Oracle® Cloud

Getting Started with Oracle Autonomous Data Warehouse on Shared Exadata Infrastructure
Oracle Cloud Getting Started with Oracle Autonomous Data Warehouse on Shared Exadata Infrastructure,
F31964-01

Copyright © 2020, Oracle and/or its affiliates.

Primary Authors: Donna Keesling, Thomas Van Raalte

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are “commercial computer software” or “commercial computer software documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Contents

Preface

- Audience v
- Documentation Accessibility v
- Related Documents v
- Conventions vi

1 Getting Started with Autonomous Database

- About Oracle Cloud 1-1
- Types of Cloud Accounts 1-1
- Sign In to Your Account 1-2
- Provision Autonomous Data Warehouse 1-2

2 Connecting to Autonomous Database

- Connect with Built-in SQL Developer Web 2-1
 - About SQL Developer Web 2-1
 - Access SQL Developer Web as ADMIN 2-1
 - Use SQL Developer Web to Query Data 2-3
- Download Client Credentials (Wallets) 2-5
- Connect with Oracle SQL Developer (18.2 or later) 2-7
- Predefined Database Service Names for Autonomous Data Warehouse 2-9

3 Loading Data

- About Data Loading 3-1
- Load Data from Local Files with SQL Developer Web 3-1
 - Load Data into Existing Autonomous Database Table with SQL Developer Web 3-1
- Load Data from Files in the Cloud 3-5
 - Create Credentials and Copy Data into an Existing Table 3-5
 - Monitor and Troubleshoot Loads 3-7
4 Querying External Data with Autonomous Database

- Query External Data 4-1
- Validate External Data 4-3
- View Logs for Data Validation 4-4

5 Working with Analytics and Visualization

- Using Oracle Analytics Desktop with Autonomous Data Warehouse 5-1
 - Connect with Oracle Analytics Desktop 5-1
- Using Oracle Analytics Cloud with Autonomous Data Warehouse 5-2

6 Creating Web and Mobile Applications with Oracle Application Express

- About Oracle Application Express 6-1
- Access Oracle Application Express Administration Services 6-2
- Create Oracle Application Express Workspaces in Autonomous Data Warehouse 6-3
- Access Oracle Application Express App Builder 6-4
- Create Oracle Application Express Developer Accounts 6-5
- Use Web Services with Oracle Application Express 6-6
- Send Email from Oracle Application Express 6-7
- Restrictions and Limitations for Oracle Application Express with Autonomous Data Warehouse 6-9
Preface

This document describes how to manage, monitor, and use Oracle Autonomous Data Warehouse and provides references to related documentation.

Audience

This document is intended for Oracle Cloud users who want to manage and monitor Oracle Autonomous Data Warehouse.

This document is also intended for developers and end users who want to load and query data in Oracle Autonomous Data Warehouse.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

Depending on the region and when you provisioned your database, and in some cases depending on your provisioning choice, the Oracle Database for your Autonomous Data Warehouse database is either Oracle Database 18c or Oracle Database 19c.

If you have Oracle Database 19c, then many database concepts and features of this service are further documented here:

Oracle Database 19c

If you have Oracle Database 18c, then many concepts and features of this service are further documented here:

Oracle Database 18c

See #unique_12 for details on regions and Oracle Database availability.

For additional information, see these Oracle resources:

- Getting Started with Oracle Cloud
- Oracle Cloud Infrastructure Object Storage
• Getting Started with Autonomous Data Warehouse on Dedicated Exadata Infrastructure
• GoldenGate Real-Time Data Replication in Cloud
• Using Oracle GoldenGate Cloud Service
• Getting Started with Oracle Analytics Cloud
• User’s Guide for Oracle Analytics Desktop

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Getting Started with Autonomous Database

Provides an overview of the service and describes how to get started with Autonomous Data Warehouse.

Topics

• About Oracle Cloud
• Types of Cloud Accounts
• Sign In to Your Account
• Provision Autonomous Data Warehouse

About Oracle Cloud

Oracle Cloud is one of the few cloud providers that can offer a complete set of cloud services to meet all your enterprise computing needs.

Use Oracle Infrastructure as a Service (IaaS) offerings to quickly set up the virtual machines, storage, and networking capabilities you need to run just about any kind of workload. Your infrastructure is managed, hosted, and supported by Oracle.

Use Oracle Platform as a Service offerings to provision ready-to-use environments for your enterprise IT and development teams, so they can build and deploy applications, based on proven Oracle databases and application servers.

Use Oracle Software as a Service (SaaS) offerings to run your business from the Cloud. Oracle offers cloud-based solutions for Human Capital Management, Enterprise Resource Planning, Supply Chain Management, and many other applications, all managed, hosted, and supported by Oracle.

Types of Cloud Accounts

Oracle offers two types of Cloud Accounts: Free Tier Accounts and Oracle Cloud Paid Accounts.

• Free Tier Accounts: After you sign up for the free Oracle Cloud promotion or sign up for a paid account, you’ll get a welcome email. The email provides you with your cloud account details and sign in credentials.

 See Sign Up for the Free Oracle Cloud Promotion for more information.

• Oracle Cloud Paid Accounts: When your tenancy is provisioned, Oracle sends an email to the default administrator at your company with the sign-in credentials and URL. This administrator can then create a user for each person who needs access to the Oracle Cloud. Check your email or contact your administrator for your credentials and account name.

 See Buy an Oracle Cloud Subscription for more information.

See How Do I Sign Up? for more information.
Sign In to Your Account

If you don't have access to your Welcome email, you can sign in to your Cloud Account from the Oracle Cloud website.

Before You Begin

To sign in via the Oracle Cloud website, you must have:

- The name of your Cloud Account, if you are signing in to a Cloud Account with Identity Cloud Service. This is the Cloud Account name you have chosen during account signup. You'll find the Cloud Account name in your welcome email.
 OR
- Your data center and identity domain, if you are signing in to a Traditional Cloud Account
- The user name and password for your Cloud Account.

If you don't have this information, then click need help logging in and enter the email address associated with the Cloud Account. Oracle will send you an email with a summary of your account information.

Login to Oracle Cloud

To log in to your account from the Oracle Cloud website:

1. Point your browser to the following URL:
 http://oracle.com/

2. Click the View Accounts button in the upper right corner, and then click Sign in to Cloud underneath the Sign in to Cloud.
 Do NOT click the Sign-In button under ORACLE ACCOUNT, this will take you to Single Sign-On, not the Oracle Cloud

3. Enter the name of your Cloud Account. This is your Tenant that you received during sign up.

4. Enter your user name and password, and then click Sign In.

Once you successfully login, you will be presented with the Oracle Cloud homepage.

Provision Autonomous Data Warehouse

Follow these steps to provision a new Autonomous Data Warehouse instance using the Oracle Cloud Infrastructure Console.

