Oracle® Cloud Using Oracle Machine Learning User Interface on Autonomous Database

Oracle Cloud Using Oracle Machine Learning User Interface on Autonomous Database,

E78525-58

Copyright © 2017, 2024, Oracle and/or its affiliates.

Primary Author: Moitreyee Hazarika

Contributors: Mark Hornick, Denny Wong, Eros Espinola, Francisco Noriega, Gloria Castillo, Jim Dadashev,

Marat Spivak, Mark Kelly, Pedro Reta, Zabdiel Jaramillo Roman

Contributors: Charlie Berger

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface	
Audience	V
Conventions	V
Documentation Accessibility	V
Related Resources	vi
What's New in Oracle Machine Learning User Interface on Database	Autonomous
Get Started with Oracle Machine Learning User Interface	
2.1 Get Started with Oracle Machine Learning User Interface	2-1
2.2 Access Oracle Machine Learning User Interface	2-2
2.2.1 About Oracle Machine Learning Password Policy	2-3
2.3 About Oracle Machine Learning Notebooks	2-3
2.3.1 Typical Actions when Using Oracle Machine Learning Notebooks	2-4
2.4 Oracle Machine Learning User Interface Home Page	2-4
Get Started with Project and Workspaces	
3.1 Create Projects	3-1
3.2 Create and Manage Workspaces and Projects	3-4
3.3 Grant Workspace Permissions	3-7
3.3.1 About Workspace Permission Types	3-9
Get Started with Notebooks Early Adopter for Data Analysis Visualization	s and Data
4.1 About Notebooks Early Adopter	4-2
4.2 Access your Notebooks Early Adopter Page	4-2
4.2.1 Work with Notebook Versions on the Notebooks Page	4-!
4.3 Edit your Oracle Machine Learning Notebook Early Adopter	4-7

4.3.1 Work with Notebook V	ersions in the Notebook Editor	4-12
4.3.2 Create Paragraph Dep	pendencies	4-16
About Oracle Machine L	earning Notebooks	
5.1 Create a Notebook		5-3
5.2 Edit Your Notebook		5-4
5.2.1 Export a Notebook		5-7
5.2.2 Import a Notebook		5-9
5.2.3 Create Check Box For	ms in Notebooks	5-10
5.2.4 Create Select Forms in	n Notebooks	5-10
5.2.5 Create Text Input Form	ns in Notebooks	5-11
5.3 Version a Notebook		5-12
5.4 Save Notebooks as Templat	es	5-13
5.5 Use the SQL Interpreter in a	Notebook Paragraph	5-13
5.5.1 About Oracle Machine	Learning for SQL	5-16
5.5.2 Set Output Format in I	Notebooks	5-16
5.5.3 Output Formats Suppo	orted by SET SQLFORMAT Command	5-17
5.6 Use the Python Interpreter in	n a Notebook Paragraph	5-19
5.6.1 About Oracle Machine	Learning for Python	5-23
5.7 Use the R Interpreter in a No	otebook Paragraph	5-24
5.7.1 About Oracle Machine	Learning for R	5-25
5.8 Use the Conda Interpreter in	a Notebook Paragraph	5-28
5.8.1 About the Conda Envi	ronment and Conda Interpreter	5-31
5.8.2 Conda Interpreter Con	nmands	5-33
5.9 Call the Markdown Interprete	er and Generate Static html from Markdown Plain Text	5-35
5.11 Use the Scratchpad		5-38
5.12 Collaborate in Oracle Mach	nine Learning	5-43
5.10 About Interpreter Bindings	and Notebooks	5-43
5.10.1 Change Interpreter B	indings for Specific Paragraphs in a Notebook	5-45
5.10.2 Set Interpreter Bindir	igs for Notebooks	5-48
5.10.3 Verify Interpreter Bind	dings	5-49
Get Started with AutoML	UI	
6.1 Access AutoML UI		6-3
6.2 Create AutoML UI Experime	nt	6-4
·	for AutoML UI Experiments	6-12
6.3 View an Experiment		6-13
6.3.1 Create Notebooks from	n AutoML UI Models	6-15

Get Started with Data Monitoring	
7.1 Create a Data Monitor	7-4
7.2 View Data Monitor Results	7-9
7.3 View History	7-14
Get Started with Model Monitoring	
8.1 Create a Model Monitor	8-2
8.2 View Model Monitor Results	8-8
8.3 View Model History	8-16
Get Started with Models	
9.1 Deploy Model	9-3
Use Templates to Collaborate with Users	
10.1 Use the Personal Templates	10-1
10.1.1 Create Notebooks from Templates	10-2
10.1.2 Share Notebook Templates	10-2
10.1.3 Edit Notebook Templates Settings	10-2
10.2 Use the Shared Templates	10-3
10.2.1 Create Notebooks from Templates	10-3
10.2.2 Edit Notebook Templates Settings	10-4
10.3 Use the Example Templates	10-4
10.3.1 Create a Notebook from the Example Templates	10-5
10.3.2 Example Templates	10-6
Get Started with Jobs	
11.1 About Jobs	11-1
11.2 Create Jobs to Schedule Notebooks	11-2
11.3 View Job Logs	11-4
Administer Oracle Machine Learning	
12.1 Typical Workflow for Managing Oracle Machine Learning	12-2
12.2 Access OML User Management from Command Line	12-3
12.3 Manage OML Users	12-5
12.3.1 Create User	12-5

12.3.2	Add Existing Database User Account to Oracle Machine Learning	
	Components	12-6
12.4 Aboι	ut User Data	12-7
12.4.1	Reassign	12-8
12.5 Abοι	ut Compute Resource	12-8
12.5.1	Oracle Resource	12-9
12.5	5.1.1 Resource Services and Notebooks	12-10
12.6 Get S	Started with Connection Groups	12-16
12.6.1	About Connection Groups	12-16
12.6.2	About Global Connection Group	12-17
12.6.3	Edit Oracle Database Interpreter Connection	12-17
12.7 Get 9	Started with Notehook Sessions	12-18

Preface

This document describes how to use Oracle Machine Learning and provides references to related documentation.

- Audience
 - This document is intended for data scientists, developers, and business users.
- Conventions
- Documentation Accessibility
- Related Resources
 For more information, see these related resources.

Audience

This document is intended for data scientists, developers, and business users.

Conventions

The following text conventions are used in this document.

Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup? ctx=acc&id=info Or Visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

For more information, see these related resources.

- Getting Started with Oracle Cloud Getting Started with Oracle Cloud
- Accessibility Guide for Oracle Cloud Services Accessibility Guide for Oracle Cloud Services

1

What's New in Oracle Machine Learning User Interface on Autonomous Database

Provides a summary of the latest enhancements and features for Oracle Machine Learning User Interface on Oracle Autonomous Database.

Table 1-1 New Features

Features	Description
Support for model monitoring in Oracle Machine Learning User Interface	Oracle Machine Learning User Interface supports for model monitoring. It allows you to create model monitors using which you can monitor the quality of model predictions over time, and provides you with insights on the underlying causes.
Support for data monitoring in Oracle Machine Learning User Interface	Oracle Machine Learning User Interface offers support for data monitoring. It allows you to monitor your data and evaluate how your data evolves over time. It helps you with insights on trends and multivariate dependencies in the data. It also provides you an early warning about data drift.

Table 1-1 (Cont.) New Features

Features

Support for enhanced notebooks in Autonomous Database - Serverless

Description

Oracle Machine Learning User Interface offers a new enhanced notebook environment *Notebooks EA (Early Adopter)* in Autonomous Database - Serverless. The enhanced notebook supports SQL, SQL Script, R, Python, Conda, and Markdown interpreters. You can write code, text, create rich visualizations, and perform data analytics including machine learning in the enhanced notebooks.

Note:

The enhanced notebook is available in the Oracle Machine Learning Notebook Early Adopter release. During the Early Adopter release period, both Zeppelin and the enhanced notebooks will be available, after which all notebooks will be converted to the new notebook environment. During the Early Adopter phase, you can use both the original Zeppelin and new Early Adopter notebook interfaces. Notebooks in the original interface can be copied to the Early Adopter release.

The enhanced notebook interface in Autonomous Database - Serverless provides the following enhanced features and user experiences:

- Rich and enhanced user experience: The
 enhanced notebook offers modern look and feel,
 and richer visualization with many charting options.
 This will benefit users to better visualize and
 understand their data. In addition, it offers some
 useful features like side-by-side versions
 comparison, option to add comments to paragraphs,
 full screen size mode for paragraphs, option to
 define paragraph dependency, and so on.
- High availability: The enhanced notebook, a multitenant application is deployed to the same middletier as Oracle Machine Learning server, and this requires no additional resources. Therefore, it is always running and readily available to render the new enhanced notebooks.
- High scalability: The enhanced notebook assures high scalability in production. To scale up due to

Table 1-1 (Cont.) New Features

Features	Description
	increased user demands, additional notebook instances can be easily added. There are tools to monitor system loads, and if a system is consistently overloaded, additional instance can be easily added to mitigate risks related to scalability.
Support for Python and R third-party libraries	Third-party libraries for Python and R are available on Oracle Machine Learning Notebooks. Oracle Machine Learning UI provides the Conda interpreter to install third-party Python and R libraries inside a notebook session. Conda is an open-source package and environment management system that enables the use of environments containing third-party Python and R libraries.
	 Users with OML_SYS_ADMIN role can install Python and R third-party libraries and upload them to object storage for persistence. The user with OML_SYS_ADMIN role is the administrator, also known as the admin. Users with OML_DEVELOPER role can use the Conda interpreter to download and activate the third-party libraries using the Conda environment that are provisioned by the administrator. The user with OML_DEVELOPER role is the regular Oracle Machine Learning user.
Support for R	Oracle Machine Learning for R is supported within Oracle Machine Learning Notebooks. By using Oracle Machine Learning for R, you can perform data exploration and machine learning modeling. OML4R is available through Oracle Machine Learning Notebooks on Oracle Autonomous Database - Serverless, including Autonomous Data Warehouse, Autonomous Transaction Processing and Oracle Autonomous JSON Database services.
Support for cross-region Autonomous Data Guard	Oracle Machine Learning Notebooks provide cross- region Autonomous Data Guard support in newly provisioned and migrated databases.

Table 1-1 (Cont.) New Features

Features

Oracle Machine Learning repository migrated from Serverless database to each respective Oracle Autonomous Database instance.

Description

The Oracle Machine Learning (OML) repository has been migrated from Serverless database to each respective Oracle Autonomous Database instance.

The migration of the Oracle Machine Learning repository ensures:

- That all OML objects such as tables, jobs, stored procedures, and metadata are moved to the appropriate Oracle Autonomous Database instance.
- Provides support for Refreshable Clones, which enables cloning of the Oracle Machine Learning metadata as well.

The migration of the Oracle Machine Learning (OML) repository is expected to be completed over a period of 30 days.

The OML repository version is mentioned in **About** in the <code><user></code> drop-down list on the top right corner of your Oracle Machine Learning User Interface page. If the version is 1.0.0.0.0, it indicates that the OML metadata is still in the Serverless database. If the version is 22.x, it indicates that the OML repository has been migrated to your Oracle Autonomous Database instance.

Oracle Machine Learning Notebook supported on all Oracle Autonomous Database clones

Oracle Machine Learning Notebook is supported on all types of Oracle Autonomous Database - Serverless clones, including:

- Full Clone: a new database is created with the data in the source database and metadata.
- Refreshable Clone: a read-only full clone is created that can be easily refreshed with the data from the source database
- Metadata Clone: a new database is created that includes all of the source database schema metadata, but not the source database data.

For a metadata clone, the Example Template notebooks are not supported.

Get Started with Oracle Machine Learning User Interface

This section discusses how to get started with Oracle Machine Learning User Interface, and use Apache Zeppelin-based machine learning notebooks along with the Notebooks EA (Early Adopter), where you can perform data exploration and data visualization, data preparation and machine learning.

- Get Started with Oracle Machine Learning User Interface
 Here is how you can get started with Oracle Machine Learning User Interface (UI).
- Access Oracle Machine Learning User Interface
 You can access Oracle Machine Learning User Interface from Autonomous Database.
- About Oracle Machine Learning Notebooks
 Oracle Machine Learning Notebooks is a collaborative web-based interface that supports notebook creation, scheduled run, and versioning. You can document work using Markdown and run SQL, R, and Python code for data exploration, visualization, and preparation, and machine learning model building, evaluation, and deployment. Oracle Machine Learning Notebooks also provide the Conda interpreter to create a custom conda environment that includes user-specified third-party Python and R libraries.
- Oracle Machine Learning User Interface Home Page
 The Oracle Machine Learning User Interface home page provides you quick links to important interfaces, help links, and the log of your high-level recent activities.

Related Topics

- About AutoML UI
- Get Started with Jobs

Jobs allow you to schedule the running of notebooks. On the Jobs page, you can create jobs, duplicate jobs, start and stop jobs, delete jobs, and monitor job status by viewing job logs, which are read-only notebooks.

Use Templates to Collaborate with Users
 By using the Oracle Machine Learning Notebooks templates, you can collaborate with
 other users by sharing your work, publishing your work as reports, and by creating
 notebooks from templates. You can store your notebooks as templates, share notebooks,
 and provide sample templates to other users.

2.1 Get Started with Oracle Machine Learning User Interface

Here is how you can get started with Oracle Machine Learning User Interface (UI).

- Request access to Oracle Machine Learning UI. Contact your Service Administrator to create your OML user credentials and provide access to your Oracle Machine Learning UI account.
- 2. Access the Oracle Machine Learning UI account by using your credentials. In case you forget your password, then request the Administrator to reset it.

Note:

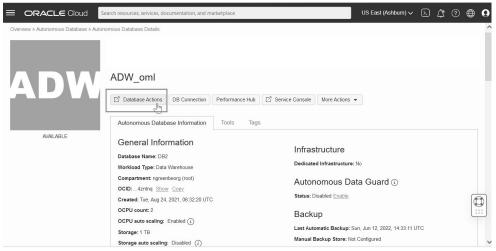
Once you receive your new password, you must change it immediately. Refer to the Oracle Machine Learning password policy for more information.

3. Once you log in for the first time, a workspace and project will be created for you. You can start creating your notebook. You can also create your additional projects in the default workspace or create new workspace with corresponding projects.

Note:

If you are using Oracle Cloud Free Tier, you have to provision an Oracle Autonomous Database. For more information, see Provision Autonomous Database

Related Topics


- OML Notebooks Interactive Tour
- About Oracle Machine Learning Password Policy
 All Oracle Machine Learning users must follow the password policy to create a strong and secure password.

2.2 Access Oracle Machine Learning User Interface

You can access Oracle Machine Learning User Interface from Autonomous Database.

To access Oracle Machine Learning User Interface (UI) from the Autonomous Database:

 Select your Autonomous Database instance and on the Autonomous Database details page click **Database Actions**.

ORACLE® Database Actions | Launchpad Development Data Tools ↑↓ DATA PUMP Create relational diagrams for Import and export data quickly with Load or access data from local files -- € CATALOG A DATA INSIGHTS Deploy REST APIs for your database Manage your JSON Document Understand data dependencies and Discover anomalies, outliers and E DATA ANALYSIS CHEDULING Visualize data from your database Schedule, manage and plan jobs and tasks Analyze your data O ORACLE MACHINE LEARNING Oracle Machine Learning provided several components accessible... Build web applications rapidly

 On the Database Actions page, go to the Development section and click Oracle Machine Learning. The Oracle Machine Learning sign in page opens.

- 3. On the Oracle Machine Learning sign in page, enter your username and password.
- 4. Click Sign In.

This opens the Oracle Machine Learning user application.

About Oracle Machine Learning Password Policy
 All Oracle Machine Learning users must follow the password policy to create a strong and secure password.

2.2.1 About Oracle Machine Learning Password Policy

All Oracle Machine Learning users must follow the password policy to create a strong and secure password.

When changing or modifying your Oracle Machine Learning password, ensure that you follow these conditions:

- The password must be between 12 and 30 characters long. It must include at least one uppercase letter, one lowercase letter, and one numeric character.
- The password cannot contain the username.
- The password cannot be one of the last 4 passwords used for the same username.
- The password cannot contain the double quote (") character.
- The password must not be the same password that is set less than 24 hours ago.

2.3 About Oracle Machine Learning Notebooks

Oracle Machine Learning Notebooks is a collaborative web-based interface that supports notebook creation, scheduled run, and versioning. You can document work using Markdown and run SQL, R, and Python code for data exploration, visualization, and preparation, and machine learning model building, evaluation, and deployment. Oracle Machine Learning Notebooks also provide the Conda interpreter to create a custom conda environment that includes user-specified third-party Python and R libraries.

Key features of Oracle Machine Learning Notebooks:

- Allows collaboration among data scientists, business and data analysts, application and dashboard developers, Database Administrators, and IT professionals
- Leverages the scalability and performance of Oracle Autonomous Database Platform
- Supports scheduling notebooks as jobs for one-off and recurring running of notebooks
- Enables versioning of notebooks
- Supports interpreters for SQL, PL/SQL, Python, R, Markdown, and Conda
- Typical Actions when Using Oracle Machine Learning Notebooks
 To begin with Oracle Machine Learning Notebooks, refer to the tasks listed in the table as a guide.

2.3.1 Typical Actions when Using Oracle Machine Learning Notebooks

To begin with Oracle Machine Learning Notebooks, refer to the tasks listed in the table as a guide.

Tasks	More Information
Access Oracle Machine Learning User Interface	Access Oracle Machine Learning User Interface (UI)
Create workspaces	Create Projects and Workspaces
Create projects	Create Projects and Workspaces
Create notebooks	Create a Notebook
Create and Run an AutoML Experiment	Create AutoML UI Experiment
Run a Notebook using SQL Interpreter	Use the SQL Interpreter in a Notebook Paragraph
Run a Notebook using Python Interpreter	Use the Python Interpreter in a Notebook Paragraph
Run a Notebook using R Interpreter	Use the R Interpreter in a Notebook Paragraph
Run a Notebook using Conda Interpreter	Use the Conda Interpreter in a Notebook Paragraph
Use the Markdown Interpreter	Call the Markdown Interpreter and Generate Static html from Markdown Plain Text
Create a Data Monitor	Create a Data Monitor
Create a Model Monitor	Create a Model Monitor
Use the Scratchpad	Use the Scratchpad
Create jobs to schedule notebooks	Create Jobs to Schedule Notebook

Related Topics

Grant Workspace Permissions

You can collaborate with other users in Oracle Machine Learning User Interface (UI) by granting permissions to access your workspace. A workspace consists of projects. Projects consist of notebooks and experiments.

2.4 Oracle Machine Learning User Interface Home Page

The Oracle Machine Learning User Interface home page provides you quick links to important interfaces, help links, and the log of your high-level recent activities.

OMLUSER Project ■ ORACLE Machine Learning ▼ ② OMLUSER ▼ ③ → How Do I? ✓ Recent Notebooks (i) 🖔 (j) (i) (j) (i) (i) (i) Get Started Get started with Oracle Machine Learning Use AutoML How to create AutoML Experiments Create Notebooks How to create a notebook Deploy Models How to Deploy Machine Learning Models Monitor Data How to monitor data drift Monitor Models How to Monitor Models Create Jobs How to create a job (i) (i) Manage Permissions How to manage collaborative permissions in workspaces Try It Follow along with a hands on workshop Recent Experiments Quick Actions æ ₽ ~ ₩ 国 = AutoML Create and run AutoML Experiments Models
Manage and Deploy
Machine Learning
Models

 $\blacksquare I$

Figure 2-1 Oracle Machine Learning UI Home Page

On the home page, you can access:

- The How Do I help links to:
 - Get Started
 - Use AutoML
 - Deploy Models
 - Monitor Data
 - Create Notebooks
 - Create Jobs
 - Manage Permissions
 - Try It
- The Quick Actions links to:
 - AutoML
 - Models
 - Data Monitors
 - Model Monitors
 - Scratchpad
 - Notebooks
 - Jobs
 - Examples
- The log of your Recent Activities.
- The application navigation by clicking \equiv on the top left corner of the home page.

- The options to select and create new projects, access recent projects, manage workspace, and set workspace permissions by clicking on the top right corner of the home page.
- The Recent Notebooks on the right pane of the home page.

Related Topics

Notebooks

A notebook can contain many paragraphs. A paragraph is a notebook component where you can write and run SQL statements, PL/SQL scripts, R and Python code, and conda instructions. You can run paragraphs individually or, run all the paragraphs in a notebook using a single button.

Johs

Jobs allow you to schedule the running of notebooks. On the Jobs page, you can create jobs, duplicate jobs, start and stop jobs, delete jobs, and monitor job status by viewing job logs, which are read-only notebooks.

Examples

The Example Templates page lists the pre-populated Oracle Machine Learning notebook templates. You can view and use these templates to create your notebooks.

3

Get Started with Project and Workspaces

A project is a logical grouping of notebooks and experiments within a workspace. A workspace is a virtual space where your projects reside, and multiple users can work on different projects. Permissions are granted on workspaces, and not on projects.

Create Projects

A project is a logical grouping of notebooks and experiments within a workspace. While you may own many projects, other workspaces and projects may be shared with you.

Create and Manage Workspaces and Projects

You can create and manage new projects and workspaces, provide access to your workspaces, manage permissions for users, and edit and delete workspaces.

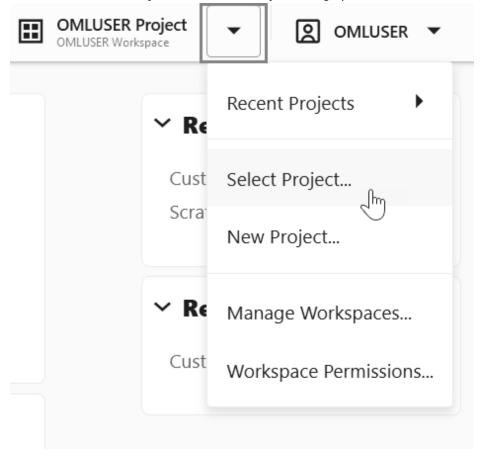
Grant Workspace Permissions

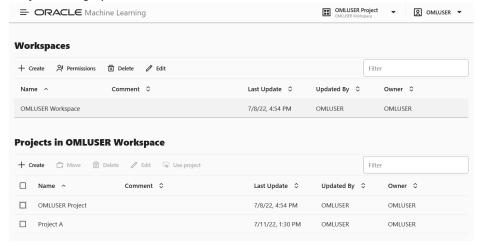
You can collaborate with other users in Oracle Machine Learning User Interface (UI) by granting permissions to access your workspace. A workspace consists of projects. Projects consist of notebooks and experiments.

3.1 Create Projects

A project is a logical grouping of notebooks and experiments within a workspace. While you may own many projects, other workspaces and projects may be shared with you.

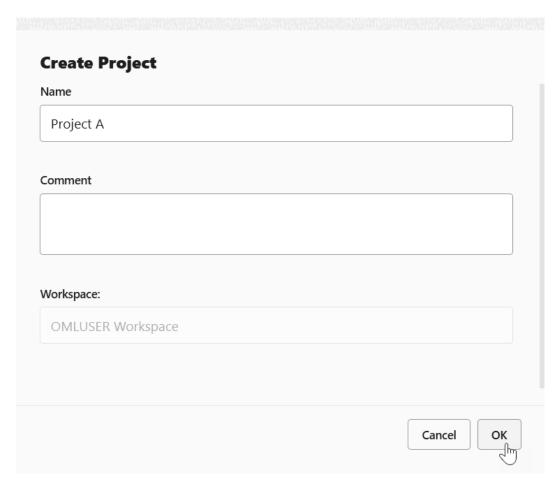
The initial workspace and the default project is created for you when you log in to Oracle Machine Learning User Interface (UI) for the first time. To create a new project:


1. On the top right corner of Oracle Machine Learning UI home page, click the project drop-down list. The project name and the workspace, in which the project resides, are displayed here. In this screenshot, the project name is OMLUSER, and the workspace name is also OMLUSER. If a default project exists, then the default project name is displayed here.


The last project that you have worked on is stored in the browser cache and is the default project. If you clear the cache, then no default exists and you must select a project.

You can create projects in two ways:

• Use the **New Project** option: Click the down arrow next to the **Project** field and then click **New Project**. The Create Project dialog opens.



Use the **Create** option on the Workspaces page: Click the down arrow next to the **Project** field and click **Manage Workspace**. On the Manage Workspace page, under the *Projects in Workspace* section, click **Create**. The Create Project dialog opens.

2. In the **Create Project** dialog, enter the following:

Figure 3-1 Create Project dialog

- a. Name: Enter a name for your project.
- b. Comments: Enter comments, if any.
- **c. Workspace:** The default workspace is selected. This is a non-editable field. To select a different workspace or to create a new workspace, go to **Manage Workspace**.

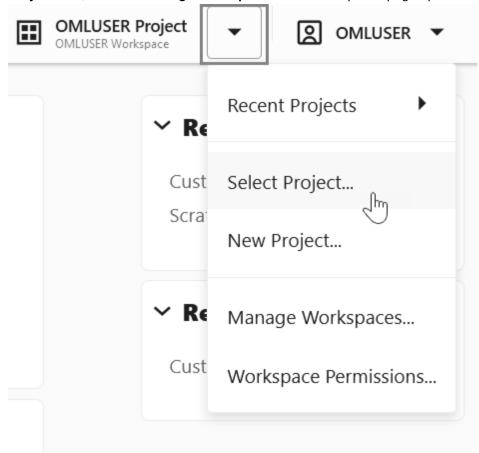
3. Click OK.

The project Project A is created and is assigned to the default workspace. In this example, the default workspace is OMLUSER.

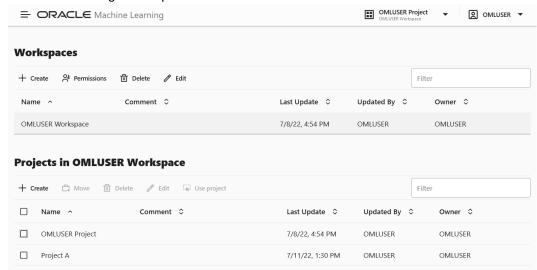
Related Topics

Create and Manage Workspaces and Projects
 You can create and manage new projects and workspaces, provide access to your workspaces, manage permissions for users, and edit and delete workspaces.

3.2 Create and Manage Workspaces and Projects

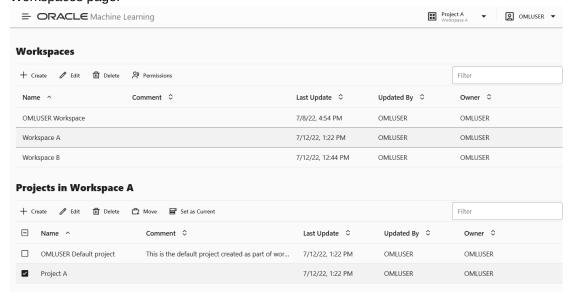

You can create and manage new projects and workspaces, provide access to your workspaces, manage permissions for users, and edit and delete workspaces.

The Workspaces page comprises two sections, one for workspaces and the other for projects.


Create and Manage Workspace

To create and manage workspaces:

1. On the top right corner of your home page, click the down arrow next to the **Project** field, and click **Manage Workspaces**. The Workspaces page opens



On the Workspaces page, you can create and manage workspaces and projects. To create and manage workspaces:

- On the upper section for workspace, click **Create** to create new workspace. In the Create Workspace dialog, enter a name for the workspace and click **OK**.
- Click Edit to edit the selected workspace. In the Edit Workspace dialog, you can edit the workspace name, and click OK.
- Click **Delete** to delete the selected workspace. Click **OK** to confirm the deletion of the selected workspace.
- Click Permissions to grant permissions to the selected users to access the workspace. In the Workspace Permission dialog, you can also delete users and modify their permissions.

Create and Manage Projects

You can create and manage projects in the Projects in Workspaces section on the Workspaces page.

To create and manage projects:

- 1. On the upper section for workspace, click on the workspace in which you want to create the project.
- 2. On the lower section for projects, click Create to create a new project. The Create Project dialog opens. Enter a project name, enter comments if any, and click OK. Note that the Workspace field displays the workspace that you selected on the upper section.

Name	
Project house price prediction	
Enter up to 50 characters	
Comment	
Wadaa	
Workspace:	
Workspace: OMLUSER Workspace	

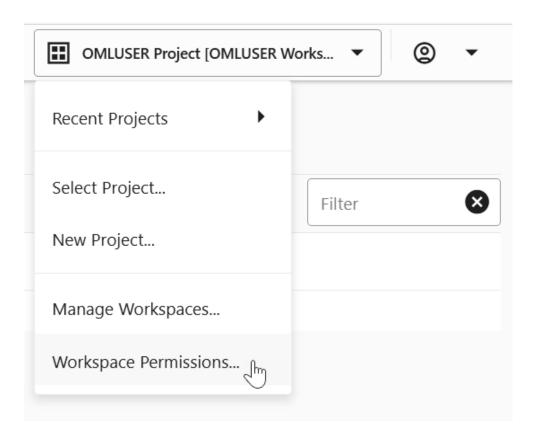
- 3. Click on the project that you want to modify. The following options are enabled.
 - Click Edit to change the project name.
 - Click **Delete** to delete the selected project from the workspace.
 - Click Move to move the selected project to another workspace.

Click **Set as Current** to set the selected project as the default or current project.

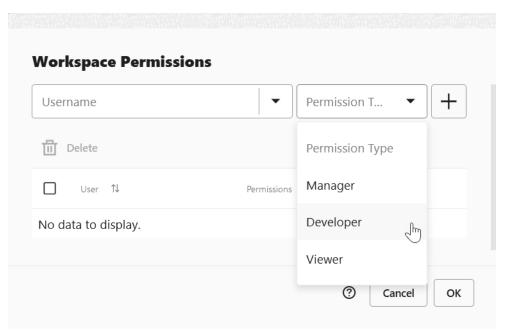
3.3 Grant Workspace Permissions

You can collaborate with other users in Oracle Machine Learning User Interface (UI) by granting permissions to access your workspace. A workspace consists of projects. Projects consist of notebooks and experiments.

By granting different types of permissions such as Manager, Developer, and Viewer, you can allow another user to view your workspace and perform different tasks in your projects and notebooks such as edit, create, update, delete, run, view notebooks and so on. For more information about the permission types, see About Workspace Permission Types.


Caution:

If you grant the permission type **Manager** or **Developer**, the user can also drop tables, create tables, and run any scripts at any time on your account. The user with Viewer permission type can only view your notebooks and is not authorized to run or make any changes to your notebooks.


To grant permission to another user:

- On the top right corner of Oracle Machine Learning UI home page, click the project and workspace drop-down list and select Workspace Permission.
 - The Permissions dialog box opens.
- In the Permissions dialog box, select a user from the **Username** drop-down list.

- **3.** In the **Permissions** drop-down list, select the permission type you want to grant to the selected user.
 - Manager
 - Developer
 - Viewer

4. Click Add.

The selected user is granted the assigned permission. The user name is displayed in the Permissions dialog box, along with the permission type.

- **5.** Click **OK.** This completes the task of granting permission to a user. To delete a user and the associated permission, select the user and click **Delete.**
- About Workspace Permission Types
 Oracle Machine Learning UI allows three types of permissions. Depending on the
 permission type, you can allow the user to view or perform different tasks in your
 workspace, projects, and notebooks.

3.3.1 About Workspace Permission Types

Oracle Machine Learning UI allows three types of permissions. Depending on the permission type, you can allow the user to view or perform different tasks in your workspace, projects, and notebooks.

The permissions are privileges granted to shared objects in a given workspace. Here, operations that are allowed on shared objects, for example notebooks, are discussed. For instance, the user to whom the <code>Developer</code> permission is granted can only view scheduled jobs on shared notebooks; he cannot run these jobs. However, the user with <code>Developer</code> permission can always view and run scheduled jobs on notebooks that are created by him. The three types of permissions are listed in the following table along with the actions that are allowed.

Permissions are granted on workspaces, and not on projects.

Permission Types	Actions based on permission	
Manager	Project: Create, update, view and delete.	
	Workspace: View only.	
	 Notebooks: Create, update, duplicate, run, export, import, and delete. 	
	Jobs: Schedule and run jobs.	

Permission Types	Actions based on permission
Developer	 Project: View only. Workspace: View only. Notebooks: Create, update, run, duplicate, import, export, and delete notebooks.
	 Note: A user with Developer permission can update, run, duplicate, import, export, and delete only those notebooks that were created by the user. Jobs: View and run jobs of shared notebooks only.
	Note: A user with Developer permission cannot create jobs for notebooks that are shared.
Viewer	Project: View only.
	Workspace: View only.
	Notebooks: View only.Jobs: View jobs and job runs of shared notebooks only.

