use the Diagram View

7-187

Notice how the default page (journey-landing) has a badge, indicating it as
the flow's default page. You can click a page tile to highlight all navigation links. Links
flow in the direction of the navigation from source to target page; pages that navigate
to each other have arrows at both ends. Take note of how unrelated pages fade into
the background to give you a better idea of how the flow is constructed. Navigational
details also show in a selected page's Properties pane; you can also add input
parameters, duplicate and delete a page as well as open it in the Page Designer.

Add Pages and Action Chains to a Flow in Diagram View
Use the Flow Diagram view to add pages and actions chains to a flow while keeping
the entire flow in context. Creating a flow in the Flow Diagram, instead of the page
editors, is convenient when you want to build workflows without needing to code. It can
also help you visually navigate complex flows, even reuse sub-flows.

You can build a flow by adding pages and creating page-level action chains, just by
dragging items from the Components palette and dropping them onto a tile in the
diagram. Here's an example of a search workflow that shows all pages and their
corresponding actions created via the Flow Diagram:

Chapter 7
Use the Diagram View

7-188

You can click a page or action tile—both are distinctly color-coded for easier identification—to
highlight all the connecting links. Take note of how links flow in the direction of the navigation
from source to target page; pages that navigate to each other will have arrows at both ends.
You can use a selected tile's Properties pane to view additional information and do some
other functions.

Note:

Opening a flow that was built using the page editors only shows navigation by
default in the Flow Diagram. But if you were to build your flow from scratch in the
Flow Diagram, all pages and associated action chains will also show. To change
this setting, see Show or Hide an Action Chain in the Flow Diagram.

You can also duplicate your workflow by clicking Duplicate in the flow's right-click menu in
the app's tree view. Duplicating a flow will copy all its content, including pages, chains, and
sub-flows, and can serve as a starting point for a new workflow.

Add a Page in the Flow Diagram
To add a page in a Flow Diagram, you drag and drop a page from the Components palette

onto the diagram. Adding a page to a flow is similar in the Flow Diagram view () as well as

the Grid view ().

1. Open your application in the Navigator, then click the Create Flow icon () next to the
application node to create a new flow.

2. In the Diagram view (Flow or Grid), you can create an empty page, a page with a
pattern, or one with an existing fragment. To create a page with a fragment, the fragment
must be tagged with the page metadata tag in its Used For setting (either from its

Chapter 7
Use the Diagram View

7-189

Properties pane or Settings editor). Without the page tag, the fragment won't
surface in the Components palette.

• To create a page without any content, drag Custom under Pages in the
Components palette and drop it onto the diagram.

• To create a page containing a specific fragment, drag the fragment under
Pages in the Components palette and drop it onto the diagram.

• To create a page containing a page pattern, drag the pattern under Pages in
the Components palette and drop it onto the diagram.

Chapter 7
Use the Diagram View

7-190

When your application includes page fragments as well as patterns, both will be available
to you in the Components palette.

3. In the Create Page dialog, give the page a name, then click Create.

A new page tile appears in the diagram (with its properties displayed in the Properties
pane). The newly created page's icon in the diagram will match the fragment or pattern
icon used to create the page.

Tip:

Want to quickly create a page that automatically navigates to an existing page? You
can, but only in the default Flow Diagram view. Simply drag a Custom item from the
Components palette and drop it directly onto an existing page, enter a name for the
new page when prompted, and click Create. A new page is created and a
navigateToPage action chain that navigates from the existing page to the new page
is added to the existing page, as shown here:

After you've created a page, select the page tile to view and update its properties in the
Properties pane. You can manage the page using the options in the Properties pane's Menu

():

• To open a page in the Page Designer, where you design it as needed, click Open. You
can also double-click the page tile to open it in the Page Designer.

• To duplicate a page, click Duplicate. Duplicating a page copies all the page's action
chains.

• To delete a page, click Delete.

Chapter 7
Use the Diagram View

7-191

Create an Action Chain in the Flow Diagram
To create an action chain for a page in the Flow Diagram, you drag and drop an action
from the Components palette onto a page. You can add built-in actions (such as
Navigate, If, and Switch) as well as custom actions to create a page-level action chain.

Note:

If you want to use custom actions in a Flow Diagram, the custom action's
showInDiagram property must be enabled to surface the action in the Flow
Diagram's Actions palette. See Define the Custom Action's Properties.

To create an action chain for a page in the Flow Diagram:

1. Select an application's flow to open it the Flow Diagram view ().

2. Drag and drop an action (built-in or custom) under Actions in the Components
palette and drop it onto a page in the diagram.

Chapter 7
Use the Diagram View

7-192

3. When prompted to select an event listener, select Bind an event listener later. If you
want to bind an action chain to an existing event listener, you'll need to first surface it in
the Flow Diagram. See Bind an Action Chain in the Flow Diagram to an Existing Event
Listener.

A new action chain is created with your action as the root. Use the action's Properties
pane to suitably configure your action's properties. The properties that display are typical
for built-in actions. For example, here's what you'll see for a Switch action:

4. If your action involves additional steps, drag and drop additional actions as needed.

Say you want to call a custom Say Hello action in the Switch action to display an
employee-specific message, you would drag the Say Hello action onto the switch action
to add multiple cases:

The cases you add for the Switch action show as labels, as do outcomes of decision
nodes for an If action. The first action you drop onto an If action is considered the true
outcome and the second is considered the false outcome. When the If action has both
true and false outcomes or a Switch action has more than one outcome, a placeholder

Chapter 7
Use the Diagram View

7-193

Add Action node appears (as shown in the image above), so you can specify
the action after the branches join (Navigate To Page as shown here):

5. To add more actions to the action chain, drag and drop an action onto an existing
action in the diagram.

You can drag an action over any other action node anywhere in the action chain,
as long as the node is highlighted in green to indicate that more actions are
allowed. (You likely won't extend a chain with a Navigate action as the action
navigates you away from the page and subsequent actions won't take effect.)

If you want to delete an action, click Menu in the action's properties and click
Delete.

Chapter 7
Use the Diagram View

7-194

Bind an Action Chain in the Flow Diagram to an Existing Event Listener
To associate a new action chain in the Flow Diagram with an existing event listener, you'll
need to surface the event listener in the Flow Diagram. Event listeners call action chains in
response to component or lifecycle events.

1. Enable the event listener you want to use with an action chain to surface in the Flow
Diagram.

a. Select the page that contains your event listener, then click the Event Listeners tab.

b. Select an existing event listener, or create a new one. See Create Event Listeners for
Events.

c. In the event listener's Properties pane, select On under Show in Flow Diagram.
This option shows only for page-level event listeners.

2. Bind an action chain in the Flow Diagram to the event listener.

a. Select the flow containing the page-level event listener and open it the Flow Diagram

view ().

b. Drag and drop an action from the Components palette onto the page containing the
event listener.

c. When prompted, select the event listener:

The new action chain that's created will be added to the event listener. The link label
also shows the listener's name, as shown here:

Chapter 7
Use the Diagram View

7-195

Show or Hide an Action Chain in the Flow Diagram
By default, action chains created via a Flow Diagram show all action nodes and the
event listeners that they are bound to. If you want a simpler view, you can change this
setting so that a flow shows only its pages and their navigational relationships.

To show or hide an action chain in the Flow Diagram:

1. Select an application's flow to open it the Flow Diagram view ().

2. Double-click the page containing the action chain you want to show or hide.

3. When the page opens in the Page Designer, switch to the Action Chains tab and
select an action chain to open it in the Action Chains editor.

4. In the action chain's Properties pane, look for Show in Flow Diagram:

• Select Navigation Only to show only the navigational relationships for the
page associated with the action chain.

• Select Full to show all action chain details, including actions and associated
event listeners.

5. Return to the Flow Diagram. Here's an example showing the two views:

Chapter 7
Use the Diagram View

7-196

Chapter 7
Use the Diagram View

7-197

On the left is a flow's Full view, showing action chains (and their event listeners)
configured for a set of pages. On the right is the Navigation Only view for the same
set of pages, where only pages and their navigation show.

Chapter 7
Use the Diagram View

7-198

8
Work with Variables and Types

When you use Quick Starts to build your application's pages, you won't have to worry about
variables and types because Visual Builder automatically creates whatever is necessary for
you. But if you're working with code to customize default logic or build your own, variables are
key. You will use them to interact with UI components and data sources in order to implement
your application's logic.

What are Variables and Types?
Variables are named pieces of information that hold business state and are bound (via
expressions) to components on your application's pages. A variable, when bound to a
component, can provide data values retrieved from a REST endpoint and display them to
your users. It can also hold other state that is required by the component.

If users were to enter or change the component's value, the change is also written to the
variable. How the variable behaves in this case is largely governed by actions, which may call
underlying REST endpoints to apply the change. Components, variables, and actions
together form the basic building blocks of an application.

So what do you define as a variable? Any piece of information really. It can be a simple
variable, for example, a number-type variable to hold an employee's ID or a string-type
variable for a name. It can also be a complex data structure, for example, an Employee
structure with lastName, firstName, phoneNumber, address, and email elements. Here are
the different types of variables available in Visual Builder:

• Primitive variables such as String, Number, Boolean, even a wildcard-type Any.

• Structured variables such as Object or Array, used to store data structures.

• Built-in variables used to get metadata, for example, to access the current page's ID and
title or to access information about the current user.

Complex variables that define the type and structure of a variable's data are known as types.
Every variable is assigned a type, either built-in or custom. A developer can create a type
that, for instance, matches the REST payload and pass data using a variable assigned that
type.

It's also possible to define an enumeration as a type, so you can refer to the enumerated list
of values in a constant or variable. Enumerations are useful for constants and variables that
have a small set of possible values and are usually used to declare different options (say, a
list of cities) or actions (like up, down, left, and right).

A variable's value can vary, as the name suggests. So if want to store values that don't
change over time, such as your company name or "foot-to-meter" conversion rates, use
constants. Constants are typed like other variables, but unlike variables, you can't change
their values after they've been initialized—except when the constant's default value is an
expression that refers to other variables; in this case, the constant's value changes when the
other variable's value changes.

8-1

Variables, constants, and types are all defined within a scope and are automatically
created and destroyed when the framework enters and exits a particular scope. They
can be used in different places in your application based on the scope it is defined in:

• application: Variables defined at the application level are available anywhere in the
application. They are useful for storing login names and other data that you want
accessible both within and across an application's flows and pages.

• Flow: Variables defined at the flow level can be used within the flow and pages
within that flow.

• Page: Variables defined at the page level can only be used within that page.

• Fragment: Variables defined at the fragment level can only be used within that
fragment. Additionally a fragment, though referenced by an outer page, cannot
reference variables defined in the page.

• Layout: Variables defined at the layout level can only be used within that layout
container.

• Action chain: Variables defined at the action chain level can only be used within
that action chain.

Variables as Input Parameters

You can use a variable to pass a parameter between pages by marking it as input.
When you mark a page variable as an input parameter, you specify how it becomes
part of the contract to navigate to that page. You can further mark it as required,
implying that it must be set in order to navigate to that page.

Parameters can also be passed on the URL of the pages or flows that you're invoking.
This approach makes it possible to bookmark pages that show specific data based on
the parameter.

Default Value and Expressions

The initial value of a variable is determined by its default value. If a default value isn't
provided, the value is "not set" or undefined and its initial value is determined based
on its type. If provided, the default value can be a static value or an expression, which
in turn can refer to other variables including constants, system properties, static
values, and the like via implicit objects (such as $variables and $page, used to
extract the value of a variable).

When defining the default value as an expression, the variable updates when any
reference in the expression changes value. For example, a fullName variable might
have the default value set as {{ $variables.firstName + ' '
+ $variables.lastName }}. Any time firstName or lastName is updated, the
fullName variable will be updated.

Here's a list of implicit objects you can use in expressions:

Name Description Where Available

$application Retrieve the value of variables defined at the current
application level. For example, if a variable called
empName was defined at the application level,
the $application.variables.empName
expression is used to get its value.

Current
application

Chapter 8
What are Variables and Types?

8-2

Name Description Where Available

$flow Retrieve the value of variables defined at the current
flow level. If empName was defined at the flow level,
the $flow.variables.empName expression is
used to get its value.

Current flow

$page Retrieve the value of variables defined at the current
page level. If you defined empName at the current page
level, the $page.variables.empName expression
is used to get its value.

Current page

$variables A shortcut to retrieve the value of variables defined in
the current scope. For example, if empName was
defined at the current page
level, $variables.empName can be used the same way
you'd use $page.variables.empName.

Every scope that
has a
variables
property

$fragment Retrieve the value of variables defined within a
fragment. If you defined empName at the fragment level,
the $fragment.variables.empName expression
is used to get its value, particularly in action chains. You
can also use $variables.empName to get the value
local to the fragment.

Note:

Every fragment has a
unique ID, which is
accessible within a
fragment
using $fragment.inf
o.id. You can
use $fragment.info.
id used within
expressions set on a
component's ID property,
or even the ID of a nested
fragment.

Current fragment

$layout Retrieve the value of variables defined in the current
layout level. If you defined empName at the layout level,
the $layout.variables.empName expression is
used to get its value.

Current layout

$chain Used to refer to variables in actions executing in an
action chain.

The chain in
which an action is
executing

$parameters Refer to a page's input parameters only in the
beforeEnter event, because page variables do not
exist until the vbEnter event.

In the
beforeEnter
event

$listeners Refer to event listeners of an application, flow, or page in
a component, for
example, $listeners.onSelectionChange.

In a flow or page

Chapter 8
What are Variables and Types?

8-3

Name Description Where Available

$event Retrieve the content of an event's payload in an event
listener. For an event listener on a custom
event, $event contains the payload for that event. For a
event listener that listens for a variable's
onValueChanged event, $event is a structure with the
properties name, oldValue, value, and diff. See
Start an Action Chain When a Variable Changes.

Event listeners
and variable
onValueChange
listeners

$initParams Declarative initialization parameters which can be used
in expressions. Initialization parameters—or
initParams—are evaluated early and can be used in
expressions that are evaluated before variables exist (for
example, in service declarations or translation bundle
paths). The initParams are defined within a
configuration block in app-flow.json, for
example:

"configuration": {
 "initParams": {
 "myServicePath": "some/path/",
 "anotherPath": "http://somehost/foo"
 }
},
"services": {
 "myservice":
"{{ $application.initParams.myServicePath
 + 'myservice.json' }}"
},
"requirejs": {
 "paths": {
 "myPrefix":
"{{ $initParams.anotherPath }}"
 }
}

Everywhere

These variable definitions can be used much the same as any other variable in Visual
Builder, meaning, you can use them in component attributes, as parameters for JS
functions, in actions (such as if), and so on.

Variable Events

When its value changes, a variable emits an onValueChanged event. (You can also add
an onValueChanged event to constants if its default value is an expression containing a
variable.) For example, if you changed the name property of an Employee and then
reset the Employee, the framework would send an event that the Employee changed,
and as part of the payload indicate that the name has changed.

You can get the old and new variable values using the $event implicit object.

• $event.oldValue provides the variable’s old value.

• $event.value provides the variable’s new value.

Chapter 8
What are Variables and Types?

8-4

• $event.diff can be used for complex types and provides the diff between the old and
new values.

Note that the onValueChanged event is triggered only when the value is actually changed;
setting a variable value to the same value does not trigger this event.

It's possible to trigger an action chain whenever a variable raises this event. For example,
when a user clicks a row on a employee's table, you can set up an action chain to retrieve
employee information whenever the employee's ID changes.

Data Binding

Variables are principally bound to components to display data, but these variables don't know
where the data is derived from or what it is used for. To populate a variable from a REST call,
you assemble an action chain using an action making that REST call and an action assigning
the result to that variable. For common cases, Visual Builder provides quick starts to
automate the creation of that variable to match the payload of the REST call, enabling you to
quickly bind the REST call's payload in your pages. Typically, the variable's type matches the
structure of the REST payload, though you have the option of defining your own type that
matches your use case more closely, and then mapping the REST payload to a variable that
uses that type.

Built-in Variables

Visual Builder provides several built-in variables that allow you to access application
metadata.

currentPage
Use the currentPage variable on the application object to access some of the current
page's metadata, such as ID and title. This variable automatically updates as the current
page changes during navigation and can be used to update a navigation component with the
currently selected page.

Name Description

$application.currentPage.id Path of the current page. The path
describes the location of the page in the
flow hierarchy.

$application.currentPage.path Path of the current page for the
application. The path describes the
location of the page in the flow hierarchy.

$application.currentPage.title Title of the current page.

$flow.currentPage ID of the current page for this flow.

currentFlow
If there is a routerFlow in the page, use the $page.currentFlow variable to retrieve the ID of
the current flow.

path
Use the path variable to build the path to a resource, such as an image located in a folder.

Name Description

$application.path Path needed to retrieve a resource
located in the application folder.

Chapter 8
What are Variables and Types?

8-5

Name Description

$flow.path Path needed to retrieve a resource in the
flow folder.

user
Use the user variable to access information about the current user, based on the
information returned by the security provider.

Name Description

$application.user.userId User ID (string).

$application.user.fullName Full name of the user (string).

$application.user.email User email (string).

$application.user.username User name (string).

$application.user.roles One or more user roles (array of
strings)

$application.user.roles.roleN
ame

Returns true if roleName is a role of
this user.

$application.user.permissions One or more user permissions (array
of strings).

$application.user.permissions
.permName

Returns true if permName is a
permission of this user.

$application.user.isAuthentic
ated

Returns true if the user is
authenticated.

info
Use the info variable to retrieve some information about the application and page
descriptor.

Name Description

$application.info.id Application ID as defined in app-
flow.json.

$application.info.description Application description as defined in
app-flow.json.

$flow.info.id Flow ID as defined in flow-id-
flow.json.

$flow.info.description Flow description as defined in flow-
id-flow.json.

$page.info.title Page title as defined in page-id-
page.json

$page.info.description Page description as defined in
page-id-page.json

See also Built-in Variables in the Oracle Visual Builder Page Model Reference.

Create Variables in Artifacts
You can create variables, including constants, in application, flow, and page artifacts.
They are assigned a scope based on where they are created, and the scope

Chapter 8
Create Variables in Artifacts

8-6

determines where they can be used. When you are deciding where to create a variable or
constant, consider where it might be used.

Each variable or constant is required to have a unique name (Id) and a type. When you
create one, you must specify one of the built-in types or a custom type. After you create a
variable or constant, you can edit its properties and attributes in the Variables editor, for
example, to identify it as an input, or to add attributes if its type is array or object.

You can also use a variable to trigger an action chain when its value changes. You can use
the Events tab in the Variable Information pane to add onValueChanged event actions and
specify the action chain the change will initiate.

Unlike variables, constants remain the same throughout its scope. You can't change the
value of a constant once it has been initialized.

To create a variable or constant in an artifact:

1. Click the Variables tab in the Designer to open the Variables tab.

The Variables editor displays a list of the variables and constants that are already defined
for the artifact. You can enter a string in the filter field to limit the list to those containing
the string. Use the Properties pane to edit the details and event actions for the selected
variable or constant.

You will see a message if no variables or constants are defined.

2. Click + Variable to open the New Variable dialog box.

Chapter 8
Create Variables in Artifacts

8-7

3. Choose either Variable or Constant as required.

4. Type a name for the variable in the ID field and select a type in the Type drop-
down list.

The drop-down list displays the built-in types as well as any custom types that can
be applied to the variable.

5. Click Create.

You can click Create & New to immediately create another variable.

After you create a variable, you can select the variable in the list and edit its
properties. You can also:

Chapter 8
Create Variables in Artifacts

8-8

• Use the Events tab in the Properties pane to add event actions.

• Use the Design Time tab in the Properties pane to choose a custom component to set a
variable's Default Value in the General tab. For example, if you want to use a color picker
component instead of the default text field to select a color, select the Color subtype in
the Design Time tab. The General tab will display custom components when you select
any of the following subtypes: Color, Time Zone, Date Time, and Date. If you select any
of the other subtypes, you'll still see a text field for entering the Default Value in the
General tab.

You can also view usage information under Usages (for example, to see which pages access
the variable). Click a usage to readily navigate there.

Tip:

A shortcut to create variables for a specific type is available on the Types editor. To
do this, select a type in the Types tab, then right-click and select Create a variable.

Enable Variables as Input Parameters
You can use a variable to pass a parameter between pages. You do this by marking the
variable as an input parameter, specifying how it becomes part of the contract to navigate to
that page. You can also mark it as required, implying that it must be set in order to navigate to
that page.

1. Create your variable or constant on the Variables tab for your scope.

2. In the variable or constant's properties, select an Input Parameter option (default is
Disabled):

• Click Enabled to pass the variable's value as an input parameter.

• Click Required to require that the variable's value must be passed as an input
parameter.

Chapter 8
Create Variables in Artifacts

8-9

3. If you want to pass the parameter on the URL of the pages or flows that you are
invoking (by adding ?paramName=Value to the end of the URL), select Pass on
URL. This option allows you to bookmark pages that will show specific data based
on the parameter.

4. Optionally, set a default value.

Tip:

If you have a large number of variables defined, select Show Input
Parameters only on the Variables editor to filter and view only those
variables used as input parameters.

When a variable marked as an optional or required input parameter is used in your
app, you can set its value on a page to see how the page displays. To do this:

1. Switch to the Page Designer tab.

2. Click in the toolbar to open the Page Input Parameters dialog. You'll see a list
of input parameters for the page, including those from its parent flows and pages
(if defined).

3. Set the parameter value and click Set Parameters.

If the variable was marked as a required input parameter but a value isn't assigned

to it, you'll see a red dot on the Page Input Parameters icon, like this: . Click

Chapter 8
Create Variables in Artifacts

8-10

the icon then to set the missing parameter. Required parameters appear at the top in the
Page Input Parameters dialog.

When a default value is set for the variable used as an input parameter, it will show when
a value is yet to be assigned to the parameter. Deleting an assigned value will
automatically apply the default value.

Track Variables to Detect Unsaved Changes
You can track changes in a variable's state as a way to detect unsaved changes in your
application. Tracking a variable marks it as "dirty" any time its value changes, that is, when its
current value differs from its initial value. You can then build an action chain to query for dirty
variables and trigger a suitable response.

Suppose you want to notify users of unsaved changes before they leave a page, here's what
you might do: set a page variable for tracking, then build an action chain as follows:

• Use the Get Dirty Data Status action to query for dirty variables in the action's current
scope as well as in any containers within

• Take some action if dirty variables exist, for example, use the Fire Notification action to
display a message. Note that a variable whose value was updated but changed back to
its initial value is not considered dirty.

Enable a Variable for Tracking
You can track changes in a variable's state for all types of variables—except SDP variables
and constants—in an app, flow, page, fragment, and layout.

1. Open the Variables tab and access the variable whose state you want to track.

2. In the variable's Properties pane, select Track from the Dirty Data Behavior list. The
default is None, indicating that the variable's state is not tracked.

Chapter 8
Create Variables in Artifacts

8-11

Query Tracked Variables for Changed State
With variables enabled for tracking, you can use the Get Dirty Data Status action to
query changes in variable state and take appropriate action.

1. Open the Action Chains tab in the scope appropriate for your tracked variable,
then create an action chain or open an existing one.

Because the Get Dirty Data Status action queries for dirty variables in its current
scope as well as in any containers within, make sure the scope of its action chain
is correct for your tracked variable. For example, when you want to check for
unsaved changes on a page, the tracked variable and corresponding action chain
can be defined at the page level. If the page contains fragments and/or layouts,
those will be checked as well.

2. From the Actions palette, double click the Get Dirty Data Status action or drag
and drop it onto the canvas.

Chapter 8
Create Variables in Artifacts

8-12

3. Optional: In the action's Properties pane, give the action a unique ID that can be used for
logging and action chain tests and add a description.

4. Update the Store Result In property to more clearly identify the auto-generated variable
that will store the value returned by the Get Dirty Data Status action (for example,
getDirtyDataStatusResultForNameInput).

5. Add one or more actions you want to trigger in response to the Get Dirty Data Status call.
For example, you might add the If action to determine what action to take depending on
the results of the Get Dirty Data Status action. The values that can be returned as results
are either status: 'dirty' or status: 'notDirty'.

• If the Get Dirty Data Status action returns a status: 'dirty', you might add a Fire
Notification action to display a warning about unsaved changes, then follow it with a
Return action to stop navigation by returning an object with the property
"cancelled" set to "true" (as shown here):

• If the Get Dirty Data Status action returns a status: 'notDirty', you might add
another Return action, this time with the "cancelled" property set to "false", to
allow users to navigate away from the page.

For detailed steps on building this example action chain, see Add a Get Dirty Data Status
Action.

Chapter 8
Create Variables in Artifacts

8-13

Reset State for Tracked Variables
When you don't want a tracked variable's changes to be flagged as dirty, you can reset
its dirty state using the Reset Dirty Data Status action. Here are a few scenarios when
you might want to do this:

• Let's say a variable's initial value is "0" and a REST call changes it to "1". When
you don't want this change to be tracked as dirty, calling the Reset Dirty Data
Status action resets the variable's dirty data state such that "1" is considered the
new initial value.

• Let's say you have a page that allow users to save or cancel their changes. If
users click a Cancel button to not save their changes, you might want to reset the
tracked variable's state, so the change is no longer considered dirty.

Note:

Be aware that when you add the Reset Dirty Data Status action to an action
chain, it resets the dirty state on all tracked variables in the scope where the
action chain is invoked as well as any containers within. For example, if your
action chain is defined at the page level, all tracked variables at the page
level will be reset. If the page contains fragments and/or layouts, tracked
variables in those scopes will also be reset.

Make sure the scope you define for the action chain that contains the Reset
Dirty Data Status action is appropriate for your use case.

To add the Reset Dirty Data Status action to an action chain:

1. Open the Action Chains tab for the action chain that queries your tracked
variables.

2. From the Actions palette, double click the Reset Dirty Data Status action or drag
and drop it onto the canvas.

To add the action to follow another, drop it onto the bottom edge of the previous
action. For example, when you have an Assign Variable action that assigns a

Chapter 8
Create Variables in Artifacts

8-14

default value to a variable, you might follow that action with the Reset Dirty Data Status
action, so the assignment isn't considered dirty.

3. Optional: In the action's Properties pane, enter a unique ID that can be used for logging
and action chain tests and a description.

4. Optional: Add the action you want to trigger after the Reset Dirty Data Status call, for
example, you might add a Navigate action to allows users to navigate to another page.

Create Variables to Temporarily Store Data Changes in a Buffer
When you work with variables based on component data providers such as Service Data
Provider and Array Data Provider, you can temporarily store data changes in a buffer until
they are ready to be committed to the data source. To do this, you use variables based on a
Buffering Data Provider.

The Buffering Data Provider is a wrapper that provides buffering for an underlying data
provider, so edits can be committed to the data source later on. The underlying data provider
is responsible for data fetches, while the Buffering Data Provider takes care of merging any
buffered edits with the underlying data. This is useful functionality for batch processing,
especially in the context of editable tables. For example, when users edit multiple existing
rows or create new rows in a table, all changes can be stored in a buffer until the user clicks a
Save button, at which time a REST call posts the buffered changes to the backend service.
The buffered changes are held in a variable based on the built-in Buffering Data Provider
type.

Buffering Data Providers require data providers that provide the actual data. For example,
when you create a table based on a quick start, a Service Data Provider type variable is
created to hold the table's data. The Buffering Data Provider simply wraps this underlying
data provider to provide additional functionality, such as buffering for CRUD operations,
commit, and revert. So before you create a Buffering Data Provider variable, make sure the
underlying data provider is available.

Here's how to create a Buffering Data Provider variable and map it to the underlying data
provider:

1. Click Variables to open the Variables editor for your scope.

2. Click + Variable to open the New Variable dialog box.

3. Give the variable a name (for example, employeeBDP) in the ID field and select
Buffering Data Provider as the Type.

4. Click Create to create your Buffering Data Provider variable. Here's an example of a
newly created Buffering Data Provider variable:

Chapter 8
Create Variables in Artifacts

8-15

5. The Buffering Data Provider variable allows you to pass values to the constructor
to initialize the newly created instance's properties. Here are the two Constructor
Parameters it accepts:

• dataProvider which must be set to an underlying data provider, and

• options, as supported by the Oracle JET DataProvider API. See https://
www.oracle.com/webfolder/technetwork/jet/jsdocs/
CollectionDataProvider.html.

a. To map the Buffering Data Provider variable to your component's underlying
data provider, in the newly created variable's Properties pane, click the
dataProvider Constructor Parameter.

In the Map Variables to Parameters dialog, map the original data provider on
the Sources pane (for example, the employeeListSDP variable created
when a table component is mapped to its data source) to the dataProvider
parameter on the Target pane. Click Save.

b. To pass any options from the underlying data provider, click options under
Constructor Parameters, map the required variables, and click Save.

6. Bind the Buffering Data Provider variable to your component. Variables based on
the Buffering Data Provider type can be bound to tables, list views, or any
component that accepts a data provider.

a. Switch to the Page Designer and select (for example) your table component.

b. In the table's Data tab, open the variable picker and select the instance of the
Buffering Data Provider, instead of the original data provider. For example, you
might replace $variables.employeeListSDP
with $variables.employeeBDP.instance:

Chapter 8
Create Variables in Artifacts

8-16

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/CollectionDataProvider.html
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/CollectionDataProvider.html
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/CollectionDataProvider.html

Create Types
Every variable in Visual Builder is assigned a type, something that defines the type and
structure of the data stored in a variable. Two kinds of types can be assigned to variables:
standard JavaScript built-in types and custom types that can be declared and instantiated as
needed.

Standard built-in types can be used to specify data that are:

• a specific primitive type (string, boolean, number, and so on)

• a structured type such as an array or object, for which each field can either be a primitive
or a structure

• a dynamic type (any), or

• a built-in type such as Array Data Provider, Service Data Provider, or Multi Service Data
Provider.
Service Data Provider (SDP) is typically used to store data retrieved from a REST
endpoint and populate collection components such as tables and lists; Multi Service Data
Provider is commonly used for list of values components when different fetch capabilities
are required. Array Data Provider (ADP) is used when some operations need to be
performed on the data.

The Buffering Data Provider (BDP) type is a special built-in type. It wraps underlying data
providers such as SDPs and ADPs to provide enhanced functionality such as buffering
for CRUD operations, commit, revert, and so on.

When you use Quick Starts to develop your application's pages, Visual Builder creates
whatever types are necessary. If you do want to create your own type, you have the option of

Chapter 8
Create Types

8-17

creating custom types. Custom types can be based on an endpoint to make sure the
shape of the variable's data matches what the endpoint expects in its payload. You
can also create types to define custom objects, arrays, and enumerated lists.
Advanced users can further define a type from code (such as a type class written in
JavaScript or a typescript class) and associate this type to a special InstanceFactory
variable. This way, they can simply plug their type into a variable without writing any
extra JavaScript code.

Types from an endpoint or from code define custom type structures either by using the
endpoint (response) data structure, or by using a type class (or a type declaration file
when provided).

When creating types, remember that they are defined within a scope, just like
variables. They can be created at the application, flow, and page level. They can also
be defined at the dynamic layout level to be shared between dynamic layout
templates, and at the fragment level.

Create a Custom Type
Custom types can be used to define the structure of any variable. Create a custom
type when you want a type that defines an array or an object, and you want to
individually add the attributes that define the type’s data structure. You can also create
a custom type to define a list of enumeration values.

Create a Custom Object or Array
You create a custom object when you want a type to define an object that contains
properties and a custom array when you want a type to store multiple variables of the
same type.

To create a custom object or array:

1. Select your application, flow, or page artifact in the Navigator.

2. Click the Types tab in the Designer to open the Types editor.

The Types editor displays all the types defined for the artifact.

3. Click + Type and select Custom in the menu.

Chapter 8
Create Types

8-18

4. Give the type a unique name and select the object or array as the type.

• To create a custom object (for example, an addressType that defines the fields of an
address), select Object. An object type can also contain nested arrays.

• To create a custom array (for example, a customerAddresses type that defines an
array of addresses), select Array.
Arrays are defined the same way as objects, but the object type is inside an array.
Arrays can have nested objects or arrays as well.

Click Create.
The new type is added to the list in the Types editor. You now define the structure by
adding attributes.

5. In the Types editor, click Add Field next to the new type to add an attribute.

6. Enter the name and select a type for the new attribute. Click Create.

You can select Create & New if you want to immediately add another attribute to the
type.

You can continue to refine the data structure of the type by adding attributes.

Chapter 8
Create Types

8-19

You can view the type's usage information under Usages in the Properties pane (for
example, which variables are based on it). Click a usage to readily navigate there.

Create a Custom Enumeration
You create an enumerated type when you want to list—or enumerate—permitted
values. Enumerations are useful for variables that have a small set of possible values
and are usually used to declare different options (say, a list of cities) or actions (like up,
down, left, and right).

For example, to specify a list of cities in California, ordered by population, your
enumerators could be Los Angeles, San Diego, San Jose, and San Francisco,
belonging to an enumerated type named cityType. If a variable cityVar is declared with
cityType as its data type, a user can assign any of those four values to the variable.

Defining an enumeration as a type lets you refer to the enumeration values as well as
reuse the type in multiple places.

To create an enumerated type:

1. Select your application, flow, or page artifact in the Navigator.

2. Click the Types tab in the Designer to open the Types editor.

3. Click + Type and select Custom in the menu.

4. Give the type a unique name and select Enum. Click Create.

The new enum type is added to the list in the Types editor.

Chapter 8
Create Types

8-20

5. Update the type's properties in the Properties pane to specify the type of enum and its
values.

a. Select the Enum Type, either number or string.

b. Select the Require Enum Value check box if you want to specify your enum values
as named values.

If you choose not to select this option, your enum type's JSON declaration uses a
simpler, more intuitive definition. This means that for a number type enumerator, the
values property uses an array of keys, instead of an object. For a string type
enumerator, each enum value equals its key. Here are two examples:

Enum
Type

Shortened Declaration Equivalent Declaration

Number "directions": {
 "enumType": "number",
 "values": [
 "up",
 "down",
 "left",
 "right"
]
}

"directions": {
 "enumType": "number",
 "values": {
 "up": 0,
 "down": 1,
 "left": 2,
 "right": 3
 }
}

Chapter 8
Create Types

8-21

Enum
Type

Shortened Declaration Equivalent Declaration

String "cityType": {
 "enumType": "string",
 "values": [
 "LosAngeles",
 "SanDiego",
 "SanFrancisco",
 "SanJose"
]
}

"cityType": {
 "enumType": "string",
 "values": {
 "LosAngeles":
"LosAngeles",
 "SanDiego": "SanDiego",
 "SanFrancisco":
"SanFrancisco",
 "SanJose": "SanJose"
 }
}

c. Click Add next to Enum Values and add your list of enumeration values in the
order you want them to show.

You can only specify a string or a number. Only literal values can be specified
as values; expressions are not allowed.

You can edit and delete the enumeration values after they've been added.

After you've defined your enumerated type, create a variable with its date type set to
this enum type. You can also specify a particular value as the variable's default:

Chapter 8
Create Types

8-22

Once the default value is selected, an expression that represents the selected value is added
to the page's JSON, for example:

{
...
 "variables": {
 "cityVar": {
 "type": "cityType",
 "defaultValue": "{{ $enums.cityType.SanFrancisco }}"
 }

The actual value is determined at runtime when the expression is evaluated.

Create a Type From an Endpoint
When you create a type from an endpoint, you define a data structure by selecting an
endpoint and then choosing from the fields available at the endpoint.

For example, when sending a request to an endpoint getall_Employee you might want the
structure of the response to be an array with the id and a few specific fields (a string name
and a string email). You can create a type from the endpoint and select the fields that you
want in the response. All variables that are assigned this custom type will have the same data
structure.

To create a type from an endpoint:

1. Select your application, flow, or page artifact in the Navigator.

Chapter 8
Create Types

8-23

2. Click the Types tab in the Designer to open the Types editor.

3. Click + Type and select From Endpoint in the menu.

4. Select an endpoint from the list. Click Next.

5. Select the endpoint attributes you want to include in the data structure. Click
Finish.

Chapter 8
Create Types

8-24

If you expand your new type in the Types editor, you can see it is an object type with an array
items containing the fields in the endpoint that you selected.
You can view the type's usage information under Usages in the Properties pane (for
example, which variables are based on it). Click a usage to readily navigate there.

Create a Type From Code
When you want to use your own type (for example, a type class written in JavaScript or a
typescript class) with a variable in Visual Builder, you can create a type from code to create
an instance of that type class. Types from code, called InstanceFactory types, can be created
by importing your type definition to declaratively plug in any Oracle JET type class or a

Chapter 8
Create Types

8-25

custom type class, then using it with a category of variable known as an
InstanceFactory variable.

InstanceFactory types and variables let you use your own type class (say, the myapp/
MyTypeFromCode JavaScript class) as a type with Visual Builder variables without
having to re-implement a new type (Javascript class) that uses or extends the VB
Extended Type framework. You'll only need to provide a typescript definition file
(*.d.ts) or a typescript file (*.ts) that defines your type's details. Visual Builder will
parse your type definition, generate a JSON representation that is compatible with
existing type schema, and create an InstanceFactory type, which you can then assign
to an InstanceFactory variable (vb/InstanceFactory). The InstanceFactory
variable uses the InstanceFactory type and additionally the list of constructor
arguments declared by the type to define its constructor parameters
(constructorParams).

The InstanceFactory variable that uses an InstanceFactory type creates immutable
instances of the type class. When a page loads, the InstanceFactory variable creates
the first instance of the type (using the configured constructor parameters). It also
creates a new instance of the type class whenever its constructor parameters change.
You can use the Assign Variables action or the Reset Variables action to update
constructor parameters.

You can also use the Call Variable action to call methods on the variable instance (see
Add a Call Variable Action).

To create a type from code:

1. Select your application (or fragment) in the Navigator.

2. Click the Types tab to open the Types editor.

3. Click + Type and select From Code in the menu. This option is available only at
the app (or fragment) level, so make sure you've selected the correct node in the
Navigator.

4. Enter the type name using namespaces (for example, myapp/MyTypeFromCode)
and click Create. Namespaces separated by a slash (/) help organize the types.

An InstanceFactory type is created, with its default icon set to oj-ux-ico-software. A
default display label is also generated based on your values, as shown here in the
Properties pane:

Chapter 8
Create Types

8-26

5. If you want, configure the type's properties to use a custom display label and a display
icon of your choice. In our example, let's set the display label to MyTypeFromCode and
the display icon to oj-ux-ico-phone.

6. Drag and drop (or click Upload type definition to provide) a typescript (.ts) or
typescript definition (.d.ts) file that specifies the type's details:

Chapter 8
Create Types

8-27

Visual Builder converts your type definition to a JSON representation, then saves
the JSON file under resources/typedefs/.

After you've created a type from code, you can create a variable for this
InstanceFactory type, just as you would for any other type. For example, here's a
myVar variable assigned to the MyTypeFromCode type:

However, because an InstanceFactory type includes a constructor, initializing
InstanceFactory type variables is not the same as other variables. It requires
parameters to be mapped to the constructor. To do this, click Assign in the variable's
Properties pane, then map the constructor parameters.

The shape for the constructor parameters comes from your type definition file. Here's
an example type and variable declaration as shown on the JSON tab:

 "types": {
 "myapp/MyTypeFromCode": {
 "label": "MyTypeFromCode",
 "constructorType": "vb/InstanceFactory<myapp/MyTypeFromCode>",
 "iconClass": "oj-ux-ico-phone",
 "typedef": "resources/typedefs/myapp/MyTypeFromCode.json"
 }
 },
 "variables": {
 "myVar": {
 "type": "myapp/MyTypeFromCode",
 "constructorParams": [
 "Book Giver", <<<<< this is title
 { <<<<< this is author
 "firstName": "Lois",
 "lastName": "Lowry"
 },

Chapter 8
Create Types

8-28

 49.99 <<<<<<< this is price
]
 }

Note:

To make the JavaScript implementation for types like myapp/MyTypeFromCode
available at runtime, make sure the path to your implementation is correctly mapped
in requireJS, for example:

"requirejs": {
 "paths": {
 "myapp": "resources/js/myapp"
 }
 },

One InstanceFactory variable can reference another InstanceFactory variable. In this
example, the incidentsView variable references incidentsSDP, another InstanceFactory
variable:

"incidentsSDP": {
 "type": "vb/ServiceDataProvider2",
 "constructorParams": [
 {
 "endpoint": "demo-data-service/getIncidents",
 "keyAttributes": "id",
 "itemsPath": "result",
 "uriParameters": "{{ $variables.technicianURIParams }}"
 }
]
},
"incidentsView": {
 "type": "ojs/ojlistdataproviderview",
 "constructorParams": [
 "{{ $page.variables.incidentsSDP.instance }}",
 {
 "sortCriteria": [
 {
 "attribute": "priority",
 "direction": "ascending"
 }
]
 }
]
}

Any time the incidentsSDP variable changes (that is, a new instance is created), the
incidentsView variable re-creates a new instance of ojs/ojlistdataproviderview. This
also means that components bound to either variable are notified of the change.

Chapter 8
Create Types

8-29

Service Data Provider
Service Data Provider represents a data provider that provides data by fetching it from
a service or endpoint and that can be bound to components. It also allows
externalizing fetches through an action chain.

The Service Data Provider can be used to fetch collections of data either implicitly
using a configured endpoint, or externally by delegating to an action chain.
Additionally, when Service Data Provider uses an Oracle Cloud Applications service,
the built-in business object REST API transforms associated with the service
automatically enable capabilities such as sorting, filtering, and pagination of the data.
When used with endpoints not part of an Oracle Cloud Applications service, it's
important for service authors to provide a custom transforms implementation that
supports these capabilities. (It's worth noting that some functionality is controlled by
the type of endpoint. For example, pagination properties such as limit and offset
are available on a Get Many endpoint, but not a Get One endpoint.)

A variable that uses this built-in type can be bound to collection components like
listView, table, combobox/select, chart, and other JET components that accept a data
provider.

When the properties of the Service Data Provider variable change, it listens to the
variable onValueChanged event, and notifies all its subscribers (such as components)
to refresh (by raising a data provider event). Currently, UI components are the only
listeners of this event.

For more about SDPs, see Service Data Provider in the Oracle Visual Builder Page
Model Reference.

Creating a Custom Fetch Action Chain - An Example
Let's go through an example of creating a custom fetch action chain for an SDP. In this
example, we'll add a Single Select component to a page and bind it to an SDP in order
to list the department headquarters from a business object. We'll then configure the
Single Select component to show additional fields, and create a custom fetch action
chain for the SDP to retrieve the data for the additional fields. Each row in the list will
show the department headquarters' name, the country that the headquarters is in, and
an image of the country's flag.

Before we begin, we'll need to create a Departments HQ business object with a Name
and a Country field. We'll also need to add a Single Select component to a page and
to use a Quick Start to map it to the Departments HQ business object.

Let's begin by creating the Departments HQ business object:

1. Select the Business Object tab, then click + at the top right to create a new
business object called Departments_HQ.

2. On the Departments HQ tab, select the Fields tab and add a name (String) and a
country (String) field.

3. On the Data tab, add a few rows for the Select Single component to list:

Chapter 8
Service Data Provider

8-30

Next, we'll add a Select Single component to a page, and then use its Add Options Quick
Start to map it to the Departments HQ business object.

4. Create a new page, then in the Page Designer tab, add a Select (Single) component to
the page.

5. To map the component to the Department HQ business object, on the Properties pane's
Quick Start tab, select Add Options.

6. For the Locate Data step of the Add Options wizard, under Business Objects, select
Departments_HQ. Click Next.

7. For the wizard's Bind Data step, under Dropdown options, drag-and-drop the country
field into the Label box and the name field into the Value box. Click Next.

Chapter 8
Service Data Provider

8-31

8. For the wizard's Define Query step, click Finish.
An SDP is automatically created for Department HQ, which fetches the name fields
from the business object. You can see the new SDP on the page's Variables tab.
You can also see that the Select Single component has automatically been bound
to the SDP on the Properties pane's Data tab. If you switch the Page Designer to
Live mode and click the Select Single component's down arrow, you'll see the
department names that were fetched by the SDP:

We now need to configure the Single Select component to show additional fields,
including an image to show each country's flag.

Click the Page Designer's Code button to edit the page's HTML code. Add the
following HTML code to the oj-select-single tag, which adds a table to the
Single Select component so that it can show additional fields:

 <template slot="collectionTemplate" data-oj-
as="collection">
 <oj-table
 accessibility.row-header="[[['department', 'country']]]"
 horizontal-grid-visible="disabled"
 vertical-grid-visible="disabled"
 selection-mode='{"row": "single"}'
 columns-default='{"resizable": "disabled",
 "sortable": "disabled"}'
 columns='[
 {"headerText":"Department
HQ","field":"name","template":"departmentTemplate", "id":"name" },

{"headerText":"Country","field":"country","template":"countryTemplat
e", "id":"country"},

{"headerText":"","field":"countryFlag","template":"flagTemplate",

Chapter 8
Service Data Provider

8-32

"id":"countryFlag"}
]'
 class="oj-select-results"
 data="[[collection.data]]"
 selected.row="[[collection.selected]]"
 on-oj-row-action="[[collection.handleRowAction]]">

 <template slot="departmentTemplate" data-oj-as="cell">

 <oj-bind-text value='[[cell.data]]'></oj-bind-text>

 </template>
 <template slot="countryTemplate" data-oj-as="cell">

 <oj-bind-text value='[[cell.data]]'></oj-bind-text>

 </template>
 <template slot="flagTemplate" data-oj-as="cell">
 <oj-avatar src='[[cell.data]]'></oj-avatar>
 </template>

 </oj-table>
 </template>

Chapter 8
Service Data Provider

8-33

Next, we need to create a service connection for retrieving the flag images.

9. Select the Services pane, then click its plus (+) icon and select Service
Connection:

10. In the Create Service Connection wizard, under Select Source, select Define by
Endpoint.

Chapter 8
Service Data Provider

8-34

11. In the URL field, enter the endpoint https://restcountries.com/v3.1/all?
fields=name,flags to retrieve the flag images, then click Create Backend:

A backend is created for this service connection, which stores the server details. You can
use this backend to create related service connections, and to apply endpoint requests
and response transform functions to them all.

12. On the Backend Specification step, enter GetFlagsBackend as the Backend Name and
click Next.

13. On the next step, enter GetFlags for the Service Name.

Now that the preliminary work has been completed, we can see how to create a custom fetch
action chain for an SDP that's bound to a component. We'll first customize the fetch action
chain that was automatically created for the SDP when it was mapped to the Departments
HQ business object, so that it'll also retrieve flag images. To keep things simple, we won't do
any error handling.

To begin:

1. Go to the page's Variables tab and select the SDP that's bound to the Select Single
component.

2. In the Properties pane, scroll down to the bottom and click Customize Fetch Action
Chain:

Chapter 8
Service Data Provider

8-35

You're taken to the Action Chains editor, where the SDP's fetch action chain is
loaded, which has an auto-generated name and a preconfigured Call REST action.

Note:

A configuration object has been passed to the action chain, however,
it’s for internal use only. Don't try to use this object, as it can change in
between versions in incompatible ways.

3. Under the provided Call REST action, add another Call REST action.

Chapter 8
Service Data Provider

8-36

4. In the Properties pane, click the Endpoint property's Select link. In the Select Endpoint
dialog, expand the Services node, then the GetFlags node and select the GET /all
endpoint. Click Select.

5. Add a For Each action under the last Call REST action.

6. In the Properties pane, for the items property, enter the location of the returned array of
departments using the result from the call to get the departments. For example:
{{ callRestGetAllDept.body.items }}:

7. Add a JS Code action to the Add Action area of the For Each action.

8. In the Properties pane, replace the text in the Code box with this code to add the flag
image to the data that's to be returned by the action chain: item.countryFlag =
callRestGetAllFlags.body.find(country => country.name.common ===
item.country)?.flags.png;

The custom fetch action chain is complete and ready for you to try out! Now, when you go to
view the Select Single component's list, you'll see each department's country and an image of
the country's flag:

Chapter 8
Service Data Provider

8-37

Delay Display of SDP Data
To improve the performance of your visual application, you can delay fetching of SDP
data until it's requested by the user.

An SDP automatically executes the REST point that it's bound to when the associated
UI component is first shown on the page, so if we want to delay the execution of the
SDP call, we need to hide the UI component. For example, you can delay display of
table data on a page until the user clicks a button.

In this procedure, we use an oj-bind-if component to hide a table, then we add an
ojAction event to a button on the page. When the button is clicked, the variable
controlling the oj-bind-if component is updated, and the REST call is executed to
fetch and display the data in the table. For more information on the oj-bind-
ifcomponent, see Use Conditions to Show or Hide Components.

An SDP is bound to REST endpoints that fetch many records, which can come from a
service or a business object.

In this example, we've set up a service connection using the Create Service
Connection wizard to create a Human Capital Management service connection from
the catalog and chose the publicWorkers object. For more information, see Create
Service Connections from the Oracle Cloud Applications or Integration Applications
Catalog.

Chapter 8
Service Data Provider

8-38

1. In your visual application Page Designer, drag a Button component to the canvas and
add a label for it in the Properties pane, for example, View List.

2. Now create a table using a service connection.

a. From the Page Designer Data tab, expand Services and drag an object (for
example, publicWorkers) to the canvas. Choose the second Table item from the
Render as list.

b. In the Bind Data page, search for and select the endpoints that you want to add as
table columns (for example PersonID, DisplayName, and LocationTownOrCity). Click
Next.

c. In the Define Query page, click Finish.

3. Create a boolean variable to control the table display.

Chapter 8
Service Data Provider

8-39

a. In the Variables tab, click + Variable. Enter an ID (for example, EmpList) and
choose Boolean in the Type field. Click Create.

b. In the General tab of the variable properties, choose false as the Default
Value.

4. Use the oj-table-bind component to hide the table.

a. In the Structure tab, right-click the Table component and select Surround,
then If.

b. In the Structure tab, select the Bind If component. In the Properties pane,
hover over the Test field and click the Select Variable icon.

Chapter 8
Service Data Provider

8-40

c. Select EmpList from the Variables list.

The table is hidden.

5. Create an oj-action event for the button.

a. Select the button component in the Designer, then in the Events tab of the Properties
pane, click + Event Listener and select On 'ojAction'.

You're taken to the Action Chain editor.

b. Add an Assign Variables action to the canvas. In the Properties pane, click the
Variable parameter's down arrow and select EmpList. For the Value parameter that
appears, click its down arrow and select true.

Chapter 8
Service Data Provider

8-41

In the visual app, when the users reach the page, they will need to click the button to
view the table.

Chapter 8
Service Data Provider

8-42

9
Work with JavaScript Action Chains

A JavaScript action chain is a sequence of actions started by an event. When a given event
occurs in a page, the event listener listening for that event kicks off the action chain.

You implement action chains using either the visual Action Chain editor or through code,
using JavaScript. Here's an example of an action chain built with the Action Chain editor. The
action chain first calls a REST endpoint to get a full set of songs, then checks to see if any
errors occurred. As long as things remain error-free, the action chain loops through the songs
and adds those with a "Classic" subgenre and a tempo of 76 to 108 beats per minute to an
array. The array is then returned:

Here's the same action chain in the code editor:

9-1

You can also debug JavaScript action chains using your browser's Developer tools:

Chapter 9

9-2

JavaScript and JSON Action Chains

When you create a new action chain for an event listener, component, or variable, by default
it's a JavaScript action chain. When creating one on the Actions Chains tab, you're given a
choose between a new JavaScript or JSON action chain, with JavaScript being the default:

We recommend that you use JavaScript action chains (rather than JSON), as they provide a
number of benefits, including:

• The JavaScript Action Chain visual editor offers a helpful Structure pane.

• The JavaScript code editor has an Actions palette, Structure pane, and Properties pane
to facilitate visual development.

• Debugging is easier, since you can use your browser's Developer tools.

• JavaScript code is easier to manage through Git operations, such as merge.

You can call a JSON action chain from a JavaScript action chain using the Call Action Chain
action; however, you can't call a JavaScript action chain from a JSON action chain.

About Action Chains
An action chain drives a series of actions in response to a lifecycle event from the user
interface. Events are what start them, and there are many types of events, such as:

• vbEnter: triggered when a page starts and can be used to fetch data

• ojAction: triggered when a button component is clicked

• onValueChange: triggered when the value stored in a variable changes

No matter the type of event, every action chain must be bound to an event listener to be able
to run it. Sometimes the event listener is created automatically, but sometimes you must
create it explicitly. For example, if you accept the event that Visual Builder suggests (say, the
onValue event suggested for an Input Text component), the event listener is created for you,
which will trigger an action chain when the component's value changes.

Creating an action chain involves using the Action Chain editor to assemble predefined (built-
in) actions into a sequence that performs the required task. If you need an action that isn't

Chapter 9
About Action Chains

9-3

available, you can either use the Code action to add your own block of code, or you
can create a custom action if you think you might need it again.

Here's an example of an action chain that runs two action chains asynchronously, and
then uses the result from each to create a combined result. Through input parameters,
the action chain receives four numbers, as shown in the Properties pane. Using the
Run in Parallel action, one asyn() method is used to call an action chain that returns
the quotient of two numbers, and another asyn() method is used to call an action
chain that returns the product of two numbers. The Run in Parallel action returns an
array (runParaResult, in this example), with the first element containing the value from
the first asyn() method and the second element containing the value from the second
asyn() method. The sum of the values is then displayed using a Fire Notification
action:

Here's the action chain's code:

 const runParaResult = await Promise.all([
 async () => {

 const callChainDivNum1ByNum2Result = await
Actions.callChain(context, {
 chain: 'divNum1ByNum2',
 params: {
 num1: num1ToDiv_ip,
 num2: num2ToDiv_ip,
 },
 });

Chapter 9
About Action Chains

9-4

 return callChainDivNum1ByNum2Result;
 },
 async () => {

 const callChainMultipleNum1ByNum2Result = await
Actions.callChain(context, {
 chain: 'multipleNum1ByNum2',
 params: {
 num1: num1ToMul_ip,
 num2: num2ToMul_ip,
 },
 });

 return callChainMultipleNum1ByNum2Result;
 },
].map(sequence => sequence()));

 await Actions.fireNotificationEvent(context, {
 message: `Sum of returned values: ${runParaResult[0] +
runParaResult[1]}`,
 summary: `Sum`,
 });

When creating action chains, keep in mind that each action chain has a scope that depends
on where it's defined: at the application, flow, page, or fragment level. An action chain defined
at the application level can be called from any flow or page, but a page-level action chain can
only be called from that page— however, the chain itself can access variables defined on the
page, parent flow, or application. The same goes for flow-level action chains. A fragment-
level or layout-level action chain can only be called from that fragment or layout, and the
chain can only refer to variables defined in that fragment or layout.

While actions within a particular chain run serially, you can run multiple action chains
concurrently by configuring the event listener to start multiple chains.

About the Action Chain Editor
The Action Chain editor has two modes for creating an action chain, which you can
seamlessly switch between, as changes in one are immediately reflected in the other:

• Design mode is used to visually create an action chain:

Chapter 9
About the Action Chain Editor

9-5

• Code mode is used to create an action chains with code:

Both modes have an Actions palette, a Structure pane, and a Properties pane:

• Actions Palette:
The Actions palette provides built-in actions, organized into categories, for creating
actions chains. As mentioned, if none of the actions meet your need, you can use
the Code action to add your own block of code, or you can create a custom action
if a future need warrants it.

When a local function is added, it's added to the Actions palette, under a newly
added Local Functions category. Use it to quickly add a call to the local function.

To customize the Actions palette, click its Menu :

Chapter 9
About the Action Chain Editor

9-6

You can choose to view the actions in a grid or list; and Show Categories groups the
actions into categories when selected, and lists them alphabetically otherwise. These
preferences are saved for each action chain.

• Properties Pane:
The Properties pane provides an easy way to define an action chain's input parameters
and return object, and an action's properties.

When entering text in the Properties pane, an entry is considered a string unless it’s
wrapped with double curly brackets, like this {{2+3}}, in which case it’s considered a direct
expression.

If a local function is added, you can select it and use the Properties pane to view and
modify its properties.

• Structure Pane:
The Structure pane provides a compact view of the actions, and has a filter to quickly find
and select an action. Also, syntax errors detected by the JavaScript parser are shown, if
they can be handled, otherwise a message states that the Structure pane can't be
displayed due to errors.

When a local function is added, the Structure pane gets organized by functions and their
actions.

You can hide any of these panes by clicking their tab.

Create Action Chains in Design Mode
When you use the Actions palette, Properties pane, and Structure pane in Design mode, VB
Studio writes the corresponding JavaScript behind the scenes. You can edit this code directly
at any time by switching to Code mode, which opens a code editor.

Chapter 9
About the Action Chain Editor

9-7

Right-click an action to display a context menu with the following options:

• Go to Code: Go to the action's code in the code editor.

• Surround with If: Surround the action with an If action.

• Surround with Try-Catch: Surround the action with a Try-Catch action.

• Delete: Delete the action.

Here are some helpful tips for working with action chains:

• When you add a local function, the function and its actions are added to the
Structure pane for quick navigation; the function’s properties appear in the
Properties pane; and the local function is added to the Actions palette, under a
newly created Local Functions category:

Chapter 9
About the Action Chain Editor

9-8

• To convert a local function to an action chain so that it can be used by other action
chains, right-click the local function and select Convert Function to Chain:

Chapter 9
About the Action Chain Editor

9-9

The local function, as well as any local functions it uses, is converted to an action
chain:

In the original action chain, the Call Function action that called the local function is
converted to a Call Action Chain action that calls the new action chain:

Chapter 9
About the Action Chain Editor

9-10

• You can also create a local function from an action on the canvas. Just drag an action
from the canvas onto the Create Function button that appears on the bottom right of the
canvas, or onto the green line that appears before or after a local function. In this
example, we create a local function by dragging a For Each action onto the Create
Function button:

In the run() entry point function, the For Each action was replaced with a Call Function
action that calls the new local function:

Chapter 9
About the Action Chain Editor

9-11

• To visually simplify large action chains, you can fold the code blocks for If, Switch,
Run in Parallel, and For Each actions. To do so, hover over the canvas's left
margin and click the down arrows for the blocks of code to fold. To unfold a block,
click the corresponding right arrow or ellipses on the action card:

You can further visually simplify an action chain by hovering over the canvas's
upper-left corner and clicking the Summary button that appears. The Summary
button hides the input parameter details for each action, except the Assign
Variable and Reset Variables actions. The Full button switches back to displaying
them:

• If you prefer to construct your action chain using code, click the Code button at the
top-right of the screen to open a code editor. Typically, one uses Design mode to
visually add and configure an action, then switches back to Code mode to work
directly with the code, as needed.

Chapter 9
About the Action Chain Editor

9-12

Create Action Chains in Code Mode
You use the Code mode to create an action chain using JavaScript code. The code editor
may be familiar to you if you've used VS Code, as both are based on the Monaco Editor.

To help you write the code, use the editor's Actions palette, Properties pane, and Structure
pane like so:

• Actions Palette: Add an action's code by dragging and dropping it from the Actions
palette onto the desired place in the editor.

• Properties Pane: Define an action chain's input parameters and return object, and an
action's properties (code is updated accordingly).

• Structure Pane: Quickly find and select an action.

For the Switch and If actions, you can add actions to a clause, or create a new one,
depending on where you drop the action:

• Switch:

Chapter 9
About the Action Chain Editor

9-13

https://microsoft.github.io/monaco-editor/

• If:

–

–

If you add a local function, the function and its actions are added to the Structure
pane, and you can view and modify the properties for a selected function in the
Properties pane. The local function also gets added to the Actions palette, under the
newly created Local Functions category, for you to quickly add a call to it.

To help you focus on currently relevant code blocks, you can fold the code blocks for
If, Switch, Run in Parallel, and For Each actions. You can also fold block comments. To
do so, hover over the code editor's left margin and click the down arrows for the blocks
of code that you want to fold. To unfold a block, click the corresponding right arrow or
ellipses:

Chapter 9
About the Action Chain Editor

9-14

If you'd like to change the editor's appearance, right-click on the editor and select Editor
Settings from the context menu. You'll be taken to the settings.json file where you can
customize Visual Builder's code editors. To disable the code minimap, add this entry to the
settings.json file: "editor.minimap.enabled": false. For further details, see Manage
Code Editor Settings.

About the Action Chain Code
When you create a new action chain, Visual Builder creates a code file with the basic class
declaration for your new action chain. All you need to do is specify the input parameters and
return payload types, if any, and to override the run() function. You can do all this through
the code editor, visually through the Action Chain editor, or both. You can also create local
functions, as needed.

Here’s an example of a simple action chain that returns the sum of its two input parameters:

Chapter 9
About the Action Chain Code

9-15

The availability of a scoped variable depends on where the action chain was created.
For example, if an action chain was created at the flow level, the page scoped
variable, $page, won't be available.

Note:

It is strongly recommended that you do not use reassignments of context
variables (example: const page = $page or const pageVariables
= $page.variables), since audits and action chain tests rely on detecting
usages of variables using string searches. You should always reference
objects fully, for instance: $page.variables.var1.

To call a built-in action, use this format:

Actions.<actionName>(context, {
 param1: val1,
 param2: val2,
});

To call a custom action, use this format, where the module parameter specifies the
custom action's ID:

Actions.runAction(context, {
 module: ‘<custom-action-ID>’,
 parameters: {
 param1: val1,
 param2: val2,

Chapter 9
About the Action Chain Code

9-16

 },
});

Here are details about the parameters for these APIs:

API Part Details

<actionName> Name of action.

Context The runtime context.

parameters Action-specific parameters object.

<custom-action-
ID>

Custom actions ID, as set in the custom action’s JSON file.

options Optional; Object that holds the action’s properties for testing or tracing purposes.
Currently, it can contain the action’s ID.

For details about the API parameters for each built-in action, see JavaScript Actions in the
Oracle Visual Builder Page Model Reference.

Local Functions

Should the need arise to break up the run() entry point function into modular parts, you can
create local functions:

Chapter 9
About the Action Chain Code

9-17

Visually Create an Action Chain
Here, we'll use the Action Chain editor's Design mode to assemble built-in actions into
a sequence that performs a task. Each action performs a specific function and returns
results that can serve as inputs for subsequent actions.

To visually create an action chain:

1. Navigate to where you want to initiate the creation of the action chain, depending
on your preference and how you want it triggered:

• Actions Chains Tab:

Chapter 9
Visually Create an Action Chain

9-18

If you prefer to go straight to creating an action chain and later assigning it to an
event listener, component event, or variable event, go to the relevant Actions
Chains tab at the application, flow, or page level. On the Actions Chains tab, click the
+ Action Chain button. If an action chain is displayed on the tab instead, click the
Action Chains link in the Action Chain editor to get to the list of created action
chains and the button for creating a new action chain:

• Event Listeners Tab:
To have your new action chain started by a lifecycle, application, flow, or page event
(vbBeforeEnter, vbEnter, vbAfterNavigate...), select the Event Listeners tab
and click + Event Listener. In the Create Event Listener wizard, select the event and
click Next. On the wizard's Select Action Chain step, select the create action chain
option at the appropriate level (page, flow, or application) and click Finish. For further
details, see Start an Action Chain From a Lifecycle Event.

• Custom Event:
To have your new action chain started by a custom event that's triggered by a Fire
Event action in another action chain, see Add a Fire Event Action.

Chapter 9
Visually Create an Action Chain

9-19

• Component:
To have your new action chain started by a component event, select the
component on the Page Designer's canvas, and in the Properties pane use
the Events tab to create a new event, event listener and action chain for the
component. For further details, see Start an Action Chain From a Component
and Start an Action Chain By Firing a Custom Event.

• Variable:
To have an action chain started when a variable’s value changes, open the
relevant Variables tab, at the application, flow, or page level, and select the
variable. In the Properties pane, select the Events tab and click + Event
Listener. A new onValueChanged event is automatically created for the
variable, and you're presented with a window for you to either select an
existing action chain or create a new one. For further details, see Start an
Action Chain When a Variable Changes.

For more about events and event listeners, refer to Work with Events and Event
Listeners .

2. Enter a name for the action chain in the ID field, and if you like, a description. The
new action chain opens in the Action Chain editor:

3. If your new action chain needs input parameters:

a. Define the input parameters using the Add link for the Parameters property in
the Properties pane.

b. Pass the input parameter values to the action chain:

• If your action chain is to be started by another action chain, the input
parameters are passed through the call to your new action chain.

• If your new action chain is to be started by an event listener, open the
relevant Event Listeners tab (application, flow, or page level), select the
event listener, and use the Assign link for the Input Parameters property
in the Properties pane:

Chapter 9
Visually Create an Action Chain

9-20

• If your action chain is to be started by a component, select the component on the
Page Designer’s canvas and in the Properties pane select the Events tab. Use
the Assign link for the Input Parameters property.

• If your action chain is to be started by a variable, open the relevant Variables tab
(application, flow, or page level), and in the Properties pane select the Events
tab. Use the Assign link for the Input Parameters property.

4. If your action chain needs to return a payload, click the canvas to bring up the action
chain in the Properties pane. For Return Type, click the down arrow and select the type,
or click the Create link to create a return type:

The result returned by an action chain will be available anywhere a variable can be
assigned, under the Action Chain node, as shown in this example in which the variable
for the Return action to return is selected:

Chapter 9
Visually Create an Action Chain

9-21

You are now ready to add the actions that will compose the action chain.

5. If an action you need isn't available in the Actions palette, add the Code action to
add your own block of code, or create a custom action if you think you'll need it in
the future. For details about how to create a custom action, see Custom Actions.

6. From the Actions palette, double click an action or drag and drop it onto the
canvas. The new action is added to the chain and is selected by default. The
Properties pane displays the properties that you can specify for the action, and the
action's card on the canvas displays the specified values. For example, here’s a
Call Rest action with its properties set in the Properties pane:

7. Double click or drag and drop the next action from the Actions palette onto the
bottom edge of the action that it follows. Configure the action in the Properties

Chapter 9
Visually Create an Action Chain

9-22

pane or through code. To add an action before another action, drop it on the top edge of
the action it is to precede.

As shown above, the Structure pane displays a compact view of the actions and it
provides a filter to quickly find and select an action.

8. If you want to create a local function for your action chain, for the sake of modularity, drop
the function's first action on the Create Function area that appears when you drag an
action over the canvas:

When a local function is created, it gets its own space on the canvas, the Property pane
displays its properties, and the Structure pane displays its actions. Also, the local function
is added to the Actions palette, under the Local Functions category, for you to quickly add
a call to it.

Chapter 9
Visually Create an Action Chain

9-23

9. Continue to add and configure actions until your action chain is complete. The
action chain is saved automatically as you make changes.

If you need to remove an action from the chain, right-click the action on the canvas
and select Delete or press Delete on your keyboard. You can also delete the action in
the Properties pane using its options menu:

To view usage details for your action chain, such as which pages use it, click an empty
space on the canvas to select the action chain and look under Usages in the
Properties pane. Click a usage to navigate there. The event listener tied to the event
that calls the action chain is also listed, as shown here:

Chapter 9
Visually Create an Action Chain

9-24

Example of How to Create an Action Chain

In this example, we implement this Adder and Subtractor interface by creating an action chain
that either adds or subtracts two numbers and displays the result:

The interface has:

• Four text components:

Chapter 9
Visually Create an Action Chain

9-25

– Two for entering the numbers to add or subtract (Num. 1, Num. 2)

– One for entering either a plus or minus sign (Operator)

– One to display the result (Answer)

• One button (=) that triggers the action chain that performs the operation and
displays the result

Each of the four text components is bound to a page variable:

Here, we create the action chain that either adds or subtracts two numbers and
displays the result:

1. We want the action chain to be triggered by clicking the equals button, so select
the equals button on the Page Designer’s canvas, then select the Events tab on
the Properties pane:

2. Click + Event Listener, then On ‘ojAction’ to create an event that’s triggered by
clicking the button, as shown above.
The new action chain opens in the Action Chain editor.

3. Using the Properties pane, enter Adder_Subtractor for the action chain’s ID
field, and optionally a description.

Chapter 9
Visually Create an Action Chain

9-26

4. Since three input parameters are needed, two for the numbers and one for the operator,
you need to add them using the Add link next to the Parameters property in the
Properties pane:

Nothing needs to be returned by this action chain, so we don’t need to define a return
type.

5. Next, you need to provide the values for your input parameters. Open the Event
Listeners tab and select the equal button’s event listener. In the Properties pane, click
the Assign link for the Input Parameters property:

6. In the mapper, map the page variables that were bound to the text components for the
numbers and the operator to the action chain’s input parameters:

Chapter 9
Visually Create an Action Chain

9-27

To implement this action chain, we need to handle each possible entry for the
operator field: a plus, a minus and an invalid entry.

7. Start by dragging and dropping the If action from the Action Palette onto the
canvas.

8. Select the If condition on the canvas, and in the Properties pane enter
operator_ip === '+' in the Condition field to check if the user entered a plus
sign.
To handle this case, let’s add a call to a simple action chain, which we'll create,
that returns the sum of two numbers.

9. Drag and drop the Call Action Chain action from the Actions palette onto the If
condition.

10. To create the action chain that adds two numbers, in the Properties pane, click the
Create link for the Action Chain ID property (shown above). In the dialog box,
enter Add_Numbers in the ID field, and optionally, enter a description. Click the
Create button.
The action chain has been created and set for the Action Chain ID property.

11. We now need to implement the Add_Numbers action chain by clicking the Action
Chain ID property's Go to Action Chain link.
The Actions Chain editor is now loaded with the Add_Numbers action chain.

12. To implement the Add_Numbers action chain:

Chapter 9
Visually Create an Action Chain

9-28

a. In the Properties pane, click the Add link for the Parameters property and add two
input parameters for the numbers to add: num1 and num2.

b. Since the action chain needs to return a number, you need to define its return type by
clicking the Return Type field's down-arrow and selecting Number.

c. Drag and drop the Return action from the Actions palette onto the canvas. In the
Properties pane, enter {{ num1 + num2 }} for the Payload property to return the
sum of the two input parameters. Recall, wrapping the expression with double curly
brackets indicates that it’s a literal expression and not a string:

13. Navigate back to the Adder_Subtractor action chain by clicking the Action Chains link at
the top-left of the editor and selecting the action chain.
The editor is now loaded with the Adder_Subtractor action chain.

14. The two numbers that were passed as input parameters to the Adder_Subtractor action
chain now need to be passed to the Add_Numbers action chain. Select the Call Action
Chain action on the canvas, and in the Properties pane, for the Parameters property,
select the number input parameters:

You now need to assign the result from the Add_Numbers action chain to the page
variable that’s bound to the text component that displays the answer.

15. Drag and drop the Assign Variables action to the bottom edge of the Call Action Chain
action on the canvas. For the Variable property, in the Properties pane, select the page
variable that’s bound to the text component displaying the answer, and for the Value
property, select the result from the Add_Numbers action chain:

Chapter 9
Visually Create an Action Chain

9-29

Next, we need an Else If condition to handle the case when a user enters a
minus sign for the operator.

16. Drag and drop the Call Action Chain action onto the Create branch area at the
bottom of the If condition:

17. Change the Else condition into an Else If by entering operator_ip === '-'
for the Condition field, in the Properties pane.

18. Complete this Else If condition by following the previous instructions on how to
handle the plus sign case.
Here’s the completed Else If condition:

19. Lastly, we need to handle the case when a user doesn’t enter a plus or a minus
sign for the operator. Drag and drop the Fire Notification action from the Actions

Chapter 9
Visually Create an Action Chain

9-30

palette onto the Else condition. In the Properties pane, enter Invalid operator for
the Summary property, and for the Message property, enter:

The operator must be "+" or "-".

Our action chain is now complete.

20. At this point it makes sense to create some unit tests to test your new action chain. For
details on how to do so, refer to Test Action Chains.