- Sign in to your Oracle Cloud Account at cloud.oracle.com.
- Open the Oracle Cloud Infrastructure console by clicking the next to Oracle Cloud.
- From the Oracle Cloud Infrastructure left navigation list click Autonomous Data Warehouse.
- Choose your region. See Switching Regions for information on switching regions and working in multiple regions.
2. Click **Create Autonomous Database**.

3. Provide basic information for the Autonomous Database.
 - **Choose a compartment.** See **Compartments** for information on using and managing compartments.
 - **Display name** Specify a user-friendly description or other information that helps you easily identify the resource. The display name does not have to be unique.
 - **Database name** Specify the database name; it must consist of letters and numbers only. The maximum length is 14 characters.

 Note:
 The same database name cannot be used for multiple Autonomous Database databases in the same tenancy in the same region.

4. Choose a workload type. Select the workload type for your database from the choices:
 - **Data Warehouse**
 - **Transaction Processing**

5. Choose a deployment type.
 - **Shared Infrastructure**
 Run Autonomous Database on shared Exadata infrastructure.
 - **Dedicated Infrastructure**
 Run Autonomous Database on dedicated Exadata infrastructure.

 Select **Shared Infrastructure** to create your instance on shared Exadata infrastructure.

 See Create an Autonomous Data Warehouse Database on Dedicated Exadata Infrastructure for steps to create your instance on dedicated Exadata infrastructure.

6. Configure the database.
 - **Choose database version** Select a database version from the available versions.
 - **OCPUs Count** Specify the number of CPU cores for your Autonomous Data Warehouse database.
 - **Storage (TB)** Specify the storage you wish to make available to your Autonomous Data Warehouse database, in terabytes.
 - **Auto Scaling** Deselect to disable auto scaling. By default auto scaling is enabled to allow the system to automatically use up to three times more CPU and IO resources to meet workload demand.

7. Create administrator credentials. Set the password for the Autonomous Data Warehouse Admin user.
 - **Username** This is a read only field.
 - **Password** Set the password for the Autonomous Data Warehouse Admin user.
8. Choose network access

Note:

The network access option you select, either Allow secure access from everywhere or Virtual cloud network, cannot be changed after you provision your Autonomous Database (except by cloning a new database).

- **Allow secure access from everywhere**
 By default all secure connections are allowed from everywhere. To restrict access configure an access control list (ACL). To add an ACL for the Autonomous Database, select Configure access control rules.

- **Virtual cloud network**
 This option assigns a private endpoint, private IP and hostname, to your database. Specifying this option allows traffic only from the VCN you specify; access to the database from all public IPs or VCNs is blocked. This allows you to define security rules, ingress/egress, at the Network Security Group (NSG) level and to control traffic to your Autonomous Data Warehouse database.

9. Choose a license type

- **Bring Your Own License**
 My organization already owns Oracle database software licenses. Bring my existing database software licenses to the database cloud service (details).

- **License Included**
 Subscribe to new database software licenses and the database cloud service. (Optional) Click Show Advanced Options to enter additional options.

If you want to use Tags, enter the TAG KEY and VALUE. Tagging is a metadata system that allows you to organize and track resources within your tenancy. Tags are composed of keys and values which can be attached to resources.

10. Click Create Autonomous Database.

On the Oracle Cloud Infrastructure console the State shows Provisioning... until the new Autonomous Data Warehouse database is available.
Connecting to Autonomous Database

Describes methods to securely connect to Autonomous Data Warehouse.

Topics
• Connect with Built-in SQL Developer Web
• Download Client Credentials (Wallets)
• Connect with Oracle SQL Developer (18.2 or later)
• Predefined Database Service Names for Autonomous Data Warehouse

Connect with Built-in SQL Developer Web

You can access SQL Developer Web, a browser-based interface of Oracle SQL Developer, from Autonomous Data Warehouse. You can run SQL statements and scripts in a worksheet and perform other tasks on your database with SQL Developer Web.

Topics
• About SQL Developer Web
• Access SQL Developer Web as ADMIN
• Use SQL Developer Web to Query Data

About SQL Developer Web

Oracle SQL Developer Web in Autonomous Data Warehouse provides a development environment and a data modeler interface for Autonomous Data Warehouse.

The main features of SQL Developer Web are:
• Run SQL statements and scripts in the worksheet
• Export data
• Design Data Modeler diagrams using existing objects

SQL Developer Web is a browser-based interface of Oracle SQL Developer and provides a subset of the features of the desktop version. See About Oracle SQL Developer Web for more information.

Access SQL Developer Web as ADMIN

SQL Developer Web is bundled with each Autonomous Data Warehouse instance.

Oracle SQL Developer Web runs in Oracle REST Data Services and access is provided through schema-based authentication. To use Oracle SQL Developer Web,
you must sign in as a database user whose schema is enabled for SQL Developer Web. By default the ADMIN user is enabled to access SQL Developer Web.

To access SQL Developer Web you can use the Oracle Cloud Infrastructure console or the Autonomous Data Warehouse Service Console.

To access SQL Developer Web from the Oracle Cloud Infrastructure console:

1. On the Autonomous Database details page click the **Tools** tab.

2. In the **SQL Developer Web** area, click **Open SQL Developer Web**.

3. In the SQL Developer Web Sign in page, enter your **Username** and **Password**.

4. Click **Sign in**.

This shows the SQL Developer Worksheet tab.

To access SQL Developer Web from the Autonomous Data Warehouse Service Console:

1. On the instance details page click **Service Console**.

2. Click **Development**.

3. Click **SQL Developer Web**.
4. In the SQL Developer Web Sign in page, enter your **Username** and **Password**.
5. Click **Sign in**.

 This shows the SQL Developer Worksheet tab.

Use SQL Developer Web to Query Data

You can conveniently access the browser-based SQL Developer Web from the Oracle Cloud Infrastructure console and use it to query the database.

This example shows how to connect with SQL Developer Web and perform a query on sample data sets provided out-of-the-box with Autonomous Database. You will run queries on sample data sets in Autonomous Database. Autonomous Database provides the Oracle Sales History sample schema and the Star Schema Benchmark (SSB) data set; these data sets are in the SH and SSB schemas, respectively.

You will run a basic query on the SSB data set which is a 1TB data set with one fact table with around 6 billion rows, and several dimension tables.

1. Open SQL Developer Web from Autonomous Database and sign in.
There are several options for how to start SQL Developer Web, depending on your schema and system privileges. See Connect with Built-in SQL Developer Web for more information.

2. To run a query on data, in SQL Developer Web, select the Worksheet tab.

3. Copy the example below into the SQL Developer Web worksheet.

   ```sql
   SELECT /* low */ c_city, c_region, count(*) FROM ssb.customer c_low
   group BY c_region, c_city ORDER BY count(*);
   ```

4. Click Run Statement to execute the query.

 This shows the following output:
Download Client Credentials (Wallets)

Oracle client credentials (wallet files) are downloaded from Autonomous Data Warehouse by a service administrator. If you are not an Autonomous Data Warehouse administrator, your administrator should provide you with the client credentials.