For tasks that can be performed by an Administrator, see: Oracle Machine Learning Administration Tasks

4

Get Started with Notebooks Early Adopter for Data Analysis and Data Visualization

Oracle Machine Learning Notebooks Early Adopter is an enhanced web-based notebook platform for data analyst and data scientists. You can write code, text, create visualizations, and perform data analytics including machine learning. Notebooks work with interpreters in the back-end. In Oracle Machine Learning user interface, notebooks are available in a project, where you can create, edit, delete, copy, move, and even save notebooks as templates.

About Notebooks Early Adopter

Oracle Machine Learning Notebooks Early Adopter is an enhanced web-based notebook platform for data engineers, data analyst, R and Python users, and data scientists. You can write code, text, create visualizations, and perform data analytics including machine learning. Notebooks work with interpreters in the back-end. In Oracle Machine Learning, notebooks are available in a project within a workspace, where you can create, edit, delete, copy, move, and even save notebooks as templates.

- Access your Notebooks Early Adopter Page
 You can access the Notebooks Early Adopter page from the left navigation pane of
 Oracle Machine Learning Notebooks, or from the Notebooks page.
- Edit your Oracle Machine Learning Notebook Early Adopter
 Upon creating a notebook, it opens automatically, presenting you with a single paragraph
 using the default %sql interpreter. You can change the interpreter by explicitly specifying
 one of %script, %python, %sql, %r, %md, or %conda.

4.1 About Notebooks Early Adopter

Oracle Machine Learning Notebooks Early Adopter is an enhanced web-based notebook platform for data engineers, data analyst, R and Python users, and data scientists. You can write code, text, create visualizations, and perform data analytics including machine learning. Notebooks work with interpreters in the back-end. In Oracle Machine Learning, notebooks are available in a project within a workspace, where you can create, edit, delete, copy, move, and even save notebooks as templates.

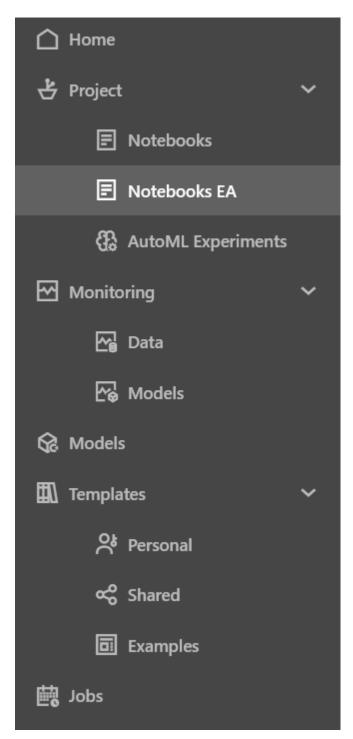
A notebook can contain many paragraphs. A paragraph is a notebook component where you can write and run SQL statements, PL/SQL scripts, R and Python code, and conda instructions. You can run paragraphs individually or, run all the paragraphs in a notebook using a single button. A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the code or text. This information is sent to the interpreter to be run. In the output section, the results of the interpreter are provided.

Note:

There is a single namespace for both the original notebooks and the new early adopter notebooks. You cannot have a notebook with the same name in both notebook lists. A notebook copied from the original interface to the new will have ea appended to it.

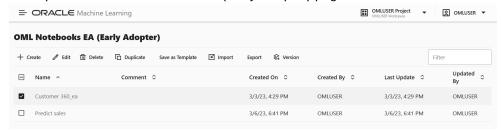
The Oracle Machine Learning Notebook Early Adopter provides:

- Faster notebook loading time.
- The Oracle look and feel as it based on the Oracle Redwood theme.
- Enriched visualization in its Line chart, Area chart, Bar chart, Pyramid chart, Pie chart, Donut chart, Funnel chart, Tag Cloud, Treemap Diagram, Sunburst Diagram, Scatter Plot, Box Plot.
- Option to enter comments in notebook paragraphs.
- Option to create Paragraph Dependencies. The Paragraph Dependencies feature allows you to add dependencies between paragraphs. The dependents of a paragraph automatically run after the original paragraph is run.
- · Simplified service level selection of High, Medium, Low through drop-down menu.
- Layout of Zeppelin and Jupyter notebook.
- On-page versioning, viewing of version history, and version comparison.


4.2 Access your Notebooks Early Adopter Page

You can access the Notebooks Early Adopter page from the left navigation pane of Oracle Machine Learning Notebooks, or from the Notebooks page.

- 1. To access the Notebooks Early Adopter page:
 - Go to the Oracle Machine Learning left navigation pane, expand Projects and then click Notebooks EA.


Figure 4-1 Left navigation pane

 Alternatively, you can click Notebooks under quick link on the home page to open the Notebooks page. Here, click Go to OML Notebooks EA to open the Notebooks

Early Adopter page. ■ ORACLE Machine Learning OMLUSER -Go to OML Notebooks EA 🛱 Move 📋 Copy Copy to OML Notebook EA + Create Duplicate ☑ Import Last Update 🗘 □ Name Created On 🗘 Created By 0 Updated By ≎ OMLUSER ☐ OML Services Model .. 3/6/23, 1:29 PM OMLUSER 3/6/23, 2:19 PM OMLUSER

2. This opens the OML Notebooks EA (Early Adopter) page.

Here, you have the option to:

- Create: Click Create to create a new notebook.
- **Edit:** Click on a notebook row to select it and click **Edit.** You can edit the notebook name, and add comments in the Edit Notebook dialog box.
- Delete: Click on a notebook row to select it and click Delete.
- **Duplicate:** Click on a notebook row to select it, and click **Duplicate.** This creates a copy of a notebook, and the duplicate copy of the is listed on the Notebooks page with the suffix 1 in the notebook name.
- Save as Template: To save a notebook as a template, select the notebook and click Save as Template. In the Save as Template dialog, you can define the location of the template to save it in Personal or Shared under Templates.
- **Import:** To import a notebook as .json files, click **Import**. Select the project and workspace in which to import the notebook.
- Export: To export a notebook, click Export. You can export Notebooks Early Adopter in the .dsnb format, Zeppelin format (.json) file and in Jupyter format (.ipynb), and later import them in to the same or a different environment.
- Version: To create versions of a notebook, select it and click Version. The Versions page for that particular notebook opens. Here, you can create a new version of the notebook by clicking +Version. The Create Version dialog opens. Enter a name of the notebook version, a description, and click OK. The new version of the notebook gets created by the same name with a suffix _2 for the second version. For subsequent versions, suffix (number) increments by one. To revert to an older version by clicking Revert Version. You also have the option to delete any version of the notebook. Click Back to Notebooks to go to the OML Notebooks EA (Early Adopter) page.

Note:

You can also version a notebook by opening it, and then clicking on the

option. By using this option, you can create new versions, view version history, restore older versions, and delete any older versions of the notebook that you have opened.

Work with Notebook Versions on the Notebooks Page
 By creating versions of your notebook, you can archive your work in a notebook.

4.2.1 Work with Notebook Versions on the Notebooks Page

By creating versions of your notebook, you can archive your work in a notebook.

You can create versions of notebooks on the Notebooks page, as well as in the Notebook editor. In this example, the **Notebook Versioning Demo** notebook is created and versioned as **Version 1**.

Note:

A versioned notebook is non-editable. If you want to make any changes to a particular version of a notebook, you must restore that version to edit it.

Prerequisites: The *Notebook Versioning Demo* notebook. This notebook is created as part of the example here.

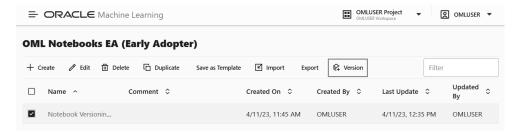
To create a new notebook version and view version history:

- 1. On the Notebooks EA Page, click **Create Notebooks**.
- 2. In the Create Notebooks dialog, enter the name Notebook Versioning Demo in the Name field and click OK. The notebook is created and it opens in the notebook editor.
- 3. On the notebook, hover your cursor over the lower border of the paragraph and click the + icon to add a paragraph. Add two more paragraphs to this notebook, and paste the following PL/SQL script in the paragraphs:

a. In the first paragraph, copy and paste the following PL/SQL script. This script creates the view ESM SH DATA from the SALES table present in the SH schema.

%script


```
CREATE OR REPLACE VIEW ESM_SH_DATA AS SELECT TIME ID, AMOUNT SOLD FROM SH.SALES;
```

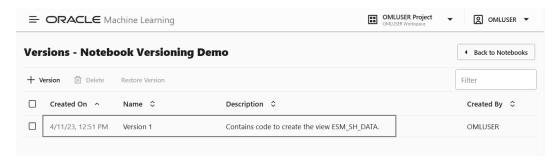

b. In the second paragraph, copy and paste the following SQL script. This script gives a count of the record present in the view ESM SH DATA.

```
%script
SELECT count(*) from ESM_SH_DATA;
```

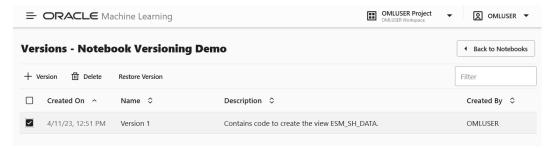
c. In the third paragraph, copy and paste the following SQL script to review the data in a tabular format.

```
SELECT * FROM ESM_SH_DATA
FETCH FIRST 10 ROWS ONLY;
```

- Run all the paragraphs, and go back to the Notebooks EA page after all the paragraphs run successfully.
- On the Notebooks EA page, select the Notebook Versioning Demo notebook to enable all the edit options, and click Versions to go to the versions page for this notebook.


The Versions - Notebook Versioning Demo page opens.

6. On the *Versions - Notebook Versioning Demo* page, click **Version** to create a new version of the notebook. This opens the Create Version dialog.



- 7. In the Create Versions dialog:
 - a. Name: Enter Version 1 for the new version of this notebook
 - b. Comments: Enter comments, if any.
 - c. Click **OK**. Once the notebook version is created, it is listed on the *Versions Notebook Versioning Demo* page.

8. On the *Versions - Notebook Versioning Demo* page, select **Version 1** of the notebook version that you just created to enable all the available options.

- Click **Delete** to delete the selected version of the notebook.
- Click Restore to restore the selected version of the notebook.

Restoring a selected version of the notebook will discard all the unversioned changes, if any.

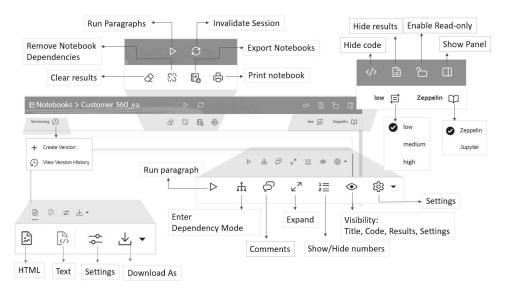
Click Back to Notebooks to go back to the Notebooks page.

4.3 Edit your Oracle Machine Learning Notebook Early Adopter

Upon creating a notebook, it opens automatically, presenting you with a single paragraph using the default %sql interpreter. You can change the interpreter by explicitly specifying one of <code>%script</code>, <code>%python</code>, <code>%sql</code>, <code>%r</code>, <code>%md</code>, or <code>%conda</code>.

Set the context with a project with which your notebook is associated. You can edit an existing notebook in your project. To edit an existing notebook:

1. On the Oracle Machine Learning home page, select the project in which your notebook is available.


A project is a logical grouping of notebooks and experiments within a workspace. While you may own many projects, other workspaces and projects may be shared with you.

2. Click the notebook that you want to open and edit.

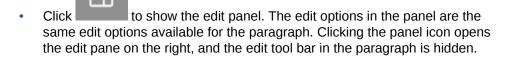
The selected notebook opens in edit mode.

3. In the edit mode, you can use the following Oracle Machine Learning Notebook Early Adopter toolbar options:

Notebook level edit options:

- Click to run all paragraphs in the notebook
- Click to invalidate and reset the notebook session.
- Click to create a new version this notebook, or to view the earlier versions of the notebook.
 - Create Version: Click this option to create a new version of this notebook. You have the option to provide a new name for the version, and a description about it. When you create a new notebook version, the paragraph results of each run session are stored in the versioned notebook. When you restore a notebook, the paragraph results of each run session are also restored. You can also create notebook versions from the editor. For more information, see Work with Notebook Versions in the Notebook Editor
 - View Version History: Click this option to view the earlier versions of the notebook. You have the option to restore any earlier version, compare versions, and delete any earlier version that you created.

Click to clear paragraph results.


Click to clear paragraph dependencies.

- Click to export the notebook. You can export the notebook as a .dsnb file (Early Adopter notebook), .zpln file (Zeppelin notebook) and .ipynb file (Jupyter notebook). You have these settings while exporting a notebook:
 - Export All
 - Exclude code
 - Exclude results
 - Exclude Timestamp
- Click to print the notebook
- Click to hide the code of all paragraphs in the notebook
- Click to hide the results of all the paragraph in the notebook
- Click to enable read-only mode for this notebook.

The read-only mode is available only for the Oracle Machine Learning Notebook Early Adopter.

Click

to change the interpreter binding to either low, medium, or high

 Click to switch the Early Adopter notebook to either Zeppelin or Jupyter notebook

Paragraph level edit options:

Click to run the selected paragraph

 Click to enter into Dependency Mode. In Dependency Mode, you must select and deselect paragraphs in order to add or remove them as dependents.

The Paragraph Dependencies feature allows you to add dependencies between paragraphs. The dependents of a paragraph automatically run after the original paragraph is run.

Click to open the Comments dialog. Type in your comments here, and press Enter to add the comment. You can also delete any comments by clicking the corresponding Delete icon. Click the comments icon to close the dialog. You can provide comments for each paragraph in a notebook. Paragraphs with comments are indicated by a green dot on the comments icon.

• Click to view the notebook paragraph in full screen mode. To view the paragraph in the normal mode, click the collapse icon.

1=

Click to show line numbers in the notebook paragraph.

• Click to view the paragraph title, code, results, and the paragraph settings.

- Click to:
 - Move up: Click to move the paragraph up in the notebook.
 - Move down: Click to move the paragraph down in the notebook.
 - Clear results: Click to clear the results of the commands that you ran in the paragraph.
 - Open as Embedded Window: Click to view the current paragraph separately in your browser.
 - Clone Paragraph: Click to clone the paragraph. The paragraph is cloned in the same notebook.
 - Disable Run: Click to disable running of the paragraph. To enable run, go to Settings and click Enable Run.
 - Delete Paragraph: Click to delete the paragraph.

Click

to view the paragraph in HTML format

Click

to view the paragraph in text format

 Click to adjust settings of the notebook paragraph output. This setting is specifically applicable to visualizations in graphs, charts etc.

- Click to download the paragraph as a text file, or as .png or .svg files, as applicable, for paragraphs that contains graphs or charts as output.
- Work with Notebook Versions in the Notebook Editor
 By creating versions of your notebook, you can archive your work in a notebook.
- Create Paragraph Dependencies
 Paragraph Dependencies allow you to add dependencies between paragraphs. The dependent paragraphs automatically run after the original paragraph is run, according to the order of dependency.

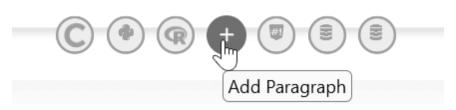
4.3.1 Work with Notebook Versions in the Notebook Editor

By creating versions of your notebook, you can archive your work in a notebook.

You can create versions of notebooks in the Notebooks editor, as well as on the Notebooks page. In this example:

- The original notebook *Notebook Versioning Demo*, is edited to add a script to build a machine learning model.
- The *Notebook Versioning Demo* notebook is then versioned as **Version 2** to archive the code to build the machine learning model.
- The Version 2 and Version 1 of the Notebook Versioning Demo notebook are compared using the Compare Versions feature.

A versioned notebook is non-editable. If you want to make any changes to a particular version of a notebook, you must restore that version to edit it.


To create a new notebook version and view version history:

 On the Notebooks EA page, click on the Notebook Versioning Demo notebook to open it in the notebook editor.

Version 1 of this notebook is already created as part of the example in Work with Notebook Versions on the Notebooks Page. It contains the archived code to create the view ESM_SH_DATA, count the record, and view the data. Clicking on the notebook opens the original version which is editable.

2. Now, edit the notebook to add a script to build a machine learning model. On the notebook, hover your cursor over the lower border of the third paragraph, and click the + icon to add a new paragraph.

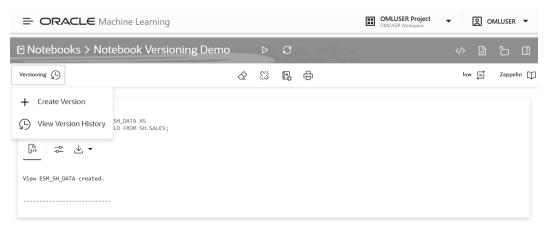
3. Copy and paste the following script to the new paragraph. This script builds a machine learning model using the ESM algorithm.

%script

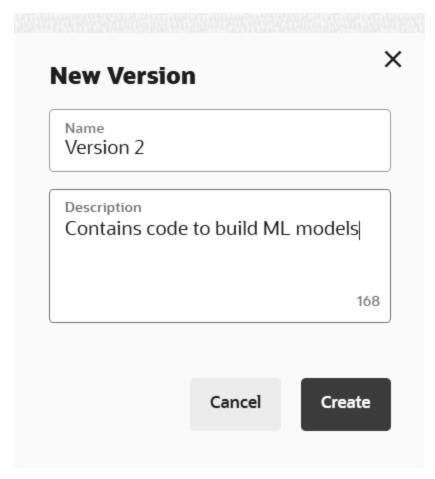
BEGIN DBMS_DATA_MINING.DROP_MODEL('ESM_SALES_FORECAST_1');
EXCEPTION WHEN OTHERS THEN NULL; END;


```
DECLARE
  v set1st DBMS DATA MINING.SETTING LIST;
BEGIN
   accumulation int'l = quarter
   v set1st('EXSM PREDICTION STEP') := '4';
prediction step = 4 quarters
   v set1st('EXSM MODEL')
                                 := 'EXSM WINTERS';
                                                        -- ESM model
= Holt-Winters
   v set1st('EXSM SEASONALITY') := '4';
                                                         -- seasonal
cycle = 4 quarters
   DBMS DATA MINING.CREATE MODEL2(
       MODEL_NAME => 'ESM_SALES_FORECAST_1',
       MINING_FUNCTION => 'TIME_SERIES',

DATA_QUERY => 'select * from ESM_SH_DATA',

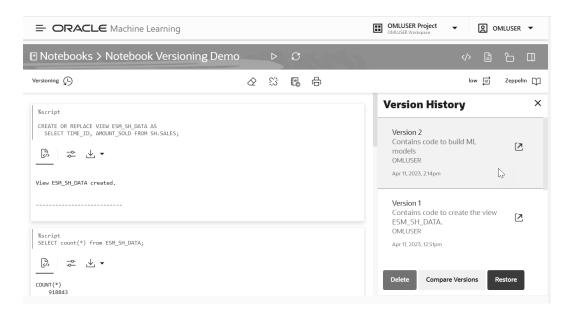

SET_LIST => v_set1st,
       CASE ID COLUMN NAME => 'TIME ID',
       TARGET COLUMN NAME =>'AMOUNT SOLD');
END;
```

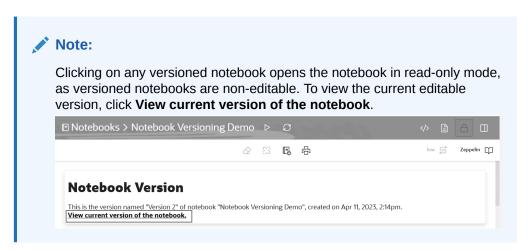
4. Now, archive this notebook along with the code to build the machine learning model by


versioning it. On the top left corner of the notebook editor, click Versioning

5. The options to **Create Version** and **View Version History** opens.

- 6. Click Create Version. The New Version dialog opens.
- 7. In the **New Version** dialog:
 - a. Name: Here, the name Version 2 is taken by default. Let's retain this name.
 - b. Comments: Enter comments, if any.
 - **c.** Click **Create.** A message is displayed confirming the creation of the new version.




Version 2 of this notebook now contains the archived code to create the machine learning model.

- 8. To view the version that you just created, click **Versioning**, and then click **View Version History**.
- On the right pane of the notebook editor, the Version History panel opens. Hover your cursor over any notebook version and click on it to enable the available options.
- **10.** You can perform the following tasks in the Version History panel:

• Click to open the selected version.

- Click **Delete** to delete the selected version.
- Click Compare Versions to compare the selected and current version of the
 notebook. You can select other available versions from the drop-down list. In this
 example, Version 2 of the notebook (under Current State) is compared with Version
 1. New additions are highlighted in green, as shown in the screenshot here, and

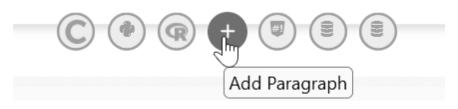
Compare versions × Version 1 **Current State** Inline Diff Creation Date: Apr 11, 2023, 12:51pm Last Modified: Apr 11, 2023, 2:14pm SELECT count(*) from ESM SH DATA; SELECT count(*) from ESM SH DATA; **Paragraph** %sql %sal SELECT * FROM ESM_SH_DATA SELECT * FROM ESM_SH_DATA FETCH FIRST 10 ROWS ONLY; FETCH FIRST 10 ROWS ONLY; **Paragraph** [Code] %script BEGIN DBMS_DATA_MINING.DROP_MODEL('ESM_SALES_FORECAST_1'); EXCEPTION WHEN OTHERS THEN NULL; END;

deletions are highlighted in red.

Click Restore to restore the selected version.

Restoring a selected version of the notebook will discard all the unversioned changes, if any.

4.3.2 Create Paragraph Dependencies


Paragraph Dependencies allow you to add dependencies between paragraphs. The dependent paragraphs automatically run after the original paragraph is run, according to the order of dependency.

To create paragraph dependencies:

- 1. On the Notebooks EA Page, click Create Notebooks.
- 2. In the Create Notebooks dialog, enter the name Paragraph Dependencies Demoin the Name field and click OK.

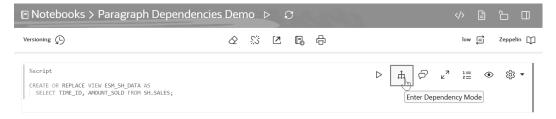
The notebook is created and it opens in the notebook editor.

3. On the notebook, hover your cursor over the lower border of the paragraph and click the + icon to add a paragraph. Add two more paragraphs to this notebook, and paste the following PL/SQL script in the paragraphs:

a. In the first paragraph, copy and paste the following PL/SQL script. This script creates the view ESM SH DATA from the SALES table present in the SH schema.

%script

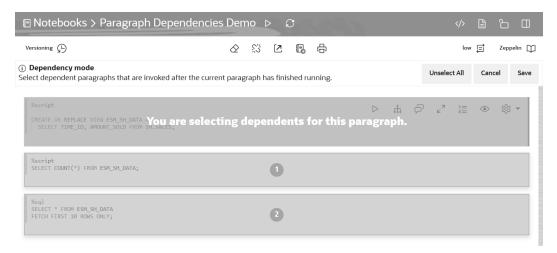

```
CREATE OR REPLACE VIEW ESM_SH_DATA AS SELECT TIME ID, AMOUNT SOLD FROM SH.SALES;
```

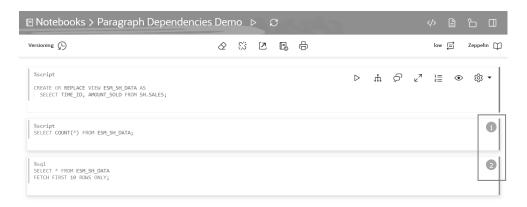

b. In the second paragraph, copy and paste the following SQL script. This script gives a count of the record present in the view ESM SH DATA.

```
%script
SELECT COUNT(*) FROM ESM SH DATA;
```

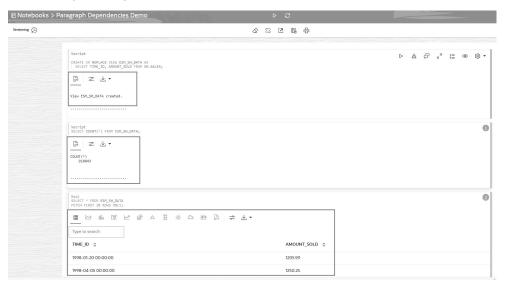
c. In the third paragraph, copy and paste the following SQL script to review the data in a tabular format.

```
%sql
SELECT * FROM ESM_SH_DATA
FETCH FIRST 10 ROWS ONLY;
```


4. Go to the first paragraph and click on the **Enter Dependency Mode** icon.

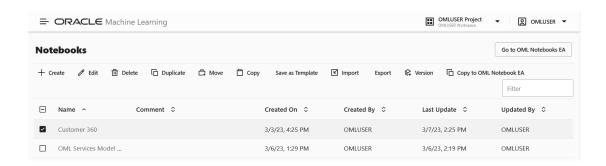

The message appears: You are selecting dependents for this paragraph

5. Click on the second and third paragraph to add them as dependents of paragraph one.



6. Click **Save.** Once the dependent paragraphs are defined and saved, it is indicated by the numbers as shown in the screenshot here:

 Now, go to the first paragraph and click Run. After the first paragraph starts successfully, the subsequent dependent paragraphs start to run according to the order of dependency.


About Oracle Machine Learning Notebooks

A notebook can contain many paragraphs. A paragraph is a notebook component where you can write and run SQL statements, PL/SQL scripts, R and Python code, and conda instructions. You can run paragraphs individually or, run all the paragraphs in a notebook using a single button.


A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the code or text. This information is sent to the interpreter to be run. In the output section, the results of the interpreter are provided.

The Notebooks page lists all the notebooks associated with the selected project. You can create, edit, and run your notebooks here.

You can perform the following tasks in the Notebooks page:

 Go to OML Notebook EA: Click Go to OML Notebook EA to go to the Oracle Machine Learning Notebooks Early Adopter page.

- Create: Click Create to create a new notebook.
- Edit: Click on a notebook row to select it and click Edit. You can edit the notebook name, and add comments in the Edit Notebook dialog box.
- Delete: Click on a notebook row to select it and click Delete.
- Duplicate: Click on a notebook row to select it, and click Duplicate. This creates a copy
 of a notebook, and the duplicate copy of the is listed on the Notebooks page with the
 suffix 1 in the notebook name.
- Move: Select a notebook and click Move to move the notebook to a different project, either in the same or in a different workspace. You must have either the Administrator or Developer privilege to move notebooks across projects and workspaces. You can move notebooks that are running from jobs because when you run notebooks from jobs, it runs a copy of the notebook.

Note:

A notebook cannot be moved if it is in RUNNING state, or if a notebook already exists in the target project by the same name.

- Copy: Select a notebook and click Copy to copy the notebook to another project, either in the same or different workspace. You must have either the Administrator or the Developer privilege to copy notebooks in different projects and workspaces.
- Save as Template: To save a notebook as a template, select the notebook and click Save as Template. In the Save as Template dialog, you can define the location of the template to save it in **Personal** or **Shared** under Templates.
- **Import:** To import a notebook as .json files, click **Import.** Select the project and workspace in which to import the notebook.
- **Export:** To export a notebook, click **Export.** You can export notebooks in Zeppelin format (.json) file and in Jupyter format (.ipynb), and later import them in to the same or a different environment.
- Version: To create versions of a notebook, select it and click Version. You can
 experiment with your notebook by creating versions of it, and revert to an older
 version by clicking Revert Version.

Note:

You can also version a notebook by opening it, and then clicking on the

Versioning option . Using this option, you can create new versions, view version history, restore older versions, and delete any older versions of the notebook that you have opened.

- Copy to OML Notebook EA: To copy the selected notebook(s) to the early
 adopter interface using the original name with the suffix _ea._ea. You can now
 access this notebook by clicking on Notebooks EA in the left navigation menu, or
 by clicking on Go to OML Notebooks EA on the top right corner of this page.
- To open a notebook and run it, click the notebook. Notebook opens in the edit mode.

Create a Notebook

A notebook is a web-based interface for data analysis, data discovery, data visualization and collaboration.

Edit Your Notebook

Upon creating a notebook, it opens automatically, presenting you with a single paragraph using the default <code>%sql</code> interpreter. You can change the interpreter by explicitly specifying one of <code>%script</code>, <code>%python</code>, <code>%sql</code>, <code>%r</code>, <code>%md</code> or <code>%conda</code>.

Version a Notebook

You can version or create a backup a notebook, experiment on it, and revert to the original notebook, if required.

Save Notebooks as Templates

You can save an existing notebook as a template in Personal or in Shared.

Use the SQL Interpreter in a Notebook Paragraph

An Oracle Machine Learning notebook supports multiple languages. Each paragraph is associated with a specific interpreter. For example, to run SQL statements use the SQL interpreter. To run PL/SQL statements, use the script interpreter.

Use the Python Interpreter in a Notebook Paragraph

An Oracle Machine Learning notebook supports multiple languages. Each paragraph is associated with a specific interpreter. To run Python commands in a notebook, you must first connect to the Python interpreter. To use OML4Py, you must import the oml module.

• Use the R Interpreter in a Notebook Paragraph

An Oracle Machine Learning notebook supports multiple languages. Each paragraph is associated with a specific interpreter. To run R functions in an Oracle Machine Learning notebook, you must first connect to the R interpreter.

• Use the Conda Interpreter in a Notebook Paragraph

Oracle Machine Learning Notebooks provides a Conda interpreter to enable administrators to create conda environments with custom third-party Python and R libraries. Once created, you can download and activate Conda environments inside a notebook session also using the Conda interpreter.

- Call the Markdown Interpreter and Generate Static html from Markdown Plain Text Use the Markdown interpreter and generate static html from Markdown plain text.
- About Interpreter Bindings and Notebooks

An interpreter is a plug-in that allows you to use a specific data processing language backend.

Use the Scratchpad

The Scratchpad provides you convenient one-click access to a notebook for running SQL statements, PL/SQL, R, and Python scripts that can be renamed. The Scratchpad is available on the Oracle Machine Learning User Interface (UI) home page.

Collaborate in Oracle Machine Learning

Two or more users can collaborate and share Oracle Machine Learning User Interface (UI) notebooks with other users.

Related Topics

About Interpreter Bindings and Notebooks

An interpreter is a plug-in that allows you to use a specific data processing language backend.

5.1 Create a Notebook

A notebook is a web-based interface for data analysis, data discovery, data visualization and collaboration.

Whenever you create a notebook, it has an interpreter settings specification. The notebook contains an internal list of bindings that determines the order of the interpreter bindings. A notebook comprises paragraphs which is a notebook component where you can write SQL statements, run PL/SQL scripts, and run Python commands. A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the text. This information is sent to the interpreter to be executed. In the output section, the results of the interpreter are provided.

To create a notebook:

- 1. On the Oracle Machine Learning UI home page, click **Notebooks.** The Notebooks page opens.
- 2. On the Notebooks page, click Create.
 - The Create Notebook window appears.
- 3. In the **Name** field, provide a name for the notebook.
- 4. In the **Comments** field, enter comments, if any.
- 5. Click OK.

Your notebook is created and it opens in the notebook editor. You can now use it to run SQL statements, run PL/SQL scripts, run Python, R and Conda commands. To do so, specify any one of the following directives in the input section of the paragraph:

- %sql To call the SQL interpreter and run SQL statements
- %script To call PL/SQL interpreter and run PL/SQL scripts
- %md To call the Markdown interpreter and generate static html from Markdown plain text
- %python To call the Python interpreter and run Python scripts
- %r To call the R interpreter and run R scripts.
- %conda To connect to the Conda interpreter, and install third-party Python and R libraries inside a notebook session.

5.2 Edit Your Notebook

Upon creating a notebook, it opens automatically, presenting you with a single paragraph using the default <code>%sql</code> interpreter. You can change the interpreter by explicitly specifying one of <code>%script</code>, <code>%python</code>, <code>%sql</code>, <code>%r</code>, <code>%md</code> or <code>%conda</code>.

Set the context with a project with which your notebook is associated.

You can edit an existing notebook in your project. To edit an existing notebook:

- On Oracle Machine Learning UI home page, select the project in which your notebook is available.
- 2. Go to the Oracle Machine Learning UI navigator, and select **Notebooks**. Alternatively, you can click the **Notebooks** quick link on the home page.
 - On the right pane, all notebooks that are available in the project are listed.
- 3. Click the notebook that you want to open and edit.
 - The selected notebook opens in edit mode.
- In the edit mode, you can use the Oracle Machine Learning notebooks toolbar options to run code in paragraphs, for configuration settings, and display options.

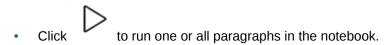
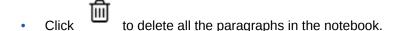
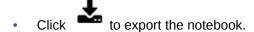


Figure 5-1 Notebook toolbar

You can perform the following tasks:

Write code to fetch data




Took 0 secs. Last updated by OMLUSER2 at January 15 2021, 12:40:41 PM.