Here’s the completed code for the action chain:

define([
 'vb/action/actionChain',
 'vb/action/actions'
], (
 ActionChain,
 Actions
) => {
 'use strict';

 class Adder_Subtractor extends ActionChain {

 /**
 * Take 2 numbers, perform mathematic operation and display the result.
 * @param {Object} context
 * @param {Object} params
 * @param {number} params.num1_ip
 * @param {number} params.num2_ip
 * @param {string} params.operator_ip
 */
 async run(context, { num1_ip = '0', num2_ip = '0', operator_ip }) {
 const { $application, $flow, $page } = context;

Chapter 9
Visually Create an Action Chain

9-31

 if (operator_ip === '+') {
 const callChainResult_AddNumbers = await
Actions.callChain(context, {
 chain: 'Add_Numbers',
 params: {
 num1: num1_ip,
 num2: num2_ip,
 },
 }, { id: 'callAddChain' });

 $page.variables.Answer = callChainResult_AddNumbers;

 } else if (operator_ip === '-') {

 const callChainResult_SubNumbers = await
Actions.callChain(context, {
 chain: 'Sub_Numbers',
 params: {
 num1: num1_ip,
 num2: num2_ip,
 },
 });

 $page.variables.Answer = callChainResult_SubNumbers;
 }
 else {
 await Actions.fireNotificationEvent(context, {
 summary: 'Invalid operator',
 message: 'The operator must be "+" "-".',
 });
 }
 }
 }

 return Adder_Subtractor;
});

Built-In Actions
Visual Builder provides a set of built-in actions that you use to create your action chain.
If an action you need isn't available in the Actions palette, use the Code action to add
your own block of code, or if a future need warrants it, create a custom action that can
be reused.

Chapter 9
Built-In Actions

9-32

Each action performs a specific function and requires you to set different properties. For
example, when you add the Call REST action to your action chain, you need to specify the
endpoint and other details about the response to the Call REST action. Similarly, when you
add a Navigate To Page action, you'll need to select a page in your current application to
navigate to:

Chapter 9
Built-In Actions

9-33

Use this section to learn more about how to use each built-in action, and if you need
further details about an action, refer to the JavaScript Actions section in the Oracle
Visual Builder Page Model Reference.

Add an Assign Variable Action
You use an Assign Variable action to assign a local, page, flow, or application variable
a value. This action can also be used to create a local variable.

For example, if your action chain sends a request to a GET endpoint, you can use the
Assign Variable action to map the response to a page variable that's bound to a page
component. Or, suppose you want to capture the ID of an item selected in a list. You
could use a Selection event to start an action chain that assigns the selected item’s ID
to a variable.

To use an Assign Variable action to create a local variable:

1. Enter the variable's name in the Variable field and hit Enter on your keyboard.

2. Use the Type drop-down to select its data type.

3. If necessary, use the Value field to assign it a value.

Chapter 9
Built-In Actions

9-34

To use an Assign Variable action for a value assignment:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. If you need to create a variable for the assignment, click the Variable property's Create
link, otherwise, start to type the variable's name in the field and select it when it appears.
Alternatively, click the down arrow and choose the Page, Flow or Application variable. In
this example, the page variable fullName is assigned the result from a module function:

3. To set the variable's value, hover over the far-right side of the Value property and either
click the down arrow to choose the value, or click fx to create an expression for the value.

If you need to do another assignment, click the + Assign Variable button in the Properties
pane:

Chapter 9
Built-In Actions

9-35

Then make the assignment using the Variable and Value fields that appear for the new
variable assignment:

Use Filter Builder to Create Filter Criteria for an SDP
If you're using an SDP to provide a table or list's data, and you'd like to filter out rows,
you can use the Assign Variable action to create and assign the filter criteria to the
SDP's filterCriterion property. For further details about using an SDP to filter a
table or list's rows, see Filter Data by Filter Criteria.

When the Assign Variable action's Variable property is set to an SDP's
filterCriterion property, the Filter Builder appears under the Variable property for
you to create the filter criterion. To directly work with the code, click the Code button.
For details, see Filter Builder's Code Editor.

Chapter 9
Built-In Actions

9-36

To use the Assign Variable action's Filter Builder to create the filter criterion for an SDP:

1. Click the Filter Builder's Click to add condition link:

2. For the first Attribute textbox, enter the name of the column (field in record, like "city") that
you want compared against a specific value (like "Tokyo").

3. For the Operator drop-down list, select the operator for the criterion.

4. For the second Attribute textbox, enter the specific value to compare against, or select
the variable that contains the value. For instance, the value could be stored by a page
variable that was bound to an Input Text component for a user to enter the value.

Chapter 9
Built-In Actions

9-37

5. To add another condition, click the Add Condition link to add one with an AND or
OR operator, or click the Add Group link to add a group of conditions that are to
be evaluated together (conditions enclosed in brackets). To combine conditional
expressions with the AND operator, select Match All, and to combine them with
the OR operator, select Match Any:

6. Click Done when you're finished.

Filter Builder's Code Editor
You can use the Filter Builder's Code tab to view and edit the filter's code. After
defining a condition on the Builder tab, you will see that the Code tab contains an
attribute, op and value property.

Chapter 9
Built-In Actions

9-38

Here's an example of a filter with two conditions combined by an AND operator:

{
 "op": "$and",
 "criteria": [
 {
 "op": "$eq",
 "attribute": "name",
 "value": "{{ $page.variables.filterVar }}"
 },
 {
 "op": "$eq",
 "attribute": "id",
 "value": "{{ $page.variables.idVar }}"
 }
]
}

In this example:

• The Oracle JET operator is "$eq" (it must include the dollar sign (“$”)).

• The attribute property is set to the name of the field (column) that you want to be
evaluated against the value property.

• The value property
($page.variables.customerListSDP.filterCriterion.criteria[0].value) is mapped
to a page variable ($page.variables.filterVar) that holds the value to be evaluated
against each field (column) value.

Add a Call Action Chain Action
You add a Call Action Chain action to start an action chain. This action can call action chains
defined in the same page, flow, or application.

Note:

Using this JavaScript action, you can call a JSON action chain, however, you can't
call a JavaScript action chain from a JSON action chain.

To use a Call Action Chain action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

Chapter 9
Built-In Actions

9-39

2. Select an existing action chain from the Action Chain ID drop-down list, or click
Create to create a new action chain.

The dialog lets you choose between a new JavaScript or JSON action chain, and
has a drop-down list for you to choose the action chain's scope (page, flow, or
application). Depending on where you are creating the action chain, the drop-down
list might have entries for action chains defined in the page, in the current flow, or
in the application. If you're creating an action chain in a flow, you can only select
other action chains defined in the same flow or in the current application, and you
won't see an entry for page level action chains.

3. If the called action chain requires input parameters, the input parameters will be
listed under the Parameters section of the Properties pane. For each input
parameter, hover over the far-right side of the parameter and click the down arrow
that appears to choose its source. If you need to create a variable, use the
appropriate Create Variable link in the Variables dialogue to create it at the
appropriate scope level.

Chapter 9
Built-In Actions

9-40

If a value is returned by the action, it is assigned to the auto-generated variable shown by
the Store Result In property.

Here's an example of a completed Call Action Chain action with specified input
parameters:

For API information about this action, see Call Action Chain in the Oracle Visual Builder Page
Model Reference.

Chapter 9
Built-In Actions

9-41

Add a Call Component Action
You add a Call Component action to call a method on a component.

To use a Call Component action:

1. Add the action in one of three ways, depending on your preference and where you
want to add the action:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

2. In the Properties pane, select the component name from the Selector drop-down
list, which is only populated with components that have their ID properties
specified.

For example, if your page contains three buttons whose IDs are Create, Update,
and Save, you'll see those options available for selection in the drop-down list.

3. With the component selected, select or enter the Method Name to call:

4. If the method requires input parameters, hover over the far-right side of the
parameters under the Parameters section and click the down arrow that appears
to choose their source.

If a value is returned by the action, it is assigned to the auto-generated variable shown
by the Store Result In property.
For API information about this action, see Call Component Method in the Oracle Visual
Builder Page Model Reference.

Chapter 9
Built-In Actions

9-42

Add a Call Function Action

You add a Call Function action to call a function defined for the current page, flow, or
application. Functions for a page, flow and application are created using their JavaScript
editor.

To use a Call Function action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. In the Properties pane, select an existing function from the Function Name drop-down
list, or click Create to create a new function. You can select or create a function that is
defined for the current page, flow, or application.

3. If you want to view or modify the function's code, click Go to Module Function to go to
the JavaScript editor to do so.

4. If the function requires input parameters, they'll be listed under the Input Parameters
section of the Properties pane. For each input parameter, hover over the far-right side of
the parameter and click the down arrow that appears to choose its source. If you need to
create a variable, use the appropriate Create Variable link in the Variables dialogue to
create it at the appropriate scope level.

Here's an example of a Call Function action, with its input parameter, arg1, needing
specification:

Chapter 9
Built-In Actions

9-43

If a value is returned by the action, it is assigned to the auto-generated variable shown
by the Store Result In property.
For API information about this action, see Call Function in the Oracle Visual Builder
Page Model Reference.

Add a Call REST Action
A Call REST action is used to call a REST API endpoint to create, update, delete or
display records.

After you add a Call REST action, you need to specify the endpoint for the request.
Depending on the endpoint, you might also need to provide it with input parameters to
perform the request, such as an ID to identify a record.

This table lists the parameters that you typically need to provide for a Call REST
action, for each type of endpoint. For a code example of a call to each endpoint type,
see Call REST in the Oracle Visual Builder Page Model Reference. Regarding the
action's returned result, it's assigned to the automatically generated variable set for the
Store Result In property.

Type of
Endpoint

Use Typical Requirements

POST Add a new record. • Provide the new record: In the Parameters
section of the Properties pane, assign the
variable containing the data to the body
property.

• Provide endpoint's input parameters, if any: If
the endpoint requires input parameters, use
the Input Parameters section in the Properties
pane to provide the required input parameters.
Required input parameters are marked with an
asterisk.

GET Get one or many records. To get single record, provide the record's ID: In the
Input Parameters section of the Properties pane,
provide the record's ID using the input parameter
for the record's ID.

DELETE Delete a record. • Provide the record's ID: In the Input
Parameters section of the Properties pane,
provide the record's ID using the input
parameter for the record's ID.

Chapter 9
Built-In Actions

9-44

Type of
Endpoint

Use Typical Requirements

PATCH Update a record. • Provide the updated data: In the Parameters
section of the Properties pane, assign the
variable containing the updated data to the
body property.

• Provide the record's ID: In the Input
Parameters section of the Properties pane,
provide the record's ID using the input
parameter for the record's ID.

To use a Call REST endpoint:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action that the new action is to follow, then double-click the
new action in the Actions palette.

2. Click Select beside the Endpoint property in the Properties pane.

The Select Endpoint window displays a list of endpoints that are available in your
application. Each business object and service usually exposes multiple endpoints, each
one for a different purpose. For instance, you can have an endpoint for getting multiple
records, one for getting a single record, one for updating a record, and one for deleting a
record. Each endpoint has different properties that you need to specify. For instance, for
an endpoint that retrieves a single record, the record's ID must be provided.

Chapter 9
Built-In Actions

9-45

3. Select an endpoint from the list and click Select.

The properties for the REST call are displayed in the Properties pane, with
required properties marked with an asterisk (*):

Chapter 9
Built-In Actions

9-46

4. If the REST call requires header or input parameters, click the associated Assign or Not
Mapped link and use the assignment window to specify the value for the property. Click
Save.

Chapter 9
Built-In Actions

9-47

You map variables to parameters in the assignment window by dragging the
variable in the Sources pane onto the parameter in the Target pane. In some
cases, you might need to make multiple mappings. To delete a line mapping a
variable to a parameter, right-click the line and select Delete. You can also select a
parameter in the Target pane to view and edit the expression for its assignment in
the lower pane.

If a suitable variable does not exist, use the + icon beside the relevant node
(Action Chain, Page, and so on) to create a new variable.

5. Specify any other properties that may be required for the REST call.

6. To handle a REST call error, drag the first action to take if an error occurred onto
the Create Error Handle area that appears at the bottom of the Call REST card
on the canvas:

The dropped action is added in an If condition that checks if an error occurred
during the REST call. Configure the action in the Properties pane and add any
other required actions to the condition.

Chapter 9
Built-In Actions

9-48

The object returned by the Call REST action is automatically named and shown by the Store
Result In property.

If the underlying REST API request returns a status code, the error object is returned for you
to handle the error yourself, otherwise an auto-generated error notification is shown. For
details about error handling and the return object, see Call REST in the Oracle Visual Builder
Page Model Reference.

Service Definitions
To change the details of a service connection endpoint, such as its path, method (example:
GET, PUT, HEAD) or the schema of the request or response, see Edit a Service Connection.

Transform Functions
For details about creating JavaScript functions that modify the format of data and parameters
for REST requests and modify the format of data from Rest responses, see Add Transforms.

Add a Call Variable Action
You add a Call Variable action to an action chain to call a method on an InstanceFactory
variable defined for the current scope (flow, page, or application). Using this action with any
other type results in an error.

You can call any method on the current instance associated with the InstanceFactory
variable, including asynchronous ones. However, since actions are by design synchronous,
this action will wait for the asynchronous call to resolve before proceeding to the next action
in the chain.

Before you use a Call Variable action, make sure an InstanceFactory type variable is already
defined for the application. See Create a Type From Code.

To use a Call Variable action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

Chapter 9
Built-In Actions

9-49

• On the canvas, select the action that the new action is to follow, then double-
click the new action in the Actions palette.

2. From the Variable drop-down list, select an InstanceFactory type variable defined
for the application.

3. For the Method field, select the method you want to call. The available methods
are based on the definition file imported for the type.

4. If the method requires input parameters, hover over the far-right side of a
parameter and click the down arrow or fx icon that appears to choose the
appropriate variable.

If the method returns a value, it is assigned to the auto-generated variable shown
by the Store Result In property in the Properties pane.

For API information about this action, see Call Variable in the Oracle Visual Builder
Page Model Reference.

Add a Code Action
You use a Code action to add JavaScript code to an action chain.

To use a Code action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action that the new action is to follow, then double-
click the new action in the Actions palette.

2. Using the Properties pane, write your JavaScript code. In this example, the data
for a new employee is passed to an action chain through input parameters, and a
new object with the data is returned:

Chapter 9
Built-In Actions

9-50

Add a Fire Data Provider Event Action
You add a Fire Data Provider Event action to dispatch an event on a data provider in order to
reflect changes to your data. For example, a component using a particular Service Data
Provider (SDP) may need to display new data because new data has been added to the
endpoint used by the SDP.

The action can be called either with a mutation or a refresh event. The refresh event re-
fetches and re-renders all data, and the mutation event is used to specify which changes to
show.

Note:

This action is not necessary for a VB Array Data Provider (ADP) variable, since the
data array of an ADP variable, exposed via the data property, can be updated
directly using the Assign Variable action. Assigning the data array is automatically
detected by Visual Builder, and all listeners are notified of this change. Users will be
warned of this when the fireDataProviderEvent is used with an ADP, prior to
mutating the data property directly.

To use a Fire Data Provider Event action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

Chapter 9
Built-In Actions

9-51

2. Update the ID field in the Properties pane to make the action more identifiable.

3. Set the target of the event by hovering over the far-right side of the Event Target
property and clicking the down arrow that appears to choose it. Usually, this is a
variable of type ServiceDataProvider or ArrayDataProvider.

4. Select the type of event you want to dispatch:

• Refresh: Used to show all changes.

• Mutate: Used to specify which changes to show.
A mutation event can include multiple mutation operations (add, update,
remove) as long as the ID values between operations do not intersect. This
behavior is enforced by JET components. For example, you cannot add a

Chapter 9
Built-In Actions

9-52

record and remove it in the same event, because the order of operations cannot be
guaranteed.

5. If you chose the Mutate event, ensure that the keyAttributes property is set for the SDP
variable. The parameters for showing the added, removed and updated records are
under the add, remove and update sections. Here's what's required for each section, for
the mutate event to perform optimally:

• add section: Use the data parameter to pass the added record or records from the
add operation’s returned result. If you are using an SDP variable, the structure of the
data must match the structure specified by the itemsPath parameter of the SDP
variable’s definition:

Use the keys parameter to pass the key values of the added records with the Set<*>
format. Lastly, use the metadata parameter to pass the key values of the added
records with the format Array.<ItemMetadata.<KeyValue>>.

Example:

data: {items: [callRestCreateEmployeeResult.body],},
keys: [callRestCreateEmployeeResult.body.id],
metadata: [{key: callRestCreateEmployeeResult.body.id,}],

• remove section: Use the keys parameter to pass the key values of the deleted
records with the Set<*> format

• update section: Same as the add section.

For further details about this action's properties, see Fire Data Provider Event Action in the
Oracle Visual Builder Page Model Reference.

Add a Fire Event Action
You add a Fire Event action to invoke a predefined event or a custom event that you have
defined in your application.

A custom event, created using the Events tab, is defined for an application, flow, page, or
fragment. It can be used to perform some action, such as navigating to a page, and it can
carry a payload that you define when you create the event.

Here's an overview of how a custom event and the Fire Event action are used:

1. Create a custom event, defining parameters if required.

Chapter 9
Built-In Actions

9-53

2. Create an event listener, which can start more than one action chain:

a. In the Create Event Listener wizard, assign the event listener the custom
event:

b. Create a new action chain for the event, which is launched when the event is
triggered. Create the action chain through the Event Listener tab, because if
the listener's custom event has input parameters, the action chain is created
with an event input parameter. This event object will contain the custom
event's input parameters (example: event.param1, event.param2...), and the
event object is automatically passed to the new action chain..

3. In the action chain that will trigger the event, use the Fire Event action to trigger
the custom event, providing any parameters defined for the event.

To use a Fire Event Action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

Chapter 9
Built-In Actions

9-54

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. In the Properties pane, select an existing event from the Event Name drop-down list of
available events, or click Create to create a new custom event at the appropriate scope
level (page, flow, or application).

The drop-down list displays the events that are available in the current scopef.

3. If the event has input parameters, the Parameters property is shown. To pass in a
parameter, hover over the far-right side of the parameter and click the down arrow that
appears to choose the variable. If you need to create a variable, use the appropriate
Create Variable link in the Variables dialogue to create it at the appropriate scope level.

4. If the event returns a value, it is assigned to the auto-generated variable shown by the
Store Result In property.

For API information about this action, see Fire Event in the Oracle Visual Builder Page Model
Reference.

Add a Fire Notification Action
You add a Fire Notification action to display a notification to the user in the web browser.

There are four types of notifications: Info, Error, Warning, and Confirmation. They display a
summary and a message underneath:

Chapter 9
Built-In Actions

9-55

To use a Fire Notification action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

Chapter 9
Built-In Actions

9-56

2. Update the ID field in the Properties pane to make the action more identifiable.

3. Enter a summary of the notification in the Summary field.

4. Enter the message you want to display in the Message field.

The message can be a static string (The name was updated.) or it can contain variables
({{ 'Could not create new Contacts: status '
+ $chain.results.createContacts.payload.status }}).

5. For Display Mode, choose how the notification is dismissed: Transient — goes away
after a few seconds, or Persist — stays until the user closes it.

6. Select a Notification Type to specify the look of the notification window.

For API information about this action, see Fire Notification Event in the Oracle Visual Builder
Page Model Reference.

Add a For Each Action
You add a For Each action to execute actions for each item in an array.

To use a For Each action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

Chapter 9
Built-In Actions

9-57

2. Configure the action's properties in the Properties pane:

a. For Parameters, hover over the property's far-right side and click the down
arrow that appears to choose the array to loop through, such as this
array, $page.variables.ExpenseReportADP.data:

Chapter 9
Built-In Actions

9-58

b. For Mode, select whether your called actions run serially (default) or in parallel.
Regardless of the mode, the For Each action will not complete until the actions for
each item in the array are complete.

c. For Item Alias, optionally, enter an alias for the current item in the array; the default
is item.

d. For Index Alias, optionally, enter an alias for the loop index, which starts at 0 and
increases by 1 for each iteration. The default alias is index.

3. Add the actions you want to take for each item of the array to the Add Action area of the
For Each action. Here's an example that loops to call a REST endpoint (PATCH /
ExpenseReport/{ExpenseReport_Id}) that updates the expense record at the
current iteration:

On success, an array is returned with each element containing the return value from the last
action in the loop, from each iteration. For instance, if the loop contains two actions that
return results, actionA → actionB, and the loop iterates 5 times, the returned array will have 5
elements, each corresponding to an iteration and containing actionB's result from that
iteration.
For API information about this action, see For Each in the Oracle Visual Builder Page Model
Reference.

Add a Get Dirty Data Status Action
You use a Get Dirty Data Status action to check if any of the values have changed for the
tracked variables within a particular scope (application, page, fragment, layout, flow), within
any contained pages, fragments, layouts, or flows, or within any extensions of them. For
example, in this image, both variables defined at the page level (their scope), have their Dirty
Data Behavior property set to Track:

Chapter 9
Built-In Actions

9-59

Whenever the value for any of these tracked variables changes, the Dirty Data status
for their scope (referred to as context in code) is automatically changed from
'notDirty' to 'dirty'. And, if any tracked variables are defined for a layout, fragment or
extension of this page and one of those variables changes, the page's Dirty Data
status would also be automatically set to 'dirty'. To reset the scope's Dirty Data status
back to 'notDirty', use the Reset Dirty Status action.

This functionality works with all data types, except Service Data Providers (SDPs).
Currently, for SDPs, you'll have to handle the tracking of their value changes yourself.

Example Use of the Get Dirty Data Status Action

A typical use for the Get Dirty Data Status action is to check if any of the field values
on a page have changed, so that you can warn a user of unsaved changes before
navigating away from the page.

In this example, a page has two fields, one for a name and one for a birthdate. It also
has a Save, Cancel and Go to Home Page button. The Go to Home Page button
navigates to a page that has a single button to return to this page:

Chapter 9
Built-In Actions

9-60

If you want to work through this example yourself:

1. Create a page as shown above (main-info-change-form in this example), using:

a. Input Text component for the name field.

b. Input Date component for the birthdate field.

c. Save, Cancel and Go to Home Page buttons.

2. Create a page to serve as the home page (main-home in this example) that the Go to
Home Page button navigates to, and on that page add a button that navigates to the
page with the fields. In this case, the button's name is "Change Info":

Now we want to track changes to the name and birthdate fields, and to warn users of
unsaved changes if they try to navigate away from the page. To do this:

Chapter 9
Built-In Actions

9-61

3. Open the flow that contains the pages, and on the Variables tab, create variables
to store a name (String type) and a birthdate (Any type). These variables in the
flow are set to the field values when the Save button is clicked, so that when a
user navigates away from and back to the page with the fields, the field values get
restored using the flow's variables. These variables are just for storing the field
values during the application's lifecycle, so they don't need to be tracked:

4. Open the page with the name and birthdate fields (main-info-change-form) and
open the Variables tab. Create a variable to store a name (String type) and one to
store a birthdate (Any type).

5. Set their default values to the corresponding variables that you created in the flow,
so that when you navigate to the home page and back, these page variable values
get restored using the flow's variables.

6. Set their Dirty Data Behavior property to 'Track' to track changes to their values:

Chapter 9
Built-In Actions

9-62

7. On the page with the fields, select the Page Designer tab and bind the name and
birthdate components to their corresponding page variables, which you defined on this
page's Variables tab:

8. Next, we need to create an event listener to listen for when a user tries to navigate away
from the page, which includes clicking the browser's Back and Forward buttons. This
event will start an action chain that checks the Dirt Data status for the page. If there are
unsaved changes, a notification will warn the user of the unsaved changes. To begin:

Chapter 9
Built-In Actions

9-63

a. Open the page that has the fields, then select the Event Listeners tab and
click the + Event Listener button to create a new event listener.

b. Select the vbBeforeExit event, which starts its associated action chain
whenever a user tries to navigate away from the page. Click Next:

To create a new action chain that will be triggered by this event listener:

c. On the Select Action Chain step of the Create Event Listener wizard, select
the Create Page Action Chain option, under Page Action Chains, and click
Finish:

Chapter 9
Built-In Actions

9-64

d. Back on the Event Listeners tab, hover over the new event that you just created and
click the Go to Action Chain link that appears:

To create the action chain that checks the Dirt Data status for the page with the fields
and warns the user of any unsaved changes:

e. In the Action Chain editor, add the Get Dirty Data Status action.
Next, we need to check the page's Dirty Data status and, if it's 'dirty', use the Fire
Notification action to notify the user of unsaved changes.

To cancel the navigation away from the page, return an object with the cancelled
property set to true, and to allow the navigation away from the page, return an object
with the cancelled property set to false.

Here's the completed action chain:

And here's the code for this action chain:

 /**
 * @param {Object} context
 * @return {{cancelled:boolean}}
 */
 async run(context) {
 const { $page, $flow, $application } = context;

 const getDirtyDataStatusResult = await
Actions.getDirtyDataStatus(context, {

Chapter 9
Built-In Actions

9-65

 });

 if (getDirtyDataStatusResult.status === 'dirty') {
 // Warn the user if there are unsaved changes
 await Actions.fireNotificationEvent(context, {
 summary: 'You have unsaved changed. Please Save or
Cancel',
 displayMode: 'transient',
 type: 'error',
 });

 // Stay on the page
 return { cancelled: true };
 }

 /* Navigation from this page can be canceled by returning
an object with the property cancelled set to true.
 This is useful when the page state is dirty and
navigation should not be allowed before saving.*/
 return { cancelled: false };
 }

9. To implement the Save button, which saves the field values to the flow's variables
and navigates to the home page:

a. Select the Save button, and in the Properties pane, click the Events tab.

b. Click the New Event button and select On 'ojAction' to trigger an action chain
when a user clicks the button:

You are taken to the Action Chain editor where you can create an action chain
for the Save button, to save the field values and to navigate back to the home
page.

c. To create the action chain, add the Assign Variable action to the canvas to
assign the variables bound to the name and birthdate fields to their
corresponding variables in the flow.

Chapter 9
Built-In Actions

9-66

d. Add a Reset Dirty Data Status action to reset the Dirty Data status back to
'notDirty'.

e. To finish, add a Navigate To Page action to navigate back to the home page.

Here's the code for this action chain:

 async run(context) {
 const { $page, $flow, $application } = context;

 await Actions.assignVariable(context, {
 variable: '$flow.variables.name',
 value: $page.variables.nameInput,
 });

 await Actions.assignVariable(context, {
 variable: '$flow.variables.birthdate',
 value: $page.variables.birthdateInput,
 });

 await Actions.resetDirtyDataStatus(context, {
 });

 const navigateToPageMainStartResult = await
Actions.navigateToPage(context, {
 page: 'main-home',
 });
 }

10. To implement the Cancel button, which is used to ignore any value changes and to
navigate back to the home page:

a. Select the Cancel button, and in the Properties pane, click the Events tab.

b. Click the New Event button and select On 'ojAction'.
You are taken to the Action Chain editor. To create the action chain:

c. Add a Reset Dirty Data Status action to reset the Dirty Data status back to
'notDirty'. You need to rest the Dirty Data status because, when the Navigate to

Chapter 9
Built-In Actions

9-67

Page action is invoked to navigate away from the page, the vbBeforeExit
event listener is invoked and its action chain won't allow navigation away from
the page if the Dirty Data status is 'dirty'.

d. Add a Navigate To Page action to navigate back to the home page.
Here's the code for this action chain:

 async run(context) {
 const { $page, $flow, $application } = context;

 await Actions.resetDirtyDataStatus(context, {
 });

 const navigateToPageMainStartResult = await
Actions.navigateToPage(context, {
 page: 'main-home',
 });
 }

11. To implement the Go to Home Page button, which is used to navigate back to the
home page:

a. Select the Go to Home Page button, and in the Properties pane, click the
Events tab.

b. Click the New Event button and select On 'ojAction'.
You are taken to the Action Chain editor.

c. To create the action chain, add a Navigate To Page action to navigate back to
the home page.
Here's the code for this action chain:

 async run(context) {
 const { $page, $flow, $application } = context;

 const navigateToPageMainStartResult = await
Actions.navigateToPage(context, {
 page: 'main-home',
 });
 }

Finished! You can now click the Preview button at the top-right of the window to try out
the application.

Go here to see the Get Dirty Data Status action's documentation in the Oracle Visual
Builder Page Model Reference.

Add a Get Location Action
You add a Get Location action to get a user’s live location.

This action requires the user's consent. As a best practice, it should only be fired on a
user gesture, so the users can associate the system permission prompt for access
with the action they just initiated.

To use a Get Location action:

Chapter 9
Built-In Actions

9-68

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. Update the ID property in the Properties pane to make the action more identifiable.

3. Set the Maximum Age (in milliseconds) of a possible cached position that is acceptable
to return. If set to 0 (default), the device cannot use a cached position and must attempt
to retrieve the real current position. If set to Infinity, the device must return a cached
position regardless of its age.

4. Set the Timeout value, representing the maximum length of time (in milliseconds) that
the device is allowed to take in order to return a position.

5. Set the Enable High Accuracy value that indicates whether the application would like to
receive the best possible results. If true and if the device is able to provide a more
accurate position, it will do so. This can result in slower response times or increased
power consumption. If false (default), the device can save resources by responding
more quickly or using less power. For mobile devices, you should set this to true in order
to use GPS sensors.

If a value is returned by the action, it is assigned to the auto-generated variable shown by the
Store Result In property.

For API information about this action, see Get Location in the Oracle Visual Builder Page
Model Reference.

Chapter 9
Built-In Actions

9-69

Add an If Action
You use this action to add If, Else and Else If conditions.

To use an If action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

2. With the If block selected on the canvas, add a condition using the Condition
property. As a reminder, enclosing the expression in double curly brackets in the
Properties pane indicates that it's a direct expression and not a string.

3. Add the action to take for the If block to the Add Action area. You can either
select the block and double-click the action, or you can drop the action onto the
Add Action area. If another action is to follow, double-click the next action, or drop
it onto the bottom edge of the preceding action.

Chapter 9
Built-In Actions

9-70

4. To add an Else or Else If condition, drop the action to take for the condition onto the
Create Branch area at the bottom of the If block, which appears when you hover over it
with an action.

5. By default, an Else condition is created. To turn the Else into an Else If condition, enter a
condition for it in the Properties pane:

6. To add an Else or another Else If condition, drop the first action to take for the condition
onto the Create Branch area of the Else If block. Again, an Else condition is created by
default, but it can be turned into an Else If by entering a condition in the Properties pane.

Chapter 9
Built-In Actions

9-71

Here's the completed example:

Add a Login Action
The Login action launches the URL specified by the Security Provider configuration. It
invokes the handleLogin function on the Security Provider with this action's Return
Path property (path of the root page or flow to go to after a successful login).

If the login was successful and the Return Path property was specified, the page
specified by Return Path is launched. If the Return Path property wasn't specified,
the application's default page is launched.

To use a Login action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

Chapter 9
Built-In Actions

9-72

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. Update the ID property in the Properties pane to make the action more identifiable, and
optionally, enter a description for the action.

3. For Return Path, select the root page to go to when the login is successful, or click the
Create link to create a new root page through the Create Root Page wizard.

For API information about this action, see Login in the Oracle Visual Builder Page Model
Reference.

Add a Logout Action
The Logout action is used to launch a specified logout page, and if not specified, it
automatically launches the logout URL specified for the Security Provider configuration.

To use a Logout action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

Chapter 9
Built-In Actions

9-73

2. Update the ID property in the Properties pane to make the action more identifiable,
and optionally, enter a description for the action.

3. For Logout URL, hover over the far-right side of the property and click the drop-
down arrow to select the variable holding the URL to navigate to for logging out. If
not defined, the logout URL from the Security Provider configuration is used.

For API information about this action, see Logout in the Oracle Visual Builder Page
Model Reference.

Add a Navigate Back Action
Add a Navigate Back action to return to the previous page in a browser's history.

To use a Navigate Back action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

2. Optional:

Chapter 9
Built-In Actions

9-74

For Parameters, specify a key/value pair map of parameters to pass to the previous
page. If a parameter is not specified, the original value of the input parameter on the
destination page is used. If a parameter is specified, it has precedence over fromUrl
parameters.

For API information about this action, see Navigate Back in the Oracle Visual Builder Page
Model Reference.

Add a Navigate To Flow Action
You use this action to navigate to a flow in the current application, and if necessary, to pass
parameters to the flow.

To use a Navigate To Flow action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. For the flow options, the Flow in Current Page option is only available if the page
includes a Flow Container component. Selecting it provides you with the options for
navigating to a flow or page within the current page. Selecting Flow in Parent Page
provides you with the options for navigating to a flow of the parent page.

3. For the Flow property, select a flow or click the Create link to create a new flow to
navigate to.

4. If the selected flow has input parameters, enter them for the Input Parameters property
that appears after selecting the flow.

Chapter 9
Built-In Actions

9-75

5. For Browser History, select either push (default), skip, or replace to define the
effect on browser history. This value is used only if the resource is used in the
same window. If you choose skip, the URL is not modified. If you choose replace,
the current browser history entry is replaced instead of pushed, meaning that the
back button will not go back to that page.

If a value is returned by the flow, it is assigned to the auto-generated variable shown
by the Store Result In property.

For API information about this action, see Navigate To Flow in the Oracle Visual
Builder Page Model Reference.

Add a Navigate To Page Action
You use this action to navigate to a page in the current application, and if necessary, to
pass parameters to the page. To navigate away from the current application, use the
Open URL action.

To use a Navigate To Page action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

Chapter 9
Built-In Actions

9-76

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. For the Page property, select a page or click the Create link to create a new page to
navigate to.

3. If the selected page has input parameters, enter them for the Input Parameters property
that appears after selecting the page.

4. For Browser History, select either push (default), skip, or replace to define the effect on
browser history. This value is used only if the resource is used in the same window. If you
choose skip, the URL is not modified. If you choose replace, the current browser history
entry is replaced instead of pushed, meaning that the back button will not go back to that
page.

Chapter 9
Built-In Actions

9-77

If a value is returned by the page, it is assigned to the auto-generated variable shown
by the Store Result In property.

For API information about this action, see Navigate To Page in the Oracle Visual
Builder Page Model Reference.

Add an Open URL Action
You add an Open URL action to navigate to an external URL. In a web app, this action
opens the specified URL in the current window or in a new window.

To use an Open URL action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

2. In the Properties pane, enter the URL to navigate to.

3. Optional: For URL Parameters, if required, provide a key/value pair map of query
parameters to pass to the specified URL.

4. Optional: For Hash, specify the hash entry to append to the URL.

5. For Browser History, select either replace or push (default) to define the effect
on browser history. This value is used only if the resource is used in the same
window. If you chose replace, the current browser history entry is replaced
instead of pushed, meaning that the back button will not go back to that page.

6. For Window Name, specify a name identifying the window as defined in the
window.open() API. If not defined, the URL opens in the current window. For apps
on mobile devices, you have three possible values: _self (default), _blank, or
_system. For local file types, this property is ignored.

Here's an example to open a new browser window with the specified URL. If you
specify a value for the Window Name property (as shown here), once on the URL,
the browser back button will re-enter the last page and the page input parameters
will be remembered.

Chapter 9
Built-In Actions

9-78

For API information about this action, see Open URL in the Oracle Visual Builder Page Model
Reference.

Add a Reset Dirty Data Status Action
You use a Reset Dirty Data Status action to reset the Dirty Data status of the scope
(application, page, fragment, layout, flow) that the action is used in to 'notDirty'. The Dirty
Data status also gets reset for any tracked variables within any contained pages, fragments,
layouts, and flows, and within any extensions of them. The Dirty Data status of a scope
(referred to as context in code) changes from 'notDirty' to 'dirty' when one of its tracked
variables has its value changed.

This action takes no parameters and is used with the Get Dirty Data Status action.

Add a Reset Variables Action
You add a Reset Variables action to reset variables to their default values, as specified in the
variable definitions.

To use a Reset Variables action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

Chapter 9
Built-In Actions

9-79

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

2. Update the ID field in the Properties pane to make the action more identifiable.

3. Click the Variables to Reset box to select the variables that you want to reset.
You can also start to type the variable's name in the box and select it when it
appears.

For API information about this action, see Reset Variables in the Oracle Visual Builder
Page Model Reference.

Add a Return Action
The Return action is used to return a payload for an action chain and to return control
back to where the action chain was called. For instance, action chain A can call action
chain B, which returns a value, then action chain A can use that returned value for
further processing.

The Return action can also be used to exit an action chain early due to an exception,
such as an invalid value, or some other condition. If no value is returned by the Return
action, the value of undefined is returned by default.

For the Run In Parallel action, which uses aysc() functions to run blocks of code in
parallel, the Return action can be used to return a value for a block of code. For further
details, see the Use 2: Run Multiple Action Chains in Parallel to Produce a Combined
Result section here.

To use a Return action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

Chapter 9
Built-In Actions

9-80

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. For the Payload property, hover over the far-right side of the property and click the down
arrow that appears to choose the variable with the payload to return.

Add a Run In Parallel Action
The Run In Parallel action is used to run multiple code blocks in parallel, and you can also
use this action to wait for their results in order to produce a combined result.

Use 1: Run Multiple Action Chains in Parallel

To use a Run In Parallel action to just run multiple action chains in parallel:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. Drop the actions to run for each block in the Add Actions area of the Run in Parallel
action. For example, you could make two REST calls and assignments in parallel:

Chapter 9
Built-In Actions

9-81

3. To add another block of code to run in parallel, drag the first action for the block
from the Action's palette onto a Create Block area that appears at the bottom of
the action's blocks:

Use 2: Run Multiple Action Chains in Parallel to Produce a Combined Result

To use a Run In Parallel action to produce a combined outcome from the results of
multiple action chains:

1. Add the Run in Parallel action in one of three ways, depending on your
preference and where you want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

Chapter 9
Built-In Actions

9-82

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. For the Store Result In property, provide a name for the array that will hold the result
from each block. The first block's result is stored at index 0, the second block's result is
stored at index 1, and so on.

3. Drop the actions to run for each block in the Add Action area of the Run in Parallel
action.

4. To add another block of code to run in parallel, drag the first action for the block from the
Action's palette onto a Create Block area that appears at the bottom of the Run in
Parallel action's blocks when you drag an action over it.

5. Drop a Return action at the end of each block to return its result in the array that was
named using the action's Store Result In property:

Chapter 9
Built-In Actions

9-83

An array is returned by the Run in Parallel action (empInfo for this example, set in
step 2): the first element contains the first block's result, the second contains the
second block's result, and the third contains the third block's result.

For API information about this action, see Run in Parallel in the Oracle Visual Builder
Page Model Reference.

Add a Scan Barcode Action
You can add the Scan Barcode action when you want your application to decode
information such as URLs, Wi-Fi connections, and contact details from QR codes and
barcodes.

Note:

The Scan Barcode action relies on the Shape Detection API for browsers
and is only supported by these operating systems: Operating system
support.

To use a scan barcode action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

Chapter 9
Built-In Actions

9-84

https://web.dev/shape-detection/#os-support
https://web.dev/shape-detection/#os-support

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. Specify the action's properties in the Properties pane:

a. Update the ID field to make the action more identifiable.

b. In the Image field, enter an image object (either a CanvasImageSource, Blob,
ImageData, or an element) to decode.

Chapter 9
Built-In Actions

9-85

Note:

If you're using the camera component to pass a Blob to the Scan
Barcode action, you might run into the Failed to execute
'detect' on 'BarcodeDetector error. To get around this error,
convert the Blob to an ImageBitmap before passing it to the Scan
Barcode action. For example:

i. Add a module function to do the image conversion, something
like:

 // Convert Blob to ImageBitmap
 //
 PageModule.prototype.createImageBitmap =
function(fileBlob) {
 return window.createImageBitmap(fileBlob);
 };

ii. Add a Call Function action to the action chain, similar to:

iii. Pass the converted ImageBitmap as the Image property for the
Scan Barcode action.

c. Optional: For the Formats property, select the barcode formats you want the
browser to search for.

Barcode formats unlock a variety of use cases. QR codes can be used for
online payments, web navigation, or social media connections, aztec codes
can be used to scan boarding passes, and shopping apps can use EAN or
UPC barcodes to compare prices of physical items.

If Formats is not specified, the browser will search all supported formats, so
limiting the search to a particular subset of supported formats may provide
better performance.

On success, a DetectedBarcode object is returned using the auto-generated variable
shown by the Store Result In property. If the browser does not support the Shape
Detection API or if a specified format is not supported, an exception is thrown.

For API information about this action, see Scan Barcode in the Oracle Visual Builder
Page Model Reference.

Chapter 9
Built-In Actions

9-86

https://wicg.github.io/shape-detection-api/#dictdef-detectedbarcode

Add a Share Action
You add a Share action to share content with other applications, such as Facebook, Twitter,
Slack, and SMS, by invoking the native sharing capabilities of the host platform. This action
requires the user's consent, and as a best practice, consent should only be sought on a
relevant user action.

Note:

Web apps require the web browser running the app to support the Share action.
Currently, not all browsers support this native feature.

To use a Share action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. Update the ID field in the Properties pane to make the action more identifiable.

3. Configure the Title, Text, and URL. All properties are individually optional, but at least
one property must be specified. Any URL can be shared, not just those under the
website's current scope. Text can be shared with or without a URL.

a. In the Title field, enter the title of the document to be shared.

b. In the Text field, enter the text that will form the body of the message being shared.

c. In the URL field, enter the URL that refers to the resource being shared.

Here's an example that shares the current page's title and URL:

Chapter 9
Built-In Actions

9-87

For API information about this action, see Share in the Oracle Visual Builder Page
Model Reference.

Add a Switch Action
You add a Switch action when you want to evaluate an expression and create an
outcome with that value. An outcome of "default" is invoked when the expression
does not evaluate to a usable string.

To use a Switch action:

1. Add the action in one of three ways, depending on your preference and where you
want it added:

• Drag the action from the Actions palette onto the canvas, dropping the action
either at the bottom edge of the action it is to follow, or at the top edge of the
action it is to precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to
the end of an action chain.

• On the canvas, select the action you want the new action to follow, then
double-click the new action in the Actions palette.

2. For the Value property, select the variable that is to be compared against each
case value. If the variable's value doesn't match a case value, or it's null or
undefined, the default case is executed.

For example, when a menu defines a set of options, you can use the Switch action
to perform actions for each menu item. In this case, you'd select the menuId input
parameter for the Value property:

3. For each case, to select the case in the Properties pane, click it in the Switch
action, then select the value for the case using the Value property. Next, drop the
actions to execute for the case in the Drop actions here area of the case block
and configure their properties in the Properties pane.

Add a Try-Catch Action
You add a Try-Catch action to gracefully handle errors and avoid program crashes.

Chapter 9
Built-In Actions

9-88

To use a Try-Catch action:

1. Add the action in one of three ways, depending on your preference and where you want it
added:

• Drag the action from the Actions palette onto the canvas, dropping the action either
at the bottom edge of the action it is to follow, or at the top edge of the action it is to
precede.

• Double-click the action in the Actions palette to add it to an empty canvas or to the
end of an action chain.

• On the canvas, select the action you want the new action to follow, then double-click
the new action in the Actions palette.

2. To change the alias for the error object, which has the name and message properties,
select the Catch block on the canvas and change the alias in the Properties pane:

3. To add an action to a Try-Catch block, select the block and double-click the action in the
Actions palette, or drag an action from the Action's palette onto the desired block:

Chapter 9
Built-In Actions

9-89

You can also surround an action with a Try-Catch action by right-clicking it and
selecting Surround with Try-Catch:

If you need a Finally block, drag the first action that you want to add to the block over
the Try-Catch action and drop it into the Create Finally area that appears:

Chapter 9
Built-In Actions

9-90

Custom Actions
In addition to the built-in actions you see in the Actions palette, you can create your own
actions, using JavaScript, and use them in action chains just the way you'd use built-in
actions.

Custom actions are created within the context of a specific application, and can't be shared
across apps.

Create a Custom Action
To create a custom action, you provide its metadata in a JSON file and its code in a
JavaScript file. The metadata contains basic details about the action, any input parameters
needed by its implementation method, and optionally, an object for returning values.

Here’s an overview of what’s required to create a custom action:

1. Create the Action Files (action.json and action.js):

• action.json: Contains the metadata for the custom action. Used to define input
parameters and to define an object for returning values. This file is also used by the
Designer to add the action to the Actions palette, and to display the action's
properties in the Properties pane.

• action.js: Contains the code used to implement the custom action.

2. Add the Metadata to action.json.

3. Add the Code for the custom action to action.js.

Create the Action Files
To create the template action.js and action.json files, for you to start with:

1. Select the Web Apps tab, expand the Application node (first node) and the Resources
node under it, then click the Create Custom Action icon (+) next to the actions node:

Chapter 9
Custom Actions

9-91

2. In the ID field, enter the name of the action group folder for your new custom
action, followed by a forward slash and the name of your new action, as in:
<action-group>/<action-name>
For example, you might enter my_awesome_actions/sayhello, where
my_awesome_actions is the name of your group folder, and sayhello is the name
of your action.

The two newly created action.js and action.json templates are stored under
the path resources/actions/<action-group>/<action-name>/, as
shown here:

Chapter 9
Custom Actions

9-92

Add the Metadata
You provide the custom action’s metadata in the action.json file, which includes:

• The action’s basic details (ID, display name, icon…)

• An object used to return values from the action's implementation method (optional)

• Input parameters needed by the action's implementation method (optional)

The Action Chain editor uses the metadata to add the custom action to the Actions palette
and to display its parameters in the Properties pane:

Chapter 9
Custom Actions

9-93

When you created the action.json file, the default parameters, ID and Description
were automatically created for you, but their metadata isn’t added to action.json.
You only add the metadata for the input parameters and the return object that you
want to add to the custom action.

Here's an example of the action.json file for the sample sayHello custom action,
with a breakdown of its parts:

Chapter 9
Custom Actions

9-94

• The first set of properties provide the basic details about the custom action.

Chapter 9
Custom Actions

9-95

• The resultShape property provides the definition for the object returned by the
action's implementation method, which can be used as input for another action
when creating an action chain. For instance, the string returned by this action can
be an input for an action that writes the string to a log file.

• The propertyInspector property defines the action's input parameters.

Define the Custom Action's Properties
Use this table to help you define the properties for your custom action in the
action.json file.

Property Required Description

"id": "", Yes Unique ID for custom action.

"category": "My Category", No Category to contain custom action in
Actions palette. If not specified, action is
placed under the default category for
custom actions, Custom.

"defaultParameters": { }, No If input parameters are defined and they
need default values, use this property to
specify default values for them by
specifying the input parameter names and
their values (name-value pairs). Defaults
are assigned when action is first added to
an action chain.

"description": "", No Brief description of custom action.

"displayName": "", Yes Name to display in Actions palette.

"helpDescription": "", No Help text to appear for action when user
hovers over action's title in Properties
pane and clicks the question mark icon.

"iconClass": "", Yes Icon to display for action in Actions
palette.

"referenceable": "self | extension" No Indicates if action is available in
extensions; default is self, indicating it
isn't available in extensions.

"idPrefix": "", No Used to auto-generate action IDs for
actions when they are added to action
chains. When action is added to an action
chain, action's ID field in the Properties
pane is auto-populated. If specified, ID
field is populated using this property's
value, otherwise, the action's name is
used.

"resultShape": { "someName":
"string" },

No If one or more values are to be returned
by the implementation method, use this
property to define the object to return
them.

"showInDiagram": "on" | "off" No If set to on, action is available on Actions
palette of flow diagram.

Chapter 9
Custom Actions

9-96

Property Required Description

"tests": { "requiresMock": "on" | "off" } No Setting for action's mock requirements for
action chain tests:

on: Indicates action needs to be mocked.

off: Indicates Visual Builder provides
suggestions for expected action results if
resultShape parameter is specified in
action.json. If action has no
resultShape, suggestions are enabled
for the action's input parameters specified
in propertyInspector section.

Default is off.

"propertyInspector": [{}] No Metadata for the input parameters needed
by implementation method. Input
parameters are displayed in Properties
pane of Actions editor.

Define Input Parameters for a Custom Action
Use this table to help you define input parameters for your custom action. In the
action.json file, use the propertyInspector property to define the parameters you need:.

Property Require
d

Description

"name": "", Yes Name of input parameter.

"help": "", No Help text to appear for input parameter when user
hovers over parameter's title in Properties pane
and clicks the question mark icon.

"label": "", Yes Label to display for input parameter in Properties
pane.

"placeholder": "", No Hint text to display for input parameter in
Properties pane.

"required": true | false, No Indicates if a value is required for input parameter.

"options": [{}], No If component property for input parameter is set to
comboboxOne or comboboxMany, use this
property to specify all of the values to be available
for the combobox.

"type": "", Yes Parameter's data type, which can be number,
string, boolean or object; if the type is not
specified, values are stored as strings.

"component: "inputText | textArea |
comboboxOne | comboboxMany"

Yes Indicates if parameter is a text field, text box or a
combobox with single or multiple selections.

Add the Code
You provide the code for your custom action using the action.js template file that was
created for you when you first created the new action.

To provide the code for your action, use the perform() method, which receives the input
parameter, parameters. The input parameter contains the values for the action’s input
parameters, as entered in the Properties pane.

Chapter 9
Custom Actions

9-97

How Are Input Parameters Passed?
Here's an example of the perform() method, in action.js, that implements the
sample sayHello custom action by using the alert() method:

define(['vb/action/action'], (Action) => {
 'use strict';
 class CustomAction extends Action {
 perform(parameters) {
 const to = parameters.to;
 const message = parameters.message;

 alert(`${message}, ${to}`);

 if (to && message) {
 return Action.createSuccessOutcome({result: to +
", " + message});
 }
 return Action.createFailureOutcome({result:
"Something wrong, unable to SayHello"});
 }
 }
 return CustomAction;
 });

The values you enter for the action’s input parameters, To and Message, in the
Properties pane, are passed to the perform() method using the input parameter,
parameters (shown in the code above).

How are Values Returned?
If you need one or more values returned by the method that implements the custom
action, you need to define the object that returns them in action.json. You do so by
using the resultShape property.

To return values from the implementation method, you use the
createSuccessOutcome() method of the Action class.

Chapter 9
Custom Actions

9-98

As an example, here's the declaration of the return object for the sample sayHello custom
action:

"resultShape": { "result": "string" },

Specify Path to Code
Lastly, you need to tell Visual Builder where the custom action's code file is stored, by adding
a requirejs property to the app-flow.json file. Here are the steps:

1. In the Navigator, on the Web Apps tab, select the web app, then select the JSON tab to
open the app-flow.json file.

2. Specify the path to the custom action’s code file by adding a requirejs property in app-
flow.json and naming the path, using this format:

“<custom-action-ID>”: “resources/actions/<action_group>/<action_name>”

In this example, <custom-action-ID> is the ID for the custom action (case sensitive), as
specified in action.json.

Here's an example of specifying the path:

"requirejs": {
 "paths": {
 "demo/SayHello": "resources/actions/my_awesome_actions/sayhello/action"
 }
},

Start an Action Chain
You set up an action chain to be triggered when an event occurs in an artifact. The type of
event available depends on the artifact. For example, you can trigger an action chain to start
when a lifecycle event such as vbEnter is fired to load a page. Or, use the onValueChanged
variable event when a variable's value changes. You can also use custom events to start an
action chain from another action chain.

Start an Action Chain From a Component
When you add a component to a page or layout, you'll need to create a component event and
component event listener if you want it to trigger some behavior (for example, to open a
URL). The suggested option in the component's Properties pane creates these for you.

There are various predefined events that you can apply to a component, and the events
available are usually determined by the component. For example, the ojAction event is
triggered when a button is clicked, so you would typically apply it to a button component (you
couldn't apply it to a text field component). Each button will have a unique event and an event
listener listening for the button's ojAction event, and the listener would start an action chain
(or multiple action chains) when the event occurs. Each component event will usually have a
corresponding component event listener.

Chapter 9
Start an Action Chain

9-99

Note:

You can add an event to a component only from the component's Properties
pane. You can't create one in the Events tab of pages.

To start an action with a component:

1. Select the component in a page or layout.

Typically, you assign events to elements such as buttons, menus, and fields in
form components. You can select the component on the canvas, in the Structure
view, or in Code view.

2. In the component's Events tab in the Properties pane, click + Event Listener. You
can choose the suggested event as a quick start or you can create a custom event
to use a different event.

When you add the new event using the quick start, an action chain is created for
you and the Action Chain editor opens automatically. When you add the new event
using the custom option, you'll need to select an event.

3. For a custom event, select the event you want to use to trigger an action chain.
Click Select.

Chapter 9
Start an Action Chain

9-100

4. Select the action chain you want the event to trigger and click Select Action Chain.
Alternatively, click New Action Chain to create a new action chain.

Chapter 9
Start an Action Chain

9-101

The Events tab in the Properties pane shows events on the component that Visual
Builder responds to by triggering action chains. You can edit the properties, for
example, to add input parameters that you want to use in the action chain. Input
parameters can provide values from the component and its page to the action chain,
which the action chain can then use to determine its behavior. For example, a table
selection event could supply details of which row was selected to its action chain.

If you used the quick start option to add an event, a component event listener is
created for the new event, and the listener is mapped to the action chain it created for

Chapter 9
Start an Action Chain

9-102

you. If you open the Event Listeners tab, you'll see it listed under Component Event
Listeners, along with the action chain that it will trigger.

Start an Action Chain When a Variable Changes
You can start an action chain when the value stored in a variable changes by adding an
onValueChanged event to the variable.

When you use an onValueChanged event to trigger an action chain, the trigger has the
payload of the variable's old and new values. For example, let's say you changed the name
property of an Employee and then reset the Employee; the framework will send an event that
the Employee changed, and as part of the payload indicate that the name has changed.

To start an action chain when the value of a variable changes:

1. Open the Variables tab of an artifact.

2. Select the variable in the list, then open the Events tab in the Properties pane.

3. Click + Event Listener in the Events tab.

4. Select an action chain from the list. Click Select.

When you add the event to the variable, a variable event listener that listens for the
onValueChanged event on the variable is automatically created. The variable's Events tab
in the Properties pane displays the action chain the event listener starts; you can change
or remove the action chain, assign input parameters, and add more action chains.

Chapter 9
Start an Action Chain

9-103

Note:

Variable events and event listeners are not listed in an artifact's Events
or Event Listeners tabs.

Start an Action Chain From a Lifecycle Event
Lifecycle events are predefined events that occur during a page's lifecycle. You can
start action chains when these events occur by creating event listeners for them. For
example, if you want to initialize some component variables when the page opens, you
can create an event listener in your artifact that listens for the vbEnter event. You
could then set the event listener to trigger an action chain that assigns values to the
component's variables.

Before you create an event listener to trigger an action chain, it's important to
understand a page's lifecycle, so you know where to plug in custom code to augment
the page's lifecycle. Each page in your application has a defined lifecycle, which is
simply a series of processing steps. These might involve initializing the page,
initializing variables and types, rendering components, and so on.

Each stage of the lifecycle has events associated with it. You can "listen" for these
events and start action chains whenever they occur to perform something based on
your requirements. For example, to load data before a page loads, you can use the
vbEnter event and start an action chain that calls a GET REST endpoint.

Keep in mind that one or more pages make a flow and each flow has its own lifecycle.

This table describes the lifecycle events you can use to start action chains:

Chapter 9
Start an Action Chain

9-104

Lifecycle Event Description

vbBeforeEnter Triggered before navigating to a page. Commonly used when a user does
not have permission to access a page and to redirect the user to another
page (for example, a login screen).

Because this event is dispatched to a page before navigating to it, you can
cancel navigation by returning an object with the property cancelled set to
true ({ cancelled: true }).

For this event, you can use these variable scopes to get data:
• $application: All application variables can be used in the event's

action chain
• $flow: All parent flow variables can be used in the event's action chain

• $parameters: All page input parameters from the URL can be used in
the event's action chain

vbEnter Triggered after container-scoped variables have been added and initialized
with their default values, values from URL parameters, or persisted values,
and is dispatched to all flows and pages in the current container hierarchy
and the application. Commonly used to fetch data.

For this event, you can use these variable scopes to get data:
• $application: All application variables can be used in the event's

action chain
• $flow: All parent flow variables can be used in the event's action chain

• $page: All page variables can be used in the event's action chain

vbBeforeExit Triggered on all pages in the hierarchy before navigating away from a page.
Commonly used to warn if a page has to be saved before the user leaves it,
or to cancel navigation to a page (say, because a user doesn't have
permissions to view that page) by returning an object with the property
{ cancelled: true }.

vbExit Triggered when navigating away from the page and is dispatched to all flows
and pages in the current container hierarchy being exited from. Commonly
used to perform cleanup before leaving a page, for example, to delete details
of a user's session after logout.

vbAfterNavigate Triggered after navigation to the page is complete and is dispatched to all
pages and flows in the hierarchy and the application.
The event's payload ($event) is an object with the following properties:
• currentPage <String>: Path of the current page

• previousPage <String>: Path of the previous page

• currentPageParams <Object>: Current page parameters

• previousPageParams <Object>: Previous page parameters

vbNotification Triggered when a Fire Notification action is fired by the application.

vbResourceChanged Triggered when an application has been updated. Commonly used to notify
the user that they need to refresh to view the updated application.

vbDataProviderNotif
ication

Triggered when a Data Provider's implicit fetch fails with an error.

To start an action from a lifecycle event:

1. Open the Event Listeners tab for the page containing the event you want to trigger an
action chain for.

2. Click + Event Listener.

3. In the Create Event Listener wizard, expand the Lifecycle Events category and select the
event you want to trigger an action chain for. Click Next.

Chapter 9
Start an Action Chain

9-105

4. Select the action chain you want to start. You can select any action chain that is
scoped for the artifact. For example, if you are creating an event for a flow artifact,
you can only call action chains defined in the flow or in the application.

If you want to create a new action chain, select the create action chain option at
the appropriate level (page, flow, or application), then click Finish.

Chapter 9
Start an Action Chain

9-106

After you create an event listener, you can click Add Action Chain for the lifecycle event if
you want it to start additional action chains.

Start an Action Chain By Firing a Custom Event
You can use the Fire Event action to trigger a custom event, which in turn triggers another
action chain to do things like display a notification, transform some data, and so on. You can
also subscribe to a component event, like a table's ojRowAction event, in order to trigger your
own custom event and action chain.

Each custom event has a Behavior property, which sets whether an action chain runs serially
or in parallel. The default behavior is "Notify", which runs the action chain in parallel. For
more about this property, see Choose How Custom Events Call Event Listeners.

After creating a custom event, you create an event listener for it to start one or more action
chains.

In this example, we'll subscribe to a table's ojRowAction event to trigger a custom event that
starts an action chain. The action chain then saves the selected row's data to a page
variable. To begin:

1. Create a page variable of type Object to hold the selected row's data:

Chapter 9
Start an Action Chain

9-107

For this part, you create a JavaScript function (module function) to subscribe to the
table's ojRowAction event, which is triggered when a user clicks a table's row. You'll
use this event to trigger your custom event, which will start the action chain that saves
the row's data to the rowData page variable.

2. To create the function, select the JavaScript tab. Use the context's eventHelper
object's fireCustomEvent() method to trigger your custom event and to pass it the
required payload. The event parameter contains the row's data
(event.detail.context.data).

Here's the example code:

 constructor(context) {
 this.eventHelper = context.getEventHelper();
 }

 subscribeToTableRowActionEvent(table) {
 table.addEventListener("ojRowAction", (event) => {
 this.eventHelper.fireCustomEvent("onRowAction_CustomEvent",
{rowData: event.detail.context.data});

Chapter 9
Start an Action Chain

9-108

 });
 };

Next, you need to create the event listener for the page's vbEnter event, which is triggered
when the page starts. You'll use this event listener to start an action chain that calls the
function to subscribe to the table's ojRowAction event.

3. To create the event listener for the page's vbEnter event, select the Event Listeners tab,
and click the + Event Listener button to create it.

4. For the wizard's Select Event step, in the Lifecycle Events section, select vbEnter and
click Next.

5. For the Select Action Chain step, click the Page Action Chains section's Add icon to
create an action chain for the listener to initiate.

Chapter 9
Start an Action Chain

9-109

If the custom event for this listener has input parameters, which this one doesn't,
the action chain would be created with an event input parameter that contains the
custom event's input parameters.

You are taken to the Action Chain editor, where you can create the action chain to call
the function that subscribes to the table's ojRowAction event.

6. Add the Call Function action to the canvas. Set its Function Name property to the
JavaScript function, and pass the table to the function using the table parameter:

For this next part, you'll create the custom event that will be triggered by the table's
ojRowAction event. You'll also create the action chain that assigns the row's data to
the rowData page variable.

7. On the page's Events tab, click the + Custom Event button to create a custom
event. In the Properties pane, click the Payload property's Add Parameter link
and define an input parameter of type Object. This input parameter will be used to
pass the row's data to the action chain that assigns the data to the rowData page
variable.

Chapter 9
Start an Action Chain

9-110

8. For the custom event's Behavior property, set whether the action chain runs serially or in
parallel. The default, notify, is in parallel. For details about each option, see Choose
How Custom Events Call Event Listeners.

We now need to create an event listener for the event to specify which action chains to start
when the event occurs (more than one action chain can be started by an event listener).

9. On the page's Event Listeners tab, click the + Event Listener button to create a listener.

10. For the wizard's Select Event step, scroll down to the Page Events section and select the
custom event that you created. Click Next.

11. For the Select Action Chain step, click the Add icon for the Page Action Chains section to
create an action chain for the listener to initiate.

Chapter 9
Start an Action Chain

9-111

When a listener’s action chain is created here, if the listener's custom event has
input parameters, the action chain is created with an event input parameter. This
event object contains the custom event's input parameters (example:
event.param1, event.param2...), and the event object is automatically passed to
the new action chain.

12. In the Action Chain editor, note that the action chain has the event input
parameter, which contains the custom event's input parameter. Add the Assign
Variable action, and set its Variable property to the page variable that will contain
the row's data. Lastly, set it's Value property to the relevant value in the event
object that was passed to the action chain:

Test Action Chains
You can use the Tests editor–located on the Action Chain editor's Tests tab–to
implement a test-driven development approach to designing, creating, and maintaining
your action chains, or to implement your own methodology. Using the Tests editor, you
can easily define test cases for an action chain and run them at any time, to ensure
that code changes haven’t broken any functionality.

The Tests editor removes the need to manually code a test for each code path by:

Chapter 9
Test Action Chains

9-112

• Displaying the action chain’s input parameters, context variables and context constants,
so that you just need to enter their values for the test.

• Displaying the actions that need their results provided for them, for you to provide the
results for the code path being tested. For Call R actions, functionality is available for you
to quickly get and copy their responses.

• Suggesting expectations for the test, based on the provided values.

When testing action chains, the first thing you should do is figure out all of the possible code
paths, since each one is a scenario that needs to be tested to achieve full test coverage.
More complex code paths, however, might have more than one scenario that should be
tested.

After identifying the code paths, you create at least one test for each, depending on how
many scenarios there are for a path. For each test, you need to:

• Provide any initial values, such as initial values for variables and input parameters, that
are needed to execute the code in the code path being tested. For instance, this code
needs the value of the $page.variables.userEnteredString variable to execute. The
variable is used to count the number of characters that a user entered into an Input Text
component that's bound to the variable. Since the variable's value is needed to run the
code, you need to provide a value for it that is appropriate for the test case being tested.

• For each action that can't automatically return a value during testing, due to limitations,
you need to provide the action's return value for the code path being tested, as a mock.
Actions that need their results provided for them are shown in the Mocks section.
In this example, a new employee record is added using a Call REST action, which can't
automatically return a value during testing. A return value must be provided for the Call
REST action, which would be the action's result after adding the new record:

Chapter 9
Test Action Chains

9-113

• Once you've provided the values for the test case, expectations are automatically
generated for you, based on those values. Select the expected results, such as a
variable's final value, to test against.
For instance, after you provide the initial values and mocks for a test, if Visual
Builder detects that a variable's final value will be 5, this expectation will be
suggested to you. You can then add the expectation to the test, to test against. For
the test to pass, all expectations have to be met.

The goal is to fully test your action chain by testing each of its code paths. If your tests
cover the expected results for each code path, the value for Coverage will be 100%.

In the example below, three tests have been created for the three code paths that
need to be covered to achieve full test coverage: Addition Test, Invalid Operator Test,
and the Subtraction Test. Therefore, the value for Coverage is 100%, as you can see
in the upper left corner of the editor.

The Addition Test, which tests the if operator_ip === '+' code block, is shown in
the Properties pane. In the Parameters section, the three input parameter values that
were entered to execute the addition block of code are shown, and the Expectations
section shows the expected results:

Chapter 9
Test Action Chains

9-114

The source code for all of your tests is stored in a separate JSON file, actionchainname-
tests.json, for easier maintenance. To view this file's contents, click JSON in the left pane.
You can also find this file under the artifact's chains folder in the Navigator's Source View tab.

Create a Test for a Test Case
The first time you access the Tests editor, click the + Test button to create a test for a
particular test case. The test name defaults to Test 1; enter a more descriptive name for the
test case, if you want.

To create a test for a test case:

1. In the Context section, provide the initial values for any context variables and constants
that are used in the code path that is being tested. For instance, if a variable is used in
the code path for a calculation, you'll need to provide a value for the variable that
appropriately tests the code path.

Note:

If a variable or a constant's value is set by the code being tested and not
required to execute the code, you don't provide an initial value for it. The
expected value for the variable or constant will be suggested to you as an
expectation. For instance, in the example that follows, the value for the
variable $page.variables.Answer in set by the Assign Variable action. Since
the value is set by code, the expected value for the variable is suggested to you
in the Expectations section, as an expectation.

2. In the Parameters section, provide the values for any input parameters that are used in
the code path. In this example, values have been entered for the three input parameters
that are used in the addition code path:

Chapter 9
Test Action Chains

9-115

3. In the Mocks section, which shows actions that need their results provided for
them, provide the results for any listed actions, and ensure that the values are
appropriate for the test case. For instance, if a Call REST action is used, you'll
need to provide a response from the Call REST action that properly tests the code
for the particular test case.

These actions always require mocked results:

• Call Component

• Call REST

• Call Variable

• Get Location

• Scan Barcode

To provide a mock for an action, click the action in the Mocks section. In the
resulting window, provide a value that is appropriate for the test case.

If you need to mock a Call REST action, click the Make a REST request to get
result data for this mock link to copy a response from a REST request to paste
into the Body field:

Chapter 9
Test Action Chains

9-116

You will be taken to the Endpoint tab for the Call REST action. Here, you can modify the
request to get and copy the response required to mock the action’s result:

Shown here are the copied responses from the Call REST action requests, provided as
mocks:

Chapter 9
Test Action Chains

9-117

To add a mocked result for an action that isn’t shown in the Mocks section, click
the Add icon (+) for the Mocks section. Select the action from the Action drop-
down list, then provide the value for the test case in the Return field.

4. Now that you've provided the values for the test case, you can get suggested
expectations based on those values by clicking the Get Suggestions button in the
Expectations section.
Shown here are the suggested expectations that are based on the values entered
for the Addition Test. In the Expectations section, use the Add All or Add links to
add the applicable expectations. To refresh the expectations list, click Refresh:

Chapter 9
Test Action Chains

9-118

To add your own expectation, click the Add icon (+) for the Expectations section. Select
whether you’d like to create an expectation for an action’s parameter, an action’s return
value, a context variable, or the action chain’s return value:

Chapter 9
Test Action Chains

9-119

Make the appropriate selections for the expectation and provide the expected
value, as shown in this example. Click OK:

Run the Tests
Once you've defined the tests, you can run them individually or all at once using the
Run or Run All button.

You can also run these tests using the vb-test Grunt task (see Test Action Chains
Using the vb-test Grunt Task).

After running the tests, a green icon beside a test indicates that its expectations were
as expected and a red icon indicates an unexpected result. The reason for the failure
is shown in the Expectations section.

If you incorrectly set an expected value and the detected expected value is correct,
click the Accept as expected value link to change the expected value to the detected
value:

Chapter 9
Test Action Chains

9-120

Use the Tests Footer in a Visual Application
When you define multiple tests for each action chain in an app, it might be easier to manage
tests for all apps in a visual application, rather than for each app. You can do this using the
Tests footer at the bottom of your browser.

This aggregate view helps you get a quick look at the status of all action chain tests in a
visual application. When tests fail, you can use this view to quickly access the editor for each
failed test and take action as needed.

While you can also run all tests in your application from here, it isn't really required if you've
already triggered them. Action chain tests run in the background, even when you're not
actively working on your application, and the results are saved. So if you are working on an

Chapter 9
Test Action Chains

9-121

application, only tests impacted by your changes (for example, if you added a new
variable or updated an existing function) are scheduled to run again. You'll likely see
something similar to this image until Visual Builder actually runs those tests for you
(after 10 seconds of inactivity):

This way, your test results are always available and up-to-date, and you can rely on
them to identify and fix code-breaking changes.

Test Action Chains Using the vb-test Grunt Task
Visual Builder’s grunt-vb-build NPM package includes a vb-test Grunt task that
you can use to run the action chain tests in your visual application on your computer.

To use the vb-test Grunt task, you must set up your computer to build the visual
application by installing Node.js and its package manage (npm). See Build Your
Application Locally. Once you have installed the necessary tools, you need to save the
sources for the visual application to your computer. You can get the sources of your
visual application in one of the following ways:

• Cloning the Git repository containing the sources

• Exporting the visual application from Visual Builder and extracting it to your local
system

To test action chains using the vb-test Grunt task:

1. In the command-line interface, navigate to the folder on your local system
containing the package.json and Gruntfile.js files.

2. Enter npm install to retrieve the node dependencies required to build the
application.
The install command retrieves the grunt-vb-build npm package defined in
package.json.

3. Enter the task names in the command-line interface to process your application
sources, and then run the suite of tests that you defined in Visual Builder.
The following example shows how you execute these tasks, along with some of
the parameters that they support:

First build application sources. This creates a build/processed
directory with the built application assets.
./node_modules/.bin/grunt vb-process-local

Run the suite of action chain tests that you defined using one of
the following options:
Headless mode:

Chapter 9
Test Action Chains

9-122

grunt vb-test
Test in the Chrome browser and set a timeout value:
grunt vb-test --karma-browser=Chrome --mocha-timeout=60000

The command-line options include the following:

• karma-browser
By default the tests run in headless Chrome, but you can pass Chrome to use the UI
(window) mode instead.

Example to run tests in Chrome UI:

grunt vb-clean vb-process-local vb-test--karma-browser=Chrome
• karma-debug

Runs tests in Chrome UI mode. Suspends execution until you click the DEBUG
button, at which point you can debug the app tests using Chrome DevTools. The
Default value is false.

Example to run tests in Chrome UI and debug mode:

grunt vb-clean vb-process-local vb-test --karma-browser=Chrome --karma-
debug

• karma-log-level
Sets the karma logging level. The default level is INFO, though you can change this to
DEBUG, WARN, ERROR, or DISABLE.

Example to run tests in Chrome UI with increased verbosity:

grunt vb-clean vb-process-local vb-test --karma-browser=Chrome --karma-
log-level=DEBUG

• mocha-timeout
Sets the timeout for Mocha tests (in milliseconds).

Example to run tests in Chrome UI with a timeout for Mocha tests:

grunt vb-test --karma-browser=Chrome --mocha-timeout=60000
For more information on the supported command-line options, see vb-test.

4. Check test results and code coverage reports in the build/tests/results directory.

Chapter 9
Test Action Chains

9-123

10
Work with JSON Action Chains

Action chains determine what happens when users interact with pages or components in
your user interface, for example, when they select a row in a table or click a button on a
page. Each action chain defines a sequence of actions (for example, navigating to a page,
calling a REST endpoint, assigning data to a variable, and so on) and is started by an event
listener when an event occurs.

JavaScript and JSON Action Chains

You can call a JSON action chain from a JavaScript action chain using the Call Action Chain
action; however, you can't call a JavaScript action chain from a JSON action chain.

When you go to create a new action chain on an Actions tab, you can choose between a new
JavaScript or JSON action chain:

When you go to create a new action chain for an event listener, component, or variable, by
default it will be a JavaScript action chain.

If you only want to work with JSON action chains, refer to JavaScript and JSON Action
Chains for instructions on how to disable JavaScript action chains.

About Action Chains
An action chain determines what happens when, for example, you click a button on a page.
To configure the button's behavior, you could define an ojAction event for the button, create
an event listener that listens for that ojAction event to occur, and select the action chain that
the event listener will start. When the button's ojAction event occurs, the event listener starts
the action chain.