To download client credentials you can use the Oracle Cloud Infrastructure console or the Autonomous Data Warehouse Service Console.

To download client credentials from the Oracle Cloud Infrastructure console:

1. Navigate to the Autonomous Database details page.
2. Click DB Connection.
3. On the Database Connection page select the Wallet Type:
 - **Instance Wallet**: Wallet for a single database only; this provides a database-specific wallet.
 - **Regional Wallet**: Wallet for all Autonomous Databases for a given tenant and region (this includes all service instances that a cloud account owner).
Oracle recommends you provide a database-specific wallet, using **Instance Wallet**, to end users and for application use whenever possible. Regional wallets should only be used for administrative purposes that require potential access to all Autonomous Databases within a region.

4. Click **Download Wallet**.

5. In the **Download Wallet** dialog, enter a wallet password in the **Password** field and confirm the password in the **Confirm Password** field.

 The password must be at least 8 characters long and must include at least 1 letter and either 1 numeric character or 1 special character. This password protects the downloaded Client Credentials wallet.

6. Click **Download** to save the client security credentials zip file.

 By default the filename is: `Wallet_databasename.zip`. You can save this file as any filename you want.

 You must protect this file to prevent unauthorized database access.

To download client credentials from the Autonomous Data Warehouse Service Console:

1. From the Service Console click the **Administration** link.

2. Click **Download Client Credentials (Wallet)**.

3. On the **Download Client Credentials (Wallet)** page, enter a wallet password in the **Password** field and confirm the password in the **Confirm Password** field.

 The password must be at least 8 characters long and must include at least 1 letter and either 1 numeric character or 1 special character. This password protects the downloaded Client Credentials wallet.

4. Click **Download** to save the client security credentials zip file. By default the filename is: `Wallet_databasename.zip`. You can save this file as any filename you want. You must protect this file to prevent unauthorized database access.

Note:

When you use the Service Console to download a wallet there is no **Wallet Type** option on the **Download Client Credentials (Wallet)** page and you always download an instance wallet. If you need to download the regional wallet, use **DB Connection** on the Oracle Cloud Infrastructure console as specified above.

The zip file includes the following:

- `tnsnames.ora` and `sqlnet.ora`: Network configuration files storing connect descriptors and SQL*Net client side configuration.
- `cwallet.sso` and `ewallet.p12`: Auto-open SSO wallet and PKCS12 file. PKCS12 file is protected by the wallet password provided in the UI.
• `keystore.jks` and `truststore.jks`: Java keystore and truststore files. They are protected by the wallet password provided while downloading the wallet.

• `ojdbc.properties`: Contains the wallet related connection property required for JDBC connection. This should be in the same path as `tnsnames.ora`.

• `README`: Contains wallet expiration information. The expiration date shows the date when the SSL certificate provided in the wallet expires. If your wallet is nearing expiration or is expired, then download a new wallet or obtain a new wallet from your Autonomous Database administrator. If you do not download a new wallet before the expiration date, you will no longer be able to connect to your Autonomous Data Warehouse database.

Notes:

- Wallet files, along with the Database user ID and password provide access to data in your Autonomous Data Warehouse database. Store wallet files in a secure location. Share wallet files only with authorized users. If wallet files are transmitted in a way that might be accessed by unauthorized users (for example, over public email), transmit the wallet password separately and securely.

- For better security, Oracle recommends using restricted permissions on wallet files. This means setting the file permissions to 600 on Linux/Unix. Similar restrictions can be achieved on Windows by letting the file owner have Read and Write permissions while all other users have no permissions.

- The `README` file that contains wallet expiration information is not available in wallet zip files that were downloaded before April 2020.

Connect with Oracle SQL Developer (18.2 or later)

Oracle SQL Developer is a free integrated development environment that simplifies the development and management of Oracle Database in both traditional and cloud deployments.

SQL Developer can connect to Autonomous Data Warehouse using an Oracle Wallet and contains enhancements for key Autonomous Data Warehouse features. Oracle SQL Developer provides support for wallet files using the Cloud Wallet Connection Type (SQL Developer 18.2 shows this as Cloud PDB). Oracle recommends that you use version 18.2 (or later); however, earlier versions of SQL Developer will work with Autonomous Data Warehouse.

Download the latest version of Oracle SQL Developer for your platform from the [Download link on this page: Oracle SQL Developer](#).

To create a new connection to Autonomous Data Warehouse, do the following:

Obtain your credentials to access Autonomous Data Warehouse. For more information, see [Download Client Credentials (Wallets)](#).

1. Start Oracle SQL Developer and in the connections panel, right-click **Connections** and select **New Database Connection**....
2. Choose the Connection Type **Cloud Wallet**.

3. Enter the following information:
 - **Connection Name**: Enter the name for this connection.
 - **Username**: Enter the database username. You can either use the default administrator database account (ADMIN) provided as part of the service or create a new schema, and use it.
 - **Password**: Enter the password for the database user.
 - **Connection Type**: Select **Cloud Wallet** (with SQL Developer 18.2, this is Cloud PDB)
• **Configuration File**: Click **Browse**, and select the client credentials zip file.

• **Service**: Enter the database TNS name. The client credentials file includes a `tnsnames.ora` file that provides database TNS names with corresponding services.

4. Click **Connect** to connect to the database.

Predefined Database Service Names for Autonomous Data Warehouse

The `tnsnames.ora` file provided with the credentials zip file contains three database service names identifiable as `high`, `medium`, and `low`. The predefined service names provide different levels of performance and concurrency for Autonomous Data Warehouse.

- **high**: The High database service provides the highest level of resources to each SQL statement resulting in the highest performance, but supports the fewest number of concurrent SQL statements. Any SQL statement in this service can use all the CPU and IO resources in your database. The number of concurrent SQL statements that can be run in this service is 3, this number is independent of the number of OCPUs in your database.

- **medium**: The Medium database service provides a lower level of resources to each SQL statement potentially resulting a lower level of performance, but supports more concurrent SQL statements. Any SQL statement in this service can use multiple CPU and IO resources in your database. The number of concurrent SQL statements that can be run in this service depends on the number of OCPUs in your database.

- **low**: The Low database service provides the least level of resources to each SQL statement, but supports the most number of concurrent SQL statements. Any SQL statement in this service can use a single CPU and multiple IO resources in your database. The number of concurrent SQL statements that can be run in this service can be up to 300 times the number of OCPUs.

Sessions in these services may get disconnected if they stay idle for more than five (5) minutes and other users' sessions require the resources consumed by the idle session. This allows resources to be freed for other active users in your database.

The following shows the details for the number of concurrent statements for each connection service.