 Click to hide all codes from all the paragraphs in the notebook. Click it again to display the codes.

• Click to hide all outputs from all the paragraphs in the notebook. Click it again to view the outputs.

• Click to remove all outputs from all the paragraphs in the notebook. To view the output, click the run icon again.

- Click to search any information in the codes present in the notebook.
- Click to view the list of keyboard shortcuts.
- Click to set the order for interpreter bindings for the notebook.
- Click default ▼
 to select one of the three notebook display options.
 - Click default to view the codes, output, and metadata in all paragraphs in the notebook.
 - Click Simple to view only the code and output in all paragraphs in the notebook. In this view, the notebook toolbar and all edit options are hidden. You must hover your mouse to view the edit options.
 - Click Report to view only the output in all paragraphs in the notebook.
- Click to access paragraph specific edit options such as clear output, remove paragraph, adjust width, font size, run all paragraphs above or below the selected paragraph and so on.
- Add dynamic forms such as the Text Input form, Select form, Check box form for easy selection of inputs and easy filtering of data in your notebook. Oracle Machine Learning supports the following Apache Zeppelin dynamic forms:
 - Text Input form Allows you to create a simple form for text input.
 - Select form Allows you to create a form containing a range of values that the user can select.
 - Check Box form Allows you to insert check boxes for multiple selection of inputs.

The Apache Zeppelin dynamic forms are supported only on SQL interpreter notebooks.

5. Once you have finished editing the notebook, click **Back.**

This takes you back to the Notebook page.

Export a Notebook

You can export a notebook in Zeppelin format (.json) file and in Jupyter format (.ipynb), and later import them in to the same or a different environment.

Import a Notebook

You can import notebooks across Pluggable Databases (PDBs) into your workspace. You can also import Jupyter notebooks into Oracle Machine Learning UI.

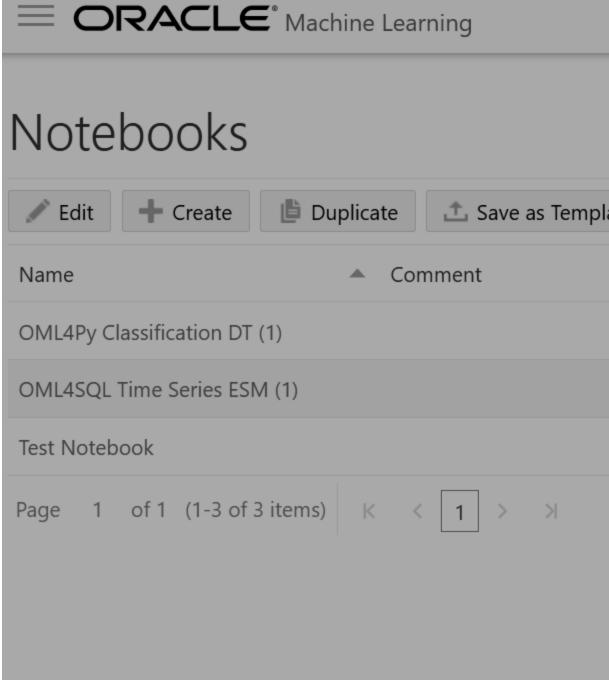
Create Check Box Forms in Notebooks

The Check Box Form supports multiple selection of inputs in a paragraph. The inputs are available as check box options in the notebook.

Create Select Forms in Notebooks

The Select Form allows you to select input values from a list of values, and dynamically retrieve the selected values as defined in the paragraph.

Create Text Input Forms in Notebooks
 The Text Input form allows you to dynamically retrieve values as defined in the notebook.


5.2.1 Export a Notebook

You can export a notebook in Zeppelin format (.json) file and in Jupyter format (.ipynb), and later import them in to the same or a different environment.

To export a notebook:

- On the Notebooks page, select the notebooks that you want to export. You have the option to export one or more or all the notebooks.
- 2. On the top panel of the notebook editor, click Export and then click any one of the following options:

- Notebooks to Export To export notebooks, click:
 - All To export all the notebooks.
 - Selected To export the selected notebooks.
- Format Select the format in which you want to export your notebook:
 - Zeppelin Exports the notebook as a .json (JavaScript Object Notation) file.
 - Jupyter Exports the notebook as a .ipynb file.

The exported notebooks are saved either as .json files or .ipynb files in a zipped folder.

Related Topics

About Interpreter Bindings and Notebooks
 An interpreter is a plug-in that allows you to use a specific data processing language backend.

5.2.2 Import a Notebook

You can import notebooks across Pluggable Databases (PDBs) into your workspace. You can also import Jupyter notebooks into Oracle Machine Learning UI.

Oracle Machine Learning UI supports the import of both Zeppelin (.json) and Jupyter (.ipynb) notebooks.

Starting in Oracle Database 20c,"database" refers specifically to the data files of a multitenant container database (CDB), pluggable database (PDB), or application container.

To import a notebook:

- 1. On Oracle Machine Learning UI home page, click Notebooks.
- 2. On the Notebooks page, click Import.

This opens the **File Upload** dialog. Browse and select the notebook that you want to import.

You must have the notebook saved as a .json file to import it. You can import notebooks exported from non-Oracle Apache Zeppelin environments, but only paragraphs types that are supported may be run.

- 3. In the File Upload dialog, browse and select the .json file and click **Open.**
 - This imports the notebook file into your workspace.
- **4.** Click the imported notebook to open it. On the Notebooks page, click the gear icon to view the interpreter bindings.

Related Topics

- About Interpreter Bindings and Notebooks
 An interpreter is a plug-in that allows you to use a specific data processing language backend.
- Database and Instance

5.2.3 Create Check Box Forms in Notebooks

The Check Box Form supports multiple selection of inputs in a paragraph. The inputs are available as check box options in the notebook.

To create a Check Box Form:

- 1. Open the notebook in which you want to add the Check Box Form.
- 2. In a SQL statement, define the Check Box form by using the syntax:

```
${checkbox:formName=defaultValue1|defaultValue2...,option1|option2...}
```

For example, run the SQL statement:

SELECT \${checkbox:whichcolumn=OWNER|OBJECT_TYPE, OWNER|OBJECT_NAME|OBJECT_TYPE|CREATED|STATUS} FROM ALL_OBJECTS WHERE OBJECT_TYPE IN ('VIEW', 'TABLE', 'INDEX', 'SYNONYM');

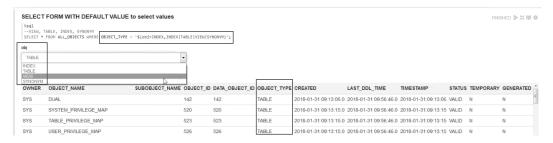
In this example,

- The Check Box form is WhichColumn
- The multiple selection options available in the check boxes are OWNER,
 OBJECT_NAME, OBJECT_TYPE, CREATED, and STATUS
- The fields OWNER and OBJECT TYPE are defined as default
- The table name is ALL OBJECTS
- The columns that are configured for display are OWNER, OBJECT_NAME, OBJECT_TYPE, CREATED, and STATUS
- Run the notebook. The Check Box form called WhichForm is available in the notebook, as shown in the screenshot.

5.2.4 Create Select Forms in Notebooks

The Select Form allows you to select input values from a list of values, and dynamically retrieve the selected values as defined in the paragraph.

To create a Select form:


- 1. Open the notebook in which you want to add the text input form.
- 2. In a SQL statement, define the Select form by using the syntax:

```
${formName=defaultValue,option1|option2...}.
```

For example, run the SQL statement:

```
SELECT * FROM ALL_OBJECTS WHERE OBJECT_TYPE = '${OBJ=INDEX,INDEX|
TABLE|VIEW|SYNONYM}';
```


In this example,

- The form name is obj
- The list of available values are INDEX, TABLE, VIEW, SYNONYM.
- The table name is ALL_OBJECTS
- The column name is OBJECT TYPE

Select any values from the drop-down list in the **obj** form. The selected value will be retrieved in the OBJECT_TYPE column in the ALL_OBJECTS table.

5.2.5 Create Text Input Forms in Notebooks

The Text Input form allows you to dynamically retrieve values as defined in the notebook.

To create a Text Input form:

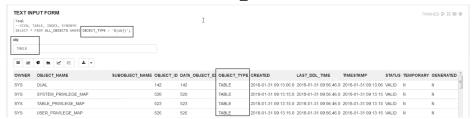
- 1. Open the notebook in which you want to add the Text Input form.
- 2. In a SQL statement, define the Text Input form by using the syntax:

```
${formName}
```

For example, run the SQL statement:

```
SELECT * FROM ALL OBJECTS WHERE OBJECT TYPE = '${OBJ}';
```

In this example,


- The form name is obj
- The table name is ALL OBJECTS
- The column name is OBJECT_TYPE

Here, the text form **obj** is created for the column OBJECT_TYPE in the table ALL_OBJECTS. You can enter different values in the form field **obj** and run the notebook to retrieve the corresponding values in the column OBJECT_TYPE.

3. Run the paragraph. The notebook now displays the text input form field **obj**, as shown in the screenshot. You can enter values in the **obj** field, and run the notebook to retrieve the corresponding values for the column OBJECT_TYPE in the table ALL_OBJECTS.

• If you enter TABLE in the **obj** field, and run the notebook, then the notebook retrieves TABLE in the column OBJECT_TYPE, as shown in the screenshot.

If you enter VIEW in the obj form field and run the notebook, then the
notebook retrieves the value VIEW in the column OBJECT_TYPE, as shown
in the screenshot.

4. You can also assign default values in the form by using the syntax:

\${formName=defaultValue}

To assign a default value to the Text Input form, modify the SQL statement to:

```
SELECT * FROM ALL OBJECTS WHERE OBJECT TYPE = '${obj=TABLE}'
```

Here, the default value assigned to the form is TABLE. Once you run the paragraph, the default value TABLE will be retrieved in the column OBJECT_TYPE, as shown in the screenshot.

5.3 Version a Notebook

You can version or create a backup a notebook, experiment on it, and revert to the original notebook, if required.

To version a notebook:

 On the Notebooks page, select the notebook that you want to version and click Version.

The Versions page opens.

2. On the Versions page for the selected notebook, click + Version.

The Create Versions dialog box opens.

- 3. In the Create Versions dialog box, enter comments for the specific version of your notebook, and click **OK**.
- 4. The versioned notebook is now listed on the Versions page. You can perform the following tasks:
 - Click Revert Version to restore the older version of your notebook.
 - Click **Delete** to delete the selected version of your notebook.
 - Click New Notebook to create a new notebook from the selected notebook version.

5.4 Save Notebooks as Templates

You can save an existing notebook as a template in Personal or in Shared.

To save a notebook as a template:

 On the Notebooks page, select the notebook that you want to save as template and click Save as Template.

The Save as Template dialog box opens.

- 2. In the **Name** field, enter a name for the notebook template.
- 3. In the Comments field, enter comments, if any.
- 4. In the **Tags** field, enter tags for the template.
- 5. In Save To, select:
 - Personal: If you want to save this notebook template to Personal such that only your account can view or use this notebook.
 - **Shared:** If you want to save and share this notebook template such that other users can view and create notebooks from this template that they can run and edit.

5.5 Use the SQL Interpreter in a Notebook Paragraph

An Oracle Machine Learning notebook supports multiple languages. Each paragraph is associated with a specific interpreter. For example, to run SQL statements use the SQL interpreter. To run PL/SQL statements, use the script interpreter.

In an Oracle Machine Learning UI notebook, you can add multiple paragraphs, and each paragraph can be connected to different interpreters such as SQL or Python. You identify which interpreter to use by specifying % followed by the interpreter to use: sql, script, r, python, conda, markdown.

A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the text. This information is sent to the interpreter to be run. In the output section, the results of the interpreter are provided. You can use the following directives in a notebook paragraph:

- \$sql Supports standard SQL statements. In \$sql the results of a SELECT statement are directly displayed in a table viewer, with access to other visualization options. Use the options in the chart settings to perform groupings, summation, and other operations.
- %script Supports both SQL statements and PL/SQL. In %script, the results of a SELECT statement are provided as text string output.

- %conda Supports the Conda environment. Type %conda at the beginning of the
 paragraph to connect to the Conda environment and work with third-party libraries
 for Python.
- $\mbox{\$r}$ Supports R scripts. Type $\mbox{\$r}$ at the beginning of the paragraph to connect to the R interpreter.
- %python Supports Python scripts. Type %python at the beginning of the paragraph to connect to the Python interpreter.
- %md Supports Markdown markup language.

Note:

To run a **Group By** on all your data, then it is recommended to use SQL scripts to do the grouping in the database, and return the summary information for charting in the notebook. Grouping at the notebook level works well for small sets of data. If you pull too much data to the notebook, you may encounter issues due to insufficient memory. You can set the row limit for your notebook by using the option **Render Row Limit** on the Connections Group page.

To fetch and visualize data in a notebook:

- On the Notebook page, click the notebook that you want to run.
 The notebook opens in edit mode.
- 2. Type \square SQL to call the SQL interpreter, and press Enter. Your notebook is now ready to run SQL statements.
- 3. Type the SQL statement to fetch data from an Oracle Database. For example, type SELECT * FROM TABLENAME and click run the notebook.

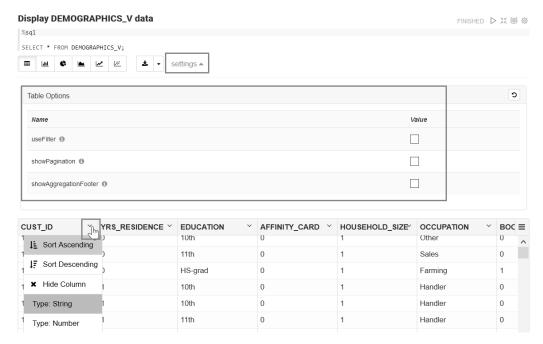
Note:

Notebooks must be opened as a regular user, that is, a non-administrator user. The **Run** notebook option is not available to the Administrator.

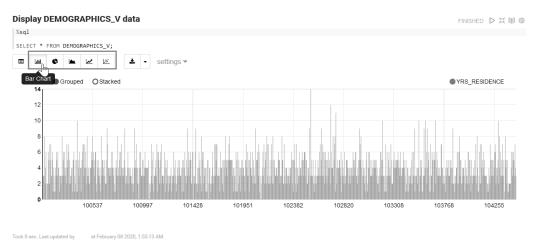
This fetches the data in the notebook.

4. The data is displayed in the output of the paragraph.

The results of the interpreter appear in the output section. The output section of the paragraph comprises a charting component that displays the results in graphical output. The chart interface allows you to interact with the output in the notebook paragraph. You have the option to run and edit single a paragraph or all paragraphs in a notebook.


For Table Options, click settings and select:

- useFilter: To enable filter for columns.
- showPagination: To enable pagination for enhanced navigation.


showAggregationFooter: To enable a footer to display aggregated values.

You can also sort the columns by clicking the down arrow next to the column name.

To visualize the tabular data, click the respective icons for each of the each graphical representation, as shown here:

- Click to represent the data in a Bar Chart.
- Click to represent the data in a Pie Chart.
- Click to represent the data in an Area Chart.
- Click to represent the data in a Line Chart.
- Click to represent the data in a Scatter Chart.

About Oracle Machine Learning for SQL

Oracle Machine Learning for SQL (OML4SQL) provides a powerful, state-of-the-art machine learning capability within Oracle Database. You can use Oracle Machine

Learning for SQL to build and deploy predictive and descriptive machine learning models, add intelligent capabilities to existing and new applications.

Set Output Format in Notebooks
 Oracle Machine Learning Notebooks allow you to preformat query output in notebooks.

• Output Formats Supported by SET SQLFORMAT Command

By using the SET SQLFORMAT command, you can generate the query output in a variety for formats.

Related Topics

Edit Oracle Database Interpreter Connection
 When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

Edit Oracle Database Interpreter Connection
 When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

5.5.1 About Oracle Machine Learning for SQL

Oracle Machine Learning for SQL (OML4SQL) provides a powerful, state-of-the-art machine learning capability within Oracle Database. You can use Oracle Machine Learning for SQL to build and deploy predictive and descriptive machine learning models, add intelligent capabilities to existing and new applications.

Oracle Machine Learning for SQL offers an extensive set of in-database algorithms for performing a variety of machine learning tasks, such as classification, regression, anomaly detection, feature extraction, clustering, and market basket analysis, among others. The programmatic interfaces to OML4SQL are PL/SQL for building and maintaining models and a family of SQL functions for scoring.

Use Oracle Machine Learning Notebook with the SQL and PL/SQL interpreters to run SQL statements (\$sql) and PL/SQL scripts (\$script) respectively. Use Oracle Machine Learning for SQL to:

- Perform data exploration and data analysis
- Build, evaluate and deploy machine learning models, and
- Score data using those models

5.5.2 Set Output Format in Notebooks

Oracle Machine Learning Notebooks allow you to preformat query output in notebooks.

To preformat query output, you must use the command SET SQLFORMAT as follows:

- 1. Open a notebook in Oracle Machine Learning.
- **2.** Type the command:

%script
SET SQLFORMAT format option

For example, if you want the output in ansiconsole format, then type the command followed by the SQL query as:

```
SET SQLFORMAT ansiconsole;
SELECT * FROM HR.EMPLOYEES;
```

Here, the output format is ansiconsole, and the table name is HR.EMPLOYEES.

This formatting is available for the Script interpreter. Therefore, you must add the prefix %script as shown in this example.

5.5.3 Output Formats Supported by SET SQLFORMAT Command

By using the SET SQLFORMAT command, you can generate the query output in a variety for formats.

These output formats are available for the Script interpreter. Therefore, you must include the prefix \$script.

The available output formats are:

 CSV — The CSV format produces standard comma-separated variable output, with string values enclosed in double quotes. The syntax is:

```
%script
SET SQLFORMAT CSV
```

 HTML — The HTML format produces the HTML for a responsive table. The content of the table changes dynamically to match the search string entered in the text field. The syntax is:

```
%script
SET SQLFORMAT HTML
```

 XML — The XML format produces a tag based XML document. All data is presented as CDATA tags. The syntax is:

```
%script
SET SQLFORMAT XML
```

 JSON — The JSON format produces a JSON document containing the definitions of the columns along with the data that it contains. The syntax is:

```
%script
SET SQLFORMAT JSON
```

 ANSICONSOLE — The ANSICONSOLE format resizes the columns to the width of the data to save space. It also underlines the columns, instead of separate line of output. The syntax is:

```
%script
SET SQLFORMAT ANSICONSOLE
```

• INSERT — The INSERT format produces the INSERT statements that could be used to recreate the rows in a table. The syntax is:

```
%script
SET SQLFORMAT INSERT
```

 LOADER — The LOADER format produces pipe delimited output with string values enclosed in double quotes. The column names are not included in the output. The syntax is:

```
%script
SET SQLFORMAT LOADER
```

• FIXED — The FIXED format produces fixed width columns with all data enclosed in double-quotes. The syntax is:

```
%script
SET SQLFORMAT FIXED
```

DEFAULT — The DEFAULT option clears all previous SQLFORMAT settings, and returns to the default output. The syntax is:

```
%script
SET SQLFORMAT DEFAULT
```


You can also run this command without the format name ${\tt DEFAULT}$ by simply typing ${\tt SET}$ ${\tt SQLFORMAT}.$

• DELIMITED — The DELIMITED format allows you to manually define the delimiter string, and the characters that are enclosed in the string values. The syntax is:

```
%script
SQLFORMAT DELIMITED delimiter left_enclosure right_enclosure
For example,
```

```
%script
SET SQLFORMAT DELIMITED ~del~ " "
SELECT * FROM emp WHERE deptno = 20;
```

Output:

```
"EMPNO"~del~"ENAME"~del~"JOB"~del~"MGR"~del~"HIREDATE"~del~"SAL"~del~"COMM"~del~"DEPTNO"
```

In this example, the delimiter string is $\neg del \neg$ and string values such as EMPNO, ENAME, JOB and so on, are enclosed in double quotes.

5.6 Use the Python Interpreter in a Notebook Paragraph

An Oracle Machine Learning notebook supports multiple languages. Each paragraph is associated with a specific interpreter. To run Python commands in a notebook, you must first connect to the Python interpreter. To use OML4Py, you must import the oml module.

In an Oracle Machine Learning UI notebook, you can add multiple paragraphs, and each paragraph can be connected to different interpreters such as SQL or Python. You identify which interpreter to use by specifying % followed by the interpreter to use: sql, script, r, python, conda, markdown.

This example shows you how to:

- Connect to a Python interpreter to run Python commands in a notebook
- Import the Python modules oml, matplotlib, and numpy
- Check if the oml module is connected to the Oracle Database

z is a reserved keyword and must not be used as a variable in %python paragraphs in Oracle Machine Learning UI notebooks.

Assumption: The example assumes that you have created a new notebook named Py Note.

- Open the Py Note notebook and click the interpreter bindings icon. View the available interpreter bindings.
- 2. To connect to the Python interpreter, type %python

You are now ready to run Python scripts in your notebook.

3. To use OML4Py module, you must import the oml module. Type the following Python command to import the oml module, and the click run icon. Alternatively, you can press Shift+Enter keys to run the notebook.

```
import oml
```

4. To verify if the oml module is connected to the Database, type:

```
oml.isconnected()
```


Py Note ▷ ※ ■ • • • •

```
%python
import oml
oml.isconnected()

True

Took 13 sec. Last updated by TEST at April 09 2020, 11:46:14 AM.

%python
```

Once your notebook is connected, the command returns $\tt TRUE$. The notebook is now connected to the Python interpreter, and you are ready to run python commands in your notebook.

Example to demonstrate the use of the Python modules - matplotlib and numpy, and use random data to plot two histograms.

5. Type the following commands to import the modules:

```
%python
import matplotlib.pyplot as plt
import numpy as np
```

- Matplotlib Python module to render graphs
- Numpy Python module for computations
- **6.** Type the following commands to compute and render the data in two histograms.

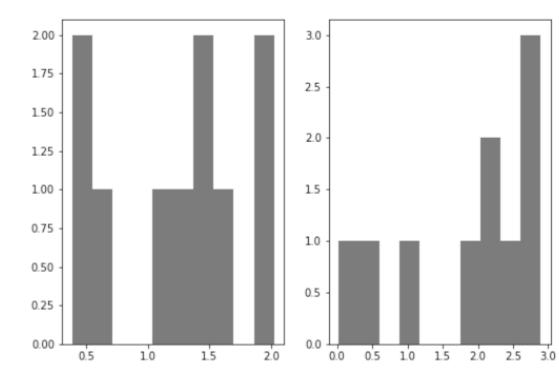
```
list1 = np.random.rand(10)*2.1
list2 = np.random.rand(10)*3.0
```



```
plt.subplot(1,2,1) # 1 line, 2 rows, index nr 1 (first position in the
subplot)
plt.hist(list1)
plt.subplot(1, 2, 2) # 1 line, 2 rows, index nr 2 (second position in the
subplot)
plt.hist(list2)
plt.show()
```

In this example, the commands import two Python module to compute and render the data in two histograms list1 and list2.

7. Click Run.




```
%python
import matplotlib.pyplot as plt
import numpy as np

list1 = np.random.rand(10)*2.1
list2 = np.random.rand(10)*3.0

plt.subplot(1,2,1) # 1 line, 2 rows, index nr 1 (first position in the subplot)
plt.hist(list1)
plt.subplot(1, 2, 2) # 1 line, 2 rows, index nr 2 (second position in the subplot plt.hist(list2)
plt.show()
```


Took 12 sec. Last updated by TEST at April 09 2020, 1:08:32 PM.

The output section of the paragraph which contains a charting component displays the results in two histograms - list1 and list2, as shown in the screenshot.

About Oracle Machine Learning for Python

Oracle Machine Learning for Python (OML4Py) is a component of Oracle Autonomous Database, which includes Oracle Autonomous Data Warehouse (ADW), Oracle Autonomous Transaction Processing (ATP), and Oracle Autonomous JSON Database (AJD). By using Oracle Machine Learning UI notebooks, you can run Python functions on data for data exploration and preparation while leveraging Oracle Database as a high-performance computing environment. Oracle Machine Learning User Interface (UI) is available through Autonomous Data Warehouse (ADW), Autonomous Transaction Processing (ATP) and Autonomous JSON Database (AJD) services.

5.6.1 About Oracle Machine Learning for Python

Oracle Machine Learning for Python (OML4Py) is a component of Oracle Autonomous Database, which includes Oracle Autonomous Data Warehouse (ADW), Oracle Autonomous Transaction Processing (ATP), and Oracle Autonomous JSON Database (AJD). By using Oracle Machine Learning UI notebooks, you can run Python functions on data for data exploration and preparation while leveraging Oracle Database as a high-performance computing environment. Oracle Machine Learning User Interface (UI) is available through Autonomous Data Warehouse (ADW), Autonomous Transaction Processing (ATP) and Autonomous JSON Database (AJD) services.

Oracle Machine Learning for Python (OML4Py) makes the open source Python scripting language and environment ready for the enterprise and big data. Designed for problems involving both large and small volumes of data, Oracle Machine Learning for Python integrates Python with Oracle Autonomous Database, including its powerful in-database machine learning algorithms, and enables deployment of Python code.

Use Oracle Machine Learning for Python to:

- Perform data exploration, data analysis, and machine learning using Python leveraging
 Oracle Database as a high performance compute engine
- Build and evaluate machine learning models and score data using those models from an integrated Python API using in-database algorithms
- Deploy user-defined Python functions through a REST interface with data-parallel and task-parallel processing

The Python interpreter uses Python 3.8.5 to process Python scripts in Oracle Machine Learning UI notebooks. To use the interpreter, specify the <code>%python</code> directive at the beginning of the paragraph. The Python interpreter supports the following Python modules:

- cx Oracle 7.3.0
- cycler 0.10.0
- joblib 0.14.0
- kiwisolver 1.1.0
- matplotlib 3.1.2
- numpy 1.18.1
- pandas 0.25.3
- pyparsing 2.4.0
- python-dateutil 2.8.1
- pytz 2019.3

- scikit learn 0.22.1
- scipy 1.4.1
- six 1.13.0

Related Topics

About Oracle Machine Learning for Python

5.7 Use the R Interpreter in a Notebook Paragraph

An Oracle Machine Learning notebook supports multiple languages. Each paragraph is associated with a specific interpreter. To run R functions in an Oracle Machine Learning notebook, you must first connect to the R interpreter.

In an Oracle Machine Learning UI notebook, you can add multiple paragraphs, and each paragraph can be connected to different interpreters such as R or SQL or Python. You identify which interpreter to use by specifying % followed by the interpreter to use: sql, script, r, python, conda, markdown.

This example shows how to:

- Connect to the R interpreter to run R commands in a notebook.
- · Verify the connection to Oracle Autonomous Database, and
- Load the ORE libraries
- To connect to the R interpreter, type the following directive at the beginning of the notebook paragraph, and press Enter:

%r

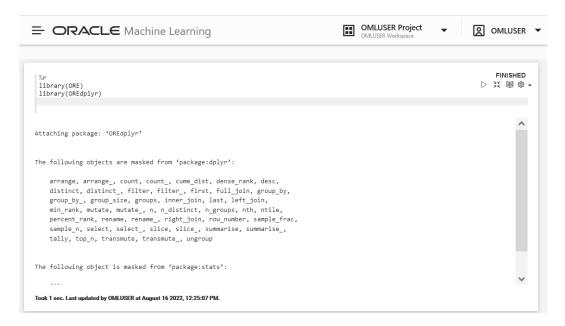
To know more about interpreters, see About Interpreter Bindings and Notebooks and Change Interpreter Bindings for Specific Paragraphs in a Notebook.

2. To verify the database connection, type the following command and press Enter:

```
ore.is.connected()
```

Once your notebook is connected, the command returns <code>TRUE</code>, as shown in the screenshot here. The notebook is now connected to the R interpreter, and you are ready to run R commands in your notebook.

Figure 5-2 Test Database Connection



3. To import R Libraries, run the following commands:

```
library(ORE)
library(OREdplyr)
```

Once the packages are loaded successfully, the list of ORE packages are displayed as shown in the screenshot here. Scroll down to view the entire list.

Figure 5-3 Commands to Load R Packages

About Oracle Machine Learning for R

Oracle Machine Learning for R (OML4R) is a component of the Oracle Machine Learning family of products, which integrates R with Oracle Autonomous Database.

5.7.1 About Oracle Machine Learning for R

Oracle Machine Learning for R (OML4R) is a component of the Oracle Machine Learning family of products, which integrates R with Oracle Autonomous Database.

Oracle Machine Learning for R makes the open source R scripting language and environment ready for enterprise and big data. It is designed for problems involving for both large and small data volumes. OML4R allows users to run R commands and scripts for statistical, machine learning, and perform visualization analyses on database tables and views using R syntax.

Oracle Machine Learning for R is available in Oracle Machine Learning UI, currently available through Oracle Autonomous Database, including Autonomous Data Warehouse, Autonomous Transaction Processing, and Autonomous JSON Database. Oracle Machine Learning for R Embedded R Execution functionality can be deployed through SQL and REST APIs on Autonomous Database.

Use Oracle Machine Learning for R to:

 Perform data exploration and data preparation while seamlessly leveraging Oracle Database as a high-performance computing environment.

- Run user-defined R functions on database spawned and controlled R engines, with system-supported data-parallel and task-parallel capabilities.
- Access and use powerful in-database machine learning algorithms from R language.

To use the R interpreter, specify the %r directive at the beginning of the paragraph. The following R packages are installed to support Oracle Machine Learning for R.

Supported Oracle Machine Learning for R Proprietary R Packages

The supported Oracle Machine Learning for R proprietary R packages are:

- ORE 1.5.1
- OREbase_1.5.1
- OREcommon 1.5.1
- OREdm 1.5.1
- OREdplyr 1.5.1
- OREeda 1.5.1
- OREembed 1.5.1
- OREgraphics 1.5.1
- OREmodels 1.5.1
- OREpredict 1.5.1
- OREstats 1.5.1
- ORExml 1.5.1

Supported Open Source R Modules

The following open source R packages are supported by Oracle Machine Learning for R:

- R-4.0.5
- Cairo 1.5-15
- ROracle 1.4-1: DBI 1.1-2
- arules 1.7-3
- png 0.1-7
- randomForest_4.6-14
- statmod 1.4-36
- dplyr_1.0-9:
- R6 2.5.1
- assertthat_0.2.1
- cli 3.3.0
- crayon 1.5.1

- ellipsis 0.3.2
- fansi 1.0.3
- generics 0.1.2
- glue 1.6.2
- lazyeval 0.2.2
- lifecycle 1.0.1
- magrittr 2.0.3
- pillar 1.7.0
- pkgconfig_2.0.3
- purrr 0.3.4
- rlang 1.0.2
- tibble 3.1.7
- tidyselect 1.1.2
- utf8 1.2.2
- vctrs 0.4.1

Oracle Machine Learning for R Interpreter Requirements

The R interpreter requires the following open source R packages:

- Rkernel 1.3:
 - base64enc 0.1-3
 - cli 3.3.0
 - crayon 1.5.1
 - digest 0.6.29
 - ellipsis 0.3.2
 - evaluate 0.15
 - fansi 1.0.3
 - fastmap 1.1.0
 - glue 1.6.2
 - htmltools 0.5.2
 - IRdisplay 1.1
 - jsonlite 1.8.0
 - lifecycle 1.0.1
 - pbdZMQ 0.3-7
 - pillar 1.7.0
 - repr 1.1.4
 - rlang 1.0.2


```
utf8 1.2.2
```

- uuid 1.1-0
- vctrs 0.4.1
- knitr 1.39:
 - evaluate 0.15
 - glue 1.6.2
 - highr 0.9
 - magrittr 2.0.3
 - stringi 1.7.6
 - stringr 1.4.0
 - xfun 0.31
 - yaml 2.3.5

5.8 Use the Conda Interpreter in a Notebook Paragraph

Oracle Machine Learning Notebooks provides a Conda interpreter to enable administrators to create conda environments with custom third-party Python and R libraries. Once created, you can download and activate Conda environments inside a notebook session also using the Conda interpreter.

An Oracle Machine Learning notebook supports multiple languages. For this, you must create a notebook with some paragraphs to run SQL queries, and other paragraphs to run PL/SQL scripts. To run a notebook in different scripting languages, you must first connect the notebook paragraphs with the respective interpreters such as SQL, PL/SQL, R, Python, or Conda.

This topic shows how to start working in the Conda environment:

- Connect to the Conda interpreter
- Download and activate the Conda environment
- View the list of packages in the Conda environment
- Run a Python function to import the Iris dataset, and use the seaborn package for visualization
- 1. Type %conda at the beginning of the paragraph to connect to the Conda interpreter, and press Enter.