An action chain might be a short sequence of a few actions, but it could contain many actions
as well as logic for determining what happens in the sequence. It might contain actions such

10-1

as assigning data to a variable, sending data to a database, navigating to another
page, even starting other action chains.

This image shows what an action chain that opens a URL might look like:

Much like variables, the scope of an action chain depends on where it's created. An
action chain created in a page’s Action Chain editor can only be used in that page, and
can only access variables defined in that page. An action chain that you create in the
Action Chain editor for a flow can only be used within that flow. For action chains that
you want to use in multiple pages of your application, such as one that navigates to
the start page, you can create an action chain at the application level.

Create an Action Chain
Create action chains by assembling several, individual actions into a sequence in the
Action Chains editor. The Actions palette contains a list of built-in actions that you can
drag on to the canvas to create your sequence.

To create an action chain:

1. Open the Actions tab, for example, at the page level.

The Actions tab displays a list of the page’s action chains, or a message if no
action chains are defined.

Chapter 10
Create an Action Chain

10-2

2. Click + Action Chain.

3. Enter a name for the action chain in the ID field and, optionally, a description. Click
Create.

The new action chain opens in the editor:

The editor contains the palette of built-in actions (grouped by type), a canvas, and a
Properties pane. The Start icon in the canvas area indicates the starting point for your

action chain; the Add icon () is a placeholder where you add an action to the chain.
The Properties pane shows the properties of what's selected on the canvas.

Chapter 10
Create an Action Chain

10-3

If you prefer to wire up your action chain manually, you can use Code view to
directly edit the action chain's source code. For supported syntax, see Actions and
Action Chains in the Oracle Visual Builder Page Model Reference.

Tip:

It's possible to declare local variables that are only available within the
scope of your action chain. To do this, click the Variables tab in the
Action Chains editor and create your variable. These variables are
internal to the action chain and can be used internally by actions in the
chain. You can also pass them as input parameters to the action chain.

4. From the actions palette, drag an action and drop it on the Add icon (). You

can also click the Add icon () in the chain and select an action in the pop-up
menu.

Chapter 10
Create an Action Chain

10-4

The new action is added to the chain and is selected by default. The Properties pane
displays the properties that you can specify for the action. For example, here's what the
editor looks like when you add the Call Function action in the Design view:

Chapter 10
Create an Action Chain

10-5

The action is usually flagged with a warning icon when a required field isn't set (in
this case, because a JavaScript function hasn't been selected yet). Specify the
action's properties as required in the Properties pane. For details specific to an
action, see Built-in Actions.

5. To create a fork in your action chain, drag the action from the palette and drop it on
the Add icon next to the action where you want the chain to fork. The Add icon
appears next to each action in the chain when you drag an action from the palette.

6. Repeat step 4 (and optionally step 5) until your action chain is complete. The
action chain is saved automatically.

Chapter 10
Create an Action Chain

10-6

If you want to remove an action from the chain, select the action on the canvas, right-

click, and select Delete (). You can also click Delete in the Properties pane's
options menu.

Chapter 10
Create an Action Chain

10-7

Tip:

When your action chain includes a large number of actions, you can use
search to quickly find what you're looking for. In the Search text box,
enter any text—variable name, endpoint ID, or even an action ID from
the console log. All actions that match the text you enter will be
highlighted, along with navigation arrows that you can use to jump from
one highlighted action to the next.
Here's an example of using "etag" to find the expenseReportEtag
variable:

You can also click the Show Overview icon () to view a visual
representation of the action chain's flow. In combination with search, the
overview diagram can help you know where the highlighted action is

within the overall flow. Toggle the icon to show or hide the diagram as
required.

You can open your action chain at any time from the Actions tab and edit it as
necessary. When your action chain is complete, you can call it in response to a
component event, a lifecycle event, or from another action chain. You can also trigger
it when a variable changes.

If you want to view usage details for your action chain (for example, to see which
pages use the action chain), look under Usages in the action chain's Properties pane.
Click a usage to readily navigate there. The event listener tied to the event that calls
the action chain is also listed, as shown here:

Chapter 10
Create an Action Chain

10-8

An action chain's source code is stored in its own JSON file. This helps to optimize
performance by reducing the size of the artifact JSON and to reduce the potential for merge
conflicts when multiple action chains for an app integrated with a Git repo are edited. To view
and edit an action chain's JSON file, it's simplest to use the Code editor in the Diagram view,
though you can always view files using the Navigator's Source view. For action chains in
applications, flows, and layouts, look in the artifact's chains folder. For action chains in
pages, look in the pagename-page-chains folder under pages that's at the same level as
the page JSON file:

Chapter 10
Create an Action Chain

10-9

If you create tests for your action chain, those will be stored in another JSON file,
distinct from the action chain's file.

Built-in Actions
Visual Builder provides a set of built-in actions that you use to create your action chain.

Chapter 10
Built-in Actions

10-10

Each action performs a specific function and requires you to set different properties. For
example, when you add the Call REST endpoint action to your action chain, you need to
specify the endpoint and other details about the response to the Call REST endpoint action.
Similarly, when you add the Navigate action to an action chain, you are required to select a
page in your application that the action navigates to, as shown here:

Chapter 10
Built-in Actions

10-11

Regarding an action's output, an action can have multiple potential outcomes (such as
success or failure, or a branch), and it can return results. For more details, refer to
Action Results in the Oracle Visual Builder Page Model Reference guide.

Use this section to learn more about the steps particular to a built-in action.

Note:

Some built-in actions might be deprecated over time. To view actions
deprecated in the latest release of Visual Builder, use the Show Deprecated
option in the Actions palette's menu. The actions will show up in the actions
palette, but won't be updated any more. The Show Deprecated option gives
you time to move away from deprecated actions in your action chains.

Add an Assign Variables Action
You add an Assign Variables action to an action chain to map the source of some
value to a variable. The variable can be used by other action chains or bound to a
component.

For example, if your action chain sends a request to a GET endpoint, you can use the
Assign Variables action to map the response to a page variable bound to a page
component. Or, suppose you want to capture the ID of an item selected in a list. You

Chapter 10
Built-in Actions

10-12

could use a Selection event to start an action chain that assigns the selected item’s ID to a
variable.

To add an Assign Variables action to an action chain:

1. Open the Action Chain editor for the page.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Assign Variables from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The properties pane opens when you add the action to the chain.

The Assign Variables action is badged with a warning icon when no variables have been
assigned.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

5. Click Assign in the properties pane to open the Assign Variables window to map the
source of the value to a page variable.

6. Drag the sources of the values in the Sources pane onto targets in the Targets pane.
Click Save.
Each target can only be mapped to one source, but you can use the action to assign
multiple variables. For example, you might want to map a value from the Chain in the
Sources pane, such as an input variable or the result of an action, to a Page variable or
to the input of another action in the Target pane. When you select the variable in the
Target pane, the expression editor in the dialog box displays the expression for the
source.

If you need to define the variable, use the + icon to open a dialog where you can define a
variable for the artifact (action chain, page, flow, or application).

Chapter 10
Built-in Actions

10-13

Use Filter Builder to Create Filter Criteria for an SDP

If you're using an SDP to provide a table or list's data, and you'd like to filter out rows,
you can use the Assign Variable action to create and assign the filter criteria to the
SDP's filterCriterion property. For further details about using an SDP to filter a table or
list's rows, see Filter Data by Filter Criteria

When the Assign Variable action's Variable property is set to an SDP's filterCriterion
property, the Filter Builder appears under the Variable property for you to create the
filter criterion.

To set the action's Variable property to an SDP's filterCriterion property:

1. In the Properties pane, click Assign to open the Assign Variables window:

Chapter 10
Built-in Actions

10-14

2. In the Target pane, open the node for the SDP that's connected to your table or list, and
select its filterCriterion property.
When an SDP's filterCriterion property is selected in the Target pane, the Filter Builder
appears for you to create the filter criterion. Alternatively, you can expand the SDP's
filterCriterion property in the Target pane and build your filter by specifying values for the
attribute, op, and value properties.

To directly work with the code, click the Code button. For details, see Filter Builder's
Code Editor.

To use the Filter Builder to create the filter criterion for the SDP:

1. Click the Filter Builder's Click to add condition link. To create the filter criterion:

a. For the first Attribute textbox, enter the name of the column (record field) that you
want to compare its values against the user's inputted value.

b. For the Operator drop-down list, select the operator for the criterion.

c. For the second Attribute textbox, select the page variable that was bound to the Input
Text component.

d. To add another condition, click the Add Condition link to add a condition with an
AND or OR operator, or click the Add Group link to add a group of conditions that
are to be evaluated together (conditions enclosed in brackets). To combine

Chapter 10
Built-in Actions

10-15

conditional expressions with the AND operator, select Match All, and to
combine them with the OR operator, select Match Any:

e. Click Done when you're finished.

Filter Builder's Code Editor
You can use the Filter Builder's Code tab to view and edit the filter's code. After
defining a condition on the Builder tab, you will see that the Code tab contains an
attribute, op and value property.

Here's an example of a filter with two conditions combined by an AND operator:

{
 "op": "$and",
 "criteria": [
 {
 "op": "$eq",
 "attribute": "name",
 "value": "{{ $page.variables.filterVar }}"
 },
 {
 "op": "$eq",
 "attribute": "id",
 "value": "{{ $page.variables.idVar }}"
 }
]
}

In this example:

• The Oracle JET operator is "$eq" (it must include the dollar sign (“$”)).

Chapter 10
Built-in Actions

10-16

• The attribute property is set to the name of the field (column) that you want to be
evaluated against the value property.

• The value property
($page.variables.customerListSDP.filterCriterion.criteria[0].value) is mapped
to a page variable ($page.variables.filterVar) that holds the value to be evaluated
against each field (column) value.

Add a Call Action Chain Action
You add a Call Action Chain action to an action chain to start a different action chain. The
action can call other action chains defined in the same page, parent flow, or application.

Note:

You can call a JSON action chain from a JavaScript action chain using this action;
however, you can't call a JavaScript action chain from a JSON action chain.

To add a Call Action Chain action:

1. Open the Actions editor for the page.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Call Action Chain from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The properties pane opens in the editor when you add the action to
the chain.

4. Select an existing action chain from the drop-down list of available action chains, or click
Create to create a new action chain.

The dialog where you create the new action chain to call displays a drop-down list where
you choose where to define the scope of the new action chain (Page, Flow, or

Chapter 10
Built-in Actions

10-17

Application). Depending on where you are creating the action chain, the drop-
down list might have entries for action chains defined in the page, in the current
flow, or in the application. If you are creating an action chain in a flow artifact, you
can only select other action chains defined in the same flow artifact or in the
application artifact, and you will not see an entry for Page action chains.

5. Optional: If the action chain that is called requires input parameters, click Assign
in the Input Parameter section of the properties pane to map the input parameter
to a variable.

You map variables to parameters by dragging the variable for the source value in
the Sources pane onto the Parameter for the input parameter in the Target pane. If
a suitable variable does not exist, use the + icon beside the relevant node (Action
Chain, Page, and so on) to create a new variable. Click Save.

Chapter 10
Built-in Actions

10-18

Add a Call Component Action
You add a Call Component action to an action chain to call a method on a component.

To add a Call Component action to an action chain:

1. Open the Actions editor for the page or application.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Call Component from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The properties pane opens when you add the action to the chain.

Chapter 10
Built-in Actions

10-19

4. In the Properties pane, select the component name in the Component drop-down
list.

For example, if your page contains three buttons whose IDs are Create, Update,
and Save, you'll see those options available for selection in the drop-down list:

5. With the component selected, select or enter the Method Name, then click
Assign to map the parameters required by the method.

Chapter 10
Built-in Actions

10-20

Add a Call Function Action
You add a Call Function action to an action chain to call a function defined for the current
page, current flow, or the application. You create and edit module functions in the JavaScript
editor.

To add a Call Function action to an action chain:

1. Open the Actions editor for the page or application.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Call Function from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The properties pane opens when you add the action to the chain.

4. In the Properties pane, select an existing function from the drop-down list of available
functions, or click Create to create a new function.

You can select functions that are defined for the current page, the current flow, or for the
application.

5. Click Go to Module Function to go to the JavaScript editor where you write or modify
code for the function.

6. Specify any input parameters and return type for the function in the properties pane.

You can click Assign to map variables to the parameters. If a suitable variable does not
exist, use the + icon beside the relevant node (Action Chain, Page, and so on) to create a
new variable.

Chapter 10
Built-in Actions

10-21

Add a Call REST Action
When you add a Call REST action to an action chain, you might need to specify input
parameters for the endpoint request or create variables for the endpoint response that
you can bind to page components.

When you add the Call REST action to an action chain, the endpoint that you select
will depend upon the functions that are available. Depending on the function, you
might also need to create some variables to map to the action’s parameters, such as
input parameters and the action’s results. For example, an endpoint might require an
ID to identify a record. In this case, you will need to create a page variable that stores
the ID, and that variable needs to be mapped to the action’s input parameter. If you did
not create the variables before creating the action chain, you can create a variable
during the process of creating the action chain; you can also edit the action chain after
creating the variables you need.

You will use the Call REST endpoint action in action chains that perform typical
functions such as creating, updating, and deleting records, and any time you want to
display the details of a record in a page. You can use the Quick Starts to help you
create the action chains and variables for these functions.

Type of
Endpoint

Typical Requirements

POST When you call a POST endpoint, you will typically need:

• Parameters: The page variable for the data needs to be mapped to the
parameters of the payload of the POST call.

• No input parameter is required.

GET When you call a GET endpoint, you will typically need:

• Input parameter: The ID of the record you want to retrieve should be
passed as an input variable.

• The payload of the GET call needs to be assigned to a variable using
the Assign Variable action.

When you want to send a request to a GET endpoint to retrieve a collection,
you will typically use a page variable of the type ServiceDataProvider.

DELETE When you call a DELETE endpoint, you will typically need:

• Input parameter: The ID of the record you want to delete should be
passed as an input variable.

• There is no payload when calling a DELETE endpoint.

PATCH When you call a PATCH endpoint, you will typically need:

• Input Parameter: The page variable storing the ID of the record you
want to update should be mapped to the Input Parameter.

• Parameters: The page variable for the updated data needs to be
mapped to the parameters of the payload of the PATCH call.

To add a Call REST endpoint to an action chain:

1. Open the Actions editor for the page.

2. Click the action chain in the list to open it in the Action Chain editor.

3. Drag Call REST from the Actions palette into the action chain.

Chapter 10
Built-in Actions

10-22

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The properties pane opens when you add the Call REST endpoint
action to the action chain.

4. Click Select beside the Endpoint property in the properties pane.

The Select Endpoint window displays a list of the endpoints that are available in your
application. Each business object and service usually exposes multiple endpoints. The
endpoint that you select will depend upon the function of the action chain. The endpoint
that you select will also determine the properties that you will need to specify for the
action, for example, input parameters.

Chapter 10
Built-in Actions

10-23

5. Select an endpoint from the list. Click Select.

6. Edit the action’s properties in the properties pane.

The properties pane is displayed when the action is selected on the canvas.

Chapter 10
Built-in Actions

10-24

7. Optional: If the REST call requires input parameters, click Assign next to Input
Parameters to map the variable for the input value to the action’s parameter. Click Save.

You map variables to parameters in the Assign Input Parameters window by dragging the
variable in the Sources pane onto the parameter in the Target pane. In some cases, you

Chapter 10
Built-in Actions

10-25

might need to make multiple mappings. To delete a line mapping a variable to a
parameter, place your cursor on the line and then right-click to open a Delete
option. You can select the parameter name to view the expression for the mapped
variable.

If a suitable variable does not exist, use the + icon beside the relevant node
(Action Chain, Page, and so on) to create a new variable.

8. Optional: If the REST call requires other parameters, click Assign in the
Parameters section to open the window for mapping the variables to the action’s
parameters. Click Save.

If the structure and names of attributes match, they can be automapped. The
mapping can also be done individually.

9. Optional: Specify any other parameters that may be required for the action.

After adding the Call REST endpoint action, you can continue by adding more actions
to the action chain, or by invoking the action chain from an event. If the REST call has
a result, you might want to add a Fire Notification action, or add Assign Variables to
the chain and map the result to a page variable.

Add a Call Variable Action
You add a Call Variable action to an action chain to call a method on an
InstanceFactory variable defined for the current container (flow, page, or application).
You can use this action to call any method on the current instance associated with the
InstanceFactory variable, including asynchronous ones.

Note:

Because actions are by design synchronous, it will wait for the asynchronous
call to resolve before proceeding to the next action in the chain.

Chapter 10
Built-in Actions

10-26

Before you use a Call Variable action in an action chain, make sure an InstanceFactory type
variable is already defined for the application. See Create a Type From Code.

To add a Call Variable action to an action chain:

1. Open the Actions editor for the application.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Call Variable from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The properties pane opens when you add the action to the chain.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

5. From the Variables drop-down list, select an InstanceFactory type variable defined for the
application.

6. In the Method field, select the method you want to call. The available methods are based
on the definition file imported for the type.

7. Click Assign to open the Assign Parameters window, then map variables to the action's
parameters by dragging the variable in the Sources pane onto the parameter in the
Target pane. If a suitable variable does not exist, use the + icon to create a new variable.

The method's return value will be part of the outcome passed to the subsequent chain.

Add a Fire Data Provider Event Action
You add a Fire Data Provider Event action to dispatch an event on a data provider to reflect
changes to your data. For example, a component using a particular ServiceDataProvider may

Chapter 10
Built-in Actions

10-27

need to render new data because new data has been added to the endpoint used by
the ServiceDataProvider.

To add a Fire Data Provider Event action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Fire Data Provider Event from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between
existing actions in the chain. The Properties pane opens when you add the action
to the chain.

4. Update the ID field in the Properties pane to make the action more easily
identifiable.

5. Set the target of the event. Usually, this is a variable of type ServiceDataProvider
or ArrayDataProvider.

6. Select the type of event you want to dispatch:

• Refresh: Indicates a refresh event needs to be dispatched to the data provider
identified by the target.

• Mutate: Indicates a mutation event needs to be dispatched to the data
provided identified by the target. Generally, a mutation event is raised when
items have been added, updated, or removed from the data that the data
provider represents.

7. If you chose a Mutate event, click Assign to map variables for the add, remove,
and update operations.

A mutation event can include multiple operations (add, update, remove) as long as
the id values between operations do not intersect.

Chapter 10
Built-in Actions

10-28

Add a Fire Event Action
You add a Fire Event action to invoke a custom event that you have defined in your
application.

A custom event can be defined in an application, flow or page, and can be used to perform
some action, such as navigating to a page. A custom event can carry a payload that you
define when you create the event. The Events editor displays a list of the custom events
available in the context.

To add a Fire Event Action:

1. Open the Actions editor for the page or application.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Fire Event from the Actions palette into the action chain.

4. In the Properties pane, select an existing custom event from the drop-down list of
available custom events, or click Create to create a new custom event.

The drop-down list displays the custom events that are available in the current context.

5. Click Assign to open the Mapper and define the event's payload.

The event payload depends upon how the custom event is defined. You can use the
Mapper to map the payload to a source, such as a page variable, or define a specific
value or expression.

If you need to define the variable, use the + icon to open a dialog where you can define a
variable for the artifact (action chain, page, flow, or application).

Chapter 10
Built-in Actions

10-29

Add a Fire Notification Action
You add a Fire Notification action to display a notification to the user in the browser
window.

There are four types of notifications: Info, Error, Warning and Confirmation. The
notifications display a summary and a message underneath:

To add a Fire Notification action:

1. Drag Fire Notification from the Actions palette onto the empty canvas, onto an

Add icon (), or between existing actions in the chain. The Properties pane
displays the action's parameters:

Chapter 10
Built-in Actions

10-30

2. Update the ID field in the Properties pane to make the action more easily identifiable.

3. Enter a summary of the notification in the Summary field.

4. Enter the message you want to display in the Message field.

The message can be a static string (The name was updated.) or can contain variables
({{ 'Could not create new Contacts: status '
+ $chain.results.createContacts.payload.status }}).

5. For Display Mode, specify how the notification is to be dismissed. Choose Transient for
the notification to go away on its own after a few seconds, or Persist for the notification
to stay until the user closes it.

6. Select a Notification Type to specify the look of the notification window.

7. Select the Target to specify where you want the event to be fired. Choose current to
have the event fire where it is executed and then all the way up the hierarchy. Choose
leaf (or leave the setting undefined) to have the event fire at the bottom of the hierarchy.

Add a Get Location Action
You add a Get Location action to get a user’s live location. This action requires the user's
consent. As a best practice, it should only be fired on a user gesture, so users can associate
the system permission prompt for access with the action they just initiated.

To add a Get Location action to an action chain:

Chapter 10
Built-in Actions

10-31

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Get Location from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between
existing actions in the chain. The Properties pane opens when you add the action
to the chain.

4. Update the ID field in the Properties pane to make the action more easily
identifiable.

5. Set the Maximum Age (in milliseconds) of a possible cached position that is
acceptable to return. If set to 0 (default), it means that the device cannot use a
cached position and must attempt to retrieve the real current position. If set to
Infinity, the device must return a cached position regardless of its age.

6. Set the Timeout value, representing the maximum length of time (in milliseconds)
that the device is allowed to take in order to return a position.

7. Set the Enable High Accuracy value that indicates whether the application would
like to receive the best possible results. If true and if the device is able to provide
a more accurate position, it will do so. This can result in slower response times or
increased power consumption. If false (default), the device can save resources
by responding more quickly or using less power. For mobile devices, you should
set this to true in order to use GPS sensors.

Add a Reset Variables Action
You add a Reset Variables action to reset variables to their default values, as specified
in the variable definitions.

To add a Reset Variables action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

Chapter 10
Built-in Actions

10-32

3. Drag Reset Variables from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The Properties pane opens when you add the action to the chain.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

5. From the Variables to Reset list, select the variables you want to reset.

Add a Login Action
You can add the Login action to any page component to launch the mechanism that enables
your users to sign in to an application.

To add a login action to an action chain:

1. Open the Actions editor for the page.

2. Click the action chain in the list to open it in the Action Chain editor.

3. Drag the Login action from the Actions palette into the action chain to the Add icon

() in the action chain.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

5. In the Return Path field, specify the path of the page to go to when login is successful. If
a value isn't defined, the user will be taken to the application's default page. For more
information, see Login Action in the Oracle Visual Builder Page Model Reference.

Add a Logout Action
You can add the Logout action to any page component to launch the logout mechanism that
enables your users to sign out of an application.

To add a logout action to an action chain:

1. Open the Actions editor for the page.

Chapter 10
Built-in Actions

10-33

2. Click the action chain in the list to open it in the Action Chain editor.

3. Drag the Logout action from the Actions palette into the action chain. You can

drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The Properties pane opens when you add the action to the
chain:

4. Update the ID field in the Properties pane to make the action more easily
identifiable.

5. If you're using an external identity provider, enter the provider's logout endpoint
URL in the Logout URL field, something like https:***/oam/server/
logout?end_url=https://****/oamwebsso/logout-success.jsp.

If you're using IDCS for user authentication, you don't need to specify the logout
URL. In this case, the URL defined by the default Security Provider configuration is
used. After the user is logged out, the application continues to the default page of
the application.

For more information, see Logout Action in the Oracle Visual Builder Page Model
Reference.

Add a Scan Barcode Action
You can add the Scan Barcode action when you want your application to decode
information such as URLs, Wi-Fi connections, and contact details from QR codes and
barcodes.

Note:

The Scan Barcode action relies on browser APIs and is supported only on
Chrome for Visual Builder apps.

To add a scan barcode action to an action chain:

1. Open the Actions editor for the page.

2. Click the action chain in the list to open it in the Action Chain editor.

Chapter 10
Built-in Actions

10-34

3. Drag Scan Barcode from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The Properties pane opens when you add the action to the chain.

4. Specify the action's properties in the Properties pane:

a. Update the ID field to make the action more easily identifiable.

b. In the Image field, enter an image object (either a CanvasImageSource, Blob,
ImageData, or an element) to decode.

Chapter 10
Built-in Actions

10-35

Note:

If you're using the Take Photo Action or the camera component to
pass a Blob to the Scan Barcode action, you might run into the
Failed to execute 'detect' on 'BarcodeDetector error.
To get around this error, convert the Blob to an ImageBitmap before
passing it to the Scan Barcode action. For example:

i. Add a function to do the image conversion, something like:

 // Convert Blob to ImageBitmap
 //
 PageModule.prototype.createImageBitmap =
function(fileBlob) {
 return window.createImageBitmap(fileBlob);
 };

ii. Add a Call Function action to the action chain, similar to:

iii. Pass the converted ImageBitmap as the Image parameter for the
Scan Barcode action, for example:

[[$chain.results.callFunctionCreateImageBitmap]]

c. Optional: In the Formats field, select the barcode formats you want the
browser to search for.

Barcode formats unlock a variety of use cases. QR codes can be used for
online payments, web navigation, or social media connections, aztec codes
can be used to scan boarding passes, and shopping apps can use EAN or
UPC barcodes to compare prices of physical items.

If Formats is not specified, the browser will search all supported formats, so
limiting the search to a particular subset of supported formats may provide
better performance.

One option when using the Scan Barcode action is to use
document.querySelector to get the image, as shown here where the first image
with the ID BarcodeImage will be returned:

Chapter 10
Built-in Actions

10-36

Add a Take Photo Action
When working with PWA-enabled applications, you add a Take Photo action to access the
camera or the image gallery on the device where your application is installed. For PWAs on
Android and iOS, this action prompts user with multiple options, such as Camera, Browse, or
Like.

To add a Take Photo action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Take Photo from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain. The Properties pane
opens when you add the action to the action chain.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

5. Select a value for the Media Type property: either image (default) or video. If Media Type
is set to video, options to record video using the Camera or to select video files will be
provided for PWA apps on iOS and Android.

Here's an example of a Take Photo action (with the Media Type set to image) that calls a
custom module function, then maps its output to variables.

Chapter 10
Built-in Actions

10-37

Add a Share Action
You add a Share action to share content with other applications, such as Facebook,
Twitter, Slack, and SMS, by invoking the native sharing capabilities of the host
platform. This action requires the user's consent. As a best practice, it should only be
fired on a user gesture, such as a button click.

Note:

Web apps require the web browser running the app to support the Share
action. Currently, not all browsers support this native feature.

To add a Share action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Share from the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between
existing actions in the chain.

4. Update the ID field in the Properties pane to make the action more easily
identifiable.

5. Configure the Title, Text, and URL. All parameters are individually optional, but at
least one parameter must be specified. Any URL can be shared, not just those
under the website's current scope. Text can be shared with or without a URL.

a. In the Title field, enter the title of the document to be shared.

b. In the Text field, enter the text that will form the body of the message being
shared.

c. In the URL field, enter the URL that refers to a resource being shared.

Here's an example that shares the current page's title and URL:

Chapter 10
Built-in Actions

10-38

Add a For Each Action
You add a For Each action to execute another action for each item in an array. The action in
the loop will be executed once for each item in the array.

To add a For Each action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag For Each from the Logic section of the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain.

Chapter 10
Built-in Actions

10-39

4. Configure the action's properties in the Properties pane:

a. Update the ID field to make the action more easily identifiable.

b. Click Assign next to Parameters to set up an expression for the items
parameter that evaluates to an array, for
example, $page.variables.ExpenseReportADP.data:

The For Each action uses 'items' and the 'actionId' and adds a $current
context variable for the called action to access the current item. You can inject
additional properties into the available contexts for the called action to
reference in its parameter expressions (as we'll see in subsequent steps).

c. If you want to use your own context name, enter an alias for $current in the
As field, for example, foo. This alias can then be referenced in nested called
actions.

Chapter 10
Built-in Actions

10-40

d. Define whether your called actions must run serially (default) or in parallel.
Regardless of the mode, the For Each action will not complete until the actions for
each item in the items array are complete.

5. Now click the Add icon () inside the cycle loop and add the action you want to loop
over the array. Here's an example that adds an action to call the PATCH /
ExpenseReport/{ExpenseReport_Id} REST endpoint.

When assigning the results of the REST call to a variable, you can use the following
parameter expressions for the called action:

Parameter Name Description

$current.data The current array item.

$current.index The current array index.

alias.data An alternate syntax for $current.data, which
allows a reference to $current from nested
contexts.

alias.index An alternate syntax for $current.index, which
allows a reference to $current from nested
contexts.

For example, to pass the ID of the current expense report in the loop, you can
use $current.index in the source expression:

Chapter 10
Built-in Actions

10-41

If you defined a context alias, for example, foo, you'd be able to create
expressions that reference foo.data and foo.index:

The outcome of the action is either "success", with an array containing the return
value of the last action's results or "failure" if there is some exception/error.

6. As a final step, click the Add icon () to add an action (for example, a Fire
Notification action) where the For Each action's loops ends.

Add an If Action
You add an If action to evaluate an expression based on conditions and return a 'true'
outcome if the expression evaluates to true, and a 'false' outcome otherwise. You use
this action typically to execute custom logic, say to validate data before you actually
call REST APIs in your action chain.

To add an If action to an action chain:

1. Open the Actions editor, for example, at the page level.

Chapter 10
Built-in Actions

10-42

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag If from the Logic section in the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain. The Properties pane opens when you add the action to the chain.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

5. In the Condition property, add a condition, for example,
[[$page.variables.selectedEmployee == null]].

6. Add actions for the true and false branches to define what should happen when the If
action's outcome evaluates to true and false. Here's one possible scenario:

Chapter 10
Built-in Actions

10-43

Add a Return Action
You add a Return action as the final action of a chain to control the outcome and
payload of that chain. It's particularly useful in a Call Action Chain action to control the
payload resulting from calling that action chain.

To add a Return action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Return from the Logic section of the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between
existing actions in the chain. The Properties pane opens when you add the action
to the chain.

4. Update the ID field in the Properties pane to make the action more easily
identifiable.

5. In the Outcome property, select the outcome to return: success or failure.

6. Click Assign next to Payload to open the Assign Parameters window and map the
payload to return from this action.

Here's an example that uses the Return action on a chain that makes a REST call:

Chapter 10
Built-in Actions

10-44

Add a Run In Parallel Action
You use the Run In Parallel action to run multiple action chain paths in parallel, wait for their
responses, and produce a combined result.

To add a Run In Parallel action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the editor.

3. Drag Run in Parallel from the Logic section of the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between existing
actions in the chain.

4. Update the ID field in the Properties pane to make the action more easily identifiable.

Chapter 10
Built-in Actions

10-45

5. Click each Add icon () under the Run in Parallel node to define the actions
you want to run in parallel, for example, you could make two REST calls, then do
some assignments only after they both complete:

Add a Switch Action
You add a Switch action when you want to evaluate an expression and create an
outcome with that value. An outcome of "default" is used when the expression does
not evaluate to a usable string.

To add a Switch action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Switch from the Logic section of the Actions palette into the action chain.

You can drag the action onto the Add icon () in the action chain, or between
existing actions in the chain. The Properties pane opens when you add the action
to the chain.

4. Update the ID field in the Properties pane to make the action more easily
identifiable.

5. In the Value property, enter a value that should be used as the outcome value. If
this property is null or undefined, the outcome is "default".

For example, when a menu defines a set of options, you can use the Switch action
to perform actions for each menu item. In this case, you'd pass the menuId input
parameter containing the selected menu item's ID in the Value property:

Chapter 10
Built-in Actions

10-46

6. Optional: You can add further actions for each case. For example, if you want to navigate
to a particular page when the menu item is selected, you can add a Navigate action for
each menu item.

a. Click the Add icon () under Add Case.

b. In the Add Case dialog, enter the case value to be used as the outcome. In our menu
example, you would specify the ID of each menu item. Again, if this property is null or
undefined, the outcome is "default".

Add a Navigate Action
You add a Navigate action to navigate to a specific page and optionally pass parameters to
activate that page.

To add a navigation action to an action chain:

1. Open the Actions editor.

2. Click the action chain in the list to open it in the Action Chain editor.

Chapter 10
Built-in Actions

10-47

3. Drag Navigate from the Navigation section in the Actions palette and drop it into
the action chain.

You can drag the action onto the Add icon () in the action chain; typically this
action will be the final action in the chain. The properties pane opens when you
add the action to the action chain.

4. Select the type of navigation you want in the Properties pane:

• Page: Enables navigation to a sibling of the current page or a deeply nested
page relative to the root of the application or the current page.

• Flow in Parent Page: Enables navigation to a flow of the parent page.

• Flow in Current Page: If the page includes a flow container component,
enables navigation to a flow or page within the current page.

Complete the following steps as it applies to your use case:

a. Select an existing page from the drop-down list of available pages, or click the
Create link next to Page to create a new page as the target for the Navigate
action.

The pages you can select can be one of the root (shell) pages of the
application, another flow or page in the current flow, or a different flow of the
parent page. One or more of these options might not be valid targets for your
action chain. Here is an example of properties for navigation to a deeply
nested page:

Chapter 10
Built-in Actions

10-48

b. If the page you select requires input parameters, click the Assign link next to Input
Parameters to map a page variable to the action’s Input Parameter. Click Save.

In the Assign Input Parameters dialog box, you map Sources to Targets by dragging
the variable in the Sources pane onto the parameter in the Target pane. If a suitable
variable does not exist, use the + icon beside the relevant node (Action Chain, Page,
and so on) to create a new variable.

You can click the parameter name to view the expression for the mapped variable.

Chapter 10
Built-in Actions

10-49

Add a Navigate Back Action
Add a Navigate Back action to return to the previous page in a browser's history.

To add a Run In Parallel action to an action chain:

1. Open the Actions editor (for example, at the page level).

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Navigate Back from the Navigation section of the Actions palette into the
action chain.

You can drag the action onto the Add icon () in the action chain; typically this
action will be the final action in the chain. The Properties pane opens when you
add the action to the chain.

4. Optional: Specify a key/value pair map of parameters to pass to the previous
page. If a parameter is not specified, the original value of the input parameter on
the destination page is used. If a parameter is specified, it has precedence over
fromUrl parameters.

Add an Open URL Action
You add an Open URL action to navigate to an external URL. In a web app, this action
opens the specified URL in the current window or in a new window.

To add an Open URL action to an action chain:

1. Open the Actions editor, for example, at the page level.

2. Create an action chain, or open an existing action chain to add the action in the
editor.

3. Drag Open URL from the Navigation section of the Actions palette into the action
chain.

You can drag the action onto the Add icon () in the action chain; typically this
action will be the final action in the chain. The Properties pane opens when you
add the action to the chain.

Chapter 10
Built-in Actions

10-50

4. Enter the URL to navigate to.

5. Optional: Specify a key/value pair map of query parameters to pass to the specified URL
as URL parameters.

6. Optional: Specify the hash entry to append to the URL.

7. Define a Browser History value, either replace or push (default), to define the effect on
browser history. This value is used only if the resource is used in the same window. If you
choose replace, the current browser history entry is replaced instead of pushed, meaning
that the back button will not go back to it.

8. Specify a name identifying the window as defined in the window.open() API. If not
defined, the URL opens in the current window. For apps on mobile devices, you have
three possible values: _self (default), _blank, or _system. For local file types, this
property is ignored.

Here's an example to open a new window in the browser with the given URL; if you
specify a value for the Window Name (as shown here), once on the URL, the browser
back button will re-enter the last page and the page input parameters will be
remembered.

Custom Actions
In addition to the built-in actions you see in the Actions palette, you can create your own
actions and use them in action chains just the way you'd use built-in actions.

Custom actions are created within the context of a specific application, and can't be shared
across apps.

Chapter 10
Custom Actions

10-51

Create a Custom Action
To create a custom action, you provide its metadata in a JSON file and its code in a
JavaScript file. The metadata contains basic details about the action, any input
parameters needed by its implementation method, and optionally, an object for
returning values.

Here’s an overview of what’s required to create a custom action:

1. Create the Action Files:

• action.json: Contains the metadata for the custom action. Used to define
input parameters and to define an object for returning values. This file is also
used by the Designer to add the action to the Actions palette, and to display
the action's properties in the Properties pane.

• action.js: Contains the code used to implement the custom action.

2. Add the Metadata to action.json.

3. Add the code for the custom action to action.js.

Create the Action Files
To create the template action.js and action.json files, for you to start with:

1. Select the Web Apps tab, expand the Application node (first node) and the
Resources node under it, then click the Create Custom Action icon (+) next to the
actions node:

Chapter 10
Custom Actions

10-52

2. In the ID field, enter the name of the action group folder for your new custom action,
followed by a forward slash and the name of your new action, as in: <action-group>/
<action-name>
For example, you might enter my_awesome_actions/sayhello, where
my_awesome_actions is the name of your group folder, and sayhello is the name of your
action.

The two newly created action.js and action.json templates are stored under the path
resources/actions/<action-group>/<action-name>/, as shown here:

Chapter 10
Custom Actions

10-53

Add the Metadata
You provide the custom action’s metadata in the action.json file, which includes:

• The action’s basic details (ID, display name, icon…)

• An object used to return values from the action's implementation method (optional)

• Input parameters needed by the action's implementation method (optional)

The Action Chains editor uses the metadata to add the custom action to the Actions
palette and to display its parameters in the Properties pane:

Chapter 10
Custom Actions

10-54

When you created the action.json file, the default parameters, ID and Description were
automatically created for you, but their metadata isn’t added to action.json. You only add
the metadata for the input parameters and the return object that you want to add to the
custom action.

Here's an example of the action.json file for the sample sayHello custom action, with a
breakdown of its parts:

Chapter 10
Custom Actions

10-55

• The first set of properties provide the basic details about the custom action.

• The resultShape property provides the definition for the object returned by the
action's implementation method, which can be used as input for another action
when creating an action chain. For instance, the string returned by this action can
be an input for an action that writes the string to a log file.

Chapter 10
Custom Actions

10-56

• The propertyInspector property defines the action's input parameters.

Define the Custom Action's Properties
Use this table to help you define the properties for your custom action in the action.json
file.

Property Required Description

"id": "", Yes Unique ID for custom action.

"category": "My Category", No Category to contain custom action in Actions
palette. If not specified, action is placed
under the default category for custom
actions, Custom.

"defaultParameters": { }, No If input parameters are defined and they
need default values, use this property to
specify default values for them by specifying
the input parameter names and their values
(name-value pairs). Defaults are assigned
when action is first added to an action chain.

"description": "", No Brief description of custom action.

"displayName": "", Yes Name to display in Actions palette.

"helpDescription": "", No Help text to appear for action when user
hovers over action's title in Properties pane
and clicks the question mark icon.

"iconClass": "", Yes Icon to display for action in Actions palette.

"referenceable": "self | extension" No Indicates if action is available in extensions;
default is self, indicating it isn't available in
extensions.

"idPrefix": "", No Used to auto-generate action IDs for actions
when they are added to action chains. When
action is added to an action chain, action's ID
field in the Properties pane is auto-
populated. If specified, ID field is populated
using this property's value, otherwise, the
action's name is used.

"resultShape": { "someName": "string" }, No If one or more values are to be returned by
the implementation method, use this property
to define the object to return them.

"showInDiagram": "on" | "off" No If set to on, action is available on Actions
palette of flow diagram.

"tests": { "requiresMock": "on" | "off" } No Setting for action's mock requirements for
action chain tests:

on: Indicates action needs to be mocked.

off: Indicates Visual Builder provides
suggestions for expected action results if
resultShape parameter is specified in
action.json. If action has no
resultShape, suggestions are enabled for
the action's input parameters specified in
propertyInspector section.

Default is off.

Chapter 10
Custom Actions

10-57

Property Required Description

"propertyInspector": [{}] No Metadata for the input parameters needed by
implementation method. Input parameters
are displayed in Properties pane of Actions
editor.

Define Input Parameters for a Custom Action
Use this table to help you define input parameters for your custom action. In the
action.json file, use the propertyInspector property to define the parameters you
need:.

Property Requir
ed

Description

"name": "", Yes Name of input parameter.

"help": "", No Help text to appear for input parameter when
user hovers over parameter's title in Properties
pane and clicks the question mark icon.

"label": "", Yes Label to display for input parameter in
Properties pane.

"placeholder": "", No Hint text to display for input parameter in
Properties pane.

"required": true | false, No Indicates if a value is required for input
parameter.

"options": [{}], No If component property for input parameter is
set to comboboxOne or comboboxMany, use
this property to specify all of the values to be
available for the combobox.

"type": "", Yes Parameter's data type, which can be number,
string, boolean or object; if the type is not
specified, values are stored as strings.

"component: "inputText | textArea |
comboboxOne | comboboxMany"

Yes Indicates if parameter is a text field, text box or
a combobox with single or multiple selections.

Add the Code
You provide the code for your custom action using the action.js template file that
was created for you when you first created the new action.

To provide the code for your action, use the perform() method, which receives the
input parameter, parameters. The input parameter contains the values for the action’s
input parameters, as entered in the Properties pane.

How Are Input Parameters Passed?
Here's an example of the perform() method, in action.js, that implements the
sample sayHello custom action by using the alert() method:

define(['vb/action/action'], (Action) => {
 'use strict';
 class CustomAction extends Action {

Chapter 10
Custom Actions

10-58

 perform(parameters) {
 const to = parameters.to;
 const message = parameters.message;

 alert(`${message}, ${to}`);

 if (to && message) {
 return Action.createSuccessOutcome({result: to + ", " +
message});
 }
 return Action.createFailureOutcome({result: "Something
wrong, unable to SayHello"});
 }
 }
 return CustomAction;
 });

The values you enter for the action’s input parameters, To and Message, in the Properties
pane, are passed to the perform() method using the input parameter, parameters.

How are Values Returned?
If you need one or more values returned by the method that implements the custom action,
you need to define the object that returns them in action.json. You do so by using the
resultShape property.

To return values from the implementation method, you use the createSuccessOutcome()
method of the Action class.

As an example, here's the declaration of the return object for the sample sayHello custom
action:

"resultShape": { "result": "string" },

Chapter 10
Custom Actions

10-59

And here's the code line in action.js using the createSuccessOutcome() method to
return a string:

 return Action.createSuccessOutcome({result: to + ", " + message});

Specify Path to Code
Lastly, you need to tell Visual Builder where the custom action's code file is stored, by
adding a requirejs property to the app-flow.json file. Here are the steps:

1. In the Navigator, on the Web Apps tab, select the web app, then select the JSON
tab to open the app-flow.json file.

2. Specify the path to the custom action’s code file by adding a requirejs property in
app-flow.json and naming the path, using this format:

“<custom-action-ID>”: “resources/actions/<action_group>/<action_name>”

In this example, <custom-action-ID> is the ID for the custom action (case sensitive),
as specified in action.json.

Here's an example of specifying the path:

"requirejs": {
 "paths": {
 "demo/SayHello": "resources/actions/my_awesome_actions/sayhello/
action"
 }
},

Test Action Chains
Visual Builder can help you test the flow of your action chains by generating
suggestions of outcomes to validate in a Tests editor. You can use this editor to apply a
test-driven approach to developing action chains.

The Tests editor detects what information needs to be provided at runtime to perform
actions in an action chain. This information includes values for variables and constants
used by the action chain, and actions like Call REST endpoint, the results of which
need to be mocked when running a test. Once the necessary context is provided, the
editor generates suggestions for expected outcomes (expectations) that you can add
to the test. You can also add your own expectations.

Access this editor from the Tests tab in the Actions editor of an individual action chain.
The first time you access the Tests editor, click the + Test button to create a test. The
test name defaults to Test 1; specify an alternative name, if you want.

Once in the editor, you can create one or more tests for the associated action chain.
For each test, you define context, mock actions, and expectations.

• A context refers to a variable that the action chain uses. If, for example, you have
an action chain that uses a Call Function that takes a subtotal variable as input
and returns the total after tax, you add a context entry that includes the subtotal

Chapter 10
Test Action Chains

10-60

variable and a sample value for the variable. To add a context, click in the Properties
pane next to Context.

• Mock actions are needed for Call REST endpoint actions and other actions in the action
chain. For each mock action, you specify a possible outcome for the action and a result.
If, for example, your action chain includes a Call REST endpoint action that fetches
product information, you need to specify a mock action that has a success outcome and

includes a sample result of product information. To add a mock action, click in the
Properties pane next to Mock. Or, right-click the action for which you need to define a
mock action and select Mock Action from the context menu.

• Finally, you specify expectations for the test. Visual Builder generates a set of suggested
expectations that you can add to the test. You can add one or more of these to the test

and edit the expected outcome. To add an expectation, click in the Properties pane
next to Expectations, or click Get Suggestions. You can also right-click the action for
which you need to define an expectation and select Add Expectation from the context
menu.

Once you've defined the tests, you can run them individually or all at once using the Run or
Run All button. You can also run these tests using the vb-test Grunt task (see Test Action
Chains Using the vb-test Grunt Task).

The following image shows three tests defined for an action chain that fetches product
information:

Two of these tests have run (Failure Path and Success Path), one has not (Test Three). The
red icon beside the Failure Path test indicates that it failed; the reason for the failure is also
marked red in the expectation for the fireNotification message, where the test author set the
expected outcome to Action Failed but the actual outcome was undefined. The green icon
beside the Success Path test indicates that the test succeeded. No visual indicator appears
beside Test Three because it has not yet been executed.

The percent value for Coverage indicates the level of test coverage for the actions in the
action chain. If you create tests that include all actions in the action chain and all expected
outcomes for the actions, the percent value for Coverage will be 100%. In the preceding

Chapter 10
Test Action Chains

10-61

image, the test author has removed some entries from the Expectations list for the
Failure Path test, thereby reducing the action chain's Coverage value. You can
increase the Coverage value by adding entries that appear under the Suggestions list
to the Expectations list.

The source code for your tests is stored in a separate JSON file for easier
maintenance, one actionchainname-tests.json file for all the tests in an action
chain. To view this file's contents, click JSON in the left pane. You can also find this file
under the artifact's chains folder in the Navigator's Source View tab.

Manage All Tests in a Visual Application
When you define multiple tests for each action chain in an app, it might be easier to
manage tests for all apps in a visual application, rather than for each app. You can do
this using the Tests tab at the bottom of your browser.

This aggregate view helps you get a quick look at the status of all action chain tests in
a visual application. When tests fail, you can use this view to quickly access the editor
for each failed test and take action as needed.

While you can also run all tests in your application from here, it isn't really required if
you've already triggered them. Action chain tests run in the background, even when
you're not actively working on your application, and the results are saved. So if you are
working on an application, only tests impacted by your changes (for example, if you
added a new variable or updated an existing function) are scheduled to run again.
You'll likely see something similar to this image until Visual Builder actually runs those
tests for you (after 10 seconds of inactivity):

Chapter 10
Test Action Chains

10-62

This way, your test results are always available and up-to-date, and you can rely on them to
identify and fix breaking-code changes.

Test Action Chains Using the vb-test Grunt Task
Visual Builder’s grunt-vb-build NPM package includes a vb-test Grunt task that you can
use to run the action chain tests in your visual application on your computer.

To use the vb-test Grunt task, you must set up your computer to build the visual application
by installing Node.js and its package manage (npm). See Build Your Application Locally.
Once you have installed the necessary tools, you need to save the sources for the visual
application to your computer. You can get the sources of your visual application in one of the
following ways:

• Cloning the Git repository containing the sources

• Exporting the visual application from Visual Builder and extracting it to your local system

To test action chains using the vb-test Grunt task:

1. In the command-line interface, navigate to the folder on your local system containing the
package.json and Gruntfile.js files.

2. Enter npm install to retrieve the node dependencies required to build the application.
The install command retrieves the grunt-vb-build npm package defined in
package.json.

3. Enter the task names in the command-line interface to process your application sources,
and then run the suite of tests that you defined in Visual Builder.
The following example shows how you execute these tasks, along with some of the
parameters that they support:

First build application sources. This creates a build/processed
directory with the built application assets.
./node_modules/.bin/grunt vb-process-local

Run the suite of action chain tests that you defined using one of the
following options:
Headless mode:
grunt vb-test
Test in the Chrome browser and set a timeout value:
grunt vb-test --karma-browser=Chrome --mocha-timeout=60000

The command-line options include the following:

• karma-browser
By default the tests run in headless Chrome, but you can pass Chrome to use the UI
(window) mode instead.

Example to run tests in Chrome UI:

grunt vb-clean vb-process-local vb-test--karma-browser=Chrome
• karma-debug

Runs tests in Chrome UI mode. Suspends execution until you click the DEBUG
button, at which point you can debug the app tests using Chrome DevTools. The
Default value is false.

Chapter 10
Test Action Chains

10-63

Example to run tests in Chrome UI and debug mode:

grunt vb-clean vb-process-local vb-test --karma-browser=Chrome --
karma-debug

• karma-log-level
Sets the karma logging level. The default level is INFO, though you can change
this to DEBUG, WARN, ERROR, or DISABLE.

Example to run tests in Chrome UI with increased verbosity:

grunt vb-clean vb-process-local vb-test --karma-browser=Chrome --
karma-log-level=DEBUG

• mocha-timeout
Sets the timeout for Mocha tests (in milliseconds).

Example to run tests in Chrome UI with a timeout for Mocha tests:

grunt vb-test --karma-browser=Chrome --mocha-timeout=60000
For more information on the supported command-line options, see vb-test.

4. Check test results and code coverage reports in the build/tests/results
directory.

Start an Action Chain
You set up an action chain to be triggered when an event occurs in an artifact. The
type of event available depends on the artifact. For example, you can trigger an action
chain to start when a lifecycle event such as vbEnter is fired to load a page. Or, use
the onValueChanged variable event when a variable's value changes. You can also use
custom events to start an action chain from another action chain.

Note:

By default, when you create a new action chain for an event listener,
component, or variable, it will be a JavaScript action chain. If you want a
JSON action chain instead, see JavaScript and JSON Action Chains within
Work with JavaScript Action Chains for instructions on how to disable
JavaScript action chains.

Start an Action Chain From a Component
When you add a component to a page or layout, you'll need to create a component
event and component event listener if you want it to trigger some behavior (for
example, to open a URL). The suggested option in the component's Properties pane
creates these for you.

There are various predefined events that you can apply to a component, and the
events available are usually determined by the component. For example, the ojAction
event is triggered when a button is clicked, so you would typically apply it to a button
component (you couldn't apply it to a text field component). Each button will have a
unique event and an event listener listening for the button's ojAction event, and the

Chapter 10
Start an Action Chain

10-64

listener would start an action chain (or multiple action chains) when the event occurs. Each
component event will usually have a corresponding component event listener.

Note:

You can add an event to a component only from the component's Properties pane.
You can't create one in the Events tab of pages.

To start an action with a component:

1. Select the component in a page or layout.

Typically, you assign events to elements such as buttons, menus, and fields in form
components. You can select the component on the canvas, in the Structure view, or in
Code view.

2. In the component's Events tab in the Properties pane, click + Event Listener. You can
choose the suggested event as a quick start or you can create a custom event to use a
different event.

When you add the new event using the quick start, an action chain is created for you and
the Action Chain editor opens automatically. When you add the new event using the
custom option, you'll need to select an event.

3. For a custom event, select the event you want to use to trigger an action chain. Click
Select.

Chapter 10
Start an Action Chain

10-65

4. Select the action chain you want the event to trigger and click Select Action
Chain. Alternatively, click New Action Chain to create a new action chain.

Chapter 10
Start an Action Chain

10-66

The Events tab in the Properties pane shows events on the component that Visual Builder
responds to by triggering action chains. You can edit the properties, for example, to add input
parameters that you want to use in the action chain. Input parameters can provide values
from the component and its page to the action chain, which the action chain can then use to
determine its behavior. For example, a table selection event could supply details of which row
was selected to its action chain.

If you used the quick start option to add an event, a component event listener is created for
the new event, and the listener is mapped to the action chain it created for you. If you open
the Event Listeners tab, you'll see it listed under Component Event Listeners, along with the
action chain that it will trigger.

Chapter 10
Start an Action Chain

10-67

Start an Action Chain When a Variable Changes
You can start an action chain when the value stored in a variable changes by adding
an onValueChanged event to the variable.

When you use an onValueChanged event to trigger an action chain, the trigger has the
payload of the variable's old and new values. For example, let's say you changed the
name property of an Employee and then reset the Employee; the framework will send
an event that the Employee changed, and as part of the payload indicate that the
name has changed.

To start an action chain when the value of a variable changes:

1. Open the Variables tab of an artifact.

2. Select the variable in the list, then open the Events tab in the Properties pane.

3. Click + Event Listener in the Events tab.

4. Select an action chain from the list. Click Select.

When you add the event to the variable, a variable event listener that listens for
the onValueChanged event on the variable is automatically created. The variable's
Events tab in the Properties pane displays the action chain the event listener will
trigger; you can change or remove the action chain, assign input parameters, and
add more action chains.

Chapter 10
Start an Action Chain

10-68

Note:

Variable events and event listeners are not listed in an artifact's Events or Event
Listeners tabs.

Start an Action Chain From a Lifecycle Event
Lifecycle events are predefined events that occur during a page's lifecycle. You can start
action chains when these events occur by creating event listeners for them. For example, if
you want to initialize some component variables when the page opens, you can create an
event listener in your artifact that listens for the vbEnter event. You could then set the event
listener to trigger an action chain that assigns values to the component's variables.

Before you create an event listener to trigger an action chain, it's important to understand a
page's lifecycle, so you know where to plug in custom code to augment the page's lifecycle.
Each page in your application has a defined lifecycle, which is simply a series of processing
steps. These might involve initializing the page, initializing variables and types, rendering
components, and so on.

Each stage of the lifecycle has events associated with it. You can "listen" for these events
and start action chains whenever they occur to perform something based on your
requirements. For example, to load data before a page loads, you can use the vbEnter event
and start an action chain that calls a GET REST endpoint.

Keep in mind that one or more pages make a flow and each flow has its own lifecycle.

This table describes the lifecycle events you can use to start action chains:

Chapter 10
Start an Action Chain

10-69

Lifecycle Event Description

vbBeforeEnter Triggered before navigating to a page. Commonly used when a user
does not have permission to access a page and to redirect the user to
another page (for example, a login screen).

Because this event is dispatched to a page before navigating to it, you
can cancel navigation by returning an object with the property
cancelled set to true ({ cancelled: true }).

For this event, you can use these variable scopes to get data:
• $application: All application variables can be used in the

event's action chain
• $flow: All parent flow variables can be used in the event's action

chain
• $parameters: All page input parameters from the URL can be

used in the event's action chain

vbEnter Triggered after container-scoped variables have been added and
initialized with their default values, values from URL parameters, or
persisted values, and is dispatched to all flows and pages in the
current container hierarchy and the application. Commonly used to
fetch data.

For this event, you can use these variable scopes to get data:
• $application: All application variables can be used in the

event's action chain
• $flow: All parent flow variables can be used in the event's action

chain
• $page: All page variables can be used in the event's action chain

vbBeforeExit Triggered on all pages in the hierarchy before navigating away from a
page. Commonly used to warn if a page has to be saved before the
user leaves it, or to cancel navigation to a page (say, because a user
doesn't have permissions to view that page) by returning an object with
the property { cancelled: true }.

vbExit Triggered when navigating away from the page and is dispatched to all
flows and pages in the current container hierarchy being exited from.
Commonly used to perform cleanup before leaving a page, for
example, to delete details of a user's session after logout.

vbAfterNavigate Triggered after navigation to the page is complete and is dispatched to
all pages and flows in the hierarchy and the application.
The event's payload ($event) is an object with the following properties:
• currentPage <String>: Path of the current page

• previousPage <String>: Path of the previous page

• currentPageParams <Object>: Current page parameters

• previousPageParams <Object>: Previous page parameters

vbNotification Triggered when a Fire Notification action is fired by the application.

vbResourceChanged Triggered when an application has been updated. Commonly used to
notify the user that they need to refresh to view the updated
application.

vbDataProviderNot
ification

Triggered when a Data Provider's implicit fetch fails with an error.

To start an action from a lifecycle event:

1. Open the Event Listeners tab for the page containing the event you want to trigger
an action chain for.

Chapter 10
Start an Action Chain

10-70

2. Click + Event Listener.

3. In the Create Event Listener wizard, expand the Lifecycle Events category and select the
event you want to trigger an action chain for. Click Next.

4. Select the action chain you want to trigger. You can select any action chain that is scoped
for the artifact. For example, if you are creating an event for a flow artifact, you can only
call action chains defined in the flow or in the application.

If you want to create a new action chain now, you can click and enter an ID for the
new action chain, which you can edit later in the editor. Click Finish.

Chapter 10
Start an Action Chain

10-71

After you create an event listener, you can click Add Action Chain for the lifecycle
event if you want it to start additional action chains.

Start an Action Chain By Firing a Custom Event
You can start an action from another action chain using a custom event, which is
triggered by the Fire Event action in an action chain. Typically, you use a custom event
when you want to trigger a notification, like displaying a pop-up window with a
message, or perhaps to transform some data. After creating a custom event, you need
to create an event listener for it to start the action chain.

Each custom event has a Behavior property, which you can use to set whether action
chains run serially or in parallel. The default behavior is "Notify", which allows the
action chains to run in parallel. For more about setting an event's Behavior property,
see Choose How Custom Events Call Event Listeners.

To start an action chain with a custom event:

1. Open the Actions tab for a page, flow, or application.

2. Select the action chain you want to edit. The action chain opens in the Action
Chain editor. If you want to create a new action chain, click + Action Chain.

3. In the Action chain editor, drag the Fire Event action from the palette and drop it in
the action chain where you want the event to occur.

4. In the Fire Event action's Properties pane, specify the Event Name.

Chapter 10
Start an Action Chain

10-72

If you are using the Fire Event action to trigger a new custom event, click Create, enter
an Event ID, and specify the event's scope. If you want to trigger a custom event that
already exists, you can select it in the drop-down list.

After creating or selecting the event, you can click Go to Custom Event in the Properties
pane if you want to edit the event's Behavior or Payload properties in the Events editor.

5. Create an event listener for your event:

a. Open the Event Listeners tab and click + Event Listener to open the Create Event
Listener wizard.

b. Select the custom event you added to your action chain. Click Next.

c. Select the action chain you want the event to trigger. Click Finish.

Tip:

If you're on the Events tab, simply right-click your custom event and click
Create Event Listener to create an event listener, called
(eventId)ChangeListener, in the same scope as the event.

Chapter 10
Start an Action Chain

10-73

11
Work with Events and Event Listeners

Events trigger actions when a user or the browser interacts with your application. For
example, when a user clicks a button to navigate to the application's home page, Visual
Builder raises an event that triggers the navigate action.

There are many types of events: lifecycle events, variable events, component events, even
custom events. Event types are more about how they occur and are all used to execute
action chains in your application. The application reacts to events through event listeners,
which declaratively specify the action chain to execute when the event occurs.

Define Events in Your Application
An event occurs when something happens in your application. Some examples are when a
page loads (lifecycle event), a button is clicked (component event), and when a variable's
value changes (variable event). An event's type depends on how it is triggered; for example,
a button or a menu would trigger a component event.

How you define events and event listeners depends on the type and scope of the event. This
table describes the types of events and how you can define them:

Type of Event Description How to Define

Component events An event associated with a UI
component in a page, including those in
dynamic components. It’s possible to
choose which event the component
triggers, but available events will
depend on the component. For
example, an event like ojAction is
available to a button but not to an input
text field.

Define a component's event and event
listener in the component's Properties
pane in the Page Designer. See Start
an Action Chain From a Component.

Variable events An event specific to a variable that
occurs when the value stored in the
variable changes. The only available
variable event is onValueChanged.

Define a variable's event and event
listener in the Variables editor. See Start
an Action Chain When a Variable
Changes.

Custom events A user-defined event that can only be
triggered by the Fire Event action
(fireCustomEventAction) in an
action chain. You use custom events to
trigger an action chain from another
action chain or JS function.

Create a custom event in the Action
Chains editor or in the Events editor,
then create an event listener for your
custom event in the Event Listeners
editor. See Start an Action Chain By
Firing a Custom Event.

11-1

Type of Event Description How to Define

Lifecycle events Predefined events that are automatically
triggered during a page’s lifecycle:

• vbBeforeEnter is triggered before
navigating to a page.

• vbEnter is triggered when all flow
or page variables have been
initialized.

• vbBeforeExit is triggered before
leaving a page.

The vbBeforeExit event
optionally allows navigation to be
canceled (say, when a page has
unsaved changes) by returning an
object with the property cancelled
set to true. When using the
browser (back or forward button),
the event's payload is an object
containing default parameter
values. See the vbBeforeExit
description in the Oracle Visual
Builder Page Model Reference.

• vbExit is triggered before leaving
a flow or page.

• vbAfterNavigate is triggered
when navigation to the page is
complete.

You can associate action chains with
these events to augment a page or
flow's default lifecycle. For example, if
you want to initialize some component
variables when a page opens, you can
create an event listener in your artifact
that listens for the vbEnter event, then
set the event listener to trigger an action
chain that assigns values to the
component's variables.

Create an event listener for a lifecycle
event in the Event Listeners editor. See
Start an Action Chain From a Lifecycle
Event.

Create Event Listeners for Events
When an event (such as a button click) occurs in a page, it can start one or more
action chains if an event listener is "listening" for it. To create an event listener, you
select the event it should listen for and the action chain you want it to trigger. You can
create event listeners for custom events as well as for predefined lifecyle events.

An action chain can be started by multiple event listeners, so you might have a
SaveData action chain that can be started by two different event listeners listening for
two different events.

To create a listener for an event and associate it with an action chain:

1. Open an artifact's Event Listeners tab, then click + Event Listener.

Chapter 11
Create Event Listeners for Events

11-2

2. In the Create Event Listener wizard, select the event you want to trigger an action chain.
Depending on where you're creating the listener, your list might include page events, flow
events, and application events, in addition to lifecycle events.

3. Click Next.

4. Select the action chain you want to trigger, or create a new action chain which you can
edit later.

Chapter 11
Create Event Listeners for Events

11-3

While an event listener can trigger multiple action chains, you can add only one
action chain at a time in the wizard.

5. Click Finish.

If you chose to create a new action chain, look for the associated event listener,
typically prefixed with the event you chose. For example, if you selected vbEnter as
the event, a new event listener called vbEnterChangeListener is created under Event
Listeners.

To edit an action chain associated with an event listener, move your cursor over the
name of an action chain, then click Go to Action Chain to open the action chain in the
Action Chains editor.

Chapter 11
Create Event Listeners for Events

11-4

You can add additional action chains to an event listener any time you want. Simply move
your cursor over the event name, then click Add Action Chain to relaunch the Create Event
Listener wizard.

If you want to delete an event listener, or remove an action chain triggered by an event
listener, select it in the list in the Event Listeners tab, then click Delete from the options menu
in the Properties pane. Deleting an action chain in the Event Listeners tab means it will no
longer be triggered by the listener, but it won't delete the actual action chain.

Chapter 11
Create Event Listeners for Events

11-5

Note:

A page-level or component event listener includes a Show in Flow Diagram
property to surface the listener in the Flow Diagram, allowing you to create
action chains that bind to an existing event listener. See Bind an Action
Chain in the Flow Diagram to an Existing Event Listener.

Choose How Custom Events Call Event Listeners
Each custom event has a behavior type that defines how the event listeners will be
called in relation to each other, whether the result for the listener is available, and what
form the result would take.

The behavior type does not define the order in which listeners are called, but whether
the listener is called serially or in parallel, that is, whether the action that raised the
event waits for a listener resolution, and what the "result" of the listener invocation
looks like. So in this case, "serially" means:

• For a single event listener (in a container), all the event listener chains are called
sequentially, in a declared order. This means that a listener action chain is not
called until the previous action chain has finished (and resolved, it returns a
Promise)

• The event listeners for the next container's listeners are not called until the listener
action chains for any previous container's event listeners have finished (and
resolved, it returns a Promise)

You can choose the behavior type of a custom event in the Properties pane of the
Events editor:

A custom event will have one of the following behavior types:

Chapter 11
Choose How Custom Events Call Event Listeners

11-6

Behavior Type Description

notify Parallel: The event is triggered but the application does not wait for the extension
to process it.

Chain results are not available to the action (or helper) that fired the event
(because the listeners are called without waiting). This is the default behavior.

notifyAndWait Serial: Each action chain listener must complete (and resolve any returned
Promise, if any), before another event listener action chain is called.

Chain results are not available to the action (or helper) that fired the event.

checkForCancel Serial: Each action chain listener must complete (and resolve any returned
Promise, if any), before another event listener action chain is called.

If any of the listener's chains returns a "success" with a payload of
{ "stopPropagation": true }, the application will stop calling event
listeners.

Chain results are not available to the Action (or helper) that fired the event.

transform
(deprecated)

Use transformPayload instead. If your existing event listener is set to transform,
it is recommended that you switch to transformPayload.

transformPayload Serial: Each action chain listener must complete (and resolve any returned
Promise, if any), before another event listener action chain is called.

Chain results are available to the action, and the action can modify the chain's
results before passing it back to another action following it.

Raise Fragment or Layout Events that Emit to the Parent
Container

Layouts and fragments defined in your application are typically unaware of their parent
container's context. This means that events defined within a layout or fragment are
"listenable" only within the layout or fragment's scope. To make these events listenable on the
parent container (say, a page or another container like a different outer fragment), you'll need
to fire custom events that the parent can handle.

Consider this example: Say a fragment defines a form with a Save button. Any time a user
updates the form's data and clicks the button, an on-click event triggers a REST call
action that saves the updates. To make the update available on the page that consumes the
fragments, you'll need a Fire Event action that emits its payload to the fragment container in
your action chain. This makes it possible for the page to listen for this custom event, bind an
event listener to the same event, and process the payload further if needed.

When a new custom event is fired from the page, keep in mind that the custom event (unlike
a page event) "bubbles" up the container hierarchy. Any event listeners in a given flow or
page for the event are executed before looking for listeners in the container's parent. The
order of container processing is:

• The page from where the event is fired

• The flow containing the page

• The page containing the flow

• Recursively up the container, ending with the application.

To make a layout or fragment event listenable on the parent container:

1. Create a custom event that emits its payload to the parent container.

Chapter 11
Raise Fragment or Layout Events that Emit to the Parent Container

11-7

a. In your layout or fragment's Events tab, click + Custom Event.

b. Enter an event ID (say, shouldemailbesent), then select the option to emit
the event's payload to its parent component. For a layout event, select Emit
event to page; for a fragment event, select Emit event to container. Click
Create.

c. If necessary, select the event in the Events editor, then click Add Parameter
next to Payload in the Properties pane to specify the payload that will be
passed to the parent container.

d. Enter the payload parameter name, select its type, and click Create. In our
fragment example, this might be a shouldEmailBeSent payload parameter
of type boolean:

Note:

When an event is set to emit its payload to its parent container, its
propagationBehavior property is set to container in the fragment or
layout model. The default is self, indicating that the event can only be
handled by event listeners defined in the layout or fragment.

2. Create an action chain with the Fire Event action that will be triggered when the
event occurs.

a. Switch to the layout or fragment's Action Chains tab, click + Action Chain,
enter a ID, and click Create to create a new action chain. You can also select
an existing action chain.

b. In your action chain, drag and drop a Fire Event action.

c. In the Fire Event's Properties pane, select the event to be fired (for example,
shouldemailbesent).

Chapter 11
Raise Fragment or Layout Events that Emit to the Parent Container

11-8

d. Under Parameters, use the variable picker next to shouldemailbesent and create
a string-type value under Input Parameters.

3. On the page that uses your layout or fragment, configure the parent container to handle
the custom event.

a. In the Page Designer, select the component (for example, a fragment) to open its
Properties pane, click the Events tab, then click + Event Listener and select the
suggested custom event (for example, shouldemailbesent).

b. Define the action chain that must be triggered when the event occurs. For example,
you might want a notification to appear on the page when the user toggles the Switch
in a fragment. To do this, you add a Fire Notification action, followed by an Assign
Variable action to assign the action chain's value to a page-level variable.

Chapter 11
Raise Fragment or Layout Events that Emit to the Parent Container

11-9

12
Work With Application Resources

As you develop an application, you can import and export static resource files for use in your
application's pages.

Resources are typically files that you import to support or add functionality to pages in your
application. For example, when you want to use an image in a page, you can import the
image as a resource into an images folder, then use an Image component on a page to
reference the imported image.

By default, each web (and mobile) application contains a resources folder to store custom
components, images, translation files, and other resources that can be used in the
application. Here are the folders created by default for the following types of resource files:

Folder Description

actions Location for custom actions that you might define in your application. Right-click the folder to
either create or import a custom action.

compone
nts

Location for custom web components that are installed to your application (by importing
them in the Page Designer). You can also create a custom component here by clicking
Create Component.

Note:

Importing custom components to the resources/
components folder or creating them there makes them a
part of your application. Because these components are not
cached, you're likely to run into performance issues when they
are downloaded each time you reload the Page Designer for
preview, or at runtime when you publish an update to your app.
As a best practice then, it helps to publish your components to
a CDN (Content Delivery Network) or an external location that
your browser can cache requests from. This is useful
especially when you have multiple apps that use the same
components. Talk to your administrator for site-specific
information on how to publish these components externally.

css Location for the app.css stylesheet that is linked from your application's pages. This
stylesheet is empty by default. You can edit the stylesheet to add custom styling to page
elements. See Add a Custom Style to a Component. The app.css file is not used to control
the styling of Oracle JET components.

12-1

Folder Description

images Default location for any custom images that you might want to add to your application.
Images in the application’s resources directory can be used in any page in the application.
This folder contains two favicon files by default (favicon-dark.ico and favicon-
light.ico), used by web and Progressive Web Apps. The favicon used depends on the
mode the app uses (light or dark mode). Overwrite the default-provided favicons if you want
to use your own favicons. See Work with the Image Gallery.

Flow artifacts can also contain an images folder that stores images that can be used in
pages in the flow. When you add an image to a page, it is stored in the images folder in the
resources folder of the flow that contains the page.

js Location for external JavaScript files that you want to use in your application's pages.

strings Default location for your translation bundles. See About Translation Resources.

Flow and page artifacts can also contain a strings folder that stores translation bundles.

To work with resources at the visual application level, see Export and Import
Application Resources.

Import Resources
To add resources that you want to use in your application's pages, you import
individual files or ZIP archives by using the Import command available when you right-
click the resources folder in the Navigator or any artifact, or by dragging the file directly
from your local file system onto a folder in the Navigator.

You can import resources into the application’s resources folder and sub-folders, or
any other artifact in the Navigator. The location you select will determine the scope of
the resources you import. The import location is also important to make sure you're
importing the resource file where you can access it. For example, you can import an
image into the flows folder, but the expected location for an image is in an images
folder in one of your application’s resources folders. Images that are not in an images
folder will not appear in the Image Gallery, so you won't be able to apply the image
you've imported to a UI component.

To import resources for use in an application:

1. Open your web (or mobile) application in the Navigator and locate the folder or
artifact where you want to import the resource.

2. Right-click the folder or artifact and choose Import in the pop-up menu.

Chapter 12
Import Resources

12-2

Alternatively, drag a file from your local file system onto the folder or artifact in the tree
view to open the Import Resources dialog box.

3. In the Import Resources dialog box, choose the file or archive with the resources you
want to import. You can drag the resource into the drop target area or click the drop
target area to navigate to the resource on your local system.

Optionally, you can edit the path in the Import location field to create new folders.

Chapter 12
Import Resources

12-3

Optionally, edit the path in the Import location field to create new folders.

4. Click Import.

A confirmation appears and your resource file is added at the location you
specified.

Manage Custom Component, CSS, and Module Imports
You can import resources such as custom CSS files, modules, and components to
create "declarative" references to imported resources.

The Imports tab in the Settings editor enables you to manage resources imported for
an application, flow, or page artifact. You can manage custom components, CSS files,
as well as modules containing code that you want to call in your application. Let's
consider some sample scenarios of when you'd want to use this tab:

• When your artifact includes components that are deprecated or no longer used,
these component definitions stay intact in the artifact’s metadata, but might be
flagged by audits as a deprecated or unused component dependency. While you
can resolve this issue by manually editing the JSON editor, you can use the
Imports tab to manage these imports without potentially introducing errors.