<table>
<thead>
<tr>
<th>Database Service Name</th>
<th>Concurrent Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>3</td>
</tr>
<tr>
<td>medium</td>
<td>1.25 × OCPUs</td>
</tr>
<tr>
<td>low</td>
<td>300 × OCPUs</td>
</tr>
</tbody>
</table>

The number of OCPUs is the **CPU Core Count** shown in the Oracle Cloud console.

The following table shows sample values for a database with 16 OCPUs.
<table>
<thead>
<tr>
<th>Database Service Name</th>
<th>Number of Concurrent Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>3</td>
</tr>
<tr>
<td>medium</td>
<td>20</td>
</tr>
<tr>
<td>low</td>
<td>Up to 300 times the number of OCPUs</td>
</tr>
</tbody>
</table>

Choose whichever database service offers the best balance of performance and concurrency.

Note:

When connecting for replication purposes, use the low database service name. For example use this service with Oracle GoldenGate connections.
Loading Data

Describes packages and tools to load data with Autonomous Data Warehouse.

Topics

• About Data Loading
• Load Data from Local Files with SQL Developer Web
• Load Data from Files in the Cloud

About Data Loading

You load data into Autonomous Data Warehouse using Oracle Database tools, and Oracle or other 3rd party data integration tools.

In general you load data from files local to your client computer or from files stored in a cloud-based object store. For data loading from files in the cloud, Autonomous Data Warehouse provides a new PL/SQL package, DBMS_CLOUD.

For the fastest data loading experience Oracle recommends uploading the source files to a cloud-based object store, such as Oracle Cloud Infrastructure Object Storage, before loading the data into your Autonomous Data Warehouse. Oracle provides support for loading files that are located locally in your data center, but when using this method of data loading you should factor in the transmission speeds across the Internet which may be significantly slower.

For more information on Oracle Cloud Infrastructure Object Storage, see Putting Data into Object Storage and Overview of Object Storage.

Load Data from Local Files with SQL Developer Web

In SQL Developer Web, from the Worksheet page, you can load data from local files into an existing table.

Topics

• Load Data into Existing Autonomous Database Table with SQL Developer Web

Load Data into Existing Autonomous Database Table with SQL Developer Web

You can load data into an existing table in Autonomous Database with the SQL Developer Web import from file feature.

Before you load data, create the table in Autonomous Database. The file formats that you can upload with the SQL Developer Web upload feature are CSV, XLS, XLSX, TSV and TXT.
To upload data from local files to an existing table with SQL Developer Web, do the following:

1. Open SQL Developer Web from Autonomous Database and sign in.
 There are several options for how to start SQL Developer Web, depending on your schema and system privileges. See Connect with Built-in SQL Developer Web for more information.

2. To import data, in SQL Developer Web, select the Worksheet tab.

3. In the Navigator, right-click the table where you want to load data.

4. In the menu select Data loading → Upload Data...
 For example, select the SALES table, right-click, and select Data loading → Upload Data...
This shows the Import data dialog:

5. In the Import data dialog you can either drag and drop files or click **Select files** to show a browser to select the files to import.

6. Complete the mapping for the columns you are importing. There are a number of options for column mapping. Click
 (Show/Hide options) icon to show the data import and format options to change column names, skip rows, rows to load, and various other options.

 Click **Apply** to apply the options you select.

7. When you finish selecting format and mapping options, click **Next** to preview the column mapping.
If there is a problem at this stage, information shows with more details, such as: 2 pending actions. This means you need to correct or fix the source file data before you import.

8. Click **Next**.
9. Click **Next** to review the column mapping.
 This shows the **Review** page to review the source columns and target columns for the import:

10. Click **Finish**.
11. Click **OK** to confirm the import.
Depending on the size of the data file you are importing, the import may take some time.

SQL Developer Web provides history to show the status of the import and to allow you to review the results or errors associated with the import operation.

For a detailed summary of the upload process, right-click the table in the Navigator tab, select Data loading, and then select Loaded Data. A summary of the data loaded is displayed in the Loaded data summary dialog.

If any data failed to load, you can view the number of rows in the Failed Rows column. Click the column and a dialog is displayed showing the failed rows.

In the Loaded data summary dialog, you can also search for files loaded by schema name, table name, or file name. To remove the loaded files, click the Delete icon.

Load Data from Files in the Cloud

The PL/SQL package DBMS_CLOUD provides support for loading data from text, ORC, Parquet, and Avro files in the Cloud to your tables in Autonomous Data Warehouse. You can also load Data Pump dump files in the Cloud to your tables in Autonomous Data Warehouse.

The package DBMS_CLOUD supports loading from files in the following cloud services: Oracle Cloud Infrastructure Object Storage, Oracle Cloud Infrastructure Object Storage Classic, Azure Blob Storage, and Amazon S3.

Topics

- Create Credentials and Copy Data into an Existing Table
- Monitor and Troubleshoot Loads

Create Credentials and Copy Data into an Existing Table

For data loading from files in the Cloud, you need to first store your object storage credentials in your Autonomous Data Warehouse and then use the procedure DBMS_CLOUD.COPY_DATA to load data.

The source file in this example, channels.txt, has the following data:

S,Direct Sales,Direct
T,Tele Sales,Direct
C,Catalog,Indirect
I,Internet,Indirect
P,Partners,Others

1. Store your object store credentials using the procedure DBMS_CLOUD.CREATE_CREDENTIAL. For example:

```sql
SET DEFINE OFF
BEGIN
    DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'DEF_CRED_NAME',
        username => 'adwc_user@example.com',
        password => 'password'
    );
```

Chapter 3
Load Data from Files in the Cloud
3-5
This operation stores the credentials in the database in an encrypted format. You can use any name for the credential name. Note that this step is required only once unless your object store credentials change. Once you store the credentials you can then use the same credential name for all data loads.

Note:

Some tools like SQL*Plus and SQL Developer use the ampersand character (\&) as a special character. If you have the ampersand character in your password use the `SET DEFINE OFF` command in those tools as shown in the example to disable the special character and get the credential created properly.

2. Load data into an existing table using the procedure `DBMS_CLOUD.COPY_DATA`. For example:

```sql
CREATE TABLE CHANNELS
  (channel_id CHAR(1),
   channel_desc VARCHAR2(20),
   channel_class VARCHAR2(20)
  )
;
BEGIN
  DBMS_CLOUD.COPY_DATA(
    table_name =>'CHANNELS',
    credential_name =>'DEF_CRED_NAME',
    file_uri_list =>'https://objectstorage.us-phoenix-1.oraclecloud.com/n/namespace-string/b/bucketname/o/channels.txt',
    format => json_object('delimiter' value ',')
  );
END;
```

The parameters are:

- **table_name**: is the target table's name.
- **credential_name**: is the name of the credential created in the previous step.
- **file_uri_list**: is a comma delimited list of the source files you want to load.
- **format**: defines the options you can specify to describe the format of the source file, including whether the file is of type text, ORC, Parquet, or Avro.
Monitor and Troubleshoot Loads

All data load operations done using the PL/SQL package `DBMS_CLOUD` are logged in the tables `dba_load_operations` and `user_load_operations`:

- `dba_load_operations`: shows all load operations.
- `user_load_operations`: shows the load operations in your schema.