%conda

2. Next, download and activate the Conda environment. Type:

```
download sbenv activate sbenv
```


In this example, the Conda environment is downloaded and activated. The name of the Conda environment in this example is sbenv.

Download and activate the environment

Took 53 secs. Last updated by OMLUSER

3. You can view all the packages that are present in the Conda environment. To view the list of packages, type list.

List the packages available in the environment

```
%conda
list
# packages in environment at /u01/.conda/envs/sbenv:
# Name
                    Version
                                          Build Channel
blas
                    1.0
                                            mkl
bottleneck
                   1.3.5
                               py39h7deecbd_0
brotli
                   1.0.9
                                   h5eee18b_7
brotli-bin
                   1.0.9
                                     h5eee18b 7
ca-certificates
                   2022.07.19
                                     h06a4308 0
certifi
                    2022.9.14
                                 py39h06a4308_0
                                   pyhd3eb1b0_0
cycler
                     0.11.0
dbus
                    1.13.18
                                      hb2f20db 0
expat
                    2.4.4
                                     h295c915 0
fftw
                    3.3.9
                                     h27cfd23_1
fontconfig
                                     h6c09931 0
                    2.13.1
fonttools
                    4.25.0
                                    pyhd3eb1b0 0
                     2.11.0
freetype
                                    h70c0345_0
giflib
                                      h7b6447c_0
                     5.2.1
```

Took 2 secs. Last updated by OMLUSER

4. Here's an example that demonstrates how to use the seaborn library package for visualization. Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. This example

- Imports Pandas and seaborn
- Loads the Iris dataset
- Plots the datapoints, that is, the three different species of the Iris flower -Setosa, Virginica, and Versicolor based on its dimensions. It creates a scatter plot

Type:

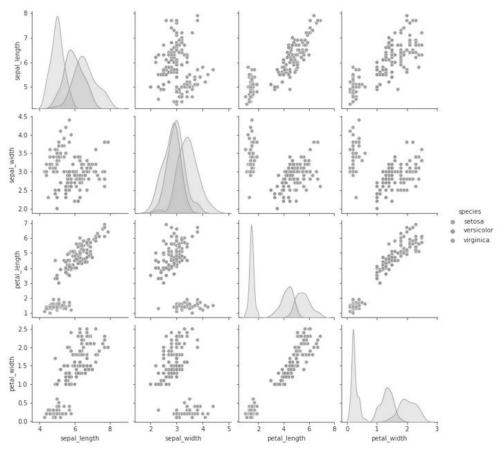
```
%python

def sb_plot():
    import pandas as pd
    import seaborn as sb
    from matplotlib import pyplot as plt
    df = sb.load_dataset('iris')
    sb.set_style("ticks")
    sb.pairplot(df, hue = 'species', diag_kind = "kde", kind =
"scatter", palette = "husl")
    plt.show()
```

Create a visualization using seaborn

```
%python

def sb_plot():
    import pandas as pd
    import seaborn as sb
    from matplotlib import pyplot as plt
    df = sb.load_dataset('iris')
    sb.set_style("ticks")
    sb.pairplot(df,hue = 'species',diag_kind = "kde",kind = "scatter",palette = "husl")
    plt.show()
```


Took 0 secs. Last updated by OMLUSER

5. Run the function in a Python paragraph.

Type:

```
%python sb plot()
```


Took 6 secs. Last updated by OMLUSER

About the Conda Environment and Conda Interpreter

Conda is an open-source package and environment management system that allows the use of environments containing third-party Python and R libraries. Oracle Machine Learning User Interface (UI) provide the conda interpreter to install third-party Python and R libraries inside a notebook session.

Conda Interpreter Commands
 This table lists the commands for the Conda interpreter.

5.8.1 About the Conda Environment and Conda Interpreter

Conda is an open-source package and environment management system that allows the use of environments containing third-party Python and R libraries. Oracle Machine Learning User Interface (UI) provide the conda interpreter to install third-party Python and R libraries inside a notebook session.

Third-party libraries installed in Oracle Machine Learning Notebooks can be used in:

- Standard Python
- Standard R
- Oracle Machine Learning for Python embedded Python execution from the Python, SQL and REST APIs
- · Oracle Machine Learning for R embedded R execution from the R, SQL, and REST APIs

To start working in the Conda environment:

1. Ensure that a Conda environment is saved to Object Storage, or update an existing package by installing a new version.

The Conda environment is created by the ADMIN user with OML_SYS_ADMIN role. The administrator manages the lifecycle of an environment, including adding or deleting packages from it, and removing environments. The Conda environments are stored in an Object Storage bucket associated with the Autonomous Database.

2. Sign into Oracle Machine Learning UI and download the Conda environment. To download the Conda environment, type:

%conda

download myenv

3. Activate the Conda environment. To activate the Conda environment, type:

activate myenv

There is only one active Conda environment at a given point in time.

- 4. Create a notebook, use the Conda interpreter to use third-party libraries in the Object Storage. To use the Conda interpreter, type <code>%conda</code> at the beginning of the paragraph to connect to the Conda environment, and work with third-party libraries for Python. You can switch between the preinstalled Conda environments. For example, you can have an environment for working with Graph analysis, and another environment for Oracle Machine Learning analysis.
- 5. Deactivate the Conda environment. As a best practice, deactivate the Conda environment after you have finished working on your machine learning analysis. To deactivate the environment, type:

deactivate

5.8.2 Conda Interpreter Commands

This table lists the commands for the Conda interpreter.

Conda Interpreter Commands

Table 5-1 Conda Interpreter Commands

Tasks	Commands	Role	
Create a Conda environment.	create -n <env_name> <python_version></python_version></env_name>	• ADMIN	
Remove a list of packages from a specified conda environment. It is also an alias for conda uninstall.	remove -n <env_name>all</env_name>	ADMIN OML user	
also all allas for conda unifinstali.	The Conda environ ment is deleted from the user session		
List user-created local environment.	env list	ADMINOML user	
Remove user-created local environment.	env remove -n <env_name></env_name>	ADMIN OML user	
List all packages and versions installed in active environment.	list	ADMIN OML user	
Activate a user-created local environment.	activate -n <env_name></env_name>	ADMIN OML user	
Deactivate the current environment.	deactivate	ADMIN OML user	
Install an external package from a public Conda channel.	install -n <env_name> <package_name></package_name></env_name>	• ADMIN	
Uninstall a specific package from a Conda environment. It is also an alias for remove.	<pre>uninstall -n <env_name> <package_name></package_name></env_name></pre>	• ADMIN	
Display information about current conda install.	info	ADMIN OML user	
View the command line help.	COMMANDNAMEhelp	ADMIN OML user	

Table 5-1 (Cont.) Conda Interpreter Commands

Tasks	Commands		Role		
Upload a Conda environment to object storage. Note: This is an Autono mous Databa se specific comma nd.	<pre>commands uploadoverwrite <env_name>description 'some description' -t <name></name></env_name></pre>		ADMIN		
	1> -t <name2< td=""><td></td><td></td></name2<>				
	> <value< td=""><td></td><td></td></value<>				
	2>				
Download and unpack a specific Conda environment from the object storage.	downloadoverwrite <env_name></env_name>	•	ADMIN OML user		
Note:					
This is					
an Autono					
mous Databa se					
specific comma nd.					

Table 5-1 (Cont.) Conda Interpreter Commands

Tasks		Commands		Role	
List all Conda environments in the object storage.		list-saved-envsinstalled- packages -e <env_name></env_name>		•	ADMIN OML user
	This is an Autono mous Databa se specific comma nd.				
Delete a Conda environment.		delete <env_nam< td=""><td>ie></td><td>•</td><td>ADMIN</td></env_nam<>	ie>	•	ADMIN
	This is an Autono mous Databa se specific comma nd.		Note: The Conda environ ment is deleted from the Object Storag e.		
Update conda pack compatible version.		update		•	ADMIN
Upgrade the curren		upgrade		•	ADMIN
Search for package associated informat a MatchSpec, a qu conda packages.	tion. The input is	search		•	ADMIN OML user

5.9 Call the Markdown Interpreter and Generate Static html from Markdown Plain Text

Use the Markdown interpreter and generate static html from Markdown plain text.

To call the Markdown interpreter and generate static html from Markdown plain text:

1. In your notebook, type %md and press Enter.

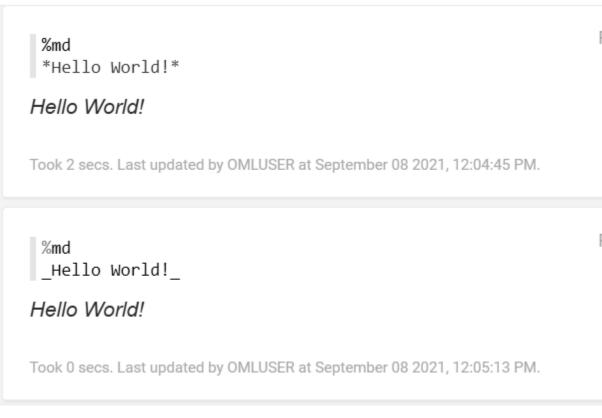
2. Type "Hello World!" and click Run. The static html text is generated, as seen in the screenshot below.

```
%md
"Hello World"
```

"Hello World"

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:24:53 PM.

3. You can format the text in bold. To display the text in bold, write the same text inside two asterisks pair and click Run.


```
%md
**Hello World!**
```

Hello World!

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:04:59 PM.

4. To display the text in italics, write the same text inside an asterisk pair or underscore pair as shown in the screenshot, and click Run.

5. To display the text in a bulleted list, prefix *(asterisk) to the text, as shown in the screenshot below:

```
%md
* Hello World
* We welcome you
```

- Hello World
- · We welcome you

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:12:49 PM.

6. To display the text in heading1, heading 2 and heading 2, prefix # (hash) to the text and click Run. For H1, H2, and H3, you must prefix one, two, and three hashes respectively.

```
%md
# Hello World!
## Hello World!
### Hello World!
```

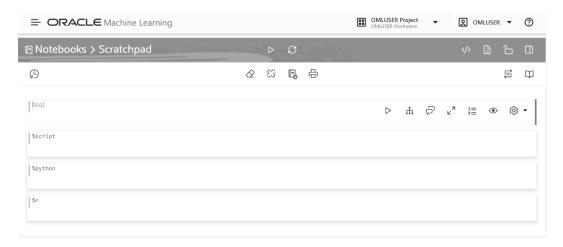
Hello World! Hello World! Hello World!

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:15:06 PM.

5.11 Use the Scratchpad

The Scratchpad provides you convenient one-click access to a notebook for running SQL statements, PL/SQL, R, and Python scripts that can be renamed. The Scratchpad is available on the Oracle Machine Learning User Interface (UI) home page.

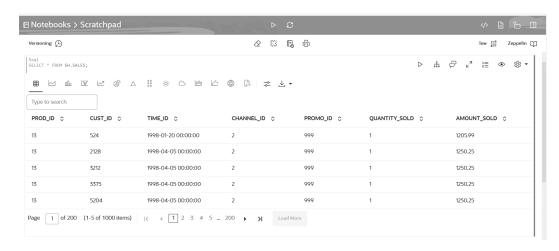
The Scratchpad is a regular notebook that is prepopulated with four paragraphs - \$sql, \$script, , \$python and \$r.


After you run your scripts, the Scratchpad is automatically saved as a notebook by the default name **Scratchpad** on the Notebooks page. You can access it later on the Notebooks page. You can run all the paragraphs together or one paragraph at a time.

- To open and use the scratchpad, click Scratchpad on the Oracle Machine Learning UI home page under Quick Actions. The Scratchpad opens. The Scratchpad has three paragraphs each with the following directives:
 - %sql Allows you to run SQL statements.
 - %script Allows you to run PL/SQL scripts.

- %python Allows you to run Python scripts.
- %r Allows you to run R scripts.

Figure 5-4 Scratchpad


To run SQL script:

- a. Go to the paragraph with the %sql directive.
- **b.** Type the following command and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

```
SELECT * FROM SH.SALES;
```

In this example, the SQL statement fetches all of the data about product sales from the table SALES. Here, SH is the schema name, and SALES is the table name. Oracle Machine Learning UI fetches the relevant data from the database and displays it in a tabular format.

Figure 5-5 SQL Statement in Scratchpad

3. To run PL/SQL script:

a. Go to the paragraph with the \$script directive.

b. Enter the following PL/SQL script and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

```
CREATE TABLE small table
    (
    NAME VARCHAR (200),
    ID1 INTEGER,
    ID2 VARCHAR (200),
    ID3 VARCHAR(200),
    ID4 VARCHAR(200),
    TEXT VARCHAR (200)
    );
    BEGIN
        FOR i IN 1..100 LOOP
                INSERT INTO small_table VALUES ('Name_'||i,
i,'ID2 '||i,'ID3 '||i,'ID4 '||i,'TEXT '||i);
        END LOOP;
        COMMIT;
    END;
```

The PL/SQL script successfully creates the table SMALL_TABLE. The PL/SQL script in this example contains two parts:

- The first part of the script contains the SQL statement CREATE TABLE to create a table named small_table. It defines the table name, table column, data types, and size. In this example, the column names are NAME, ID1, ID2, ID3, ID4, and TEXT.
- The second part of the script begins with the keyword BEGIN. It inserts 100 rows in to the table small table.

Note:

When using the CREATE statement with a primary key, it fails and displays the error message Insufficient privileges. This error occurs due to lockdown profiles in the database. If you encounter this error, contact your database administrator or the designated security administrator to grant the required privileges.

Figure 5-6 PL/SQL Script in Scratchpad

4. To run python script:

a. To use OML4Py, you must first import the oml module. oml is the OML4Py module that allows you to manipulate Oracle Database objects such as tables and views, call user-defined Python functions using embedded execution, and use the database machine learning algorithms. Go to the paragraph with %python directive. To import the oml module, type the following command and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

```
import oml
```

b. To check if the oml module is connected to Oracle Database, type oml.isconnected() and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

```
oml.isconnected()
```

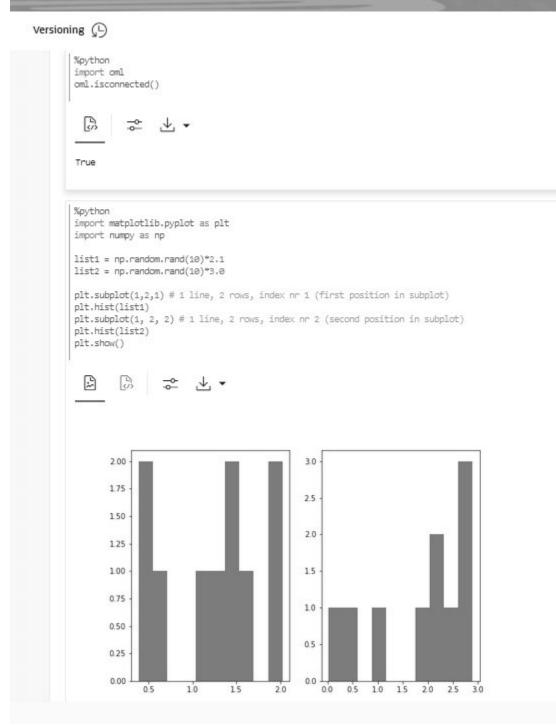
c. You are now ready to run your Python script. Type the following Python code and click the run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

```
import matplotlib.pyplot as plt
import numpy as np

list1 = np.random.rand(10)*2.1
list2 = np.random.rand(10)*3.0

plt.subplot(1,2,1) # 1 line, 2 rows, index nr 1 (first position in subplot)
plt.hist(list1)
plt.subplot(1, 2, 2) # 1 line, 2 rows, index nr 2 (second position in subplot)
plt.hist(list2)
plt.hist(list2)
plt.show()
```

In this example, the commands import two python packages to compute and render the data in two histograms for <code>list1</code> and <code>list2</code>. The Python packages are:


Matplotlib — Python package to render graphs.

Numpy — Python package for computations.

Figure 5-7 Python Script in Scratchpad

■ Notebooks > Scratchpad

The two graphs for <code>list1</code> and <code>list2</code> are generated by the python engine, as shown in the screenshot here.

5. After you have created and run your scripts in the Scratchpad, the Scratchpad is automatically saved as a notebook by the name default name Scratchpad on the Notebooks page. You can edit the name of the notebook and save it with the new name by clicking Edit.

5.12 Collaborate in Oracle Machine Learning

Two or more users can collaborate and share Oracle Machine Learning User Interface (UI) notebooks with other users.

You can collaborate by:

- · Granting Access to Workspace of Another User
- Using the Export Option
- Using Oracle Machine Learning UI notebooks templates
- Collaborating in Oracle Machine Learning

5.10 About Interpreter Bindings and Notebooks

An interpreter is a plug-in that allows you to use a specific data processing language backend.

For the Zeppelin Notebooks in Oracle Machine Learning UI, you use the SQL, PL/SQL, Python and R interpreters within an Oracle Database interpreter group, and the Markdown interpreter for plain text formatting syntax so that it can be converted to HTML. You use the Conda interpreter to connect to the Conda environment and work with Python third-party library packages.

To use these interpreters, you must use these directives at the beginning of the paragraph in a notebook

- SQL %sql
- PL/SQL %script
- Python %python
- R %r
- Markdown %md
- Conda %conda

Notebooks contain an internal list of bindings that define the order of the interpreter bindings in an interpreter group. The default order of interpreter bindings in the Oracle Database interpreter group is:

 Low — Provides the least level of resources for in-database operations, typically serial (non-parallel) execution. It supports the maximum number of concurrent in-database operations by multiple users. The interpreter with low priority is listed at the top of the interpreter list, and hence, is the default.

- **Medium** Provides a fixed number of CPUs to execute in-database operations in parallel, where possible. It supports a limited number of concurrent users, typically 1.25 times the number of CPUs allocated to the pluggable database.
- High Provides the highest level of CPUs to execute in-database operations in parallel, up to the number of CPUs allocated to the pluggable database. It offers the highest performance, but supports the minimum number of concurrent indatabase operations, typically 3.

With respect to interpreter bindings, you can perform the following tasks:

 Bind and unbind interpreters: If you do not bind any specific interpreter to your notebook, then you get the error message:

```
Not supported interpreter <name of interpreter>
```

- Set and re-order interpreter bindings. You may want to set and re-order interpreter bindings if you want to use a specific interpreter for a specific paragraph in a notebook. In that case, you have to select the specific interpreter for that paragraph.
- Change the interpreter binding for any specific paragraph in a notebook

You must note the interpreter binding order in the following scenarios:

- Notebook creation When you create a notebook, the notebook inherits the initial interpreter binding order, which is low (default), medium, high.
- Notebook import When importing a notebook, the notebook inherits the defined interpreter bindings. However, after you import a notebook, ensure to check the order of the interpreter bindings and that the required interpreters are selected.
- Notebook export When exporting a notebook, the notebook inherits the defined interpreter bindings.
- Notebook creation from templates When you create a notebook from templates, the notebook inherits the default order of interpreter bindings.
- Change Interpreter Bindings for Specific Paragraphs in a Notebook
 The interpreter binding order that is set for a notebook applies to all the
 paragraphs in that notebook. However, you can override the interpreter binding for
 SQL, PL/SQL, R, Python and Conda interpreters for any specific paragraph in the
 notebook.
- Set Interpreter Bindings for Notebooks
 You must bind a notebook to an interpreter to fetch data from the database or any data source. A default set of interpreter bindings is available.
- Verify Interpreter Bindings
 After setting and changing the order of interpreter bindings, you can verify the interpreter bindings whether you are using SQL, PL/SQL, R or Python interpreter in a given notebook. You use a SQL statement to view and verify the interpreter binding information about your notebook.

5.10.1 Change Interpreter Bindings for Specific Paragraphs in a Notebook

The interpreter binding order that is set for a notebook applies to all the paragraphs in that notebook. However, you can override the interpreter binding for SQL, PL/SQL, R, Python and Conda interpreters for any specific paragraph in the notebook.

To use these interpreters, you must use these directives at the beginning of the paragraph in a notebook

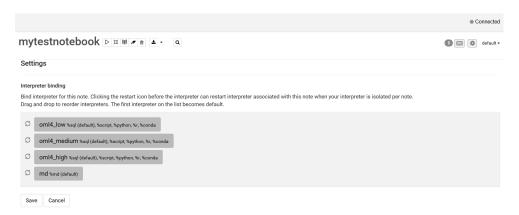
- SQL %sql
- PL/SQL %script
- Python %python
- R %r
- Markdown %md
- Conda %conda

Do not override Python paragraph interpreter bindings as they will not share the same Python engine backend.

To change the interpreter binding for a specific paragraph in a notebook:

1. Open the notebook and click the gear icon to view the interpreter bindings and its order.

In this example, all the three SQL interpreters are bound to the notebook, and the interpreter with low resource allocation adwpcwdp_low %sql is the default, as it is the first interpreter on the list. The Markdown interpreter is not bound to the notebook


The names of the interpreters are in the format databasename_low, databasename_medium and databasename_high which is the same as the interpreter binding order name.

In this example, the interpreter names are:

- adwp low % sql(default), %script, %python, %r, %conda
- adwp_medium % sql(default), %script, %python, %r, %conda
- adwp_high % sql(default), %script,%python, %r, %conda
- md %md(default)

Figure 5-8 Interpreter Bindings

The first Python interpreter in the list is used to run all Python paragraphs in the notebook. For example, if the low binding is selected, then all Python paragraphs are run using the low binding Python interpreter. All the other paragraphs with SQL and Script interpreter bindings are run using the low database name service, that is, $adwp_low$. If any Python scripts run queries against the database, then those queries are run using the low database name service, that is, $adwp_low$ in this example.

- 2. To change the interpreter bindings order for a particular paragraph in the notebook:
 - Scroll down to the paragraph for which you want to change the interpreter
 - Call the interpreter with the specific binding
 - Run the paragraph

For example, call the interpreter with medium resource allocation by typing <code>%adwp_medium</code> for the first paragraph in the notebook, and run the paragraph. In this example, <code>adwp</code> is the database name.

mytestnotebook DX @ J = 2


```
%cwdp medium
--SET SERVEROUTPUT ON;
CREATE OR REPLACE PROCEDURE print boolean (
    b_name VARCHAR2,
    b value BOOLEAN
    ) AUTHID DEFINER IS
BEGIN
    IF b_value IS NULL THEN
        DBMS_OUTPUT.PUT_LINE (b_name | | ' = NULL');
    ELSIF b value = TRUE THEN
        DBMS OUTPUT.PUT LINE (b name | | ' = TRUE');
    ELSE
        DBMS_OUTPUT.PUT_LINE (b_name || ' = FALSE');
    END IF;
END;
```

Updated 0 row(s).

Took 3 sec. Last updated by MOITREYEE at December 19 2018, 12:29:56 PM.

```
%script
DECLARE
    PROCEDURE print_x_and_y (
    x BOOLEAN,
    y BOOLEAN
    ) IS
    BEGIN
    print_boolean ('x', x);
    print_boolean ('y', y);
    print_boolean ('x AND y', x AND y);
    END print x and y;
BEGIN
```

Notice that the first paragraph runs without any error after changing the interpreter binding. The second paragraph in this notebook has the default binding.

Validate the interpreter binding for first paragraph of this notebook by typing the SQL statement SELECT SYS_CONTEXT ('USERENV', 'SERVICE_NAME') FROM DUAL;

The SQL statement returns the following information about the interpreter with medium binding:

 ${\tt LGKFDTOOBOQK48I_CWDP_medium.adwc.oraclecloud.com}$

mytestnotebook ▷ ※ ■ • •

SYS CONTEXT('USERENV', 'SERVICE NAME')

LGKFDTOOBOQK48I CWDP medium.adwc.oraclecloud.com

In this example, with reference to the screenshot:

- LGKFDTOOBOOK48I is the tenant name
- CWDP is the database name
- medium is the service name
- adwc.oraclecloud.com is the domain

Note:

For the rest of the paragraphs in this notebook, the interpreter binding is the default. You may validate the bindings for each paragraph by running step 3.

This completes the task of changing the interpreter binding for a particular paragraph in the notebook. The rest of the paragraphs in the notebook have the default binding for the interpreter.

5.10.2 Set Interpreter Bindings for Notebooks

You must bind a notebook to an interpreter to fetch data from the database or any data source. A default set of interpreter bindings is available.

You can set the order of interpreter bindings if you have more than one set available. To set the order of interpreter bindings:

On the Notebook page, click the notebook for which you want to set the interpreter bindings.

The notebook opens in edit mode.

Click the gear icon at the top panel.

The Settings pane opens listing the interpreter bindings for the notebook.

- 3. Drag and drop the interpreters to reorder the interpreter bindings. The first interpreter on the list is the default. The order of interpreter bindings is:
 - Low (Default): Provides the least level of resources for in-database operations, typically serial (non-parallel) execution. It supports the maximum number of concurrent in-database operations by multiple users. The interpreter with low priority is listed at the top of the interpreter list, and hence, is the default.
 - Medium: Provides a fixed number of CPUs to execute in-database operations in parallel, where possible. It supports a limited number of concurrent users, typically 1.25 times the number of CPUs allocated to the pluggable database.
 - High: Provides the highest level of CPUs to run in-database operations in parallel, up
 to the number of CPUs allocated to the pluggable database. It offers the highest
 performance, but supports the minimum number of concurrent in-database
 operations, typically 3.

This is the initial binding order of the interpreters. You can change the order of the interpreter bindings.

4. Click Save.

Related Topics

- Managing Concurrency and Priorites
- Predefined Database Service Names for Autonomous Data Warehouse

5.10.3 Verify Interpreter Bindings

After setting and changing the order of interpreter bindings, you can verify the interpreter bindings whether you are using SQL, PL/SQL, R or Python interpreter in a given notebook. You use a SQL statement to view and verify the interpreter binding information about your notebook.

For Python notebooks, the interpreter binding is used for all python paragraphs.

For Python notebooks, do not override the interpreter binding at the paragraph level.

To verify the interpreter binding of notebooks:

- 1. Open the notebook for which you want to check the interpreter binding.
- 2. Run the following SQL statement:

```
%sql
SELECT SYS CONTEXT ('USERENV', 'SERVICE NAME') FROM DUAL;
```


The SQL statement provides the name of the service to which a given session is connected.

3. Click Run.

The SQL statement returns the information about the interpreter, the order of the binding, and the service name. The result is displayed in the following format tenantname__databasename_ servicename.domain. Here:

- HDY7RUSKGDMPHN2 is the tenant name
- PDB1 is the database name
- low is the interpreter binding order
- adwc.oraclecloud.com is the domain name

```
%script
 SELECT SYS CONTEXT ('USERENV', 'SERVICE NAME') FROM DUAL;
SYS CONTEXT('USERENV', 'SERVICE NAME')
HDY7RUSKGDMPHN2_PDB1_low.adwc.oraclecloud.com
```

Took 0 sec. Last updated by at December 17 2018, 6:19:25 PM.

6

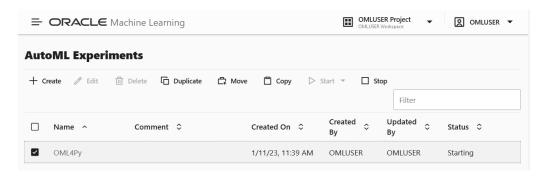
Get Started with AutoML UI

AutoML User Interface (AutoML UI) is an Oracle Machine Learning interface that provides you no-code automated machine learning modeling. When you create and run an experiment in AutoML UI, it performs automated algorithm selection, feature selection, and model tuning, thereby enhancing productivity as well as potentially increasing model accuracy and performance.

The following steps comprise a machine learning modeling workflow and are automated by the AutoML user interface:

- Algorithm Selection: Ranks algorithms likely to produce a more accurate model based on the dataset and its characteristics, and some predictive features of the dataset for each algorithm.
- 2. Adaptive Sampling: Finds an appropriate data sample. The goal of this stage is to speed up Feature Selection and Model Tuning stages without degrading the model quality.
- 3. Feature Selection: Selects a subset of features that are most predictive of the target. The goal of this stage is to reduce the number of features used in the later pipeline stages, especially during the model tuning stage to speed up the pipeline without degrading predictive accuracy.
- 4. Model Tuning: Aims at increasing individual algorithm model quality based on the selected metric for each of the shortlisted algorithms.
- Feature Prediction Impact: This is the final stage in the AutoML UI pipeline. Here, the impact of each input column on the predictions of the final tuned model is computed. The computed prediction impact provides insights into the behavior of the tuned AutoML model.

Business users without extensive data science background can use AutoML UI to create and deploy machine learning models. Oracle Machine Learning AutoML UI provides two functional features:


- Create machine learning models
- Deploy machine learning models

AutoML UI Experiments

When you create an experiment in AutoML UI, it automatically runs all the steps involved in the machine learning workflow. In the Experiments page, all the experiments that you have created are listed. To view any experiment details, click an experiment. Additionally, you can perform the following tasks:

Figure 6-1 Experiments page

- Create: Click Create to create a new AutoML UI experiment. The AutoML UI experiment that you create resides inside the project that you selected in the Project under the Workspace.
- **Edit:** Select any experiment that is listed here, and click **Edit** to edit the experiment definition.
- Delete: Select any experiment listed here, and click Delete to delete it. You cannot
 delete an experiment which is running. You must first stop the experiment to delete
 it.
- **Duplicate:** Select an experiment and click **Duplicate** to create a copy of it. The experiment is duplicated instantly and is in Ready status.
- Move: Select an experiment and click Move to move the experiment to a different project in the same or a different workspace. You must have either the Administrator or Developer privilege to move experiments across projects and workspaces.

An experiment cannot be moved if it is in RUNNING, STOPPING or STARTING states, or if an experiment already exists in the target project by the same name.

- **Copy:** Select an experiment and click **Copy** to copy the experiment to another project in the same or different workspace.
- Start: If you have created an experiment but have not run it, then click Start to run
 the experiment.
- **Stop:** Select an experiment that is running, and click **Stop** to stop the running of the experiment.
- Access AutoML UI
 You can access AutoML UI from Oracle Machine Learning Notebooks.
- Create AutoML UI Experiment

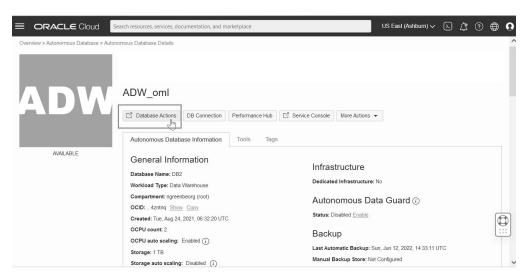
To use the Oracle Machine Learning AutoML UI, you start by creating an experiment. An experiment is a unit of work that minimally specifies the data source, prediction target, and prediction type. After an experiment runs successfully, it presents you a list of machine learning models in order of model quality according to the metric selected. You can select any of these models for

deployment or to generate a notebook. The generated notebook contains Python code using OML4Py and the specific settings AutoML used to produce the model.

View an Experiment
 In the AutoML UI Experiments page, all the experiments that you have created are listed.
 Each experiment will be in one of the following stages: Completed, Running, and Ready.

Related Topics

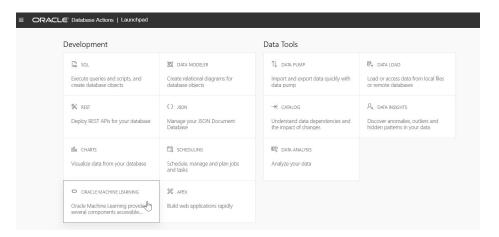
Automatic Machine Learning


6.1 Access AutoML UI

You can access AutoML UI from Oracle Machine Learning Notebooks.

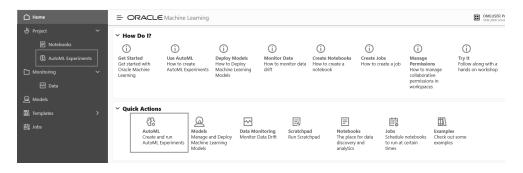
To access AutoML UI, you must first sign in to Oracle Machine Learning Notebooks from Autonomous Database:

- 1. To sign in to Oracle Machine Learning Notebooks from the Autonomous Database:
 - a. Select an Autonomous Database instance and on the Autonomous Database details page click **Database Actions**.


Figure 6-2 Database Actions

 On the Database Actions page, go to the Development section and click Oracle Machine Learning.

Figure 6-3 Oracle Machine Learning


The Oracle Machine Learning sign in page opens.

c. Enter your username and password, and click Sign in.

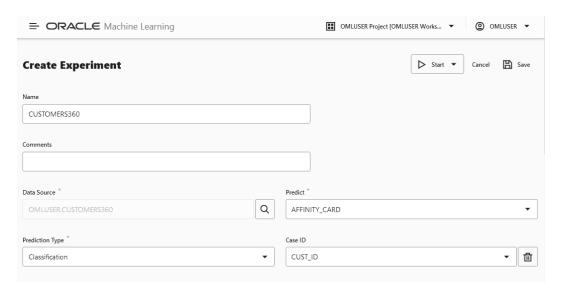
This opens the Oracle Machine Learning Notebooks homepage.