• When you want to use custom CSS files for specific pages, you'll usually need to
add an import statement to the page's HTML manually. By declaratively adding
custom CSS files on the Imports tab, you can easily apply these imported CSS
files to any page or pages in a flow without having to manually add an import to
the HTML pages.

• When you want to use JavaScript modules at the application, flow, or page level to
create custom functions within the module (say, the IntlConverterUtils utility
function that lets you format a date field as an ISO string), referencing the module

Chapter 12
Manage Custom Component, CSS, and Module Imports

12-4

from the Imports tab makes it available for you to call in your application without having to
add code to your JSON or JavaScript files.
You can call these functions in an action chain using the Call Function action and in a
component's property, by selecting the function in the Expression editor or Variables
picker in the properties pane, as shown here:

To manage imports for an application, flow, or page artifact:

1. Open the Imports tab in the Settings editor of an application, flow, or page artifact.

2. Import components, CSS, and custom modules:

• To manage an existing component, click the menu on the right and select Edit or
Delete. To import custom components to your application, flow, or page artifact, click
+ Component, then enter the component name and path to the component module.

• To reference CSS files in your application, flow, or page artifact, click + CSS, then
create a reference to an existing file, an external file, or a new file:

Chapter 12
Manage Custom Component, CSS, and Module Imports

12-5

– To create a reference to an existing CSS file in your resources folder, click
Existing, then select the file from the drop-down list. (For information on
how to add CSS files to your application's resources, see Work With
Application Resources.)

– To create a reference to an external CSS file (say, a font or an icon in an
external resource that you'd like to use), click External, then specify the
path to the file.

– To create a reference to a new CSS file, click New and specify the name
and path to the new file (which will be created for you).

To manage an existing CSS, click the CSS file's menu and select Edit or
Delete.

• To reference custom modules that contain code you want to call in your
application, flow, or page artifact, click + Module, then enter the module name
and path to the module.
To manage an existing module, click the module's menu on the right and
select Edit or Delete.

Here's an example of imports at the flow level:

3. Click Create or Create & New to repeat the action.

Work with the Image Gallery
You use the Image Gallery to import image resources into your application and when
selecting the image resource referenced by an image component. You open the Image

Chapter 12
Work with the Image Gallery

12-6

Gallery from the Data tab in the Properties pane when an image component is selected on
the canvas.

Images in your application are stored in an images folder, located in one of the resources
folders in your application. A folder for resources in your application is created by default
when the application is created. Images in the application’s resources folder can be used in
any page of your application. In addition to the application’s default resources folder, each
flow in the application might have a resources folder for resources used in pages in the flow.

You can use the Image Gallery to view and manage the images in your application. The
Image Gallery only displays the images that are stored in the images folders of the application
and the current flow. Images stored in other locations are not visible in the Image Gallery.

You can use the Image Gallery to perform the following tasks:

• Import images. You can choose to add images as resources of the current flow or the
application.

• Select an image displayed by an image component. You can select images stored in the
application’s or the current flow’s images folder. When you select the image, the path to
the image (for example, {{ $flow.path + 'resources/images/myimage.png' }}) is
entered in the component’s Source URL field in the Properties pane.

To import images into the Image Gallery:

1. Open a page in the Page Designer and select an image component on the canvas.

You can select any image component on the canvas. Alternatively, you can temporarily
drag an image component onto the canvas.

2. Open the Data tab in the Properties pane and click the Image Gallery icon ().

When an Image component is selected on the canvas, the Data tab in the Properties
pane displays a Source URL field for the path to the stored image. The field is empty
when no image has been defined.

Chapter 12
Work with the Image Gallery

12-7

You need to open the Image Gallery to add images to the application’s images
folder. If you drag an image into the drop target area in the Data tab, the image is
added to the flow in the Image Gallery and the path to the image is automatically
entered in the Source URL field, but the Image Gallery dialog box does not open.

3. Select Application in the Images panel of the Image Gallery.

Alternatively, you can select Flow in the Image Gallery to import images into the
flow’s images folder. The folder will be created automatically if it does not exist.

Chapter 12
Work with the Image Gallery

12-8

The Images panel of the Image Gallery displays a list of the images that can be used in
pages in the application and in the current flow. In the Application section, two favicon
images also appear that Visual Builder uses for web and Progressive Web Apps.
Overwrite these to use your own favicon images. You can select an image in the Images
panel to preview the image. If you select an image in the Images panel and click Select,
the path to the image will be entered in the Source URL for the image component in the
Data tab.

4. Drag your image into the drop target area in the Image Gallery.

Alternatively, you can click the drop target area to select an image using your local
system’s file browser. You can import as many images as you want, but you need to add
them individually. You can choose if you want to import an image into the Application or
Flow resource folders by selecting the folder in the Images panel.

5. Click Close to close the Image Gallery without selecting an image for the image
component.

Chapter 12
Work with the Image Gallery

12-9

13
Work with Fragments

As you design a web application, some pages might quickly become large and unwieldy. One
way to simplify the process of building and maintaining complex pages is to use fragments.

Large, complex pages broken down into several smaller fragments are easier to maintain.
For example, when a page uses a foldout layout with multiple panels or includes multiple
tabs, you might find it easier to keep each panel or tab's content in a fragment. This way, you
modularize your app's logic and can maintain each panel or tab separately.

This might sound similar to what you'd accomplish with flows, but flows and fragments are
fundamentally different. Flows group pages by business function and allow navigation
between pages within or across flows. Fragments, on the other hand, break up a page into
separate sections for easier organization and code management, and can even serve as
entire page templates. Unlike flows, they can be used in multiple pages, even multiple times
in the same page—which brings us to reusability, the most compelling reason to use
fragments.

Because a fragment encapsulates parts of a page in its own HTML, JSON, and JavaScript
files, it can be shared across pages, flows, even other fragments in your application. For
example, suppose different sections of several pages use the same form, you can create
fragments containing the form, then reuse those fragments in several other pages.

Besides the benefits of reuse, fragments provide performance gains. Typically, all resources
used in a page (components, modules, and so on) load when the page renders. But
sometimes you don't need all components and the related model, especially those triggered
by UI events or hidden behind other UI components, to load right away. For example, you
don't need components in a panel's edit version to show until the user clicks the edit icon. If
you define the edit panel in a fragment, you could delay rendering until you actually need to
show the fragment to improve the time it takes for the page to render initially.

Here's a video that provides a high-level look at fragments and walks you through a sample:
Fragments in Visual Builder.

Create and Add a Fragment to a Page
Create one or more fragments to define sections of a page. Say, your page has separate tabs
for employees and managers; you can create two fragments, one for either tab's content.
Deciding how many fragments to create depends on your application, the degree to which
you wish to reuse portions of a page between multiple pages, and the extent to which you
want to simplify complex pages.

There are many ways to create fragments: you can create one using the Create Fragment

icon () next to the Fragments node in your application's Web Apps view or in Source view
as shown here:

13-1

https://www.youtube.com/watch?v=1RSFn1VvUuQ

Alternatively, create a fragment when designing a page by clicking next to
Fragments in the Components palette. You can also start with a fragment container
on a page and add a fragment to it—which is what we'll do here:

1. Open your web application in the Navigator, then open the page where you want
to use fragments. Fragments are most commonly embedded in pages, other
fragments, form and field templates, dynamic containers, and list item and foldout
panel components.

2. Drag a Fragment Container from the Components palette onto the canvas and
drop it where you want a fragment to display. It's easiest to filter for the
components you want to use.

Chapter 13
Create and Add a Fragment to a Page

13-2

Tip:

Notice how the search fragment shows up in addition to the Fragment
Container when you enter fragment in the Filter field? That's because by
default all existing fragments—including those such as Shell Header and
Shell Footer created automatically by web app templates—become
available for use in your application's pages. You can simply drag and drop
these fragments onto the canvas if you wanted to use them in a page. If you
added a Fragment Container to the page (as we've done here), you can select
these fragments from the Fragment Container's properties.

3. In the General tab of the container's Properties pane, click Select to select an existing
fragment or Create to create a new one. For demonstration purposes, we'll create a new
fragment.

If you click Select and find that the available fragments don't meet your needs, you can
create a new fragment even from the Select Fragment dialog, as shown here:

Chapter 13
Create and Add a Fragment to a Page

13-3

Click Select.

4. In the Create Fragment dialog, enter a name for the fragment in the Fragment ID
field.

Chapter 13
Create and Add a Fragment to a Page

13-4

a. In the Used For field, select where you want the fragment to surface as you drop it
on pages or page components.

By default, every fragment is tagged as pageContent, surfacing it under Fragments
in the Components palette as generic content available for use in any page. But
using the appropriate metadata tag displays the fragment only where it is best used.
For example, a fragment tagged as formTemplate would be available to you only
when you're looking to drop a fragment in a dynamic form template.

You can always change where the fragment surfaces by editing the Used For setting
in the fragment's Properties pane or its Settings editor.

b. In the Implements field, select tags that suggest the fragment as preferred content
for particular components. If you're not sure, leave it blank. You can add it later in the
fragment's Properties pane or its Settings editor.

c. Click Create.

A new empty fragment opens in the Fragment Designer:

Tip:

To view where a fragment is consumed, look under Usages in the fragment's
Properties pane. In our example here, the employee-contact-details
fragment is being used by the main-start page in the main flow. Clicking the
main/main-start link will open the page in the Page Designer.

5. Now design your fragment in the Fragment Designer.

The Fragment Designer is similar to the Page Designer, except that it builds a fragment
instead of a page. You can add standard as well as dynamic components (including
dynamic containers) to your fragment, then use other editor tabs to bind components to
events, action chains, variables, and functions, much like what you'd do when developing
a page. You can also define types, including those from code that can be associated to
an InstanceFactory variable.

Chapter 13
Create and Add a Fragment to a Page

13-5

Keep in mind though that a fragment is a self-contained piece of UI that's unaware
of its parent container's context. So what you see on the canvas as well as in the
Structure and Code views are the contents of this particular fragment. Other editor
tabs allow you to edit artifacts within the scope of this fragment. So a fragment
cannot call actions on its parent container, but it can fire custom events that the
parent can handle. You can't also navigate to a fragment, only to a page.

Here's an example of a fragment set up to show an employee's contact
information:

(For steps on how to design this sample fragment and wire up the necessary
parameters, see Sample Scenario: Create a Fragment and Pass Values.)

6. Optional: Return to your page to create more fragments and add them to the page.
You can add as many fragments as you need to a page, even add fragments to
other fragments.

a. Click next to Fragments in the Components palette and create a fragment.

b. Drag and drop it onto the canvas to add it to the page.

Alternatively, repeat steps 2 to 5 to create and add fragments starting with a
fragment container on a page.

Tip:

It's also possible to create a page starting with the contents of an existing
fragment, essentially using the fragment as a page template.

After a fragment is added to a page, its content will automatically render on the
page that consumes it, as shown here (this includes any changes you make on the
fragment as well):

Chapter 13
Create and Add a Fragment to a Page

13-6

You can then use the fragment's Properties pane to view fragment variables that have
been enabled as input parameters, even create them on the fragment container. You can
choose to override the parameter's default value with an alternate value for the page, or
use a page variable to provide initial values for a fragment's input parameter. (Hover over
each input parameter to view its type and description, if one was provided.)

You can also configure the fragment's container to react to events raised by the fragment.

Once a fragment is added to a page, you can change it if you want. You can replace it with
another fragment, even remove it completely from the page. To do this:

1. Open the page that uses the fragment you want to change, select the fragment on the
page, then in the fragment's Properties pane, click Select next to Fragment.

2. Make your choice in the Select Fragment dialog:

• To remove an existing fragment on the page, select No Fragment.

• To replace the existing fragment with another, select the fragment you want to use
under Fragments.

3. Click Select.

Manage Fragment Settings
Every fragment includes a Settings editor, which you use to specify some general settings as
well as imported resources such as custom components, CSS files, and modules.

To configure settings for a fragment, open the fragment, then click Settings to open the
Settings editor:

Chapter 13
Manage Fragment Settings

13-7

You can also find these settings on the fragment's Properties pane in the Fragment
Designer. Here's how you can use the different settings:

Setting Description

General tab Contains general fragment settings:

Title Fragment title that replaces the ID wherever the fragment
appears. For example, if you created a fragment with the ID
myfragment, then set My Fragment as the title, the My
Fragment title will show instead of the ID wherever the fragment
displays (in the Components palette, Structure view, and on the
canvas).

Description Fragment description that displays as a tooltip when you hover
your cursor over the fragment's help icon in the Components
palette.

Chapter 13
Manage Fragment Settings

13-8

Setting Description

Used For Tags that best describe where the fragment should be used. The
value you select from the drop-down list will be used to surface
the fragment in the right context and filter it out where it isn't
suitable. For example, if you choose formTemplate, the
fragment will be available only when the user is looking to use a
fragment in a dynamic form template. If you choose page, the
fragment will be available in the Flow Diagram's Components
palette as well as in the Create Page dialog whenever you create
a page. You can choose more than one tag to surface the
fragment in multiple locations.
By default, all fragments are tagged as pageContent, meaning
they become available only in the Page Designer's Components
palette (under the Fragments category).

Note:

If you tag a fragment as
formTemplate or
fieldTemplate, you can
indicate how fragment metadata,
specifically data-binding expressions
in fragment input parameters, must
be generated depending on where
the fragment is embedded. See Set
the Binding Type for Variables in
Dynamic Components.

Implements Tags that suggest the fragment as preferred content for particular
components. For example, if you choose
FoldoutPanelElement, users working with a foldout layout
will see this fragment suggested as content that can be added as
a foldout section.

Icon Default icon associated with the fragment that will display
wherever this fragment is used (for example, in the Components

palette). Click to open the Icon Gallery, then make your
selection.

Imports tab Contains settings to manage resources such as custom CSS files,
modules, and components imported at the fragment level,
allowing you to create declarative references in the fragment to
those resources. See Manage Custom Component, CSS, and
Module Imports.

Reuse a Fragment
Because a fragment is essentially a reusable piece of UI, you can use it in a page as well as
in multiple pages, even other fragments.

Say you define a fragment to show an employee's contact information. You can pull in the
fragment in multiple pages, where ever you want an employee's contact details to show. For
example, you can use the fragment in a page that displays an employee's contact details as
well as in another page where the contact details can be edited.

Chapter 13
Reuse a Fragment

13-9

You can also use a fragment multiple times in the same page, typically when you
provide different sets of input parameters to the same fragment. It's also possible to
create pages starting with the contents of an existing fragment, essentially using the
fragment as a page template.

Because fragments are defined at the application level, they can be used in any page,
in any flow within the application.

• To use a fragment in multiple pages:

1. Open the page you want to add the fragment to.

2. In the Page Designer, drag and drop a Fragment Container from the
Components palette onto the canvas. Then in the General tab of the
container's Properties pane, click Select to select an existing fragment. If the
available fragments don't meet your needs, you can create a new fragment
from the Select Fragment dialog.

Tip:

If your fragment already exists, simply locate it in the Components
palette (you can enter frag to filter components or scroll down to the
Fragments category), then drag and drop it directly onto the canvas.

3. Repeat the steps to add the same fragment to another page.

• To use a fragment multiple times on the same page:

1. Open the page you want to add the fragment to.

2. In the Page Designer, drag and drop the fragment from the Components
palette onto the canvas.

3. To add the fragment to another area of the page, drag it from the Components
palette and drop it where you want it to display.

• To use a fragment within a fragment:

1. Open the fragment where you want to use another fragment.

2. In the Fragment Designer, drag and drop a fragment from the Components
palette onto the canvas.

Alternatively, drag and drop a Fragment Container from the Components
palette onto the canvas. Then in the General tab of the container's Properties
pane, click Select to select an existing fragment or Create to create a new
one.

When you add a fragment to a fragment, both pieces will display on the page
consuming the initial fragment. For example, if you added emergency contacts
as a separate fragment within the employee's contact information, the
emergency details will display on every page that pulls in the contact
information fragment.

Pass Data Between a Fragment and Its Parent Container
Passing data between a fragment and its parent container (say, a page or another
container like a different outer fragment) involves enabling fragment variables as

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-10

required or optional input parameters to the container. It's also possible to enable the variable
to "write back" directly to the container.

Passing Data From a Page (or Outer Container) to a Fragment

When you define fragment variables and enable them as required or optional input
parameters, a page or any container that consumes the fragment can provide values for the
input parameters. A page, for example, can define or associate its variable to a fragment's
input parameter. This way, a page variable's value is used as the initial value for the input
parameter enabled in the fragment. See Enable Page Variables to Provide Initial Values for a
Fragment's Input Parameters .

When the same page variable’s value changes "mid-cycle", the updated value is
automatically reapplied on the fragment input parameter and an onValueChanged event
triggered on the fragment variable.

Passing Data From a Fragment to a Page (or Outer Container)

There are two ways to do this, and the option you choose really depends on your business
use case:

• When a fragment variable is enabled as an input parameter, you can additionally choose
to write it back to the container. This option allows changes to the fragment variable to be
automatically written back to the page variable that was used as the input parameter.

• While automatic writeback to a page variable is convenient and powerful, there may be
cases where multiple changes to the fragment variables occur (say, the variable's state
needs to be gathered and raised via a custom event). For such scenarios, you can define
custom events that "emit" from the fragment to the fragment container. A custom event
that emits to the container can provide information to the page (or container) that
references it.
It's important to remember that there are two types of custom events that can be defined
in fragments (the one discussed here is the second type in this table):

Event Type Description

Events that can be handled by listeners defined
in the fragment

These events are similar to other custom events
in Visual Builder and are used to communicate
consolidated state changes made in the
fragment to the outer container. For example, a
fragment defined as a multi-step survey may
raise a regular custom event for itself to take
note (say, on a Next button), but after the survey
is completed, it may communicate the
completion state (along with the entries) to the
outer container.

Events that "emit" to the container These events are used to propagate values to a
fragment's parent container. See Create Custom
Events that Emit to a Fragment's Parent
Container.

Enable Fragment Variables as Input Parameters
To pass values to a fragment from a page that consumes the fragment, you first define input
parameters on the fragment that are either required or optional. For example, you might
define a default placeholder title in a fragment variable and enable it as a parameter for a

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-11

page. In this case, you'll have the option of overriding the default value with an
alternate value on a particular page.

To enable a fragment variable as an input parameter:

1. Define your fragment as needed, for example, an employee-contact-details
fragment that displays an employee's contact information. Let's assume the
fragment uses a heading component, as shown here:

2. On the fragment's Variables tab, create a string-type variable for the title (for
example, title) and enable it as an input parameter. Optionally, set a default
value (say, Contact Info).

3. Switch to the Fragment Designer and bind the Heading component to the variable
you just created.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-12

4. Now open the page where the employee-contact-details fragment is used (drag
and drop the fragment onto the canvas, if needed). Fragment variables marked as input
parameters become available to you on the page.

5. You can now customize the default title to something that the page (or container)
provides. To do this, in the fragment's Properties pane, under Input Parameters, update
the title input parameter's value (for example, Employee Personal Info).

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-13

Tip:

You can extend this use case to bind the fragment input parameter to a
page constant. For example, if the page author has defined a page-level
constant called heading, when the fragment input parameter is mapped
to the constant, you'll be able to edit the value of the bound constant. To
do this:

a. Click the variable picker on the title input parameter and select
heading under Page and Constants.

b. Use the constant's default value if one is defined (for example,
About Me), or enter a new value.

You can click the expression ($constants.heading) to view the
constant's definition on the page-level Variables editor.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-14

Enable Page Variables to Provide Initial Values for a Fragment's Input
Parameters

You can pass a page variable as an input parameter from the page to a fragment that it
references in order to provide initial values for the fragment's input parameters.

Say you have a page that displays employee data in a table, including employee contact
information defined in a fragment. When a user selects a row in the table of employees, the
selected employee's contact information is displayed from the fragment. To pass the selected
employee's ID from the page to the fragment, you might define a page-level variable (for
example, selectedEmp) and pass its value to a fragment variable enabled as an input
parameter (for example, empId) via the expression [[$variables.selectedEmp]].

1. Set up a fragment to display an employee's contact information. For example, here's one
that uses different components to display employee contact information:

2. On the fragment's Variables tab, create a number-type variable for the employee's ID (for
example, empId) and enable it as an input parameter.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-15

Note:

You can mark the variable to be automatically created on the container
that uses the fragment. This way, when the fragment is dropped onto an
existing page or container, the variable is created on the page and wired
back to the fragment variable's value. If you don't select this option, you'll
need to follow the rest of this procedure.

3. Now open the page where the employee-contact-details fragment is used
(drag and drop the fragment onto the canvas, if needed). If it isn't already, make
sure the selectedEmp variable is defined for the page.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-16

4. In the fragment's Properties pane, under Input Parameters, use the variable picker on the
empId parameter and select the selectedEmp variable as the source of its value.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-17

Assuming you've wired up the employee contact fragment to retrieve the
information based on the selected employee's ID, your page will display the
selected employee's record. Now any time the page variable changes
(selectedEmp), the new value will be automatically applied on the fragment
variable (empId).

If you want to refresh the fragment's content on the page when the variable's value
changes (in other words, when another employee is selected), an
onValueChanged event can be triggered on the fragment variable that calls an
action chain to update the contact details of the newly selected employee.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-18

Automatically Write Back a Fragment Variable's Value to Its Container
Variable

When a fragment variable is enabled as an input parameter, you can mark it for writeback,
allowing changes in the variable's value to be automatically written back to a variable on the
fragment's parent container.

Let's say your employees page defines an empAvatar variable, which takes a URL as its
value. When this variable is passed as an input parameter to a fragment, the fragment
receives it through an avatar variable. This variable also has the option to write back to the
container enabled. Assuming that the fragment is set up to update the employee's profile
picture, when the avatar variable on the fragment is updated to use a new URL, the change
is written back to the outer page variable (empAvatar). Depending on your setup, this might
also update the table of employees where the new picture is shown in the currently selected
row.

(To see an example of writeback in action, see the Passing Values To and From Fragments
blog post.)

Writeback is supported for primitive (string, number, boolean, and any), array, and object type
variables. Note that writeback is not required if an input parameter value is already passed in
by reference (for example, an SDP or dynamicLayoutContext).

To write back updates made to a fragment variable enabled as an input parameter:

1. Open the fragment that defines the variable whose parameter value you want to be
automatically updated on the parent container's variable (for example, the fragment-level
avatar variable whose value you want to directly update on the page-level empAvatar
variable).

2. On the fragment's Variables tab, select the variable (avatar in our example).

3. Select Write Back to Container in the variable's Properties pane:

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-19

https://blogs.oracle.com/vbcs/post/fragments-update

If you don't select this option, the only other way for a parent container to be
notified of updates to a fragment's variable is to raise a custom event that "emits"
the event's payload to the parent container.

Events are a more formal contract that may be a better option when you want to
consolidate changes made in the fragment and communicate them to the outer
container, for example, when all changes made to the employees contact
information are pushed to the server and the same needs to be communicated
back to the page. Automatic writeback to a parent container variable, on the other
hand, is desirable when you want the outer container to be notified immediately of
a change to a fragment input parameter variable.

Automatically Create and Wire a Fragment Variable on Its Container
You can mark fragment variables or constants that are enabled as input parameters to
be automatically created on the container that uses the fragment. This way, when a
page is created from the fragment or the fragment is dropped onto an existing page or
container, Visual Builder creates the variable (or constant) on the page and wires it
back to the fragment variable's (or constant's) value.

This option is especially useful when input parameters must be passed from a page for
the fragment to work. By autowiring the required input parameters, you won't have to
create and configure those variables on the page when the fragment is added to it,
though you'd still need to assign values. Further, if the autowired variables include
customizations to display an enhanced UI in the Properties pane, those
customizations are also carried over to the container.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-20

Note:

Only fragments tagged as pageContent (default) or page in its Used For setting
(either from its Properties pane or Settings editor) can be autowired on their
containers.

1. Open the fragment that contains the variable or constant you want to be created on the
parent container.

2. On the Variables tab, select the variable or constant to view its Properties pane. When
the variable or constant is enabled as an input parameter (with either Enabled or
Required selected under Input Parameter), you'll see more properties under a Container
Options section:

3. Select Create variable in container or Create constant in container:

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-21

When this option is selected, the @dt.createOptions metadata is added to the
fragment's JSON definition; for example:

 "variables": {
 "days": {
 "type": "number",
 "input": "fromCaller",
 "defaultValue": "5",
 "@dt": {
 "createOptions": {}
 }
 },

4. Optional: If you want to make the variable or constant on the container an input
parameter of the container:

• Select Enabled to make the container variable or constant an optional input
parameter.

• Click Required to make the container variable or constant required input
parameter.

5. Optional: If you chose to pass the variable or constant as an input parameter,
select Pass on URL to pass this input parameter to the container as part of the
URL.

After you add the fragment to a page or a container, you'll see your variable/constant
created on the page or container's Variables editor with the settings you specified.
If you were to look at your page's code, you'll see the parameters wired in HTML, for
example:

 <oj-vb-fragment bridge="[[vbBridge]]" name="welcome" class="oj-flex-
item oj-sm-12 oj-md-12">
 <oj-vb-fragment-param name="avatar"
value="[[$variables.avatars]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="days"
value="[[$variables.days]]"></oj-vb-fragment-param>
 <oj-vb-fragment-param name="title"
value="[[$variables.title]]"></oj-vb-fragment-param>
 </oj-vb-fragment>

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-22

Sample Scenario: Create a Fragment and Pass Values
Here's a sample scenario that walks you through how to enable input parameters and pass
values between a fragment and the pages that use that fragment.

Say you have a page with employee data in a table. Clicking a row in the page's table brings
up the employee's contact information. You have another page that lets users edit an
employee's information, including their contact details. To save time and effort, you can define
the contact information part of your UI in a fragment and pull it into both pages.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-23

In both cases, the page containing the fragment passes the selected employee's ID as
an input parameter to the fragment; the fragment receives the ID, retrieves the contact
information, and renders it. If a user updates the selected employee (in other words,
when the input variable's value changes), the fragment raises an onValueChanged
event to refresh the contact details on the page.

1. First off, set up a fragment to display an employee's contact information. For
demonstration purposes, let's assume your fragment looks something like this,
with a Heading, an Avatar, and Input Text components:

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-24

To provides values to these components, we'll create a type and a variable that holds this
information, retrieved from the Employee business object's get_employee endpoint (our
data source).

a. In the fragment where you want to define the contact details, click the Types tab,
then click + Type and select From Endpoint.

b. In the Create Type From Endpoint dialog box, expand Business Objects, select the
Get/Employee/{Employee_Id} endpoint under Employee, and click Next.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-25

c. Select the fields you want to display in the fragment, for example, Picture,
Name, Country, Email, and Phone. Click Finish.

d. Right-click the newly created get_Employee type and select Create Variable.
A new get_EmployeeVar (with get_Employee as the type) is created on the
fragment's Variables tab.

e. Switch to the Fragment Designer and bind each component to the
get_EmployeeVar variable's corresponding value. For example, to bind the
Avatar to the employee's picture, click the Avatar component, then in the
component's Data tab, hover over the Src field and click the down arrow to
open the variable picker. Select picture under the get_EmployeeVar fragment
variable.

2. Now that we have what we want to display, let's set up how we want employee
information to show in the pages that use this fragment. Some pages (like an
Employees List page) might simply display the information as read-only data while
others (like the Edit Employee page) might need a way to edit it.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-26

a. On the fragment's Variables tab, define a Boolean-type variable (for example,
allowEditing).

b. Select the allowEditing variable, then under Input Parameters in the Properties
pane, select Enabled to pass the variable's value as an input parameter to the pages
that use the fragment.

c. Switch to the Fragment Designer and bind each Input Text component's Readonly
property to the allowEditing variable. For example:

i. Click the Name Input Text component, then in the component's Readonly field in
the General tab, use the variable picker and select allowEditing under fragment
variables.

ii. Add an exclamation mark (!) before the dollar sign ($) to indicate that the field is
read-only when the fragment is not in edit mode.

3. Because we want the selected employee's contact details to be displayed when the
fragment is loaded on a page, we'll add a "vbEnter" lifecycle event that triggers an action
chain to retrieve the correct employee information. This way, when the fragment is
loaded, it takes the employee ID selected on the page, retrieves that employee's contact
details from the data source, and passes it to a page-level variable.

a. Click the fragment's Events Listeners tab, click + Event Listener, and select
vbEnter under Lifecycle Events. Click Next .

b. Select Create Fragment Action Chain and click Finish to create an action chain
called vbEnterChangeListener.

c. Hover next to vbEnterChangeListener (under Lifecycle Event Listeners and
vbEnter) and click the Go to Action Chain link.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-27

d. When the vbEnterChangeListener action chain opens in the editor, drag and
drop a Call REST action onto the canvas. In the action's Properties pane, click
Select next to Endpoint and choose the Get/Employee/{Employee_Id}
endpoint under Business Objects and Employee. Click Select.

e. Under Input Parameters in the action's Properties pane, click Employee_Id to
open the Assign Input Parameters dialog. On the Sources pane, click + next to
Fragment and create an empId variable of type number (you can choose to
enable empId as an input parameter even now, but for demo purposes, we'll do
this in a later step). Click Create. Now drag empId from the Sources pane to
Employee_Id on the Target pane. Click Save.

f. Now double click the Assign Variable action in the palette to add it to the end
of the action chain. In the action's Properties pane, select get_EmployeeVar
under Fragment in the Variable drop-down list. Hover over the Value property

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-28

and open the variable picker, then select body under
callRestBusinessObjectsGetEmployeeResult under Local.

g. Switch to the Variables tab and look for the empId variable you created. Select it,
then under Input Parameters in the Properties pane, select Enabled to pass the
variable's value as an input parameter to the page consuming the fragment. Enter 1
as the Default Value for the input parameter.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-29

h. With the variable enabled as an input parameter, select Create this variable
in a container. This option automatically creates this variable on the page that
uses this fragment and wires its value back to the value of the fragment input
parameter.

i. Click the variable's Events tab, then click + Event Listener and select the
vbEnterChangeListener action chain that was previously created for you.
Click Select.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-30

This way, when the input variable's value (which is the selected employee ID)
changes, an "onValueChanged" event triggers the vbEnterChangeListener action
chain, telling the fragment to update its content on the page.

4. Now add the employee contact information fragment to a page.

a. Open the page with employee data that you want to add the fragment to.

b. In the Components palette on the Page Designer tab, search for the employee
contact information fragment, then drag and drop it where you want it to display.

Take note of the fragment's Properties pane on the page. Because we marked the
empId fragment input parameter to be autowired on the fragment container, the
empId variable is automatically created on the page (look in the Variables tab) and
wired back to the fragment input parameter's value (1 by default).

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-31

c. Now let's wrap the Fragment in an If, so that it shows only when a row is
selected in the employee table. To do this, select the fragment, right-click, then
select Surround and If. If necessary, select the Bind If component in the
Structure view; then in the Properties pane's Test condition, use the variable
picker to select the empId variable.

5. Set up the employee table to retrieve information based on the employee ID in the
selected row.

a. Click the table component on the page, select the Events tab, then click +
Event Listener and select On 'First Selected Row' to retrieve information
about the selected row.

b. When the TableFirstSelectedRowChangeChain action chain is created, drag
and drop an Assign Variable action.

c. In the action's Properties pane, select the empId variable under Page in the
Variable drop-down list. Now use the variable picker on the Value property
and select rowkey under Input Parameters.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-32

d. Return to the page designer and click Live, then select a row in the table to see
employee contact information reflected in the fragment based on the ID.

e. Return to Design view.

6. Add the same contacts fragments to another page.

a. In the Page Designer, select the table and add an edit page using the Add Edit Page
quick start.

b. Click Live, select an employee in the table, and click Edit Employee to open the
newly created edit page.

c. Add the contacts fragment to a page, similar to how you added it to the other page
previously.

d. To make sure the selected employee ID is passed between the page and the
fragment, select the Fragment and on the empId input parameter in the Properties
pane, select the employeeId variable.

e. Because we want the fragment's contact information to be editable on this page,
select the allowEditing input parameter in the Properties pane.

7. As a final step, click the Preview icon in the header.

a. Select a row in the table to see the employee's contact details display on the right.
Notice how contact details from the fragment show as read-only values.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-33

b. Click Edit Employee for the selected row to view and edit the employee's
information, including contact details, on the Edit Employee page. Notice how
contact details from the fragment show as editable values.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-34

Create Custom Events that Emit to a Fragment's Parent Container
One way to pass data from a fragment to its parent container (say, a page or another
container like a different outer fragment) is by raising custom events that "emit" to the
container.

Let's extend the employee contacts use case to see how to do this. Here, the contacts
fragment lets you specify whether email is an employee's preferred means of communication.
A user who toggles the Emails Allowed? switch in the fragment will see a notification that
their communication preference has been set to email:

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-35

Behind the scenes, when the user toggles the Emails Allowed? switch, an action
chain defined on the fragment fires an event that "emits" the event's payload to the
fragment container. An event listener on the fragment container, watching for this
fragment event to fire, triggers a page-level action chain to perform some action—
which, in our example, is firing a notification that the selected employee's email
preference has been set.

1. Configure your fragment to raise a custom event that the parent container listens
to.

a. Drag and drop a Switch component to your contacts fragment.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-36

b. In the Properties pane, change the Label Hint text in the General tab to Emails
Allowed?.

c. Switch to the component's Events tab, then click + Event Listener and select On
'value'.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-37

d. In the SwitchValueChangeChain action chain, drag and drop a Fire Event
action.

e. Click Create next to Event Name in the Properties pane.

f. With the Scope set to Fragment, enter an Event ID (for example,
emailPreferenceSet), select the Emit event to container option, and click
Create. Make sure the event name starts with a lowercase letter, though
camel case is allowed. Hyphens are not supported.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-38

g. Click Go to Custom Event under the new event to go to the Events editor, where
you can define the event's payload.

h. In the emailPreferenceSet event's Properties pane, click Add Parameter next to
the Payload property. In the Add Payload Parameter dialog, enter an ID (say,
shouldEmailBeSent), select the type as Boolean, and click Create.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-39

i. Under Triggered by, click SwitchValueChangeChain to return to the action
chains editor.

j. If necessary, click Design to switch modes.

k. Select the Fire Event action on the canvas (if necessary), then in the Fire
Event action's Properties pane, use the variable picker next to
shouldEmailBeSent under Parameters and select value under Input
Parameters.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-40

2. Configure your page's fragment container to receive and process the fragment's custom
event.

a. In the Page Designer, select the particular fragment in Structure view, then in the
fragment Properties pane's Events tab, click + Event Listener and select the On
'emailPreferenceSet' custom event.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-41

b. Drag and drop a Fire Notification action to the
FragmentEmailPreferenceSetChain action chain.

c. Enter a summary in the Properties pane, something like Communication
preference is set to Email, then select Info as the Notification type.

d. Now drag and drop an Assign Variable action under the Fire Notification event.

e. In the action's Properties pane, click Create next to the Variable property. In
the Create Variable dialog, add a new page-level variable (for example,
containerParam) of type Boolean and click Create.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-42

f. Hover over the Value property and click the down arrow to open the variable picker,
then select shouldEmailBeSent under Input Parameters.

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-43

3. Now click the Preview icon in the header, select an employee, and toggle the
Emails Allowed? switch. You'll see a message that the employee's email
preference is set.

Set the Binding Type for Variables in Dynamic Components
When a variable is used as an input parameter in a dynamic component in a fragment,
you can assign a subtype to the variable to indicate how the input parameter is to be
used.

Subtypes are typically used to configure how variables are displayed in the Properties
pane, but there are some special subtypes that are used to set the binding type for
variables in fragments, and do not affect how the variables are displayed in the
Properties pane.

Specifying a binding type provides information that Visual Builder requires to generate
suitable metadata and expressions. The subtype you select should be based on the
type of component where the variable is used. For example, if the variable will be used
in a Dynamic Form Template, you would set the subtype to Dynamic Field.

To assign a subtype to a fragment variable:

1. Open the fragment's Variables editor.

2. Select the variable or constant.

3. Open the Design Time tab in the Properties pane.

4. Select the subtype for the fragment variable. Here are the subtypes that are used
to set a binding type for a variable:

Subtype valueOptio
ns

Usage

Dynamic
Field

Use Dynamic Field if the parameter will be bound to a Dynamic
Field Binding (oj-dynamic-bind-field) component (which
renders fields inside a Dynamic Form Template). In this case,
the appropriate expression will be generated when a field is
added to the fragment parameter, for example,
value="[[$fields.EmployeeName.name]]".

Dynamic
Field Array

none Use Dynamic Field Array if the parameter will be bound to a
For Each (oj-bind-for-each) component where its template
contains a Dynamic Field Binding (oj-dynamic-bind-field)
component. In this case, the appropriate expression will be
generated when fields are added to the fragment parameter,
for example,
value="[[[$fields.FirstName.name, $fields.LastN
ame.name]]]". Using the template, the For Each binding
duplicates markup sections for each field in the array and binds
each field to the corresponding oj-dynamic-bind-field in
the markup section. '

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-44

Subtype valueOptio
ns

Usage

Dynamic
Container

section Use Dynamic Container if the parameter will be bound to a
Dynamic Container (oj-dynamic-container) component
that will be configured differently on the pages it is used
(meaning, to show some sections on one page and another set
of sections on another page). In this case, the dynamic
container rule set is generated so as to wire up the component
correctly when the fragment is dropped onto a page or
template.

Dynamic
Layout
Context

none The Dynamic Layout Context option is typically not something
you'd set manually. When you plan to use a fragment within a
Dynamic Form's or Dynamic Table's field or form template and
you tag it as formTemplate or fieldTemplate in the
Settings editor, a new variable called
dynamicLayoutContext is created automatically and marked
as a required input parameter with its binding type set to this
option. Because dynamicLayoutContext is an umbrella
variable which contains all other layout-related context
variables such as $value, $metadata, and so on, you'd be
able to drop the fragment on a field or form template and gain
access to the parent dynamic layout context through this
variable.

Pass a Fragment's Context to VDOM or Custom Web Components
When you use fragments with VDOM (based on JET’s Virtual DOM architecture) or custom
web components, you need to allow the fragment to access its parent container's context. For
example, you might have an oj-dyn-form (the VDOM variant of a dynamic form) that
defines a form template in a fragment. To allow the fragment to access the layout context
used to render the form template, you'll need to define the Bridge property on the fragment
container.

The Bridge property is required within VDOM, particularly dynamic VDOM components that
use fragments; it can also be used with custom web components.
To pass a fragment's context to a VDOM or custom web component:

1. Open the page with the VDOM or custom web component that references a fragment.

2. In Structure view, select the fragment used on the page.

3. Click the All tab in the fragment container's Properties pane.

4. In the Bridge property, enter [[vbBridge]].

Chapter 13
Pass Data Between a Fragment and Its Parent Container

13-45

Defer Rendering of a Fragment's Content
By default, a fragment loads immediately when its page renders, but you can change
this behavior so a page renders faster initially. For example, say an Incidents page has
three tabs—List, Map, and Schedule—all defined in separate fragments. When the
Incidents page needs only the contents of the List fragment to display, you can wrap
the Map and Schedule fragments in an oj-defer element to delay the rendering of
those fragments at runtime.

What triggers hidden fragments to render is configurable. It could be a button click,
selecting a tab, opening a dialog, or an oj-bind-if that uses conditions to display
content. In these cases, UI events or application state determines when the fragment
is loaded. In the Incidents example, the hidden Map or Schedule fragment renders on
the page only when a user clicks either tab to view its content:

Chapter 13
Defer Rendering of a Fragment's Content

13-46

You can also delay a fragment from rendering until it is "visible". Say, your page has a lot of
content that encourages users to scroll. Rather than load the entire page, including sections
hidden from the viewport, you might want to load some sections only when the user brings
them into view. In this case, you can section your page into different fragments, then add a
trigger to render a fragment only when it comes into view.

To set up a fragment for deferred rendering:

1. Open the web application's page that contains fragments.

2. Select the fragment container whose content you want to render later, either on the
canvas or in the Structure view.

3. Right-click the container, select Surround, then Defer.

Chapter 13
Defer Rendering of a Fragment's Content

13-47

The Defer element is added to the fragment container, both on the canvas and in
Structure view. If you click Code view, you'll see oj-defer surrounding oj-vb-
fragment. Here's a code snippet for the Incidents tab bar with List, Map, and
Schedule tabs, where everything except the first tab is hidden initially:

<oj-tab-bar selection="{{ $variables.incidents }}">

 <li id="list">List
 <li id="map">Map
 <li id="Schedule">Schedule/li>

</oj-tab-bar>
<oj-switcher value="[[$variables.incidents]]">
 <div slot="list">
 <oj-vb-fragment id="incidentslist" name="incidentsList"></oj-
vb-fragment>
 </div>
 <div slot="map">
 <oj-defer>
 <oj-vb-fragment id="incidentsmap" name="incidentsMap"></oj-vb-
fragment>
 </oj-defer>
 </div>
 <div slot="schedule">
 <oj-defer>
 <oj-vb-fragment id="incidentsschedule"
name="incidentsSchedule"></oj-vb-fragment>
 </oj-defer>
 </div>
</oj-switcher>

Chapter 13
Defer Rendering of a Fragment's Content

13-48

Add Slots to a Fragment
As a fragment author, you can add one or more slots to your fragment as placeholders, so
those who consume the fragment can drop in their own components or content. Let's say you
want a greeting area for users to add their own content. To do this, you'd define a slot where
your fragment's consumers can add whatever they want, be it text or images.

Fragment slots are similar to component slots. They can be used—or left unused—just like
component slots. The only difference is that fragment slots cannot have a "default" slot.

To add slots to a fragment:

1. Open your fragment in the Fragment Designer. For demo purposes, let's assume you're
working with the greeting fragment to define an area for your users to provide some
greeting text on a page.

2. From the Components palette, drag and drop a Fragment Slot onto the fragment.

3. In the Fragment Slot's Properties pane, enter a slot name in the Name property (for
example, greetingArea).

4. Define other properties as needed:

a. To use a more descriptive identifier instead of the slot name, enter a Display Name
that will appear in the slot's placeholder area as well as wherever the slot name is
shown.

b. To provide a visual cue to users that something can be dropped into the area, select
Default Placeholder to generate a placeholder for the slot based on its name or
display name.

c. To let fragment users know what the fragment is meant for, provide a Description.

d. To indicate the type of content that the slot can contain, select from the Preferred
Content list. For example, if you expect the slot to hold image elements, you might
search and select the Avatar and Image components.

e. To allow fragment users to see actual data in the custom slot component, set up the
Context.

Chapter 13
Add Slots to a Fragment

13-49

5. It's also possible to add a fragment slot to a slot inside another component (for
example, a slot inside a button), allowing fragment users to customize those slots
in the fragment. To do this:

a. Drag and drop a Button onto the fragment canvas, then set it up as desired.

b. Drag a Fragment Slot and drop it onto the Button, then select a slot in the
button (for example, startIcon):

c. Enter a name for the fragment slot in the button's slot (for example,
buttonIcon); optionally, define other properties:

Chapter 13
Add Slots to a Fragment

13-50

Now when the fragment is used on a page, it reveals its slots (greeting and buttonIcon
in our example) on the page canvas, the page structure (shown here with Show Slots
selected), and the fragment's properties:

As a fragment consumer, you can now add the component of your choice to the slots
revealed in the fragment. For demo purposes, let continue our greeting example and add a
heading to the fragment slot on the canvas.

1. Drag and drop a Heading onto the Fragment Slot (greeting, for example).

Chapter 13
Add Slots to a Fragment

13-51

Tip:

You can add components to a fragment slot on the canvas and in
Structure view just as you would component slots. For example, when
you drag a Heading component and drop it directly onto the fragment in
the canvas, you'll be prompted to select a slot declared in your fragment.
This way, you'll be able to drop content into slots that don't include a
default placeholder:

2. Update the slotted component's properties as needed. For example, you might
update the Heading's text to display your greeting:

3. To customize the fragment slot in the slot inside the button, select the fragment to
view the fragment's Properties pane, then simply drag and drop a component of
choice onto the fragment slot. For example, drag an Icon from the Components
palette onto the buttonIcon.

Chapter 13
Add Slots to a Fragment

13-52

Alternatively, hover over the buttonIcon slot in the fragment's Properties pane and click

the Insert Component icon (). Components marked as Preferred Components for the
slot show in this view. Select a preferred component or any other component of your
choice.

4. After you've dropped the icon to the fragment slot, you can select the icon to further
customize it:

Chapter 13
Add Slots to a Fragment

13-53

Add Default Content to a Fragment Slot
Sometimes you might want to provide some default content for a fragment slot if the
fragment user doesn't provide their own content. To do this, you add the required
elements within a <template> in your fragment slot's HTML.

For example, you might decide to default to a standard greeting of Hello! in the
greetingArea slot in case the fragment user does not specify something
themselves. To do this:

1. In the Fragment Designer, select the fragment slot in the Structure view, then click
Code to view the fragment's HTML source.

2. Add your default content wrapped in a <template> element to the fragment slot's
definition within <oj-vb-fragment-slot>. For example:

<oj-vb-fragment-slot bridge="[[vbBridge]]" class="oj-flex-item oj-
sm-12 oj-md-12" name="greetingArea">
 <template>
 <h3>Hello!</h3>
 </template>
</oj-vb-fragment-slot>

Now when this fragment is used on a page, here's what it looks like:

Chapter 13
Add Slots to a Fragment

13-54

Set Data Context for a Fragment Slot
You can set the context on a fragment slot to pass data via a slot template, so fragment users
see some actual data in the custom slot component.

Suppose you want to display a default greeting with the first and last names of a particular
user, here's how you can do this:

1. In the Fragment Designer, drag a Fragment Slot from the Components palette and drop it
onto your fragment.

2. In the Properties pane, give the slot a name in the Name property (for example,
greeting), then set the value of the Context property to [[{ "$current":
{ "firstName": "John", "lastName": "Doe" } }]]:

Chapter 13
Add Slots to a Fragment

13-55

The context can be an arbitrary object. By convention, it contains the
field $current with the actual data. You can specify a literal object or a complex
expression. In our example here, we're passing an object with field $current
(that contains field firstName with value John and field lastName with value
Doe) to the slot.

3. Switch to Code mode and add this snippet inside the <oj-vb-fragment-slot>
element to define a slot template for your data:

 <template>
 <div></div>
 </template>

Optionally, right-click and select Format Document.

4. Switch to the JSON editor and define the data attribute in the fragment slot's
metadata to describe the shape of the data that the component will be exposing
through to the slot contents via $current.

For our example, locate the greeting slot and add the data attribute as follows:

 "slots": {
 "greeting": {
 "data": {

Chapter 13
Add Slots to a Fragment

13-56

 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 }
 }
 }
 }
}

5. Switch to the Fragment Designer, locate the Text component in the Components palette,
then drag and drop it onto the bottom-most <div> element in the Structure view:

6. In the Text component's Properties pane, use the variable picker on the Value property to
select firstName under Current:

Chapter 13
Add Slots to a Fragment

13-57

7. Drag another Text component and drop it onto the div element in Structure view
again. This time, use the variable picker on the Value property to select lastName
under Current.

8. Add some greeting text to the <div> element within the slot template in Code view,
for example:

 <div>
 Hello
 <oj-bind-text value="[[$current.firstName]]"></oj-bind-
text>
 <oj-bind-text value="[[$current.lastName]]"></oj-bind-
text>,
 how are you?
 </div>

Now when the fragment is used on a page, your data (first and last names) is passed
as slot content:

Chapter 13
Add Slots to a Fragment

13-58

Users can also provide custom slot content for a more visually appealing display:

Customize How Fragment Properties Display in the Properties
Pane

Customize how a fragment's properties display in the Properties pane as a way to enhance
the design experience when fragments are used. Here are the customization options
available to you:

Option See

Display an enhanced UI for each fragment input
parameter in the fragment's Properties pane when
a fragment is selected on a page.

Customize How a Fragment Variable is Displayed
in the Properties Pane

Display a fragment's input parameters and other
properties in sections on the fragment's Properties
pane. If the fragment is used as a page template,
this sectioned view also shows on the page's
properties pane (which displays when no
component or element is selected on the page).

Section Fragment Properties for Display in the
Properties Pane

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-59

Customize How a Fragment Variable is Displayed in the Properties
Pane

Customize the UI component displayed for fragment input parameters in the
Properties pane, which can make the task of editing those parameters in the Page
Designer easier.

When working with a fragment in the Page Designer, the fragment's Properties pane
by default displays text field components for editing the values of fragment variables
enabled as input parameters. For some input parameters, a different UI component
can make editing the parameter easier or more intuitive. For example, if a parameter is
used to specify a date, a Date Picker component might be easier to use than a text
field. To do this, you customize the fragment variable, so that a date picker shows
instead of a text field when the fragment's input parameters are edited in the Page
Designer:

To customize the UI component displayed for a fragment variable in the Properties
pane, you use the Design Time tab in the Variables editor. You can also edit the
fragment's JSON directly in the JSON editor.

Note:

Some UI customization options are not available in the Design Time tab.
You'll need to edit the JSON directly to configure these advanced options.
See Customize Fragment JSON with Metadata for a list of options.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-60

Customize a Variable in the Variables Editor

To configure the UI used to edit a fragment's input parameters in the Page Designer:

1. Open the fragment's Variables editor.

2. Select the variable or constant you want to customize.

3. Open the variable or constant's Design Time tab in the Properties pane.

4. Select properties to customize how the component for editing the variable will look in the
Page Designer.
The properties you see in the Design Time tab will depend upon the variable's type, and
the Subtype property you select in the tab. For example, if Date is selected as the
Subtype, you'll see fields for setting the date's Minimum and Maximum limits:

Here are steps for some common customization options for string-, object-, and number-
type variables and constants:

Note:

When working with string variables and constants, you have the option of
adding translation metadata if you want a particular variable (or constant) to
display the translation icon on the Page Designer's Properties pane to support
translation.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-61

Custo
mizati
on
Option

Steps in Design Time Tab Result in Page Designer

To
display
a color
picker:

For a string-type variable or constant:

a. In the Design Time tab, select the
Subtype as Color.

b. Optional: In the Placeholder field,
specify a hint text for the variable;
for example, Choose a color.

c. Optional: Switch to the General tab
and set these additional properties:

• In the Label field, enter a user-
friendly name for the variable.

• In the Default Value property,
use the color picker to set a
default color.

To
display
a date
or date-
and-
time
picker:

For a string-type variable or constant:

a. In the Design Time tab, select the
Subtype as Date or Date Time.

b. Optional: In the Placeholder field,
specify a hint text for the variable;
for example, Select a date.

c. Optional: In the Minimum field, set
the bottom (inclusive) limit of a date
or date-and-time range for the
value in the Properties pane.

d. Optional: In the Maximum field, set
the top (inclusive) limit of a date or
date-and-time range for the value
in the Properties pane.

e. Optional: Switch to the General
tab, then in the Label field, enter a
user-friendly name for the variable.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-62

Custo
mizati
on
Option

Steps in Design Time Tab Result in Page Designer

To
display
an
endpoi
nt
picker:

For an object-type variable or constant:

a. In the Design Time tab, select the
Subtype as Endpoint.

b. Optional: To filter endpoints
available in the endpoint picker by
REST action type, for example, to
only list Get One REST calls,
select one or more of the
predefined filters in Endpoint
Action Hint.

c. Optional: To filter endpoints
available in the endpoint picker by
service connection type, for
example, to only list service
connections using an ADF
Describe, select one or more of the
predefined filters in Service Type.

d. Optional: Switch to the General
tab, then in the Label field, enter a
user-friendly name for the variable.

Note:

The Placeholder field does
not take effect in the
Properties pane when you
use the Endpoint subtype.

Clicking Select launches a Configure
Endpoint wizard in which fragment
users can select a suitable endpoint
and choose its URI parameters.

Tip:

If you cannot find the
endpoint you want or prefer
to manually set up your
endpoint, click the Manual

Setup of Endpoint icon ()
in the wizard, then select
from the available endpoints
and confgure its URI
parameters.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-63

Custo
mizati
on
Option

Steps in Design Time Tab Result in Page Designer

To
display
a drop-
down
menu
containi
ng an
array of
possibl
e
values:

For a string-type variable or constant:

a. In the Design Time tab, select the
Subtype as Enum Values.

b. Optional: In the Placeholder field,
specify a hint text for the variable;
for example, Select the
default browser.

c. Click next to Enum Values,
enter the Label, Value, and
Description for your first value. For
example, you might enter Chrome
as the label, ch as the value, and
Google Browser as the
description. Click Create.

If you want to make changes, click

, update the values, and click

Save. Click to delete a value.

To reorder your list, drag the
next to the value and drop it where
you want it.

d. Repeat step c to create your entire
list of values.

e. Optional: Switch to the General
tab, then in the Label field, enter a
user-friendly name for the variable.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-64

Custo
mizati
on
Option

Steps in Design Time Tab Result in Page Designer

To
display
a time
picker:

For a string-type variable or constant:

a. In the Design Time tab, select the
Subtype as Time.

b. Optional: In the Placeholder field,
specify a hint text for the variable;
for example, Select a time.

c. Optional: In the Minimum property,
set the bottom (inclusive) limit of a
time range for the value in the
Properties pane.

d. Optional: In the Maximum
property, set the top (inclusive) limit
of a time range for the value in the
Properties pane.

e. Optional: Switch to the General
tab, then in the Label field, enter a
user-friendly name for the variable.

To
display
a drop-
down
menu
with a
list of
time
zones:

For a string-type variable or constant:

a. In the Design Time tab, select the
Subtype as Time Zone.

b. Optional: In the Placeholder field,
specify a hint text for the variable;
for example, Select a time
zone.

c. Optional: Switch to the General
tab, then in the Label field, enter a
user-friendly name for the variable.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-65

Custo
mizati
on
Option

Steps in Design Time Tab Result in Page Designer

To limit
the
input
values
to a
number
in a
range:

For a number-type variable or constant:

a. In the Design Time tab, specify a
hint text for the variable, for
example, Enter Quantity, in
the Placeholder field.

b. Optional: In the Minimum and
Maximum properties, set the
inclusive bottom and top limits of a
range for the value in the
Properties pane; for example, to
limit the input value to a number in
the range 0 - 99.

c. Optional: Switch to the General
tab, then in the Label field, enter a
user-friendly name for the variable.

When you set properties in the Design Time tab, the metadata in the fragment's JSON
is automatically updated. You can open the JSON editor to view the metadata. For
example, here's what you might see for a variable that is customized to use the Date
Picker component:

"variables": {
 "hireDate": {
 "type": "string",
 "input": "fromCaller",
 "@dt": {
 "label": "Date of Hire"
 "subtype": "date",
 "valueOptions": {
 "placeholder": "Select a date"
 }
 }
},

Customize Fragment JSON with Metadata

While you can use a fragment variable's Design Time tab for some simple UI
customization, you'll need to edit the JSON directly for advanced options. To do this:

1. Open the fragment's JSON editor.

2. Update the variable or constant's definition by setting the @dt element, then use
the subtype property to specify the component you want displayed in the Page
Designer. The JSON editor displays a hint to help you select the value for the
subtype property:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-66

For example, here's how you can show a component for selecting a business object by
setting the subtype property to businessObject:

"myObject": {
 "type": "string",
 "input": "fromCaller",
 "@dt": {
 "subtype": "businessObject",
 "label": "Related Object"
 }
 },

You can also use the label property to change the variable's display name in the
Properties pane.

The Properties pane in the Page Designer will now show a component for selecting a
business object and the new display name for the variable wherever the fragment is
used.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-67

For more details about the JET components and properties, see JET metadata in
Oracle JavaScript Extension Toolkit documentation.

Property Options for Variable Metadata

The following table describes the metadata properties that you can use in JSON to
customize how fragment variables are displayed in the Properties pane:

Property Type Description

label string Use this property to specify a
user-friendly name for the
variable.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-68

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/MetadataOverview.html

Property Type Description

subtype Available subtypes:
• businessObject
• color
• date
• date-time
• endpoint
• enum
• lov
• time
• timezone

N

o

t

e

:

T
h
e
f
o
ll
o
w
i
n
g
s
u
b
t
y
p
e
s
a
r
e
a
l
s
o
a
v
a
il
a
b
l
e

Use this property to create a
more specific type of
customizer for simple types.
For example, you can choose
date to use a date picker
component for a string type:

Most simple customizations
can be configured from the
Design Time tab (see
Customize a Variable in the
Variables Editor).

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-69

Property Type Description

,
b
u
t
t
h
e
y
a
r
e
u
s
e
d
t
o
s
e
t
t
h
e
b
i
n
d
i
n
g
t
y
p
e
,
a
n
d
d
o
n
o
t
a
ff
e
c
t
h
o
w
t
h
e
v

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-70

Property Type Description

a
ri
a
b
l
e
s
a
r
e
d
i
s
p
l
a
y
e
d
i
n
t
h
e
P
r
o
p
e
r
ti
e
s
p
a
n
e
:
• d

y
n
a
m
i
c
C
o
n
t
a
i
n
e
r

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-71

Property Type Description

• d
y
n
a
m
i
c
F
i
e
l
d

• d
y
n
a
m
i
c
F
i
e
l
d[
]

• d
y
n
a
m
i
c
L
a
y
o
u
t
C
o
n
t
e
x
t

F
o
r
d
e
t
a

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-72

Property Type Description

il
s
,
s
e
e
S
e
t
t
h
e
B
i
n
d
i
n
g
T
y
p
e
f
o
r
V
a
ri
a
b
l
e
s
i
n
D
y
n
a
m
i
c
C
o
m
p
o
n
e
n
t
s
.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-73

Property Type Description

valueOptions object The valueOptions
available to you depend on the
selected subtype. When no
subtype is selected, the only
valueOptions is
placeholder. See the tables
below for a list of
valueOptions properties.

Property Options for Fragment Metadata

The valid subtype and valueOptions properties you can use depend on the variable's
type. For example, the color subtype can only be applied to variables that are strings.
This section describes the subtype and valueOptions properties that are valid for
each type.

Subtypes and valueOptions for objects

When the variable type is object, the following table describes the subtype and
valueOptions that can be used:

Subtype valueOptio
ns

Usage

dynamicC
ontainer

section The only valueOption for the dynamicContainer subtype is
section:

"@dt": {
 "subtype": "dynamicContainer",
 "valueOptions": {
 "section": {
 "preferredContent":
["SpFoldoutPanelElement","SpFoldoutPanelSummarizi
ngElement"]
 }
 }
 }

You create the metadata for dynamic container sections in the
parent container.

Use preferredContent to list the interfaces that components in
the root of the section templates must implement.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-74

Subtype valueOptio
ns

Usage

empty fields When no subtype is selected, you can use the fields
valueOption to customize the display/editing of object values.
Instead of displaying a simple single text area for the whole value,
the Properties pane will display individual customizers for the
various fields of the object.

Note:

This property is only supported for
displaying the first level of object
fields.

You can specify an array of fields of the associated variable or
constant that you want displayed in-line in the Properties pane
when editing the object's values. You can customize how each
field is displayed by using label, description, subtype,
and valueOptions.

When using the fields property, each field must have the ID of
the object field it maps to. The order of fields in the array is the
order they will be displayed in the Properties pane.

You can use the following field properties:
• id (Required). A string to match the DT field definition to the

ID of the object type.
• label (Optional). A string for the user displayable value for

the field.
• description (Optional). A string to appear in the '?' help

pop-up for the field.
• subtype (Optional). Use to further define the type of the field

value. See the table above.
• valueOptions (Optional). Use these values to further

customize the editing experience.

A variable described with the following metadata:

"variables": {
 "employee": {
 "type": "person",
 "input": "fromCaller",
 "defaultValue": {
 "active": false,
 "date-of-birth": "2001-01-01",
 "name": "Norman"
 }
 }
 }

would look similar to this in the Properties pane when displayed
with the default text area:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-75

Subtype valueOptio
ns

Usage

The fields property can be used to customize how the object is
displayed:

"variables": {
 "employee": {
 "type": "person",
 "input": "fromCaller",
 "defaultValue": {
 "active": false,
 "date-of-birth": "2001-01-01",
 "name": "Norman"
 },
 "@dt": {
 "valueOptions": {
 "fields": [
 {
 "id": "name",
 "description": "The first
(given) name"
 "label": "First Name"
 },
 {
 "id": "date-of-birth",
 "label": "Date of Birth"
 "subType": "date"
 },
 {
 "id": "active",
 "description": "Is the employee
active?"
 "label": "Active"
 }
]
 }
 }
 }
 }

The customized object would look similar to this in the Properties
pane:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-76

Subtype valueOptio
ns

Usage

Subtypes and valueOptions for arrays

When the variable type is array, the following table describes the subtype and valueOptions
that can be used:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-77

Subtype valueOptio
ns

Usage

enum values
placehol
der

Use enum to display a drop-down menu showing all values for
each item in the array. The only valueOptions property for the
enum subtype is values. In addition to a value, each item in
the array can have an optional label and description.

 "selectBrowser": {
 "type": "object[]",
 "input": "fromCaller",
 "@dt": {
 "subtype": "enum",
 "valueOptions": {
 "values": [
 {
 "value": "ch",
 "label": "Chrome",
 "description": "Google browser"
 },
 {
 "value": "fx",
 "label": "Firefox",
 "description": "Mozilla browser"
 },
 {
 "value": "sf",
 "label": "Safari",
 "description": "iOS browser"
 }
],
 "placeholder": "Select the default
browser"
 },
 "label": "Choose a browser"
 }
 },

The Properties pane will show a drop-down menu that can have
items with descriptions:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-78

Subtype valueOptio
ns

Usage

If you are using an array of primitives (say, string[])), you can
use enum to display a drop-down menu showing all values for
each item in the array:

 "selectBrowser": {
 "type": "string[]",
 "input": "fromCaller",
 "@dt": {
 "subtype": "enum",
 "valueOptions": {
 "values": [
 {
 "value": "ch",
 "label": "Chrome",
 "description": "Google Browser"
 },
 {
 "value": "fx",
 "label": "Firefox",
 "description": "Mozilla Browser"
 },
 {
 "value": "sf",
 "label": "Safari",
 "description": "Apple Browser"
 }
],
 "placeholder": "Select the default
browser"
 },
 "label": "Choose a browser"
 }
 },

The Properties pane will show a drop-down menu with the three
values for each item in the array:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-79

Subtype valueOptio
ns

Usage

empty placehol
der

When no subtype is selected, the only valueOptions is
placeholder.

Subtypes and valueOptions for booleans

When the variable type is boolean, there are no subtype or valueOptions. Variables
with a boolean type are displayed as switch components in the Properties pane.

Subtypes and valueOptions for numbers

When the variable type is number, you can use the Design Time tab to configure the
subtype and valueOptions. See Customize a Variable in the Variables Editor.

Subtypes and valueOptions for strings

When the variable type is string, you can use the Design Time tab to configure the
subtype and valueOptions for simple customization options. See Customize a
Variable in the Variables Editor.

The following table describes the subtype and valueOptions that can be used in
JSON to configure advanced options for string-type variables:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-80

Subtype valueOptions Usage

empty placeholder
translatable

Use the placeholder to specify a hint text for the
variable. This can be used for all variables when
there is no subtype.

If a default value is supplied by the fragment
variable, then that default value is used as the
default placeholder. If both a placeholder value is
used and the default value is specified, then the
placeholder will be used.

An example of values for the placeholder and
translatable properties:

}
 "placeholder": "Search",
 "translatable": true
}

businessO
bject

placeholder Use the businessObject subtype to display a
business object picker in the Properties pane.

"type": "string",
 "input": "fromCaller",
 "@dt": {
 "subtype": "businessObject",
 "label": "Related
Object"
 }

The Properties pane displays a component for
selecting a business object:

Note:

The placeholder
valueOption is
not displayed in the
Properties pane
when you use the
businessObject
subtype.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-81

Subtype valueOptions Usage

lov service
placeholder

Use to create a drop-down of values retrieved from
a service, such as a REST endpoint.

The service endpoint must be already set up in
Visual Builder, and must be available to the
application. You can then use @dt metadata to call
the service and fetch items to populate the drop-
down list.

The service response must be in JSON format,
and the response items in an array.

In the example of the lov subtype below, the now
constant will be offered a choice of values to pick
from, which are determined by the response from
a REST endpoint:

"now": {
 "type": "string",
 "description": "wow",
 "defaultValue": "505642",
 "input": "none",
 "@dt": {
 "label": "Films Now Playing",
 "subtype": "lov",
 "service": {
 "request": {
 "endpoint": "my-
app:Petstore/getNowPlaying",
 "uriParameters": {
 "api_key":
"4174b7d9a7b4bf87342c98e2289c6ee6"
 }
 },
 "response": {
 "itemsPath": "results",
 "mapping": {
 "value": "id",
 "label": "title",
 "description": "overview"
 }
 }
 }
 }
 }
}

Here's how the example above displays in the
Properties pane:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-82

Subtype valueOptions Usage

For details about the lov metadata property
values, see LOV Metadata Property Values.

LOV Metadata Property Values

You can assign the lov subtype to a variable if you want to display a drop-down list of values
(LOV) for the variable in the Properties pane. To use the lov subtype, you'll need to set
valueOptions property values to specify where the LOV data is retrieved from, and to
configure how the drop-down list will look in the Properties pane:

Name Description Example

service Type: Object

Describes the service to retrieve the LOV data
from, and how to use it.

See the lov subtype example
above.

request Type: Object

Describes what service to call, and how to call it.

See the lov subtype example
above.

request.e
ndpoint

Type: string

The fully-qualified name of a Visual Builder service
that you are able to access.

"my-app:Petstore/
getNowPlaying"

request.p
athParame
ters

Type: Object

Maps endpoint path parameter names, and the
values to replace them with. The values can also
be Visual Builder constants (see below).

"pathParameters": {
 "name": "honeybadger"
 "department":
"accounts"
}

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-83

Name Description Example

request.u
riParamet
ers

Type: Object

Maps URI path parameters to the values they
should be replaced with. The values can also be
Visual Builder constants (see below).

"uriParameters": {
 "api_key":
"4174b7d9a7b4bf87342c98e2
289c6ee6"
 "session_name":
"cabbage"
}

response Type: Object

Describes how to unpack the payload returned by
a successful response.

See the lov subtype example
above.

response.
itemsPath

Type: string

A dot-separated path from the root of the
response object to the array containing the LOV
values.

results

response.
mapping

Type: Object

Describes how to populate the LOV from the
response object. The mapping should indicate
which response fields are to be used for the
label, value, and description in the LOV.

See the lov subtype example
above.

response.
mapping.d
escriptio
n

Type: string (optional)

Describes the field from the response object that
is used in the drop-down item description. It
appears below label and value.

overview

response.
mapping.l
abel

Type: string (optional)

Describes the field from the response object that
is used as the primary display name of the item in
the drop-down menu and in the input.

title

response.
mapping.v
alue

Type: string

Describes the field from the response object that
is used as the actual value of the variable/
constant. It is visible to the right in the drop-down
menu.

id

Using dependent parameters for lov metadata property values

The path and URI parameters might depend on other constants. For example, a REST
service can use the result of an earlier selection as part of its own request. To do this,
use expression notation in the parameter values to indicate which constant values to
use:

"pathParameters": {
 "department": "[[$constants.dept]]"
}

The expression instructs this service request to use the current value of the "dept"
constant as the value to use for the path parameter "department".

When writing the expression:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-84

• Only simple direct references may be used. Calculated expressions such as
"[[$constants.dept + "_"]]" will not work as expected.

• Only constants can be used. Variables cannot be used.

• The referenced constants must be accessible to the extension performing the LOV
service call.

Section Fragment Properties for Display in the Properties Pane
Define a custom layout of sections to display a fragment's most important properties on the
Properties pane when the fragment is selected on the page or container that uses it.

Typically, when a fragment is added to a page or container, its input parameters display in
alphabetical order on the Properties pane when the fragment is selected on the page or
container. To provide a better design experience for those who use the fragment, you can
organize its input parameters—as well as any other components you want to highlight—in
sections.

The ability to section a fragment's properties is most useful in pages where a fragment is
used as a page template. Here's an example of a page based on a Welcome Page
Pattern fragment: what you see on the left is the standard view of input parameters; what
you see on the right is the sectioned view:

Users will be able to drill down to view input parameters in each section, as shown in the
image, where clicking User Info shows the avatar and days input parameters. Take note
also of the Related Object property, which has been customized to show a component for
selecting a business object.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-85

Let's use the same Welcome Page Pattern example to see how to section a
fragment's properties:

1. Open the fragment's Design Time editor.

2. Review the list of input parameters, as well as dynamic components and slots (if
any), and decide which ones you want to display as properties in the fragment's
page or container. If you want to group them by sections, decide which properties
go into each section.

3. Drag and drop an item onto the valid area under General, or simply select an
item's check box in the Components palette to add it to the end of your layout:

If you want, use the item's Properties pane to set additional properties. For
example, you can use the Label field to display a user-friendly name for the
fragment variable. The Label field is particularly useful for dynamic components
with data that may take a while to display in the Page Designer. Instead of a
generic "Dynamic Form" or "Dynamic Table" label, users can get a better idea of
what the component will display.

4. To create a section and add properties to it:

a. Click + Section, enter a section label in the pop-up (for example, User
Info), and click Create.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-86

b. Optionally, in the newly created section's Properties pane, change the default icon to
more easily identify the section: click the Default Icon, select an icon from the Icon
Gallery, and click Select.

c. Now drag the item you want to add to the section and drop it onto the section header
(for example, drag the avatar input parameter and drop it onto the User Info
header).

To remove a parameter you added from a section, right-click the parameter and select
Remove from Section, or deselect the item in the Components palette:

To delete a section, right-click the section and click Delete Section.

Now after the fragment is added to a page or a container, you'll see its properties display as
sections in the Properties pane when the fragment is selected on the page. The sections also
show in the Structure view.

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-87

If the fragment is used as a page template to create a page, the sectioned view shows
on the page's Properties pane as well as in the page's Structure view, with the
fragment considered the root element instead of the page:

Chapter 13
Customize How Fragment Properties Display in the Properties Pane

13-88

Part IV
Augment Applications

Once you have the basic building blocks of your application, you can augment the user
experience by enabling your app as a Progressive Web App (PWA), adding offline
capabilities, and implementing search engine optimization. You can also create translatable
strings. Most importantly, you'll want to take steps to secure access to the application.

Topics:

• Enable Progressive Web App Support

• Secure the Application

• Add Offline Capabilities to Your Application

• Optimize Your App for Search Engines

• Work with Translations

14
Enable Progressive Web App Support

Web (and mobile) applications that you develop in Visual Builder can be distributed as
Progressive Web Apps (PWA) if you enable PWA support for the application.

Unlike apps that run in your browser, PWAs can be installed on your device and have a
native look-and-feel. You won't need to build the app as an .apk, .aab, or .ipa file or
distribute it through the Apple App Store or Google Play.

A PWA created in Visual Builder:

• Provides a QR code in the browser that your users can scan to install the app.

• Allows your users to install the application from the browser window and add the
application to the Home screen.

• Runs on the device in a separate window without an address bar, like a native app.

• Works offline similar to a native app if configured for offline support. To take advantage of
offline support, PWA-enabled web apps must be deployed via Grunt. Visual Builder's
offline support takes care of making pages, CSS, JavaScript, and all other resources that
make up your application available offline. Offline support for your application-specific
data must be implemented with the Offline Persistent Toolkit (OPT) or by using standard
cache headers.

Guidelines for Using PWA Support
Here are a few things to consider when using PWA support for your applications.

• Currently, we support the Chrome browser for Android and the Safari browser on iOS.
We recommend that you use the latest available browser versions. For information on
supported browser versions, review this page.

• Here are a few limitations for PWAs running on the iOS platform. These issues may be
resolved in future iOS releases.

– Install the PWA using the share icon (because the Add PWAappName to Home
screen message is not displayed).

– The PWA state is not saved between sessions. If a user exits a PWA, the app is
restarted when the user returns.

– Navigation between screens in an app is possible only by using the built-in
navigation. This is because Apple devices do not have a Back button.

– Inactive apps appear as a white screen (no splash screen support) in the task
manager.

– Some PWA configurations and behavior such as service worker cache size, cache
eviction policy, and web manifest support depends on the level of support provided
by the browser. Refer to your browser documentation for more information.

– Orientation lock is not supported.