Query these tables to see information about ongoing and completed data loads. For example:

```sql
SELECT table_name, owner_name, type, status, start_time, update_time, logfile_table, badfile_table
FROM user_load_operations WHERE type = 'COPY';
```

<table>
<thead>
<tr>
<th>TABLE_NAME</th>
<th>OWNER_NAME</th>
<th>TYPE</th>
<th>STATUS</th>
<th>START_TIME</th>
<th>UPDATE_TIME</th>
<th>LOGFILE_TABLE</th>
<th>BADFILE_TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANNELS</td>
<td>SH</td>
<td>COPY</td>
<td>COMPLETED</td>
<td>06-NOV-18 01.55.19.3</td>
<td>06-NOV-18 01.55.28.2</td>
<td>COPY$21_LOG</td>
<td>COPY$21_BAD</td>
</tr>
</tbody>
</table>

Using this `SELECT` statement with a `WHERE` clause predicate on the `TYPE` column, shows load operations with the type `COPY`.

The `LOGFILE_TABLE` column shows the name of the table you can query to look at the log of a load operation. For example, the following query shows the log of the load operation:

```sql
select * from COPY$21_LOG;
```

The column `BADFILE_TABLE` shows the name of the table you can query to look at the rows that got errors during loading. For example, the following query shows the rejected records for the load operation:

```sql
select * from COPY$21_BAD;
```

Depending on the errors shown in the log and the rows shown in the specified `BADFILE_TABLE` table you can correct the error by specifying the correct format options in `DBMS_CLOUD.COPY_DATA`.

When the format type is "datapump", any rows rejected up to the specified `rejectlimit` are logged in the log file, but `badfiles` are not generated.
Monitor and Troubleshoot ORC, Parquet, or Avro File Loading

As with other data files, ORC, Parquet, and Avro data loads generate logs that are viewable in the tables dba_load_operations and user_load_operations. Each load operation adds a record to dba\[user\]_load_operations that indicates the table containing the logs.

The log table provides summary information about the load.

- PRIMARY KEY constraint errors throw an ORA error.
- If data for a column encounters a conversion error, for example, the target column is not large enough to hold the converted value, the value for the column is set to NULL. This does not produce a rejected record.

Note:

For ORC, Parquet, or Avro files, when the format parameter type is set to the value orc, parquet or avro the BADFILE_TABLE table is always empty.
4

Querying External Data with Autonomous Database

Describes packages and tools to query and validate data with Autonomous Data Warehouse.

Topics
• Query External Data
• Validate External Data
• View Logs for Data Validation

Query External Data

To query data in files in the Cloud, you need to first store your object storage credentials in your Autonomous Data Warehouse, and then create an external table using the PL/SQL procedure `DBMS_CLOUD.CREATE_EXTERNAL_TABLE`.

The source file in this example, `channels.txt`, has the following data:

S,Direct Sales,Direct
T,Tele Sales,Direct
C,Catalog,Indirect
I,Internet,Indirect
P,Partners,Others

1. Store your object store credentials using the procedure `DBMS_CLOUD.CREATE_CREDENTIAL`.

For example:

```sql
BEGIN
    DBMS_CLOUD.CREATE_CREDENTIAL(
        credential_name => 'DEF_CRED_NAME',
        username => 'adwc_user@example.com',
        password => 'password'
    );
END;
/
```

This operation stores the credentials in the database in an encrypted format. You can use any name for the credential name. Note that this step is required only once unless your object store credentials change. Once you store the credentials you can then use the same credential name for creating external tables.

2. Create an external table on top of your source files using the procedure `DBMS_CLOUD.CREATE_EXTERNAL_TABLE`.

The procedure `DBMS_CLOUD.CREATE_EXTERNAL_TABLE` supports external files in the supported cloud object storage services, including: Oracle Cloud Infrastructure
Object Storage, Microsoft Azure, and AWS S3. The credential is a table level property; therefore, the external files must be on the same object store.

For example:

```sql
BEGIN
    DBMS_CLOUD.CREATE_EXTERNAL_TABLE(
        table_name => 'CHANNELS_EXT',
        credential_name => 'DEF_CRED_NAME',
        file_uri_list => 'https://objectstorage.us-phoenix-1.oraclecloud.com/n/namespace-string/b/bucketname/o/channels.txt',
        format => json_object('delimiter' value ','),
        column_list => 'CHANNEL_ID NUMBER, CHANNEL_DESC VARCHAR2(20),
                       CHANNEL_CLASS VARCHAR2(20)' );
END;
/
```

The parameters are:

- **table_name**: is the external table name.
- **credential_name**: is the name of the credential created in the previous step.
- **file_uri_list**: is a comma delimited list of the source files you want to query.
- **format**: defines the options you can specify to describe the format of the source file.
- **column_list**: is a comma delimited list of the column definitions in the source files.

In this example, `namespace-string` is the Oracle Cloud Infrastructure object storage namespace and `bucketname` is the bucket name. See Understanding Object Storage Namespaces for more information.

You can now run queries on the external table you created in the previous step. For example:

```sql
SELECT count(*) FROM channels_ext;
```

By default the database expects all rows in the external data file to be valid and match both the target data type definitions as well as the format definition of the files. If there are any rows in the source files that do not match the format options you specified, the query reports an error. You can use `DBMS_CLOUD` parameters, like `rejectlimit`, to suppress these errors. As an alternative, you can also validate the external table you created to see the error messages and the rejected rows so that you can change your format options accordingly. See Validate External Data for more information.
Validate External Data

To validate any external table, you can use the procedure DBMS_CLOUD.VALIDATE_EXTERNAL_TABLE.

Before validating an external table you need to create the external table. To create an external table use the procedure for your table type, either DBMS_CLOUD.CREATE_EXTERNAL_TABLE. For example:

BEGIN
 DBMS_CLOUD.VALIDATE_EXTERNAL_TABLE (
 table_name => 'CHANNELS_EXT',
);
END;
/

This procedure scans your source files and validates them using the format options specified when you create the external table.

The validate operation, by default, scans all the rows in your source files and stops when a row is rejected. If you want to validate only a subset of the rows, use the rowcount parameter. When the rowcount parameter is set the validate operation scans rows and stops either when a row is rejected or when the specified number of rows are validated without errors.

For example, the following validate operation scans 100 rows and stops when a row is rejected or when 100 rows are validated without errors:

BEGIN
 DBMS_CLOUD.VALIDATE_EXTERNAL_TABLE (
 table_name => 'CHANNELS_EXT',
 rowcount => 100,
);
END;
/

If you do not want the validate to stop when a row is rejected and you want to see all rejected rows, set the stop_on_error parameter to FALSE. In this case VALIDATE_EXTERNAL_TABLE scans all rows and reports all rejected rows.