2. On your Oracle Machine Learning Notebooks homepage, click AutoML..

Figure 6-4 AutoML options

Alternatively, you can click the hamburger menu and click AutoML under Projects.

6.2 Create AutoML UI Experiment


To use the Oracle Machine Learning AutoML UI, you start by creating an experiment. An experiment is a unit of work that minimally specifies the data source, prediction target, and prediction type. After an experiment runs successfully, it presents you a list of machine learning models in order of model quality according to the metric selected. You can select any of these models for deployment or to generate a notebook. The generated notebook contains Python code using OML4Py and the specific settings AutoML used to produce the model.

To create an experiment, specify the following:

1. In the **Name** field, enter a name for the experiment.

Figure 6-5 Create an AutoML Experiment

- 2. In the **Comments** field, enter comments, if any.
- 3. In the Data Source field, select the schema and a table or view in that schema. Click the search icon to open the Select Table dialog box. Browse and select a schema, and then select a table from the schema list, which is the data source of your AutoML UI experiment.

Figure 6-6 Select Table dialog

a. In the Schema column, select a schema.

While you select the data source, statistics are displayed in the Features grid at the bottom of the experiment page. Busy status is indicated until the computation is complete. The target column that you select in Predict is highlighted in the Features grid.

b. Depending on the selected schema, the available tables are listed in the Table column. Select the table and click **OK**.

Note:

To create an AutoML experiment for a table or view present in the schema of another user, ensure that you have explicit privileges to access that table or view in the schema. Request the Database Administrator or the owner of the schema to provide you with the privileges to access the table or view. For example:

grant select on to <user>

- 4. In the **Predict** drop-down list, select the column from the selected table. This is the target for your prediction.
- 5. In the Prediction Type field, the prediction type is automatically selected based on your data definition. However, you can override the prediction type from the drop-down list, if data type permits. Supported Prediction Types are:
 - Classification: For non-numeric data type, Classification is selected by default.
 - Regression: For numeric data type, Regression is selected by default.
- The Case ID helps in data sampling and dataset split to make the results reproducible between experiments. It also aids in reducing randomness in the results. This is an optional field.
- 7. In the **Additional Settings** section, you can define the following:

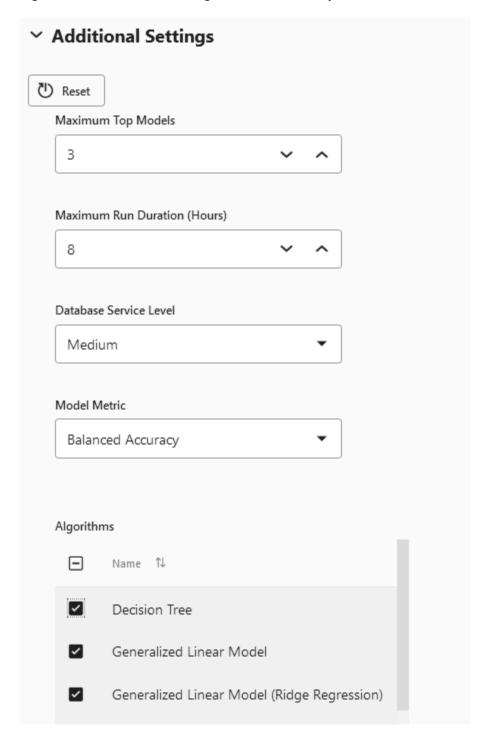


Figure 6-7 Additional Settings of an AutoML Experiment

- a. Reset: Click Reset to reset the settings to the default values.
- b. Maximum Top Models: Select the maximum number of top models to create. The default is 5 models. You can reduce the number of top models to 2 or 3 since tuning models to get the top one for each algorithm requires additional time. If you want to get the initial results even faster, consider the top

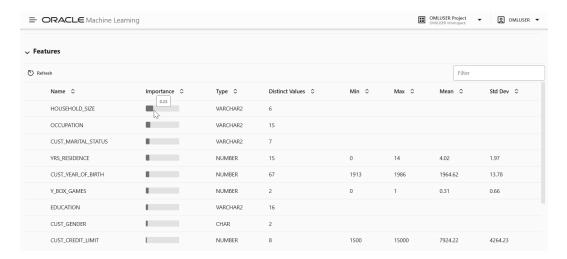
- recommended algorithm. For this, set the ${\it Maximum Top Models}$ to 1. This will tune the model for that algorithm.
- **c. Maximum Run Duration:** This is the maximum time for which the experiment will be allowed to run. If you do not enter a time, then the experiment will be allowed to run for up to the default, which is 8 hours.
- d. **Database Service Level:** This is database connection service level and query parallelism level. Default is Low. This results in no parallelism and sets a high runtime limit. You can create many connections with Low database service level. You can also change your database service level to Medium or High.
 - High level gives the greatest parallelism but significantly limits the number of concurrent jobs.
 - Medium level enables some parallelism but allows greater concurrency for job processing.

Changing the database service level setting on the *Always Free Tier* will have no effect since there is a 1 OCPU limit. However, if you increase the OCPUs allocated to your autonomous database instance, you can increase the **Database Service Level** to Medium or High.

Note:

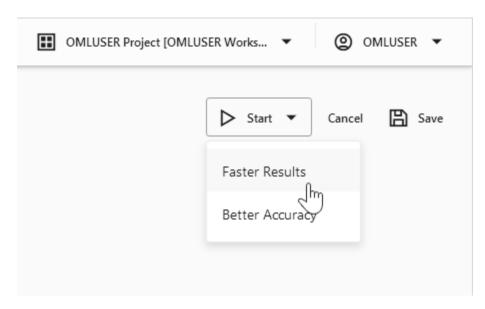
The **Database Service Level** setting has no effect on AutoML container level resources.

- e. **Model Metric:** Select a metric to choose the winning models. The following metrics are supported by AutoML UI:
 - For Classification, the supported metrics are:
 - Balanced Accuracy
 - ROC AUC
 - F1 (with weighted options). The weighted options are weighted, binary, micro and macro.
 - * Micro-averaged: Here, all samples equally contribute to the final averaged metric
 - * Macro-averaged: Here, all classes equally contribute to the final averaged metric
 - * Weighted-averaged: Here, each class' contribution to the average is weighted by its size
 - Precision (with weighted options)
 - Recall (with weighted options)
 - For Regression, the supported metrics are:
 - R2 (default)


- Negative mean squared error
- Negative mean absolute error
- Negative median absolute error
- f. Algorithm: The supported algorithms depend on Prediction Type that you have selected. Click the corresponding checkbox against the algorithms to select it. By default, all the candidate algorithms are selected for consideration as the experiment runs. The supported algorithms for the two Prediction Types:
 - For Classification, the supported algorithms are:
 - Decision Tree
 - Generalized Linear Model
 - Generalized Linear Model (Ridge Regression)
 - Neural Network
 - Random Forest
 - Support Vector Machine (Gaussian)
 - Support Vector Machine (Linear)
 - For Regression, the supported algorithms are:
 - Generalized Linear Model
 - Generalized Linear Model (Ridge Regression)
 - Neural Network
 - Support Vector Machine (Gaussian)
 - Support Vector Machine (Linear)

You can remove algorithms from being considered if you have preferences for particular algorithms, or have specific requirements. For example, if model transparency is essential, then excluding models such as Neural Network would make sense. Note that some algorithms are more compute intensive than others. For example, Naïve Bayes and Decision Tree are normally faster than Support Vector Machine or Neural Network.

8. Expand the **Features** grid to view the statistics of the selected table. The supported statistics are Distinct Values, Minimum, Maximum, Mean, and Standard Deviation. The supported data sources for Features are tables, views and analytic views. The target column that you selected in Predict is highlighted here. After an experiment run is completed, the Features grid displays an additional column **Importance**. Feature Importance indicates the overall level of sensitivity of prediction to a particular feature.


Figure 6-8 Features

You can perform the following tasks:

- Refresh: Click Refresh to fetch all columns and statistics for selected data source.
- **View Importance:** Hover your cursor over the horizontal bar under Importance to view the value of Feature Importance for the variables. The value is always depicted in the range 0 to 1, with values closer to 1 being more important.
- 9. When you complete defining the experiment, the **Start** and **Save** buttons are enabled.

Figure 6-9 Start Experiment Options

- Click Start to run the experiment and start the AutoML UI workflow, which is displayed in the progress bar. Here, you have the option to select:
 - **a. Faster Results:** Select this option if you want to get candidate models sooner, possibly at the expense of accuracy. This option works with a smaller set of the hyperparamter combinations, and hence yields faster result.

b. Better Accuracy: Select this option if you want more pipeline combinations to be tried for possibly more accurate models. A pipeline is defined as an algorithm, selected data feature set, and set of algorithm hyperparameters.

Note:

This option works with the broader set of hyperparameter options recommended by the internal meta-learning model. Selecting **Better Accuracy** will take longer to run your experiment, but may provide models with more accuracy.

Once you start an experiment, the progress bar appears displaying different icons to indicate the status of each stage of the machine learning workflow in the AutoML experiment. The progress bar also displays the time taken to complete the experiment run. To view the message details, click on the respective message icons.

- Click Save to save the experiment, and run it later.
- Click Cancel to cancel the experiment creation.
- Supported Data Types for AutoML UI Experiments
 When creating an AutoML experiment, you must specify the data source and the
 target of the experiment. This topic lists the data types for Python and SQL that
 are supported by AutoML experiments.

6.2.1 Supported Data Types for AutoML UI Experiments

When creating an AutoML experiment, you must specify the data source and the target of the experiment. This topic lists the data types for Python and SQL that are supported by AutoML experiments.

Table 6-1 Supported Data Types by AutoML Experiments

Data Types	SQL Data Types	Python Data Types
Numerical	NUMBER, INTEGER, FLOAT, BINARY_DOUBLE, NUMBER, BINARY_FLOAT, DM_NESTED_NUMERICALS, DM_NESTED_BINARY_DOUBLE S, DM_NESTED_BINARY_FLOATS	INTEGER, FLOAT (NUMBER, BINARY_DOUBLE, BINARY_FLOAT)
Categorical	CHAR, VARCHAR2, DM_NESTED_CATEGORICALS	STRING(VARCHAR2, CHAR, CLOB)
Unstructured Text	CHAR, VARCHAR2, CLOB, BLOB, BFILE	BYTES (RAW, BLOB)

6.3 View an Experiment

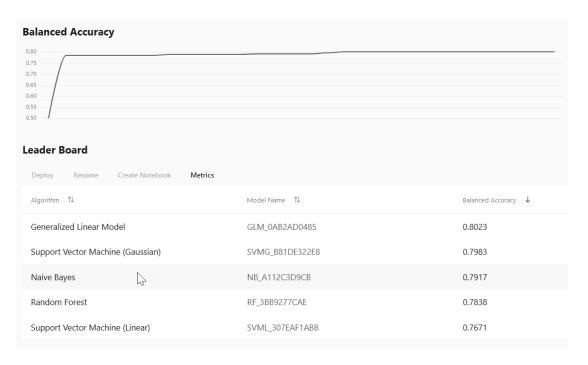
In the AutoML UI Experiments page, all the experiments that you have created are listed. Each experiment will be in one of the following stages: Completed, Running, and Ready.

To view an experiment, click the experiment name. The Experiment page displays the details of the selected experiment. It contains the following sections:

Edit Experiment

In this section, you can edit the selected experiment. Click **Edit** to make edits to your experiment.

You cannot edit an experiment that is running.

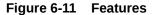

Metric Chart

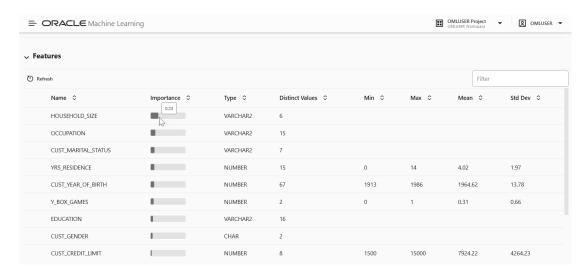
The Model Metric Chart depicts the best metric value over time as the experiment runs. It shows improvement in accuracy as the running of the experiment progresses. The display name depends on the selected model metric when you create the experiment.

Leader Board

When an experiment runs, it starts to show the results in the Leader Board. The Leader Board displays the top performing models relative to the model metric selected along with the algorithm and accuracy. You can view the model details and perform the following tasks:

Figure 6-10 Leader Board


- View Model Details: Click on the Model Name to view the details. The model
 details are displayed in the Model Details dialog box. You can click multiple models
 on the Leader Board, and view the model details simultaneously. The Model
 Details window depicts the following:
 - Prediction Impact: Displays the importance of the attributes in terms of the target prediction of the models.
 - Confusion Matrix: Displays the different combination of actual and predicted values by the algorithm in a table. Confusion Matrix serves as a performance measurement of the machine learning algorithm.
- **Deploy:** Select any model on the Leader Board and click **Deploy** to deploy the selected model. **Deploy Model**.
- **Rename:** Click **Rename** to change the name of the system generated model name. The name must be alphanumeric (not exceeding 123 characters) and must not contain any blank spaces.
- Create Notebook: Select any model on the Leader Board and click Create Notebooks from AutoML UI Models to recreate the selected model from code.
- Metrics: Click Metrics to select additional metrics to display in the Leader Board.
 The additional metrics are:
 - For Classification
 - * Accuracy: Calculates the proportion of correctly classifies cases both Positive and Negative. For example, if there are a total of TP (True Positives)+TN (True Negatives) correctly classified cases out of TP+TN+FP+FN (True Positives+True Negatives+False Positives+False Negatives) cases, then the formula is: Accuracy = (TP+TN) / (TP+TN+FP+FN)
 - * Balanced Accuracy: Evaluates how good a binary classifier is. It is especially useful when the classes are imbalanced, that is, when one of the two classes appears a lot more often than the other. This often happens in many settings such as Anomaly Detection etc.
 - Recall: Calculates the proportion of actual Positives that is correctly classified.
 - Precision: Calculates the proportion of predicted Positives that is True Positive.
 - * F1 Score: Combines precision and recall into a single number. F1-score is computed using harmonic mean which is calculated by the formula: F1-score = 2 × (precision × recall) / (precision + recall)
 - For Regression:
 - * R2 (Default): A statistical measure that calculates how close the data are to the fitted regression line. In general, the higher the value of R-squared, the better the model fits your data. The value of R2 is always between 0 to 1, where:
 - * 0 indicates that the model explains none of the variability of the response data around its mean.
 - * 1 indicates that the model explains all the variability of the response data around its mean.



- * Negative Mean Squared Error: This is the mean of the squared difference of predicted and true targets.
- * Negative Mean Absolute Error: This is the mean of the absolute difference of predicted and true targets.
- * Negative Median Absolute Error: This is the median of the absolute difference between predicted and true targets.

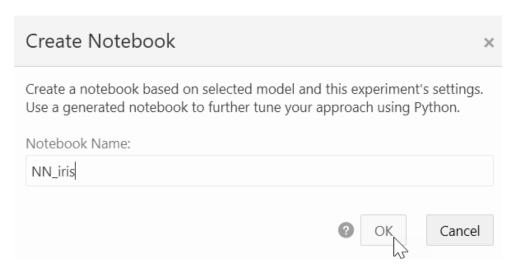
Features

The **Features** grid displays the statistics of the selected table for the experiment. The supported statistics are Distinct Values, Minimum, Maximum, Mean, and Standard Deviation. The supported data sources for Features are tables, views and analytic views. The target column that you selected in Predict is highlighted here. After an experiment run is completed, the Features grid displays an additional column **Importance**. Feature Importance indicates the overall level of sensitivity of prediction to a particular feature. Hover your cursor over the graph to view the value of **Importance**. The value is always depicted in the range 0 to 1, with values closer to 1 being more important.

Create Notebooks from AutoML UI Models

You can create notebooks using OML4Py code that will recreate the selected model using the same settings. It also illustrates how to score data using the model. This option is helpful if you want to use the code to re-create a similar machine learning model.

6.3.1 Create Notebooks from AutoML UI Models

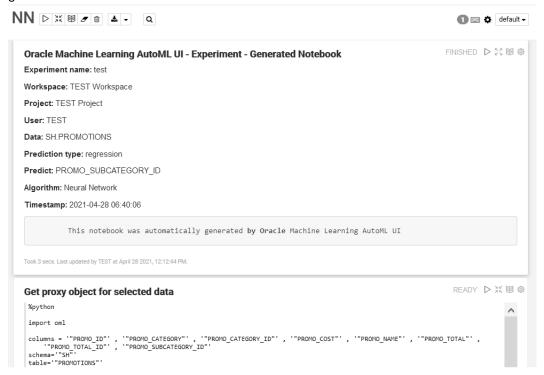

You can create notebooks using OML4Py code that will recreate the selected model using the same settings. It also illustrates how to score data using the model. This option is helpful if you want to use the code to re-create a similar machine learning model.

To create a notebook from an AutoML UI model:

 Select the model on the Leader Board based on which you want to create your notebook, and click Create Notebook. The Create Notebook dialog opens.

Figure 6-12 Create Notebook

2. In the **Notebook Name** field, enter a name for your notebook.


The REST API endpoint derives the experiment metadata, and determines the following settings as applicable:

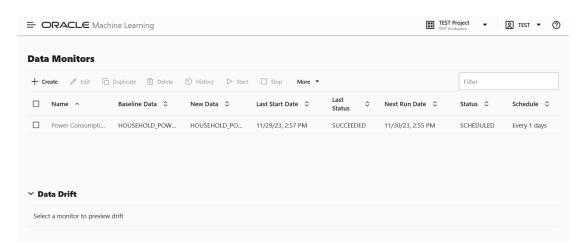
- Data Source of the experiment (schema.table)
- Case ID. If the Case ID for the experiment is not available, then the appropriate message is displayed.
- A unique model name based on the current model name is generated
- Information related to scoring paragraph:
 - Case ID: If available, then it merges the Case ID column into the scoring output table
 - Generate unique predict output table name based on build data source and unique suffix
 - Prediction column name: PREDICTION
 - Prediction probability column name: PROBABILITY (applicable only for Classification)
- 3. Click **OK**. The generated notebook is listed in the Notebook page. Click to open the notebook

The generated notebook displays paragraph titles for each paragraph along with the python codes. Once you run the notebook, it displays information related to the notebook as well as the AutoML experiment such as the experiment name, workspace and project in which the notebook is present, the user, data, prediction type and prediction target, algorithm, and the time stamp when the notebook is

generated.

7

Get Started with Data Monitoring


Data Monitoring evaluates how your data evolves over time. It helps you with insights on trends and multivariate dependencies in the data. It also gives you an early warning about data drift.

Data drift occurs when data diverges from the original baseline data over time. Data drift can happen for a variety of reasons, such as a changing business environment, evolving user behavior and interest, data modifications from third-party sources, data quality issues, or issues with upstream data processing pipelines.

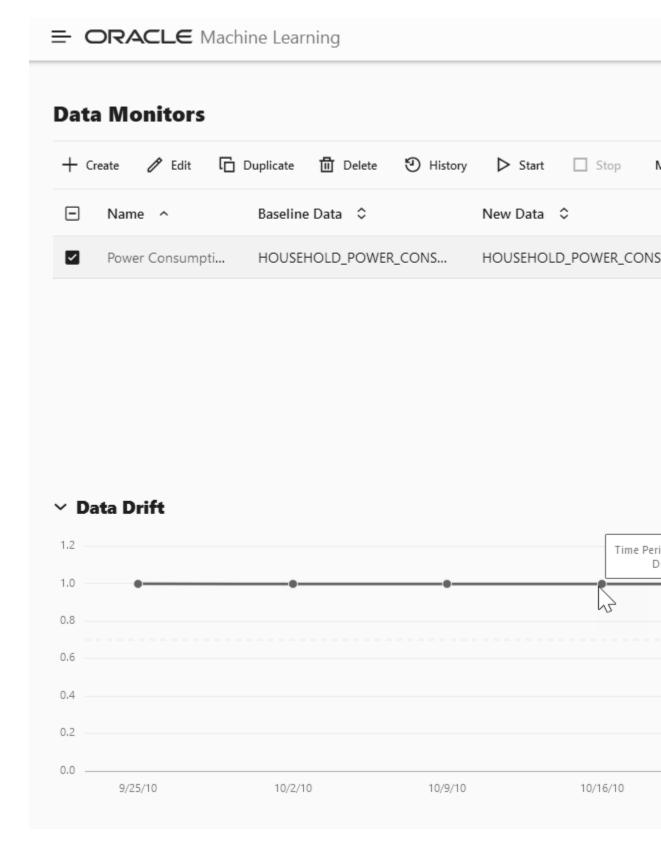
The key to accurately interpret your models and to ensure that the models are able to solve business problems is to understand how data evolves over time. Data monitoring is complementary to successful model monitoring, as understanding the changes in data is critical in understanding the changes in the efficacy of the models. The ability to quickly and reliably detect changes in the statistical properties of your data ensures that your machine learning models are able to meet business objectives.

You can monitor your data using the data monitoring functionality of Oracle Machine Learning User Interface. To monitor your data, click on the Cloud menu on the Oracle Machine Learning UI home page, click **Monitoring** and then click **Data** to open the Data Monitors page. On the Data Monitors page, you can perform the following tasks:

Figure 7-1 Data Monitors page

Create: Create a data monitor.

Note:


The supported data types for data monitoring are NUMERIC and CATEGORICAL.

- Edit: Select a data monitor and click Edit to edit a data monitor.
- Duplicate: Select a data monitor and click Duplicate to create a copy of the monitor.
- Delete: Select a data monitor and click Delete to delete a data monitor.
- History: Select a data monitor and click History to view the runtime details. Click
 Back to Monitors to go back to the Data Monitoring page.
- Start: Start a data monitor.
- Stop: Stop a data monitor that is running.
- More: Select a data monitor, click More and then click:
 - Enable: Enable the data monitor schedule. By default, the data monitor is enabled. The status is displayed as SCHEDULED.
 - Disable: Disable a data monitor schedule. The status is displayed as DISABLED.

The Data Monitors page displays the information about the selected monitor: Monitor name, Baseline Data, New Data, Last Start Date, Last Status, Next Run Data, Status, and Schedule. The page also displays the data drift, if the data monitor has run successfully. To view data drift:

Figure 7-2 Data Drift preview on Data Monitors page

Select a data monitor that has run successfully, as shown in the screenshot. On the lower pane, the data drift of the selected monitor is displayed. The X axis depicts the analysis period, and the Y axis depicts the data drift values. The horizontal dotted line is the threshold value, and the line depicts the drift value for each point in time for the analysis period. Hover your mouse over the line to view the drift values. For more information on this example, see View Data Monitor Results.

Create a Data Monitor

Data Monitoring allows you to detect data drift over time and the potentially negative impact on the performance of your machine learning models. On the Data Monitor page, you can create, run, and track data monitors and the results.

View Data Monitor Results

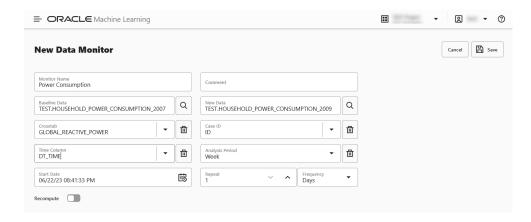
The Data Monitor Results page displays the information on the selected data monitor that have run successfully, along with data drift details for each monitored feature.

View History

The History page displays the runtime details of data monitors.

Related Topics

View History
 The History page displays the runtime details of data monitors.


7.1 Create a Data Monitor

Data Monitoring allows you to detect data drift over time and the potentially negative impact on the performance of your machine learning models. On the Data Monitor page, you can create, run, and track data monitors and the results.

To create a data monitor:

- On the Oracle Machine Learning UI left navigation menu, expand Monitoring and then click Data to open the Data Monitoring page.
- 2. On the Data Monitoring page, click **Create** to open the New Data Monitor page.
- 3. On the New Data Monitor page, enter the following details:

Figure 7-3 New Data Monitor

- a. Monitor Name: Enter a name for the data monitor.
- b. Comments: Enter comments. This is an optional field.
- c. Baseline Data: This is a table or view that contains baseline data to monitor. Click the search icon to open the Select Table dialog. Here, select a schema, and then a table.

The supported data types for data monitoring are <code>NUMBER</code>, <code>BINARY_DOUBLE</code>, <code>FLOAT</code>, <code>BINARY_FLOAT</code>, <code>VARCHAR2</code>, <code>CHAR</code>, <code>NCHAR</code>, <code>and</code> <code>NVARCHAR2</code> with length <=4000.

d. New Data: This is a table or view with new data to be compared against the baseline data. Click the search icon to open the Select Table dialog. Select a schema, and then a table.

Note:

The supported data types for data monitoring are <code>NUMBER</code>, <code>BINARY_DOUBLE</code>, <code>FLOAT</code>, <code>BINARY_FLOAT</code>, <code>VARCHAR2</code>, <code>CHAR</code>, <code>NCHAR</code>, <code>And</code> <code>NVARCHAR2</code> with length <=4000.

e. Crosstab: Select an attribute from the drop-down list. This attribute in the baseline and new data acts as an anchor or target for bi-variate analysis of your data.

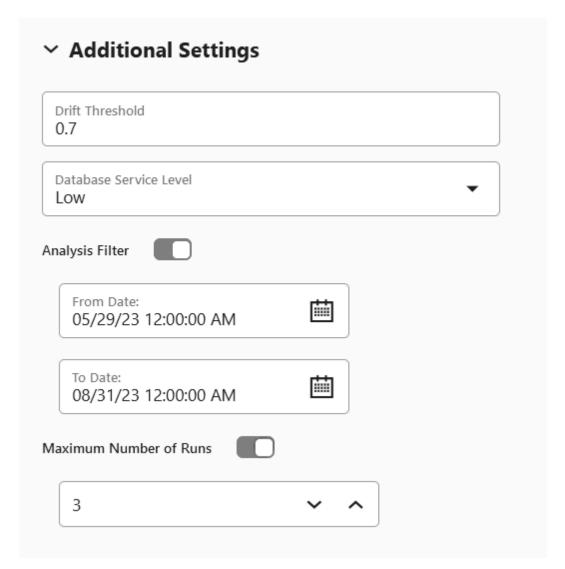
Note:

The target column in supervised problems can be passed as an anchor column in this field. For unsupervised problems, it can be any column of interest. However, it will be application specific.

- f. Case ID: This is an optional field. Enter a case identifier for the baseline and new data to improve the repeatability of the results.
- g. **Time Column:** This is the name of a column storing time information in the New Data table or view. Select the time column from the drop-down list.

Note:

If the Time Column is blank, the entire New Data is treated as one period.


- h. Analysis Period: This is the length of time for which data monitoring is performed on the New Data. Select the analysis period for data monitoring. The options are Day, Week, Month, Year.
- i. **Start Date:** This is the start date of your data monitor schedule. If you do not provide a start date, the current date will be used as the start date.
- j. **Repeat:** This value defines the number of times the data monitor run will be repeated for the frequency defined. Enter a number between 1 and 99. For example, if you

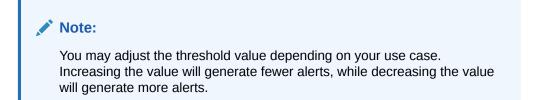
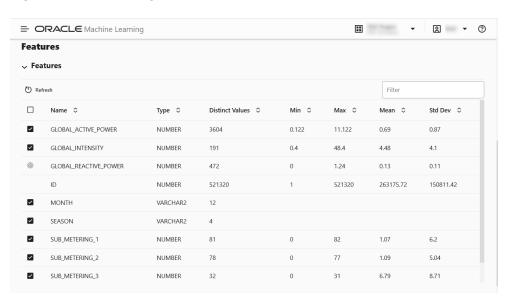

- enter 2 in the **Repeat** field here, and Minutes in the **Frequency** field, then the data monitor will run every 2 minutes.
- k. Frequency: This value determines how frequently the data monitor run will be performed on the New Data. Select a frequency for data monitoring. The options are Minutes, Hours, Days, Weeks, Months. For example, if you select Minutes in the Frequency field, 2 in the Repeat field, and 5/30/23 in the Start Date field, then as per the schedule, the data monitor will run from 5/30/23 every 2 minutes.
- 4. Click **Recompute:** Select this option to recompute the analysis for the already computed time period. By default, Recompute is disabled.
 - When enabled, the data drift analysis is performed for the time period specified in the Start Date field and the end time. The analysis will overwrite the already existing results for the specified time period. This means that the analysis will be computed for the time period with new data other than the current data. New analysis results may overlap with the existing results depending on the selected frequency.
 - When disabled, the data for the time period that is present in the results table will be retained as is. Only the new data for the most recent time period will be considered for analysis, and the results will be added to the results table.
- **5.** Click **Additional Settings** to expand this section and provide advanced settings for your data monitor:

Figure 7-4 Data Monitoring Additional Settings


a. **Drift Threshold:** Drift captures the relative change in performance between the baseline data and the new data period. Based on your specific machine learning problem, set the threshold value for your data drift detection. The default is 0.7.

A drift above this threshold indicates a significant change in your data. Exceeding
the threshold indicates that rebuilding and redeploying your model may be
necessary.

- A drift below this threshold indicates that there are insufficient changes in the data to warrant further investigation or action.
- b. Database Service Level: This is the Autonomous Database service levels Low, Medium, High. The default is Low. Service level Medium provides more resources to the data monitor run compared to Low. Service level High provides more resources to the data monitor run compared to Medium.
- c. Analysis Filter: Enable this option if you want the data monitoring analysis for a specific time period. Move the slider to the right to enable it, and then select a date in From Date and To Date fields respectively. By default, this field is disabled.
 - **From Date:** This is the start date or timestamp of monitoring in New Data. It assumes the existence of a time column in the table. This is a mandatory field if you use the Analysis Filter option.
 - **To Date:** This is the end date or timestamp of monitoring in the New Data. It assumes the existence of a time column in the table. This is a mandatory field if you use the Analysis Filter option.
- **d. Maximum Number of Runs:** This is the maximum number of times the data monitor can be run according to this schedule. The default is 3.
- 6. The Features grid displays the list of features to monitor. Here, you can select or deselect features to include or exclude from monitoring. By default, all features are selected. Feature statistics are provided if the selected data is a table and has RDBMS statistics automatically gathered by Autonomous Database. Oracle Machine Learning Services calculates the statistics on the first run for both, tables and views, and the computations are displayed here after the first run. The statistics are updated by subsequent runs.

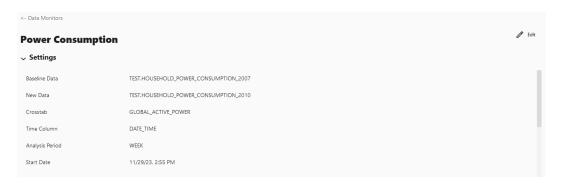
Figure 7-5 Features grid in Data Monitor

The **Case ID** and **Cross-Tab** columns cannot be selected.

7. Click **Save.** This completes the task of creating your data monitor.

You must now go to the Data Monitoring page, select the data monitor and click **Start** to begin data monitoring.

After the data monitor runs successfully, select the monitor on the **Data Monitoring** page to view the data drift and other details of the data monitor. See **Get Started with Data Monitoring** for more information.


7.2 View Data Monitor Results

The Data Monitor Results page displays the information on the selected data monitor that have run successfully, along with data drift details for each monitored feature.

On the Data Monitors page, click on a data monitor that has run successfully. In this example, the data monitor **Power Consumption** is selected. The results of the data monitor is displayed on the Data Monitor Results page which comprises these sections:

Settings — The Settings section displays the data monitor settings. Click on the arrow against Settings to expand this section. You have the option to edit the data monitor settings by clicking Edit on the top right corner of the page. In this screenshot, the settings for the data monitor Power Consumption is seen.

Figure 7-6 Settings section on the Data Monitor Results page

• **Drift** — The Drift section displays the details of data drift for each monitored feature. In this example, the data monitor **Power consumption** data monitor is selected. The X axis depicts the analysis period, and the Y axis depicts the data drift values. The horizontal dotted line is the threshold value, and the line depicts the drift value for each point in time for the analysis period. Hover your mouse over the line to view the drift values.

<- Data Monitors **Power Consumption** > Settings 09/18/10 02:32:00 AM 11/27/10 02:32:00 AM **Data Drift** 1.2 1.0 0.8 0.4 0.2 0.0 -9/25/10 10/2/10 10/9/10 10/16/10 **Features** Name ^ Importance \$ Percent Missing \$\circ\$ GLOBAL_ACTIVE_POWER GLOBAL_INTENSITY GLOBAL_REACTIVE_POWER ID SUB_METERING_1

Figure 7-7 Data Drift section on the Data Monitor Results page

• **Features** — The Features section displays the monitored features along with the computed statistics.