14-1

https://www.oracle.com/technetwork/indexes/products/browser-policy-2859268.html

– Deep linking is not supported. As a result, clicking a deep link URL on an
Apple device will take the user to the Safari browser, instead of the PWA
installed on the device.

• Periodically delete service workers and clear cache when developing PWAs.
When you repeatedly stage new versions of a PWA (in the iterative development
cycle), you might run into issues with Chrome DevTools if multiple service workers
are present. Here are high-level steps to do this:

1. Click Cmd+Option+I (on Macintosh) or Ctrl+Shift+I (on Windows) to open the
Chrome DevTools.

2. Switch to the Application tab.

3. Click Clear Storage in the left menu.

4. Click Clear Site Data to clear the cache and unregister service workers.

Configure Progressive Web App Support
You can enable and configure Progressive Web App (PWA) support for both web and
mobile applications from your app's Settings page.

Note:

Mobile apps have been deprecated starting with version 23.10. You can no
longer create a mobile app, but you can import an existing mobile app and
deploy it as a PWA to be able to use it. You can use your PWA-enabled
mobile apps until July 2024 when mobile apps reach End of Life (EOL). To
use your mobile-enabled PWAs beyond July 2024, we strongly urge you to
transition your mobile app as a web app and deploy it as a PWA.

When you enable an application for PWA, Visual Builder adds the necessary files to
your project such as a web manifest file (a JSON configuration file) as well as required
icons and splash screens. The web manifest stores configuration settings required by
the PWA. You can modify these settings from the Manifest Settings section of the PWA
page. For more information on this file, see this page.

Oracle provides Redwood-themed icons and splash screens for your app. You can
replace these images with your own branded versions if desired. For PWAs that run on
Android 8.0 and higher devices, you can also use adaptive icons that display as a
variety of shapes on different device models.

You can also add an offline fallback page to your PWA and customize it to suit your
needs. This offline fallback page is displayed when the user performs an action that
requires a connection but the device is offline.

1. Click Web Apps (or Mobile Apps) tab to navigate to the app that you want to
configure as a PWA.

Chapter 14
Configure Progressive Web App Support

14-2

https://developer.mozilla.org/en-US/docs/Web/Manifest

Note:

Responsive web app templates (starting with version 22.04) are designed to be
visual appealing and can adjust to the size of the user's screen, ranging from
small phones to wide-screen desktops. Here's how a web-enabled PWA that
uses the Bottom Tabs navigation template renders in portrait and landscape
modes; notice how the header items adapt based on device orientation:

2. Click your app's <app name> node, then click Settings.

The General tab is displayed.

3. Select the PWA tab.

4. Click Enable Progressive Web App (PWA).

The Manifest Settings and Resources sections are displayed. Visual Builder also adds
the necessary PWA resources to your app's folder tree.

Chapter 14
Configure Progressive Web App Support

14-3

If you're working with a mobile app, you might see settings for advanced file
caching. Advanced file caching is not supported for web apps.

5. Review and edit, if needed, the information in the Manifest Settings section.

a. Specify the Application Name.

The application name appears on the dialog that displays to prompt you to
install the application.

b. Review the short name of the application.

If both application name and short name are specified, the short name is used
on the Home screen (below the app icon), launcher, and other places where
space is limited.

c. Change the background color and theme color, if needed, by clicking the
currently selected color and choosing a new color in the color picker or by
entering a RGB value in the text field.

6. (Optional) Customize the splash screen and icons to use with your app.

a. From the Resources section, click Sample to download the
pwabranding_redwood.zip archive file.

Chapter 14
Configure Progressive Web App Support

14-4

b. Modify the icons and splash screens as needed.

When you design adaptive icons, ensure that important information is within a "safe
zone" circle, with a radius equal to 40 percent of the image size. By default, Redwood
theme icons generated for PWAs in Visual Builder follow this guideline, as do the
icons included in the sample archive. It is recommended that you download the
sample from the Resources section and use the images within as a guideline to
create your adaptive icons.

c. Upload your modified application image archive either by dragging it to the drag-and-
drop area or by clicking the link to launch the Open dialog box.

7. If you are using adaptive icons, modify the web manifest file to include the "purpose":
"any maskable" setting as follows:

{
 "sizes": "512x512",
 "src": "resources/icons/icon-512x512.png",
 "type": "image/png",
 "purpose": "any maskable"
}

8. To include an offline fallback page for your application, click Create next to Offline
Fallback Page.

Visual Builder adds a Redwood-themed offline page (offlinePage.html) to your
project and provides a link under Offline Fallback Page. If you want to customize the
offline fallback page, click the link to open it in the Designer and modify it as required.

9. For mobile applications, specify the files to cache on the user’s device in the Advanced
File Caching section.

By default, when launched for the first time, the PWA caches all flows and pages on the
user’s device. Use this section to narrow down the required resources to be stored in the
browser cache.

After you enable PWA support, you can stage and publish a web app to distribute it as you
would any web app. See Stage and Publish Visual Applications. To stage and publish a PWA-
enabled mobile app, you must first build the app to generate a QR code. See Build a Mobile
Application as a PWA.

Chapter 14
Configure Progressive Web App Support

14-5

When you open the link for a PWA in your browser, you can use the options in the
address bar to install your app as follows:

• Click the address bar and use the QR Code icon to display the app's QR code
which you can then scan to install the app:

• Or use the install icon in the address bar to install the app:

Deep Linking on Android
Deep linking allows users to open a specific page or content in the PWA directly,
instead of requiring them to search or navigate to the content from the Home page.
For PWAs on Android devices, deep linking is enabled without the need for any
additional configuration.

Clicking a deep link URL shared in an email or any other application for the first time
after the PWA is installed prompts the user to either open the link in the installed PWA
or in the browser. Once the user chooses to open the link in the PWA, the device
remembers this choice. From then on, it will open other deep link URLs only in the
PWA. For secure applications, the user will need to log in to view data.

Chapter 14
Deep Linking on Android

14-6

Here are examples of deep link URLs as they appear on Visual Builder PWAs, specifically
those that point to an employee's details page:

• When using a query, the URL could be similar to https://
demo.oraclecloud.com/ic/builder/rt/hrapplication/1.0/webApps/
hrwebpwa/?
employeesId=1&page=app&app=employees&employees=employees-
employees-detail

• When using a path, the URL could be similar to https://
demo.oraclecloud.com/ic/builder/rt/hrapplication/1.0/webApps/
hrwebpwa/vp/app/employees/employees-employees-detail?
employeesId=1

Note:

If the deep link URL takes the user to a detailed page with a Back button, it falls to
the app developer to implement the logic for the Back button.

Run Mobile Applications as PWAs
With enhanced capabilities for PWAs and the responsive template for web applications,
mobile applications have been deprecated in favor of PWAs. You can no longer create a new
mobile application in Visual Builder, but you can continue to use an existing mobile app by
deploying it as a PWA.

To deploy your existing mobile app as a PWA, first import it, then enable the PWA option in
the application's Settings page before you stage or publish the mobile app. Once you do that,
you can build your PWA-enabled mobile application to generate a QR code, which users can
scan to install the app on their devices. This way, you can have a single application that is
installable and can scale from desktop to tablet to mobile. It can also work offline if configured
for offline support.

Chapter 14
Run Mobile Applications as PWAs

14-7

Note:

You can continue to use your existing mobile apps until July 2024 when
mobile apps, including PWA-enabled ones, reach End of Life (EOL). To use
your mobile PWAs beyond July 2024, we strongly urge you to transition your
mobile app as a web app and deploy it as a PWA.

Configure Mobile Application Settings
Review the settings for an imported mobile application to verify that it has the
appropriate values.

1. Click the Mobile Applications tab.

2. Click the app_name node and click Settings.

The General tab is displayed.

3. In the Application Settings page, select the main or starting page for your mobile
app from the Default Page list. This page is displayed when you open the app.

4. Select a value to specify the theme, if any, to use for the mobile app.

Chapter 14
Run Mobile Applications as PWAs

14-8

Note:

Your mobile application's theme defaults to the latest JET theme at the time of
creation. If your app was created with Visual Builder 20.07 or earlier, the theme
is likely to be Alta (which was the default at that time). If your application was
created with Visual Builder 20.10 or later, the Redwood theme is likely the
default for your application. You can change the theme in the mobile app's
Settings editor, but you can't assume that changing the theme from Alta to
Redwood will automatically work, as components' dimensions and styling are
different between the two themes. See Customize the Redwood Theme for a
Web Application.

5. In the App Name field, enter the app name that is to be displayed when the app is
installed on a mobile device.

6. Enter the name of the vendor who originated the application in the Vendor Name field.

7. Enter text that describes the application in the Description field.

Build a Mobile Application as a PWA
Build your PWA-enabled mobile application to generate a QR code for the application. Users
can scan the QR code to install the mobile application as a PWA for testing as well as for
production.

Staging and publishing a mobile application is similar to what you'd do to stage and publish a
web application, except that you first build your mobile app with the information that lets users
install the app on supported platforms.

• Follow these steps to stage a PWA-enabled mobile application:

1. Open the PWA-enabled mobile application that you want to build.

2. Click the Preview icon () to run the app on a new tab in the browser.

3. When the mobile app opens in the browser, click the Build my App button.

Chapter 14
Run Mobile Applications as PWAs

14-9

4. In the Stage Application dialog box, select the appropriate option to determine
what to do with your business objects, then click Stage.

When the build is complete, the generated QR code is displayed.

Chapter 14
Run Mobile Applications as PWAs

14-10

5. Scan the QR code to install the mobile application on a supported device.
Alternatively, click the Launch in Browser link to view the app in your laptop or
device browser.

When you open the link, you can use the Install icon in the address bar (as
highlighted here) to install your app on your laptop or device:

Chapter 14
Run Mobile Applications as PWAs

14-11

• Follow these steps to publish your staged PWA-enabled mobile application and
make it live:

1. Open the PWA-enabled mobile application you want to publish.

2. Select Publish from the application’s Menu option in the upper right corner.

3. In the Publish Application dialog box, specify what to do with your business
object data, then click Publish:

The schema and data from the staging database are copied to the live
database.

4. To view the published app, go to the Visual Applications home page and locate
your application. Click Live in the Status column, then select your mobile
application.

The application opens in a new browser tab on the application's start page. On
the right is the QR code that users can use to install the mobile application on
a supported device. The option to launch the app in a browser is also
available. You can now share this application URL with your users.

Chapter 14
Run Mobile Applications as PWAs

14-12

Convert a Mobile PWA to a Web PWA
To be able to use your mobile apps beyond 2024 (when they reach End of Life), we strongly
urge you to convert your existing mobile app to a web app and deploy it as a PWA.

To convert your PWA-enabled mobile app to a web app:

1. Open an existing mobile application, then export the application to download it as a ZIP
archive to your local file system.

Note:

Create a backup of the application's ZIP archive, so you have a copy you can
use in case you run into issues.

2. Extract the contents of the archive. You should see something similar to this directory
structure:

businessObjects/
mobileApps/
settings/
Gruntfile.js

Chapter 14
Run Mobile Applications as PWAs

14-13

package.json
visual-application.json

3. Create a new webApps directory (take note of the capitalization) in the extracted
folder.

4. Copy the contents of your mobileApps directory into the webApps directory. For
example, if your mobileApps directory contains a hrmobileapp folder, copy the
hrmobileapp folder to the webApps directory.

5. Go to the mobile app directory you copied into the webApps directory
(hrmobileapp for example) and remove these files:

• manifest.json
• settings/appShellCache.json
• settings/build-configurations.json
• settings/mobile-build.json
• mobile-build-templates/* (if it exists)

6. Compress the webApps directory into a new archive (for example,
webApps.zip).

Tip:

If you're working on a Mac, use these steps to create an archive:

% cd <Visual Application Directory>
% find . -name '.DS_Store' -type f -delete
% zip -r webApps.zip webApps

7. With your mobile application openin Visual Builder, import the webApps archive
you created. Don't select the Delete existing files and resources option:

Chapter 14
Run Mobile Applications as PWAs

14-14

Your new web app should now show up in the Web Apps pane.

8. Enable PWA support for your new web app:

a. Select the app's <app name> node in the Web Apps pane, then click Settings and
PWA.

b. Click the Enable Progressive Web App (PWA) toggle to disable and re-enable PWA
support.

c. Review PWA settings for your web app. You might want to change the Manifest
Settings and create an Offline Fallback Page.

Chapter 14
Run Mobile Applications as PWAs

14-15

9. Now stage your application to test and make sure everything works as expected.

Your new web PWA should work the same way as your original mobile PWA.
When your PWA-enabled web app opens in a browser:

a. Use the device toolbar in the browser's Developer tools to debug your app in a
simulated mobile environment:

b. Use the install icon in the app's address bar to install your web app:

Chapter 14
Run Mobile Applications as PWAs

14-16

c. Use the share icon in the app's address bar to generate a QR code that will allow
users to quickly open the web app on a mobile device via its camera:

Chapter 14
Run Mobile Applications as PWAs

14-17

After you've confirmed that your app works as expected, you can choose to delete
the mobile app from your visual application.

Note:

If your mobile app leveraged the Oracle JET Offline Persistence Toolkit
to provide offline capabilities, you need to publish your application using
Grunt commands, or better yet, use the package and deploy pipeline in
VB Studio.

Chapter 14
Run Mobile Applications as PWAs

14-18

15
Secure the Application

You can secure access to your application with user credentials and create user roles to
secure data stored in your application's business objects.

Security for Web Apps
Visual Builder apps can use Oracle Identity Cloud Service (IDCS) for token-based
authentication. Token-based authentication protects your business data from unauthorized
access, while allowing your app's users to access the app now and again without having to
log in each time.

When a user logs in to your deployed app, the app authenticates with IDCS, which sends a
token to the app. Once authenticated, the user can continue to use the app without having to
log back in until the token expires, typically after 8 hours.

Whenever the app makes a call to the REST service, it retrieves the token and attaches it to
the request. As long as the token is still valid, the REST service sends the appropriate
response. If the token has expired, the service rejects the request (returns a '401') and the
user is redirected to the log-in screen.

For web and PWAs (including PWA-enabled mobile apps), the token is stored in the browser
session and is discarded when the user closes the browser window, exits the PWA, or
reboots the device. When the user relaunches the app following one of these events, they are
prompted to log back in.

The following table describes the authentication behavior after some common user events
such as restarting, rebooting, and going online:

What happens if ... Web PWA

...I quit my app or it crashes and I
relaunch it?

...I reboot my device and
relaunch the app?

I am prompted to log back in.

For web apps, the token is stored
in the browser session and is
discarded when the browser
window or the app is closed.

If the device is online, I am
prompted to log back in.

For PWAs, the token is stored in
the browser session and is
discarded when the browser
window or the app is closed.

If the device is offline, the PWA
uses a cached user object to
allow me to continue working
with cached data. I am only
prompted to log back in when I
reestablish an Internet
connection.

...I switch from a data network to
a WiFi network or vice versa?

I am not prompted to log in.
Changing networks does not
affect token behavior or duration.

I am not prompted to log in.
Changing networks does not
affect token behavior or duration.

15-1

What happens if ... Web PWA

... I lose my network connection
or switch to airplane mode?

I receive a browser error, such as
a "No internet" error (Google
Chrome).

If my web app uses the cache
control HTTP header to manage
cached data, I can continue to
work in offline mode.

See Add Offline Support Using
the Oracle Offline Persistence
Kit.

I can continue to work in offline
mode with cached data even
after the token expires since I am
not connecting to the server.

The app uses the Oracle Offline
Persistence Toolkit (OPT) to
manage cached data.

See Add Offline Support Using
the Oracle Offline Persistence
Kit.

...My device comes back online? If the token is still valid, I can
continue working as before
without having to log in.

If the token has expired, I am
prompted to log in again.

If the token is still valid, I can
continue working as before
without having to log in.

If the token has expired, I am
prompted to log in again.

Authentication Roles Versus User Roles
You use authentication roles to manage access to the pages and data in your
application. In addition to the default authentication roles, you can fine tune access to
your application's resources by creating user roles and assigning authenticated users
to them.

All app users are automatically assigned either the Anonymous User or Authenticated
User authentication role. When access to the app requires authentication (default), all
users are granted the Authenticated User role when they sign in. If anonymous access
to the app is allowed, users are granted the Anonymous User role. You can use these
roles when granting permissions to operations on business objects when role-based
security is enabled. Here's a table that describes the two authentication roles:

Authenticat
ion Role

Description

Authenticat
ed User

All users who access Visual Builder applications are assigned this role after they
sign in. An authenticated user can see all components and manage business
objects, unless access to the object is explicitly disabled for the Authenticated
User role. All developers are assigned this role by default.

Anonymous
User

All users who access Visual Builder applications are assigned this role when
anonymous access to the application is enabled. An anonymous user cannot
access data stored in the application's business objects or retrieved from
services, unless anonymous access is explicitly enabled for the Anonymous
User role.

When your app requires authentication, you can further control access to business
objects and data in your application through user roles. The application’s user roles
ensure that users assigned the same role or group in the identity provider are granted
equal access in your application. You define user roles in the User Roles tab of your
application’s Settings editor. See Manage User Roles and Access.

As a developer, you can assign users or groups in the identity domain to a user role in
your visual application, but only identity domain administrators can add users to the
identity domain. It is the responsibility of the identity domain administrator to add users
to groups and maintain them in the identity provider. Administrators manage groups

Chapter 15
Authentication Roles Versus User Roles

15-2

using Oracle Identity Cloud Service (IDCS), or use Oracle Shared Identity Manager (SIM) to
manage roles for services using a Traditional Cloud Account. All user authentication is
delegated to the identity provider.

Note:

If you want to federate IDCS with your existing identity provider, see Federating with
Identity Providers.

You can also choose to override the default security provider that an app is using by
creating your own security provider that maps to a third-party provider. Note that
this might affect functionality such as identity propagation to REST service calls.
See Security Provider.

When a user attempts to access data in a business object secured by a user role, the roles
assigned to the user are authenticated in the identity provider. The user is granted access if
one of the user roles securing the business object is mapped to one of the roles or groups the
user has been assigned to in the identity provider. Security based on roles is disabled by
default. You can set role-based security and privileges for viewing, creating, updating and
deleting objects in the Security tab of the business object in the Business Objects editor. See
Secure Business Objects.

Note:

By default, Authenticated Users can access all objects and components in your
application. To thoroughly enable role-based security, you must explicitly specify
authentication or visibility for an object to a user role and disable access for the
Authenticated User authentication role.

Manage User Roles and Access
You can create, edit, and remove user roles to secure access to your application's business
objects.

In addition to the Authenticated User role granted to users who sign in to your application,
users can be assigned a user role based on their credentials and the groups they've been
assigned to in Oracle Identity Cloud Service (IDCS). When a user tries to access data in a
business object secured by this user role, the roles assigned to the user are authenticated in
IDCS. Access is granted if one of the user roles securing the business object is mapped to
one of the groups the user has been assigned to in IDCS or if the user was mapped to that
user role directly.

Use the User Roles tab in a visual application’s Settings editor to create a user role and
assign users and groups in your IDCS account to the user role. Assigning groups to your user
role maps the role to IDCS groups and is known as "role mapping". Once you create a user
role, the role and any users or groups assigned to it are automatically added to the client
application in IDCS.

To create a user role in your visual application:

Chapter 15
Manage User Roles and Access

15-3

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/get-started-oracle-identity-cloud-service1.html
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Concepts/federation.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Concepts/federation.htm

1. On the Visual Builder Home page, locate the visual application whose settings you
want to change and choose Settings in the Application Options menu.
Alternatively, choose Settings in the application’s Menu in the upper right corner.

2. Open the User Roles tab in the Settings editor.

If user roles have been defined, you'll see a tile for each user role in your
application (along with the groups and users assigned to it).

Chapter 15
Manage User Roles and Access

15-4

3. Click Create Role.

4. Enter a name for the role in the Create Role dialog box. Click Create.

This role name is displayed when designing your application, but is not exposed to users.

5. Before you proceed to assign groups or users, or edit a user role, verify that the
application profile selected in the Application Profile drop-down list is the one where you
want to make changes.

6. Click Assign groups or users in the tile if no users or group have been assigned. If you
want to edit a user role and some groups or users have already been assigned to it, click

 that appears when you hover your cursor over the tile.

7. In the Change Assignment... dialog box, click for each group that you want to assign
to the role. In the Users field, enter the name of the user that you want to add, or enter a
character to retrieve a list of users. For example, enter a to retrieve all user names that

include the character a. Click to add the user to the role.

You can assign multiple groups and users to your user role. Keep in mind that the list of
groups and users is defined in the identity provider and managed by the identity domain
administrator. Click Save Changes when you are done. Saving your changes
automatically updates the user roles for your application in IDCS.

After you create a role, you'll need to enable role-based security for the application's business
objects by specifying the user roles that can access the object and setting access privileges
for the role in the business object’s Security tab.

Besides securing access to the data in your business objects, user roles can help control
what a user sees in your application. For example, you can use role-based permissions to
limit access to the app, entire pages or flows, even set restrictions on certain components in
a page, so only users with certain roles can view that information.

Chapter 15
Manage User Roles and Access

15-5

Note:

An application's user role definitions are preserved whenever it is exported
and imported—as long as the app is imported to the same IDCS domain it
was exported from. When you export an app, its user roles (as defined in
user-roles.json) are included in the exported application archive (role-
mapping.json), then re-created when you import the application. Once this
is done, the role-mapping.json file is deleted from the application's
sources. But if you run into errors and this doesn't happen (say, because
you're importing an older app whose users and groups no longer exist in
IDCS), you'll need to manually set up the user roles again.

Test Role-Based Access
When role-based security settings are defined, you can preview how your application
will look and behave for users with different roles.

Role-based security enables you to configure the data and pages that are accessible
to users based on the user’s role. The security settings for your components and
business objects will determine the components and data that are visible to users, how
users can navigate between the pages and the layout of the pages in your application.

When viewing pages in the Page Designer, by default, the pages that you see are not
affected by the security settings. To see how your security settings will affect your
application, click Who am I? in the Page Designer toolbar.

The Who am I? dialog will list all your application's roles. You will always see the
Authenticated User and Anonymous User in this dialog. If you've defined custom user
roles, you'll see those as well:

Chapter 15
Test Role-Based Access

15-6

Multiple roles can be active simultaneously, but at least one role must always be active. For a
more accurate representation of how your application will look and behave for a specific role,
you might want to deactivate all the roles except the one you are interested in.

For example, if Anonymous User and Authenticated User are both active, you are seeing the
application as it appears to users that are signed in and to users that are not signed in. By
deactivating the Authenticated User role you will see and experience the application as an
Anonymous User would see it. An anonymous user that was not granted rights to view data
in a business object would not see any data if they visited the collection page for the object.
Additionally, if View access was not granted, links in the UI to the collection page would be
hidden from the anonymous user.

Access and Secure Business Objects
Enable role-based security to control access to your business objects through REST
endpoints, both for apps in your visual application and external clients. You can configure
each business object's security settings to control the user roles that can access the
endpoints and the types of operations they can perform.

Secure Business Objects
User roles can be used to secure the data stored in business objects.

By default, the business objects in your application are accessible to all users that can
access the application. To secure the data stored in objects, you can use user roles to restrict
a user’s access to view, create, update, and delete operations by configuring role-based
access for each operation. Users can only perform the operations and interact with the
business objects associated with the role that the user has been assigned.

Chapter 15
Access and Secure Business Objects

15-7

To allow anonymous access to the data in a business object, for each operation you
must explicitly set the permissions granted to the Anonymous User authentication role.

To enable role-based security for a business object:

1. Select the business object you want to secure.

2. Open the Security tab of the business object.

3. Click the Role-based security icon to enable security for the object.

When you enable role-based security for a business object, you see a matrix of
the existing user roles and the business operations that can be performed. By
default, when you enable security, all existing user roles are permitted to perform
all operations. If you create a new user role (see Manage User Roles and Access),
permissions to perform operations are disabled for the new role and must be
enabled manually.

4. Select the operations that can be performed by each authentication and user role.
You can enable or disable permission for each operation.

Chapter 15
Access and Secure Business Objects

15-8

You can further define security at the row level for View, Update, and Delete operations
by using a query builder to define conditions. To specify which users the conditions apply
to, select the user role in the table. You can select Allow if user created the row from
the action menu to limit an operation to the user who created the row. The menu also has
Cut and Copy options for you to move conditions from one role or operation to another.

Chapter 15
Access and Secure Business Objects

15-9

Allow External Access to Your Business Objects
When configuring security, you can allow external clients to access the business
objects in your application through their REST endpoints. For example, you might want
an external service like Process Automation to update a business object after a
process is complete, say change a status field from "requested" to "approved".

To do this, you need to retrieve the API for the catalog of endpoints exposed by your
application's business objects, found in the Catalog API panel in the Business Objects
tab of your application's Settings editor:

Chapter 15
Access and Secure Business Objects

15-10

The Development, Staging, and Live versions of your visual application each have their own
catalog APIs. Though the URLs for the Staged and Live applications are provided for
development purposes, they will not provide any results until the applications are staged or
published.

Tip:

For each URL, click the Clipboard icon to quickly copy the URL to your clipboard.

Accessing the catalog APIs requires authentication. To set up security options for allowing
access to the business object APIs:

1. Open the Business Objects tab in the visual application’s Settings editor.

2. Under Security, select an authentication option:

• Allow anonymous access to business objects describe end point

• Enable basic authentication for business object REST APIs

If you choose to allow anonymous access to the Describe endpoint, external clients
accessing the endpoint will still need to add the header "Authorization: Public" to the request.

Chapter 15
Access and Secure Business Objects

15-11

The header is injected automatically for requests sent from your visual applications.
Here's how you can add the header for requests from external clients:

• Include auth in the Describe endpoint URL, for example:
https://servicename-cloudaccount.test.oraclecloud.com/ic/
builder/rt/myapp/1.0/resources/auth/data/describe?
metadataMode=minimal

• Add the “Authorization: Public” header to the request, for example, from the cURL
command line:
curl -v https://servicename-
cloudaccount.test.oraclecloud.com/ic/builder/rt/myapp/1.0/
resources/data/describe?metadataMode=minimal -H
'Authorization: Public'

Access to the data in business objects is based on authentication and user roles. For
each business object you need to explicitly enable role-based security and specify the
operations that each defined authentication and user role can perform. You configure
the security settings in the business object's Security tab. See Allow Anonymous
Access.

Note:

Applications in other domains might need to be added to the CORS allowlist
of origins permitted to access applications in your domain. An administrator
can add domains in Administrator Settings.
Additionally, for requests to access your APIs that are not made through a
browser, the request might need to be explicitly modified to include an Origin
header that matches the domain in the CORS allowlist. A more advanced
alternative would be to add CSRF headers to POST requests that include the
current CSRF token value and the session cookie so the server can match
the token from the request with the one in the session cache.

Get an Access Token for Authentication
To access the APIs for the catalog or business objects from outside Visual Builder, you
can get a bearer token to use with various authentication methods.

In the design-time, you can use the token to access any of your app's endpoints. At
runtime, you can use the token to read the data in the app's business object.

When authentication is handled by IDCS, you can use the token with connections that
are authenticated with OAuth using the following authentication methods:

• Oracle Cloud Account

• User Assertion OAuth 2.0

• Client Credentials OAuth 2.0

• Resource Owner OAuth 2.0

You cannot use the token with connections to Oracle Cloud Applications.

To generate a bearer token:

1. Open the Business Objects tab in the visual application’s Settings editor.

Chapter 15
Access and Secure Business Objects

15-12

2. Click Get Access Token in the Security pane.

The access token is generated and is displayed in the Access Token Value field. You can
now copy the token and use it when accessing your application's APIs.

Allow Anonymous Access
Visual Builder applications, by default, require authentication; all users must sign in with their
Oracle Cloud credentials to access your app. If you want users to access your app without
signing in, you can enable anonymous access from the app-level Settings editor.

Note:

The service administrator must enable anonymous access in the instance’s Tenant
settings. You will not be able to enable anonymous access for your visual
applications if anonymous access to applications is not permitted for the instance.

When anonymous access is enabled, users are not required to sign in and are automatically
assigned the Anonymous User authentication role. By default, users assigned this role
cannot access the data stored in your visual application’s business objects or retrieved from
services. You must explicitly allow anonymous users access to this data by configuring the
security settings of business objects and services. You also need to allow anonymous access
to the Describe endpoint for your business objects.

Changes that you make to authentication and security settings are applied only when you
stage or publish the application. The versions of your application that are currently staged or
published are unaffected. For example, if your application is already published, you must
create a new version of the application, change its settings to allow anonymous access, then
stage or publish the application again for the new security settings to take effect.

1. To enable users to access your visual app without signing in, enable anonymous access
in the app's Security tab:

a. Open your web (or mobile) application in the Navigator.

Chapter 15
Allow Anonymous Access

15-13

b. Open the application artifact and click Settings, then Security.

c. Deselect Require authenticated access under Permissions.

With anonymous access enabled, users don't need to sign in to access the app.

2. To allow anonymous users access to the visual application's data stored in
business objects, enable role-based security in the business object’s Security tab
and specify the operations that the Anonymous User authentication role can
perform:

a. Open your business object's Security tab.

b. Click the Role-based security icon (if not enabled).

c. Configure the rights granted to users assigned the Anonymous User role.

Chapter 15
Allow Anonymous Access

15-14

With anonymous access enabled, anonymous users can perform operations on business
objects based on the permissions granted to the Anonymous User authentication role.

3. To allow anonymous access to service connection data. enable and specify the
authentication mechanism for anonymous access in the service connection's server
details:

a. Open your service connection's Servers tab and edit the server details.

b. Select Allow anonymous access to the service connection infrastructure under
Security.

If the option is grayed out, click Override Security to override security inherited from
the backend, then select Allow anonymous access to the service connection
infrastructure.

c. From the Authentication for Anonymous Users drop-down list, select the
authentication mechanism you want to use.

With anonymous access enabled, anonymous users can access data from the service
connections that are configured to allow anonymous access.

4. Applications that allow anonymous access and have business objects with anonymous
access must explicitly allow anonymous access to the business object's Describe
endpoint:

a. Open the Business Objects tab of the visual application's Settings editor.

b. Select Allow anonymous access to business objects describe end point.

Chapter 15
Allow Anonymous Access

15-15

If you choose to allow anonymous access, access to an endpoint will still
require adding the header “Authorization: Public” to the request. This header is
injected automatically for requests sent from your visual applications. Here's
how you can add the header to the request from external clients:

• Include auth in the Describe endpoint URL, for example:
https://servicename-
cloudaccount.test.oraclecloud.com/ic/builder/rt/
myapp/1.0/resources/auth/data/describe?
metadataMode=minimal

• Add the “Authorization: Public” header to the request, for example, from
the cURL command line:
curl -v https://servicename-
cloudaccount.test.oraclecloud.com/ic/builder/rt/
myapp/1.0/resources/data/describe?metadataMode=minimal
-H 'Authorization: Public'

Embed a Web Application
Your web application can be embedded in sites in domains associated with your
Identity Domain as well as external sites.

You must explicitly allow embedding in your web application’s settings if you want to
allow other applications to embed your application. For example, if you know that
another site wants to use pages and data from your web app in their site, and they
don't want to or can't link to your app, you can allow your app to be embedded in their
app.

For security reasons, all embedding is denied by default. You can use the app-level
Settings editor to change this setting:

Chapter 15
Embed a Web Application

15-16

The web application’s security settings are stored in the configuration.json file, which is
located in the application’s settings folder when you browse the application’s sources.

To allow your web app to be embedded in another app:

1. Open the web application in the Navigator.

2. Select the application artifact.

3. Click Settings, then Security.

4. In the Embedding section, select Allow embedding in any application domain.

When your app is embedded within another app, the preferred method is for the other app to
only embed the content of the page and not display the elements that wrap the content. For
example, you might want to prevent a user from opening your app's user menu and logging
out when it is embedded in another app. You can edit the shell template page to remove
content such as the header and footer elements that you don’t want to appear when the page
is embedded.

You can also embed a web app in an Oracle Cloud Application, but there's more to it than just
allowing access. See Embed a Web App in an Oracle Cloud Application for details.

Chapter 15
Embed a Web Application

15-17

16
Add Offline Capabilities to Your Application

Applications that you create in Visual Builder can function even when your device is
disconnected from the network. To do this, you can use the Oracle Offline Persistence Toolkit
which enables your application to cache data on the client for offline support.

If you use business objects to shape your application's data, you can leverage the object's
caching settings to cache data read from a business object on the client. For more
information, see Control Data Caching for Business Objects.

Add Offline Support Using the Oracle Offline Persistence Kit
The Oracle Offline Persistence Toolkit is a client-side JavaScript library that helps to provide
offline support for your application.

It enables caching for offline support at the HTTP request layer. This support is transparent to
the user and is done through the Fetch API and an XHR adapter. HTTP requests made while
the client or client device is offline are captured for replay when connection to the server is
restored. Additional capabilities include a persistent storage layer, synchronization manager,
binary data support, and various configuration APIs for customizing the default behavior. This
toolkit can be used in both ServiceWorker and non-ServiceWorker contexts within web apps.

Using the toolkit, you can configure your application to:

• Download content for offline reading where connectivity isn’t available.
For example, an application could include product inventory data that a salesperson
could download and read at customer sites where connectivity isn’t available.

• Cache content for improved performance.

• Perform transactions on the downloaded content where connectivity isn’t available and
upload the transactions when connectivity returns.
For example, the salesperson could visit a site with no Internet access and enter an order
for some number of product items. When connectivity returns, the application can
automatically send the transaction to the server.

• Provide conflict resolution when the offline data can’t merge with the server.
If the salesperson’s request exceeds the amount of available inventory, the application
can configure a message asking the salesperson to cancel the order or place the item on
back order.

The architecture diagram illustrates the major components of the toolkit and how an
application interacts with it:

16-1

Responses from REST services to your application must not include either the no-
cache or no-store value in the Cache-Control HTTP header as these values prevent
the toolkit from working in your application. Work with the administrators of the REST
services that your application connects to so that values in the Cache-Control HTTP
header are configured appropriately.

Note:

Data caching for business objects is disabled by default, with each object's
Resource Cache Control setting defined as Sensitive. This default option
combines the no-cache and no-store values to disable data caching. Before
you use the Oracle Offline Persistence Toolkit to enable data caching for
offline support, check the data caching strategy used by your application's
business objects. See Define a Data Caching Strategy.

To use the toolkit in a web (or mobile) application, you update the application’s app-
flow.js file to include an OfflineHandler() function that determines the scope of
data in your application to cache, what type of caching strategy from the toolkit to use,
and so on. The following commented app-flow.js file demonstrates one scenario of
how you might go about implementing caching for offline capabilities in your
application. The file also demonstrates how you enable toolkit's logging functionality
while you develop the application that uses the toolkit. Enabling this type of logging
during the development phase will help you understand what data the toolkit caches

Chapter 16
Add Offline Support Using the Oracle Offline Persistence Kit

16-2

offline in your application. Disable the logging functionality when you are ready to publish
your application in a production environment.

define([
 'vbsw/helpers/serviceWorkerHelpers',
 /**
 * Add the following entries to include the toolkit classes that you'll
use. More information about these
 * classes can be found in the toolkit's API doc. See the link to the
API doc in the paragraph before
 * this sample file.
 *
 */
 'persist/persistenceManager',
 'persist/defaultResponseProxy',
 'persist/fetchStrategies',
 /**
 * Add the following entry to enable console logging while you develop
your app with the toolkit.
 */
 'persist/impl/logger'
],
 (ServiceWorkerHelpers, PersistenceManager, DefaultResponseProxy,
FetchStrategies, Logger) => {
 'use strict';

 class AppModule {

 }

 var OfflineHandler = function () {

 /**
 * Enable console logging of the toolkit for development testing
 */
 Logger.option('level', Logger.LEVEL_LOG);
 Logger.option('writer', console);

 var options = {
 /**
 * The following code snippets implements the toolkit's
CacheFirstStrategy. This strategy
 * checks the application's cache for the requested data
before it makes a request to cache
 * data. The code snippet also disables the background fetch
of data.
 */

 fetchStrategy: FetchStrategies.getCacheFirstStrategy({
 backgroundFetch: 'disabled'
 }),
 };
 this._responseProxy =
DefaultResponseProxy.getResponseProxy(options);
 };

Chapter 16
Add Offline Support Using the Oracle Offline Persistence Kit

16-3

 OfflineHandler.prototype.handleRequest = function(request,
scope) {
 /**
 * (Optional). Write output from the OfflineHandler to
your browser's console. Useful to help
 * you understand the code that follows.
 */
 console.log('OfflineHandler.handleRequest() url = ' +
request.url + ' cache = ' + request.cache +
 ' mode = ' + request.mode);

 /**
 * Cache requests where the URL matches the scope for
which you want data cached.
 */
 if (request.url.match(
 'http://localhost:1988/webApps/ifixitfaster/api')) {

 return this._responseProxy.processRequest(request);
 }
 return PersistenceManager.browserFetch(request);
 };

 OfflineHandler.prototype.beforeSyncRequestListener = (event)
=> {
 return Promise.resolve();
 };
 OfflineHandler.prototype.afterSyncRequestListener = (event)
=> {
 return Promise.resolve();
 };
 AppModule.prototype.createOfflineHandler = () => {
 /** Create the OfflineHandler that makes the toolkit cache
data URLs */
 return Promise.resolve(new OfflineHandler());
 };
 AppModule.prototype.isOnline = () => {
 return ServiceWorkerHelpers.isOnline();
 };
 AppModule.prototype.forceOffline = (flag) => {

return ServiceWorkerHelpers.forceOffline(flag).then(function () {
 /** if online, perform a data sync */
 if (!flag) {
 return ServiceWorkerHelpers.syncOfflineData();
 }
 return Promise.resolve();

 }).catch(function (error) {
 console.error(error);
 });
 };
 return AppModule;
 });

Chapter 16
Add Offline Support Using the Oracle Offline Persistence Kit

16-4

Oracle maintains the persistence toolkit as an open-source project. For additional information
about using the toolkit, see the README.md and Wiki for the persistence toolkit on Github at
https://github.com/oracle/offline-persistence-toolkit. API documentation for the toolkit is linked
to from the aforementioned Github page, but can also be accessed directly at https://
oracle.github.io/offline-persistence-toolkit/index.html.

Chapter 16
Add Offline Support Using the Oracle Offline Persistence Kit

16-5

https://github.com/oracle/offline-persistence-toolkit
https://oracle.github.io/offline-persistence-toolkit/index.html
https://oracle.github.io/offline-persistence-toolkit/index.html

17
Optimize Your App for Search Engines

Search Engine Optimization (SEO) covers a variety of techniques that make your
application's pages more accessible to web crawlers, the scripts used by search engines to
crawl the web and gather pages for indexing. SEO looks to increase the ranking of indexed
pages in search results to give your content more visibility.

You can often improve the ranking of your application's pages using sitemaps. Sitemaps list
the URLs of your pages, enabling web crawlers to identify your content without relying solely
on their ability to crawl and parse the pages. But while sitemaps can help web crawlers find
pages for indexing, the indexing process itself might be less than ideal for single-page
applications. This is especially true when content is dynamically added to pages based on the
results of REST calls. In such scenarios, web crawlers may not wait long enough for the
REST calls to complete and the page to be fully rendered before indexing the page. Pages
that are indexed before their content can be fully loaded don't feature well in search results.

To address this issue, Visual Builder "prerenders" pages that web crawlers access. When a
request for a page is received from Googlebot (or any other search engine), the request is
routed through a prerender server, which loads the page, runs any JavaScript required to fully
render that page, then strips it out before returning the page to Googlebot. This way,
Googlebot always receives a fully rendered page for indexing—just one without any
JavaScript in the source.

A page, once prerendered, is always cached, so page markup can be returned immediately
when subsequent requests are made for the same URL. This helps reduce page load times
that may adversely impact page ranking. If markup is yet to be cached, the process of
rendering the page can take some time. To optimize these response times, it's recommended
that you warm the prerender server's cache for URLs listed in your application's sitemap, so
web crawlers always get the fastest possible response when requesting those URLs.

Here's a recommended list of actions to optimize your app for search engines:

1. Create a sitemap for your web application.

2. Add the sitemap to your web application's resources.

3. Once your web application is deployed (or redeployed), warm the cache for URLs listed
in your app's sitemap (using the vb-prerender-cache-warm Grunt task).

Create a Sitemap for a Web App
A sitemap is a document that contains URLs to pages representative of your application. It
ensures that important locations in your application are possible for web crawlers to locate
and are properly ranked.

A simple sitemap may look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>https://eta.myexample.org/?page=shell</loc>
 <lastmod>2023-08-21T16:12:20+03:00</lastmod>

17-1

 </url>
 <url>
 <loc>https://eta.myexample.org/?page=shell&shell=bugs&bugs=main-
bug</loc>
 <lastmod>2023-08-21T16:12:20+03:00</lastmod>
 </url>
 <url>
 <loc>https://eta.myexample.org/?page=shell&shell=tags</loc>
 <lastmod>2023-08-21T16:12:20+03:00</lastmod>
 </url>
</urlset>

Each <url> tag is used to specify the URL of a page. This tag has several child tags,
but only the <loc> and <lastmod> tags are used to populate the prerender server's
cache:

• <loc> is a required tag that specifies the actual URL of a page. The value of a
<loc> tag must begin with the protocol (such as https) and end with a trailing
slash, if your web server requires it. This value must be less than 2,048 characters
long.

• <lastmod> is a required tag that specifies the date the contents of the URL
changed between application deployments.

Make sure the sitemap contains each individual URL you want indexed. It should also
include up-to-date lastmod entries if the contents of the URL can change between
deployments (for example, when pages contain data from other sources).

For general information on sitemaps, see https://www.sitemaps.org/protocol.html.

Add a Sitemap to a Web App's Resources
You can add a sitemap to your web application's resources to provide web crawlers
information about the content in the application.

Before you add a sitemap file to your web app's resources, make sure it contains each
URL you want indexed as well as up-to-date information for each URL. See Create a
Sitemap for a Web App.
To add a sitemap to your web application:

1. Upload the sitemap file (for example, sitemap.xml or sitemap.txt) to your
application in Visual Builder.

You can upload the sitemap file to a web application's directory (for example, /
webApps/mywebapp/sitemap.xml) or directly to the root directory of your
visual application (at the same level as Readme.md or visual-
application.json). Note that the root /webApps directory has higher priority
and uploading a sitemap file here should work for all your web applications.

To upload a sitemap file at the root of your visual application:

a. Open your web application in the Navigator.

b. Click Source View.

c. Right-click the webApps directory and choose Import in the pop-up menu:

Chapter 17
Add a Sitemap to a Web App's Resources

17-2

https://www.sitemaps.org/protocol.html

Alternatively, drag a file from your local file system onto the webApps directory in the
Navigator.

d. In the Import Resources dialog box, remove webApps in the Import location field,
then click the drop target area and navigate to the file on your local system:

e. Click Import.

The sitemap is added to the root of your visual application:

Chapter 17
Add a Sitemap to a Web App's Resources

17-3

2. Add the description/snippet for your application:

a. Click Web Applications in the Navigator and open your application.

b. Click HTML to open the application's index.html file.

c. Update the <meta name="description" content="description"> tag in the
<head> section to add a description and a snippet that a web crawler will
extract.

Ensure that your description and snippet meet recommended guidelines, as
described in Google documentation for snippets and meta-tags.

3. Stage and publish your application (see Stage and Publish Visual Applications).

After your application is successfully staged and published, you can access the
sitemap at the deployed location, for example, at:

https://visualbuilder-
dev.integration.test.ocp.oraclecloud.com/ic/builder/rt/
myproject/live/webApps/mywebapp/version_324616315386523389/
sitemap.xml

Chapter 17
Add a Sitemap to a Web App's Resources

17-4

https://support.google.com/webmasters/answer/35624?hl=en
https://support.google.com/webmasters/answer/79812

Note:

Each time you stage or publish your web app, the location of the resources
changes to use a new version, and the sitemap file is moved to the newer /
webApps/webAppName/version_id directory. To access the sitemap
afterward, remember to use the new version_id in the resource path.
If you want to automatically copy the sitemap file to the visual application's root
directory each time the web app is staged or published, see Move Your Sitemap
to a Visual Application's Root Directory.

Warm the Cache for URLs in a Sitemap
When your web app includes a sitemap that lists URLs to pages representative of your
application, you can use the vb-prerender-cache-warm Grunt task to warm the prerender
server's cache for these URLs, so web crawlers get the fastest possible response when
requesting those URLs.

To use the vb-prerender-cache-warm Grunt task, you must set up your file system to build
the visual application by installing Node.js and its package manager (npm). Once you have
installed the necessary tools, you need to save the visual application's sources to your local
system. See Build Your Application Locally.

To warm the cache for URLs in a sitemap using the vb-prerender-cache-warm Grunt task:

1. In the command-line interface, navigate to the folder on your local system containing the
package.json and Gruntfile.js files.

2. Enter npm install to retrieve the node dependencies required to build the application.

3. Enter vb-prerender-cache-warm in the command-line interface to warm the cache. Here
are some examples:

• To initially warm the cache after a redeployment:

grunt --id=MyApplication --ver=1.0 --sitemap="./webApps/myWebApp/
sitemap.xml" --url=http://my.vbinstance.com/ic/builder --
clearCache=true vb-prerender-cache-warm

• To update the cache after minor modifications to the sitemap:

grunt --id=MyApplication --ver=1.0 --sitemap="./webApps/myWebApp/
sitemap.xml" --url=http://my.vbinstance.com/ic/builder vb-prerender-
cache-warm

The vb-prerender-cache-warm task reads the manifest.json file on startup. It will
compare the timestamps of the pages in the manifest with the application's sitemap, and
warm the cache with any files that have changed since the last run (or which failed on the
last run) and write details of the run back to the same file on completion. If the
clearCache flag is set, any existing manifest is ignored and overwritten when the task
completes.

Chapter 17
Warm the Cache for URLs in a Sitemap

17-5

In the preceding examples, metadata about the last operation is saved to
manifest.json in the current directory. To save or load from a different manifest
file, you can specify the --manifest option:

grunt --id=MyApplication --ver=1.0 --sitemap="./webApps/myWebApp/
sitemap.xml" --url=http://my.vbinstance.com/ic/builder --
manifest="/tmp/manifest.json" vb-prerender-cache-warm

For more information on the supported command-line options, see vb-prerender-
cache-warm.

Move Your Sitemap to a Visual Application's Root Directory
When you manually add a sitemap to your web application's resources, you can set up
the sitemap file to be copied to the visual application's root directory after the app is
staged or published, so the sitemap path does not change.

Each time a web application is staged or published, the location of the resources
changes to use a new version, and the sitemap file is automatically moved to the
new /webApps/webAppName/version_id directory. As a result, you'll need to
include the newest version_id in the path to access the application's sitemap.
To automatically copy the sitemap file from the /webApps/webAppName/
version_id directory to the application's root directory each time the app is staged
or published, you can edit your application's Gruntfile.js file and add the vb-post-
package task:

1. Open Gruntfile.js.

2. Edit the file to define the tasks performed for the vb-post-package task:

{code:java}
 /**
 Moves sitemap.xml resource back to Visual Application Root.
 */
 grunt.registerTask('vb-post-package', () => {
 const fileName = 'sitemap.txt'; // REPLACE WITH YOUR
FILENAME
 const webAppName = 'mywebapp'; // REPLACE WITH YOUR WEB
APP NAME
 const webAppDirectory = `build/optimized/webApps/$
{webAppName}`;
 // find out version dir
 const files = fs.readdirSync(webAppDirectory);
 const versionDir = files.find(file => /
^version_\d+/.test(file));
 const source =
`${webAppDirectory}/${versionDir}/resources/${fileName}`;
 const target = `build/optimized/${fileName}`;
 // move the file back to assets root
 fs.renameSync(source, target);
 console.log(`${source} moved to ${target}`);
 });
{code}

Chapter 17
Move Your Sitemap to a Visual Application's Root Directory

17-6

Remember to update the task to use your sitemap resource and your web app.

See Customize Your Grunt Build Process for more information on adding custom
functionality to existing Grunt tasks.

Chapter 17
Move Your Sitemap to a Visual Application's Root Directory

17-7

18
Work with Translations

You can use the Properties pane to bind text strings to values that are stored as keys and
values in JSON files. You can open and edit the translation JSON files in the code editor, and
download and upload the files as application resources.

About Translation Resources
The keys and values for translating your application are stored as JSON files in translation
bundles in your application.

The names and locations of your translation bundles are up to you, but you must understand
the rules governing the file names and the structure of your bundle to ensure that the bundles
are recognized when you run your application.

By default, web (and mobile) apps will contain a default app-level bundle with the name app
located in the resources/strings folder of the app. The relative path to the default
translations bundle is stored in app-flow.json. The path identifies the top-level JSON file in
the bundle that identifies the translation locales included in the bundle. If you open the
application artifact in the code editor you can see the entry for the path to the translation
bundle.

 "translations": {
 "app": {
 "path": "./resources/strings/app/nls/app-strings"
 }
 },

The suggested location for a bundle is resource/strings/<bundle-name>/nls/<bundle-
name>-strings.json, where <bundle-name> is the name for the bundle you create. Bundles
can be located where you choose, however the paths to the bundles must be specified in
app-flow.json. For example, if you created a resource folder containing a bundle for the flow
MyFlow, the path in app-flow.json might be similar to ./MyWebApp/flows/MyFlow/
resources/strings/MyFlow/nls/MyFlow. You would use the period (.) at the beginning of
the path to make it relative to the file.

When using translations in code, you can replace code that produces or uses an untranslated
string with code that uses the translations object to retrieve the translated string from the
bundle. For more on the translations object, see Translations.

Understand the Structure of Translation Bundles
You will want to understand the structure of translation bundles if you want to create
additional translation bundles in your application.

The following guidelines describe the structure for the application’s default translation bundle:

• The bundle contains a root folder named nls.

18-1

• The nls folder should contain a JSON file identifying the translation locales
contained in the bundle.

• All bundle files should be JSON files with –strings.json appended to the bundle
name. (For example, the JSON files for the MyNewPage bundle will be named
MyNewPage-strings.json.)

The path to the root JSON file in each bundle in your application must be specified in
app-flow.json.

Your bundle contains a JSON file at the root level of the nls folder that identifies the
supported languages, and one or more folders within the nls folder containing JSON
files storing the keys and values of translation strings. By default, the nls folder
contains a folder named root that contains the root translation file app-strings.json.

When no additional locales are specified, the root level app-strings.json file only
contains "root": true. If one additional locale is supported, for example, a French
locale and translations, the root level JSON file would contain the following locale
identifiers:

{
 "root": true,
 "fr": true
}

Chapter 18
Understand the Structure of Translation Bundles

18-2

For each locale, the nls folder should contain a corresponding folder containing a JSON
translation file with the translation strings for that locale. The default name for the JSON file in
the root folder is <bundle-name>-strings.json. If a French locale is added, the nls folder
would also contain a folder named fr containing a JSON file <bundle-name>-strings.json.
Each translation file contains key/value objects and object metadata. For each object you can
include descriptive metadata, including unique id identifiers for the element details and details
about the object’s context that can be useful for translators.

Understand Translation Keys for Display Texts
To translate your application into other languages, you need to create translation bundles that
store keys and values for the texts in your application’s UI.

When you save a string using the Translatable String popup in the Properties pane, the value
for the string is externalized to the translation bundle, and the value of the string is bound to
the key in the translation file in that bundle. If you open the page in the Code view you can
see the name of the translation bundle and the key bound to the string value. For example,
an input label in the Code view code might be similar to <oj-input-text label-hint="Name"
id="oj-input-text--452490439-1" value="{{ $page.variables.authors.name }}"></oj-
input-text>.

When you externalize the string, the value of the string is replaced with a string similar to the
following that binds it to a key in the translation file:

[[$application.translations.app.input_text_label_hint_daea]]

The expression identifies the scope and name of the translation bundle, and the translation
key, using the following syntax: <scope>.translations.<bundle-name>.<key>.

You can also include parameters in the expression by using the syntax
<scope>.translations.format('<bundle>', '<key>', {params}). For example, if you use
the expression [[$application.translations.format('app', 'bind_text_value_372d',
{ region: $page.variables.Country.region })]] in the UI component, the key-value
pair defined in the bundle might be "bind_text_value_372d": "(This country is in
{region})". In this case, the string “This country is in “ would be translated, and region
would be the value of the page variable.

When you open the translation file in the editor, the file contains a key and value pair similar
to the following:

"input_text_label_hint_daea": "Name",
 "@input_text_label_hint_daea": {
 "description": ""
 }

By default, each key-value pair in the translation file contains a description field as part of the
metadata for the pair that can be used to provide a description of the value, for example, to
provide additional context for the string that can be useful when translating the string. You
can modify the file in the editor to add description metadata and other metadata for each key-
value pair.

Chapter 18
Understand Translation Keys for Display Texts

18-3

Tip:

You can use the Code view to locate strings in a page that have not been
externalized for translation and add the string to the translation bundle. You
can use the Audits window to locate all the strings in the application that
have not been externalized.

Generate Translation Keys for Display Texts
For static strings in the UI of your application, you can use the Properties pane to add
keys and values for the strings to a bundle for translation.

You can use the Properties pane to generate and add keys for UI components to a
translation bundle. When you use the Properties pane to define the translatable string,
a key is generated automatically, but you can specify your own key in the dialog box.
You can also edit the keys, values and metadata in translation files directly using a text
editor.

To generate a key for a string using the Properties pane:

1. Select the component on the canvas that you want to be translatable.

You can select components that use a static string in their text fields, for example,
a Button component. You cannot create translations for elements where the
display label or text is the result of an expression or variable.

2. Click the globe icon for the text field to open the Translatable String popup.

Chapter 18
Understand Translation Keys for Display Texts

18-4

3. Select Create New to add a new string to a translation bundle.

4. Confirm or edit the string to be translated. Click Save.

The Translatable String popup contains a Text field for the string to be translated. The
popup also contains a Description field that you can use to provide a description of the
context for the string. The description text is included as metadata in the translation
bundle.

Chapter 18
Understand Translation Keys for Display Texts

18-5

Download Bundles for Translation
You can download translation files to your local system from the Translations tab in the
Settings editor when you want to translate the application’s strings with your preferred
translation tool or service.

When you download the translation bundles of your visual application, the archive that
you download contains the translation files for all of the applications in your visual
application. The archive contains a folder for each translation bundle in your
application, and each folder contains a file in the .json or .xliff format with the
strings to be translated. The file also contains metadata defining the bundle name and
path that is used when uploading the file after the strings have been translated. The
metadata in the file might be similar to the following:

 "@@x-bundleName" : "app",
 "@@x-bundlePath" : "webApps/mycontacts/resources/strings/app/nls/app-
strings",

When downloading the bundle, you can choose to download an archive containing all
strings that are stored in the translation bundle or an archive containing only those
strings in the translation bundle that were added or updated since the last time you
downloaded the translation bundle. The first time that you download the translation
bundle you can only choose to download an archive containing all strings.

To download a translation resource bundle:

1. Open your web (or mobile) application and choose Settings in the application’s
Menu in the toolbar.

Chapter 18
Download Bundles for Translation

18-6

Alternatively, on the Visual Builder home page, locate the application and choose
Settings in the Application Options menu.

2. Open the Translations tab in the Settings editor.

Chapter 18
Download Bundles for Translation

18-7

3. Click the link for the archive that you want to download to your local system.

Use Translation Strings in JavaScript Files
You can use translation strings in JavaScript files and retrieve the translated text from
the bundle when the function is called.

When you use a text string in a JavaScript function, the text string can be externalized
to a translation bundle. You can replace the code that produces or uses the
untranslated string with code that uses the translations object to retrieve the
translated string from the bundle. When you edit the JavaScript function you will need
to either hard code the translation key in the code or pass the key into the function as
a parameter. To use the translations object in the function, you need to pass the
object into the function as a function parameter.

For example, you might have a UI component in your page that displays a text string
that comes from a JavaScript function that is called by a callModuleFunction action in
an action chain. In the action chain, you can pass the translations object (for
example, $application.translations) to the function and then assign the result to a
variable bound to the UI component that displays the string.

To display a translated string used in a JavaScript function:

1. Create a key for the string that you want translated and add the key and string to
the translation bundle.

You can use the Make String Translatable button in the Properties pane to create
the key in the bundle and generate the expression for the key. Alternatively, you
can edit the translation file in the editor to create the key in the bundle and enter
the expression for the translation string in the UI component’s Text field in the
Properties pane.

2. Copy the expression containing the bundle name and key. The expression is
displayed in the Text field of the component after the string is externalized.

The expression might look similar to
[[$application.translations.app.h1__text_041a]]. In this example, app
specifies the bundle name, and h1__text_041a is the key. The bundle and key are
used to evaluate the translated string. $application.translations specifies that
the application-scoped translations object is used. The translations object might
also be $flow or $page scoped, depending on where the bundle is located.

3. Modify the JavaScript function so that the translations
object $application.translations can be passed to the function from the action
chain.

In the following example, the action for calling the function will use translations
to pass the object to the function.

 PageModule.prototype.getMessageFromBundle =
function(translations) {
 ...
 };

4. Edit the function to replace the untranslated text that should be displayed in the
component with code that retrieves the translated text using the translations

Chapter 18
Use Translation Strings in JavaScript Files

18-8

object. When the object is available in the function, the bundle name and key are used to
retrieve the translated string from the bundle.

For example, the function can return a simple translated string:

 PageModule.prototype.getMessageFromBundle = function(translations) {
 ...
 return translations.app.h1__text_041a;
 };

You can also include parameters to generate a formatted message:
translations.format('app', 'h1__text_041a', param1, param2)

5. Create an action chain that calls the function (callModuleFunctionAction) and assigns
the result (assignVariablesAction) to a variable (in this example, Value).

In this example you can see that the translations object is a parameter of the
callModuleFunction action that is passed to the function, and that assignVariables
assigns the result of callModuleFunction to the page variable Value.

 "root": "callModuleFunction1",
 "actions": {
 "callModuleFunction1": {
 "module": "vb/action/builtin/callModuleFunctionAction",
 "parameters": {
 "module": "{{$page.functions}}",
 "functionName": "getMessageFromBundle",
 "params": [
 "{{ $application.translations }}"
]
 },
 "outcomes": {
 "success": "assignVariables1"
 }
 },
 "assignVariables1": {
 "module": "vb/action/builtin/assignVariablesAction",
 "parameters": {
 "$page.variables.Value": {
 "source": "{{ $chain.results.callModuleFunction1 }}"
 }
 }
 }
 }

6. Edit the Text field of the UI component to replace the generated expression with the page
variable storing the result of the method. (Value).

Chapter 18
Use Translation Strings in JavaScript Files

18-9

Tip:

Use the Text field’s Select Variable menu to select the correct page
variable

Upload Translated Files
You can upload the resource files containing translated strings in the Translations tab
in the Settings editor.

To upload translated files, you need to create a ZIP archive containing the files with the
translated strings. Before you create the archive, however, you need to modify the file
names to append the locale abbreviation to identify the correct locale. For example, to
upload a JSON file that contains translations for the French locale, you will modify the
file name to <bundle—name>-strings-fr.json.

To upload an archive with translation files:

1. Open your web (or mobile) application and choose Settings in the application’s
Menu in the toolbar.

Chapter 18
Upload Translated Files

18-10

2. Open the Translations tab in the visual application's Settings editor.

Chapter 18
Upload Translated Files

18-11

3. Locate the archive containing the translated files on your local system and drag it
into the upload area in the Translations tab. Click Close.

If you added a file with translations for a new locale, a folder for the new locale is
created in the bundle. The new locale is also automatically added to the file defining
the locales in the bundle.

Create Translation Bundles
You can use the Translation tab in the Settings editor to create additional translation
bundles for application artifacts, flows and pages.

By default, each web (or mobile) app contains a translation bundle app in the app’s
top-level resources folder. You can create additional translation bundles for the app in
the app artifact’s Settings editor. You can also create bundles for individual flows and
pages in the Settings editor for the flow or page when you want the translations to be
flow-scoped or page-scoped.

When you create a new bundle in the Translations tab of the Settings editor, the
metadata for the new bundle is automatically added to the JSON file of the app, flow,
or page. For example, if you create a translation bundle for a page in the page’s
Settings editor, a resources folder containing the new bundle is created at the page
level and the page’s JSON file is updated with the metadata for the bundle.

Chapter 18
Create Translation Bundles

18-12

When you externalize a text for translation, the string and key are added to the nearest
available bundle by default. For example, if you create a translation bundle for a page, the
strings and keys are added to the page’s bundle when you externalize strings in the page.
Strings in other pages are not added to that bundle when they are externalized.

To create a translation bundle:

1. Open the Translations tab in the Settings editor of an application, flow or page artifact.

The Translation Bundles tab displays a list of the bundles scoped for the selected artifact
and the path to the bundle.

2. Click +Bundle to open the New Translation Bundle dialog box.

3. Supply the bundle name in the dialog box. Click Create.

When you click Create, the new translation bundle containing the translation files and folders
is created in the strings folder in the resources folder of the artifact. The strings and
resources folders are created if they do not exist for the artifact. The path to the new bundle
is displayed in the Translations tab. The path is relative to the artifact’s JSON file.

Chapter 18
Create Translation Bundles

18-13

Part V
Manage Applications

As you work through the application development lifecycle, learn how you can view the status
of an application and create versions, debug application code, then stage and publish it. Also,
take steps to keep your application up-to-date with the latest release of Visual Builder.

Topics:

• Manage Your Visual Application

• Integrate Your Visual Application With a Git Repository

• Test and Debug Applications

• Stage and Publish Visual Applications

• Manage Runtime Dependencies for Visual Applications

• Optimize Your Builds and Audit Your Code Using Grunt

19
Manage Your Visual Application

You can manage your visual applications using the tools available on the Visual Applications
Home page. Each row in the table on the Home page represents a version of an application.
The identity domain might contain many applications, but your Home page will only display
the applications that you created or those where you are included as a team member.

To manage your application's lifecycle, look for the Application Options menu:

The following table describes the options you might see in the menu:

Menu Item Description

Open Opens the development version of the application

Duplicate Creates a clone of this version of the application, including the
content of the database.

19-1

Menu Item Description

Rename Opens a dialog box where you can change the name of the
application.

Export Creates a ZIP archive of the application that can be imported as a
new application. When exporting the application, you can choose if
you want the exported archive to include the data stored in your
business objects.

Import Opens a dialog that you can use to create an application by
uploading an application archive (ZIP or OVB) from your local
system.

New Version Creates a new version of the same application. By default the new
version is a development version. Version numbers are
automatically increased incrementally.

Settings Opens an editor for configuring the application’s settings and
viewing the application API URLs. Each application version has a
dedicated Settings editor.

Stage Opens a dialog box where you can specify the database option for
the staged application. When an application is staged, a link to the
staged version is displayed in the tile.

Publish Opens a dialog box where you can specify the database option and
publish the staged version of your application.

Lock / Unlock Enables you to lock a live application to prevent any users from
using the application. You would usually use this command when
you are going to update the live application with a newer version.
The Unlock option is displayed only when the live application is
locked.

Rollback Rolls back the live version to the previous live version. This is only
available for the current live version.

Move to trash Deletes the application from the identity domain. You have 30 days
to recover the application after deleting it.

View an Application's Status
Your application's status is always shown on the Home Page. The default status for
new applications is Development. When available, you can expand a list item to show
staged and live versions of the application.

You can filter the list of applications displayed on the page by name and status. Click
the Filter toggle at the top of the page to open the filter options drawer and select the
filters you want to apply. You can use the Sort By drop-down list to organize the order
that the tiles are listed on the page.

Chapter 19
View an Application's Status

19-2

The following table describes the application status:

Status Description

Development This status is the default for all new versions of applications and is used if the
version has not been staged or published. You can make changes to the
development version at any time.

Stage This status indicates that you recently staged this version of the application.
The tile contains a link that will open the staged version in your browser.

Live This status indicates that this version of the application was published and is
now read-only. An application can no longer be modified after it is published.
The link in the tile will open the live version in your browser.

To make changes to a live version, use the Application Options menu to create
a new version of the application.

Live Locked This status indicates that this version of the application was published but is
currently locked and it cannot be opened in your browser. Use the Application
Options menu to lock and unlock a live application. You should lock an
application when you want to export the live database prior to publishing a new
version.

Obsolete This status indicates that this version was published but has been superseded
by a newer version. Obsolete applications are read-only.

Soft Deleted This status indicates that application was deleted from the Home page, but
won't be completely deleted until you either delete it permanently or 30 days
passes with no action. Soft-deleted applications are read-only. If needed, the
app can be restored within 30 days of deleting it.

Create a New Version of an Application
You can create versions of applications to enable parallel, independent development of an
application.

Each version of an application is an independent branch with its own copy of the resources
and database schema. Using multiple versions enables you to work on one version (for
example, to fix an issue) without disrupting ongoing development on another branch. You can
stage and publish any version of your application. You can have multiple versions of your
application staged simultaneously, but you can only have one live version. Each staged
version has a unique URI to help you identify the version, but all versions will have the same
URI when published. After you publish a version of your application it is locked as “read-only”.
To make any changes to your application after it is published, for example, to fix an issue, you
need to create a new version and fix the issue in the new version.

If you make a change in one version, you will need to manually make those changes in other
versions of your application that you want to include that change.

Chapter 19
Create a New Version of an Application

19-3

To create a new version of an application:

1. On the Home page, locate the version of the application you want to use as the
source for the new version.

You can create a new version from any version of an application, in any stage of
the development lifecycle.

2. Open the Application Options menu for the version and select New Version.

3. Specify the new version number and enter a comment in the New Application
Version dialog box. You can number your versions according to your versioning
scheme, but each version number must be unique.

4. Click Create.

The new version (with a Development status) is created on the Home page.

Chapter 19
Create a New Version of an Application

19-4

Delete a Visual Application
If you no longer need a visual application or a particular version of it, you can delete it from
the Home page at any time during the development lifecycle. You can also permanently
delete an application to completely remove it from the system.

Caution:

Permanent deletion of an application cannot be undone. It completely removes
application metadata and any data stored in its database. Before you delete,
consider the impact of deleting your app, especially if the version is live. While you
still have a chance to restore the app within 30 days of deletion, once a version has
been removed from the system, it cannot be recovered.

If your teammates have access to the apps you want to delete, you might want to remove
them before you delete the app. Use the Team tab in the app's Settings editor to remove
access.

To delete visual applications:

1. On the Home page, select one or more of the applications you want to delete, then click
Move to trash. You'll also find the Move to trash option in an application's Options
menu .

Selecting an application at its root level only selects its current version. If this isn't what
you want, expand the application and select one or more of the versions you want to
delete.

Chapter 19
Delete a Visual Application

19-5

Tip:

To delete multiple versions of an app all at once, enter the app's name in
the Filter by App field, click Name in the header column to select all
versions of the app, then select Move to trash.

2. Confirm your selection:

• For development or staged versions, click Move to trash:

• For live or live locked versions, select I understand my selection contains at
least one LIVE application, then click Move to trash:

Chapter 19
Delete a Visual Application

19-6

A confirmation appears and your applications no longer appear on the Home page.
Instead, they are moved to a Soft Deleted status and can be restored within 30 days after
initial deletion.

3. If you're sure you no longer need a deleted application, you have the option to
permanently delete it.

Caution:

Permanent deletion of an application cannot be undone. It completely removes
application metadata and any data stored in its database.

a. On the Home page, filter applications by Trash status. You can apply additional filter
criteria by entering a partial or full name for the application.

b. Locate the application you want to remove from the system and click Delete
permanently. You'll find the same option in an application's Options menu .

Restore a Deleted Application
Visual applications that you've deleted are moved to a Soft Deleted status for 30 days after
initial deletion and can be recovered if they've not been removed from the system. Soft
deleted apps are permanently deleted if you do so explicitly or 30 days pass without any
action. Permanently deleted applications cannot be restored.

To recover a soft deleted application within 30 days of deleting it:

1. On the Home page, search for the deleted application using the Trash status filter. You
can apply additional filter criteria by entering a partial or full name for the application.

Chapter 19
Restore a Deleted Application

19-7

2. Locate the application (or version) you want to restore, click its Options menu ,
and select Restore.

Opening an application from Trash allows you to view its contents in read-only
mode.

3. Once your application is restored, change the Status filter to All and locate your
restored application.

Manage Applications Created in Visual Builder Studio
The way you manage visual applications created in Visual Builder Studio is
fundamentally different from the way you manage Visual Builder-native applications.
For starters, VB Studio applications are managed in the context of a project, you do
your work within a workspace tied to a Git repository, and your app is deployed via a
sophisticated CI/CD pipeline; Visual Builder has none of these underlying concepts. As
a result of these and other disparities, the actions you use to manage applications
created in VB Studio must be performed within VB Studio, and not from the Visual
Builder Home page where you manage Visual Builder-native applications.

This table lists all the actions available to native Visual Builder applications and
explains a bit about how to perform them for applications originating in VB Studio.

Chapter 19
Manage Applications Created in Visual Builder Studio

19-8

Note:

The first step for each of these procedures is to go to the VB Studio project, using
either the "from project_name" link in the VB Home page (shown below) or the VB
Studio URL.

For each of these actions, go to the Visual Builder Studio project, then:

Visual Builder Action In VB Studio:

Open On the Project Home page, click your workspace name to open the app in
the Designer. (The workspace may have a different name from the visual
app as it appears on the VB Home page.)

Duplicate The Duplicate action isn’t exactly the same in VB Studio as it is in Visual
Builder, and you shouldn’t have as much of a need for the action in the
context of VB Studio. One way to duplicate your app in VB Studio is to:

1. On the Project Home page, click your workspace name to open the app
in the Designer.

2. In the upper right menu, select Export. This creates a .zip file of the
exported app. All the changes you’ve made in your workspace, even
those you haven’t committed to your local Git repository yet, will be
included in the .zip.

3. In the upper left corner, click the left arrow to exit the Designer.

4. On VB Studio’s Project Home page, in the Workspaces pane, click
Manage Workspaces.

5. Click Import to create a new workspace with the imported app.

6. Drag and drop the file you exported in step 2 and click Import.

7. Once you are in the Designer, click the menu in the upper right and click
Settings.

8. In the Root URL field, give the app a new name (assuming you want it
to be different from the original).

9. Share or Publish the app. The name you specified in step 8 will appear
on the VB Project Home page.

Chapter 19
Manage Applications Created in Visual Builder Studio

19-9

Visual Builder Action In VB Studio:

Rename In VB Studio, the name of a visual application is determined by the Settings
tab’s Root URL field at the time the app is deployed or shared. By default,
the Root URL is set to the repository name you specified when you created
a workspace for the app. To rename a visual app:

1. On the Project Home page, in the Workspaces pane, click Manage
Workspaces.

2. Once you are in the Designer, click Source View in the Navigator.

3. Click visual-application.json.

4. Enter the new name for the visual app in the rootURL field:

5. Share or Publish the app. The name you specified in step 4 will appear
on the VB Project Home page.

Export 1. On the Project Home page, in the Workspaces pane, click Manage
Workspaces.

2. On the appropriate row, click the Actions menu on the far right.

3. Click Export.

Import 1. On the Project Home page, in the Workspaces pane, click Manage
Workspaces.

2. Click Import to create a new workspace.

3. Drag and drop the exported .zip file.

Settings 1. On the Project Home page, click your workspace name to open the app
in the Designer.

2. In the Designer, click the menu in the upper right.

3. Click Settings.

Note:

While Visual Builder Settings provide a Team
tab, in VB Studio, team membership is handled
at the project level. See Add and Manage
Project Users.

Chapter 19
Manage Applications Created in Visual Builder Studio

19-10

Visual Builder Action In VB Studio:

Stage VB Studio does not have the same concept of stage that Visual Builder has.
Whereas in Visual Builder you staged an app whenever you wanted to make
a particular version available to others, in VB Studio you actually have two
options for this, depending on whom you want to share the app with:
• To make a version of your app available to another person, or perhaps

to a small group (that is, somewhat informally):

1. On the Project Home page, click your workspace name to open the
app in the Designer.

2. In the upper right menu, click Share.
This takes a snapshot of whatever is currently in your workspace
and assigns it to a URL unique to that snapshot.