If you want to validate only a subset of rows use the rowcount parameter. When rowcount is set and stop_on_error is set to FALSE, the validate operation scans rows and stops either when the specified number of rows are rejected or when the specified number of rows are validated without errors. For example, the following example scans 100 rows and stops when 100 rows are rejected or when 100 rows are validated without errors:

BEGIN
 DBMS_CLOUD.VALIDATE_EXTERNAL_TABLE (
 table_name => 'CHANNELS_EXT',
 rowcount => 100,
 stop_on_error => FALSE,
);
END;
/
See View Logs for Data Validation to see the results of validate operations in the tables `dba_load_operations` and `user_load_operations`.

View Logs for Data Validation

To validate an external table, use the procedures `DBMS_CLOUD.VALIDATE_EXTERNAL_TABLE`, `DBMS_CLOUD.VALIDATE_EXTERNAL_PART_TABLE`, and `DBMS_CLOUD.VALIDATE_HYBRID_PART_TABLE`.

After you validate your source files you can see the result of the validate operation by querying a load operations table:

- `dba_load_operations`: shows all validate operations.
- `user_load_operations`: shows the validate operations in your schema.

You can use these files to view load validation information. For example use this select operation to query `user_load_operations`:

```
SELECT table_name, owner_name, type, status, start_time, update_time, logfile_table, badfile_table
FROM user_load_operations
WHERE type = 'VALIDATE';
```

CHANNELS_EXT **SH** **VALIDATE** **COMPLETED** 13-NOV-17... 13-NOV-17...
VALIDATE$21_LOG **VALIDATE$21_BAD**

Using this SQL statement with the `WHERE` clause on the `TYPE` column displays all of the load operations with type `VALIDATE`.

The `LOGFILE_TABLE` column shows the name of the table you can query to look at the log of a validate operation. For example, the following query shows the log for this validate operation:

```
SELECT * FROM VALIDATE$21_LOG;
```

The column `BADFILE_TABLE` shows the name of the table you can query to look at the rows where there were errors during validation. For example, the following query shows the rejected records for the above validate operation:

```
SELECT * FROM VALIDATE$21_BAD;
```

Depending on the errors shown in the log and the rows shown in the `BADFILE_TABLE`, you can correct the error by dropping the external table using the `DROP TABLE` command and recreating it by specifying the correct format options in `DBMS_CLOUD.CREATE_EXTERNAL_TABLE`, `DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE` or `DBMS_CLOUD.CREATE_HYBRID_PART_TABLE`.

ORACLE

Chapter 4

View Logs for Data Validation

4-4
Note:

The LOGFILE_TABLE and BADFILE_TABLE tables are stored for two days for each validate operation and then removed automatically.
Working with Analytics and Visualization

Gain insight into your data with Oracle Analytics Cloud and Oracle Analytics Desktop. These tools let you explore your Autonomous Data Warehouse data through advanced analytics and interactive visualizations.

Topics

• Using Oracle Analytics Desktop with Autonomous Data Warehouse
• Using Oracle Analytics Cloud with Autonomous Data Warehouse

Using Oracle Analytics Desktop with Autonomous Data Warehouse

You can use Oracle Analytics Desktop with Autonomous Data Warehouse. Built on a high-performance platform with flexible data storage, Oracle Analytics Desktop provides a complete set of tools for deriving and sharing data insights.

• Data preparation: Analysts can ingest, profile, and cleanse data using a variety of algorithms.
• Data flow: Analysts can prepare, transform and aggregate data, and then run machine-learning models at scale.
• Data discovery: Subject matter experts can easily collaborate with other business users, blending intelligent analysis at scale, machine learning, and statistical modeling.
• Data visualization: Analysts can visualize any data, on any device, on premises and in the cloud.
• Data collaboration: Large organizations and small teams can share data more simply, as you don't need to manage or consolidate multiple versions of spreadsheets.
• Data-driven: Application developers can utilize interfaces that enable them to extend, customize, and embed rich analytic experiences in the application flow.

Connect with Oracle Analytics Desktop

Oracle Analytics Desktop makes it easy to visualize your data so you can focus on exploring interesting data patterns. Just connect to Autonomous Data Warehouse, select the elements that you’re interested in, and let Oracle Analytics Desktop find the best way to visualize it. Choose from a variety of visualizations to look at data in a specific way.

For details on connecting Autonomous Data Warehouse with Oracle Analytics Desktop, see User’s Guide for Oracle Analytics Desktop.
You can use Oracle Analytics Cloud with Autonomous Data Warehouse.

Built on a high-performance platform with flexible data storage, Oracle Analytics Cloud provides a complete set of tools for deriving and sharing data insights.

- Data preparation: Analysts can ingest, profile, and cleanse data using a variety of algorithms.
- Data flow: Analysts can prepare, transform and aggregate data, and then run machine-learning models at scale.
- Data discovery: Subject matter experts can easily collaborate with other business users, blending intelligent analysis at scale, machine learning, and statistical modeling.
- Data visualization: Analysts can visualize any data, on any device, on premises and in the cloud.
- Data collaboration: Large organizations and small teams can share data more simply, as you don't need to manage or consolidate multiple versions of spreadsheets.
- Data-driven: Application developers can utilize interfaces that enable them to extend, customize, and embed rich analytic experiences in the application flow.

You can find out more information on Oracle Analytics Cloud in Visualizing Data and Building Reports in Oracle Analytics Cloud.
Creating Web and Mobile Applications with Oracle Application Express

Describes how to create applications with Oracle Application Express on Autonomous Data Warehouse.

Topics

- About Oracle Application Express
- Access Oracle Application Express Administration Services
- Create Oracle Application Express Workspaces in Autonomous Data Warehouse
- Access Oracle Application Express App Builder
- Create Oracle Application Express Developer Accounts
- Use Web Services with Oracle Application Express
- Send Email from Oracle Application Express
- Restrictions and Limitations for Oracle Application Express with Autonomous Data Warehouse

About Oracle Application Express

Oracle Application Express (APEX) is a low-code development platform that enables you to build scalable, secure enterprise applications with world-class features that can be deployed anywhere.

Oracle APEX provides you with an easy-to-use browser-based environment to load data, manage database objects, develop REST interfaces, and build applications which look and run great on both desktop and mobile devices. You can use Oracle APEX to develop a wide variety of solutions: import spreadsheets and develop a single source of truth in minutes, create compelling data visualizations against your existing data, deploy productivity applications to elegantly solve a business need, or build your next mission-critical data management application.

Oracle APEX embraces SQL. Anything you can express with SQL can be easily employed in an Oracle APEX application. Oracle APEX also embodies low code with powerful data management and data visualization components, as well as responsive development out of the box. Instead of writing code by hand, you are able to use intelligent wizards to guide you through the rapid creation of applications and components.