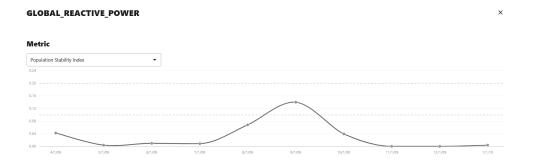
Figure 7-8 Features section on the Data Monitor Results page

The value in the **Importance** column indicates how impactful the feature has been on data drift over a specified time period.

For numerical data, the following statistics are computed:

- Mean
- Standard Deviation
- Range (Minimum, Maximum)
- Number of nulls

For categorical data, the following statistics are computed:


- Number of unique values
- Number of nulls

For each monitored feature, hover your mouse to view the following additional details, as shown in the screenshot here.

- First: This is the first value of the computed statistics for the analysis period.
- Last: This is the last value of the computed statistics for the analysis period.
- Max: This is the highest value of the computed statistics for the analysis period.
- Min: This is the lowest value of the computed statistics for the analysis period.
- Click on any monitored feature in the Features section to view the Metric, Statistics,
 Distribution, and Distribution with Crosstab Column, as shown in the screenshot here. In
 the screenshot here, the Population Stability Index is shown for the feature
 GLOBAL REACTIVE POWER.

Figure 7-9 Population Stability Index

The computations include:

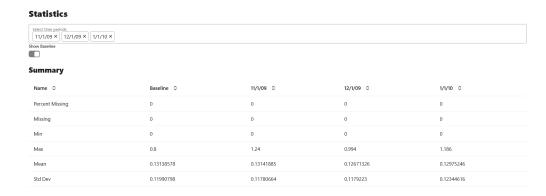
- Metric: The following metrics are computed:
 - Population Stability Index (PSI): This is a measure of how much a population has shifted over time or between two different samples of a population in a single number. The two distributions are binned into buckets, and PSI compares the percents of items in each of the buckets. PSI is computed as

```
PSI = sum((Actual % - Expected %) x ln (Actual % / Expected %))
```

The interpretation of PSI value is:

- * PSI < 0.1 implies no significant population change
- * 0.1 <= PSI < 0.2 implies moderate population change
- * PSI >= 0.2 implies significant population change
- Jenson Shannon Distance (JSD): This is a measure of the similarity between two probability distributions. JSD is the square root of the Jensen-Shannon Divergence which is related to the Kullbach-Leibler Divergence (KLD). JSD is computed as:

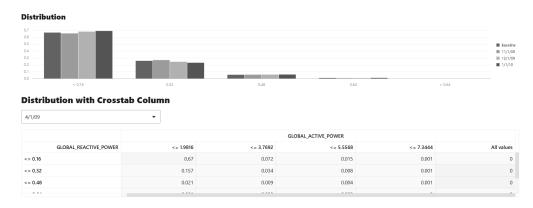
```
SD(P \mid\mid Q) = sqrt(0.5 \times KLD(P \mid\mid M) + 0.5 \times KLD(Q \mid\mid M))
```


Where, P and Q are the 2 distributions, $M = 0.5 \times (P + Q)$, $KLD(P | | M) = sum(Pi \times ln(Pi / Mi))$, and $KLD(Q | | M) = sum(Qi \times ln(Qi / Mi))$

The value of JSD ranges between 0 and 1.

- * Crosstab Population Stability Index: This is the PSI for two variables.
- Crosstab Jenson Shannon Distance: This is the JSD for two variables.
- Statistics: You can view statistics for up to 3 selected periods. Data drift is quantified using these statistical computations.

Figure 7-10 Statistics


For numerical data, the following statistics are computed:

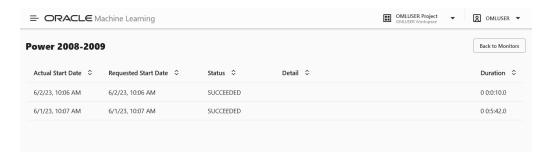
- * Mean
- * Standard Deviation
- * Range (Minimum, Maximum)
- Number of nulls

For categorical data, the following statistics are computed:

- * Number of unique values
- Number of nulls
- Distribution: The feature distribution chart with legend displays bins of feature for selected periods and the baseline (optional).

Figure 7-11 Distribution Chart and Distribution with Crosstab column

 Distribution with Crosstab Column: The heat map indicates the density of distribution for the selected crosstab and the feature column. Red denotes highest density.


In data drift monitoring, nulls are are tracked separately as number_of_missing_values.

7.3 View History

The History page displays the runtime details of data monitors.

Select a data monitor and click **History** to view the runtime details. The history page displays the following information about the data monitor runtime:

Figure 7-12 Data Monitor History page

- Actual Start Date: This is the date when the data monitor actually started.
- Requested Start Date: This is the date entered in the Start Date field while creating the data monitor.
- Status: The statuses are SUCCEEDED and FAILED.
- Detail: If a data monitor fails, the details are listed here.
- **Duration:** This is the time taken to run the data monitor.

Click **Back to Monitors** to go back to the Data Monitoring page.

Get Started with Model Monitoring

Model monitoring allows you to monitor the quality of model predictions over time and helps you with insights on the causes of model quality issues.

The Model Monitor page allows you to create, run, and track model monitors and results. This page lists the model monitors. You can preview the model drift by selecting a single model monitor of interest, as shown in the screenshot below. In this screenshot, the monitor **Power Consumption** is selected. On the lower pane of the Model Monitors page, the **Model Drift** for the selected monitor is displayed. The X axis depicts the analysis period, and the Y axis depicts the model drift values. The horizontal red dotted line is the threshold value. The line depicts the drift value for each point in time for the analysis period. Hover your mouse over the line to view the drift values.

Model Monitors Filter SCHEDULED HOUSEHOLD_POWER_... HOUSEHOLD_POWER_... SUCCEEDED 11/15/23, 9:40 PM 11/16/23, 8:02 AM Every 1 days 2007 vs 2008... HOUSEHOLD POWER ... HOUSEHOLD POWER ... 11/15/23, 8:08 AM SUCCEEDED 11/16/23, 8:07 AM SCHEDULED Every 1 days Model Drift NN 4C90CF9FB8 -0.2 -0.4 -0.6

Figure 8-1 Model Monitors page

You can perform the following tasks on the Model Monitors page:

- Create: Create a model monitor.
- Edit: Select a model monitor and click Edit to edit the monitor.
- **Duplicate:** Select a model monitor and click **Duplicate** to create a copy of the monitor.
- Delete: Select a model monitor and click Delete to delete the model monitor.
- History: Select a model monitor and click History to view the runtime details. Click Back to Monitors to go back to the Model Monitoring page.
- Start: Start a model monitor.

- Stop: Stop a model monitor that is running.
- More: Select a model monitor, click More and then click:
 - Enable: Enable a model monitor schedule. By default, the model monitor is enabled. The status is displayed as SCHEDULED.
 - Disable: Disable a model monitor schedule. The status is displayed as DISABLED.
 - Show External Monitors: Click this option to display the models created and managed by OML Services REST API.

Create a Model Monitor

A model monitor helps you monitor several compatible models, and compute the model drift chart. Compatible models refer to those models that are trained on the same target and mining function. The model drift chart consists of multiple series of data drift points, one for each monitored model.

View Model Monitor Results

The Model Monitor Results page displays the monitoring results of each model that are being monitored. By clicking on any model that has run successfully, you can view the detailed analysis of each model such as model drift, model metrics, prediction statistics, feature impact, prediction distribution and predictive versus drift importance for each feature. The predictive impact versus drift importance for each monitored feature is computed only if data monitoring is enabled.

View Model History

The History page displays the runtime details of the model monitors.

8.1 Create a Model Monitor

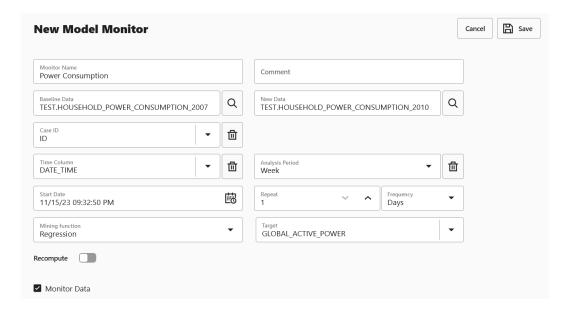
A model monitor helps you monitor several compatible models, and compute the model drift chart. Compatible models refer to those models that are trained on the same target and mining function. The model drift chart consists of multiple series of data drift points, one for each monitored model.

A model monitor can optionally monitor data to provide additional insight. This additional insight is the Drift Feature Importance versus Predictive Feature Impact chart which is generated when you select the Monitor Data option while creating the model monitor.

This topic discusses hows how to create a model monitor. The example uses the *Individual household electricity consumption* dataset which includes various consumption metrics of a household from 2007 to 2010. The goal is to understand if and how household consumption has changed over four years. The example shows how to track the effects of data drifts on model predictive accuracy.

The dataset comprises the following columns:

- DATE_TIME Contains the date and time related information in dd:mm:yyyy:hh:mm:ss format.
- GLOBAL_ACTIVE_POWER This is the household global minute-averaged active power (in kilowatt).
- GLOBAL_REACTIVE_POWER This is the household global minute-averaged reactive power (in kilowatt).
- VOLTAGE This is the Minute-averaged voltage (in volt).



- GLOBAL_INTENSITY This is the household global minute-averaged current intensity (in ampere).
- SUB_METERING_1 This is the energy sub-metering No. 1 (in watt-hour of active energy).
 It corresponds to the kitchen.
- SUB_METERING_2 This is the energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room.
- SUB_METERING_3 This is the energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to an electric water heater and air conditioner.

To create a model monitor:

- On the Oracle Machine Learning UI left navigation menu, expand Monitoring and then click Models to open the Model Monitoring page. Alternatively, you can click on the Model Monitoring icon to open the Model Monitoring page.
- 2. On the Model Monitoring page, click **Create** to open the New Model Monitor page.
- 3. On the New Model Monitor page, enter the following details:

Figure 8-2 New Model Monitor page

- Monitor Name: Enter a name for the model monitor. Here, the name Power Consumption is used.
- b. **Comment:** Enter comments. This is an optional field.
- c. Baseline Data: This is a table or view that contains baseline data to monitor. Click the search icon to open the Select Table dialog. Select a schema, and then a table. Here, the table containing the data for the year 2007 is selected.
- d. New Data: This is a table or view with new data to be compared against the baseline data. Click the search icon to open the **Select Table** dialog. Select a schema, and then a table. Here, the table containing the data for the year 2010 is selected.
- e. **Case ID:** This is an optional field. Enter a case identifier for the baseline and new data to improve the repeatability of the results.

f. Time Column: This is the name of a column storing time information in the New Data table or view. The DATE_TIME column is selected from the dropdown list.

Note:

If the Time Column is blank, the entire New Data is treated as one period.

- g. Analysis Period: This is the length of time for which model monitoring is performed on the New Data. Select the analysis period for model monitoring. The options are Day, Week, Month, Year.
- h. **Start Date:** This is the start date of your model monitor schedule. If you do not provide a start date, the current date will be used as the start date.
- i. Repeat: This value defines the number of times the model monitor run will be repeated for the frequency defined. Enter a number between 1 and 99. For example, if you enter 2 in the Repeat field here, and Minutes in the Frequency field, then the model monitor will run every 2 minutes.
- j. Frequency: This value determines how frequently the model monitor run will be performed on the New Data. Select a frequency for model monitoring. The options are Minutes, Hours, Days, Weeks, Months. For example, if you select Minutes in the Frequency field, 2 in the Repeat field, and 5/30/23 in the Start Date field, then as per the schedule, the model monitor will run from 5/30/23 every 2 minutes.
- k. Mining Function: The available mining functions are Regression and Classification. Select a function as applicable. In this example, Regression is selected.
- I. Target: Select an attribute from the drop-down list. In this example, GLOBAL ACTIVE POWER is used as the target for regression models.
- m. Recompute: Select this option to update the already computed periods. This means that only time periods not present in the output result table will be computed. By default, Recompute is disabled.
 - When enabled, the drift analysis is performed for the time period specified in the Start Date field and the end time. The analysis will overwrite the already existing results for the specified time period. This means that the analysis will be computed for the time period with new data other than the current data.
 - When disabled, the data for the time period that is present in the results table will be retained as is. Only the new data for the most recent time period will be considered for analysis, and the results will be added to the results table.
- n. Monitor Data: Select this option to enable data monitoring for the specified data. When enabled, a data monitor is also created along with the model monitor to compute the Predictive Feature Impact versus Drift Feature Impact in the model specific results.
- 4. Click **Additional Settings** to expand this section and provide advanced settings for your model monitor:

Additional Settings Metric Mean Squared Error Drift Threshold 0.7 Database Service Level Low Analysis Filter From Date: 鼠 09/15/23 12:00:00 AM To Date: 11/15/23 12:00:00 AM Maximum Number of Runs 3

Figure 8-3 Additional Settings section on the New Model Monitor page

a. Metric: Depending on the mining function selected in the **Mining Function** field in the Create Model Monitor page, the applicable metrics are listed. Click on the dropdown list to select a metric.

For the mining function Classification, the metrics are:

- Accuracy Calculates the proportion of correctly classifies cases both Positive
 and Negative. For example, if there are a total of TP (True Positives)+TN (True
 Negatives) correctly classified cases out of TP+TN+FP+FN (True Positives+True
 Negatives+False Positives+False Negatives) cases, then the formula is:
 Accuracy = (TP+TN) / (TP+TN+FP+FN)
- Balanced Accuracy Evaluates how good a binary classifier is. It is especially useful when the classes are imbalanced, that is, when one of the two classes

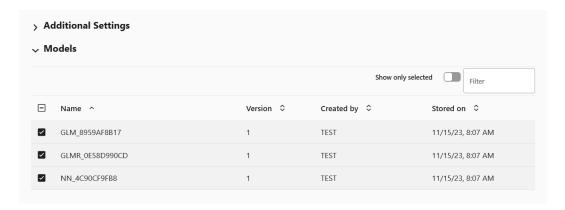
- appears a lot more often than the other. This often happens in many settings such as Anomaly Detection etc.
- ROC AUC (Area under the ROC Curve) Provides an aggregate measure of discrimination regardless of the decision threshold. AUC -ROC curve is a performance measurement for the classification problems at various threshold settings.
- Recall Calculates the proportion of actual Positives that is correctly classified.
- Precision Calculates the proportion of predicted Positives that is True Positive.
- F1 Score Combines precision and recall into a single number. F1-score is computed using harmonic mean which is calculated by the formula:
 F1-score = 2 × (precision × recall) / (precision + recall)

For multi-class classification, the metrics are:

- Accuracy
- Balanced Accuracy
- Macro F1
- Macro_Precision
- Macro Recall
- Weighted F1
- Weighted_Precision
- Weighted_Recall

For Regression, the metrics are:

- R2 A statistical measure that calculates how close the data are to the fitted regression line. In general, the higher the value of R-squared, the better the model fits your data. The value of R2 is always between 0 to 1, where:
 - 0 indicates that the model explains none of the variability of the response data around its mean.
 - 1 indicates that the model explains all the variability of the response data around its mean.
- Mean Squared Error This is the mean of the squared difference of predicted and true targets.
- Mean Absolute Error This is the mean of the absolute difference of predicted and true targets.
- Median Absolute Error This is the median of the absolute difference between predicted and true targets.
- b. **Drift Threshold:** Drift captures the relative change in performance between the baseline data and the new data period. Based on your specific machine learning problem, set the threshold value for your model drift detection. The default is 0.7.
 - A drift above this threshold indicates a significant change in model predictions. Exceeding the threshold indicates that rebuilding and redeploying your model may be necessary.



- A drift below this threshold indicates that there are insufficient changes in the data to warrant further investigation or action.
- c. Database Service Level: This is the service level for the job, which can be LOW, MEDIUM, or HIGH.
- d. Analysis Filter: Enable this option if you want the model monitoring analysis for a specific time period. Move the slider to the right to enable it, and then select a date in From Date and To Date fields respectively. By default, this field is disabled.
 - **From Date:** This is the start date or timestamp of monitoring in New Data. It assumes the existence of a time column in the table. This is a mandatory field if you use the Analysis Filter option.
 - **To Date:** This is the end date or timestamp of monitoring in the New Data. It assumes the existence of a time column in the table. This is a mandatory field if you use the Analysis Filter option.
- **e. Maximum Number of Runs:** This is the maximum number of times the model monitor can be run according to this schedule. The default is 3.
- 5. In the Models section, select the model that you want to monitor and then click Save on the top right corner of the page. Once you provide a value in the Mining Function and Target fields, the list of models that have been deployed are obtained and is displayed here in the Models section. Models are deployed from the Models page, or from the AutoML Leaderboard. You can view the complete list of deployed models in the Deployments tab on the Models page. The deployed models are managed by OML Services.

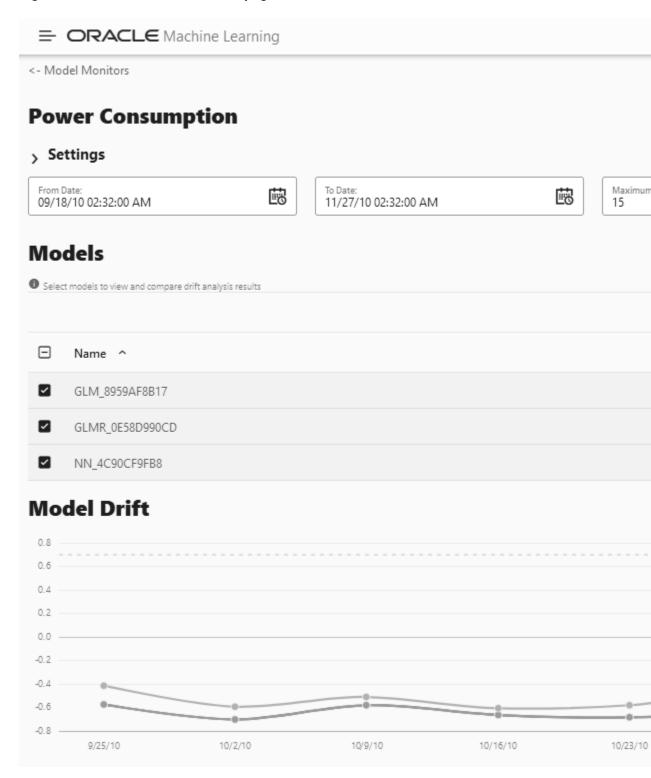
If you drop any models, you have to redeploy the models. Models are not schema based models, but models deployed to OML Services.

Figure 8-4 Models section on the New Model Monitor page

Once the model monitor is successfully created, it displays the message: Model monitor has been created successfully.

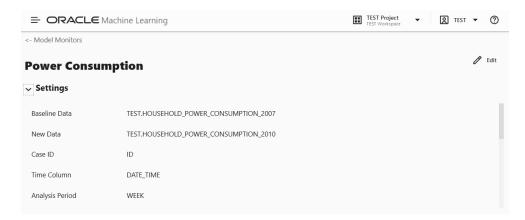
You must now go to the Model Monitoring page, select the model monitor and click **Start** to begin model monitoring.

8.2 View Model Monitor Results


The Model Monitor Results page displays the monitoring results of each model that are being monitored. By clicking on any model that has run successfully, you can view the detailed analysis of each model such as model drift, model metrics, prediction statistics, feature impact, prediction distribution and predictive versus drift importance for each feature. The predictive impact versus drift importance for each monitored feature is computed only if data monitoring is enabled.

1. Model Monitor Results page

The Model Monitor Results page lists all the models that are monitored by the monitor. The name of the monitor is displayed at the top of the page. As seen in this screenshot, the monitor name **Power Consumption**is displayed at the top. The models GLM_8959AF817, GLMR_0E58D990CD and NN_4C90CF9FB8 monitored by the **Power Consumption** monitor are listed in the Models section. By default, the details of all the monitored models are displayed. You can choose to view the details of one monitor at a time by deselecting the other monitors.


Figure 8-5 Model Monitor Results page

The Model Monitor Results page comprises these sections:

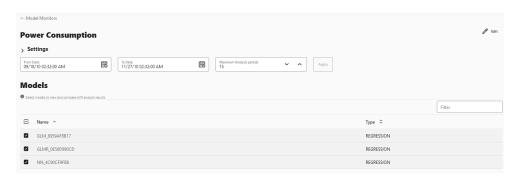

Settings — The Settings section displays the model monitor settings. Click on the
arrow against Settings to expand this section. You have the option to edit the
model monitor settings by clicking Edit on the top right corner of the page.

Figure 8-6 Model Monitor Settings

 Models — The Models section lists all the models that are monitored by the monitor. In this example, the models GLM_8959AF817, GLMR_0E58D990CD and NN_4C90CF9FB8 monitored by the Power Consumption monitor are listed.

Figure 8-7 Models on the Models Monitor Results page

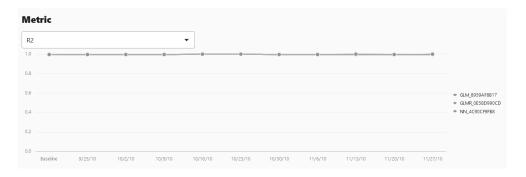
You can choose to view and compare the results of one or more monitored models by deselecting the ones that you want to exclude. You can also view the results of each feature of the model by clicking on the model. These results — Feature Impact chart, Prediction Distribution, and Predictive Impact versus Drift Importance chart are displayed on a separate pane that slides in. The Predictive Impact versus Drift Importance chart is computed only if the **Monitor Data** option is selected while creating the model monitor.

• Model Drift — The Model Drift section is displayed just below the Models section. Model drift is the percentage change in the performance metric between the baseline period and the new period. A negative value indicates that the new period has a better performance metric which could happen due to noise. The X axis depicts the analysis period, and the Y axis depicts the drift values. The horizontal dotted line represents the drift threshold settings that each monitor gets by default. The default covers the typical use case. However, you can choose to customize it based on specific use case. The line depicts the drift value for each

point in time for the analysis period. Hover your mouse over the line to view the drift values. A drift above the threshold indicates significant change in model predictions. Exceeding the threshold suggests rebuilding and redeploying your model may be necessary. If the drift is below the threshold, it indicates that there are insufficient changes in the data to warrant further investigation or action. That is, possibly rebuilding a machine learning model using this data.

0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
9/25/10
10/2/10
10/9/10
10/9/10
10/16/10
10/23/10

Figure 8-8 Model Drift on the Models Monitor Results page


If you want to view the drift details of one model at a time, click on the model name on the right to select or deselect it, as shown here.

• Metric — This Metric section displays the computed metrics for the selected models. The computed metric is plotted along the y axis, and the time period is plotted along the x axis. In this example, the metric R2 or R-squared is displayed for all the three models. Hover your cursor on other points on the line to view the details of the computed metric. The value of R2 for all the models is equal to 1. Here, the value of R2 for all the three monitored models is 1. This indicates that all the three models are good fit for the data

Figure 8-9 Metric

The computed metrics for **Regression** are:

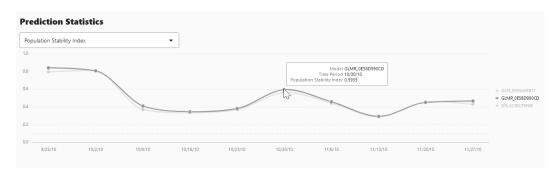
- R2 A statistical measure that calculates how close the data are to the fitted regression line. In general, the higher the value of R-squared, the better the model fits your data. The value of R2 is always between 0 to 1, where:
 - * 0 indicates that the model explains none of the variability of the response data around its mean.
 - * 1 indicates that the model explains all the variability of the response data around its mean.
- Mean Squared Error This is the mean of the squared difference of predicted and true targets.
- Mean Absolute Error This is the mean of the absolute difference of predicted and true targets.
- Median Absolute Error This is the median of the absolute difference between predicted and true targets.

The computed metrics for **Binary Classification** are:

Accuracy — Calculates the proportion of correctly classifies cases - both
Positive and Negative. For example, if there are a total of TP (True Positives)
+TN (True Negatives) correctly classified cases out of TP+TN+FP+FN (True
Positives+True Negatives+False Positives+False Negatives) cases, then the
formula is:

Accuracy = (TP+TN) / (TP+TN+FP+FN)

- Balanced Accuracy Evaluates how good a binary classifier is. It is
 especially useful when the classes are imbalanced, that is, when one of the
 two classes appears a lot more often than the other. This often happens in
 many settings such as Anomaly Detection etc.
- ROC AUC (Area under the ROC Curve) Provides an aggregate measure of discrimination regardless of the decision threshold. AUC - ROC curve is a performance measurement for the classification problems at various threshold settings.
- Recall Calculates the proportion of actual Positives that is correctly classified.
- Precision Calculates the proportion of predicted Positives that is True Positive.



F1 Score — Combines precision and recall into a single number. F1-score is computed using harmonic mean which is calculated by the formula:
 F1-score = 2 × (precision × recall) / (precision + recall)

The computed metrics for **Multi-class Classification** are:

- Accuracy
- Balanced Accuracy
- Macro F1
- Macro_Precision
- Macro_Recall
- Weighted F1
- Weighted_Precision
- Weighted_Recall
- Prediction Statistics Scroll further down to view the Prediction Statistics section.
 The computed prediction statistic is plotted along the y axis, and the time period is plotted along the x axis. In this screenshot, the Population Stability Index for the Generalized Linear Model Regression model GLMR_0E58D990CD for 10/30/10 is displayed. Hover your cursor on other points on the line to view the computed metric.

Figure 8-10 Prediction Statistics

Click on the drop-down list to view all the prediction statistics. The statistics of the predictions of the model vary according to the type of model.

For **Regression**, the computed prediction statistics are:

 Population Stability Index — This is a measure of how much a population has shifted over time or between two different samples of a population in a single number. The two distributions are binned into buckets, and PSI compares the percents of items in each of the buckets. PSI is computed as

```
PSI = sum((Actual_% - Expected_%) x ln (Actual_% / Expected_%))
```

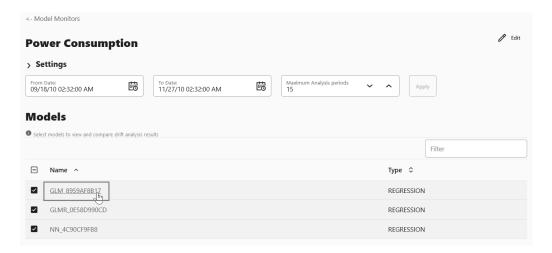
The interpretation of PSI value is:

- * PSI < 0.1 implies no significant population change
- * 0.1 <= PSI < 0.2 implies moderate population change
- * PSI >= 0.2 implies significant population change
- Min This is the lowest value of the computed statistics for the analysis period.

- Mean This is the average value of the computed statistics for the analysis period.
- Max This is the highest value of the computed statistics for the analysis period.
- Standard Deviation This is the value that shows how much variation from the mean exists.

For **Binary Classification**, the computed prediction statistics are:

- Population Stability Index
- Mean
- Min
- Max
- Standard Deviation
- Bin Distribution of prediction probabilities
- Class distribution


For **Multi-class Classification**, the computed prediction statistics are:

- Population Stability Index
- Class Distribution

2. Model Monitor Details

You can view the details of each feature of the model by clicking on the model name. These details include the Feature Impact chart, Prediction Distribution and the Predictive Impact versus Drift Importance chart. In this example, the model GLM_8959AF817 is selected.

Figure 8-11 Model selection for details

The computed results are displayed on a separate pane that slides in. You can select up to 3 analysis periods comparison. You also have the option to hide or show the baseline details. The computed details of the model features are:

- **Feature Impact** The Feature Impact chart computes the impact of each feature in the model for the specified time. The chart also the gives you the option to view the feature impact on a linear scale as well as on a logarithmic scale. Hover your mouse over the chart to view the details Feature Name, Date, and Feature Impact.
 - Click **Log Scale** to view the feature impact computation on a logarithmic scale.
 - Click to view the feature impact computation in a line graph.
 - Click to view the feature impact computation in a table.
 - Click Limit the most impactful features to drop down list to select a value.

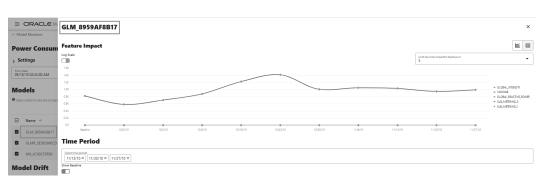
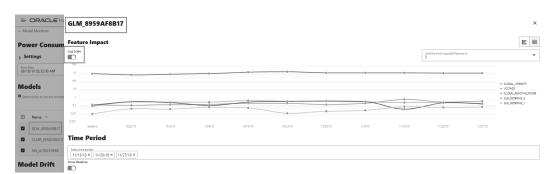
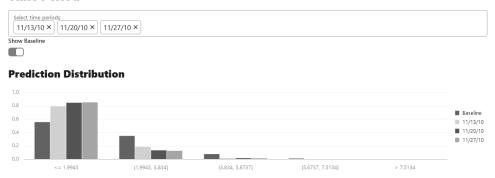


Figure 8-12 Viewing Feature Impact on a liner scale

In this screenshot, the feature GLOBAL_INTENSITY, that is, the global minute-averaged current intensity of the household electric consumption is seen to have the maximum impact on the model GLM_8959AF817 as compared to the other features. Click on **Log Scale** to view feature impact computation on a logarithmic scale, as shown in the screenshot below. Click X on the top right corner of the pane to exit.

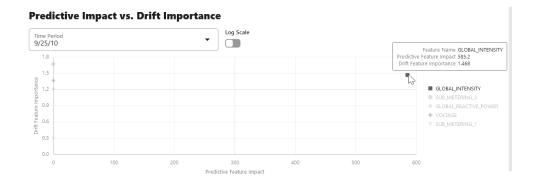



Figure 8-13 Viewing Feature Impact on a Logarithmic Scale

Prediction Distribution — Scroll down to view the Prediction Distribution. Prediction
Distribution is plotted for each analysis period. The Baseline data is displayed, if selected.
The bins are plotted along X-axis, and the values are plotted along the Y-axis. Hover your
mouse over each histogram to view the computed details. Click X on the top right corner
of the pane to exit.

Figure 8-14 Prediction Distribution

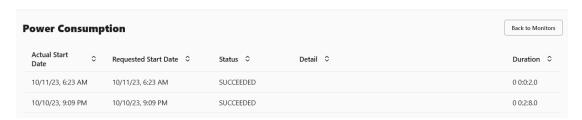
Time Period



Predictive Impact vs Drift Importance — Scroll further down the pane to view
the Prediction Impact versus Drift Importance chart. This chart helps in
understanding how the most impactful features drift over time. Drift Feature
Importance is plotted along the Y-axis and Prediction Feature Impact is plotted
along the X-axis. Click X on the top right corner of the pane to exit.

The Prediction Impact vs Drift Importance chart is computed only if you select the **Monitor Data** option while creating the model monitor.

Figure 8-15 Predictive Feature Impact versus Drift Importance


In this screenshot, you can see that the feature GLOBAL_INTENSITY has the maximum impact on the selected predictive model GLM_8959AF817 as compared to the other features - SUB_METERING_3, GLOBAL_REACTIVE_POWER, VOLTAGE, and SUB-METERING_1.

8.3 View Model History

The History page displays the runtime details of the model monitors.

Select a model monitor and click **History** to view the runtime details. The history page displays the following information about the model monitor runtime:

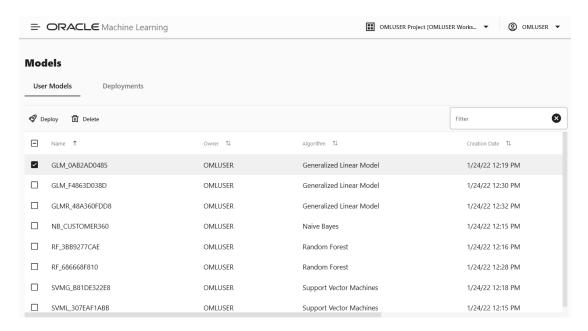
Figure 8-16 View Model History

- Actual Start Date: This is the date when the model monitor actually started.
- Requested Start Date: This is the date entered in the Start Date field while creating the model monitor.
- Status: The statuses are SUCCEEDED and FAILED.
- **Detail:** If a model monitor fails, the details are listed here.
- **Duration:** This is the time taken to run the model monitor.

Click **Back to Monitors** to go back to the Model Monitoring page.

Get Started with Models

The Models page displays the user models and the list of deployed models. User Model lists the models in a user's schema, and Deployments lists the models deployed to Oracle Machine Learning Services.