• To officially package the app’s resources to, say, share it with another
group, like QA (as opposed to just sharing what you have in your own
private workspace):

1. On the Project Home page, click Builds in the left navigator.

2. Click Configure next to the app’s Deploy job.

3. (Optional) On the Steps tab, add a version number to the
Application Version field. If you don’t, whatever is specified in the
app’s Settings > General tab will be used.

4. Select the Include the application version in the URL check box.

5. (Optional) If your app contains business objects and you want to
include their data, click Add Step > Visual Application > Import
Data and supply the required information.

6. If you haven’t already, supply your user name and password for the
target environment.

7. Click Save.

8. On the Builds page, click Pipelines, then click the Build icon for this
visual application. This will trigger the package job, followed by the
deploy job.

For both these options, the status on the VB Home page will be Stage.
However, the Share option creates a dummy version number (which you can
ignore), while the build job lists the version number you specified in the
Application Version field.

Chapter 19
Manage Applications Created in Visual Builder Studio

19-11

Visual Builder Action In VB Studio:

Publish In Visual Builder, you used the Publish action to move a particular visual
application to Live status. In VB Studio you can do this from the Designer, as
long as you configure the deploy job properly first.

1. On the Project Home page, click Builds in the left navigator.

2. Click Configure next to the app’s Deploy job.

3. On the Steps tab, uncheck the Include the application version in the
URL check box.

4. If you haven’t already, supply your user name and password for the
deployment credentials.

5. Click Save.

6. Click Workspaces in the left navigator and open the workspace for the
app.

7. In the header, click Publish. This commits your changes to the project’s
Git repository and kicks off the package and deploy jobs.

When the job finishes, you will have a permanent URL for this visual app that
will remain viable even if you have to republish it later, so you don’t have to
keep giving people different URLs.

On the VB Home page, you will see your app with a status of Live. If you
click the app name you’ll see the URL, which contains the word "live" (unless
you’re using a custom domain).

Only one version of an app can be live at a time. While the version number is
not included in the URL, if you republish this app, you must be sure to
increase the version number (in Settings) from its predecessor or the deploy
job will fail.

New Version To change the version number of your app:

1. On the Project Home page, click your workspace name to open the app
in the Designer.

2. In the Designer, click the menu in the upper right.

3. Click Settings.

4. Enter the version you want in the Version field.

5. Click Publish. (This will kick off your Deploy job, so make sure the
Include the application version in the URL check box is checked or
unchecked, as needed. See Stage and Publish above.)

Move to trash 1. From the Project Home page, click Environments.

2. Click the Deployments tab.

3. Click the Actions menu on the appropriate row.

4. Click Undeploy.

Chapter 19
Manage Applications Created in Visual Builder Studio

19-12

20
Integrate Your Visual Application With a Git
Repository

To collaborate with other team members and back up your sources, you can integrate your
visual application with a Git repository hosted in a Oracle Visual Builder Studio project.

You can use the Git integration to store versions of the source files of each of your visual
applications in a Git repository that can be shared with other developers. After creating a link
to a Git repository, you can use the commands in the Git menu to pull sources from the
repository and push sources to the repository. In case of merge conflicts when pulling
sources, you can view a log of conflicts in the Audits pane, then open the files in the source
editor to resolve conflicts.

Add Credentials for Your Oracle Visual Builder Studio Account
To integrate your visual application with a Git repository, you must provide the URL and
credentials for an Oracle Visual Builder Studio account. Those credentials are used when
linking your visual application to a Git repository of an Oracle Visual Builder Studio project.

You will need to contact your service administrator if you do not know the credentials for your
Oracle Visual Builder Studio account. Credentials are not stored when you export your
application.

The credentials for connecting to Git in Oracle Visual Builder Studio must be for a user in
Oracle Identity Cloud Service (IDCS) with the DEVELOPER_USER role. Note that:

• The credentials you provide must be for a local IDCS user. Local users are those created
directly in IDCS, with the password also specified in IDCS for basic authentication. You
cannot use federated or single sign-on (SSO) credentials to connect to Git.

• The IDCS user must have the correct IDCS role. Check with your service administrator to
confirm that the user is assigned the correct role. The service administrator can add a
user in IDCS and assign the user the DEVELOPER_USER role. See Add Users to a
Cloud Account with IDCS in Administering Oracle Visual Builder in Oracle Integration 3.

To add your Oracle Visual Builder Studio account credentials:

1. Open your visual application.

2. Click the Git icon () in the toolbar and select Configure Visual Builder Studio
Credentials.

3. Click Add Credentials in the Configure Visual Builder Studio Credentials dialog box.

4. Enter the URL, user name, and password for your Oracle Visual Builder Studio account.
Click Save Credentials.

After your credentials are checked and saved, the new credentials are added to the list in
the Configure Credentials dialog box.

5. Click Close.

20-1

After you enter and save your credentials for the Oracle Visual Builder Studio account,
you can create a link between a visual application and a specific repository.

Link Your Visual Application to a Git Repository
After you provide credentials for your Oracle Visual Builder Studio account, you can
create a link between your visual application and a Git repository of your Oracle Visual
Builder Studio project.

Linking your application to the branch of a Git repository lets you pull source files from
and push source files to the branch, for example, to create a copy of an application by
pulling the source files into a new visual application.

The Git repository and branch must exist in your Oracle Visual Builder Studio project
before you can link it to your visual application. When selecting the repository branch
that you want to use, you will see an up-to-date list of the branches that are available.
If you do not see the branch you want to use, you should check that the branch exists
and that you are using the correct credentials. You cannot use Oracle Visual Builder to
create repositories or branches.

To link a visual application to a branch in a Git repository:

1. Open your visual application.

2. Click the Git icon and select Link Visual Builder Studio Git Repository.

The dialog box displays the location of a Git repository if one is already linked to
your visual application.

3. Click Add Link to open the Link Git Repository dialog box.

4. In the URL with Credentials field, select the URL of the account that you want to
use.

The drop-down list displays the Oracle Visual Builder Studio accounts that you've
provided credentials for.

5. Select the project, the Git repository, and the repository branch.

The drop-down list displays the projects, repositories, and branches that are
available to you in the instance. The branches and repositories shown are
determined by the project you select.

Once you select a branch, the Branch Head field shows the ID of the latest
revision on the remote branch in Visual Builder Studio. HEAD is a special
reference to the latest revision in your local copy of the branch in Visual Builder.
You can choose to set HEAD either to the remote branch head or select Use
Custom Head to set it to any revision ID (which is a 40-character SHA-1 hash).
See Get the Revision ID of a Commit in Building Responsive Applications with
Visual Builder Studio for information on how you can find a particular revision ID.

6. Click Save Configuration, then Close.

You can now use the push and pull commands in the Git menu of your visual
application.

Chapter 20
Link Your Visual Application to a Git Repository

20-2

Pull Files From Your Git Repository
You use the Pull option in the Git menu to update your visual application with the source files
from the linked Git repository.

To pull source files from a repository:

1. Open your visual application.

2. Click the Git icon in the toolbar and select Pull in the menu.

The Update Application from Git dialog box displays the details of the branch containing
the source files.

3. Click Update From Git.

The dialog box displays a progress bar while pulling the source files from the branch.

4. Click Close when the update is finished.

The dialog box displays a status message when the update is complete.

Push Your Changes to Your Git Repository
You use the Push to Git command in the Git menu to upload the source files in your visual
application to the linked Git repository.

To help avoid merge conflicts, you should update the source files in your visual application by
pulling the most recent versions from the repository before you push any changes. If the file
versions in the repository are newer than the versions in your visual application, you’ll see a
status message when attempting to push your changes that the push was rejected and you
should pull the most recent versions from the repository before pushing.

To push the visual application source files to the repository:

1. Open your visual application.

2. Click the Git icon in the toolbar and select Push in the menu.

The Push Content to Git Repo dialog box displays the details of the target branch.

3. Type a comment that describes the content you are pushing to the repository. Click
Push.

The comment message that you provide in the dialog box is displayed when you examine
the Git activity log for the branch.

4. Click Close when the push is finished.

The dialog box displays a status message when the push is complete.

Change the Local Branch HEAD in a Linked Git Repository
When you link a visual application to a Git repo in a Visual Builder Studio project, the branch
HEAD in your local copy, by default, references the most recent commit that was pulled or
pushed. If the commit referenced by the current local HEAD is removed from the remote
branch (for example, because somebody rebased the remote branch and garbage collection

Chapter 20
Pull Files From Your Git Repository

20-3

occurred), push and pull requests will fail. In this scenario, you can change the current
branch HEAD to use the latest branch head or any other commit to resolve the issue.

To change the branch HEAD in your local copy of a linked Git repository:

1. Open your visual application.

2. Click the Git icon and select Link Visual Builder Studio Git Repository.

3. Click Edit Link to change details of the Git repository linked to your visual app.

In the dialog box that opens, the Branch Head field shows the current remote
branch head of the selected branch. The Custom HEAD field shows the current
local HEAD. If Custom HEAD is not the same as the branch head, then the Use
Custom HEAD option will be selected initially, as shown here:

If you select a different branch, the Use Custom HEAD option won't be selected; it
will stay that way if you reselect the original branch.

4. To change the current local branch HEAD, select Use Custom HEAD, then enter
the revision ID you want to use in the Custom HEAD field.

Chapter 20
Change the Local Branch HEAD in a Linked Git Repository

20-4

The revision ID (also known as the commit ID in Git) is a 40-character SHA-1 hash. See
Get the Revision ID of a Commit in Building Responsive Applications with Visual Builder
Studio for information on how you can find a particular revision ID.

5. Click Save Configuration, then Close.

You can now use the push and pull commands in your visual app's Git menu to push and pull
sources that match the new branch head.

Chapter 20
Change the Local Branch HEAD in a Linked Git Repository

20-5

21
Test and Debug Applications

As your work on your application, it's important to test and debug it to ensure a smooth end-
to-end experience for your users.

You have several options to ensure your application's code is error-free:

• Browser tools: Because Visual Builder applications are essentially client-side HTML
applications written in JavaScript, you can use your browser's development tools for
debugging. When you view your Visual Builder application in Chrome (for example), you
can use the Developer tools option to diagnose problems quickly:

– Network tab: Use this tab to view network traffic between the client's browser and
your REST data sources.

– Console tab: Use this tab to track error messages and notifications from your
application. Visual Builder apps output info-level log messages to the console by
default. Other log levels are error, warn, fine, and finer. See Change an
Application's Log Level to change the log level.

Console log messages are color coded to make the output more readable. By
default, error messages are red-magenta, warnings are yellow, info messages are
blue-purple, while fine and finer are varying shades of gray, as shown here:

Further, info messages from particular modules use different colors as a way to
differentiate them from other console messages. For example, action chain
messages are in dark purple, fragments in coral, and REST in yellow, as shown here:

21-1

Console colors cannot be customized, but you can turn them off by setting
window.vbInitConfig.LOG.mode = 'simple' in the app's index.html file:

<script type="application/javascript">
 window.vbInitConfig = window.vbInitConfig || {};
 window.vbInitConfig.LOG = {
 mode: 'simple'
 };
</script>

• Audits pane: Use an audit framework to make sure your application's code is error
free. See Audit Application Code.

• Debug Preview mode: Use this mode to troubleshoot issues with the Visual
Builder runtime and Oracle JET libraries—runtime dependencies that make sure
your application works as intended. See Preview an App in Debug Mode.

Audit Application Code
Use the Audits pane to check and verify your application's code as you develop it.

When you open application artifacts, Visual Builder automatically scans its code and
displays errors and warnings (if any) in the Audits pane. You can view details of each
issue and take action to resolve it. In addition to JET component errors, the Audits
pane displays syntax errors, translation issues, and warnings for missing
dependencies.

If an artifact contains errors, it is also badged in the Navigator to indicate that action
must be taken to resolve the issue. For example, page errors are indicated by a red
dot on the Web Applications icon in the Navigator toolbar as well as against the
particular artifact in the Web Apps pane. The badge persists until the error is fixed or
until the session ends.

Here's how you can audit your application's code:

1. Click Audits at the bottom of your browser.

Chapter 21
Audit Application Code

21-2

If the Audits pane displays a message that no artifacts are open, you'll need to open the
artifacts you want audited, for example, one or more pages or a .JS file. Here's a quick
walkthrough of the results displayed in the Audits pane when artifacts are open (with the
active artifact always highlighted):

Label Description

A Options to filter audit results either by text or by severity:
• Enter text to filter the results based on your search string. For example, you

might enter main in the filter text box to search for all issues in the main flow.

• Use Error, Warning, Info, and ToDo to filter the results by severity. For
example, when your application contains errors, you can clear the Warning,
Info, and ToDo check boxes to focus on errors.

B Scope of the audit. By default, only artifacts that are open are audited, for example,
the main-create-department-page and main-create-employee-
page. To audit the application as a whole, change Audited in from Opened
Artifacts to All Artifacts. Any scope change you make is retained for the
application, and will persist even if the Audits pane is closed and reopened.

C Menu with options to edit audit settings or revalidate the entire application.

D Option to close the Audits pane.

E Path to the artifact that contains issues, for example, the main-create-
department-page under webApps/hrwebapp/flows/main/pages/.

F Number and type of issues in the artifact, for example, 7 warnings.

G Message about the issue in the artifact, for example, String not externalized
for translation.

H Line and column number of the issue, for example, (8, 89) indicates that the
String not externalized for translation issue exists in line 8, column 89
of the main-create-department-page artifact in Code view.

2. Decide how you want to resolve the issue. You can choose to resolve an issue directly
from its right-click menu or by opening it in the source editor.

For example, to resolve a translation issue, right-click the issue and select Add to
translation bundle:

Chapter 21
Audit Application Code

21-3

To work with an issue in its source editor, simply click the issue, or select Open in
Source Editor in the issue's right-click menu. You can then use code actions
suggested in the editor to resolve the issue. For example, for the String not
externalized for translation issue, you'll see the same quick fixes suggested
in the right-click menu available in the source editor as well:

Whether you use the right-click fixes or the source editor is entirely up to you, but
will mostly depend on the issue you're working with.

• Resolve the issue, if possible, by selecting the appropriate option in the right-
click menu. For example, for the String not externalized for
translation issue, select Add to translation bundle.

• If a resolution isn't available for your issue, select Open in Source Editor to
view the issue in the source editor. Hover over the highlighted issue to view
problem details and see how you can fix it.

Chapter 21
Audit Application Code

21-4

Note:

When you're working with code editors (such as Code view in the Page
Designer or the JavaScript editor), audit markers show in the file even after
you make changes to resolve issues. They disappear only after the file is
revalidated and audit results are regenerated, if the issue has been fixed.

• Optionally, select Do not report this type of defect again to ignore similar defects in
future.

Once you make a choice, your application is rescanned and the audits results updated.

Tip:

If you want to copy an issue to your clipboard for further processing, right-click
the issue and select Copy to Clipboard. To copy all issues in a particular
artifact, use the right-click menu at the artifact level.

Edit Audit Rules

The Audits feature in the Designer includes built-in rules from the Oracle JET Audit
Framework (JAF) by referencing the rule pack and the JAF utility (ojaf) hosted on the Content
Delivery Network (CDN) at https://static.oracle.com/cdn/jet/.

Every JET release includes the JAF utility and JAF metadata, plus the JAF metadata for
previous releases of JET. You can configure the built-in JAF rules to include disabled rules.
Custom JAF configurations that deal with the file system, custom rule plug-ins, and so on will
not be evaluated because JAF does not execute on the Visual Builder backend; it runs on the
client.

Here's how to enable a built-in rule that is disabled by default:

1. In the Audits pane, click Menu () and select Edit Settings.

2. Edit the audit.json file in the Source editor, for example, here's the syntax to reference
JAF from the CDN and enable a disabled built-in rule:

{
 "paths": {
 "exclude": [
 "build/**",
 "docs/**",
 "scripts/**",
 "tests/**",
 "**/private",
 "+(web|mobile)Apps/**/resources/components/**/lib/*"
]
 },
 "rules": {},
 "auditors": {
 "jaf": {
 "cdnPath": "https://static.oracle.com/cdn/jet/",
 "version": "9.0.0",
 "jafOptions": {
 "ruleMods": {

Chapter 21
Audit Application Code

21-5

 "JET": {
 "oj-css-style-override": {
 "enabled": true
 }
 }
 }
 }
 }
 }
}

To revert the built-in rules to their default settings, click Reset Settings in the Menu

().

For more information about JAF, including the built-in rules that it includes, see About
Auditing Oracle JET Applications in Using and Extending the Oracle JET Audit
Framework.

Preview an App in Debug Mode
When testing your application, you typically preview it to see it the way your user
would. Sometimes though, you might want to preview the application in debug mode to
troubleshoot issues with the Visual Builder runtime and Oracle JET libraries—runtime
dependencies that make sure your app works as intended.

The Preview option in the header facilitates both modes:

The default Preview mode uses the optimized variants of the VB runtime and JET
libraries. In this mode, all unnecessary characters (such as whitespaces and
comments) in the application's source code are removed and variable names
shortened to minify code and optimize performance.

The Debug Preview mode, on the other hand, uses the debug variants of the VB
runtime and JET libraries. In this mode, line breaks and white spaces are preserved,
allowing you to view the application's source code in a more readable format. You can
then use your browser's debugging tools to step through your code and figure out
exactly where an error occurred.

Because no performance optimization is done in debug mode, previewing an app in
this mode can be misleading about how quickly—or slowly—an app opens. As a
result, you might want to use debug mode only in a development environment.

• To view your app like a user would with the pages and data displayed, click .

Chapter 21
Preview an App in Debug Mode

21-6

• To view your app in debug mode, click the Preview drop-down, then select Debug

Preview .

Troubleshoot Build Issues
If you run into errors when you try to stage or publish your application, you might need to
check the build logs to troubleshoot build-related issues that prevent your app from being
staged or published.

Build logs are available in the Logs tab (at the bottom of the window), where you can view up
to five of the most recent logs. Logs are generated when your application is successfully
staged or published, but you are not explicitly notified. However, when build issues prevent
your app from being staged or publishedshared or deployed (for example, when a missing
JavaScript library hinders the app's sources from being bundled, or when errors exist in
flow.json, or if optimized application configuration is not correctly defined in
build.json), you might see an error message in the Stage Application dialog, with a
pointer to open the build logs.

Typically, most build errors occur when you stage your app and must be resolved before you
publish it. Here's what to do when you encounter build errors:

1. Click Open build logs in the dialog.

2. When the build log opens in the Logs tab, look for errors in the –--Build Error
Start--- section, then take steps to resolve the issues. Use the options in the right-click
menu to copy and paste messages as needed.

If you want to view older logs, click the app-build-log-timestamp.log list on the
right and select the log whose contents you want to see.

3. After resolving the issues, stage or publish your app again.

Debug Business Objects
Because Visual Builder uses a multi-tier architecture, you might need to debug your
application at different levels to identify the root cause of an issue. This might include the
business object layer, where data access to and from a client application occurs through
REST API endpoints.

While you can use the Network tab in your browser's development tools for external REST
APIs, Visual Builder's built-in tracing and logging mechanisms can help you troubleshoot
issues when you create business objects as the data source for your user interface. Because
data from a business object is written to the UI via REST APIs, you might want to enable
tracing to track the response times of individual REST calls. You can also enable logging to

Chapter 21
Troubleshoot Build Issues

21-7

view events triggered by your business rules, in addition to diagnostic messages
logged by custom Groovy scripts.

Enable Tracing to Monitor Endpoint Calls
When your application contains one or more business objects, enable tracing of an
object's endpoint requests to diagnose performance bottlenecks.

Tracing tracks all REST requests made when the current user executes CRUD
operations or invoke functions on business objects. It provides a visual representation
of the operations taking place and the time it took to invoke each REST call—
information you can use to locate bottlenecks in your application. You also enable
tracing separately for a particular version of your application (development, stage, or
live), so you can isolate issues in that version and fine-tune your app for better
performance.

To enable tracing for an application:

1. Click Trace at the bottom of your application window.

2. If your app has staged or live versions, select the version you want to enable
tracing for.

3. Click Enable Tracing.

Once tracing is enabled, all REST requests made by the current user are traced,
both when running the app using Preview or when making updates in the Data
tab. If you selected a staged or live version of your app, endpoint requests made
at runtime are traced. (You'll need to be the app designer or a team member
assigned to the app to view traces for these runtime requests.)

Click Refresh to view the latest traces.

Chapter 21
Debug Business Objects

21-8

A trace is a collection of operations for an application transaction. When you edit
business object data on a page, your application interacts, for example, with the object's
GET endpoint to request the data to display, and then with the PATCH endpoint to update
the data. You'll see each endpoint request as a separate entry, with the time spent by
your application processing the REST request shown in the Request Duration column.

For GET requests, you'll also see an indicator of the maximum response size in the Total
Possible Items column. This value is a theoretical maximum number of items in the
response payload for the business object and for any child items returned by referenced
business objects, for example, in the fields query parameter. It is calculated based on
the limit query parameter and the relationships in the request and can help you
determine whether you need to take steps to reduce the response size. (Click the Details

icon () to view additional performance metrics in the REST Request Info tab.)

Note:

In a cluster with multiple nodes, a REST API request (particularly one made by
tools such as cURL or Postman) won't be traced if it was handled by a node
other than the one on which you enabled tracing. To avoid this issue, make sure
you use the browser on which you enabled tracing to also make your REST
requests.

View Trace Details
You can view a particular REST request's trace for details such as span data and elapsed
time. Each trace consists of one or more spans and you can drill down an individual trace to
view its root span, which is the beginning of a transaction. You can also view Groovy logs if
you included the print or println function in custom Groovy code.

To view details of an individual trace:

1. Click the Details icon () for the REST request you want to view.

The REST request's tracing data is broken down and displayed in different tabs.

2. Click Spans and Top Elapsed to view the request's tracing data.

• The Spans view shows a Gantt chart that visually represents the steps in the REST
request's execution path. You can hover your cursor over each step's bar graph to
see the time the step took.

Chapter 21
Debug Business Objects

21-9

To drill down and see details of a selected span and its children, click a span
to select it, then right-click and select Top Elapsed of Selected Span to use
the span as the context for the Top Elapsed view.

• The Top Elapsed view shows operations performed during the request.
Repetitive operations, for example, repeated calls to the same SQL Select
statement or execution of the same Groovy function, are aggregated.

You can filter operations in your Spans and Top Elapsed views by selecting
Groovy or Database in the drop-down list when in the Spans or Top Elapsed tab.

3. Click REST Request Info to view a summary of the REST request.

For GET requests, you can view additional Performance Metrics to get a
breakdown of the Total Possible Items column, which provides a theoretical
maximum number of items in the response payload based on limit or expand
query parameters or any accessors in the fields query parameter:

Use these metrics to determine whether a request that does adequately in testing
might have a performance issue with a different data set (for example, live).
Because the ideal response size for any request is the smallest possible size that
contains all the information the client needs, you can take steps to reduce the
response time (say) by requesting less data or by using pagination (where multiple

Chapter 21
Debug Business Objects

21-10

smaller requests using a lower limit query parameter and incrementing the offset
query parameter may help).

4. If you included log messages in your Groovy scripts (for example, by adding print or
println statements), click Groovy Logs to view the messages your script has
generated.

Manage Tracing to Control Disk Usage
When tracing is enabled for an app, all its trace files are stored on Visual Builder server. To
avoid disk-usage issues on the server's file system, Oracle sets a maximum disk space limit
for all trace files. Once this limit is reached, the oldest trace files are removed to make way
for new trace files.

Here are some options to help you manage your app's trace files:

• Deselect the Enable Tracing check box to pause tracing. Use this option to control the
accumulation of trace files when you're not actively tracking your app's REST calls.

• Click the Export icon () to export the trace files for an individual REST call. Use this
option to save the files to your local file system and import it later when required. This
way, you won't lose the data even if trace files hit the server's disk-usage limit.

• Click the Delete icon () to delete trace files for individual REST calls. Use this option to
remove trace files you don't need and clear up space.

• Click Clear to remove all trace files for the app's current version. Use this option to delete
tracing data for a particular version of an app. For example, when you're more interested
in data for the staged and live versions of an app, you can clear trace files for the
development version to remove previous data that might be taking up disk space on the
server.

Export and Import a Trace File
You can export a particular REST call's trace files to your local file system to avoid losing data
if the server reaches its disk-usage limit for trace files. Then, when you are ready to analyze
the data, you can import the file back in to Visual Builder. Importing a trace file is a browser
function that doesn't affect disk usage on the server.

To export and import a trace file:

1. Click the Export icon () for the REST call whose trace file you want to export.

The trace file is saved as a .JSON file in the directory specified for your browser’s
downloads.

2. When you are ready to import the file back into the system, click Import From File in the
drop-down list.

Chapter 21
Debug Business Objects

21-11

3. Click the upload box and navigate to the .JSON file you previously exported. You
can also drag and drop the file in the upload box.

The file's contents display in the Trace panel. You can now view the trace's details
and spans.

Enable Logging for Scripting Events
To assist with debugging when developing rules for a business object, you can enable
logging and use the log viewer to view events triggered by your business rules. You
can also view runtime exceptions as well as diagnostic messages that your own
Groovy scripts might have generated.

While trigger starts and trigger ends are always recorded in logs, you'll need to add the
print or println statement when you want messages in your script to be written to
the log.

By default, logging is not enabled. Once you enable logging, it remains enabled in your
session for as long as you are logged in. If your session has expired, you will need to
re-enable logging after you log in.

To enable logging:

1. Click the Logs link at the bottom of the window to open the Logs page.

2. Select the Enable Logging check box.
The viewer in the Logs window displays the most recent 250 log entries, by default
in chronological order. When a runtime exception occurs, you can see additional
details about the offending script and line number where the error occurred in a
tooltip when you hover your mouse over the exception message.

Use search to filter out messages based on the text you enter. To export your log

as a text file to your local system, click the Export icon () in the toolbar.

If you keep the Logs window open while you work, consider the following
approach. Before starting a new attempt to reproduce the problem, click the Clear

icon () to remove any previous messages generated. After encountering the

error you are diagnosing, click the Refresh icon () to see the latest log
messages generated.

Chapter 21
Debug Business Objects

21-12

Note:

You can also view log messages included in your Groovy code as part of trace files
generated for a business object's REST requests when tracing is enabled.

Change an Application's Log Level
You might sometimes want to change the app's log level to change output in the browser
console. For example, the default info log level for console messages may be useful during
development stages, but once the app goes into production, you might want to reduce
console output to only critical information.

1. To change an application's log level:

a. On the Web Apps tab in the Navigator, select your web app, then click the JSON tab
to open the app-flow.json file. Alternatively, switch to the app's Source view and
locate the app-flow.json file under webApps.

b. Add this snippet to the file:

"logConfig": {
 "level": "loglevel"
},

where loglevel can be warn, error, info, fine, or finer. For example:

"logConfig": {
 "level": "error"
},

2. Run your app and view output in the browser's console.

3. It's also possible to dynamically set the app's log level in your browser's current session
to temporarily troubleshoot issues. You do this using the sessionStorage.setItem() call
in your browser's console. Here's how to do this in Chrome:

Note:

This setting requires your application to be on JET 14.0.6 or higher. Check the
Settings editor to make sure your app uses a supported version. Upgrade your
app, if needed.

a. Open Chrome DevTools.

b. Click the Console tab.

c. Enter the following command in the console:

sessionStorage.setItem('ojet.logLevel', 'loglevel')

Chapter 21
Change an Application's Log Level

21-13

https://developer.chrome.com/docs/devtools/open/

where loglevel can be none (least verbose), info, warning, error, or log
(most verbose). For example:

sessionStorage.setItem('ojet.logLevel', 'error')

d. Refresh your browser to view updated information in the console.

e. To reset the log level for your browser's current session, enter
sessionStorage.removeItem("ojet.logLevel") in the console, then refresh
your browser.

Chapter 21
Change an Application's Log Level

21-14

22
Stage and Publish Visual Applications

You can stage and publish visual applications from the Visual Builder Home page as well as
from the Designer.

Note:

Staging a visual application that contains a mobile application requires you to
enable your mobile app as a PWA, then build it to generate a QR code. Building
your PWA-enabled mobile application deploys your visual application in
Development to Stage. See Run Mobile Applications as PWAs.

What Happens When You Stage and Publish Visual
Applications?

To stage and publish an app, you deploy the app's resources to the Visual Builder runtime
environment that provides services used by the staged and published apps.

Note:

If you want to deploy a visual application to multiple instances, the best option is to
use VB Studio to set up additional deployment instances. See Add Additional
Deployment Instances.

The Visual Builder runtime environment provides the server for delivering pages in web
applications, and services your web (and mobile) apps might use to access data, including
the database used to store data and the proxy server for managing connections to REST
services. The runtime is used when you are designing apps in the Designer and for staged
and published applications. The runtime also integrates Oracle Identity Cloud services (IDCS)
to manage the authentication and authorization of app users.

The following steps are performed for you when you stage an app:

• The application's resources are copied to a directory on the server

• The database schema in the staging database is updated with changes from the
development database

• A URL is created for accessing the staged web app. The web app accesses the services
and resources provided by the staged application.

When you stage an app, you can choose to copy the data from your development database
to the staging database, create a database with no data, or use the data already in the
database if it has already been staged.

22-1

The following steps are performed for you when you publish an app:

• The directory containing the staged application's resources becomes the live app.
The staged app is not accessible after it is published.

• The database schema in the live database is updated with changes from the
staging database. You can choose if and how data should be migrated from the
staging database to the live database.

• A new permanent URL is created for accessing the live web app. The web app
accesses the services and resources provided by the published app.

If you are staging or publishing a mobile app as a progressive web app (PWA), the
Visual Builder runtime serves the app's pages when a user visits the URL of the
staged or published PWA. When you publish a PWA-enabled mobile app, users can
download and install the mobile app directly from the URL in the browser and run it like
a native app. This allows you to distribute a mobile app without first publishing it to an
app store.

You must stage an app before you can publish it. When an app is published, the
staged app becomes the live version, and the app settings defined for the staged app
are applied to the published app. You should confirm that an app's settings, for
example, its security settings and credentials, are working correctly before you publish
an app, because these cannot be modified after it is published without creating a new
version and staging and publishing it again. For example, when you are ready to
publish an app, you might need to modify the credentials and authentication
mechanism you used for connecting to a service during development because they
are not suitable for the published app. In this case, you will need to edit the app to
specify the credentials required for the published app and stage it again.

The runtime environment also provides a proxy server that your apps can use to help
with authorizing calls to services. For example, you can use the proxy server to avoid
potential CORS issues when calling a service. This is convenient if you are sending to
requests to services in another domain and you cannot modify its allowlist. You can
bypass the proxy if you choose, for example, by using the Direct authentication
mechanism in your app to call services.

Stage a Visual Application
You can stage unpublished versions of your application at any time from the Home
page or from the main menu.

Staging your application enables you to test each update to confirm that it behaves as
you expect and that no problems have been introduced, for example, when you add
new features or change your data model. You can distribute the URL of the staged
application to team members who can help you test and provide feedback. The URL of
a staged application is not the same as the URL of the app preview that is opened
using the Preview button in the Designer. You can't share the URL of the app preview
with other team members.

Note:

If you want other users (including admins) to edit an app or perform
operations such as staging, they must be added to the app as a team
member (see Add Team Members).

Chapter 22
Stage a Visual Application

22-2

To stage your application:

1. On the Home page, open the Application Options menu of the application and
click Stage.

If your application is open in the Designer, select Stage from the visual application's
Menu in the toolbar.

2. In the Stage Application dialog, select a database option. Click Stage.

The first time that you stage your application, you need to choose to either start with a
clean database for your staged application or copy the data from your development
database to the staging database.

Chapter 22
Stage a Visual Application

22-3

After the initial staging, each time that you stage your application you need to
specify how you want to manage the data in the staging database. You can
choose to keep the data, replace the data with data from the development
database, or delete all data in the database and start with a clean database.

Note:

If your application cannot be staged, click Open Logs in the Stage
Application dialog to view and fix build-related errors.

On the Home page you can see the status of each version of your application. You can
continue to update and stage versions until you are ready to publish. Click Stage in
the Status column and click the link to open the staged application in your browser.

Chapter 22
Stage a Visual Application

22-4

Alternatively, when a staged visual application is open in the Designer, you can select Open
Stage Application from the visual application's Menu in the toolbar.

Make a note of the URL of the running staged application. You can share this URL with team
members.

Publish a Visual Application
You can publish a staged version of your application from the Home page or from the main
menu.

After you publish a version of an app, it becomes read-only and can no longer be changed. If
you want to make changes to update the app, you need to create a new version (see Update
a Published Visual Application).
When you publish a staged version of your app, it becomes the live version. If you are
updating an earlier version of your app, the previous live version is archived and locked. The
URI of your app does not change. Only one version of an app can be live at a time, but
multiple versions of an app can be staged simultaneously.

The first time you publish your app, you can choose if you want to copy the data from your
staging database to the live database or use a clean database. When you update your app to
a new version, you will be prompted to decide how you want to manage the data in your live
database.

After an app is published, the resources used by the app (for example, metadata, images,
stylesheets) will not change until you publish a new version. The resources of the published
app are cached on the client and are fetched from the local cache instead of retrieved again
from the server. An app's cached resources are replaced when the version of the app you
retrieve is newer than the cached version.

Note:

Oracle recommends that you regularly re-stage and republish applications as new
versions of Visual Builder are released. This ensures that your applications use the
latest bug and security fixes available in the platform. From time to time, Oracle
may issue notifications reminding you of this best practice, especially if a new
release contains particularly critical fixes.

If the application you want to publish includes a mobile app, make sure you build the PWA-
enabled mobile app to generate a QR code (see Build a Mobile Application as a PWA).

To publish your application:

Chapter 22
Publish a Visual Application

22-5

1. On the Home page, locate the application you want to publish, then click the
Application Options menu and select Publish:

If your staged application is open in the Designer, select Publish from the visual
application's Menu in the toolbar.

2. In the Publish Application dialog box, select an option for handling the business
object data:

Chapter 22
Publish a Visual Application

22-6

If you are updating the live version of the app, each time you publish you need to specify
whether you want to keep the data in the live database, replace it with data from the
staging database, or delete all data and start with a clean database:

The schemas for your app's databases (development, staging, and live) typically change
when you create new versions. While you can't change the name the schema is created
under, once a live app's schema is created, it will stay the same as long as you select

Chapter 22
Publish a Visual Application

22-7

Keep existing data in Live when you publish a new version. Use this option to
retain the database schema over subsequent deployments to the same
environment.

3. Click Publish to move the staged version of your application to the live server.

The application's status changes to Live in the Status column. To view the published
app in your browser, click Live, then select your application. The application opens in
a new browser tab. You can now share this URL with your users.

View Database Schemas Used During an App's Lifecycle
As your application progresses through its development lifecycle, you might want to
know which database schemas store the app's business objects in each phase
(development, stage, and live).

Visual Builder automatically manages the schemas and tables for apps and business
objects in your database. It also re-creates the development and stage schemas with
different names for every new version of your app. (The live schema for a published
app doesn't change if you choose to not replace the data.)

If you are using your own Oracle database, knowing the name of the schema
associated with each phase of your app can help you access data using other tools for
import or export, or access the tables for your own purposes. You also have the option
of using application profiles to switch the schema for each phase.

To view the schema associated with a particular phase of an application's lifecycle:

1. On the Home page, locate your application, click the Application Options menu,
and select Settings:

Chapter 22
View Database Schemas Used During an App's Lifecycle

22-8

Alternatively, click the visual application’s Menu option in the upper right corner of the
Designer and select Settings.

2. Select the Business Objects tab in the Settings editor.

3. Under Schema Selection, look for the schema associated with each development
phase. For example, to check the name of the schema used by your development
database, look in the Development Schema field.

Schema details show only when a schema exists. So if you are yet to create a business
object for your visual application, you won't see the Development Schema field. Similarly,
you won't see details in the Stage Schema and Live Schema fields until your app is
staged and/or published. The Stage Schema also won't show when you're viewing the
Live version of the app.

Update a Published Visual Application
If you want to make changes to a published app, you need to create a new version. This
creates a development version of the app for you to work on while the published version
stays live. Once you are ready to go live with your updates, you can re-stage and re-publish
the new version.

Staging the new version will generate a new URL that you can use for testing the app.
Publishing the new version will replace the published version of the live app on the existing
URI. This way, your customers can access the updated app with the same URI they've been
using all along.

To create a new version of a published application:

Chapter 22
Update a Published Visual Application

22-9

1. On the Home page, locate the live version of the application you want to update,
then click the Application Options menu:

2. Select New Version.

3. In the New Application Version dialog box, enter a new version and enter a
description to help track your changes. You can number your versions according to
your versioning scheme, but the version number must be unique.

4. Click Create.

A new Development version of your app is created on the Home page:

Chapter 22
Update a Published Visual Application

22-10

Click this Development version and update it as required in the Page Designer. When you are
done making updates, stage and publish the app again.

Roll Back Application to the Previously Published Version
When you create a new version to update an application's published version, you re-stage
and re-publish the new version to make your changes live. If you want to revert these
changes for some reason, you can roll back the application from the current live version to
the previously published version.

Publishing a new version of a published version (say, 1.0.2 after 1.0.1) renders the previous
live version obsolete. If you decide to roll back from 1.0.2 to 1.0.1, the obsolete version
becomes the live version again. This reverts all your application's content, including any
database schema changes.

Note:

When you roll back to a previous version, the data of the previous live application is
restored. So, if the new version was accidentally published with the Publish
application with a clean database option, the rollback recovers the database
schema of the previous version.

Keep in mind that you can only roll back an application to its last published version. So if your
application includes a 1.0 version that was previously published and is now obsolete, you
can't roll back from 1.0.2 to 1.0.

To roll back an application's current live version to its previous live version:

1. On the Home page, locate the live version of the application you want to roll back (for
example, version 1.0.1), then click the Application Options menu:

Chapter 22
Roll Back Application to the Previously Published Version

22-11

2. Select Rollback.

3. When prompted to confirm, check the versions and click Rollback.

The current live version (for example, version 1.0.1) is set as Development and the
previous published version (for example, version 1.0) is set as the Live version, as
shown here:

Chapter 22
Roll Back Application to the Previously Published Version

22-12

23
Manage Runtime Dependencies for Visual
Applications

In Visual Builder, runtime dependencies refer to a set of client-side libraries that, along with
the accompanying version of Oracle JET, determine features and other improvements
available to your visual application, like what JET components you can use.

To see what the runtime dependencies are for your visual app, click Menu in the upper right
corner, then select Settings:

A visual app's runtime dependency comprises three values:

• Release: The latest certified combination of Visual Builder Runtime and JET within a
major release, such as 24.04, 24.01, or 23.10.

• Visual Builder Runtime Version: A set of client-side libraries hosted on a Content
Delivery Network (CDN). These libraries help the constituent files in your app talk to each
other at runtime. For example, when you include a component (like a button) from the
Component Palette in your app, the code for that component is stored in your app’s
HTML file. If you then add an action chain to that button to navigate to a new page, the
action chain code is stored in your app’s JSON metadata file. At runtime, the Visual
Builder Runtime enables the HTML, JSON, and other dependent files in your app to
communicate with each other, so that your app behaves as intended.

• Oracle JET Version: A JET release hosted on CDN. Each Visual Builder Runtime
Version is certified to be compatible with one or more JET versions. If you’d like to see

23-1

what’s in the latest JET release before deciding to upgrade, go to JET Release
Notes and select the JET version stated on the Settings page.

Runtime dependencies are set for a visual application as a whole; you can’t set
different versions for individual web (or mobile) apps within the visual app.

When you create a new visual app, Visual Builder automatically sets your runtime
dependencies to the latest Visual Builder Runtime and JET versions. If you’ve already
staged or published an app, however, it’s up to you to decide when to upgrade, as long
as you do so within a certain time period. As a general rule, the Designer supports
applications built on the current Runtime Version, as well as the three previous
versions. So for 24.04, for example, the Designer supports not only the 24.04 Runtime
Version, but also apps built with 24.01, 23.10, and 23.07. Once 24.07 comes out,
however, support for the 23.07 Runtime Version will drop off, so we'll ask you to
upgrade those apps before you can work on them in the Designer. If you choose not to
upgrade at that time, you run the risk that newer browser versions will break your app.
You also won’t be able to take advantage of any important security and performance
improvements. For all of these reasons, we encourage you to build time into your
development cycle to keep abreast of current changes, and to make sure you upgrade
your app (you should version it first) before support for your current runtime version
expires.

Upgrade Your App
If you see a banner in the header telling you to upgrade your runtime dependencies,
here's what to do:

1. Click Oracle Visual Builder in the top left corner to return to the list of visual
applications.

2. On the row pertaining to your app, click the hamburger menu to display the list of
actions.

3. Click New Version:

Chapter 23
Upgrade Your App

23-2

https://www.oracle.com/webfolder/technetwork/jet/index.html?ojr=releasenotes
https://www.oracle.com/webfolder/technetwork/jet/index.html?ojr=releasenotes

4. In the New Application Version dialog, enter a new version for your app, then click
Create.

5. On the list of visual applications, click your app to re-open it in the Designer.

6. In the banner, click Upgrade.

7. In the Upgrade Runtime Dependency dialog, choose the release you want to move up to,
then click Upgrade:

Chapter 23
Upgrade Your App

23-3

Note:

You don't have to wait until you see a message to upgrade your app. If the
Upgrade button under Runtime Dependency (on the Settings page) is active,
that means you can—and should—upgrade as soon as you can. Once the
message appears in the header, you're likely close to the end of your window
according to Visual Builder's upgrade policy
Be sure to create a new version of your app before upgrading it.

Chapter 23
Upgrade Your App

23-4

After Upgrading
Once you trigger an upgrade, Visual Builder makes changes to your app to better align it with
the upgraded release. We may, for example, address deprecated properties or move things
from one file to another.

You'll see details of all the changes made to your application during the migration, so you
know exactly what happened behind the scenes. If your app has syntax errors and migration
fails—conveniently displayed in the upgrade dialog—you'll need to fix those issues before
you can upgrade. Here's an example of what you may see when a migration succeeds and
when a migration requires your action:

Immediately after migration, if you decide you don't want the upgrade, you can close the
Upgrade Runtime Dependency dialog, then use the Undo icon in the header to roll back all
the changes, though upgrading is the recommended course of action.

After you’ve upgraded your app, you still have to stage or publish the app for the upgrade to
take effect for your running application.

Note:

If your app was last opened in the Designer before 19.4.3, the next time you open
the app, it will be automatically upgraded to the latest Visual Builder Runtime/JET
versions. The ability to control when to upgrade is available only to apps last
opened in 19.4.3 or later.

Chapter 23
Upgrade Your App

23-5

Set a Custom Version
Use the Set Custom Version option only when directed to do so by Oracle. This
option is provided in case you temporarily need to freeze your runtime dependencies
for some reason, or point to a version of JET or the Visual Builder Runtime that may
not yet be widely available.

The versions you specify must be compatible with each other; if they aren’t, you’ll see
an error message, like this:

Although not recommended, you can ignore the warning message and click Apply to
apply your changes.

The versions you specify in the Set Custom Version URLs dialog remain in effect
until you set another custom version or use Revert to default to upgrade to the latest
Visual Builder Runtime and JET versions:

Chapter 23
Upgrade Your App

23-6

Understand What’s Happening in visual-application.json
When you use the UI to influence your upgrade preferences, Visual Builder makes the
corresponding changes to your visual application’s underlying visual-application.json
file. Although you don’t have to change any values physically, it can be helpful to understand
what’s going on behind the scenes.

In this example:

{
 "vbcs.dt.version": "20231205-24.04.0",
 "dependencies": {
 "upgrade": "micro",
 "paths": {
 "jet": "https://static.oracle.com/cdn/jet/15.1.3",
 "telemetry": "https://static.oracle.com/cdn/trace/8.0.0",
 "oracleImageGallery": "https://static.oracle.com/cdn/fnd/gallery/
2404.0.0",
 "visualRuntime": "https://static.oracle.com/cdn/vb/2404.0.0"
 }
 },
 "source.version": "2404",
 "migration": {
 ...
 }
}

• The upgrade property is set to micro. This means that if Visual Builder releases a minor
version of the software (with numbers like 24.04.1, 24.01.2, etc.), your application will be
automatically upgraded to that version the next time you open your application in the
Designer. (Incompatibilities, while rare, tend to occur when shifting to major releases,
especially when changes to a major JET release are also involved.) The micro setting is
the default for new applications.

Chapter 23
Upgrade Your App

23-7

If you are directed by Oracle to set custom versions for the Visual Builder Runtime
and JET, the upgrade property is set to none, which means your app won’t be
upgraded to newer available minor versions, should they become available. In
effect, your changes are frozen until you use the Revert to Default option, at
which point the upgrade property is set back to micro.

• The version of JET (under paths) is 15.1.3, while the Visual Builder Runtime
version is 2404.0.0 (a minor version would have 2404.0.1).

Resolve Upgrade Issues
When you access an application following an upgrade, Visual Builder tries to update
the application's metadata for compatibility with the newer version. If this update fails,
Visual Builder opens your application in recovery mode to let you manually resolve
the issues and retry the upgrade.

In addition to server-side upgrade issues, recovery mode may be triggered if the JSON
information in the application's configuration file (visual-application.json)
cannot be parsed. This can happen when there's an unresolved merge conflict or the
JSON syntax is invalid.

If your app launches in recovery mode (as shown here), you no longer have access to
the Navigator and Design view in the Designer:

Chapter 23
Resolve Upgrade Issues

23-8

Use the subset of features (Source view, Code view, Audits, and Find in Files) that Visual
Builder makes available to find and resolve the issues that prevent the upgrade. The file
information in the notification can help you navigate to the file that needs to be fixed.

Once you resolve all issues, click Upgrade to restart and complete the upgrade. Click the
button as often as required until all issues are resolved.

Importing an application exported from an older version than the target instance also triggers
an application upgrade. If the upgrade fails, the app is imported with the issues, but will be
placed in recovery mode to help you fix the issues. However, if the imported application zip
file contained entity or setup data, this data will not be imported if the import triggers recovery
mode. Instead, once the application has been upgraded, you'll need to import the data in the
application zip using the Data Manager on the Business Objects page (see Work with the
Data Manager).

What Happens During Software Maintenance?
Visual Builder will occasionally need to undergo planned maintenance to bring the software to
the most current release.

Your service will not experience any downtime during the update. Once the update is
complete, you’ll be able to start using the new features immediately. While the update should

Chapter 23
What Happens During Software Maintenance?

23-9

not affect existing published applications, Oracle recommends that you update
applications still in development to the latest version of the Oracle JET and Oracle
Visual Builder runtime libraries. Not only will this allow you to take advantage of the
new features and bug fixes they offer, but you’ll also be on a supported platform.

For published applications, we recommend that you create a new version of the
application, update the runtime libraries in Application Settings, and test your
application to make sure it functions properly. Once confirmed, publish the new version
of the app. See Upgrade Your App for more information.

Chapter 23
What Happens During Software Maintenance?

23-10

24
Optimize Your Builds and Audit Your Code
Using Grunt

Visual Builder provides a number of NPM packages that you can use to audit, optimize, build,
and deploy the web (and mobile) apps in your visual applications using Grunt.

Overview
You can use Grunt to build your application from the sources stored in your Git repository or
stored locally. Your visual application includes a Grunt file that you modify to define custom
tasks that you want to include in the build process and to configure built-in tasks.

The root folder of your visual application includes two resource files that Grunt uses when
building applications:

File Description

Gruntfile.js Contains a basic Grunt script for building the app that can be modified to add
custom build tasks, and to configure built-in tasks.

package.json Declares the dependency and specifies the URL reference to the grunt-
vb-build NPM package that provides the Grunt tasks used to build and
audit visual applications. Visual Builder automatically updates the package
version and URL whenever Oracle publishes a new version of the package.

The build process for an application using Grunt includes the following steps:

Step Description

Process the application
sources

This step consists of several important processes. The most important is
"metadata processing", when the visual application sources are transformed
into a deployable form. This includes the injection of Visual Builder runtime
links and other configuration into the application's index.html, processing
other application templates, the creation of service definition files, and so on.

You run the vb-process-local task to process application sources. This
task creates an output directory (./build/processed) with built assets
that can be consumed by the vb-package and vb-deploy tasks.

Optimize the processed
sources

This step consists of a number of parts: optimize images, optimize styles,
create require module bundles, and, if necessary, deploy the app's
resources to a content delivery network.

To optimize the processed sources, you run either the vb-optimize task on
its own, or you run the vb-package task (which includes the vb-optimize
and vb-manifest tasks by default).

The vb-optimize task runs the vb-css-minify, vb-require-bundle,
and vb-optimize-cdn tasks, and generates the ./build/optimized
directory with the optimized sources.

24-1

Step Description

Deploy the application
artifact

This step consists of creating the deployment package archive and
deploying it to the Visual Builder instance. You run the vb-deploy task to
deploy the application artifact.

You can include custom tasks in any of the steps by modifying Gruntfile.js to
redefine tasks.

Build Your Application Using Oracle Visual Builder Studio
You can configure a continuous integration and delivery pipeline in Oracle Visual
Builder Studio to build and deploy your visual application to a Visual Builder
environment.

When you create a workspace for a new or imported application, VB Studio
automatically creates a pipeline for your visual application. This pipeline provides built-
in Grunt-based package and deploy jobs that automate the task of continuous
integration and delivery for you. You can configure these built-in jobs (or manually
create jobs) to package and optimize your application, then deploy it to the Visual
Builder instance defined in your project's environment. The high-level steps to do this
are the same regardless of whether you deploy your visual application to a
development, test, or production environment.

For an overview of how you set up a visual application project to build and deploy, see
Set Up Visual Builder Studio for Visual Applications in Administering Visual Builder
Studio. For specific steps, depending on where you are in the application development
lifecycle (development/test or production), see:

• Create and Set Up a Project for Development

• Set Up the Project to Deploy for Production

Build Your Application Locally
After you create your visual application in Visual Builder and you are ready to stage or
publish it, you can download the sources to your local machine and use Grunt to build
it locally.

To build an application locally, you need to install Node.js and its package manager
(npm) on your local system. You'll also need to save the sources for the visual
application on your local system. You can get your visual application's sources by
either:

• Cloning the Git repository containing the sources, or

• Exporting the visual application from Visual Builder and extracting it to your local
system

Chapter 24
Build Your Application Using Oracle Visual Builder Studio

24-2

Build and Deploy Your Application
Once you get your application sources, you need to run a number of tasks to build and
deploy the application to the Visual Builder environment where you want to use the
application.

A typical series of tasks that you run if you want to build and deploy your visual application to
a Visual Builder instance is:

1. vb-process-local
2. vb-package
3. vb-deploy
To build and deploy your application locally:

1. Open a command-line interface and enter node -v to confirm that version 18.x or later of
Node.js is installed and enter npm -v to confirm that NPM is installed.

2. In the command-line interface, navigate to the folder on your local system containing the
package.json and Gruntfile.js files.

3. Enter npm install to retrieve the node dependencies required to build the application.

The install command retrieves the grunt-vb-build NPM package defined in
package.json.

Tip:

If you add a package-lock.json file to your Git repository, you can avoid
unexpected changes to NPM dependencies when you perform a build. When
this file is present, the build pipeline needs to run the npm ci command, which
uses the dependencies listed in the package-lock.json file, because the npm
install command ignores the generated file.
To take advantage of this functionality:

a. Clone the Git repository locally.

b. Run npm install to generate the package-lock.json file.

c. Commit the generated file locally and then push it to the remote repository.

Whenever the package.json file changes, you need to regenerate it the same
way.

Changes can occur when:

• You upgrade the VB Runtime release in Settings.

• Visual Builder automatically upgrades library dependencies to the latest
available micro-release during a service upgrade.

• You manually edit the generated file.

4. Enter the task names in the command-line interface to process your application sources,
package the application, and deploy the application to the Visual Builder instance. The

Chapter 24
Build Your Application Locally

24-3

following example shows how you execute these tasks along with some supported
parameters:

First build application sources
./node_modules/.bin/grunt vb-process-local
 --url:ce=<URL of Component Exchange service>
 --username:ce=<username to access Component Exchange service>
 --password:ce=<password to access Component Exchange service>

Package the application sources. This task in turn executes
vb-optimize and vb-manifest
./node_modules/.bin/grunt vb-package

Deploy and publish the visual application to the target Visual
Builder instance using the data schema from the previously
published live version of the application.
./node_modules/.bin/grunt vb-deploy \
 --url:rt=https://vbruntime-instance.example.com/ic/builder/ \
 --username:rt=$vbuser \
 --password:rt=$vbpass \
 --id=helloworld \
 --ver=0.1 \
 --remoteProjectId=learning_demo_28288 \
 --remoteGitRepo=https://vbstudio-instance.example.com/vbstudio-
vboci/s/learning_demo_28288/scm/learning_demo.git \
 --schema=live
 --publish

To view the full list of supported parameters for each task, see:

• vb-process-local

• vb-package

• vb-deploy

When these Grunt tasks finish, you can test your application by opening the URL of
the deployed application in your browser. The command-line interface where you run
these Grunt tasks displays the URLs that identify the deployment location of the web
(or mobile) apps.

Authentication
Build tasks exposed by the grunt-vb-build package use OAuth access tokens to
authenticate calls to Visual Builder instances. There are multiple ways to tell a Grunt
task to obtain this access token:

• Explicitly pass an OAuth access token through the --accessToken option. To get
an access token, access your application's Settings editor, then click Business
Objects. Click Get Access Token and look for the Access Token Value. You can
now use the access token's value in the build task for authentication, for example:

./node_modules/.bin/grunt vb-deploy \
 --url=https://vbruntime-instance.example.com/ic/builder/ \
 --

Chapter 24
Build Your Application Locally

24-4

accesstoken=eyJ4NXQjUzI1NiI6IlVub283NXlZaUtqdXJ2Z3dDMW4tRHdqM1NWRFIwSGRwdV
Rvd045c3NTWGsiLCJ4NXQiOiI5bEFQMTMxSWFuY1BQbFRQdnA3dWRZb2JkZFkiLCJraWQiOiJT
SUdOSU5HX0tFWSIsImFsZyI6I... \
 --id=helloworld \
 --ver=1.0

• Use Basic authentication for the Visual Builder instance through the --username and --
password options, for example:

./node_modules/.bin/grunt vb-deploy \
 --url=https://vbruntime-instance.example.com/ic/builder/ \
 --username=mary.jane@example.com \
 '--password=***' \
 --id=helloworld \
 --ver=1.0

• Use Oracle Identity Cloud Service (IDCS) integration through the --username, --
password, --idcsClientId, --idcsClientSecret, and --idcsScope options
This table describes the authentication options when you use IDCS to get the OAuth
access token:

Name Mandatory Default
Value

Description

url[:dt] no n/a URL of the Visual Builder design-time service.
The :dt suffix is optional.

username[:dt
]

no n/a The username used to obtain an OAuth access token
for further communication with Visual Builder
services. The :dt suffix is optional.

password[:dt] no n/a The password used to obtain an OAuth access token
for further communication with Visual Builder
services. The :dt suffix is optional.
A password specified via the --password Grunt
option may need to be enclosed in single quotation
marks (') if it contains special characters. In general,
it's advisable to always use quotation marks for the
--password option, especially in VB Studio jobs
where the password is provided via a job variable.
For example: grunt vb-deploy '--
password=Jkl@#&!%^23'

idcsClientId no n/a IDCS client ID (username)

idcsClientSe
cret

no n/a IDCS client secret (password)

idcsScope no n/a IDCS scope

For example:

./node_modules/.bin/grunt grunt vb-deploy \
--url=https://vbdesigntime-instance.example.com/ic/builder/ \
--username=mary.jane@example.com \
'--password=***' \
--idcsUrl=https://idcs-
xxxxx14a21d74e72baf5a26c65900c12.identity.dev.ocqadev.com \
--idcsClientId=5b4e306598374529959bc8e18c91a86e \

Chapter 24
Build Your Application Locally

24-5

'--idcsClientSecret=****'\'
--idcsScope=https://
AB2C5D66E78F4GHI83J9304219KL8939.integration.test.ocp.oc-
test.com:443urn:opc:resource:consumer::all'\
--id=test \
--ver=1.0

Grunt Tasks to Build Your Visual Application
The build tasks exposed by the grunt-vb-build package have options and pre- and
post- task hooks that you use when defining the task.

About Visual Builder Grunt Build Tasks
You use pre-defined Grunt tasks and options to define the tasks that are performed
when building your application.

The public Grunt tasks that are used to build the application are exposed by the
grunt-vb-build package. Some tasks have pre- and post- task hooks which you can
use to add custom functionality.

Options that you specify for a task might be overridden by other options that have a
higher priority. Task options have the following priority:

1. Command line options

2. Task:target specific options (for multitasks)

3. Task specific options

4. Generic "vb" options

vb-clean
Cleans the build directory.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
clean task:

Detail Description

subtasks n/a

multitask n/a

hooks vb-pre-clean, vb-post-clean
input build/*
output n/a

The following table describes the sole build option for the vb-clean task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-6

vb-process-local
Processes application sources locally in the Grunt process.

The processing operation resolves various templates and further modifies (adds and
updates) several application resources.

To run this task, you must provide the Visual Builder URL and your credentials for accessing
the Visual Builder instance. You can provide the credentials directly when you run the task.
Alternatively, you can use the accessToken option to specify a valid OAuth access token. If
you provide both credentials and an OAuth access token, the task authenticates using the
access token.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
process-local task:

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input ${gitSources}
output build/processed/*

The following tables describe the options for the vb-process-local task. The :ce suffix is
required only when your application includes Web Components and, as a result, references
the Component Exchange.

Authentication options

Name Mandatory Default Value Description

url[:ce] no n/a URL of the Component
Exchange service. Not
needed if the application
does not reference Web
Components.
Talk to your
administrator to get the
URL of the Component
Exchange used by your
Visual Builder instance,
available on the Tenant
Settings page. For the
URLs of publicly
available Component
Exchanges, see
Manage Your
Component Exchange
in Administering Oracle
Visual Builder in Oracle
Integration.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-7

Name Mandatory Default Value Description

username[:ce] no n/a The username to
access the Component
Exchange service.
The :ce suffix is
optional.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-8

Name Mandatory Default Value Description

password[:ce] no n/a The password to access
the Component
Exchange service.
The :ce suffix is
optional.
A password specified
via the --password
Grunt option may need
to be enclosed in single
quotation marks (') if it
contains special
characters. In general,
it's advisable to always
use quotation marks for
the --password
option, especially in VB
Studio jobs where the
password is provided via
a job variable. For
example: grunt vb-
deploy '--
password=Jkl@#&!
%^23'

Here's an example of
the vb-process-
local task with the --
username and --
password options
when your app is using
components from the
publicly available
Component Exchange:

grunt vb-process-
local --
url:ce=https://
devinstance4wd8us
2-
wd4devcs8us2.usco
m-
central-1.oraclec
loud.com/profile/
devinstance4wd8us
2-wd4devcs8us2/s/
devinstance4wd8us
2-
wd4devcs8us2_comp
catalog_3461/
compcatalog/
0.2.0 --
username:ce=comp.
catalog --

Chapter 24
Grunt Tasks to Build Your Visual Application

24-9

Name Mandatory Default Value Description

password:ce=bXwph
h6RMFjn#g

accessToken[:ce] no n/a The value of an OAuth
access token to access
the Component
Exchange service. If
provided, username and
password options are
not necessary. The :ce
suffix is optional.

Build options

Name Mandatory Default
Value

Description

target no build Name of build directory.

git-sources no ./ Location of the visual application's sources.

Other options

Name Mandatory Default Value Description

mode no default Defines the build
mode:
• default: Builds a

visual
application's
assets for
deployment to
Visual Builder
runtime service

• fa: Builds a visual
application's
assets for
deployment to an
Oracle Cloud
Applications
environment

fa-indexHtml-
resolveVariables

no true When mode=fa and if
this property is set to
false, the generated
index.html does
not resolve JET and
VB URL and version
template variables.
The file will contain
%JET_CDN_PATH%,
etc.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-10

Name Mandatory Default Value Description

fa-inject-pwa-tokens no false When mode=fa, the
build injects the
following tokens into
index.html

<!-
%APPLE_ICONS_LIN
KS%>
<!
%SPLASHSCREENS_L
INKS%->

Oracle Cloud
Applications servlet
should resolve these
tokens in the runtime.

enableTelemetry no false Injects the
Trace.ConsoleProfile
initializer into the
generated
index.html

You can better control the template-resolving process for the web (or mobile) application's
index.html using the fa build mode rather than the default build mode. Resolving the
following templating marks:

• <!-- visualBuilderScripts -->
• <!-- vb:inject id="headContent" -->
• <!-- vb:inject id="headContent" theme="resources/css/" -->
can be controlled by the following template variables, defined in the configuration of the vb-
process-local task:

• %BASE_URL%

• %JET_CDN_PATH%

• %JET_CDN_VERSION%

• %VB_CDN_PATH%

• %VB_VERSION%

• %JET_UI_STYLE_PATH%

If the resolveTemplate configuration object is not provided for this task, these variables will
be left unresolved in the resulting index.html.

If the resolveTemplate configuration object is set at least to an empty object, the template
variables will be resolved with values taken from the application's version files (private/
custom/versions.json or resources/package/versions.json), or with default values if
none of these exist. The exception is the %BASE_URL% variable, which doesn't have a
default and the template variable reference will be kept in the resulting index.html until the

Chapter 24
Grunt Tasks to Build Your Visual Application

24-11

value is provided explicitly in the resolveTemplate configuration object, as in the
following example:

grunt.initConfig({
 "vb-process-local": {
 options: {
 resolveTemplate: {
 BASE_URL: 'http://oracle.cloud/abc',
 }
 }
 },
});

The configuration object may also contain values for the other template variables. In
such case, the configuration value has precedence before the versions files and
defaults.

Setup to Resolve Environment Variables

The vb-process-local task creates static application assets that contain various
environment variables, which are resolved when application assets are deployed to a
Visual Builder runtime instance by the vb-deploy task. If you don't deploy the
application to a Visual Builder instance, you may want to resolve these variables
during the build. This may be handy, for example, for local application development
which in combination with the vb-serve task allows you to quickly test your application
locally.

You can define environment variable values by adding the following configuration to
your Gruntfile.js file (you can also add the configuration into the object you pass
to the grunt.initConfig() method call). Here's an example Gruntfile.js with
the vb-process-local environment configuration:

grunt.config('vb-process-local.environment', {
 "env.userProfileUrl": "_currentuser",
 "env.vbServer.url": "http://127.0.0.1:3000/",
 "env.vbServer.context": "",
 "env.application.id": "myApp",
 "env.application.version": 1618840321144,
 "env.profileId": "base_configuration",
 });

The following table describes the list of environment variables used during the Grunt
build process:

Name Description

app-flow.json
env.profileId Selected application profile

env.userProfileUrl User profile URL

env.oauthUserProfileUrl OAuth user profile URL

env.idcsInfo IDCS information

catalog.json
env.catalogJson Entire contents of the catalog.json file

Chapter 24
Grunt Tasks to Build Your Visual Application

24-12

Name Description

index.html
env.vbServer.url URL of the Visual Builder runtime server

env.vbServer.context Context path of the Visual Builder runtime
server

env.application.version Application version

vb-deploy
This task deploys a visual application to a Visual Builder runtime instance.

You must build visual applications using the vb-process-local task before you use the
vb-deploy task.

The following table describes the subtasks, hooks and inputs and outputs of the vb-deploy
task:

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input build/processed/*, build/optimized/*
output build/deploy.zip

The following tables describe the options for a visual application when using the vb-deploy
task.

Application selection task options for visual applications

Name Mandatory Default
Value

Description

id yes Read from the
rootURL
attribute in
visual-
application
.json

ID of the visual application you're going to build.

ver yes Read from
version
attribute in
visual-
application.jso
n

Version of the visual application.

url[:rt] yes n/a A Visual Builder runtime service URL.

The rt suffix is optional.

profileId no n/a Application profile ID.

remoteProject
Id

no n/a ID of the source project in VB Studio.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-13

Name Mandatory Default
Value

Description

remoteGitRep
o

no n/a URL of the source Git repository in VB Studio.

Visual application authentication options

Name Mandatory Default Value Description

username[:rt] no n/a The username to be
used to obtain OAuth
access token for
further communication
with Visual Builder
runtime.
The rt suffix is
optional.

password[:rt] no n/a The password to be
used to obtain OAuth
access token for
further communication
with Visual Builder
runtime.
The rt suffix is
optional.

A password specified
via the --password
Grunt option may
need to be enclosed in
single quotation marks
(') if it contains special
characters. In general,
it's advisable to always
use quotation marks
for the --password
option, especially in
VB Studio jobs where
the password is
provided via a job
variable. For example:
grunt vb-deploy
'--
password=Jkl@#&!
%^23'

accessToken[:rt] no n/a The value of OAuth
access token. If
provided, username
and password options
are not necessary.
The rt suffix is
optional.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-14

Name Mandatory Default Value Description

sslCertificate[:rt] no n/a The path to the SSL
certificate for the
connection to Visual
Builder instances
provisioned with self-
signed certificates.
The rt suffix is
optional.

Visual application build options

Name Mandatory Default Value Description

target no build Name of build directory.

Visual application data processing options

Name Mandatory Default Value Description

schema no new Specifies data schema
processing during
application stage or
publish. The value can
be:
• new to create a new

data schema
• dev to use the data

schema from
development

• stage to use the
data schema from
the previous staged
version of the
application

• live to use the
data schema from
the previous live
version of the
application

Other options for visual applications

Name Mandatory Default Value Description

publish no false Defines whether the
deployed application
should be published or
not.

vb-optimize-cdn
Deploys the app's resources to a Content Delivery Network (CDN) service to improve a web
(or mobile) app's loading performance.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-15

Typically, the application's index.html resource that's mapped to the root application
URL is deployed to a Visual Builder Runtime service, and the rest of the application's
assets is uploaded to CDN. To link application assets deployed to the CDN with the
index.html, you need to use a base tag, whose href value determines the root URL
that's used to resolve relative references in index.html (scripts/images/
styles/modules).

This task inserts this base tag with the href attribute that contains the base URL of the
deployed application resources. The URL inserted in the href is taken from the
following locations in this order:

• cdnUrl command-line option

• cdnUrl setting in the vb-optimize-cdn task's options

• resolveTemplate.BASE_URL entry from the vb-process-raw-index-html task's
options (for Oracle Cloud Applications)

If you don't specify any of these options, the task will silently do nothing.

This task automatically runs from within the vb-optimize task for visual applications.
It does not run for Oracle Cloud Application extensions.

Detail Description

subtasks -

multitask (config generator task: vb-optimize-cdn-configuration)

hooks -

input build/optimized/*
output build/optimized/*

The following table describes the options for the vb-optimize-cdn task:

Name Mandatory Default
Value

Description

cdnUrl n/a n/a URL of the deployed application assets. It's
important that the CDN assets URL ends with slash
("https://my.cdn.com/myapp/"), otherwise
resources will be resolved against the parent
segment URL.

insertBaseUr
l

n/a false Inserts BASE_URL token to index.html's
vbInitConfig section

insertBaseTa
g

n/a true Disables insertion of the base tag for Oracle Cloud
Applications that define
resolveTemplate.BASE_URL entry in the vb-
process-local task's options; in this case,
insertion of base tag is automatic.

vb-optimize
Optimizes application sources by minifying images and CSS, and creating minified
requirejs module bundles.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
optimize task:

Chapter 24
Grunt Tasks to Build Your Visual Application

24-16

Detail Description

subtasks vb-prepare, vb-image-minify, vb-css-minify, vb-
require-bundle , vb-optimize-cdn

multitask n/a

hooks vb-pre-optimize, vb-post-optimize
input build/processed/*
output build/optimized/*

This task does not define its own options. Any option of the subtasks is relevant.

vb-prepare
Copies either the raw application sources or the processed application sources to the
build/optimized directory where the optimization takes place.

If the build/processed directory exists (as a result of the vb-process task) and the
rawSourcesMode option is not specified, this task will copy the build/processed directory
into the build/optimized directory.

If the build/processed directory does not exist or rawSourcesMode option is set to 'True',
this task will copy the raw application sources (specified by the gitSources option, set by
default as "./") into the build/optimized directory and invoke the vb-process-raw task.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-prepare
task:

Detail Description

subtasks vb-process-raw

hooks n/a

input build/processed/* or ${gitSources}
output build/optimized/*

The following table describes the options for the vb-prepare task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

rawSourcesM
ode

no false Specifies if the task should copy raw application
sources or metadata processed sources from the
build/processed directory.
Note: The implicit value is defined by the existence of
the build/processed directory (true if the
directory exists).

This task can be used on its own if you're fine tuning the application's require bundles
optimization and you don't want to run the vb-optimize task every time you change
settings. In this case, calling vb-prepare before vb-require-bundle will prepare fresh
processed application sources for optimization.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-17

vb-prerender-cache-warm
Warms the prerender server's cache to improve response times for requests made by
Googlebot, the main web crawler used for Google search, when indexing your web
application's pages.

When a request for a Visual Builder page is received from Googlebot (or any other
search engine), the request is routed through the prerender server embedded in Visual
Builder. The prerender server loads the page and runs any JavaScript required to fully
render that page before returning the page to Googlebot. This way, Googlebot always
receives a fully rendered page for indexing.

Once the prerender server renders a URL, the page is cached, so markup can be
returned immediately for subsequent requests for the same URL. If markup is not yet
cached, the process of rendering the page can take some time. Typically, Googlebot
waits until this process completes—but it is recommended that you warm the
prerender server's cache for URLs in your application's sitemap, so Googlebot always
gets the fastest possible response when requesting those URLs.

Use the vb-prerender-cache-warm task to warm up the prerender server's cache
after your application (or a new version of it) is deployed.

Note:

Before warming the cache, ensure that you have an up-to-date
sitemap.xml file as part of the application's sources. See Add a Sitemap to
a Web App's Resources.

The following table describes the subtasks, hooks, and input and output of the vb-
prerender-cache-warm task:

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input path_to_web_app's_sitemap_file
output Prerender server cache populated

The following table describes the options for the vb-prerender-cache-warm task:

Name Mandatory Default
Value

Description

id yes n/a Web application's ID, for example,
MyApplication.

ver yes n/a Web application version, for example, 1.0.

url[:dt] yes n/a URL of the Visual Builder design-time service, for
example, https://my.visualbuilder.com/ic/
builder. The :dt suffix is optional.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-18

Name Mandatory Default
Value

Description

sitemap no sitemap.xml Path to the sitemap.xml file on the file system,
for example, webApps/myWebApp/
sitemap.xml.

manifest no manifest.jso
n

Path to the manifest.json. This file tracks
what has been prerendered successfully, so that
the process can be re-run if necessary. For
example, if entries change in sitemap.xml, the
process will determine which entries have changed
and warm those alone. This file also stores details
on any URLs that were not successfully retrieved
so they can be retried.

userAgent no Default
Chrome user
agent

User agent to use when requesting the page.

clearCache no false Set this flag to true to clear the cache before
starting to warming it. This flag is recommended
when a new version of the application is deployed
because any existing cached pages will contain
broken asset links.

See Warm the Cache for URLs in a Sitemap for examples of how you can use this task.

The vb-prerender-cache-warm task uses the same authentication options as other Grunt
tasks that connect to the server:

Name Mandatory Default Value Description

username no n/a The username to be
used to obtain OAuth
access token for further
communication with
Visual Builder runtime.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-19

Name Mandatory Default Value Description

password no n/a The password to be
used to obtain OAuth
access token for further
communication with
Visual Builder runtime.
A password specified
via the --password
Grunt option may need
to be enclosed in single
quotation marks (') if it
contains special
characters. In general,
it's advisable to always
use quotation marks for
the --password
option, especially in VB
Studio jobs where the
password is provided via
a job variable. For
example: grunt vb-
deploy '--
password=Jkl@#&!
%^23'

accessToken no n/a The value of the OAuth
access token. If
provided, username and
password options are
not necessary.

sslCertificate no n/a The path to the SSL
certificate for the
connection to Visual
Builder instances
provisioned with self-
signed certificates.

vb-test
Runs the action chain tests that you have defined in your visual application for web
(and mobile) apps.