Oracle APEX on Autonomous Database provides a preconfigured, fully managed and secured environment to both build and deploy world-class data-centric applications. There are no limits on the number of developers or end users for your Oracle APEX applications; Autonomous Database can instantly scale compute and storage online as needed, based upon your workload. Additionally, Oracle APEX applications developed on-premise can be easily deployed to Oracle APEX on Autonomous Database, or vice-versa.
Configuration, patching, monitoring, and upgrading of all Oracle Application Express components is fully managed by Oracle, leaving you free to focus on developing your solutions and solving your business problems. With Oracle APEX and low code, your organization can be more agile and develop solutions faster, for less cost, and with greater consistency. You can adapt to changing requirements with ease. And you can empower professional developers and everyone else in your organization to be a part of the solution.

This chapter covers information on Oracle Application Express specific to working on Autonomous Data Warehouse.

Access Oracle Application Express Administration Services

Each Autonomous Data Warehouse instance includes a dedicated instance of Oracle Application Express; you can use this instance to create multiple workspaces. A workspace is a shared work area where you can build applications. You create workspaces in Application Express Administration Services.

To access Oracle Application Express Administration Services:

- Sign in to your Oracle Cloud Account at cloud.oracle.com.
- From the Oracle Cloud Infrastructure left navigation list click Autonomous Data Warehouse.
- On the Autonomous Databases page select an Autonomous Data Warehouse instance from the links under the Display Name column.

1. To access Application Express Administration Services you can use the Oracle Cloud Infrastructure console or the Autonomous Data Warehouse Service Console.

 To access Application Express Administration Services from Autonomous Data Warehouse Service Console:

 a. On the Autonomous Database details page click Service Console.
 b. Click Development.
 c. Click APEX.

 To access Application Express Administration Services from the Oracle Cloud Infrastructure console:

 a. On the Autonomous Database details page click the Tools tab.
 b. In the Oracle Application Express area, click Open APEX.

 The Application Express Administration Services sign-in page appears.

 ✍️ Note:

 If you already created a workspace, the Application Express workspace sign-in page appears instead. To open Administration Services, click Administration Services link.

2. In the Password field, enter the password for the Autonomous Data Warehouse ADMIN user.
Application Express Administration Services and the Oracle Application Express development environment on Autonomous Database use Database Accounts Credential authentication. This authentication method uses the database account user name and password to authenticate users.

3. Click **Sign In to Administration**.

 When you sign in for the first time, follow the prompts to create an Application Express workspace. See Create Oracle Application Express Workspaces in Autonomous Data Warehouse for more information.

You can also use Administration Services to manage your Application Express instance. See Oracle Application Express Administration Services in Oracle Application Express Administration Guide for more information.

Create Oracle Application Express Workspaces in Autonomous Data Warehouse

An Autonomous Data Warehouse instance does not have any precreated workspaces for Oracle Application Express. Create a workspace if you have not already done so or use these instructions to create additional workspaces.

To create an Oracle Application Express workspace:

1. Sign in to Application Express Administration Services.
See Access Oracle Application Express Administration Services for more information.

2. Click Create Workspace.

3. On the Create Workspace page, in the Database User field, enter a new database username or choose an existing user from the list.
 The ADMIN database user cannot be associated with a workspace.

4. In the Password field, provide a strong password if the database user is a new user. If the user is an existing database user you do not enter a password.

5. (optional) In the Workspace Name field, change the name of the workspace that was automatically populated.

6. Click Create Workspace.

See Access Oracle Application Express App Builder and Create Oracle Application Express Developer Accounts to create additional developer accounts.

Access Oracle Application Express App Builder

Use App Builder to create and manage Oracle Application Express applications and application pages. The App Builder home page displays all installed applications in the current Oracle Application Express workspace.

To access Oracle Application Express App Builder:

1. Sign in to Application Express using the workspace name, username, and password you specify when you create the workspace.

2. On the Workspace home page, click the App Builder icon.

See Create Oracle Application Express Developer Accounts to create developer accounts.
Create Oracle Application Express Developer Accounts

Oracle Application Express developers need a developer account in each workspace where they wish to build applications. The initial developer account is created when you create a workspace. These steps show you how to create additional developer accounts for members of your team. When you create a developer account, a corresponding database user is automatically created.

To create developer accounts and provide direct access to Application Express:

1. Sign in to Application Express using the workspace name, username, and password you specified when you created the workspace.
2. Pull down the Administration menu in the upper right of any page and choose Manage Users and Groups.
3. Click Create User.
4. In the Username field, enter a username.
5. In the Email Address field, enter an email address.
6. (Optional) Use the on-screen and in-line help to fill in additional fields.
7. In the User is a developer field, select Yes.
8. In the Password field, enter a strong password.
9. In the Confirm Password field, confirm the password.
10. Click Create User.

To share sign-in details with developers:

1. Select an Autonomous Data Warehouse instance.
2. On the instance details page click Service Console.
3. Click Development.
4. Right-click APEX and choose Copy URL.
5. Provide the copied URL, along with the Workspace Name, the Username, and the Password for the developer account you created.

Using this URL developers can access the Application Express environment without having to navigate to the Autonomous Data Warehouse Service Console.

Note:

Changing the password of Workspace Administrators and Developers through Manage Users and Groups page or Edit Profile page only affects applications configured with "Application Express Accounts" authentication scheme. To change the password used to access App Builder, use SQL Developer Web or another client to change the password of the corresponding database user.

See Access Oracle Application Express App Builder to access Oracle Application Express App Builder.
Use Web Services with Oracle Application Express

You can interact with both SOAP and RESTful style web services from Application Express in your Autonomous Data Warehouse instance.

Web services enable applications to interact with one another over the web in a platform-neutral, language independent environment. In a typical web services scenario, a business application sends a request to a service at a given URL by using the HTTP protocol. The service receives the request, processes it, and returns a response. Web services are typically based on Simple Object Access Protocol (SOAP) or Representational State Transfer (REST) architectures.

Using Web Source Modules, Application Express developers can declaratively access data services from a variety of REST endpoints, allowing both read and write operations. In addition to supporting smart caching rules for remote REST data, Oracle Application Express also offers the unique ability to directly manipulate the results of REST data sources using industry standard SQL.

The `APEX_WEB_SERVICE` package enables you to integrate other systems with Application Express by allowing you to interact with web services anywhere you can use PL/SQL in your application. The package contains procedures and functions to call both SOAP and RESTful style web services, and to simplify implementation of OAuth 2.0 flows.

Note the following when working with web services in Application Express with Autonomous Data Warehouse:

- All web services must be secured. Only HTTPS services are supported on the default port (443). Your Application Express instance is pre-configured with an Oracle Wallet that contains more than 90 of the most common trusted root and intermediate SSL certificates. The `APEX_WEB_SERVICE` package automatically takes advantage of this Oracle Wallet without additional configuration from application developers.

- All web services must be accessible over the internet. The Autonomous Data Warehouse database is unable to reach web services deployed on private subnets or behind on-premises firewalls.