Under Models, the model information and model deployment are available under:

- **User Models:** Lists all the models that are created in a database schema. In the Models view, you can browse, view, deploy and delete models.
- **Deployments:** Lists all the deployed models. In the Deployments view, you can view the model metadata and the REST API URI of the deployed models.

User Models

In the User Models view, you can browse, view, and deploy models. The User Models view lists the models that are available in the database schema:

Figure 9-1 User Models

- Name: Displays the model name. Model names can be any valid database object name.
- Owner: Displays the user who built the model.
- Algorithm: Displays the name of the algorithm used.
- Creation Date: Displays the date on which the model is built.
- Target: Displays the prediction target selected when the experiment is created.

You can perform the following tasks:

- Deploy: To deploy a model, select the model and click Deploy.
- Delete: To delete a model, select the model and click Delete.

Deployments

In the Deployments view, you can view the list of all the deployed models. Here, you can view the model metadata, view the REST API URI of the deployed models, and also delete any deployed model.

To delete a deployed model, select the model and click **Delete.**

Figure 9-2 Deployed Models

The following information are displayed for each deployed model:

- Name: The name of the deployed model.
- **Shared:** Allows users in the same PDB to use the model.
- Version: Displays the model version.
- Namespace: Displays the model namespace.
- Owner: The name of the user who deployed the model.
- **Deployed Date:** Displays the date of model deployment.

Note:

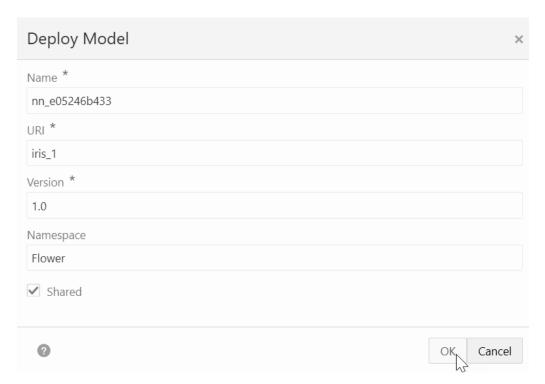
You cannot re-deploy the same model. However, you can create a new version of the model and deploy it. You can then track the model based on the version.

• **URI:** Displays the URI name. Click on the URI link to view the REST API URI of the model.

Figure 9-3 REST API Specifications of a Deployed Model

Deploy Model

When you deploy a model, you create an Oracle Machine Learning Services endpoint for scoring.


9.1 Deploy Model

When you deploy a model, you create an Oracle Machine Learning Services endpoint for scoring.

In the Deploy Model dialog box, you can define the model deployment in the context of your AutoML UI experiment. To deploy a model, define the following:

Figure 9-4 Deploy Model

- In the Name field, the system generated model name is displayed here by default. You can edit this name. The model name must be a unique alphanumeric name with maximum 50 characters.
- 2. In the **URI** field, enter a name for the model URI. The URI must be alphanumeric, and the length must be max 200 characters.
- 3. In the **Version** field, enter a version of the model. The version must be in the format xx.xx where x is a number.
- 4. In the **Namespace** field, enter a name for the model namespace.
- 5. Click **Shared** to allow users with access to the database schema to view and deploy the model.
- **6.** Click **OK.** After a model is successfully deployed, it is listed in the Deployments page.
- 7. You can view the following details:
 - Model Metadata Select a deployed model and click the model name to view model metadata such as the model name, mining function, algorithm, attributes and so on.
 - REST API Select a deployed model and click the link under URI to view the REST API URI of the model.

10

Use Templates to Collaborate with Users

By using the Oracle Machine Learning Notebooks templates, you can collaborate with other users by sharing your work, publishing your work as reports, and by creating notebooks from templates. You can store your notebooks as templates, share notebooks, and provide sample templates to other users.

You can also collaborate with other Oracle Machine Learning Notebooks users by providing access to your workspace. The authenticated user can then access the projects in your workspace, and access your notebooks. The access level depends on the permission type granted - Manager, Developer, or Viewer. For more information about collaboration among users, see How to collaborate in Oracle Machine Learning Notebooks

- Use the Personal Templates
 Personal Templates lists the notebook templates that you have created.
- Use the Shared Templates
 In the Shared Templates, you can share notebook templates with all authenticated users
 the notebook templates you create from existing notebooks available in Templates.
- Use the Example Templates
 The Example Templates page lists the pre-populated Oracle Machine Learning notebook templates. You can view and use these templates to create your notebooks.

10.1 Use the Personal Templates

Personal Templates lists the notebook templates that you have created.

You can perform the following tasks:

- View selected templates in read-only mode.
- Create new notebooks from selected templates.
- Edit selected templates.
- Share selected notebook templates in Shared Templates.
- Delete selected notebook templates.
- Create Notebooks from Templates

You can create new notebooks from an existing template, and store them in Personal Templates for later use.

Share Notebook Templates

You can share templates from Personal Templates. You can also share templates for editing.

Edit Notebook Templates Settings

You can modify the settings of an existing notebook template in Personal Templates.

10.1.1 Create Notebooks from Templates

You can create new notebooks from an existing template, and store them in Personal Templates for later use.

You must select a notebook template.

To create a new notebook from a template:

 On the Personal Templates page, select the template based on which you want to create the notebook, and click New Notebook.

The Create Notebook dialog box opens.

- 2. In the **Name** field, provide a name for the notebook.
- 3. In the **Comments** field, enter comments, if any.
- 4. In the **Project** field, select the project in which you want to save your notebook.
- 5. In the **Connection** field, the default connection is selected.
- 6. Click OK.

The notebook is created, and is available on the Notebooks page.

10.1.2 Share Notebook Templates

You can share templates from Personal Templates. You can also share templates for editing.

To share a template:

- 1. Select the notebook template in Personal Templates and click **Share.**
 - The Save to Shared Templates dialog box opens.
- 2. In the **Name** field, enter a new name for the template.
- 3. In the **Comments** field, provide comments, if any.
- In the Tags field, enter tags separated by commas. To enable easy searching, use descriptive tags.
- 5. Click OK.

Once the template is successfully created and shared, a message appears stating that the template is created in Shared.

10.1.3 Edit Notebook Templates Settings

You can modify the settings of an existing notebook template in Personal Templates.

To edit notebook template settings:

- Select the notebook template in Personal Templates and click Edit Settings.
 The Edit Template dialog box opens.
- 2. In the **Name** field, edit the name, as applicable.

- 3. In the **Comments** field, edit the comments, if any.
- 4. In the **Tags** field, edit the tags, as applicable.
- 5. Click OK.

10.2 Use the Shared Templates

In the Shared Templates, you can share notebook templates with all authenticated users the notebook templates you create from existing notebooks available in Templates.

The Shared Templates page tracks notebook templates when you perform the following:

- · Like templates
- Create notebooks from templates
- View templates

The Shared Templates page displays the following information about the templates:

- Template name
- Description
- · Number of likes
- Number of creations
- Number of static views

You can perform the following tasks:

- Create templates by clicking New Notebook
- Edit template settings by clicking Edit Settings
- Delete any selected template by clicking **Delete**
- Search templates by Name, Tag, Author
- Sort templates by Name, Date, Author, Liked, Viewed, Used
- View templates by clicking Show Liked Only or Show My Items Only
- Create Notebooks from Templates

You can create new notebooks from an existing template, and store them in Personal Templates for later use.

Edit Notebook Templates Settings
 You can modify the settings of an existing notebook template in Personal Templates.

10.2.1 Create Notebooks from Templates

You can create new notebooks from an existing template, and store them in Personal Templates for later use.

You must select a notebook template.

To create a new notebook from a template:

 On the Personal Templates page, select the template based on which you want to create the notebook, and click New Notebook.

The Create Notebook dialog box opens.

- In the Name field, provide a name for the notebook.
- 3. In the Comments field, enter comments, if any.
- In the Project field, select the project in which you want to save your notebook.
- 5. In the **Connection** field, the default connection is selected.
- 6. Click OK.

The notebook is created, and is available on the Notebooks page.

10.2.2 Edit Notebook Templates Settings

You can modify the settings of an existing notebook template in Personal Templates.

To edit notebook template settings:

- Select the notebook template in Personal Templates and click Edit Settings.
 The Edit Template dialog box opens.
- 2. In the **Name** field, edit the name, as applicable.
- 3. In the Comments field, edit the comments, if any.
- 4. In the **Tags** field, edit the tags, as applicable.
- 5. Click OK.

10.3 Use the Example Templates

The Example Templates page lists the pre-populated Oracle Machine Learning notebook templates. You can view and use these templates to create your notebooks.

The Example Templates page displays the following information about the templates:

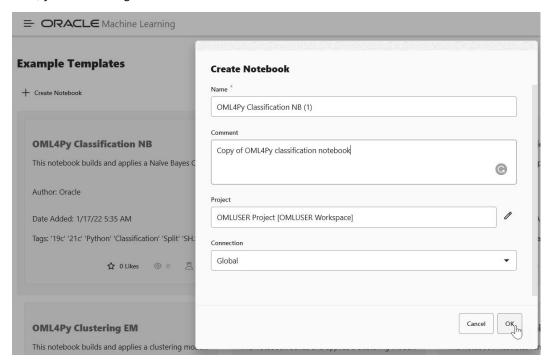
- Template name
- Description
- Number of likes. Click Likes to mark it as liked.
- Number of static views
- Number of uses

You cannot alter any templates in the Example Templates page. The search options are:

- Search templates by Name, Tag, Author
- Sort templates by Name, Date, Author, Liked, Viewed, Used
- View templates that are liked by clicking Show Liked only
- Create a Notebook from the Example Templates
 Using the Oracle Machine Learning Example Templates, you can create a notebook from the available templates.
- Example Templates

Oracle Machine Learning Notebooks provide you notebook example templates that are based on different machine learning algorithms and languages such as Python, R, and SQL. The example templates are processed in Oracle Autonomous Database.

10.3.1 Create a Notebook from the Example Templates


Using the Oracle Machine Learning Example Templates, you can create a notebook from the available templates.

To create a notebook:

- On the Example Templates page, select the template based on which you want to create a notebook.
- Click New Notebook.

The Create Notebook dialog box opens.

3. In the **Create Notebook** dialog, the name of the selected template appears. In the **Name** field, you can change the notebook name.

- 4. In the **Comment** field, if any comment is available for the template, then it is displayed. You can edit the comment.
- 5. In the **Project** field, click the edit icon
- **6.** Select the project in which you want to save the notebook.
- 7. In the **Connection** field, the default connection is selected.
- 8. Click OK.

The notebook is created and is available on the Notebooks page.

10.3.2 Example Templates

Oracle Machine Learning Notebooks provide you notebook example templates that are based on different machine learning algorithms and languages such as Python, R, and SQL. The example templates are processed in Oracle Autonomous Database.

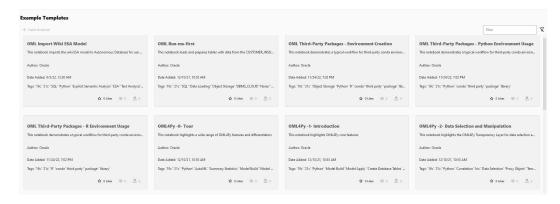
You can create your own editable and runnable Oracle Machine Learning notebooks based on any of these Oracle Machine Learning for R example template notebooks:

- OML Export and Import Serialized Models: Use this notebook to export and
 import native serialized models using the DBMS_DATA_MINING.EXPORT_SERMODEL
 and DBMS_DATA_MINING.IMPORT_SERMODEL procedures. Oracle Machine Learning
 provides APIs to streamline the process of migrating models across databases
 and platforms.
- OML Wiki ESA Model: Use this notebook for text document categorization by calculating semantic relatedness (how similar in meaning two words or pieces of text are to each other) between the documents and a set of topics that are explicitly defined and described by humans. The Oracle Machine Learning for SQL function ESA, Oracle Machine Learning for Python function oml.esa and Oracle Machine Learning for R function ore.odmESA extract text-based features from a corpus of documents and performs document similarity comparisons. In this notebook, the wiki ESA model is imported to Autonomous Database for use with the following OML template notebook examples:
 - OML4SQL Feature Extraction ESA Wiki Model
 - OML4Py Feature Extraction ESA Wiki Model
 - OML4R Feature Extraction ESA Wiki Model
- OML Services Batch Scoring: Use this notebook to run batch scoring jobs through a REST interface via OML Services. OML Services supports batch scoring for regression, classification, clustering, and feature extraction.
 - Authenticate the database user and obtain a token
 - Create a batch scoring job
 - View the details and output of the batch scoring job
 - Update, disable, and delete a batch scoring job
- OML Services Data Monitoring: Use this notebook to perform data monitoring.
 This notebook runs provides you with the data monitoring workflow steps through the REST interface that includes:
 - Authenticate the database user and obtain a token
 - Create a data monitoring job
 - View the details and output of the data monitoring job
 - Update, disable, and delete a data monitoring job
- OML Services Model Monitoring: Use this notebook to understand and perform model monitoring. This notebook runs provides you with the model monitoring workflow steps through the REST interface that includes:
 - Authenticate the database user and obtain a token
 - Create a model monitoring job

- View the details and output of the model monitoring job
- Update, disable, and delete a model monitoring job
- OML Third-Party Packages Environment Creation: Use this notebook to download
 and activate the Conda environment, and to use the libraries in your notebook sessions.
 Oracle Machine Learning Notebooks provide a Conda interpreter to install third-party
 Python and R libraries in a Conda environment for use within Oracle Machine Learning
 Notebooks sessions, as well as within Oracle Machine Learning for Python and Oracle
 Machine Learning for R embedded execution calls.

The third-party libraries installed in Oracle Machine Learning Notebooks can be used in:

- Standard Python
- Standard R
- Oracle Machine Learning for Python embedded Python execution from the Python, SOL and REST APIs
- Oracle Machine Learning for R embedded R execution from the R, SQL, and REST APIs


The Conda environment is installed and managed by the ADMIN user with OML_SYS_ADMIN role. The administrator can create a shared environment, and add or delete packages from it. The Conda environments are stored in the Object Storage bucket associated with the Autonomous Database.

Conda is an open source package and environment management system that enables the use of virtual environments containing third-party R and Python packages. With conda environments, you can install and update packages and their dependencies, and switch between environments to use project-specific packages.

This template notebook *OML Third-Party Packages - Environment Creation* contains a typical workflow for third-party environment creation and package installation in Oracle Machine Learning Notebooks.

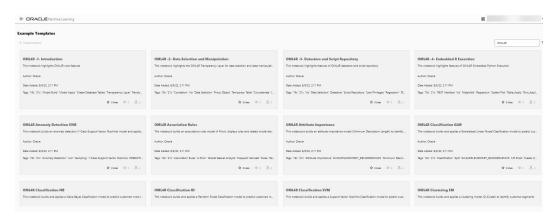
- Section 1 contains commands to create and test Conda environments.
- Section 2 contains commands to create a Conda environment, install packages, and commands to upload the conda environment to an Object Storage bucket associated with the Oracle Autonomous Database.

Figure 10-1 Conda Example Templates

OML Third-Party Packages - Python Environment Usage: Use this template
notebook to understand the typical workflow for third-party environment usage in
Oracle Machine Learning Notebooks using Python and Oracle Machine Learning
for Python. You download and use the libraries in Conda environments that were
previously created and saved to an Object Storage bucket folder associated with
the Autonomous Database.

This notebook contains commands to:

- List all environments stored in Object Storage
- List a named environment stored in Object Storage
- Download and activate the mypyenv environment
- List the packages available in the Conda environment
- Import Python libraries
- Load datasets
- Build models
- Score models
- Create Python user defined functions (UDFs)
- Run the user defined functions (UDFs) in Python
- Create and run user defined functions in the SQL and REST APIs for embedded Python execution
- Create and run Python user defined functions using the SQL API for embedded Python execution - asynchronous mode
- OML Third-Party Packages R Environment Usage: Use this template notebook to understand the typical workflow for third-party environment usage in Oracle Machine Learning for R.


This notebook contains commands to:

- List all environments stored in Object Storage
- List a named environment stored in Object Storage
- Download and activate the myrenv environment
- Show the list of available OML4R Conda environments
- Import R libraries
- Load and prepare data
- Build models
- Score models
- Create R user defined functions (UDFs)
- Run user defined functions (UDFs) in R
- Save the user defined functions (UDFs) to the script repository
- Run the R user defined function in SQL and REST APIs for embedded R execution
- Add the OML user to the Access Control List
- Run the R user defined functions using the REST API for embedded R execution in synchronous mode

- OML4R-1: Introduction: Use this notebook to understand how to:
 - Load the ORE Library
 - Create database tables
 - Use the transparency layer
 - Rank attributes for predictive value using the in-database attribute importance algorithm
 - Build predictive models, and
 - Score data using these models

Figure 10-2 Oracle Machine Learning for R Example Templates

- OML4R-2: Data Selection and Manipulation: Use this notebook to understand the features of the transparency layer involving data selection and manipulation.
- OML4R-3: Datastore and Script Repository: Use this notebook to understand the datastore and script repository features of OML4R.
- OML4R-4: Embedded R Execution: Use this notebook to understand OML4R
 embedded R execution. First, a linear model is built in R directly, then a user-define R
 function is created to build the linear model, the function is then saved to the script
 repository, and the data is scored in parallel using R engines spawned by the Oracle
 Autonomous Database environment. The notebook also demonstrates how to call these
 scripts using the SQL interface and REST API for R with embedded R execution.

To use the SQL API for embedded R execution, a user-defined R function must reside in the OML4R script repository, and an Oracle Machine Learning (OML) cloud account USERNAME, PASSWORD, and URL must be provided to obtain an authentication token.

- OML4R Anomaly Detection Support Vector Machine (SVM): Use this notebook to build a One-Class SVM model and then use it to flag unusual or suspicious records.
- OML4R Association Rules Apriori: Use this notebook to build association rules models
 using the A Priori algorithm with data from the SH schema (SH.SALES). All computation
 occurs inside Oracle Autonomous Database.

- OML4R Attribute Importance Minimum Description Length (MDL): Use this
 notebook to compute Attribute Importance, which uses the Minimum Description
 Length algorithm, on the SH schema data. All functionality runs inside Oracle
 Autonomous Database. Oracle Machine Learning supports Attribute Importance to
 identify key factors such as attributes, predictors, variables that have the most
 influence on a target attribute.
- OML4R Classification Generalized Linear Model (GLM): Use this notebook to
 predict customers most likely to be positive responders to an Affinity Card loyalty
 program. This notebook builds and applies a classification generalized linear
 model using the Sales History (SH) schema data. All processing occurs inside
 Oracle Autonomous Database.
- OML4R Classification Naive Bayes (NB): Use this notebook to predict
 customers most likely to be positive responders to an Affinity Card loyalty
 program. This notebook builds and applies a classification decision tree model
 using the Sales History (SH) schema data. All processing occurs inside Oracle
 Autonomous Database.
- OML4R Classification Random Forest (RF): Use this notebook to use the Random Forest algorithm for classification in OML4R, and predict customers most likely to be positive responders to an Affinity Card loyalty program.
- OML4R Classification Modeling to Predict Target Customers using Support Vector Machine (SVM): Use this notebook to use the Classification modeling to predict Target Customers using Support Vector Machine Model.
- OML4R Clustering Identifying Customer Segments using Expectation
 Maximization Clustering: Use this notebook to understand how to identify natural
 clusters of customers using the CUSTOMERS data set from the SH schema using
 the unsupervised learning Expectation Maximization (EM) algorithm. The data
 exploration, preparation, and machine learning run inside Oracle Autonomous
 Database.
- OML4R Clustering Identifying Customer Segments using K-Means Clustering: Use this notebook to understand how to identify natural clusters of customers using the CUSTOMERS data set from the SH schema using the unsupervised learning K-Means (KM) algorithm. The data exploration, preparation, and machine learning run inside Oracle Autonomous Database.
- OML4R Clustering Orthogonal Partitioning Clustering (OC): Use this
 notebook to understand how to identify natural clusters of customers using the
 CUSTOMERS data set from the SH schema using the unsupervised learning kMeans algorithm. The data exploration, preparation, and machine learning runs
 inside Oracle Autonomous Database.
- OML4R Data Cleaning Outlier: Use this notebook understand and to exclude records with outliers using OML4R.
- OML4R Data Cleaning Recode Synonymous Values: Use this notebook to recode synonymous value using OML4R.
- OML4R Data set Creation: Use this notebook to load the sample data sets MTCARS and IRIS and to import them into your Oracle Autonomous Database instance using the ore.create() function.

The following example template notebooks prefixed with an asterisk (*), use the CUSTOMER_INSURANCE_LTV data set. This data set is generated by the OML Run-mefirst notebook. Hence, you must run the OML Run-me-first notebook that is available under the Examples Templates.

- * OML4R Data Cleaning Missing Data: Use this notebook to perform missing value replacement using OML4R.
- * OML4R Data Cleaning Duplicate Removal: Use this notebook to remove duplicate records using OML4R.
- * OML4R Data Transformation Binning: Use this notebook to bin numerical columns using OML4R.
- * OML4R Data Transformation Categorical Record: Use this notebook to recode a
 categorical string variable to a numeric variable and string-to-string recoding using
 OML4R.
- * OML4R Data Transformation: Normalization and Scaling: Use this notebook to normalize and scale data using OML4R.
- * OML4R Data Transformation: One-Hot Encoding: Use this notebook to perform one-hot encoding using OML4R.
- * OML4R Feature Selection Supervised Algorithm: Use this notebook to perform
 feature selection using in-database supervised algorithms using OML4R. This notebook
 demonstrates how to build a Random Forest model to predict whether the customer
 would buy insurance or not, and then use Feature Importance to perform feature
 selection.
- * OML4R Feature Selection Using Summary Statistics: Use this notebook to perform
 feature selection using summary statistics using OML4R. This notebook demonstrates
 how to use OML4R to select features based on number of distinct values, null values,
 proportion of constant values.
- OML4R Feature Engineering Aggregation: Use this notebook to perform aggregation
 for min, max, mean, and count using OML4R. This template uses the SALES table present
 in the SH schema, and shows how to create features by aggregating the amount sold for
 each customer and product pair.
- OML4R Feature Extraction Explicit Semantic Analysis (ESA) Wiki Model: This notebook uses the use the Wikipedia Model as an example. Use this notebook to use the Oracle Machine Learning for R function ore.odmESA to extract text-based features from a corpus of documents and performs document similarity comparisons. All processing occurs inside Oracle Autonomous Database.

Note:

The pre-built Wikipedia model must be installed in your Autonomous Database instance to run this notebook.

OML4R Data Transformation Date Data types: Use this notebook to perform various operations on date and time data using database table proxy objects using Oracle Machine Learning for R.

- OML4R Feature Extraction Singular Value Decomposition (SVD): Use this
 notebook to use the in-database SVD for feature extraction. This notebook uses
 the Oracle Machine Learning for R function ore.odmSVD to create a model that
 uses the Singular Value Decomposition (SVD) algorithm for feature extraction.
- OML4R Partitioned Model Support Vector Machine (SVM): Use this notebook
 to build an SVM model to predict the number of years a customer resides at their
 residence but partitioned on customer gender. The model is then used to predict
 the target, then predict the target with prediction details.
- OML4R Regression Generalized Linear Model (GLM): Use this notebook to understand how to predict numerical values using multiple regression. This notebook uses the Generalized Linear Model algorithm.
- OML4R Regression Neural Network (NN): Use this notebook to understand how
 to predict numerical values using multiple regression. This notebook uses the
 Neural Network algorithm.
- OML4R Regression Support Vector Machine (SVM): Use this notebook to understand how to predict numerical values using multiple regression. This notebook uses the Support Vector Machine algorithm.
- OML4R REST API: Use this notebook to understand how to use the OML4R REST API to call user-defined R functions, and to list those available in the R script repository.

To run a script, it must reside in the R script repository. An Oracle Machine Learning cloud service account user name and password must be provided for authentication.

- OML4R Statistical Function: Use this notebook to understand and use various statistical functions. The notebook uses data from the SH schema through the OML4R transparency layer.
- OML4R Text Mining Support Vector Machine (SVM): Use this notebook to
 understand how to use unstructured text data to build machine learning models,
 leverage Oracle Text, use Oracle Machine Learning in-database algorithms
 predictive features, and extract features from text columns.
 This notebook builds a Support Vector Machine (SVM) model to predict customers
 that are most likely to be positive responders to an Affinity Card loyalty program.
 The data comes from a text column that contains user generated comments.

Oracle Machine Learning for Python Example Templates

You can create your Oracle Machine Learning notebooks based on any of these Oracle Machine Learning for Python example templates:

Figure 10-3 Oracle Machine Learning for Python Example Templates

- **My First Notebook**: Use the My First Notebook notebook for basic machine learning functions, data selection and data viewing. This template uses the SH schema data.
- **OML4Py -0- Tour:** This notebook is the first of a series 0 through 5 that is intended to introduce you to the range of OML4Py functionality through short examples.
- OML4Py -1- Introduction: This notebook provides an overview on how to load OML library, create database tables, use the transparency layer, rank attributes for predictive value using the in-database attribute importance algorithm, build predictive models, and score data using these models.
- **OML4Py -2- Data Selection and Manipulation:** Use this notebook to learn how to work with the transparency layer which involves data selection and manipulation.
- OML4Py -3- Datastores: Use this notebook to learn how to work with datastores, move
 objects between datastore and a Python sessions, manage datastore privileges, save
 model objects and Python objects in a datastore, delete datastores and so on.
- OML4Py -4- Embedded Python Execution: Use this notebook to understand embedded Python Execution. In this notebook, a linear model is build in Python directly, and then a function is created that uses Python engines spawned by the Autonomous Database environment.
- OML4Py -5- AutoML: Use this notebook to understand the AutoML workflow in OML4Py. In this notebook, the WINE data set from scikit-learn is used. Here, AutoML is used for classification on the target column, and for regression on the alcohol column.

The following example template notebooks prefixed with an asterisk (*), use the <code>CUSTOMER_INSURANCE_LTV_PY</code> data set. This data set has duplicated values artificially generated by **OML4SQL Noise** notebook. Hence, you must run the **OML4SQL Noise** first before running the notebook.

* OML4Py Data Cleaning Duplicates Removal: Use this notebook to understand how
to remove duplicate records using OML4Py. This notebook uses the customer insurance
lifetime value data set which contains customer financial information, lifetime value, and
whether or not the customer bought insurance.

- * OML4Py Data Cleaning Missing Data: Use this notebook to understand how to fill in missing values using OML4Py. This notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.
- * OML4Py Data Cleaning Recode Synonymous Values: Use this notebook to
 understand how to recode synonymous value using OML4Py. This notebook uses
 the customer insurance lifetime value data set which contains customer financial
 information, lifetime value, and whether or not the customer bought insurance.
- OML4Py Data Cleaning Outlier Removal: Use this notebook to understand how
 to clean data to remove outliers. This notebook uses the CUSTOMER_INSURANCE_LTV
 data set which contains customer financial information, lifetime value, and whether
 or not the customer bought insurance. In the data set CUSTOMER_INSURANCE_LTV,
 the focus is on numerical values and removal of records with values in the top and
 bottom 5%.
- OML4Py Data Transformation Binning: Use this notebook to understand how to bin a numerical column and visualize the distribution.
- OML4Py Data Transformation Categorical Convert Categorical Variables to Numeric Variables: Use this notebook to understand how to convert categorical variables to numeric variables using OML4Py. The notebooks demonstrates how to convert a categorical variable with each distinct level/value coded to an integer data type.
- OML4Py Data Transformation Normalization and Scaling: Use this notebook to understand how to normalize and scale data using z-score (mean and standard deviation), min max scaling, and log scaling.

When building or applying a model using in-database Oracle Machine Learning algorithms, automatic data preparation will normalize data automatically as needed, by specific algorithms.

OML4Py Data Transformation One Hot Encoding: Use this notebook to
understand how to perform one hot encoding using OML4Py. Machine learning
algorithms cannot work with categorical data directly. Categorical data must be
converted to numbers. This notebook uses the customer insurance lifetime value
data set which contains customer financial information, lifetime value, and whether
or not the customer bought insurance.

Note:

If you plan to use the in-database algorithms, one hot encoding is automatically applied for those algorithms requiring it. The in-databae algorithms automatically explode the categorical columns and fit the model on the prepared data internally.

 OML4Py Anomaly Detection: Use this notebook to detect anomalous records, customers or transactions in your data. This template uses the unsupervised learning algorithm 1-Class Support Vector Machine. The notebook template builds a 1-Class Support Vector Machine (SVM) model.

- OML4Py Association Rules: Use this notebook for market basket analysis of your data, or to detect co-occurring items, failures or events in your data. This template uses the apriori Association Rules model using the SH schema data (SH.SALES).
- **OML4Py Attribute Importance:** Use this notebook to identify key attributes that have maximum influence over the target attribute. The target attribute in the build data of a supervised model is the attribute that you want to predict. The template builds an Attribute Importance model using the SH schema data.
- **OML4Py Classification:** Use this notebook for predicting customer behavior and similar predictions. The template builds and applies the classification algorithm Decision Tree to build a Classification model based on the relationships between the predictor values and the target values. The template uses the SH schema data.
- **OML4Py Clustering:** Use this notebook to identify natural clusters in your data. The notebook template uses the unsupervised learning *k*-Means algorithm on the SH schema data.
- **OML4Py Data Transformation**: Use this notebook to convert categorical variables to numeric variables using OML4Py. This template shows how to convert a categorical variable with each distinct level/value coded to an integer data type.
- OML4Py Data Set Creation: Use this notebook to create data set from sklearn package to OML data frame using OML4Py.
- OML4Py Feature Engineering Aggregation: Use this notebook template to fill in missing values using OML4Py. This notebook uses the SH schema SALES table, which contains transaction records for each customer and products purchased. Features are created by aggregating the amount sold for each customer and product pair.
- OML4Py Feature Selection Supervised Algorithm Based: Use this notebook to perform feature selection using in-database supervised algorithms using OML4Py.
- OML4Py Feature Selection Summary Statistics: Use this notebook template to
 perform feature selection using summary statistics using OML4Py. The notebook shows
 how to use OML4Py to select features based on number of distinct values, null values,
 proportion of constant values. The data set used here CUSTOMER_INSURANCE_LTV_PY has
 null values generated by the OML4SQL Noise notebook artificially. You must first run the
 OML4SQL Noise notebook before running the OML4Py Feature Selection Summary
 Statistics notebook.
- OML4Py Partitioned Model: Use this notebook to build partitioned models. This notebook builds an SVM model to predict the number of years a customer resides at their residence but partitioned on customer gender. It uses the model to predict the target, and then predict the target with prediction details.
 Oracle Machine Learning enables automatically building of an ensemble model comprised of multiple sub-models, one for each data partition. Sub-models exist and are used as one model, which results in simplified scoring using the top-level model only. The proper sub-model is chosen by the system based on partition values in the row of data to be scored. Partitioned models achieve potentially better accuracy through multiple targeted models.
- **OMP4Py REST API:** Use this notebook to call embedded Python execution. OML4Py contains a REST API to run user-defined Python functions saved in the script repository. The REST API is used when separation between the client and the Database server is beneficial. Use the OML4Py REST API to build, train, deploy, and manage scripts.

To run a script, it must reside in the OML4Py script repository. An Oracle Machine Learning cloud service account user name and password must be provided for authentication.

- OML4Py Regression Modeling to Predict Numerical Values: Use this notebook to predict numerical values using multiple regression.
- **OML4Py Statistical Functions:** Use this notebook to use various statistical functions. The statistical functions use data from the SH schema through the OML4Py transparency layer.
- OML4Py Text Mining: Use this notebook to build models using Text Mining capability in Oracle Machine Learning.
 In this notebook, an SVM model is built to predict customers most likely to be positive responders to an Affinity Card loyalty program. The data comes with a text column that contains user generated comments. With a few additional specifications, the algorithm automatically uses the text column and builds the model on both the structured data and unstructured text.

Oracle Machine Learning for SQL Example Templates

You can create your Oracle Machine Learning notebooks based on any of these Oracle Machine Learning for SQL example templates:

Example Templates

| Contract | C

Figure 10-4 Oracle Machine Learning for SQL Example Templates

- OML4SQL Anomaly Detection: Use this notebook to detect unusual or rare occurrences. Oracle Machine Learning supports anomaly detection to identify rare or unusual records (customers, transactions, etc.) in the data using the semi-supervised learning algorithm One-Class Support Vector Machine. This notebook builds a 1Class-SVM model and then uses it to flag unusual or suspicious records. The entire machine learning methodology runs inside Oracle Autonomous Database.
- OML4SQL Association Rules: Use this notebook to apply Association Rules
 machine learning technique, also known as Market Basket Analysis to discover cooccurring items, states that lead to failures, or non-obvious events. This notebook
 builds associations rules models using the A Priori algorithm with the SH.SALES
 data from the SH schema. All computation occurs inside Oracle Autonomous
 Database.