The tests runs on built application sources, with the test results stored in the build/
tests/results directory as follows:

• jUnit tests: [web|mobile]Apps/<appId>/<browserId>test-results.xml
• Tests coverage report: [web|mobile]Apps/<appId>/vbCoverage.json
For more information, see Test Action Chains Using the vb-test Grunt Task .

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
test task:

Detail Description

subtasks n/a

Chapter 24
Grunt Tasks to Build Your Visual Application

24-20

Detail Description

multitask config generator task: _vb-test-generate-
configuration

hooks n/a

input build/processed
output build/tests/results

The following table describes the options for the vb-test task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

karma-debug no false Enables unit test debugging. When Chrome open, you'll
need to manually click DEBUG button in the window for
the tests to run. You can open the Chrome Dev Tools,
set some breakpoints, and reload the page to re-run the
tests.

karma-log-
level

no INFO Karma log level, which you can set to DEBUG for
verbose logging.

karma-
browser

no ChromeHeadl
ess

Browser mode to use. Use "Chrome" to run tests in UI
(window) mode.

mocha-
timeout

no Timeout of Mocha tests (in milliseconds).

vb-require-bundle
Creates minified requirejs module bundles.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
require-bundle task:

Detail Description

subtasks n/a

multitask config generator task: vb-require-bundle-configuration

hooks n/a

input build/optimized/*
output build/optimized/*

The following tables describe the options for the vb-require-bundle task.

Build option

Name Mandatory Default Value Description

target no build Name of build directory.

Optimization options

Chapter 24
Grunt Tasks to Build Your Visual Application

24-21

Name Mandatory Default
Value

Description

emptyPaths no n/a Comma-separated list of require paths that are set
"empty". Requirejs optimizer will not follow and
bundle matching dependencies.

requirePaths no n/a Requirejs optimizer paths mapping. This will
override any default values or values read from
app-flow.json.

The value needs to be in a form of quoted JSON
object: (--requirePaths='{ "foo":
"boo" }').

bundles no Defines custom require module bundles.

Configuration schema:

• <bundle name>
– modules

* find
* ids

– exclude
* find
* ids

bundles.mod
ules

no Specification of the modules that are to be added to
the enclosing bundle element.

Configuration schema:

• find
• ids

bundles.excl
ude

no Specify modules that shouldn't be part of the
enclosing modules bundle. The exclusions are
applied to all bundle modules, including modules
added following transitive module dependencies.

Configuration schema:

• find
• ids

bundles.
[exclude|
modules].fin
d

no List of regular expression patterns used for
matching optimized application resources.

Regular expressions starting with exclamation mark
are considered to be negative; resources matching
these patterns won't be included.

bundles.
[exclude|
modules].ids

no Specifies list of module IDs.

transpile no false Determines whether a separate set of require
module bundles transpiled to ES5 code using babel
preset-env preset should be created and stored in
the bundles/es5 directory.

When this option is set to true, the application's
index.html is modified so it contains a code
snippet that switches between the original bundles
for modern browsers and the ES5 versions for
IE11.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-22

Name Mandatory Default
Value

Description

minify no true When set to true, babel minify preset is used to
minify generated requirejs module bundles.
The minification is also applied to the ES5 variants
of the bundles if created.

optimize no Deprecated. You should use the minify option
instead.

include no n/a Deprecated. You should use the bundles
option instead.

exclude no n/a Deprecated. You should use the bundles
option instead.

vb-require-bundle-clean
Deletes resources that are part of the generated requirejs resource bundles.

When a web (or mobile) application is optimized using the vb-require-bundle task, the
bundled resources stay in the build/optimized directory. You can use the vb-require-
bundle-clean task to clean these bundled files before deployment. The files should not be
needed in the deployment as resources should be loaded from the resources bundle.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
require-bundle-clean task:

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input build/optimized/*
output build/optimized/*

The following table describes the build option for the vb-require-bundle-clean task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

vb-css-minify
Minifies CSS resources.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-css-
minify task:

Detail Description

subtasks n/a

multitask config generator task: vb-css-minify-configuration

Chapter 24
Grunt Tasks to Build Your Visual Application

24-23

Detail Description

hooks n/a

input build/optimized/*
output build/optimized/*

The following table describes the options for the vb-css-minify task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

vb-image-minify
Minifies the image resources.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
image-minify task:

Detail Description

subtasks n/a

multitask config generator task: vb-image-minify-configuration

hooks n/a

The following table describes the options for the vb-image-minify task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

vb-json-minify
Minifies JSON resources to remove white spaces.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
json-minify task:

Detail Description

subtasks n/a

multitask config generator task: vb-json-minify-configuration

hooks n/a

input build/optimized/*
output build/optimized/*

Chapter 24
Grunt Tasks to Build Your Visual Application

24-24

vb-export
Downloads application sources from the Visual Builder instance and expands the archive on
the local file system for further processing.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-export
task:

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input build/optimized/*
output build/optimized/*

The following tables describe the options for the vb-export task.

Application selection options

Name Mandatory Default Value Description

id yes n/a ID of the visual
application you're going
to build. The application
needs to exist on the
referred Visual Builder
instance.

ver yes n/a Version of the visual
application

url[:dt] yes n/a URL of your Visual
Builder service instance.
The dt suffix is optional.

Authentication options

Name Mandatory Default
Value

Description

username[:dt] no n/a The username to be used to obtain OAuth access token
for further communication with Visual Builder services.
The dt suffix is optional.

password[:dt] no n/a The password to be used to obtain OAuth access token
for further communication with Visual Builder services.
The dt suffix is optional.
A password specified via the --password Grunt option
may need to be enclosed in single quotation marks (') if
it contains special characters. In general, it's advisable
to always use quotation marks for the --password
option, especially in VB Studio jobs where the
password is provided via a job variable. For example:
grunt vb-deploy '--password=Jkl@#&!
%^23'

Chapter 24
Grunt Tasks to Build Your Visual Application

24-25

Name Mandatory Default
Value

Description

accessToken[:
dt]

no n/a The value of an OAuth access token. If provided,
username and password options are not necessary.
The dt suffix is optional.

sslCertificate[:
dt]

no n/a The path to the SSL certificate for the connection to
Visual Builder instances provisioned with self-signed
certificates. The dt suffix is optional.

Build options

Name Mandatory Default Value Description

git-sources no ./ The location of the
sources of the visual
application.

vb-manifest
Creates build manifests for the visual application’s build assets. The assets can be
non-optimized (in the build/processed directory) or optimized (in the build/
optimized directory).

Note:

This task is a multitask so it requires an existing Grunt configuration to run.
You can create your own in your Gruntfile.js or use the vb-manifest-
configuration subtask to generate one.

For visual applications, it creates two kinds of manifests:

• A manifest in each web (or mobile) application. This manifest contains a list of
application resources, requirejs bundles mapping, and the name of the
version_<hash> directory. The manifest location is build/[processed|
optimized]/[web|mobile]Apps/<applicationName>/build-
info.json.

• A manifest for the visual application itself, which contains the URL of the sources
Git repository. The manifest location is build/[processed|optimized]/
build-info.json.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
manifest task:

Detail Description

subtasks n/a

multitask config generator task: vb-manifest-configuration
hooks n/a

input build/[processed|optimized]/*
output build/[processed|optimized]/*

Chapter 24
Grunt Tasks to Build Your Visual Application

24-26

The following table describes the options for the vb-manifest task:

Name Mandatory Default
Value

Description

target no build Name of build directory.

vx-version no n/a Overwrites 'version' key in a visual extension's manifest
with the given value.
This option is only used for application extensions.

git-repository-
url

no The Git
repository
URL read
from $
{gitSourc
es}/.git/
config.

URL of the application's source repository. The value is
written into the generated build manifest of the visual
application (build/optimized/build-
info.json) under the git-repository-url key.

vb-package
Packages the visual application's sources. It includes application optimization (vb-
optimize) and build manifest generation (vb-manifest).

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
package task:

Detail Description

subtasks vb-optimize, vb-manifest-configuration, vb-
manifest

multitask n/a

hooks vb-pre-package, vb-post-package
input build/processed/*
output build/optimized/*

The following table describes the options for the vb-package task:

Name Mandatory Default
Value

Description

skip-
optimize

No false If true, the vb-package task will not call the vb-
optimize task.

clean-
bundled-
resources

No false If true, will run the vb-require-bundle-clean task
after vb-optimize and before vb-manifest.

vb-archive
Creates ZIP archives for various application artifacts:

1. build/sources.zip with application sources

2. build/processed.zip with the contents of the build/processed directory; this
directory is created either by the vb-process or vb-process-local tasks.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-27

3. build/optimized.zip with the contents of the directory; this directory is
created by the vb-optimize task.

If any of the directories don't exist, the task will ignore it, instead of failing. If the task
target is used with any of these values: sources, processed, optimize, for
example:

grunt vb-archive:optimized
the vb-archive task creates just the corresponding ZIP archive. If no task target is
specified, all three ZIP archives are created.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-
archive task:

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input ${gitSources}, build/processed/*, build/
optimized/*

output build/sources.zip, build/processed.zip, build/
optimized.zip

The following table describes the options for the vb-archive task:

Name Mandatory Default
Value

Description

sources-zip-
path

no n/a Custom path to the source archive. The path needs
to include the archive name as well as the
extension, for example:
--sources-zip-archive=dist/
myAppSources.zip

processed-
zip-path

no n/a Custom path to the processed assets archive. The
path needs to include the archive name as well as
the extension.

optimized-
zip-path

no n/a Custom path to the optimized assets archive. The
path needs to include the archive name as well as
the extension.

vb-process-raw
This task has been deprecated. Use the vb-process-local --mode=fa task
instead.

For more information, see vb-process-local.

vb-process-raw-index-html
This task has been deprecated. Use the vb-process-local --mode=fa task
instead.

For more information, see vb-process-local.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-28

vb-application
Performs an operation with a remote visual application (in other words, an application that
exists on a Visual Builder instance).

The following table describes the only supported operation for the vb-application task:

Detail Description

delete Deletes a remote application from the Visual Builder instance, for
example:
grunt vb-application:delete --id=myApp --ver=1.0 --
delete-application --url=https://myvb.oracle.com --
username=me@oracle.com --password=foo

The following tables describe the options for the vb-application task:

Application selection options

Name Mandatory Default
Value

Description

id yes n/a ID of the visual application you're going to build.

ver yes n/a Version of the visual application.

url[:dt] yes n/a Your Visual Builder instance URL. The dt suffix is
optional.

Authentication options

Name Mandatory Default Value Description

username[:dt] no n/a The username to be
used to obtain OAuth
access token for further
communication with
Visual Builder services.
The dt suffix is optional.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-29

Name Mandatory Default Value Description

password[:dt] no n/a The password to be
used to obtain OAuth
access token for further
communication with
Visual Builder services.
The dt suffix is optional.
A password specified
via the --password
Grunt option may need
to be enclosed in single
quotation marks (') if it
contains special
characters. In general,
it's advisable to always
use quotation marks for
the --password
option, especially in VB
Studio jobs where the
password is provided via
a job variable. For
example: grunt vb-
deploy '--
password=Jkl@#&!
%^23'

accessToken[:dt] no n/a The value of an OAuth
access token. If
provided, username and
password options are
not necessary. The dt
suffix is optional.

sslCertificate[:dt] no n/a The path to the SSL
certificate for the
connection to Visual
Builder instances
provisioned with self-
signed certificates. The
dt suffix is optional.

Other options

Name Mandatory Default Value Description

delete-application yes n/a You need to add --
delete-
application to be
able to run vb-
application:del
ete task. This is
required as
confirmation of your
intention to delete the
application.

Chapter 24
Grunt Tasks to Build Your Visual Application

24-30

vb-serve
Serves static application assets on a local web server started during the Grunt build process
(vb-process-local and vb-deploy tasks). The served static assets root is either in the
build/processed directory for a processed (non-optimized) application or in the build/
optimized directory for an optimized application.

Note:

Application assets produced by vb-process-local are environment agnostic and
contain several unresolved environment references, which are resolved when
application assets are deployed to a Visual Builder runtime instance by vb-deploy.
See Setup to Resolve Environment Variables for details.

The following table describes the subtasks, hooks, and inputs and outputs of the vb-serve
task:

Detail Description

subtasks n/a

multitask no

hooks n/a

input build/[processed | optimized]/*
output n/a

The following table describes the task target of the vb-serve task:

Detail Mandatory Description

application_path yes Path to the served web (or
mobile) application (for example,
webApps/myApp). .

The following table describes the options for the vb-deploy task:

Name Mandatory Default
Value

Description

application no First web (or
mobile)
application
found

Path to the application to be served. Similar to passing
the application path via task target, for example,
webApps/myApp.

boundPortFile yes n/a Path to the file where vb-serve writes the bound port
number. This is useful if you don't specify the port and a
free system port is used, but you need an automated
system to connect to the served application.

open no false If true, a new browser window will be opened for the
served URL.

port no 0 (binds to a
free port)

Server port

Chapter 24
Grunt Tasks to Build Your Visual Application

24-31

The options can be set either as command-line options or via the Grunt configuration
object. Here's an example from the command line:

First build the application sources
./node_modules/.bin/grunt vb-process-local
serve the assets at port 8888 and open the application URL in browser
./node_modules/.bin/grunt vb-serve:webApps/myApp --port=8888 --open

The vb-serve task does not finish until you stop it explicitly. You can also stop the task
(and the server) by sending a GET request to http://localhost:<port>/stop.

vb-pwa
Injects a workbox pre-cache manifest of PWA-enabled web applications into the
service worker script. (See the Chrome developer's workbox API doc for details.)

Manifest entries:

• application assets (build/processed|optimized/webApps/<appId>/**)

• services/catalog.json (this is created during application deployment. It is not
generated by the build)

• JET dependencies

• JET persistence toolkit dependencies

• Visual Runtime dependencies

• Telemetry

• Workbox dependencies

• Imported stylesheets and their dependencies (fonts, images)

User may customize the behavior by adding a custom workbox config file into
application sources root. The format of the config can be either a JSON file or
JavaScript module:

• vb-workbox-config.json
• vb-workbox-config.js
There are two options when using a JavaScript module. The module can either export
an object as the config, or it can expose a function that returns a config object.

In the case of exporting an object, the following context is passed into it as an
argument and can be used to generate the config object:

{
 sources: {
 root, // path to the root of GIT sources
 application, // path to the web application in GIT sources
 },
 builtAssets: {
 root, // path to root of the build application assets (build/
processed|optimized)
 application, // path to application built assets build/processed|
optimized/webApps/foo
 },

Chapter 24
Grunt Tasks to Build Your Visual Application

24-32

https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-build#.injectManifest

 jetUrl, // JET URL
 visualBuilderUrl, // VB URL
}

The following example shows how to override the workbox config generated by the build, so
the pre-cache manifest is injected into a custom file (precacheManifest.json). Please note
the file has to exist in the sources. The custom config also adds a custom manifest entry for
JET's oj-redwood-min.css stylesheet.

Example of custom workbox config

module.exports = (ctx) => {
 return {
 "swSrc": `${ctx.sources.root}/precacheManifest.js`,
 "swDest": `${ctx.builtAssets.application}/precacheManifest.js`,
 "additionalManifestEntries": [
 {
 "url": `${ctx.jetUrl}/default/css/redwood/oj-redwood-min.css`,
 "revision": null
 }
]
 }
}

The complete list of workbox configuration options is here: https://
developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-build

Details

Detail Description

subtasks n/a

multitasks n/a

hooks n/a

input build/processed|optimized
output build/processed|optimized

Build Options

Name Mandatory Default Value Description

target n/a build Name of build directory

git-sources n/a check Location of sources of
the visual application

vb-fa-generate-base-app-config
Generates an Oracle Cloud Application extension's base application descriptor (private/
cache/base-application-config.json) based on the URL of a given Oracle Cloud
environment.

Options

Chapter 24
Grunt Tasks to Build Your Visual Application

24-33

https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-build
https://developers.google.com/web/tools/workbox/reference-docs/latest/module-workbox-build

Name Mandatory Default Value Description

fa-url Yes n/a URL of Oracle Cloud
environment (for
example, https://
adfcdr03.fa.dc1.d
ev2.example.com).

vb-pwa-splashscreen
Creates PNG splash screens and a links.html file from the given SVG file. This task
is typically used to overwrite the default Visual Builder splash screens with a custom
splash screen.

The resources are generated into the sources of the specified visual web (or mobile)
application, specifically into the resources/splashscreens directory.

The generated resources:

• a set of PNG files for each iOS device screen size

• a links.html file. This file is a template that's used to inject links to the splash
screen into the index.html file of the built web application

You provide the path to the specific application where you want the assets generated
as the task target (in the following example, webApps/myApp is the path to the
application):

grunt vb-pwa-splashscreens:webApps/myApp --svg=mysplash.svg

It's possible to configure the underlying package by specifying pwa-asset-generator
properties, for example, to specify a background color (see https://www.npmjs.com/
package/pwa-asset-generator):

grunt vb-pwa-splashscreens:webApps/myApp --svg=mysplash.svg --pwa-
asset-generator:background=yellow

Details

Detail Description

subtasks n/a

multitask n/a

hooks n/a

input path to SVG file

output ${sources}web|mobileApps/<appid>

Build Options

Name Mandatory Default Value Description

target n/a build Name of build
directory

Chapter 24
Grunt Tasks to Build Your Visual Application

24-34

https://www.npmjs.com/package/pwa-asset-generator
https://www.npmjs.com/package/pwa-asset-generator

Name Mandatory Default Value Description

git-sources n/a check Location of sources of
the visual application

svg Yes n/a Path to SVG file

pwa-asset-generator n/a n/a Properties to pass to
pwa-asset-generator
config

For a list of possible
options, see: https://
www.npmjs.com/
package/pwa-asset-
generator

vb-watch
Watches visual application or extension sources and re-runs build on changes. Initial build is
performed.

Tasks that are involved in the build can be defined by the task target, for example:

this will just rebuild the project, i.e. runs vb-clean vb-process-local
grunt vb-watch:rebuild

this will also repackage (vb-clean vb-process-local vb-package)
grunt vb-watch:repackage

this will also deploy (vb-clean vb-process-local vb-package vb-deploy)
grunt vb-watch:redeploy

or without target ¿ defaults to repackage
grunt vb-watch

There's also an extra option --watch that can be added to any Grunt command. The
behaviour is identical to vb-watch, but will run your custom tasks instead of the predefined
sets.

grunt vb-clean vb-process-local vb-test --watch

Details

Detail Description

subtask n/a

multitask n/a

hooks vb-watch-pre-run
vb-watch-post-run

Build Options

Chapter 24
Grunt Tasks to Build Your Visual Application

24-35

https://www.npmjs.com/package/pwa-asset-generator
https://www.npmjs.com/package/pwa-asset-generator
https://www.npmjs.com/package/pwa-asset-generator
https://www.npmjs.com/package/pwa-asset-generator

Name Mandatory Default Value Description

target n/a build Name of build
directory

git-sources n.a ./ Location of sources of
the visual application.

Customize Your Grunt Build Process
You can edit the Gruntfile.js file included in your application to customize the build
tasks that are performed.

Add Custom Functionality to Existing Tasks
The public tasks exposed by the grunt-vb-build package have pre- and post- task
hooks that you can redefine to add custom functionality.

For example, you can define hook tasks in Gruntfile.js to add some custom
application tests before staging the application (vb-pre-stage) and some special
application processing before the optimization step (vb-pre-optimize) by performing
the following steps:

1. Open Gruntfile.js.

2. Edit the file to define the hook tasks.

To define the hook tasks vb-pre-optimize and vb-pre-stage, your edited
Gruntfile.js might be similar to the following:

module.exports = (grunt) => {
 require('load-grunt-tasks')(grunt);
 grunt.registerTask('vb-pre-optimize', () => {
 // add custom resources or modify existing resources here
 });
 grunt.registerTask('vb-pre-stage', () => {
 // run app tests here
 });
};

Override Existing Grunt Tasks
You can override an existing task by registering your own task under the same name.

To override an existing Grunt task:

1. Open Gruntfile.js.

2. Edit the file to redefine the task you want to override.

Chapter 24
Customize Your Grunt Build Process

24-36

For example, if you want to do a custom deployment of the application runtime artifact,
you can override the vb-deploy task. To redefine the task vb-deploy, your edited
Gruntfile.js might be similar to the following:

module.exports = (grunt) => {
 require('load-grunt-tasks')(grunt);
 grunt.registerTask('vb-deploy', () => {
 // do my own deployment of built "build/processed.zip" runtime
application
 archive
 });
};

Optimize a Specific Web Application
You can optimize a specific application by editing Gruntfile.js or your custom Jenkins shell
script to specify a target for the build task.

In Gruntfile.js, you can redefine the vb-build task and specify a target for the vb-
optimize task. Alternatively, you can create a new task that performs steps similar to the vb-
build task and specify the target.

To specify an app as a task target in Gruntfile.js:

1. Open Gruntfile.js.

2. Edit the file to define the tasks performed for the vb-build task and specify a target for
the vb-optimize task.

The target name is the path of the web application relative to the /webApps directory.

module.exports = (grunt) => {
 require('load-grunt-tasks')(grunt);
 grunt.registerTask('vb-build', [
 'vb-pre-build',
 'vb-clean',
 'vb-prepare-sources',
 'vb-optimize:myWebApp',
 'vb-deploy',
 'vb-post-build',
]);
};

You can also define the target in your Jenkins shell script, for example, by modifying it similar
to the following:

grunt vb-prepare-sources --url=... --id=... --ver=... --username=... --
password...grunt
 vb-optimize:myWebApp
 grunt vb-deploy --url=... --id=... --ver=... --username=... --password...

Chapter 24
Customize Your Grunt Build Process

24-37

You can also edit the script to run only specific optimization tasks:

vb-image-minify-configuration will create configurations of vb-image-
minify multitask for
 all existing web application
grunt vb-image-minify-configuration vb-image-minify

Host an Application on a Content Delivery Network (CDN)
You can host an application on a CDN to improve response times for clients that
connect to your visual application.

Before you can publish your app, you need to stage it and export it your local machine.
Once you have exported it to your local machine, build it using the following command
from the root directory where you extracted the exported application:

./node_modules/.bin/grunt vb-build \
 --url=<url of visual app instance> \
 --username=<username> \
 --password=<password> \
 --id=<your visual app ID> \
 --ver=<your visual app version> \
 --cdnURL=<url of the deployed application's assets> \
 --insertBaseUrl

Note:

The URL for the cdnURL option must end with /. For example, https://
hostname:port/CDN/webApp/CDNLocation/. If you omit the final /, the
resources will be resolved against the parent segment of the URL.

The insertBaseURL task option inserts a BASE_URL token into index.html's
vbInitConfig section.

Copy build/optimized.zip that the grunt vb-build task generates to the CDN host
and extract it to the directory location where the CDN will host it.

For information about using the grunt vb-build task, see Build Your Application
Locally.

Run and Configure a Multitask
Multitasks require configuration. You can create this either by using the corresponding
*-configuration tasks, or by defining the configuration in Gruntfile.js.

To configure a multitask in Gruntfile.js:

1. Open Gruntfile.js.

2. Edit the file to configure the multitask.

Chapter 24
Customize Your Grunt Build Process

24-38

For example, to configure the vb-require-bundle multitask, you might edit the file to be
similar to the following.

module.exports = (grunt) => {
 grunt.initConfig({
 'vb-require-bundle': {
 options: {
 "transpile": true,
 "minify": true,
 },
 myWebApp: {
 options: {
 "transpile": true,
 "minify": true,
 },
 },
 },
 require('load-grunt-tasks')(grunt);
};

The top level task options are applied to all web applications. If you specify a target, the
options are applied only to the target application.

Customize Bundle Modules
You can define the content of the requirejs module bundles to create multiple bundles when
staging a visual application.

Pages that you want to load initially can be packaged in the main bundle, and other pages
and pages in other flows that are not required initially can be packaged in a separate bundle
that can be loaded when needed. Customizing the module bundles can help optimize the
time needed to load and run the application.

For example, this configuration example shows how the vb-require-bundle task can be
configured to create the following require module bundles for a web application named
"webapp1".

• A bundle for all resources that belong to the application flow dashboard. This bundle will
include all files that matches the "flows/dashboard" pattern. This will include all pages,
models, resources and nested flows stored in the flows/dashboard directory. This bundle
will not contain the module named helpers, that is referred to in one of the included page
models.

• A bundle for resources that belongs to the application flow customers. In this case, the
nested flows are excluded (as they are placed into a separate bundle). This bundle also
excludes the helpers module.

• A bundle of resources of flows nested into the customers flow.

• A "base" bundle of application resources (shell pages and application resources, libraries
and styles). This bundle explicitly adds the helpers module.

To customize the bundle modules:

1. Open Gruntfile.js.

Chapter 24
Customize Your Grunt Build Process

24-39

2. Edit the file to configure the vb-require-bundle task.

{
 "vb-require-bundle": {
 "webapp1": {
 "options": {
 "transpile": true,
 "minify": true,
 "bundles": {
 "dashboard": {
 "modules": {
 "find": ["flows/dashboard"]
 },
 "exclude": {
 "ids": ["helpers"]
 }
 },
 "customers": {
 "modules": {
 "find": ["flows/customers", "!flows/
customers/flows"]
 },
 "exclude": {
 "ids": ["helpers"]
 }
 },
 "customers-nested": {
 "modules": {
 "find": ["flows/customers/flows"]
 }
 },
 "base": {
 "modules": {
 "find": [
 "app-flow.js",
 "^pages/",
 "resources/strings",
 "resources/css"
],
 "ids": ["helpers"]
 }
 }
 }
 }
 }
 }
}

Chapter 24
Customize Your Grunt Build Process

24-40

Specify Options of Non-multitasks
You can specify task options in the configurations for specific tasks.

When specifying a task's options, you want to make sure that the options are applied only to
the specific task. For example, specifying --url and --username options in the command line
will override options specified in the vb-deploy configuration.

To specify task options in Gruntfile.js:

1. Open Gruntfile.js.

2. Enter the options for the task.

For example, to override the URL and credentials parameters for the vb-deploy task in
order to deploy to an instance other than where the sources were processed, your edited
Gruntfile.js might be similar to the following:

module.exports = (grunt) => {
 grunt.initConfig({
 'vb-deploy: {
 options: {
 url: 'my production instance URL',
 username: 'production instance username',
 },
 },
 require('load-grunt-tasks')(grunt);
};

Specify Options for All Tasks
You can use a generic vb settings object to specify the configuration options that will be
applied to all vb- tasks (for example, vb-build).

If you define the vb options, you don't need to pass any Grunt command line parameters, but
can simply run grunt vb-build.

To specify task options for all tasks in Gruntfile.js:

1. Open Gruntfile.js.

2. Enter the options for the task.

Options defined in a vb object are implemented by all vb- tasks. For example, to specify
the URL, credentials and id and version options that all the build tasks will use, your
Gruntfile.js might be similar to the following:

module.exports = (grunt) => {
 grunt.initConfig({
 'vb': {
 options: {
 url: 'instance URL',
 username: 'instance username',
 id: 'myVisualApp',
 ver: 1.0

Chapter 24
Customize Your Grunt Build Process

24-41

 },
 },
 require('load-grunt-tasks')(grunt);
};

Audit Your Application Using the vb-audit Grunt Task
Visual Builder provides an NPM package (grunt-vb-audit) that includes the vb-audit
Grunt task that you can use to audit your visual applications.

The root folder of your visual application includes two resource files that Grunt uses
when it audits applications: Gruntfile.js and package.json:

File Description

Gruntfile.js Contains a basic Grunt script that you can
modify to add custom audit tasks, and to
configure built-in tasks.

package.json Declares the dependency and specifies the
URL reference to the grunt-vb-audit NPM
package that provides the Grunt task to audit
visual applications. Visual Builder
automatically updates the package version
and URL whenever Oracle publishes a new
version of the package.

As with the Grunt tasks that you use to build and deploy your visual application, you
need to install Node.js and its package manager (npm) on your local system. You also
need to save the sources for the visual application on your local system.

To audit your application using vb-audit:

1. In the command-line interface, navigate to the folder on your local system
containing the package.json and Gruntfile.js files.

2. Enter npm install to retrieve the node dependencies required to audit the
application.
The install command retrieves the grunt-vb-audit NPM package defined in
package.json.

3. Enter grunt vb-audit in the command-line interface to audit your application. The
following illustrative example shows how you execute this task.

Audit application sources
./node_modules/.bin/grunt vb-audit \
--url=<https://Visual-Builder-runtime-instance-url/ic/builder/> \
--username=<Visual-Builder-runtime-username> \
--password=<Visual-Builder-runtime-password> \
--id=<your visual app ID> \
--ver=<your visual app version>

You can omit the task parameters (URL, username, and so on) if the visual application
that you audit does not include modules that require a server connection, such as
business objects, for the audit to complete. If you do not specify values for the task
parameters when a server connection is required, error messages appear in the
command-line interface and the corresponding modules fail the audit.

Chapter 24
Audit Your Application Using the vb-audit Grunt Task

24-42

By default, vb-audit audits all files in your application according to the following glob
patterns:

[
 '**/*',
 // Ignore npm directories during audit
 '!node/**',
 '!**/node_modules/**',
]

You can override the files to audit with your own glob patterns. The exclusion patterns in the
default glob pattern are appended to the glob patterns that you supply.

Configure Audit Options in Gruntfile.js
You can specify server connection properties and vb-audit properties in your visual
application's Gruntfile.js file.

The following example shows available options.

grunt.initConfig({
 vb: {
 url: '<VB-instance-url>',
 id: <your visual app ID>,
 ver: <your visual app version>,
 username: <username>,
 password: <password>, // This is not encrypted
 },
 'vb-audit': {
 options: {
 config: {
 auditors: {
 // Disable specific auditors
 'lcm.VirtualRolesAuditor': { // Requires backend
 enabled: false,
 },
 'components.InstalledComponentsAuditor': { // Requires
backend
 enabled: false,
 },
 'serviceConnectionAuditor': { // Requires backend
 enabled: false,
 },
 'deploymentProfileAuditor': { // Requires backend
 enabled: false,
 },
 },
 },
 files: [// Globbing patterns to use for this application
 '*',
 'process/**',
 'services/**',
 'settings/**',
 'webApps/**',

Chapter 24
Audit Your Application Using the vb-audit Grunt Task

24-43

 '!**/package-lock.json',
],
 processResults: (results) => { // Supply an alternate
results processor
 grunt.log.writeln(`Processed $
{results.auditedResourceCount} files`);
 },
 outputFile: 'auditoutput.txt', // Output file to receive
the audit results (e.g. auditoutput.txt, auditoutput.csv)
 },
 },
});

The entries in 'vb-audit': { options: { config: { are passed to the audit system
and override or augment the options that you set in your visual application's settings/
audit.json file if you configured options in the latter file using Visual Builder’s Audits
feature.

For output, you can specify processResults or outputFile. If you specify neither, vb-
audit writes the output to the command-line interface. Note that the example
Gruntfile.js shown above displays both options, as it is an illustrative example of
available options. Omit the option (processResults or outputFile) that you do not
want to use, or omit both options if you want to write output to the command-line
interface.

The results parameter for processResults has the following format:

{
 auditedResourceCount, <number of resources audited>
 totalResourceCount, <number of resources checked (some resources
may not have auditors)>
 issues[{
 ruleId, // String id of the rule
 severity, // ['error' | 'warning' | 'info' | 'todo']
 message, // String message
 filePath, // resource's file path
 location: {
 line,
 col,
 endLine,
 endCol,
 length,
 },
 }]
}

You can specify target-based options in Gruntfile.js that override or augment your
standard options. The following example audits the modules in the webApps directory:

grunt.initConfig({
 vb: {
 ...
 },
 'vb-audit': {

Chapter 24
Audit Your Application Using the vb-audit Grunt Task

24-44

 options: {
 ...
 },

 webApps: { // target to audit the modules in the webApps directory
 files: [
 'webApps/**'
],
 },
 },
});

To audit the webApps target, run the vb-audit task and specify the target:

./node_modules/.bin/grunt vb-audit:webApps

Note:

grunt.config.merge merges the target options, such as webApps in our previous
example, into the vb-audit options. It merges array and object properties
recursively. If, for example, options defines a files array with 5 elements and you
provide a target options with a files array that has 2 elements, the first 2 elements in
the options files array will be overwritten and the remaining 3 elements remain
unchanged.

A difference between the files option in the Gruntfile.js file and the paths/
exclude option in your settings/audit.json file is that the Gruntfile.js files
option assembles the set of files that vb-audit sends to the audit system, whereas
the audit.json patterns are ignored by the audit system. In particular, if you supply
a files option in your Gruntfile.js, you need to have an exclusion pattern for
something like node_modules, as processing the thousands of files under
node_modules can be time consuming. This exclusion pattern is included in the
default configuration.

Override Configuration Options in Gruntfile.js
You can override the Gruntfile.js configuration options for vb-audit by specifying
properties on the command-line interface.

The following example shows available options.

./node_modules/.bin/grunt vb-audit \
 --audit.files='webApps/**' \
 --
audit.disabledauditors='lcm.VirtualRolesAuditor,components.InstalledComponent
sAuditor' \
 --audit.outputfile='auditoutput.txt'

Chapter 24
Audit Your Application Using the vb-audit Grunt Task

24-45

https://gruntjs.com/api/grunt.config#grunt.config.merge

Part VI
Use Cases & Troubleshooting

Look here for guidance on common use cases and issues in Oracle Visual Builder.

Topics:

• Common Use Cases

• Troubleshooting & FAQs

25
Common Use Cases

Find guidance for some common scenarios in Visual Builder:

• Work With Code Samples

• Change an Application's Logo

• Style and Theme Visual Builder Applications

• Add Login and Logout Capabilities to an Application

• Create a Custom Lock Page

• Access Data in an Existing Oracle Database Using ORDS

• Use a SOAP Web Service With Visual Builder

• Run Visual Builder Applications On Other Servers

• Embed a Web App in an Oracle Cloud Application

• Call Server-side Functionality from Visual Builder

• Add the Oracle Digital Assistant to Your Web App

• Abort Pending REST Calls in Visual Builder

• Forms

• Tables

• Components

• Pages and Flows

• Business Objects

Work With Code Samples
If you're looking for Visual Builder samples that demonstrate different use cases, the Visual
Builder Cookbook is for you. The cookbook provides a collection of step-by-step recipes
that describe how to implement different techniques to develop your application in Visual
Builder. You also get the complete code for each sample, so you can inspect and learn from
it.

Here's how you can access the cookbook right from your Visual Builder instance:

1. Click any application on the Visual Applications Home page.

2. Click Menu in the upper right corner and select Code Examples.

This opens the cookbook hosted as a Visual Builder application at https://
vbcookbook.oracle.com/.

You can also create your own copy of the cookbook on your Visual Builder instance:

1. Click New on the Visual Builder Home page to create a new application.

2. Enter an application name and click Change Template.

25-1

https://vbcookbook.oracle.com/
https://vbcookbook.oracle.com/

3. Select Oracle Visual Builder Cookbook as the app's template.

4. Click Select, then Finish.

This installs a complete copy of the cookbook in your environment. The cookbook app
will have everything you need to run the samples, including backend business objects,
and the code for all the samples.

Change an Application's Logo
When a web app uses the Redwood theme, here's how you can customize the
application to use your company logo.

Note:

Company logo and application title only display in desktop mode.

1. In the Navigator, click Web Applications and expand your web app.

2. Expand Fragments and double-click shell-header to open it in the Page
Designer.

Web apps by default use a Redwood icon as a placeholder for the company logo.
You'll need to remove this icon and add your own image.

3. Select the icon component on the canvas, then click Code to switch to the
fragment's code view.

4. Add an img tag just above the span, similar to . Place
your cursor inside the src attribute's quotation marks, then click Design to return
to design view:

Chapter 25
Change an Application's Logo

25-2

5. In the image's Properties pane, click the Data tab.

6. Drag your image into the drop target area in the Data tab.

Once you add the image, the Source URL field updates to show the path to the image.

7. Click the All tab to view and edit image attributes. For example, you can add a
description in the Alt field and select oj-sm-margin-2x-end in the class field to add
space after the image.

8. After you've made your changes, delete the icon component on the canvas.

9. Click Preview to see how your logo appears.

Style and Theme Visual Builder Applications
All styling in Visual Builder applications happens manually in CSS. There are no declarative
features for changing the display of text or images. Because all Visual Builder applications
are just JET applications, they use JET themes to style the applications.

Visual Builder applications created with version 20.10 or later, by default, use the Redwood
theme. Redwood is the Oracle standard for application look and feel. It includes Redwood-
only features such as Dark Mode that renders components in an inverted color scheme
against a dark background, and components such as Waterfall Layout and Action Cards that
enrich user experience. It also includes a collection of icons that you can readily leverage in
your apps.

Because Redwood achieves its look and feel through hundreds of custom properties (also
called CSS variables), you can override these variables to customize the default look and feel
for your requirements.

Chapter 25
Style and Theme Visual Builder Applications

25-3

Note:

Styling applications is supported only for web applications that use the
Redwood theme. If you’re styling applications that use the Alta theme, note
that support for Alta themes has been deprecated since JET 10.

When you style your Visual Builder or JET applications, it's important to use theming
correctly. Otherwise, you run the risk of finding that your re-styling breaks when you
upgrade your platform versions. For more information about theming your application,
see "Using CSS and Themes in Applications" in Developing Applications with Oracle
JET. To get the latest version, go to https://www.oracle.com/webfolder/technetwork/jet/
index.html, click Help and Support, then scroll to the bottom and click Theming.

Transition a Web (or Mobile) App's Theme to Redwood
Visual Builder applications created with version 20.07 or earlier, by default, use JET's
Alta theme as the base UI theme. If your app uses the Alta theme, we strongly urge
you to transition your app to use the Redwood theme before support for the Alta theme
ends.

To move your web (or mobile) app's theme from Alta to Redwood:

1. Select the application node in the Navigator.

2. Click Settings, then look for the Theme field in the General tab.

3. If the Theme is set to Alta, you can switch to Redwood or Redwood Stable
(recommended) as the base theme.

Chapter 25
Style and Theme Visual Builder Applications

25-4

https://www.oracle.com/webfolder/technetwork/jet/index.html
https://www.oracle.com/webfolder/technetwork/jet/index.html

Because component dimension and styling have changed, make sure you verify the look
and feel. You may have to redesign the app if needed.

With the theme now set to Redwood, you can:

• Override the default Redwood styles to suit your needs for web apps and mobile apps.

• Override the appearance of specific component instances. For example, if you've made a
div element clickable, you may want to add a class called clickable to the div and
define the CSS for the class so that the element is highlighted, the cursor changes to a
pointer when you hover over it, and so on.

Customize the Redwood Theme for a Web Application
Starting with JET 10 in version 21.07, you can use CSS variable overrides to customize the
Redwood UI theme for web apps created in Visual Builder. In this scenario, your web app
continues to use the built-in CSS file as the base theme, but you override some variables in a
separate CSS file to customize the base theme's look and feel for the app.

The advantage of overriding CSS variables in a separate file is that you won't need to rebuild
your web app with each new version of JET. Whenever the default Redwood UI theme
changes, those updates will be picked up by your application's CSS files without requiring
changes.

Note:

See Override the Redwood Theme for a Mobile Application for instructions on
overriding the Redwood theme CSS for a mobile app.

To customize the base theme used by a web app:

1. In the Navigator's Web Applications tab, select your application and click the Settings
tab.

2. When the Theme is set to Redwood, click the Create Override link:

Chapter 25
Style and Theme Visual Builder Applications

25-5

A new redwood-overrides.css file is created in your application’s
resources/css folder.

Your app's Theme also changes from Redwood to Redwood Stable. An app's base
theme can be Redwood or Redwood Stable (starting with JET 11 in version
22.01). The Redwood theme provides the Oracle look and feel and inherits all
future updates to the Redwood theme, but these changes can potentially bleed
into your custom theme. Redwood Stable, on the other hand, is meant to minimize
changes bleeding into a custom theme. When customizing the theme, we
recommend you use Redwood Stable to reduce the chances of your app being
impacted by future updates. This way, you only override the variables you want to
change while inheriting all other updates to the Redwood theme.

3. Click the file under Theme Override to open it:

4. Uncomment and change the values of the variables you want to change.

To do this, remove the /* just before the variable and the */ after it, then update
the variable's value. For example, to override the font used by the Redwood theme
for your application, uncomment and change the --oj-html-font-family
variable's values:

Chapter 25
Style and Theme Visual Builder Applications

25-6

You can also add variables that you want to override. For a list of variables that can be
changed, see JET documentation at https://www.oracle.com/webfolder/
technetwork/jet/jsdocs/CssVariablesOverview.html.

5. Check your application and verify the changes.

Override the Redwood Theme for a Mobile Application
If you would like to override the Redwood theme in your mobile app, you will need to create a
new CSS file and update app-flow.json to include the new CSS.

1. In your mobile app, expand the Resources node, and add a file named redwood-
overrides.css to the css folder.

2. In the Source view, select app-flow.json and to the "imports": { "css" section, add:

"/resources/css/redwood-overrides.css"

Chapter 25
Style and Theme Visual Builder Applications

25-7

Alternatively, you can import the CSS file to the mobile app settings. See Manage
Custom Component, CSS, and Module Imports.

Add a Custom Style to a Component
When you want to customize the appearance of specific component instances, you
create a style class and define the style in your app's stylesheet, then assign that class
to the specific component instance you want to override.

Some style classes are predefined in the app and are automatically applied to
components when you add them to a page. Specific predefined style classes are
applied to many Oracle JET components to ensure they display correctly and
consistently. For example, if you look at the HTML for a Header component in a page's
Code editor, you might see the following style classes applied to an h1 element: oj-
flex-item oj-sm-12 oj-md-12. Predefined style classes used by Oracle JET
components are prepended with oj-.

Note:

As a general rule, you should not override or modify the predefined classes
or remove them from components. When defining and adding a custom class
to a component, you should exercise caution to ensure that your class does
not conflict with the predefined classes already applied to the component.

You can define your custom style classes in the app.css stylesheet of your app. An
empty app.css stylesheet is created in your app by default and the link included in the
header of the app's pages. You can apply classes to components in the Properties
pane in the Page Designer's Design view or in the page's Code editor.

To add a custom style to a component:

1. Open the page in the Page Designer and locate the component that you want to
modify with a custom class.

2. Type the name of the custom class to apply it to the component.

When you select the component in the Design view of the Page Designer, you can
add the name of the custom class in the class property field, which is located in
the All tab of the Properties pane. You can also add the name of the class to a
component directly in the page's Code editor.

Chapter 25
Style and Theme Visual Builder Applications

25-8

3. In the Navigator, expand the css node in your app's resources folder and click app.css
to open the stylesheet in the editor.

4. Define the class in app.css.

Reload the page in the Page Designer to see the class applied to the component.

Add Login and Logout Capabilities to an Application
Visual Builder applications provide built-in options for you to implement login and logout for
your users.

Customize Application Login

By default, any application you build in Visual Builder includes a login screen—unless you
enabled anonymous access that allows users to access your app without signing in. The
default login screen points to the Sign-In page that Oracle Identity Cloud Service (IDCS)
provides for token-based authentication:

Chapter 25
Add Login and Logout Capabilities to an Application

25-9

If you want to customize this sign-in page (you'll need rights to register applications in
IDCS), you can use the Branding feature to change the company name and the login
text, as well as upload logos to replace the defaults. The position of the text and
images, and the colors and fonts, remains the same. For anything beyond what the
branding feature supports, you'll need to use the Authentication REST API that IDCS
provides to help you develop your own sign-in page.

Enable Application Logout

You can enable a logout function for your application by adding the built-in Logout
action to any page component, for example, a button or a menu item.

Web applications in Visual Builder come with a default shell that displays a Sign Out
option under the logged-in user's Avatar, but you'll need to add the Logout action to the
component to actually trigger a logout:

Chapter 25
Add Login and Logout Capabilities to an Application

25-10

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/customize-sign-page.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/cloud/idcs/idcs_authn_api_obe/authn-api.html

Note:

The Sign Out option doesn't appear for apps enabled as PWAs, but you can enable
the same functionality for these apps by calling the Logout action from any page
component.

To add a Logout action to a page component:

1. Open your application in the Navigator.

2. In the Structure view, select the component you want to add the Logout action to, then
click the Events tab in the Properties pane, click + Event Listener, and select On
'ojAction'.
To enable logout for a web app's default Sign-In option:

a. Open the app's shell-header fragment under Fragments.

b. Click the Structure view and locate the Avatar's hidden Button component. You can
also switch to Live mode and select the Sign Out option to see the correct Button
selected in Structure view; switch back to Design mode.

c. Click the Events tab in the component's Properties pane, then click + Event Listener
and select On 'ojAction'.

3. In the Action Chain editor, drag and drop the If action from the Actions palette onto the
canvas, then in the action's Properties pane, set the Condition field's value as
[[$application.variables.avatarItems[0].id]].

4. Drag and drop the Logout action onto the Add Action area of the If action to indicate the
action you want to follow:

Chapter 25
Add Login and Logout Capabilities to an Application

25-11

If are using an external identity provider, enter the provider's logout endpoint in the
Logout URL field in the action's Properties pane, something like
https:***/oam/server/logout?end_url=https://****/oamwebsso/
logout-success.jsp. If you are using IDCS for authentication, you don't need
to specify the logout URL.

When you are done, run your app to check whether you're being logged out of all
active sessions (in the same browser) associated with the same identity domain.

Note:

The logout action won't work when you preview the app in Live mode (to
avoid logging you out during development). You'll need to stage or publish
your app to make sure logout works as expected.

Redirect URL After Logout

A post-logout URL always points back to the deployed app (because the server
runtime logout code isn't aware of changes made in the IDCS client app). One option
is to use the IDCS logout directly (instead of the Visual Builder logout URL) and
specify your post-logout URL in a query parameter, for example:

https://servicename-cloudaccount.builder.ocp.oraclecloud.com/
mycompany/logout.html?postlogouturl=https://servicename-
cloudaccount.ocp.oraclecloud.com%3A443%2Fic%2Fbuilder%2Frt%2F<A
ppName>%2F<Version>%2FwebApps%2F<WebAppName>%2F

Create a Custom Lock Page
You can create a custom page that displays when someone tries to access an
application that you have locked for maintenance.

You can apply the custom page to either a visual application or an individual web
application.

• To apply the page to the entire visual application, import the file to the visual
application at the root level.

• To apply the page to an individual web application, import the file to the web
application resources.

Chapter 25
Create a Custom Lock Page

25-12

You can create more than one app-locked.html page and import each one to a different
location. Any custom pages applied at the web application level will override the setting at the
visual application level.

Note:

You will need to create the custom page and add it to the visual application or web
application before locking the application.

Apply a Custom Lock Page to a Visual Application
You can create a custom lock page and add it to the root level of a visual application. When
someone tries to access the locked application, the custom page will display.

Before locking the application, create a custom app-locked.html page, then import the file to
the root of your visual application.

1. Create your custom page and save it as app-locked.html.

2. Add the custom page to the root of the visual application.

a. Open your web application in the Navigator.

b. Click Source View.

c. Right-click the webApps directory and choose Import in the popup menu:

Alternatively, drag the file from your local file system onto the webApps directory in
the Navigator.

d. In the Import Resources dialog box, remove webApps from the Import location field,
then click the drop target area and navigate to the file on your local system.

Chapter 25
Create a Custom Lock Page

25-13

e. Click Import to import the file.

The app-locked.html file is added to the root of your visual application.

3. Apply the lock to your application (See).

When someone tries to access the locked application, the custom app-locked.html
page that you added to the visual application root displays, unless unique app-
locked.html pages have been applied to individual web applications. The page at the
web application level will override the page at the visual application root level.

Apply a Custom Lock Page to a Web Application
You can create a custom lock page and add it to a web application's resources. When
someone tries to access the application, the custom lock page displays, overriding any
page applied to the visual application level.

Before locking the application, first create the custom app-locked.html page, then
import it to the resources section of your web application.

1. Create your custom page and save it as app-locked.html.

2. Add the custom page to the root of the visual application.

a. Open your web application in the Navigator and locate the Resources folder.

b. Right-click the Resources folder and choose Import in the popup menu.

Chapter 25
Create a Custom Lock Page

25-14

Alternatively, drag a file from your local file system onto the Resources folder in the
Navigator to open the Import Resources dialog box.

c. In the Import Resources dialog box, click the drop target area and navigate to the
file on your local system.

d. Click Import to import the file.

The app-locked.html file is added to the resources of your web application.

3. Apply the lock to your application (See).

When a user tries to access the locked application, the custom app-locked.html page
displays for this web application, overriding the page applied visual application root level.

Chapter 25
Create a Custom Lock Page

25-15

Access Data in an Existing Oracle Database Using ORDS
You can use Oracle REST Data Services (ORDS) to expose database objects through
REST APIs, and then map the ORDS endpoints as REST services in your Visual
Builder application.

To accelerate and simplify the process of adding ORDS endpoints, leverage the
OpenAPI specification provided by ORDS as described in this blog. You can also use
fixed credentials to connect to ORDS.

Note:

If your database is in a private subnet or behind a firewall, your ORDS
endpoint must have a public IP address to be accessible by Visual Builder.

If you want to filter, sort, and paginate the data returned by the ORDS backend, you'll
need to provide a transform function as part of your service connection definition in
Visual Builder. Find sample code for the transform function in the Visual Builder
cookbook's ORDS integration recipe.

Use a SOAP Web Service With Visual Builder
Visual Builder is designed to consume REST natively. We recommend that you use a
SOAP to REST transformation on the server. You may want to perform this
transformation using Oracle Integration.

If you prefer to handle the SOAP translation on the client as part of your VB
application, you can follow these steps to communicate with the SOAP service:

1. Define a service connection to a SOAP endpoint.

2. Write JavaScript code to call the SOAP service using the restHelper method. See
REST Helper in the Oracle Visual Builder Page Model Reference.

3. Parse the XML messages to and from the endpoint in your JavaScript code.

Run Visual Builder Applications On Other Servers
While it's possible to run Visual Builder web applications on other web servers, you do
lose some functionality.

Specifically:

• Business objects won't run, because they require the Visual Builder back end.

• You can't use Identity Cloud Service to manage your users, roles, or
authentication, so you'll have to manage these aspects of your app.

• The Visual Builder server authentication proxy manages connections to REST
services, so you'll need to define your Visual Builder services to use a "Direct
(Bypass Authentication Proxy)" connection. The calls are then made directly from
the browser to the remote REST service. See How Does the Fixed Credentials
Authentication Method Work? for more information.

Chapter 25
Access Data in an Existing Oracle Database Using ORDS

25-16

https://blogs.oracle.com/shay/post/leverage-ords-with-visual-builder-to-access-oracle-db-an-openapi-update
https://vbcookbook.oracle.com/?page=shell&shell=rest-ords-integration&rest-ords-integration=rest-ords-integration-start&rest-ords-integration-start=recipe

If these limitations are acceptable, then you can host your Visual Builder app on another
server.

To modify your app to do this:

• Use the direct access to your REST services, and switch the set of services that the app
is accessing. One way is by doing a global search and replace, to update the address of
the server hosting the REST services that provides data to the app. This will allow the
back end to be on-premise.

• Ensure that you've allowed anonymous access to the app. Identity Cloud Service won't
be available to manage authentication.

• Create a zip file that contains the app ready to be deployed. See Optimize Your Builds
and Audit Your Code Using Grunt for information on how to do this.

You can take this optimized version of the app and host it as a regular collection of HTML/
JavaScript resources on a web server.

Embed a Web App in an Oracle Cloud Application
You can edit an Oracle Cloud Application to embed your web app using Page Composer or
Application Composer. For your embedded web app to work in an Oracle Cloud Application,
you'll want to confirm that:

• Your Visual Builder instance is associated with Oracle Cloud Applications;

• Single Sign-On (SSO) is enabled;

• The authentication for your web app is using an Oracle Cloud Account.

Note:

Contact your service administrator or project owner if you are unsure about how
your Visual Builder instance is configured.

Specifically, the Allow only secure applications to be created setting in the
instance must be unchecked to prevent users from seeing this message: Refused
to display 'https://idcs-domain.identity.oraclecloud.com/ui/v1/signin'
in a frame because it set 'X-Frame-Options' to 'deny'.

When a user is logged in to an Oracle Cloud Application, the application provides the user's
Oracle Cloud Account details for authentication when accessing the embedded web app, so
the web app will appear in the application's page without requiring any additional login. This
authentication only occurs when the user first accesses the embedded web app and may
mean that the web app takes a long time to load. Subsequent accesses will be faster.

To add your web app to an Oracle Cloud Application, you'll need to:

1. Prepare your web app in Visual Builder;

2. Publish your web app;

3. Embed your web app using Page Composer or Application Composer.
For more information on which one you will use with your Oracle Cloud Application, see
Differences Between Using Page Composer and Application Composer in Configuring
and Extending Applications.

Chapter 25
Embed a Web App in an Oracle Cloud Application

25-17

https://docs.oracle.com/en/cloud/saas/applications-common/23a/oaext/differences-between-using-page-composer-and-application-composer.html#s20046425

Make Your Web App Ready for Embedding
Before embedding your app in an Oracle Cloud Application, you'll want to configure
your web app settings to allow embedding, and modify your shell page to remove the
app's default header and footer. You might also want to choose a theme for your
application that matches the look and feel of the application where you are embedding
it.

When embedding a web app, it is quite common to set up your web app so that the
Cloud Application passes some values to the web app as parameters in the URL. The
input parameters are usually assigned to app-scoped variables defined in your app.
The variables need to have the Pass on URL option set in the Properties pane.

To get your app ready for embedding:

1. In your web app's Settings editor, open the Security tab and select Allow
embedding in any application domain or Allow embedding in specified
domains.

2. If you chose Allow embedding in specified domains, enter your Oracle Cloud
Application instance's domain (for example, fa-
identifier.fa.ocs.oraclecloud.com. Make sure you also add the
domain's IDCS host name (for example, idcs-
identifier.identity.oraclecloud.com).

You can add multiple domain names where embedding is allowed, but typically
only one IDCS host name is required.

3. If you want to change your app's theme, open the General tab and select the
theme from the drop-down list in the General tab.

Chapter 25
Embed a Web App in an Oracle Cloud Application

25-18

4. In the Navigator, expand Root Pages and open the shell page in the Code editor.

5. Delete the <header> and <footer> elements in the code.

Your shell page should now only have <div> elements for the page, message
notifications, and the content. In Design view, you can see that the app now only contains
the core content.

6. When your app is ready to be embedded, stage and publish the app so that the app is
accessible at a public URL.

7. Open the live app in your browser to confirm that the page renders correctly at the URL.

When testing the URL, you might also want to test that passing your app parameter in the
URL works correctly, for example, by including the variable name and some value in the
URL (https://vbinstanceurl/.../appname/?VariableName=Value)

8. Copy the URL, and make a note of the app parameters you are using.

You'll need to know the URL and the parameters when you embed the app using
Application Composer or Page Composer.

Embed a Web App Using Page Composer
For Oracle Cloud Applications that you edit using Page Composer, you embed your web app
by adding a Web Page component to a page and then specifying the app's URL and
parameters. The following steps are high-level and are presented here to help you embed
your web app in a page using Page Composer. For additional details, see Guidelines for
Using Page Composer in Configuring and Extending Applications.

To embed an app using Page Composer:

1. Log in to the Oracle Cloud Application where you want to embed your app.

2. Open a sandbox with Page Composer enabled, if you haven't already.

3. In your Oracle Cloud Application, navigate to the page where you want to embed your
web app content.

4. Open the Tools menu and select Page Composer.

Chapter 25
Embed a Web App in an Oracle Cloud Application

25-19

https://docs.oracle.com/en/cloud/saas/applications-common/23a/oaext/guidelines-for-using-page-composer.html#s20048327
https://docs.oracle.com/en/cloud/saas/applications-common/23a/oaext/guidelines-for-using-page-composer.html#s20048327

Page Composer will appear in the menu if you're in sandbox which is configured to
be edited using Page Composer.

If you are using Application Composer, see the next topic.

5. In the Source view, open the Selector panel and select the area in the page where
you want to embed your app. Click Edit in the popup menu to enter Edit mode.

6. Make sure the area is selected in the Selector panel, then click Add (+) in the
panel's toolbar and add a Web Page component in the Add Content dialog. Click
Close.

Chapter 25
Embed a Web App in an Oracle Cloud Application

25-20

The area now contains the Web Page component.

7. In the Selector, right-click the new Web Page component and select Edit in the popup
menu to open the Component Properties: Web Page dialog box.

8. Add a name and description for the new component.

9. In the Source field, open the dropdown list and select Expression Builder.

If you are passing a variable to your web app as part of the URL, you'll need to use the
Expression Editor to construct the URL.
If you aren't going to pass a variable, you can paste the URL for your web app in the
Source field.

10. In the Expression Editor dialog, select Choose a Value, and then select Binding
Parameter in the dropdown list.

11. Select the binding parameter you want to use from the dropdown list.

12. Select Type a value or expression, then edit the expression in the text area to define
the URL of your web app.

The text area contains an expression fragment (<generated-expression>) generated for
you based on the binding parameter you selected. It might look something like
#{bindings.DisplayName.inputValue}. This is the value that will be passed to your web
app.

Chapter 25
Embed a Web App in an Oracle Cloud Application

25-21

13. Prepend the URL of your web app to this expression in the text area.

Your expression might look something like https://vbinstanceurl/.../
appname/?VariableName=<generated-expression>. When you paste in the URL,
make sure it includes ?VariableName= before the generated expression, where
VariableName is the name your web app expects in the URL (for example,
"OwnerName").

14. Click OK to close the Expression Editor dialog, then click OK to close the
Component Properties dialog box.

15. Click Done to finish the Page Composer editing session.

16. Publish your sandbox after you've added the web page.

After closing the editing session, your web app content appears in the area in the page
in the Oracle Cloud Application. The app is embedded in the page, and you can
navigate to pages within the web app without leaving the Oracle Cloud Application
page containing the web app. You can use your web app to display web app data in a
page, and for example, to show a graph that rendered in the web app.

Embed a Web App Using Application Composer
For Oracle Cloud Applications that you edit using Application Composer, you embed
your web app by adding a mashup to the application, for example, in a tab or a page.
The following steps are high-level and are presented here to help you embed your web
app in a page using Application Composer. For a detailed description of how to embed
a web app, see the Overview of Mashups section in Configuring Applications Using
Application Composer.

To embed a web app using Application Composer:

1. Log in to the Oracle Cloud Application where you want to embed your app.

2. Open a sandbox with Application Composer enabled, if you haven't already, and
then open Application Composer.

3. Create a parameter-based mashup for the web application.

If you want to pass any input parameters to your web app, you'll need to define the
names of the parameters when you create the mashup. For example, if your web
app is using an input variable named accountid (https://vbinstanceurl/.../
appname/?accountid=SomeValue), you'll want to add accountid to the mashup.

Chapter 25
Embed a Web App in an Oracle Cloud Application

25-22

https://docs.oracle.com/en/cloud/saas/applications-common/23a/oacex/overview-of-mashups.html#s20064185

For more details on creating a parameter-based mashup, see Register Your Web
Application in Configuring Applications Using Application Composer

4. In Application Composer, locate the application page (for example, the Details page)
where you want to embed the web app.

If you specified any parameters in your mashup, you'll need to map the parameters to
fields in your application. For example, you would map the Registry ID field to the
accountid parameter you defined in the mashup if you wanted to use the Registry ID
value as your web app's input parameter. For more on adding a mashup to a page, see
Embed a Registered Web Application into Your Application Page in Configuring
Applications Using Application Composer.

5. Publish your sandbox after you've added the mashup to your application.

Call Server-side Functionality from Visual Builder
Visual Builder apps run in the client’s browser. If you want to invoke external code residing on
some other server, create a REST wrapper for that code and use Visual Builder to call REST
services and invoke them.

This also applies to Node.js code on the server which is in JavaScript.

Chapter 25
Call Server-side Functionality from Visual Builder

25-23

https://docs.oracle.com/en/cloud/saas/applications-common/23a/oacex/register-your-web-application.html#s20064186
https://docs.oracle.com/en/cloud/saas/applications-common/23a/oacex/register-your-web-application.html#s20064186
https://docs.oracle.com/en/cloud/saas/applications-common/23a/oacex/embed-a-registered-web-application-into-your-application-page.html#s20064202

Add the Oracle Digital Assistant to Your Web App
You can integrate the Oracle Digital Assistant (ODA) into your Visual Builder web app
simply by importing the Oracle Web SDK into your project and adding just a few lines
of code.

Before you begin:

• Set up the Oracle Web SDK channel in your Digital Assistant (DA) instance and
associate it with a skill. See Overview of the new Oracle Web SDK and its
customization features in Oracle Digital Assistant 19.10 and later
Record the following Oracle Web channel parameter settings: URI (your chat
server URL) and Channel ID (the Web channel Id). You'll need to add these
values to your code when you integrate the digital assistant.

• Download the Oracle Web SDK 1.0 from the Oracle Digital Assistant (ODA) and
Oracle Mobile Cloud (OMC) Downloads page.

To import the Oracle Web SDK and add required code:

1. Import the Oracle Web SDK into your project:

a. Extract the oda-native-client-sdk-js-1.0.0.zip file downloaded
from the ODA download page.

b. Compress native-client-sdk-js folder where the web-sdk.js file is
saved.

c. From your project, right-click the resources node in the navigation tree and
click Import.

d. Import the compressed native-client-sdk-js.zip and click Import.

Your imported files appear in the resources branch.

2. Add code to a page of your web app to invoke the Oracle Web SDK to connect
and invoke the web-widget.

a. Select index from the navigation tree and select HTML (</>) to display the
index page in HTML.

b. Add the following code before closing the </head> tag, including your URI and
channelID values where indicated:

<script src="resources/native-client-sdk-js/web-sdk.js"></
script>
<script>
 var chatWidgetSettings = {
 URI: 'YOUR_URI',
 channelId: ‘YOUR_CHANNELID’
 };
 setTimeout(() => {
 window.Bots = new WebSDK(chatWidgetSettings);
 Bots.connect().then(() => {
 console.log("Connection Successful");
 }, (reason) => {
 console.log("Connection failed");
 console.log(reason);
 });

Chapter 25
Add the Oracle Digital Assistant to Your Web App

25-24

https://blogs.oracle.com/mobile/overview-of-the-new-oracle-web-sdk-and-its-customization-features-in-oracle-digital-assistant-1910-and-later
https://blogs.oracle.com/mobile/overview-of-the-new-oracle-web-sdk-and-its-customization-features-in-oracle-digital-assistant-1910-and-later
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html

 }, 2000);
</script>

Line 1 points to the web-sdk.js file stored in the resources/native-
client-sdk-js folder.

Line 3-6 sets the URI and channelID which are passed as a parameter.

Line 7 calls the functionality after 2 seconds. This is done to ensure that the page
gets loaded.

Line 8 initializes the library with the configuration.

Line 9 establishes the connection with the server.

Line 15 defines the delay between the rendering of a page and the display of the
messenger icon or widget. The default setting is 2 seconds.

3. Run the project to test the integration:

a. Click Run to start the web application in a separate tab.

b. Click the Chat widget icon to start your chat bot.

Abort Pending REST Calls in Visual Builder
When a REST call to your application takes too long, you might want to let your users cancel
the call midway. You do this by adding an AbortController, a browser-based interface that
lets you abort a web request.

Here's a sample scenario that shows how you can use an AbortController in a Visual
Builder application. For demo purposes, assume the app has a page with two buttons: a Call
REST button and a Cancel REST button.

• When users click the Call REST button, an ojAction event triggers an action chain to
call the Get/Employee/{Employee_Id} endpoint and displays a notification to the
user.

• When users click the Cancel REST button, another ojAction event triggers an action
chain to abort the REST request and display a notification to the user.

Note:

The AbortController API is not supported for Visual Builder applications that are
enabled as PWAs or configured for offline capabilities.

1. To use the AbortController API, you first need to create an AbortController instance.
You also need to call the abort method on the AbortController instance that's created.
We'll do this by adding two app-level JavaScript functions that can be used across your
application's pages.

a. Select your application node, then click JavaScript to open the app-level JavaScript
editor.

b. Add this JavaScript snippet to the editor:

 /**
 * Method to create an instance of AbortController.

Chapter 25
Abort Pending REST Calls in Visual Builder

25-25

https://developer.mozilla.org/en-US/docs/Web/API/AbortController

 */
 createAbortController() {
 return new AbortController();
 }

 /**
 * Method to invoke the abort method on the AbortController
instance.
 */
 abortRequests(abortController) {
 abortController.abort();
 }

Your JS editor might look something like this:

2. Create a variable to track the AbortController instance that will be created.

a. Click Variables to open the app-level Variables editor.

b. Click + Variable and create a variable with ID abortController (for
example) and type Any. Click Create.

Chapter 25
Abort Pending REST Calls in Visual Builder

25-26

3. To initialize the abortController variable when the app loads, build an action chain
that's triggered in response to a vbEnter event for the application.

a. Click Event Listeners at the app level.

b. Click + Event Listener.

c. Select vbEnter under Lifecycle events and click Next.

d. Select Create Application Action Chain to create a new app-level action chain.
Click Finish.

e. Click Go to Action Chain next to the newly created vbEnterChangeListener
action chain to open the Action Chains editor.

f. From the Actions palette, drag a Call Function action onto the canvas.

g. In the action's Function Name property, select createAbortController under
Application to call the JS function that creates an AbortController instance.

Chapter 25
Abort Pending REST Calls in Visual Builder

25-27

h. Now drag and drop an Assign Variables action to follow the Call Function
action.

i. In the Assign Variable action's Properties pane, select abortController under
Application from the Variable list.

j. Hover over the Value property and open the variable picker, then select
callFunctionResult. This way, you assign the value returned by the
createAbortController function to your abortController variable.

4. Associate the AbortController with the REST call you want to abort. You do this
by attaching the AbortSignal of an AbortController instance to the REST
request via the signal option. For example, to abort the Get/Employee/
{Employee_Id} endpoint request, you attach the AbortSignal to the Call REST
action in the action chain underlying the button component (which is
ButtonActionChain in our example).

a. Open the action chain that uses the Call REST action in the Action Chains
editor. Because our example assumes a Call REST button on a page, this Call
REST action exists in the ButtonActionChain action chain defined at the
page level.

b. Click Code to switch to code view.

c. Locate the code snippet for the particular Call REST action and add this line
after the endpoint constructor:

signal: $application.variables.abortController.signal,

In this example, the AbortSignal is accessed
via $application.variables.abortController.signal and attached to the
get_Employee REST request:

Chapter 25
Abort Pending REST Calls in Visual Builder

25-28

5. To abort REST requests with the AbortSignal attached, build an action chain to call the
abort method on the AbortController instance. Because our example assumes a
Cancel button that users click to abort the Get/Employee/{Employee_Id} request on
a page, we define the abort action chain also at the page level (but you can also define it
at the app level).

a. Click Action Chains to open the Action Chains editor.

b. Click + Action Chain and create a new action chain with abortRequestsChain as
its ID.

c. From the Actions palette, drag a Call Function action onto the canvas.

d. In the action's Function Name property, select abortRequests to specify the JS
function that calls the abort method on the AbortController instance for the specific
REST request.

e. To pass your abortController variable as an input parameter to the
abortRequests function, locate the abortController under Parameters, hover
over the parameter to open the variable picker, then select abortController
under Application.

Chapter 25
Abort Pending REST Calls in Visual Builder

25-29

f. Calling the abort method on an AbortController instance permanently
aborts any future requests, so you need to create a new AbortController
instance and assign it to the abortController variable. To do this, drag and
drop a Call Action Chain action and select the vbEnterChangeListener
action chain (which was created for you in step 3 to do both) in the Action
Chain ID list.

g. Add other actions as needed to handle the Cancel operation. For example,
you might want to add actions to notify the user and reset anything that's
required for your app's typical flow.

Chapter 25
Abort Pending REST Calls in Visual Builder

25-30

Forms
Common use cases relating to forms:

• Enable Client-Side Validation for a Form

• Validate Dates in Forms

Enable Client-Side Validation for a Form
You may want to set up a form so that your application can check the validity of its contents
before the user submits it.

To do this, surround the form with an oj-validation-group element, and add a custom
isFormValid Javascript function that returns a boolean. You can then call that function before
the form is submitted.
Suppose you have a form with three text fields. To set up a basic client-side validation for this
form:

1. Open the page that contains the form.

2. Click the Code button to switch to the code view of the page.

3. Locate the div element that contains the oj-form-layout element. If it isn't already,
enclose this div element in an oj-validation-group element that has an id attribute.
For example:

<oj-validation-group id="CreateForm">

Make sure to add the closing tag.

4. Click Source View in the Navigator, then find your application's app-flow.js file:

Chapter 25
Forms

25-31

5. Add the isFormValid function as shown here (the function code appears in bold):

var AppModule = function AppModule() {};

AppModule.prototype.isFormValid = function(form) {
 var tracker = document.getElementById(form);
 if (tracker.valid === "valid") {
 return true;
 } else {
 tracker.showMessages();
 tracker.focusOn("@firstInvalidShown");
 return false;
 }
};

return AppModule;

6. Go back to the page with the form. Click the Save button, then select the Action
Chains tab for the button and click createExpenseReportChain.

7. If an If action does not exist:

a. Drag an If action after Start.

b. In the Condition field, enter:

{{ $application.functions.isFormValid("CreateForm") }}

The argument to the isFormValid function is the id value for the oj-
validation-group element.

c. Move the Call REST businessObjects/... node to the true branch of the If
action. For example:

Chapter 25
Forms

25-32

You can now test the form validation.

Validate Dates in Forms
You can use the Expression Editor to validate a date you enter in a form.

Suppose you have a form for creating a business object instance that has a Start Date and
an End Date field. You want to be sure that the end date can't be earlier than the start date.
To do this:

1. In the Page Designer, select the Input Date component for End Date in the form.

2. In the General tab of the Properties pane, click the fx icon for the the Min property.

3. In the left panel, expand the business object and double-click startDate.

The expression $variables.expenseReport.startDate is displayed in the editor pane
(where expenseReport is the name of the page variable).

4. Click Save.

The expression is displayed in the Min property, surrounded by double brackets.

As a result, the DatePicker for the End Date field makes all dates before the Start Date
unavailable. If you manually enter a date before the Start Date, you'll see an error message.
You may also need to specify a format for dates. See Format a Date Field for information on
how to format a date field of a business object.

Tables
Common use cases relating to tables. It's worth noting that UI guidelines recommend lists,
instead of tables, to display data records for complex data sets. While tables tend to be more

Chapter 25
Tables

25-33

utilitarian, lists are ideal for small-screen displays and are increasingly common in web
as well as mobile applications.

If lists don't provide the functionality you need, here are some advanced techniques
you can use in table components:

• Modify a Table's Default Display

• Reorder Columns in a Table

• Sort Data in Table Columns

• Enable Resizing of a Table Column

• Wrap Table Text

• Add Columns to an Existing Table

• Format Row Values in a Table Conditionally

• Create a Search Filter for a Table

• Create an Editable Table

• Update Pagination Behavior for a Table

• Enable Text Selection in a Table

Modify a Table's Default Display
You can modify the default look and feel of tables to provide a more visually appealing
display in your application's pages.

Here's how a table mapped to data in a business object (done using the Add Data
quick start) displays by default:

Chapter 25
Tables

25-34

Display table as a grid

By default, tables display as a list. To switch the list view to a more compact grid view:

1. Select the table on the page to view its properties.

2. Select Grid under Display in the Properties pane's General tab.

3. If you want to hide the horizontal and vertical gridlines, select Enabled for the Horizontal
Grid Visible and Vertical Grid Visible properties.

Here's how the table looks in grid mode (with the horizontal and vertical gridlines still visible):

Reformat content in table columns

It's possible to reformat the content of your data columns to provide a cleaner and more
visual display. For example, you might want to show images or visualize data using gauges.