- Each Autonomous Data Warehouse instance is pre-configured with a network access control list (ACL) to permit outbound web service calls from Application Express. No further configuration by application developers is necessary.

- Your Application Express instance does not require an outbound web proxy.

- There is a default limit of 50,000 outbound web service requests per Application Express workspace in a rolling 24-hour period. If the limit of outbound web service calls is reached, the following SQL exception is raised on the subsequent request and the request is blocked:

 ORA-20001: You have exceeded the maximum number of web service requests per workspace. Please contact your administrator.

 You can raise the default limit up to 250,000 outbound web service requests by setting a value for the `MAX_WEBSERVICE_REQUESTS` parameter. For example,
to change the limit to 250,000, connect to your Autonomous Data Warehouse database as ADMIN using a SQL client and execute the following:

```sql
BEGIN
    APEX_INSTANCE_ADMIN.SET_PARAMETER('MAX_WEBSERVICE_REQUESTS', '250000');
    COMMIT;
END;
/
```

To learn more, see:

- APEX_WEB_SERVICE in Oracle Application Express API Reference
- Managing Web Source Modules in Oracle Application Express App Builder User’s Guide

Send Email from Oracle Application Express

You can use the APEX_MAIL package to send emails from Oracle Application Express applications deployed in Autonomous Data Warehouse.

Before you use APEX_MAIL you must configure an email provider in your Application Express instance. Currently, the only supported email provider is Oracle Cloud Infrastructure Email Delivery service.

Note:
Currently, third-party email providers are not supported.

To enable APEX_MAIL functionality in your Application Express instance in Autonomous Data Warehouse:

1. Identify the SMTP connection endpoint for Email Delivery. You configure the endpoint as the SMTP Host in your Application Express instance in Step 4. You may need to subscribe to additional Oracle Cloud Infrastructure regions if Email Delivery is not available in your current region. See Configure SMTP Connection for more information.

2. Generate SMTP credentials for Email Delivery. Your Application Express instance uses credentials to authenticate with Email Delivery servers when you send email. See Generate SMTP Credentials for a User for more information.

3. Create an approved sender for Email Delivery. You need to complete this step for all email addresses you use as the "From" with APEX_MAIL.SEND calls, as the Application Email From Address in your apps, or in the SMTP_FROM instance parameter. See Managing Approved Senders for more information.

4. Connect to your Autonomous Data Warehouse as ADMIN user using a SQL client and configure the following SMTP parameters using APEX_INSTANCE_ADMIN_SET_PARAMETER:

 - SMTP_HOST_ADDRESS: Specifies the SMTP connection endpoint from Step 1.
 - SMTP_USERNAME: Specifies the SMTP credential user name from Step 2.
• **SMTP_PASSWORD**: Specifies the SMTP credential password from Step 2.

• **Keep default values for** **SMTP_HOST_PORT** parameter (587) and **SMTP_TLS_MODE** parameter (**STARTTLS**).

For example:

```sql
BEGIN
    APEX_INSTANCE_ADMIN.SET_PARAMETER('SMTP_HOST_ADDRESS', 'smtp.us-phoenix-1.oraclecloud.com');
    APEX_INSTANCE_ADMIN.SET_PARAMETER('SMTP_USERNAME', 'ocid1.user.oc1.username');
    APEX_INSTANCE_ADMIN.SET_PARAMETER('SMTP_PASSWORD', 'password');
    COMMIT;
END;
/
```

5. Validate the email configuration settings using a SQL client.

```sql
BEGIN
    APEX_INSTANCE_ADMIN.VALIDATE_EMAIL_CONFIG;
END;
/
```

If any errors are reported (for example, "ORA-29279: SMTP permanent error: 535 Authentication credentials invalid"), adjust the SMTP parameters and repeat the validation step.

6. Send a test email using APEX SQL Workshop, SQL Commands specifying one of the approved senders from Step 3 as "From". For example:

```sql
BEGIN
    APEX_MAIL.SEND(p_from => 'alice@example.com',
                   p_to => 'bob@example.com',
                   p_subj => 'Email from Oracle Autonomous Database',
                   p_body => 'Sent using APEX_MAIL');
END;
/
```

7. To monitor email delivery in your Application Express instance:
 a. Sign in to APEX Administration Services.
 b. Open the Manage Instance page.
 c. Click the Mail Queue link in the Manage Meta Data section.

Alternatively, query `APEX_MAIL_QUEUE` and `APEX_MAIL_LOG` views using a SQL client.

Note:

There is a limit of 5,000 emails per workspace in a 24-hour period. Oracle Cloud Infrastructure Email Delivery may impose additional limitations.
Restrictions and Limitations for Oracle Application Express with Autonomous Data Warehouse

This section lists the feature restrictions and limitations of Oracle Application Express when used within the context of Autonomous Data Warehouse. Certain limitations are required to protect the security and performance of your Oracle Application Express environment.

- **Application Express Administration Services**: Certain Application Express instance configuration options are disabled. The following are examples of configuration options that have been predefined by Oracle and cannot be altered:
 - Authentication scheme used to access App Builder ("Database Accounts")
 - Ability to submit and approve self-service workspace requests and change requests
 - Ability to create additional instance administrator users. Only the ADMIN user is permitted to access Administration Services. Other instance administrator users cannot be added.
 - Ability to create workspace administrator and developer users. New users can be created only in Workspace Administration
 - Web proxy, Oracle Wallet, and print server configuration
 - Daily limits of outbound web service calls and email messages
 - An option to make insecure outbound web service calls

- **The following application authentication schemes are not supported**:
 - HTTP Header Variable
 - LDAP Directory
 - Oracle Application Server Single Sign-On

- **PDF, Excel, and Word printing options are disabled. You may be able to configure a 3rd party print server within Application Express apps.**

- **Only the following procedures and functions of the APEX_INSTANCE_ADMIN package are supported. See APEX_INSTANCE_ADMIN in Oracle Application Express API Reference for more information:**
 - ADD_SCHEMA
 - ADD_WORKSPACE
 - GET_PARAMETER
 - REMOVE_SCHEMA
 - REMOVE_WORKSPACE
 - SET_PARAMETER
• Only SMTP Application Express instance parameters may be set using the APEX_INSTANCE_ADMIN package. See Available Parameter Values in Oracle Application Express API Reference for more information. Other instance parameters cannot be changed.

• Oracle Application Express is only available as a Full Development environment. Converting into a Runtime environment is not supported.

• Vanity URLs or custom domain names are not natively supported. See About Customer Managed Oracle REST Data Services on Autonomous Database to learn about an alternative ORDS deployment that can be used to implement vanity URLs.

• Oracle Cloud Infrastructure Web Application Firewall (WAF) service is not natively supported. See About Customer Managed Oracle REST Data Services on Autonomous Database to learn about an alternative ORDS deployment that can be used to implement WAF.