- OML4SQL Attribute Importance Identify Key Factors: Use this notebook to identify key factors, also known as attributes, predictors, variables that have the most influence on a target attribute. This notebook builds an Attribute Importance model, which uses the Minimum Description Length algorithm, using the SH schema data. All functionality runs inside Oracle Autonomous Database.
- OML4SQL Classification Predicting Target Customers: Use this notebook to predict customers that are most likely to be positive responders to an Affinity Card loyalty program. This notebook builds and applies classification decision tree models using the SH schema data. All processing occurs inside Oracle Autonomous Database.
- OML4SQL Clustering Identifying Customer Segments: Use this notebook to identify
 natural clusters of customers. Oracle Machine Learning supports clustering using several
 algorithms, including k-Means, O-Cluster, and Expectation Maximization. This notebook
 uses the CUSTOMERS data set from the SH schema using the unsupervised learning kMeans algorithm. The data exploration, preparation, and machine learning runs inside
 Oracle Autonomous Database.
- OML4SQL Data Cleaning Removing Duplicates: Use this notebook to remove duplicate records using Oracle SQL. The notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance. The data set CUSTOMER_INSURANCE_LTV_SQL has duplicate values generated by the OML4SQL Noise notebook.

You must first run the OML4SQL Noise notebook before running the OML4SQL Data Cleaning notebook.

OML4SQL Data Cleaning - Missing Data: Use this template to replace missing values using Oracle SQL and the DBMS_DATA_MINING_TRANSFORM package. The data set CUSTOMER_INSURANCE_LTV_SQL has missing values artificially generated by the OML4SQL Noise notebook. You must first run the OML4SQL Noise notebook before running the OML4SQL Data Cleaning notebook.

Note:

When building or applying a model using in-database Oracle Machine Learning algorithms, this operation may not be needed separately if automatic data preparation is enabled. Automatic data preparation automatically replaces missing values of numerical attributes with the mean and missing values of categorical attributes with the mode.

- OML4SQL Data Cleaning Outlier Removal: Use this notebook to remove outliers using Oracle SQL and the DBMS_DATA_MINING_TRANSFORM package. The notebook uses the customer insurance lifetime value data set, which contains customer financial information, lifetime value, and whether or not the customer bought insurance. In the data set CUSTOMER_INSURANCE_LTV, it focuses on numeric values and removes records with values in the top and bottom 5%.
- OML4SQL Data Cleaning Recode Synonymous Values: Use this notebook to recode synonymous value of a column using Oracle SQL. The notebook uses the customer insurance lifetime value data set, which contains customer financial information, lifetime value, and whether or not the customer bought insurance. The data set

- CUSTOMER_INSURANCE_LTV_SQL has recoded values generated by the OML4SQL Noise notebook. You must first run the OML4SQL Noise notebook before running the OML4SQL Data Cleaning Recode Synonymous Values notebook.
- OML4SQL Data Transformation Binning: Use this notebook to bin numeric columns using Oracle SQL and the DBMS_DATA_MINING_TRANSFORM package. This notebook shows how to bin a numerical column and visualize the distribution.
- OML4SQL Data Transformation Categorical: Use this notebook to convert a
 categorical variable to a numeric variable using Oracle SQL. The notebook shows
 how to convert a categorical variable with each distinct level/value coded to an
 integer, and how to create an indicator variable based on a simple predicate.
- OML4SQL Data Transformation Normalization and Scale: Use this notebook to normalize and scale data using Oracle SQL and the DBMS_DATA_MINING_TRANSFORM package. The notebook shows how to normalize data using using z-score (mean and standard deviation), min max scaling, and log scaling. When building or applying a model using in-database Oracle Machine Learning algorithms, automatic data preparation normalizes data automatically, as needed, by specific algorithms.
- OML4SQL Dimensionality Reduction Non-negative Matrix Factorization: Use this notebook to perform dimensionality reduction using the in-database non-negative matrix factorization algorithm. This notebook shows how to convert a table with many columns to a reduced feature set. Non-negative Matrix Factorization produces non-negative coefficients.
- OML4SQL Dimensionality Reduction Singular Value Decomposition: Use
 this notebook to perform dimensionality reduction using the in-database singular
 value decomposition (SVD) algorithm.
- OML4SQL: Exporting Serialized Models: Use this notebook to export serialized models to Oracle Cloud Object Storage. This notebook creates Oracle Machine Learning regression and classification models and exports the models in a serialized format so that they can be scored using the Oracle Machine Learning (OML) Services REST API. OML Services provides REST API endpoints hosted on Oracle Autonomous Database. These endpoints enable the storing of Oracle Machine Learning models along with its metadata and create scoring endpoints for the model. The REST API for OML Services supports both Oracle Machine Learning models and ONNX format models, and enables cognitive text functionality.
- OML4SQL Feature Engineering Aggregation and Time: Use this notebook to generate aggregated features and also extract date and time features using Oracle SQL. The notebook also shows how to extract date and time features from the field TIME_ID.
- OML4SQL Feature Selection Algorithm Based: Use this notebook to perform feature selection using in-database supervised algorithms. The notebook first builds a random forest model to predict if the customer will buy insurance, then it uses Feature Importance values for feature selection. It then build a decision tree model for the same classification task, and obtains split nodes. For the top splitting nodes with highest support, features associated with those nodes are selected.
- OML4SQL Feature Selection Unsupervised Attribute Importance: Use this
 notebook to perform feature selection using the in-database unsupervised
 algorithm Expectation Maximization (EM). This notebook illustrates using the

 $\label{lem:create_model} \begin{tabular}{ll} \tt CREATE_MODEL & function, which leverages the settings table in contrast to the \\ \tt CREATE_MODEL2 & function used in other notebooks. \\ \end{tabular}$

- OML4SQL Feature Selection Using Summary Statistics: Use this notebook to perform feature selection using summary statistics using Oracle SQL. The data set CUSTOMER_INSURANCE_LTV_SQL has null values generated by OML4SQL Noise notebook artificially. You must first run the OML4SQL Noise notebook before running the OML4SQL Feature Selection Using Summary Statistics.
- OML4SQL Noise: Use this notebook to replace normal values by null values, and to add duplicated rows. In this notebook, the data set used by the Data Preparation notebooks is prepared, in particular those for data cleaning and feature selection. It uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.

Run the OML4SQL Noise notebook before the Data Preparation notebooks.

- OML4SQL Partitioned Model: Use this notebook to build partitioned models. Partitioned
 models achieve potentially better accuracy through multiple targeted models. The
 notebook builds an SVM model to predict the number of years a customer resides at their
 residence but partitioned on customer gender. The model is then used to predict the
 target first, and then to predict the target with prediction details.
- OML4SQL Text Mining: Use this notebook to build models using text mining capability. Oracle Machine Learning handles both structured data and unstructured text data. By leveraging Oracle Text, Oracle Machine Learning in-database algorithms automatically extracts predictive features from the text column.
 This notebook builds an SVM model to predict customers most likely to be positive responders to an Affinity Card loyalty program. The data comes with a text column that contains user generated comments. With a few additional specifications, the algorithm automatically uses the text column and builds the model on both the structured data and unstructured text.
- **OML4SQL Regression:** Use this notebook to predict numerical values. This template uses multiple regression algorithms such as Generalized Linear Models (GLM).
- **OML4SQL Statistical Function:** Use this notebook for descriptive and comparative statistical functions. The notebook template uses SH schema data.
- **OML4SQL Time Series:** Use this notebook to build time series models on your time series data for forecasting. This notebook is based on the Exponential Smoothing Algorithm. The sales forecasting example in this notebook is based on the SH. SALES data. All computations are done inside Oracle Autonomous Database.

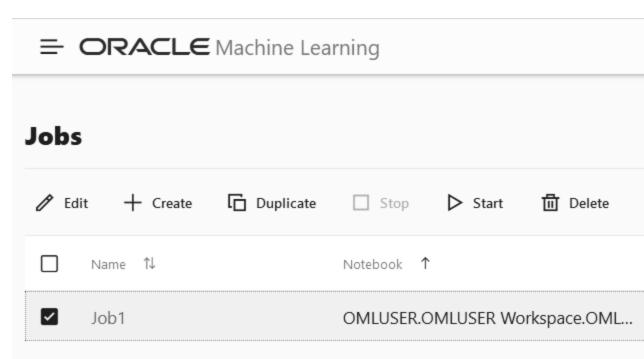
11

Get Started with Jobs

Jobs allow you to schedule the running of notebooks. On the Jobs page, you can create jobs, duplicate jobs, start and stop jobs, delete jobs, and monitor job status by viewing job logs, which are read-only notebooks.

About Jobs

The Jobs page lists all the jobs created, along with the job name, notebook, owner of the job, last start date, next run date, status, and schedule.


- Create Jobs to Schedule Notebooks
 You can create jobs to schedule your notebook with preferred scheduling settings.
- View Job Logs
 You can view the historical logs of any particular job in the Job Log interface.

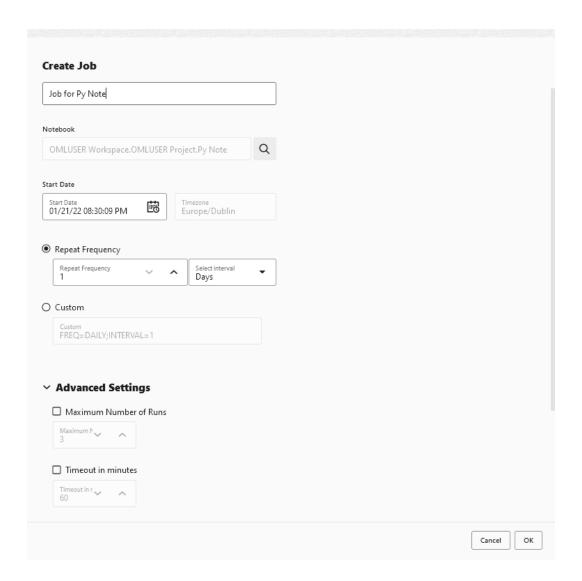
11.1 About Jobs

The Jobs page lists all the jobs created, along with the job name, notebook, owner of the job, last start date, next run date, status, and schedule.

You can perform the following tasks:

Figure 11-1 Jobs

- Edit jobs: You can edit the metadata of any job listed on the Jobs page. Click **Edit** to edit the selected job.
- Create jobs. Click **Create** to create a new job to schedule your notebook.
- Duplicate jobs: You can create a copy of an existing job listed on the Jobs page.
 Click **Duplicate** to make a copy of the selected job.
- Stop jobs: Click **Stop** to terminate a job that is currently running.
- Start jobs: The Start button is enabled only for jobs that are in Scheduled status.
 Click Start to start a scheduled job. The Start option is not applicable for the following conditions:
 - Jobs that have already completed its scheduled run cannot be re-started.
 - Jobs that have failed more than the allowed number of times, and are currently in *Broken* status, cannot be re-started.
- Delete jobs: Click Delete to delete any job listed on the Jobs page.


11.2 Create Jobs to Schedule Notebooks

You can create jobs to schedule your notebook with preferred scheduling settings.

To create jobs, enter the following details in the Create Jobs dialog box:

1. On the Jobs page, click **Create.** The Create Jobs dialog box opens.

- 2. In the **Name** field, enter a name for the job. The number of characters in the job name must not exceed 128 bytes.
- 3. In the **Notebook** field, click the search icon to select a notebook to create a job.

Only notebooks that are owned by the user or shared are available for selection.

- 4. In the **Start Date** field, click the date-time editor to set the date and time for your job to commence. Based on the selected date and time, the next run date is computed.
- 5. Optionally, in the **Repeat** section, select:
 - **Frequency:** To set the repeat settings and frequency. You can set the frequency in minutes, hours, days, week, and month.
 - Custom: To customize the job settings.
- 6. Optionally, in **Advanced Settings**, select one or more of the following options:

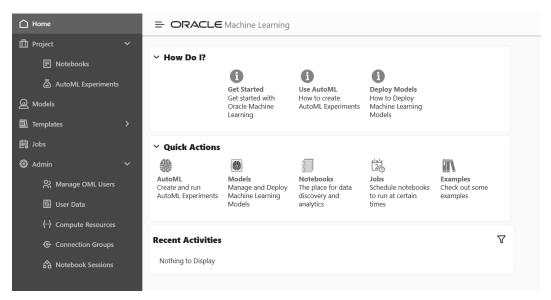
- Maximum Number of Runs: To specify the maximum number of times the job must run before it is stopped. When the job reaches the maximum run limit, it will stop.
- Maximum Failures Allowed: To specify the maximum number of times a job can fail on consecutive scheduled runs. When the maximum number of failures is reached, the next run date column in the Jobs UI will show an empty value to indicate the job is no longer scheduled to run. The Status column may show the status as Failed.
- **Timeout in Minutes:** To specify the maximum amount of time a job should be allowed to run.
- 7. Click OK.

11.3 View Job Logs

You can view the historical logs of any particular job in the Job Log interface.

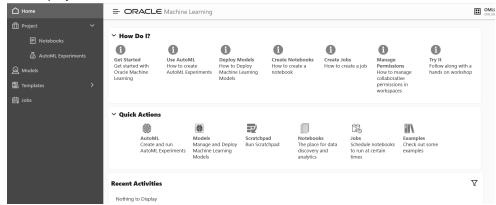
You can view a log in the read-only Notebook. To view job logs:

- 1. To view the history of a job, select the job and click View
- 2. To delete a particular job log, select it and click Delete .


Administer Oracle Machine Learning

Oracle Machine Learning is managed at the system level and at the application level by an administrator.

 Administrator — Creates and manages Oracle Machine Learning user accounts, manages compute resourses, connection groups, and notebook sessions. The Administrator also reassigns user workspace.


Note:

The Administrator is not authorized to run notebooks. The Administrator can only read notebooks.

 Developer — This is the default user role that allows you to create and run notebooks, run SQL Statements, create SQL scripts, run Python scripts, create jobs to schedule and run notebooks, use example template notebooks, create and run AutoML experiments,

and deploy models.

Typical Workflow for Managing Oracle Machine Learning

To manage Oracle Machine Learning User Interface and other administrative tasks, refer to the tasks listed in the table as a guide.

Access OML User Management from Command Line

You can obtain the Oracle Machine Learning User Management URL for a specific tenancy from the Oracle Cloud Infrastructure (OCI) command line.

Manage OML Users

An administrator manages new user account and user credentials creation for Oracle Machine Learning in the User Management interface.

About User Data

On the User Data page in Oracle Machine Learning, you can view existing user data, reassign, and delete it.

About Compute Resource

The term Compute Resource refers to services such as a database, or any other backend service to which an interpreter connects.

Get Started with Connection Groups

A connection group, also known as a Zeppelin interpreter set, is a collection of database connections.

Get Started with Notebook Sessions

The Notebook Sessions page provides you an overview of your notebooks, and allows you to manage notebook sessions from your workspace or in workspaces where you have collaboration rights.

12.1 Typical Workflow for Managing Oracle Machine Learning

To manage Oracle Machine Learning User Interface and other administrative tasks, refer to the tasks listed in the table as a guide.

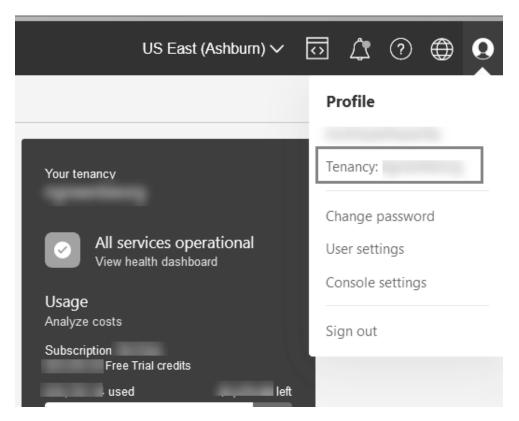
Tasks	Oracle Machine Learning Interface/OCI CLI Interface	More Information
Obtain Oracle Machine	Oracle Cloud Infrastructure	Access OML User
Learning User Management	(OCI) Command Line Interface	Management from Command
URL from OCI command line	(CLI)	Line

Tasks	Oracle Machine Learning Interface/OCI CLI Interface	More Information
User account and password creation	Oracle Machine Learning User Management interface	Create Users for Oracle Machine Learning
Connection Groups — View and Reset	Oracle Machine Learning User Interface	Work with Connection Groups
Compute Resource — View	Oracle Machine Learning User Interface	About Compute Resource
User Data administration — Delete all users, all user related objects such as workspace, projects, and notebooks, and workspace reassignment	Oracle Machine Learning User Interface	About User Data
Notebook session — Loading and stopping of notebook sessions	Oracle Machine Learning User Interface	Get Started with Notebook Sessions
Conda environment — Installation and management of the Conda environment, add and delete of packages from the environment.	Oracle Autonomous Database	About the Conda Environment and Conda Interpreter

The tasks listed here can be performed by an administrator only.

12.2 Access OML User Management from Command Line

You can obtain the Oracle Machine Learning User Management URL for a specific tenancy from the Oracle Cloud Infrastructure (OCI) command line.


Prerequisite: Tenancy ID

To obtain the Oracle Machine Learning User Management URL for a specific tenancy from the OCI command line, you must first obtain the tenancy ID.

 To obtain the tenancy ID, go to your OCI Profile on the top right corner of the Oracle Cloud page and click Tenancy.

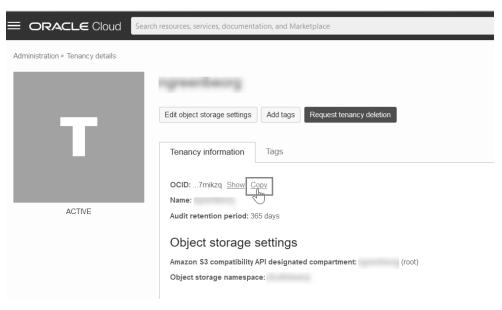


Figure 12-1 OCI Profile

2. On the Tenancy details page, click **Copy** to obtain the tenancy URL.

Figure 12-2 Tenancy Information

3. Type the following command in your OCI command line interface:

oci db database list --compartment-id <tenancy OCID>

Here,

- compartment-id: This is the unique ID assigned to your compartment.
- tenancy OCID: This is the Oracle Cloud Identifier (OCID) for your tenancy.

This command returns the following:

```
"connection-urls": {
          "apex-url": https://<tenancy ID>-<database
name>.<region>.oraclecloudapps.com/ords/apex,
          "graph-studio-url": https://<tenancy ID>-<database
name>.<region>.oraclecloudapps.com/graphstudio/,
          "machine-learning-user-management-url": https://<tenancy ID>-
<database name>.<region>-1.oraclecloudapps.com/omlusers/,
          "sql-dev-web-url": https://<tenancy ID>-<database
name>.<region>-1.oraclecloudapps.com/ords/sql-developer
        },
```

This completes the task of obtaining the Oracle Machine Learning User Management URL from OCI command line interface.

12.3 Manage OML Users

An administrator manages new user account and user credentials creation for Oracle Machine Learning in the User Management interface.

Create User

An administrator creates new user accounts and user credentials for Oracle Machine Learning in the User Management interface.

Add Existing Database User Account to Oracle Machine Learning Components
 As the ADMIN user you can add an existing database user account for Oracle Machine
 Learning components.

12.3.1 Create User

An administrator creates new user accounts and user credentials for Oracle Machine Learning in the User Management interface.

You must have the administrator role to access the Oracle Machine Learning User Management interface.

To create a user account:

- On the Autonomous Databases page, under the **Display Name**, select an Autonomous Database.
- 2. On the Autonomous Database Details page, click **Database Actions**.
- 3. On the Database Actions launchpad, under Administration, click Database Users.
- 4. Click + Create User.

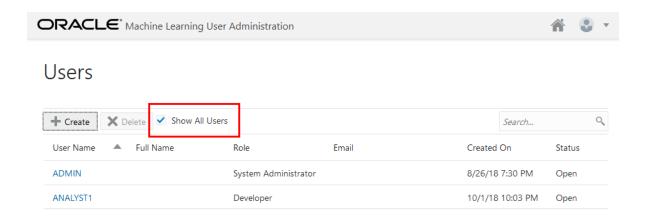
- 5. In the **User Name** field, enter a username for the account. Using the username, the user will log in to an Oracle Machine Learning instance.
- **6.** (Optional) Select the option **Password Expired (user must change).** to required the user to change their password when they login for the first time.
- 7. In the **Password** field, enter a password for the user.
- In the Confirm Password field, enter a password to confirm the value that you entered in the Password field.
- 9. Select **OML** to enable Oracle Machine Learning for the user.
- 10. Click Create User.

This creates a new database user and grants the required privileges to use Oracle Machine Learning.

With a new database user, an administrator needs to issue grant commands on the database to grant table access to the new user for the tables associated with the user's Oracle Machine Learning notebooks.

12.3.2 Add Existing Database User Account to Oracle Machine Learning Components

As the ADMIN user you can add an existing database user account for Oracle Machine Learning components.


You must have the ADMIN role to access the Oracle Machine Learning User Management interface.

To add an existing database user account:

- 1. On the Autonomous Databases page, under the **Display Name** column, select an Autonomous Database.
- 2. On the Autonomous Database Details page, click **Database Actions**.
- 3. On the Database Actions Launchpad, under **Development**, click **Oracle Machine Learning**.
- 4. Expand the navigator by clicking the

 next to Oracle Machine Learning.
- Under Admin, select Manage OML Users to add Oracle Machine Learning Notebooks users.
- 6. Click **Show All Users** to display the existing database users.

Initially, the **Role** field shows the role **None** for existing database users. After adding a user the role **Developer** is assigned to the user.

Select a user. To select a user select a name in the User Name column. For example, select ANALYST1.

Selecting the user shows the Oracle Machine Learning Edit User page.

- 8. Enter a name in the **First Name** field. (Optional)
- 9. Enter the last name of the user in the Last Name field. (Optional)
- 10. In the **Email Address** field, enter the email ID of the user.

Making any change on this page adds the existing database user with the required privileges as an Oracle Machine Learning component user.

11. Click Save.

This grants the required privileges to use the Oracle Machine Learning application. In Oracle Machine Learning this user can then access any tables the user has privileges to access in the database.

12.4 About User Data

On the User Data page in Oracle Machine Learning, you can view existing user data, reassign, and delete it.

The User Data page lists details of the Oracle Machine Learning user such as the name, role, comments, last updated date. You can perform the following tasks:

- Delete User Data: To delete a user, select the user to delete and click Delete User Data.
- **Reassign:** To reassign workspace and templates from one user to another.
- Reassign

The **Reassign** option allows you to reassign workspaces, along with templates, from one user to another.

12.4.1 Reassign

The **Reassign** option allows you to reassign workspaces, along with templates, from one user to another.

To reassign workspaces:

 On the User Data page, select the user from whom you want to reassign workspace and click Reassign.

The Reassign page opens.

- 2. In the **Target User** field, select the user to whom you want to reassign workspace.
- 3. Select **All Templates** if you want to reassign all the templates associated with the user selected in the User Data page.
- 4. Select:
 - Reassign all workspaces: To reassign all the workspaces associated with the selected user.
 - Select workspaces to reassign: To reassign particular workspaces associated with the selected user.

5. Click Reassign.

After the templates and workspaces are reassigned successfully, a notification message is displayed on the User Data page with the number of templates and workspaces reassigned.

12.5 About Compute Resource

The term Compute Resource refers to services such as a database, or any other backend service to which an interpreter connects.

You must have the Administrator role to access the Compute Resources page.

The Compute Resources page displays the list of compute resources along with the name of each resource, its type, comments, and last updated details. To view details of each Compute Resource, click the Compute Resource name. The connection details are displayed on the **Oracle Resources** page.

Oracle Resource

The Oracle Resource page displays the details of the selected compute resource on the Compute Resources page. You can configure the memory settings (in Gigabytes) for the Python interpreter for the selected compute resource.

12.5.1 Oracle Resource

The Oracle Resource page displays the details of the selected compute resource on the Compute Resources page. You can configure the memory settings (in Gigabytes) for the Python interpreter for the selected compute resource.

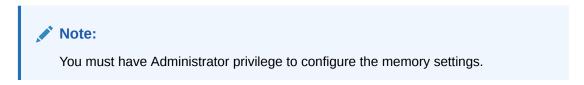
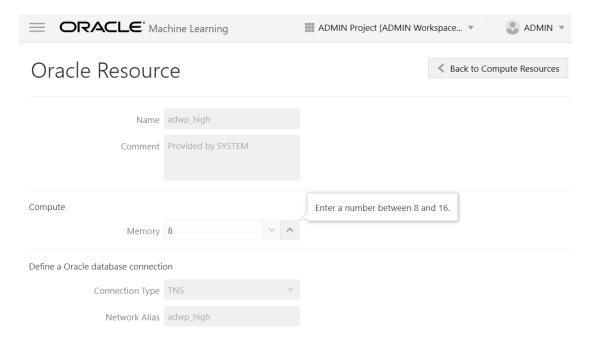



Figure 12-3 Oracle Resource

To manage memory settings for the Python interpreter:

- Name: Displays the name of the selected resource.
- 2. Comment: Displays comment, if any.
- Memory: You can configure memory settings (in Gigabytes) for Python interpreters in this field.
 - For the resource databasename_high, the memory settings (in Gigabytes) must be between 8 and 16
 - For the resource databasename_medium, the memory settings (in Gigabytes) must be between 4 and 8
 - For the resource databasename_low, the memory settings (in Gigabytes) must be between 2 and 4

The Memory setting is applicable only for the Python interpreter.

- **4. Connection Type:** Displays the database connection of the resource.
- 5. **Network Alias:** Displays the alias of the network connection.
- Resource Services and Notebooks
 This topic lists the number of notebooks that you can run concurrently per PDB for each Resource service.

12.5.1.1 Resource Services and Notebooks

This topic lists the number of notebooks that you can run concurrently per PDB for each Resource service.

The Resource Services and Number of Notebooks table lists the Compute Resources assigned for running of Python scripts at different Resource Service levels - High, Medium and Low. The High level is assigned the maximum number of Compute Resources to run the Python script, which could result in faster running of the scripts. The Low level is assigned the least number of Resource Services, which results in slower running of the scripts.

Table 12-1 Resource Services and Number of Notebooks

Resource Service	OCPUs (Oracle CPUs)	Memory	Number of Concurrent Notebooks
High	Up to 8 OCPUs	8 GB (up to 16 GB)	Up to 3

Table 12-1 (Cont.) Resource Services and Number of Notebooks

Resource Service	OCPUs (Oracle CPUs)	Memory	Number of Concurrent Notebooks
Medium	Up to 4 (OCPUs)	4 GB (up to 8 GB)	Up to max (1.25 x number of OCPUs)

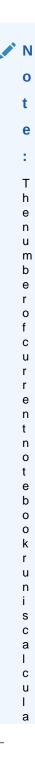


Table 12-1 (Cont.) Resource Services and Number of Notebooks

Resource Service	OCPUs (Oracle	Memory	Number of
	CPUs)		Concurrent
			Notebooks

0

Table 12-1 (Cont.) Resource Services and Number of Notebooks

Resource Service	OCPUs (Oracle	Memory	Number of
	CPUs)		Concurrent
			Notebooks

h е С 0 r r е s р 0 n d i n g P D В . O C P U s t а n d s f 0 r O r а С I е C P U . F 0 r е Х а m

Table 12-1 (Cont.) Resource Services and Number of Notebooks

Resource Service	OCPUs (Oracle	Memory	Number of
	CPUs)		Concurrent
			Notebooks

m b

Table 12-1 (Cont.) Resource Services and Number of Notebooks

Resource Service	OCPUs (Oracle	Memory	Number of
	CPUs)		Concurrent
			Notebooks

е r 0 f n 0 t е b 0 0 k s r u n W 0 u I d b e 5 (1 . 2 5 x 4 n Μ е d u m е ٧

Low 1 2 GB (up to 4 GB) Up to 100

12.6 Get Started with Connection Groups

A connection group, also known as a Zeppelin interpreter set, is a collection of database connections.

About Connection Groups

On the Connection Group page, a user with Administrator role can manage your connections that constitute the connection group.

About Global Connection Group

The Global Connection Group is created automatically when a new database is provisioned.

Edit Oracle Database Interpreter Connection

When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

12.6.1 About Connection Groups

On the Connection Group page, a user with Administrator role can manage your connections that constitute the connection group.

You can **Edit**, and **Stop** one or more connections that are listed under a connection group on this page.

Only an Administrator user can manage connection groups.

The following information about the connections are available:

- Name: This is the name of the interpreter.
- Default: A check mark indicates whether the connection is the default connection or not.
- Scope: Indicates the scope of the connection.
- **Comment:** Displays any comment related to the interpreter.
- Owner: Displays the name of the user who created the connection.
- Last Updated: Indicates the date and time when the connection was last updated.

You can perform the following tasks:

- Edit: To edit the interpreter connection, select the connection and click Edit.
- Stop: To stop the interpreter connection, select the connection and click Stop.
- Refresh: Click the Refresh button in the following conditions:
 - If you rename the Pluggable Database (PDB).
 - If you do a Wallet rotation. Wallet rotation invalidates the current wallet.
 Hence, a new Wallet is needed for the database connection.

12.6.2 About Global Connection Group

The Global Connection Group is created automatically when a new database is provisioned.

The Global Connection Group comprises the following:

 Compute Resource definition — A Compute Resource is associated with the Pluggable Database (PDB). After a new PDB is provisioned, a Compute Resource is added for the PDB. A tenant may provision more than one PDB, and for each PDB a Compute Resource is added. The settings in the Compute Resource are relevant to its own PDB. The Compute Resource is associated to an Oracle Wallet. The Oracle wallet contains the credentials to connect to the user PDB.

The Compute Resource definition can be edited by the Administrator only.

 Connection Group definition — The Global Connection Group comprises a single connection of type Global. Only one Global Connection Group for each Compute Resource is allowed per PDB. No password is required for this connection as it uses the Wallet containing the credentials for the PDB. The Wallet is associated to the Compute Resource.

A Global Connection Group can be edited by the Administrator only.

Reset: To reset the interpreter connection, click the connection group name. The connection group opens on a separate page, listing all the interpreter connections in the group. Select the connection you want to reset and click **Reset.** When you click **Reset,** then all connections supported by the interpreter are closed, and all notebooks using that connection are cancelled.

The **Reset** option is available only to the Administrator.

12.6.3 Edit Oracle Database Interpreter Connection

When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

Compute Resources for an Oracle Database interpreter is defined by your service. You can edit the following:

You must have the Administrator role to edit these fields.

- 1. Name: You can edit the name of the interpreter editor here. This is useful if you have several definitions of the same interpreter type in the same interpreter set. By specifying a name, you can turn on or turn off the specific binding to a notebook.
- 2. Type: This is a non-editable field. It indicates the connection type
- 3. **Binding Mode:** This is a non-editable field. It defines the behavior of the interpreter instance in memory, and how the resources are shared. By default, the Binding Mode of the Global Connection Group is set to Scoped. It ensures that each notebook creates a new interpreter instance in the same interpreter process.
- 4. Row Render Limit: This determines the number of rows to be displayed in the paragraph results when fetching a data structure that can be presented as a table or graph using the Zeppelin built-in plotting service. You must consider the browser capabilities when modifying this setting. The default limit is 1000.

Note:

Zeppelin plotting service works with data that is fetched previously to the client-side for a snapper UI.

5. Comments: Enter any information related to the interpreter not exceeding 1000 characters.

Note:

You must have Administrator role to edit this field.

- **6.** In the Compute Resource section, the **Resources** field indicates the priority of the compute resource. This is a non-editable field.
- 7. In the Database section, you can specify additional settings related to PL/SQL DBMS output. Select **Enabled** to allow the PL/SQL interpreter to display the messages sent to the DBMS_OUTPUT in the paragraph results.
- 8. Click Save.

12.7 Get Started with Notebook Sessions

The Notebook Sessions page provides you an overview of your notebooks, and allows you to manage notebook sessions from your workspace or in workspaces where you have collaboration rights.

On the Notebook Sessions page, you unload and cancel notebook sessions. You can perform the following tasks:

• **Stop:** Select the notebook that is running, and click **Stop.** This stops the selected notebook in the server.

• **Unload:** Select the notebook that is loaded, and click **Unload.** This removes the selected notebook from memory on the server.

The Notebook Sessions page displays the following information about your notebooks:

- Notebook: The name of the notebook.
- Project: The project in which the notebook resides.
- Workspace: The workspace in which the project is available.
- · Connection: The connection name.
- Owner: The owner of the notebook.
- Status: The statuses of a notebook are:
 - Loaded: Indicates that the notebook is loaded but not tied to the websocket or running.
 - Active: Indicates that the notebook is tied to the websocket but is not running.
 - Running: Indicates that the notebook paragraph is queued to run or is running.