Display images in a column

To display images in a table column:

1. Drag an avatar component from the Components palette and drop it directly onto any row
in a particular column on the table (Picture, in our example):

Chapter 25
Tables

25-35

2. Update the avatar component's properties as desired, for example, you can
change its size and shape as well as give it a background:

Chapter 25
Tables

25-36

3. Switch to the Data tab in the Properties pane. Hover over the Src field and click the down
arrow to open the variable picker. Select picture under Current and Row to bind the
avatar to the value of that row in the column:

Your data now shows as images:

Chapter 25
Tables

25-37

Reformat a date column

To change the format used by a date column in a table:

1. Drag an input date component from the Components palette and drop it directly
onto a date-based column (Date of Travel, in our example). The component
automatically picks up the existing value.

2. Update the component's properties, for example, you can use the Converter
property to set the format of the date:

Chapter 25
Tables

25-38

You might also want to clear the component's Label Hint field, so Date does not appear
in the column.

Visualize data in a column

To visually display data in a table column:

1. Drag a visualization component (for example, the Linear Status Meter under Gauges)
and drop it directly onto a particular column in the table (Cost, in our example). The
component automatically picks up the existing value.

Chapter 25
Tables

25-39

2. Update the component's properties as desired, for example, you might change the
color of the gauge:

3. If your data falls outside the default data range for the gauge component, switch to
the Data tab and change the Maximum Value, so your data renders in a more
meaningful way:

Chapter 25
Tables

25-40

Reorder Columns in a Table
When you use the Add Data quick start to map data to your table, you can specify the order
in which you want columns to display in the table. If you want to change this order after the
table is set up, you can do it from the table's Data tab in the Properties pane.

1. Select the table on the page to view its properties.

2. Click the Data tab.

3. Under Table Columns, drag a column's handle () and drop it where you want the
column to be:

Chapter 25
Tables

25-41

Enable drag-and-drop reordering

You have the option to enable drag-and-drop functionality to reorder table columns. To
do this:

1. Select the table on the page to view its properties.

2. Set Selection Mode, Column in the General tab to either Single or Multiple,
allowing either single or multiple columns to be selected.

3. Switch to the All tab.

4. Hover over the DnD property, then select Show sub-properties ().

5. Hover over the Reorder property and select Show sub-properties ().

6. Select Enabled from the Columns list.

With this setting enabled, you should be able to select a column in Live mode, then
drag the move icon that appears in the column header and drop it where you want it:

Chapter 25
Tables

25-42

Sort Data in Table Columns
Sorting is enabled by default on all table columns. Simply use the up and down icons on the
table headers in Live mode to arrange the column's data in either ascending or descending
order:

Sort table data by a particular column

If you want your table to always sort data based on a particular column (for example, ID), you
can use the sortCriteria parameter in the Service Data Provider (SDP) used to retrieve the
table's data.

1. In the Variables tab, locate the SDP variable underlying the table, for example,
departmentListSDP.

2. In the variable's Properties pane, select sortCriteria under Parameters.

3. On the Target pane of the Map Variables to Parameters dialog, expand sortCriteria and
item[i] to view the attribute and direction options.

Chapter 25
Tables

25-43

a. Select attribute, then enter the name of the field you want to sort in the
expression builder; for example, id.

b. Select direction, then enter the direction of the sort, either asc for ascending
or dsc for descending. If you don't specify a value, the default direction (asc)
is used for sorting.

You can add several sort criteria in the array to define sorting by multiple columns.
For example, to sort by location first and then by department, you'd use:

[
 {
 "attribute": "location",
 "direction": "dsc"
 },
 {
 "attribute": "departmentName",
 "direction": "asc"
 }
]

4. Click Save.

With sortCriteria specified on the ID column in the descending direction, your table
sorts data by default on the ID column in the descending order, as shown here:

Chapter 25
Tables

25-44

Disable sorting on a column

If you want to remove sorting capabilities on a particular column:

1. Select the table on the page to view its properties.

2. Click the Data tab.

3. Under Table Columns, click Column Detail () for the column on which you want to
disable sorting.

4. Set Columns, Sortable to Disabled.

Sorting in Parent-Child Relationship Tables

When working with tables in a parent-child hierarchy, sorting will work as expected on the
parent table's columns. To sort records on the child table's columns, some additional steps
are required.

Let's say you have a table that displays data for departments and the department's
employees in a Departments table (parent table). When end-users select a department in the
Department table, the selection determines the list of employees that appears in the
Employee table (child table). To sort records by the child table's columns, the table must be
based on the child objects and fetch parent details for each child (employees, in our
example). The accessor in the relationship between the Department and Employee business
objects must also be enabled. In the case of employees in a department, this would be the
accessor on the Employee business object that allows access to Department information:

Chapter 25
Tables

25-45

See Edit a Business Object Relationship for steps on editing the relationship to enable
the accessor.

Enable Resizing of a Table Column
You can enable columns in a table to be resized, functionality that is particularly useful
if a column's values are too long.

1. Select the table on the page to view its properties.

2. Click the Data tab.

3. Click View Detail () next to Table Columns to view the table's column definition.

4. Locate the column that you want to be resizable. For example, when you want the
Name column to be resizable, add "resizable": "enabled" to the column
definition:

 {
 "headerText": "Name",
 "field": "name",
 "resizable": "enabled"
 },

If you now switch to Live mode, you should be able to resize the Name column:

If your data is cut off, you might want to enable text wrapping. See Wrap Table Text.

Chapter 25
Tables

25-46

Wrap Table Text
If the header text for table columns doesn't display completely when a column's width is
reduced, you can enable text wrapping for the header. To do this:

1. Select the table on the page to view its properties.

2. Click the Data tab.

3. Under Table Columns, find the column whose header text you want to wrap and click

Column Detail ().

4. Add white-space:normal; word-wrap:break-word; to the Columns, Style property.

You can also update the column definition in a page's Code view. Update the style attribute
as shown here on the column definition to enable wrapping if the header does not fit:

"white-space:normal; word-wrap:break-word;"

You can enable text wrapping for the content in table columns as well. To do this:

1. Under Table Columns in the table's Data tab, find the column whose content you want to

wrap and click Column Detail ().

2. Add white-space:normal to the Columns, Style property.

Add Columns to an Existing Table
If you used a quick start to set up your table, it's possible to add new or existing fields from
your data source, even if you chose not to show them in your table during initial setup.

Tables that are generated by quick starts are typically based on SDP or Service Data
Provider, which is a specific data type designed for variables that are used to send a request
to an endpoint. It's the endpoint's attributes that display as columns in your table. To add an
endpoint attribute that you didn't include originally, you'll need to modify the type being used
by your table. For example, if your table uses [[$variables.employeeListSDP]] to store its
data (as displayed on the Data field of the table's properties in the Data tab):

1. Switch to the Variables tab and look for the employeeListSDP variable.

2. In the variable's Properties pane, look for the Type field and click Go to Type.

3. In the Types tab, click Edit from Endpoint next to your table's type.

4. When the Edit Type From Endpoint dialog opens, select the attributes you want to add
and click Finish.

Modify your table to display unused endpoint attributes as columns:

1. Select the table on the page to view its properties.

2. Click the Data tab.

3. Click Edit Columns () next to Table Columns.

4. Select the field you want to display as a column.

Chapter 25
Tables

25-47

If you want to add an empty column, click New Empty Column, then click
Column Detail to set the Columns, Header Text. You can then design this
column to display some data.

Format Row Values in a Table Conditionally
You can use a column template to specify row-specific formatting for particular values
in a table column.

Suppose, for instance, that your table has a Salary column and you want to display the
values that fall above a certain level in bold. In your table, you can represent the
Salary field of the business object as a separate column template, so that you can
define the format for this field.

Chapter 25
Tables

25-48

1. In the JavaScript for the page, define a PageModule function that determines the format
you want to show. This code defines a weight function to set the font weight:

PageModule.prototype.weight = function(salary) {
 if (salary > 2000) {
 return "bold";
 }
 return "normal";
};

2. To create the column template, drag and drop a Text component onto the existing field,
then click the Code button for the page.

3. Surround the field with a span element within the template element. Make sure to put a
colon in front of the style attribute.

<template slot="Salary">

 <oj-bind-text value="[[$current.data]]">
 </oj-bind-text>

</template>

When the page is displayed, all salary values above 2000 appear in bold.

Create a Search Filter for a Table
You can use an input text component to filter a table column to search for text.

1. Drag an Input Text component onto your page.

2. Click the All tab of the component and locate the raw-value attribute, which tracks what
is typed into the text field.

3. Click the Select Variable icon for the attribute to create a new page variable (call it
searchVar, for example).

Chapter 25
Tables

25-49

After you set the raw-value attribute, when you type in the Input Text field, the
value of the searchVar variable will change.

4. Click the table, then click the Add Data quick start to populate the table.

5. On the Add Data page of the quick start, specify the business object you want to
use and click Next.

6. On the Bind Data page of the quick start, bind the fields you want to display and
click Next.

7. On the Define Query page of the quick start, click the filterCriterion builder icon
on the Target side.

8. Select the table column you want to filter, the operation you want to use ($co for
Contains, or $sw for Starts With, for example), and the value
($variables.searchVar).

Once you have bound the raw value of the input text to a variable and then used that
variable as the filter criterion for a table column, you have your search filter. Use the
Run icon or the Live button to test the behavior.

Create an Editable Table
You can create an editable table that allows users to edit multiple existing rows before
they submit all their changes in one transaction to the backend service.

This implementation of an editable table uses the Buffering Data Provider with a
Service Data Provider (SDP). The Buffering Data Provider is a wrapper that provides
buffering for an underlying data provider, so that edits can be committed to the data
source later on. The underlying data provider (Service Data Provider, in this case) is
responsible for fetching data, and the Buffering Data Provider merges any buffered
edits with the underlying data so they appear as a unified set of data.

Here's how you can create a table that displays editable rows of employees. All
changes are stored in a buffer until the user clicks a Save button, at which time a
REST call posts the changes to the backend service. The example used here follows
the Batch Editable Table (BDP) recipe in the Visual Builder Cookbook, which
demonstrates additional functionality, such as how to implement validation and create
new rows.

1. Add a table to your page and connect it to data using the Add Data quick start.
The quick start creates a variable that is automatically bound to the table
component. Because this variable is based on the Service Data Provider type, you
need to create a variable based on the Buffering Data Provider type and set up
your table to reference the new variable.

a. Drag and drop a table component to your page, then add data to it using the
Add Data quick start.

Chapter 25
Tables

25-50

https://vbcookbook.oracle.com/?page=shell&shell=batch-editable-table-bdp

b. Create a variable (for example, employeesBDP) based on the Buffering Data
Provider type. In the newly created variable's Properties pane, map the
dataProvider Constructor Parameter to the employeeListSDP:

c. In the table's Data tab, change the data property to point to
[[$variables.employeesBDP.instance]], instead of
employeesListSDP.

Chapter 25
Tables

25-51

2. Create event listeners and action chains to handle the table's edit events and
make the table editable.

a. Create a custom type from your endpoint (for example, the EmployeeType
type based on the GET /Employee/{Employee_Id} endpoint), then create
a page variable named currentRowBuffer that is assigned to the custom type.

b. Now add an ojBeforeRowEdit event listener to the table, then in the
TableBeforeRowEditChain, add an Assign Variable action with the current
row data (rowData) assigned to the currentRowBuffer page variable.

Chapter 25
Tables

25-52

c. Add an ojBeforeRowEditEnd event listener to the table, then in the
TableBeforeRowEditEnd action chain, add two new Parameters as input
parameters:

• currentRowBuffer of type EmployeeType

• event of type Any
d. To map these two new parameters, open the Event Listeners tab, select the

TableBeforeRowEditEnd action chain under the tableBeforeRowEditEnd event. In
the action chain's Properties pane, map the new parameters
to $variables.currentRowBuffer and $event, respectively.

Chapter 25
Tables

25-53

e. In the TableBeforeRowEditEnd action chain, add an If action and test if the
cancelEdit parameter is false. If false, changes need to be stored into
the employeesBDP.

Storing changes is implemented using a Call Variable action for variable
employeesBDP and function updateItem with parameters:

{ metadata: { key: rowKey}, data: currentRowBuffer}

f. Both the ojBeforeRowEdit and ojBeforeRowEditEnd events must have
asynchronous behaviour enabled for editable table functionality to work. To do
this, switch to the page's JSON view, locate tableBeforeRowEdit and

Chapter 25
Tables

25-54

tableBeforeRowEditEnd under eventListeners, and add
"asyncBehavior": "enabled" for both events:

 "eventListeners": {
 "tableBeforeRowEdit": {
 "asyncBehavior": "enabled",
 "chains": [{ ... }]
 },
 "tableBeforeRowEditEnd": {
 "asyncBehavior": "enabled",
 "chains": [{ ... }]
 }

g. In the table's properties, set Edit Mode to Row Edit (if the option isn't already
selected).

h. Enhance table cells to make them editable:

i. Drag and drop a Text component onto the first table column which needs to be
editable. This generates a cell template for the column.

ii. In the Structure view, right-click the Bind Text node and select Surround and If
to generate a condition for when to render the text component. Set the Bind If
condition to [[$current.mode === 'navigation']]. When the table row is in
read-only mode navigation, the text component will render the column value.

iii. Drop an Input Text (or any other component) into the same cell template as the
Bind Text node and wrap it again in an If condition, but this time set the condition
to [[$current.mode === 'edit']] to show an editable input text component
when the table row is in edit mode.

iv. Remove the Input Text component's Label Hint and ReadOnly properties. Bind
the Value property in the Data tab to the corresponding property from
currentRowBuffer. For example,
{{ $variables.currentRowBuffer.firstName }}.

Use similar steps to make the other table columns editable.

3. Track and save changes to the table. Saving changes involves collecting them from the
Buffering Data Provider instance, marking changes as being submitted, creating a single
batch REST Call payload to store all changes in one transaction, and finally marking
changed items in the Buffering Data Provider as submitted.

a. Drag a button and drop it above the table on the page. Change the Label to Save in
the button's properties.

b. In the button's Events tab, add an event listener for the On 'ojAction' event and
rename the corresponding action chain as SubmitChanges.

c. In the SubmitChanges action chain, add supporting JavaScript functions:

• The createBatchPayload function to generate the payload with all changes. All
changes stored in the Buffering Data Provider are accessed using the API call
getSubmittableItems.

• The setStatusTo function to set Buffering Data Provider items to submitting,
submitted, or unsubmitted states. The Buffering Data Provider requires an edit
item's status to be set, via the setItemStatus API call, before the change is
committed to the data source.

See the batch editable table recipe in the cookbook for sample code.

Chapter 25
Tables

25-55

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=ADFRE-GUID-3F3F2D10-CF68-46D1-AF83-A52988CF817B
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/BufferingDataProvider.html#getSubmittableItems
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/BufferingDataProvider.html#setItemStatus

d. Using these functions, you can build your action chain to change state, save
data, and handle error states. See the batch editable table recipe in the
cookbook for sample code.

Update Pagination Behavior for a Table
You can improve the performance and usability for a table by controlling the number of
records that appear on a page and the total number of records displayed.

Here are some things to consider before adjusting the total number of records and
pagination for your table:

• You can either choose to load more records initially with slight delays later in
scrolling or have an initial delay when you load records, which will allow for
smoother scrolling. The scroll-policy-options.fetch-size property controls the
number of records feteched initially. For example, if you set this property high to a
high number, it will fetch many records at the start and scrolling through them will
be smooth, but the initial fetch might be a bit slower and you will consume more
memory on the client.

• You might also want to limit the number of total records a user can fetch to control
the amount of network traffic and memory consumption on the client. The default
for a JET table is set to 500 but you can modify this with the scroll-policy-
options.max-count property of the table.

Note:

To further improve the table’s usability, consider adding filtering controls to
the table to allow users to define search criteria to display the records they
want listed.

To adjust pagination and total records displayed, you can:

• Add pagination controls to your table to limit the number of records shown on each
page and control the total number of records shown.

• Set the table to load all records to fetch all records when the table loads on the
page.

Add Pagination Control to Your Table

While users can use the browser’s scroll bar to scroll through the rows displayed in
table, in most cases you’ll want to limit the table's height, so that only a certain number
of records are shown at a time.

When you set the table’s height, paging is automatically implemented and a fixed
number of records is fetched at a time (25 is the default).

Chapter 25
Tables

25-56

Note:

For pagination to work efficiently, your backend server needs to support pagination
– Visual Builder's business objects and SaaS services support this out of the box.
For other REST services that support pagination, you’ll need to define a transform
function as part of the service definition.

To add pagination control to your table:

1. Define a new CSS class in app.css. Open your application in the Designer, then expand
the Resources and css nodes, as shown below. Paste this line into app.css and
change the height from 500px to the height that would show the number of rows you
want:

.tableheight {height : 500px;}

2. Go to the Page Designer tab for the page, select the table on the canvas, then select the
All tab in the Properties pane. Enter class in the search box to bring up the class
property for the table, then enter tableheight in the class property:

Chapter 25
Tables

25-57

To fine-tune how many total rows are displayed and how many rows are fetched at a
time:

1. With the table selected on the canvas, click All on the Properties pane and type
scroll in the search box.

2. Click the arrow on the far right of the Scroll Policy Options property:

3. Adjust the Scroll Policy Options:

• For the Fetch Size property, enter the optimal fetch size.

• For the Max Count property, enter the total number of records displayed in the
table.

Chapter 25
Tables

25-58

Note:

To keep the table and data source in sync, it is recommended that you set the
#maxSize property for the SDP pagingCriteria to match the scroll-policy-
options.max-count table setting.

Load All Records

You can load all of the table data onto the page at one time by setting the scroll policy to
Load All.

1. With the table selected on the canvas, click All on the Properties pane and type scroll
in the search box.

2. From the Scroll Policy drop-down menu, select Load All:

Chapter 25
Tables

25-59

All table data is fetched and rendered when the table is displayed in the application.

For more details about the scroll properties of the oj-table component, see Oracle Jet -
oj.table Element.

Enable Text Selection in a Table
To enable users to select and copy text in a table, add the user-select:text style to a
row or cell template.

Note:

If you enable text selection, you cannot also enable drag-and-drop
functionality for the table.

1. In the Page Designer, select the table and switch to Code mode.

Chapter 25
Tables

25-60

https://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojTable.html#scrollPolicy
https://www.oracle.com/webfolder/technetwork/jet/jsdocs/oj.ojTable.html#scrollPolicy

2. Add the user-select:text style to a row or cell template. To select text in an entire row,
add user-select:text to the <tr> element, for example:

<template slot="rowTemplate">
 <tr style="user-select:text"> data-oj-as="row"
 <td>
 <oj-bind-text value="[[row.data.EmployeeId]]"></oj-bind-
text>
 </td>
 ...
 </tr>
</template>

Note:

Inline styles are not recommended and might be flagged in audits. If possible,
implement this styling as a custom class in your application's CSS file.

To select text in individual cells, add the user-select:text style to the cell template. If
your cell template uses an <oj-bind-text> element, wrap that binding with a
element and add the style class to that span, for example:

<template slot="departmentCellTemplate4">

 <oj-bind-text
value="[[$current.data.items[0] ? $current.data.items[0].department :
undefined]]"></oj-bind-text>

</template>

You can now select text in the table to copy it.

Pages and Flows
Common use cases relating to pages and flows in an application:

• Restrict User Access to an Application, Flow, or Page

• Print Multiple Pages

Chapter 25
Pages and Flows

25-61

Restrict User Access to an Application, Flow, or Page
When you want to limit user access to your application, you can set up user roles at
the application level, then restrict access only to those roles. You can use this
approach to restrict access to your app, even a page or flow in your app.

Note:

In addition to security settings that are set on the UI layer, you should also
secure your backend REST services since client-side restrictions can
potentially be hacked. If your backend is developed with business objects in
Visual Builder, see Access and Secure Business Objects.

To restrict access to your application:

1. Create a user role (for example, MyAdminRole), then associate it with specific
IDCS groups or users, as described in Manage User Roles and Access.

When you set up user roles for your visual application, the roles map to groups in
your IDCS account. These roles act as additional roles on top of the built-in
Authenticated User role.

When access to the app requires authentication (default), all users who sign in to
the app with their Oracle Cloud credentials are assigned the Authentication User
role. By default, an authenticated user can see and manage all business object
data. To change this, update the business object's security settings.

2. Set role-based permissions at the app, flow, or page level:

a. In the Web Apps pane, click the node for the artifact. To restrict access to the
page, for example, you'd click the page node.

b. Click Settings, then Security.

c. From the Roles drop-down list, select the role you want to use to restrict
access. Here's an example of a page-level configuration:

d. Click Add.

Chapter 25
Pages and Flows

25-62

3. Test the application to preview it in different roles, as described in Test Role-Based
Access.

4. When you are ready, stage and publish your application, as described in Stage and
Publish Visual Applications.

Print Multiple Pages
By default, only the displayed page in a visual app is printed from a browser. You can print
mutliple pages by updating the shell.css.

1. In the Navigator, expand the application's Resources folder, then expand the css folder.

2. In shell.css, enter the following command:

@media print {.vb-web-applayout-page
 {max-height: 100%;}}

Components
Common use cases that involve the use of specific components:

• Conditionally Show or Hide UI Components

• Enable Time Zone Specification

• Validate the Length of an Entry in an Input Text Field

• Filter Multiple Attributes in a Search

• Set an Initial Value for the Select (Single) Component

Conditionally Show or Hide UI Components
You can dynamically display UI components in your application by surrounding the
component with an oj-bind-if and setting conditions to either show or hide the component.

See Use Conditions to Show or Hide Components.

Chapter 25
Components

25-63

Enable Time Zone Specification
Different time zones have different standards for formatting date and time fields. You
can implement the appropriate format for a given time zone by customizing the Input
Date Time component.

You will first need to edit your visual application's JavaScript file to enable the arbitrary
time zone setting. You can then customize the Input Date Time component to display
time zone data.

In this example, the Input Date Time component is added to the table with a
datetimeCol template applied.

1. To enable the time zone specification, add the definition of the ojs/
ojtimezonedata RequireJS module to your visual application's JavaScript file.

Here is an example of ojs/ojtimezonedata added to a page's JavaScript file:

define(['ojs/ojtimezonedata'], function() {
'use strict'; var PageModule = function PageModule() {};
return PageModule;
});

You can specify this definition for any unit of the page, flow, or application.

2. In the Page Designer, drag and drop the Input Date Time from the Field
components into the target column.

Here is an example of page code with a cell template that has been applied to a
column named datetimeCol:

<div class="oj-flex">
<oj-table scroll-policy="loadMoreOnScroll" class="oj-flex-item oj-
sm-12 oj-md-12"
data="[[$page.variables.mySampleBOListSDP]]"
columns='[{"headerText":"datetimeCol","field":"datetimeCol","templat
e":"datetimeCol"}]'>

Chapter 25
Components

25-64

<template slot="datetimeCol">
<oj-input-date-time value='[[typeof $current.data ===
"string" ? $current.data : null]]' readonly="true"></oj-input-date-time>
</template>
</oj-table>
</div>

3. In the Structure view, select the Input Date Time component that you added.

4. In the Properties pane, choose Custom from the Converter drop-down list, then click fx
to open the Expression Editor.

5. In the Expression Editor, set the timeZone property to a time zone in ISO 8601 format,
and save.

Here is an example with the Asia/Tokyo time zone specified.

{"type": "datetime", "options":
 {"formatType":"datetime", "pattern": "MM dd, yyyy h:mm:ss a Z",
"timeZone":
 "Asia/Tokyo"}}

Chapter 25
Components

25-65

When the custom converter is applied, the page code described above will look
like this:

<div class="oj-flex"><oj-table
 scroll-policy="loadMoreOnScroll" class="oj-flex-item oj-sm-12
 oj-
md-12"data="[[$page.variables.mySampleBOListSDP]]"columns='[{"header
Text":"datetimeCol","field":"datetimeCol","template":"datetimeCol"}]
'><template
 slot="datetimeCol"><oj-input-date-time
value='[[typeof $current.data === "string" ?
 $current.data : null]]'
readonly="true"converter='{{ {"type": "datetime",
 "options": {"formatType":"datetime", "pattern": "MM dd, yyyy
h:mm:ss a Z",
 "timeZone": "Asia/Tokyo"}}
 }}'></oj-input-date-time></template></oj-table></div>

Validate the Length of an Entry in an Input Text Field
You can add code to an input field to validate the length of the text you enter in a form.

Suppose you have a form for creating a business object instance that has an input text
field for capturing a numerical customer ID. You want to be sure that the number
entered is between 3 and 7 characters. To do this, add this code to the input text field:

<oj-input-text id="oj-input-text--285061062-2" class="oj-flex-item oj-
sm-12 oj-md-4" validators='[{
 "type" : "regExp",
 "options" : {
 "pattern" : "[a-zA-Z0-9]{3,7}",
 "messageSummary" : "wrong length",
 "messageDetail" : "need 3-7 chars"}}]' >

Tip:

You can also add a field validator to the input text field to enforce the same
rule. See Field Validators for Business Objects.

Any time you add validation for an input text field and want to customize the message
displayed, simply add or edit the messageDetail attribute.

Filter Multiple Attributes in a Search
You can apply a single search input term to multiple attributes of a service endpoint by
setting up a filterCriterion with many conditions.

You can use filterCriterion to filter data displayed in a Table, List, or another
collection component in Visual Builder. For information on how to create a search filter
in a Table, see Create a Search Filter for a Table. You can use this configuration for a

Chapter 25
Components

25-66

List View component as well. For detailed information on filtering data, see Filter Data
Displayed in a Component.

Once you have your search filter, simply extend the filter criteria. For example, to filter data in
the Traveler and Destination table columns, your filter criteria might look as shown here:

{
"criteria": [
{
"value": "{{ $page.variables.filterVar }}",
"op": "{{ \"$eq\"\n }}",
"attribute": "{{ \"traveler\"\n }}"
},
{
"value": "{{ $page.variables.filterVar }}",
"op": "{{ \"$eq\"\n }}",
"attribute": "{{ \"destination\"\n }}"
}
],
"op": "{{ \"$or\"\n }}"
}

Set an Initial Value for the Select (Single) Component
You can set an initial value for the Select (Single) component of a visual application using
the Value Item attribute.

Note:

The Select (Single) component from the Component palette is labeled Single
Select in the Page Designer.

1. In the Page Designer, select the Single Select component.

2. Select the Data tab in the Properties pane.

3. Set the initial value for the Value Item attribute.

Chapter 25
Components

25-67

The default for this attribute is:

{ "key": null, "data": null, "metadata": null }

You can assign set values to the attribute. For example:

{"key":2,"data":{"userName":"user002"},"metadata":null}

You can also use variables to specify the attribute:

{{ {"key":$variables.initialID,"data":
{"userName":$variables.initialuserName},"metadata":null} }}

Business Objects
Some common use cases relating to business objects in a visual application:

• Format a Date Field

• Apply an Aggregate Function to a Calculated Field From a Child Business Object

Format a Date Field
You can format date fields of business objects to match the format you need.

When first added to a business object, date fields use their default formatting. To
format a date field:

1. Drag an inputDate component from the Components palette and drop it on top of
the date field.

2. Set that field's converter property to match the format you need.

Apply an Aggregate Function to a Calculated Field From a Child
Business Object

When you want to aggregate a field in a parent business object based on a calculated
field in a child business object, the calculated field won't show up as a Field to
Aggregate field with the Aggregate from related business object data option in a
field's Properties pane or the Create Aggregate Field option in the Fields tab. Using a
calculated field with declarative field aggregation isn't supported, but you can get
around this by storing the calculated value in the business object.

Consider a sample Shopping Cart scenario, where you have a Shopping Cart
business object with Cart Item as its child business object. Assuming that Cart Item
has a field cartItemAmt (calculated as Qty * Unit Price), you're trying to aggregate
cartItemAmt as the TotalAmount in the Shopping Cart business object.

The recommended approach for this requirement is to store the calculated value in the
business object. You can do this by adding a trigger to the detail item that will catch
any transaction and update the calculated field in the parent field (see Field Triggers).

Chapter 25
Business Objects

25-68

This approach has the added advantage of speed; because the calculation isn't done at
runtime, your page will load faster.

Chapter 25
Business Objects

25-69

26
Troubleshooting & FAQs

Look here for possible solutions to some common issues when using Visual Builder:

Topics:

• How Do I Find the URL of My Visual Builder Instance?

• How Do I Find My Application's Runtime Version?

• How Do I Clear My App's Resource Cache?

• How Do I View Details of Client Apps in IDCS?

• How Do I Write Expressions If a Referenced Field Might Not Be Available Or Its Value
Could Be Null?

• How Do I Resolve Web Component Loader Issues?

• How Do I Resolve a 'Method Not Allowed' Error?

• How Do I Resolve a 'No Such File' Error for the URI.js File?

• How Do I Fix a Missing Scroll Bar in a Table?

• How Do I Access Components After Upgrading?

• How Do I Set a Custom Content-Security-Policy Header?

• Troubleshooting Access Issues

• Troubleshooting Service Connections

• Troubleshooting Business Objects

How Do I Find the URL of My Visual Builder Instance?
When you file a service request for Visual Builder, you'll need to provide the URL of the
Visual Builder service instance that was provisioned for you. Here's how to locate your Visual
Builder service instance's URL:

1. Launch the Oracle Cloud Console at https://www.oracle.com/cloud/sign-in.html.

2. Provide your Cloud Account Name (the account that you chose when you signed up) and
click Next.

3. Sign in with the user credentials that you received when you set up your account.

4. Click the menu at the top of the page, then select Developer Services and Integration
in the navigation tree.

5. From the Compartment list, select the compartment where your Integration instance is
hosted.

6. On the instances page, click the instance link in the Name column.

7. Click Service Console on the instance's details page.

26-1

https://www.oracle.com/cloud/sign-in.html

8. When the instance opens in a new browser tab, click Show/Hide Navigation

menu in the top corner of the Home page.

9. In the navigation pane, click Visual Builder.

10. When the instance opens in a new browser tab, make a note of the URL.

11. Provide this URL when filing a service request with Oracle Support.

How Do I Find My Application's Runtime Version?
You may need to locate your runtime version if you contact Oracle Support with an
issue or if you've received a message that your app needs to be upgraded to a newer
runtime version.

To find the application runtime:

1. Click the menu in the upper right corner of the application and select Settings.

2. Locate the Visual Builder Runtime Version in the Runtime Dependency section:

How Do I Clear My App's Resource Cache?
Oracle Support might sometimes ask you to clear your visual application's resource
cache, so you can refetch its contents from the server. To do this:

1. Open the Menu in the upper-right corner of the header and select Settings.

2. Click Clear Client Caches under Troubleshooting.

3. If prompted to confirm, click Yes.

Clearing the cache removes persistent data stored in your browser and reloads the
page.

Chapter 26
How Do I Find My Application's Runtime Version?

26-2

How Do I View Details of Client Apps in IDCS?
Each time a visual application is created on a Visual Builder instance, a companion OAuth
client application is automatically created in IDCS. As your app progresses to its deployment
phase, another client application is created for each application profile used to deploy the app
to a development, staging, or production instance. This means that a single visual application
may have several client apps running on IDCS for the lifespan of the app.

When troubleshooting issues with your app, especially those relating to identity propagation,
it might be helpful to check whether a client app exists and examine it for configuration issues
—which you can do by directly accessing the client app from the visual application's Settings
editor.

1. Click the Menu in the upper-right corner of your visual application, then select Settings.

2. Click Application Profiles to view the application profiles used by your app.

3. Select the profile whose details you want to view, then click IDCS Details. For example,
here's what you might see for the Base configuration profile, used by default for
development, test, and production deployments:

4. Use the links to access your IDCS client app and examine its details. If you don't have
permissions, you can provide the client app ID to your administrator or Oracle Support.

Field Description

Base IDCS
URL

Base URL of the Oracle Identity Cloud Service instance used by your Visual
Builder instance. Only IDCS administrators can access the instance at this URL.

OAuth Client
Application
ID

ID of the OAuth client application used by a visual app to request an OAuth2
authorization token (whose value is asked once and kept for the duration of a
session).

Link to IDCS
application

Link to the actual client app used by your visual app's application profile. If you
have the required permissions, you can click this link to open the client app on the
IDCS console and view its details.

Added
Scopes

OAuth scopes in IDCS that the visual app has access to and which can be used in
token-based flows for service connections.

Chapter 26
How Do I View Details of Client Apps in IDCS?

26-3

How Do I Write Expressions If a Referenced Field Might Not
Be Available Or Its Value Could Be Null?

To write efficient expressions that handle situations where a referenced field might not
be available or the field's value could be null, use the JavaScript optional chaining
operator (?.) and the nullish coalescing operator (??). These operators are supported
in standalone JS files as well as in HTML/JSON file expressions.

To avoid exceptions that might occur because of a missing field, which can happen
when a field is optional, use the optional chaining operator (?.). The optional chaining
operator (?.) enables you to read the value of a property located deep within a chain
of connected objects without having to check that each reference in the chain is valid.
The ?. operator is like the . chaining operator, except that instead of causing an error
if a reference is nullish (null or undefined), the expression short-circuits with a
return value of undefined. When used with function calls, it returns undefined if the
given function does not exist.

For example, when your expression is $fields.USMType_c?.value(), JavaScript will
check to make sure that $fields.USMType_c is not null or undefined before trying
to access $fields.USMType_c?.value(). If $fields.USMType_c is null or
undefined, the expression automatically short-circuits, returning undefined. See
optional chaining operator.

To avoid exceptions that might occur because of a missing field value, use the optional
nullish coalescing operator (??). Using the $fields.USMType_c?.value() ?? 42
example, if the value is nullish, 42 will be returned. This sets a default value when no
value is found. See Nullish coalescing operator.

How Do I Resolve Web Component Loader Issues?
If creating a custom web component from an application's Resources node returns the
Unable to load CCA loader: top-navigation/loader: SyntaxError:
Unexpected token < in JSON at position 0 error, your web component
loader was most likely created incorrectly.

Your loader must be created to use the order that matches paths and parameters, for
example:

define([
 './viewModel',
 'ojs/ojcomposite',
 'text!./component.json',
 'text!./view.html',
 'css!./styles'
], function (
 viewModel,
 Composite,
 metadata,
 view) {
...

Chapter 26
How Do I Write Expressions If a Referenced Field Might Not Be Available Or Its Value Could Be Null?

26-4

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Nullish_coalescing_operator

If you still run into the Unable to load CCA loader error, make some dummy changes
to the web component loader and revert your changes. These actions will force a reload of
the web component loader and flush out old dependencies.

How Do I Resolve a 'Method Not Allowed' Error?
If you try to call a web application entry point using POST, you'll get the error message
"Method Not allowed". Due to restrictions imposed by IDCS, Visual Builder can accept the
GET method only.

How Do I Resolve a 'No Such File' Error for the URI.js File?
If you get a no such file error for the URI.js file when building or deploying your
application using the grunt command line vb-build command, this means that the requirejs
optimizer can't find a reference to the urijs library:

Running "_vb-optimize-prepare-ojL10n-plugin:xxxxx" (_vb-optimize-prepare-ojL10n-
plugin) task
downloading ojL10n plugin from https://static.oracle.com/cdn/jet/v7.1.1/default/js/
debug/ojL10n.js
to build/ojL10n.js

Running "requirejs:xxxx" (requirejs) task
Error: ENOENT: no such file or directory, open
'C:/xxxx/VBCS/1.0/build/optimized/webApps/test/version_5244468526385398434/urijs/
URI.js'
In module tree:
 services/daily_impact_list/transforms

[Error: Error: ENOENT: no such file or directory, open
'C:/xxx/VBCS/1.0/build/optimized/webApps/test/version_5244468526385398434/urijs/
URI.js'
In module tree: services/daily_impact_list/transforms
 at xxxxxxx\1.0\node_modules\requirejs\bin\r.js:28332:19
 at xxxxxxx\1.0\node_modules\requirejs\bin\r.js:3059:39
 at xxxxxxxxx\1.0\node_modules\requirejs\bin\r.js:2999:25
 at Function.prim.nextTick (xxxxxxxxx\1.0\node_modules\requirejs\bin\r.js:28083:9)
 at Object.errback (xxxxxxxxx\1.0\node_modules\requirejs\bin\r.js:2998:26)
 at Object.callback (xxxxxxxxxxx\1.0\node_modules\requirejs\bin\r.js:2984:23)
 at Object.then (xxxxxxxxx\1.0\node_modules\requirejs\bin\r.js:3038:23)

To resolve this problem, empty the path to this library for the optimizer using one of these
methods:

• (Recommended) Add the following code to the Gruntfile.js file in the root of the
application sources:

{code:java}
grunt.initConfig({
 "vb-require-bundle": {
 crosswalk: {
 options: {
 emptyPaths: ["urijs"]
 }
 }
 }

Chapter 26
How Do I Resolve a 'Method Not Allowed' Error?

26-5

 });
{code}

Or

• Add the {{--emptyPaths=urijs}} option to the grunt vb-build command.

How Do I Fix a Missing Scroll Bar in a Table?
There is an issue with the Cascading Style Sheet (CSS) classes which results in the
scroll bar not appearing in the table. Because the default behavior is to fetch 25
records and only load more records on scroll, you can't view more than the initial 25
records.

To show the scroll bar and allow you to scroll more records, you need to set a specific
height to the table using the style property. Select the table in the Designer and set the
height of the table; for example, to 300 pixels.

When you run your app, the table now displays the scroll bar.

For more tips for adjusting the behavior of your table, see the Table Pagination and
Scrolling in Visual Builder Explained blog.

How Do I Access Components After Upgrading?
If you can't find the JET components you need after an upgrade, make sure that your
component exchange connection is set up correctly.

For more information, see Manage Your Component Exchange.

How Do I Set a Custom Content-Security-Policy Header?
The Content-Security-Policy header is a HTTP response header that allows
you to restrict resources (such as JavaScript, CSS, and images) that can be loaded in
your app and from where. By default, Visual Builder sets an appropriate value for the
header, but you can choose to override it for your app.

The default value denies embedding (or allows it if configured in the Security tab of the
app-level Settings editor). It also allows the use of scripts and styles imported from
HTTPS sources alone, in addition to inline scripts and styles. If this isn't suitable for
your app, you can set your own header value by adding the contentSecurityPolicy
property to the userConfig element in your application's app-flow.json file.

1. On the Web Apps tab in the Navigator, select your web app, then click the JSON
tab to open the app-flow.json file.

2. Configure the userConfig element in the file, which by default is defined as:

"userConfig": {
 "type": "vb/DefaultSecurityProvider",
 "configuration": {},
 "embedding": "deny"
 },

Chapter 26
How Do I Fix a Missing Scroll Bar in a Table?

26-6

https://blogs.oracle.com/shay/table-pagination-and-scrolling-in-visual-builder-explained
https://blogs.oracle.com/shay/table-pagination-and-scrolling-in-visual-builder-explained

Add the contentSecurityPolicy property and define its value to the exact directives you
want for the header in your server responses (refer to the CSP Reference for details):

 "contentSecurityPolicy": "<your-value>",

If you want to allow embedding, make sure you define the directive as part of your
header; otherwise, the embedding configuration specified in the app-level Security
settings takes effect. This setting by default denies embedding ("embedding": "deny").

When the contentSecurityPolicy property isn't specified, the following default
configuration takes effect:

 "contentSecurityPolicy": "frame-ancestors 'self', script-src 'self'
'unsafe-eval' 'unsafe-inline'
 https:, style-src 'self' 'unsafe-inline' https:"

Troubleshooting Access Issues
Topics:

• Why Does a Live App That Allowed Anonymous Access Prompt for Login?

• How Can I Recover Apps Linked to a Deleted User Account?

How Do I Control the Session Duration For My Visual App?
The session duration for your visual app is controlled in Identity Cloud Service (IDCS). See
Change Session Settings for information on changing those settings.

If you have single sign-on (SSO) set up with other identity providers (for example, Oracle
Cloud Applications, Okta, Azure, etc), IDCS will use the minimum session duration of all the
identity providers that are involved with the session. Therefore, if you need to adjust the
session timings for a visual app in which IDCS has an SSO setup, you need to tweak the
session timings of all identity providers.

Why Does a Live App That Allowed Anonymous Access Prompt for Login?
Applications that allow anonymous access and have business objects with anonymous
access must explicitly allow anonymous access to the Describe endpoint for business objects
in your visual application. If your app is already published, you might need to enable this
option and publish your application again.

To allow anonymous access to the Describe endpoint for business objects in your visual
application:

1. Create a new version of your live application. See Create a New Version of an
Application.

2. Open the Business Objects tab of the visual application's Settings editor.

3. Select Allow anonymous access to business objects describe end point.

Chapter 26
Troubleshooting Access Issues

26-7

https://content-security-policy.com/

4. Stage and publish the new version of your application. See Stage and Publish
Visual Applications.

How Can I Recover Apps Linked to a Deleted User Account?
In Oracle Integration Cloud, Visual Builder apps are tied to the application creator. If
the creator's user account is deleted and you want to remove or recover apps
associated with that user account, you'll need to assign a new user to the app from the
Oracle Identity Cloud Services (IDCS) console.

1. On the IDCS Admin Console, click the menu in the top-left corner and select
Applications.

2. Search for your Visual Builder environment using its unique name. Get the details
from the Visual Builder instance on the Dashboard.

3. Click Application Roles, then assign a new user with the Service Administrator
role.

4. Log in to Visual Builder using the user account associated with the Service
Administrator role.

5. On the Visual Applications page, select the Administered by Me check box and
find your application.

Troubleshooting Service Connections

Topics:

• Why Was a Certificate in the Remote Path Reported as Invalid?

• How Do I Resolve an 'Unknown Host' Error?

• How Do I Resolve a 'Cannot Process Service Scope' Error?

Chapter 26
Troubleshooting Service Connections

26-8

Why Was a Certificate in the Remote Path Reported as Invalid?
When a connection to an Oracle Integration service returns the A certificate in the
remote path is reported as invalid because of Certificate chaining
error, it usually means the SSL certificate in the keystore is either missing or is corrupt. This
issue can cause 400 and 502 HTTP errors.

Follow these steps to upload the Visual Builder certificate to the keystore:

1. Get the certificate. There are many ways to get the Visual Builder certificate and the
steps may be different for your browser version. These steps are for Firefox on Windows:

a. Open the Visual Builder Home page in your browser (for example, https://
xxx.integration.ocp.oraclecloud.com/ic/builder/).

b. Click the Secure icon on the left of the URL in the address bar.

c. In the pop-up window, click the Show Connection Details arrow for the Secure
Connection entry, then click More Information.

d. Click View Certificate in the Page Info dialog.

e. For the first certificate entry, click the PEM (cert) link to download the certificate.

f. Click Save and OK.

g. Enter a file name and directory, then click Save to download the certificate as a PEM
file to your local system.

2. Upload the certificate to the Visual Builder keystore:

a. Log in to Visual Builder as an admin user.

b. Click the menu in the top-left corner and select Certificates.

c. Click Upload.

d. In the Upload Certificate dialog, enter an alias for the certificate and drag and drop
the certificate that you saved previously.

e. Click Upload.

How Do I Resolve an 'Unknown Host' Error?
If you're not able to invoke a REST service URL from Visual Builder in your network because
of an Unknown host error, you'll need to make sure that the REST endpoint is publicly
accessible.

Here's an example of an Unknown host error:

{ "type":
 "HTTP://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1",
 "status": 400,
 "title": "Bad Request",
 "detail":
 "{\"type\":\"abcs://proxy_auth_problem/unknown_host\",\"title\":\"Unknown
 Host\",\"detail\":\"Authentication server xxx: Name or service not known is
 unknown\",\"status\":400}"
}

Chapter 26
Troubleshooting Service Connections

26-9

https://intoraic-vbdemo.integration.ocp.oraclecloud.com/ic/builder/
https://intoraic-vbdemo.integration.ocp.oraclecloud.com/ic/builder/

Try pinging the domain listed in the endpoint URL. If you continue to get the Unknown
host error, take steps to expose the endpoint to the public internet, so Visual Builder
can invoke the service.

How Do I Resolve a 'Cannot Process Service Scope' Error?
If you see a Cannot process service scope error when you're trying to connect
to an external service using identity propagation authentication, you probably haven't
associated the service and the Visual Builder application in Oracle Identity Cloud
Service (IDCS), or the service isn't represented in IDCS as a Resource application.

Using identity propagation authentication mechanisms, such as Oracle Cloud Account,
Delegate Authentication, or OAuth 2.0 User Assertion, to call a REST service requires
the service endpoint to be hosted in the IDCS Identity Domain URL. In the following
example, a HTTP 400 error occurs because the https://servicename-
cloudaccount.integration.ocp.oraclecloud.com endpoint isn't associated
with the IDCS Identity Domain:

{
"type":"HTTP://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1",
"status": 400,
"title": "Bad Request",
"detail": "{\"type\":\"abcs://proxy_problem/jwt/
uri\",\"title\":\"InvalidURI\",\"detail\":\"Cannot process
\\\"https://servicename-cloudaccount.integration.ocp.oraclecloud.com/
XxAdfRESTAppTest4-RESTWebService-context-root/resources/lookups\\
\"\",\"status\":400,\
"o:errorDetails\":[{\"type\":\"abcs://proxy_problem/auth/scope/update\",
\"title\":\"Invalid service scope\",\"detail\":\"Cannot process service scope
\\\"https://servicename-cloudaccount.integration.ocp.oraclecloud.com/\\\" in
IDCS, for URI
\\\"https://servicename-cloudaccount.integration.ocp.oraclecloud.com/
XxAdfRESTAppTest4-RESTWebService-context-root/resources/lookups\\
\"\",\"status\":400}]}
"
}

Because Delegate Authentication assumes co-location of resources or default
established trust relations, follow these steps to create the necessary association:

1. Configure the OAuth layer for the endpoint (https://servicename-
cloudaccount.integration.ocp.oraclecloud.com) to accept the IDCS
Identity Domain URL (https://idcs-
xxxxxxxxxxx.identity.oraclecloud.com) as a Trust issuer. See Manage
Oracle Identity Cloud Service Identity Providers.

2. From the IDCS Admin console, create a "Resource" application that exposes the
primary audience (https://servicename-
cloudaccount.integration.ocp.oraclecloud.com) and scope (/).

Troubleshooting Business Objects
Topics:

• What Is The Maximum Data Limit for Business Objects?

• How Do I Resolve Database Connection Problems?

Chapter 26
Troubleshooting Business Objects

26-10

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/managing-oracle-identity-cloud-service-identity-providers.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/managing-oracle-identity-cloud-service-identity-providers.html

• How Do I Resolve a "Failed to verify the target database" Error When Switching the
Tenant's Database

• How Can I Access Business Object Data?

What Is The Maximum Data Limit for Business Objects?
Refer to these frequently asked questions and answers for help retrieving and posting large
volumes of data to and from Visual Builder.

1. Can Visual Builder business objects (BO) hold 220K to 250K records?
Yes, they can hold that number of records.

2. Are there performance challenges in accessing data from BOs of this size?
Depends on what performance you are hoping to achieve. A query on a table with that
number of records will, of course, be slower than a query on a table with fewer records.
This may still be fast enough for your needs. The way to verify it is to test the
performance with your specific data and scenario.

3. Can I load data of about 250K in one single load using REST API PUT/POST
operations?
You can use the batch approach to load this much data. However, you might also want to
look into loading the data directly using the data import APIs. See Import Data from the
Command Line.

4. Can I retrieve data of this size using the GET operation? Is there a better way to extract
250K of data?
Get operations will get you the latest data from your BO. If you need to export all the data
to another system, consider using the data export APIs. See Export Data from the
Command Line.

5. What is the maximum volume that individual BOs can hold, given a size of ten columns?
What would Oracle suggest to limit the maximum volume in a business object?
This depends on the amount of data in each column. The database is limited to 5GB so
the calculation would be something like 5GB/the amount of data in a row.

How Do I Resolve Database Connection Problems?
If you see messages like Error with code: 500 occurred while performing
request to : /ic/builder/resources/application/applist and Problem
Processing Request A internal problem processing the request with
identified with hash in your browser's log files, it's likely that the database schema is
locked. Ask your database administrator to unlock it using SQL/Plus or SQL Developer.

How Do I Resolve a "Failed to verify the target database" Error When
Switching the Tenant's Database

If you are a tenant Administrator and you get an error Failed to verify the target
database. in the Change Tenant Database dialog when switching the database used by
Visual Builder, it might be because the database is not reachable, or because you don't have
the required privileges.

To resolve the error, try the following:

1. Confirm the target database is publicly accessible. Visual Builder cannot reach databases
in private subnets.

Chapter 26
Troubleshooting Business Objects

26-11

2. Create the ADMIN user (adminuser) and grant the user the required roles:

CREATE USER [adminuser] IDENTIFIED BY [password];
GRANT CONNECT, RESOURCE, DBA TO [adminuser];
GRANT SELECT ON SYS.DBA_PROFILES TO [adminuser] WITH GRANT OPTION;
GRANT SELECT ON SYS.DBA_USERS TO [adminuser] WITH GRANT OPTION;
GRANT SELECT ON SYS.DBA_DATA_FILES TO [adminuser] WITH GRANT OPTION;
GRANT SELECT ON SYS.DBA_SEGMENTS TO [adminuser] WITH GRANT OPTION;

3. Assign the SYSOPER and SYSDBA roles to the ADMIN user (adminuser):

GRANT SYSOPER, SYSDBA TO [adminuser];

You can run the following query to confirm the ADMIN user has the necessary
privileges:

select * from v$pwfile_users;

For details on switching the tenant's database, see Switch to Your Own Oracle DB
Instance in Administering Oracle Visual Builder in Oracle Integration.

How Can I Access Business Object Data?
If you have trouble accessing business object data, it might be because you need to
add the service URL to the list of domains that are allowed to exchange data with your
applications.

You might see any of the following issues when trying to access business object data:

• When trying to access the business object Data tab, an error message similar to
this pops up:

[Client UUID: xxxxxxx][ECID Headers: Not present] : error

• Status code 403 is displayed when tracking the API call from network tab in the
developers console.

• You aren't able to select business objects from any of the action chains.

To resolve this, an Admin needs to add https://<SERVICE_NAME>-
<IDENTITY_DOMAIN>.developer.ocp.oraclecloud.com to the list of domains that are
allowed to exchange data with applications in your instance. See Allow Other Domains
Access to Services.

Chapter 26
Troubleshooting Business Objects

26-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Keyboard Shortcuts
	Keyboard Shortcuts for Code Editors

	Diversity and Inclusion
	Related Resources
	Conventions
	Information About Cookies

	Part I Get Started with Oracle Visual Builder
	1 Welcome to Oracle Visual Builder
	What is Oracle Visual Builder?
	Access Oracle Visual Builder

	2 Create Visual Applications
	Typical Visual Application Workflow
	Create a Visual Application
	Create a New Visual Application
	Create a Copy of an Application

	Export and Import Visual Applications
	Export a Visual Application
	Import a Visual Application
	About Classic Applications
	Import Classic Applications

	Add Web (and Mobile) Apps to Your Visual Application
	Create a New Web Application
	Import an Existing Mobile Application

	Tour the Designer
	Common Tasks for Visual Applications
	Manage Visual Application Settings
	Add Team Members
	Export and Import Application Resources
	Export Application Resources
	Import Application Resources

	3 Anatomy of Visual Applications
	Understand Variables
	Variables and Parameter Passing
	Expressions
	Variables and Lifecycles
	Variables and Events

	Understand Actions and Action Chains
	Action Chain Context and Contract
	Built-in Actions
	Event Handling for Action Chains

	Understand Page Flows and Lifecycles
	The Lifecycle of a Page
	Page Navigation

	Understand UI Components
	The Component Contract
	Properties
	Events
	Child Slots
	Methods
	Component IDs and Styles

	Understand Data Access Through REST
	Data Binding
	Mapping to and from REST

	Part II Connect Applications to Data
	4 Work with Business Objects
	About the Business Objects Pane
	Create and Edit Business Objects
	Create a Business Object
	Add Fields to Business Objects
	Edit Business Object Fields
	Change a Field's Data Type
	Set a Default Value for a Field
	Add a Formula to a Field
	Add a Field for Aggregating Data
	Index a Field

	View, Create, and Edit Business Object Relationships
	Create a Business Object Relationship
	Edit a Business Object Relationship

	Secure Business Objects
	Create Rules for Business Objects
	About Adding Business Rules
	Access the Current User's Details in Your Groovy Script
	Triggers for Business Objects
	Object Triggers
	Field Triggers
	Add an Action to Send Email Notifications
	Convert a Trigger to Editable Code
	Build Conditions for Triggers

	Object Validators for Business Objects
	Field Validators for Business Objects
	Object Functions for Business Objects
	Log Diagnostic Messages From Your Scripts

	Work with Endpoints to Access Business Objects
	View a Business Object's Endpoints
	About the Endpoints Tab
	Add or Remove Exposed Endpoints

	View and Edit Data in Business Objects
	Edit the Data in Business Objects
	Import Data to a Business Object
	Reload Data from Application Sources

	Work with the Data Manager
	Manage Data During the Development Lifecycle
	Import Data From a File Using the Data Manager
	Import Data From a Database
	Export the Data to a File from the Data Manager
	Resolve Problems When Importing Data
	Import and Export Data From the Command Line
	Import Data from the Command Line
	Export Data from the Command Line

	Create Business Objects From a File
	Set Your Own Audit Fields For Imported Business Objects

	Optimize Business Object Performance
	Override Default Timeout for Groovy Scripts
	Enable Polling for Endpoint Requests
	Control Data Caching for Business Objects
	Data Caching Options
	Define a Data Caching Strategy

	Work with the Business Object Diagrammer
	Create Business Objects with the Diagrammer
	Create Relationships with the Diagrammer

	Switch to Your Own Database Schema for Business Objects
	Create a Business Object Based on a DB Table or View
	Add Fields to a Business Object Based on a DB Table or View
	Change the Data Type of a Field Based on a DB Column
	Create Calculated Fields for a Business Object Based on a DB Table or View
	Set a Field for Auditing
	Use a Sequence for a Primary Key Field
	Switch Schemas Used During an App's Lifecycle

	5 Work with Services
	Manage Backends in Your Visual Application
	What Are Backends?
	What Are Application Profiles?
	Set the Backend's Authentication Method and Connection Type
	How Does the Identity Propagation Authentication Method Work?
	How Does the Fixed Credentials Authentication Method Work?
	What is CORS?
	Use an Appropriate Connection Type to Handle CORS for REST Services
	Work with HTTP-based Endpoints
	Allow Anonymous Access to the Service Data

	Create a Backend
	Add Server Variables for Backends
	Create a Custom Backend
	Create a Child Backend
	Create a Child Backend for a Top-Level Custom Backend
	Create a Child Backend for the Oracle Cloud Applications Backend

	Edit a Backend
	Add Transforms
	Service Level Transforms

	Manage Service Connections
	What Are Service Connections?
	Service Connections: Static Versus Dynamic
	Create a Service Connection
	Create a Service Connection from a Catalog
	Create Service Connections from the Oracle Cloud Applications or Integration Applications Catalog
	Create Service Connections from the Oracle Cloud Infrastructure Process Automation Catalog

	Create a Service Connection from a Service Specification
	Create a Service Connection from an Endpoint

	Edit a Service Connection
	Add a Server to a Service Connection
	Edit Service Endpoints for a Static Service Connection
	Retrieve Service Metadata for a Dynamic Service Connection
	Add Server Variables for Service Connections
	Add More Endpoints to a Service Connection
	Edit a Server's Authentication Details
	Add Transforms to a Service Connection or an Endpoint
	Convert a Service Connection (Static to Dynamic or Dynamic to Static)
	Test Service Connection Responses
	Update Schema of the Request or Response

	Connect to Oracle Cloud Services
	Connect to Oracle Cloud Applications APIs
	Connect to Oracle Cloud Applications APIs With User Propagation for Authenticated Flows
	Connect to Oracle Cloud Applications APIs Not in the Catalog Using Fixed Credentials

	Connect to Oracle Integration APIs
	Connect to Oracle Integration APIs Using Identity Propagation
	Connect to Oracle Integration APIs Using Fixed Credentials

	Connect to Oracle Cloud Infrastructure Process Automation APIs
	Connect to Oracle Content Management REST APIs
	Connect to Oracle Content Management REST APIs Using Identity Propagation
	Connect to Oracle Content Management REST APIs Using Fixed Credentials

	Connect to ORDS APIs Using Fixed Credentials

	Part III Develop Applications
	6 Develop Your Application
	How Are Applications Structured?
	Which Editor Do I Use?
	What Are Scopes?
	Manage App Settings

	7 Work with Pages and Flows
	Use the Page Designer
	The Components Palette
	The Structure View
	The Data Palette
	The Properties Pane

	Create and Manage Pages
	Manage Page Settings
	Customize Page Headers
	Set a Page's Layout

	Create Pages From Templates
	Create Pages From Patterns
	Create Pages From Fragments
	Change Page Templates

	Add Components to Pages
	How Do Quick Starts Work?
	Add Data to a Table or List
	Use the Add Data Quick Start

	Add a Create Page With a Quick Start
	Use the Create Page Quick Start

	Add an Edit Page With the Quick Start
	Use the Add Edit Page Quick Start

	Add a Details Page With the Quick Start
	Use the Add Detail Page Quick Start

	Quick Starts for Dynamic Forms and Tables

	Add an Image to a Page
	Add an Icon Component to a Page
	Add a Camera Component to a Page
	Filter Data Displayed in a Component
	Filter Data by Filter Criteria
	Filter Component Data by Text
	Filter Component Data by URL

	Use Conditions to Show or Hide Components

	Add Dynamic Components to Pages
	What are Dynamic Components?
	How to Create Layouts With Dynamic Components
	Add a Dynamic Table to a Page
	Add a Dynamic Form to a Page
	Add Display Logic to Determine What's Displayed at Runtime
	Responsive App Display Logic Example
	Define Custom Contexts for Components in a Layout

	Create a Layout for a Dynamic Table or Form
	Preview Different Layouts
	Use Field and Form Templates
	Control How a Field is Rendered with Field Templates
	Apply a Template to a Field
	Start an Action Chain from a Field
	Control How a Form Layout is Rendered
	Apply a Template to a Form
	Add and Group Fields in Dynamic Form Layouts

	Edit a Field's Properties
	Set a Field to be Read Only
	Set How User Assistance is Rendered in a Layout
	Set a Field as Required
	Use Conditions to Show or Hide Fields in a Layout
	Configure How Columns Render in a Dynamic Table's Layout
	Set a Field to Display as a Text Area in a Form
	Add Converters and Validators to a Field

	Add a Dynamic Container to a Page
	Add Fragments as Sections in a Dynamic Container
	Re-Order a Dynamic Container's Content
	Guidelines for Working with Sections
	Change a Dynamic Container's Layout

	Create Fields For a Layout
	Create a Calculated Field
	Create a Virtual Field

	Create and Manage Flows
	Manage Flow Settings
	Embed a Flow Within a Page

	Customize Your App's Root Page
	Edit an App's Header, Footer, and Navigation Items
	Add a Navigation Item for Navigation Drawer Apps

	Work With Custom Web Components
	Work with the Component Exchange
	Get Components From the Component Exchange
	Update a Component from the Component Exchange
	Uninstall a Component

	Import a Web Component Archive
	Create a Web Component

	Navigate Between Pages and Flows
	Navigate Between Pages in the Same Flow
	Navigate Between Pages in Different Flows
	Navigate Between Flows in the Root Page

	Work With Code Editors
	Work in Code View
	Work with the JSON Editor
	Work with the JavaScript Editor
	Add a Custom JavaScript Function
	Use RequireJS to Reference External JavaScript Files
	Use Variables with a JavaScript Module

	Trigger Code Insight
	Manage Code Editor Settings

	Use the Diagram View
	View a Flow's Navigation in Diagram View
	Add Pages and Action Chains to a Flow in Diagram View
	Add a Page in the Flow Diagram
	Create an Action Chain in the Flow Diagram
	Bind an Action Chain in the Flow Diagram to an Existing Event Listener
	Show or Hide an Action Chain in the Flow Diagram

	8 Work with Variables and Types
	What are Variables and Types?
	Create Variables in Artifacts
	Enable Variables as Input Parameters
	Track Variables to Detect Unsaved Changes
	Enable a Variable for Tracking
	Query Tracked Variables for Changed State
	Reset State for Tracked Variables

	Create Variables to Temporarily Store Data Changes in a Buffer

	Create Types
	Create a Custom Type
	Create a Custom Object or Array
	Create a Custom Enumeration

	Create a Type From an Endpoint
	Create a Type From Code

	Service Data Provider
	Creating a Custom Fetch Action Chain - An Example
	Delay Display of SDP Data

	9 Work with JavaScript Action Chains
	About Action Chains
	About the Action Chain Editor
	Create Action Chains in Design Mode
	Create Action Chains in Code Mode

	About the Action Chain Code
	Visually Create an Action Chain
	Built-In Actions
	Add an Assign Variable Action
	Use Filter Builder to Create Filter Criteria for an SDP
	Filter Builder's Code Editor

	Add a Call Action Chain Action
	Add a Call Component Action
	Add a Call Function Action
	Add a Call REST Action
	Service Definitions
	Transform Functions

	Add a Call Variable Action
	Add a Code Action
	Add a Fire Data Provider Event Action
	Add a Fire Event Action
	Add a Fire Notification Action
	Add a For Each Action
	Add a Get Dirty Data Status Action
	Add a Get Location Action
	Add an If Action
	Add a Login Action
	Add a Logout Action
	Add a Navigate Back Action
	Add a Navigate To Flow Action
	Add a Navigate To Page Action
	Add an Open URL Action
	Add a Reset Dirty Data Status Action
	Add a Reset Variables Action
	Add a Return Action
	Add a Run In Parallel Action
	Add a Scan Barcode Action
	Add a Share Action
	Add a Switch Action
	Add a Try-Catch Action

	Custom Actions
	Create a Custom Action
	Create the Action Files
	Add the Metadata
	Define the Custom Action's Properties
	Define Input Parameters for a Custom Action

	Add the Code
	How Are Input Parameters Passed?
	How are Values Returned?

	Specify Path to Code

	Start an Action Chain
	Start an Action Chain From a Component
	Start an Action Chain When a Variable Changes
	Start an Action Chain From a Lifecycle Event
	Start an Action Chain By Firing a Custom Event

	Test Action Chains
	Create a Test for a Test Case
	Run the Tests
	Use the Tests Footer in a Visual Application
	Test Action Chains Using the vb-test Grunt Task

	10 Work with JSON Action Chains
	About Action Chains
	Create an Action Chain
	Built-in Actions
	Add an Assign Variables Action
	Filter Builder's Code Editor

	Add a Call Action Chain Action
	Add a Call Component Action
	Add a Call Function Action
	Add a Call REST Action
	Add a Call Variable Action
	Add a Fire Data Provider Event Action
	Add a Fire Event Action
	Add a Fire Notification Action
	Add a Get Location Action
	Add a Reset Variables Action
	Add a Login Action
	Add a Logout Action
	Add a Scan Barcode Action
	Add a Take Photo Action
	Add a Share Action
	Add a For Each Action
	Add an If Action
	Add a Return Action
	Add a Run In Parallel Action
	Add a Switch Action
	Add a Navigate Action
	Add a Navigate Back Action
	Add an Open URL Action

	Custom Actions
	Create a Custom Action
	Create the Action Files
	Add the Metadata
	Define the Custom Action's Properties
	Define Input Parameters for a Custom Action

	Add the Code
	How Are Input Parameters Passed?
	How are Values Returned?

	Specify Path to Code

	Test Action Chains
	Manage All Tests in a Visual Application
	Test Action Chains Using the vb-test Grunt Task

	Start an Action Chain
	Start an Action Chain From a Component
	Start an Action Chain When a Variable Changes
	Start an Action Chain From a Lifecycle Event
	Start an Action Chain By Firing a Custom Event

	11 Work with Events and Event Listeners
	Define Events in Your Application
	Create Event Listeners for Events
	Choose How Custom Events Call Event Listeners
	Raise Fragment or Layout Events that Emit to the Parent Container

	12 Work With Application Resources
	Import Resources
	Manage Custom Component, CSS, and Module Imports
	Work with the Image Gallery

	13 Work with Fragments
	Create and Add a Fragment to a Page
	Manage Fragment Settings
	Reuse a Fragment
	Pass Data Between a Fragment and Its Parent Container
	Enable Fragment Variables as Input Parameters
	Enable Page Variables to Provide Initial Values for a Fragment's Input Parameters
	Automatically Write Back a Fragment Variable's Value to Its Container Variable
	Automatically Create and Wire a Fragment Variable on Its Container
	Sample Scenario: Create a Fragment and Pass Values
	Create Custom Events that Emit to a Fragment's Parent Container
	Set the Binding Type for Variables in Dynamic Components
	Pass a Fragment's Context to VDOM or Custom Web Components

	Defer Rendering of a Fragment's Content
	Add Slots to a Fragment
	Add Default Content to a Fragment Slot
	Set Data Context for a Fragment Slot

	Customize How Fragment Properties Display in the Properties Pane
	Customize How a Fragment Variable is Displayed in the Properties Pane
	Section Fragment Properties for Display in the Properties Pane

	Part IV Augment Applications
	14 Enable Progressive Web App Support
	Guidelines for Using PWA Support
	Configure Progressive Web App Support
	Deep Linking on Android
	Run Mobile Applications as PWAs
	Configure Mobile Application Settings
	Build a Mobile Application as a PWA
	Convert a Mobile PWA to a Web PWA

	15 Secure the Application
	Security for Web Apps
	Authentication Roles Versus User Roles
	Manage User Roles and Access
	Test Role-Based Access
	Access and Secure Business Objects
	Secure Business Objects
	Allow External Access to Your Business Objects
	Get an Access Token for Authentication

	Allow Anonymous Access
	Embed a Web Application

	16 Add Offline Capabilities to Your Application
	Add Offline Support Using the Oracle Offline Persistence Kit

	17 Optimize Your App for Search Engines
	Create a Sitemap for a Web App
	Add a Sitemap to a Web App's Resources
	Warm the Cache for URLs in a Sitemap
	Move Your Sitemap to a Visual Application's Root Directory

	18 Work with Translations
	About Translation Resources
	Understand the Structure of Translation Bundles
	Understand Translation Keys for Display Texts
	Generate Translation Keys for Display Texts

	Download Bundles for Translation
	Use Translation Strings in JavaScript Files
	Upload Translated Files
	Create Translation Bundles

	Part V Manage Applications
	19 Manage Your Visual Application
	View an Application's Status
	Create a New Version of an Application
	Delete a Visual Application
	Restore a Deleted Application
	Manage Applications Created in Visual Builder Studio

	20 Integrate Your Visual Application With a Git Repository
	Add Credentials for Your Oracle Visual Builder Studio Account
	Link Your Visual Application to a Git Repository
	Pull Files From Your Git Repository
	Push Your Changes to Your Git Repository
	Change the Local Branch HEAD in a Linked Git Repository

	21 Test and Debug Applications
	Audit Application Code
	Preview an App in Debug Mode
	Troubleshoot Build Issues
	Debug Business Objects
	Enable Tracing to Monitor Endpoint Calls
	View Trace Details
	Manage Tracing to Control Disk Usage
	Export and Import a Trace File

	Enable Logging for Scripting Events

	Change an Application's Log Level

	22 Stage and Publish Visual Applications
	What Happens When You Stage and Publish Visual Applications?
	Stage a Visual Application
	Publish a Visual Application
	View Database Schemas Used During an App's Lifecycle
	Update a Published Visual Application
	Roll Back Application to the Previously Published Version

	23 Manage Runtime Dependencies for Visual Applications
	Upgrade Your App
	After Upgrading
	Set a Custom Version
	Understand What’s Happening in visual-application.json

	Resolve Upgrade Issues
	What Happens During Software Maintenance?

	24 Optimize Your Builds and Audit Your Code Using Grunt
	Overview
	Build Your Application Using Oracle Visual Builder Studio
	Build Your Application Locally
	Build and Deploy Your Application
	Authentication

	Grunt Tasks to Build Your Visual Application
	About Visual Builder Grunt Build Tasks
	vb-clean
	vb-process-local
	vb-deploy
	vb-optimize-cdn
	vb-optimize
	vb-prepare
	vb-prerender-cache-warm
	vb-test
	vb-require-bundle
	vb-require-bundle-clean
	vb-css-minify
	vb-image-minify
	vb-json-minify
	vb-export
	vb-manifest
	vb-package
	vb-archive
	vb-process-raw
	vb-process-raw-index-html
	vb-application
	vb-serve
	vb-pwa
	vb-fa-generate-base-app-config
	vb-pwa-splashscreen
	vb-watch

	Customize Your Grunt Build Process
	Add Custom Functionality to Existing Tasks
	Override Existing Grunt Tasks
	Optimize a Specific Web Application
	Host an Application on a Content Delivery Network (CDN)
	Run and Configure a Multitask
	Customize Bundle Modules
	Specify Options of Non-multitasks
	Specify Options for All Tasks

	Audit Your Application Using the vb-audit Grunt Task
	Configure Audit Options in Gruntfile.js
	Override Configuration Options in Gruntfile.js

	Part VI Use Cases & Troubleshooting
	25 Common Use Cases
	Work With Code Samples
	Change an Application's Logo
	Style and Theme Visual Builder Applications
	Transition a Web (or Mobile) App's Theme to Redwood
	Customize the Redwood Theme for a Web Application
	Override the Redwood Theme for a Mobile Application
	Add a Custom Style to a Component

	Add Login and Logout Capabilities to an Application
	Create a Custom Lock Page
	Apply a Custom Lock Page to a Visual Application
	Apply a Custom Lock Page to a Web Application

	Access Data in an Existing Oracle Database Using ORDS
	Use a SOAP Web Service With Visual Builder
	Run Visual Builder Applications On Other Servers
	Embed a Web App in an Oracle Cloud Application
	Make Your Web App Ready for Embedding
	Embed a Web App Using Page Composer
	Embed a Web App Using Application Composer

	Call Server-side Functionality from Visual Builder
	Add the Oracle Digital Assistant to Your Web App
	Abort Pending REST Calls in Visual Builder
	Forms
	Enable Client-Side Validation for a Form
	Validate Dates in Forms

	Tables
	Modify a Table's Default Display
	Reorder Columns in a Table
	Sort Data in Table Columns
	Enable Resizing of a Table Column
	Wrap Table Text
	Add Columns to an Existing Table
	Format Row Values in a Table Conditionally
	Create a Search Filter for a Table
	Create an Editable Table
	Update Pagination Behavior for a Table
	Enable Text Selection in a Table

	Pages and Flows
	Restrict User Access to an Application, Flow, or Page
	Print Multiple Pages

	Components
	Conditionally Show or Hide UI Components
	Enable Time Zone Specification
	Validate the Length of an Entry in an Input Text Field
	Filter Multiple Attributes in a Search
	Set an Initial Value for the Select (Single) Component

	Business Objects
	Format a Date Field
	Apply an Aggregate Function to a Calculated Field From a Child Business Object

	26 Troubleshooting & FAQs
	How Do I Find the URL of My Visual Builder Instance?
	How Do I Find My Application's Runtime Version?
	How Do I Clear My App's Resource Cache?
	How Do I View Details of Client Apps in IDCS?
	How Do I Write Expressions If a Referenced Field Might Not Be Available Or Its Value Could Be Null?
	How Do I Resolve Web Component Loader Issues?
	How Do I Resolve a 'Method Not Allowed' Error?
	How Do I Resolve a 'No Such File' Error for the URI.js File?
	How Do I Fix a Missing Scroll Bar in a Table?
	How Do I Access Components After Upgrading?
	How Do I Set a Custom Content-Security-Policy Header?
	Troubleshooting Access Issues
	How Do I Control the Session Duration For My Visual App?
	Why Does a Live App That Allowed Anonymous Access Prompt for Login?
	How Can I Recover Apps Linked to a Deleted User Account?

	Troubleshooting Service Connections
	Why Was a Certificate in the Remote Path Reported as Invalid?
	How Do I Resolve an 'Unknown Host' Error?
	How Do I Resolve a 'Cannot Process Service Scope' Error?

	Troubleshooting Business Objects
	What Is The Maximum Data Limit for Business Objects?
	How Do I Resolve Database Connection Problems?
	How Do I Resolve a "Failed to verify the target database" Error When Switching the Tenant's Database
	How Can I Access Business Object Data?

