
Oracle® Cloud
Using Graph Studio in Oracle Autonomous
Database

F36880-45
June 2025

Oracle Cloud Using Graph Studio in Oracle Autonomous Database,

F36880-45

Copyright © 2021, 2025, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: Chuck Murray, Korbi Schmid, Jayant Sharma, Steve Serra, Melliyal Annamalai, Gabriela Montiel, Carol
Palmer, Siva Ravada

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Related Documents viii

Conventions viii

1 What's New in Graph Studio on Oracle Autonomous Database

2 Get Started Using Graphs

About Graph Data Support in Autonomous Database 2-1

Typical Workflow for Using Graph Studio 2-2

3 Introduction to Graph Data in Autonomous Database

Overview of Graph Data in Autonomous Database 3-1

Key Terms and Concepts for Working with Graphs 3-1

Graph Studio: Interactive, Self-Service User Interface 3-4

Use Accessibility Mode 3-8

Tutorials and Other Resources 3-9

4 Create a Graph User

5 Access the Graph Studio Application

Access Graph Studio Using Oracle Cloud Infrastructure Console 5-1

Access Graph Studio Using Database Actions 5-2

Access Graph Studio Features Using Autonomous Database Graph Client 5-2

Prerequisites for Using Autonomous Database Graph Client 5-10

Using the PGX JDBC Driver with the AdbGraphClient API 5-11

iii

6 Work with Graphs in Graph Studio

Create a Graph 6-1

Create a Property Graph in Graph Studio 6-1

Create a Property Graph from Scratch 6-1

Create a Property Graph from Existing Relational Tables 6-2

Create a Property Graph by Editing an Existing Graph 6-15

Create a Property Graph from an RDF Graph 6-16

Create an RDF Graph in Graph Studio 6-20

Use RDF Wizard to Create an RDF Graph 6-21

Use RDF Wizard to Create an RDF Graph Collection 6-25

Manage Graphs 6-26

Manage Property Graphs 6-27

Convert a PGQL Property Graph to SQL Property Graph 6-30

Manage RDF Graphs 6-31

Explore and Validate an RDF Graph 6-31

Explore and Validate an RDF Graph Collection 6-37

7 Work with Notebooks in Graph Studio

About Notebooks 7-2

Create a Notebook 7-2

Export a Notebook 7-3

Find a Notebook 7-4

Import a Notebook 7-4

Move a Notebook 7-5

Notebook States 7-5

Jump to a Paragraph 7-6

Available Notebook Interpreters 7-7

Markdown Interpreter 7-7

Java (PGX) Interpreter 7-8

Python (PGX) Interpreter 7-9

PGQL (PGX) Interpreter 7-11

PGQL (RDBMS) Interpreter 7-12

Supported PGQL Features and Limitations 7-14

SPARQL (RDF) Interpreter 7-18

SQL Interpreter 7-20

Custom Algorithm (PGX) Interpreter 7-24

Conda Interpreter 7-26

About the Default Conda Environment 7-27

Supported Conda Interpreter Tasks 7-28

Create and Publish a Conda Environment 7-29

iv

Work with Preinstalled Conda Environments 7-32

Use OCI Vault Secret Credentials 7-34

Prerequisites to Use OCI Vault Secret Credentials 7-35

Attach Vault Secret Credentials to Graph Studio 7-37

Attach and Access a Secret in a Python Notebook Paragraph 7-38

Reference Graphs in Notebook Paragraphs 7-40

Load Graphs Into Memory Using the Quickview Option 7-41

Load Graphs into Memory Programmatically 7-43

Store a PgxFrame in Database 7-44

Visualize Output of Paragraphs 7-45

Apply Machine Learning on a Graph 7-46

Dynamic Forms 7-50

Create Fixed Dynamic Forms 7-51

Create Programmatic Dynamic Forms 7-54

Customize Dynamic Form Layout 7-66

Notebook Forms 7-70

Create Fixed Notebook Forms 7-70

Create Programmatic Notebook Forms 7-71

Paragraph Dependencies 7-72

Keyboard Shortcuts for Notebooks 7-73

Example Notebooks 7-73

8 Work with Templates in Graph Studio

Create a Template 8-1

Use a Template in a Notebook 8-2

Import a Template 8-2

Manage Templates 8-3

9 Visualize and Interact with Graph Data in Graph Studio

About Graph Visualization and Manipulation 9-1

Manipulate a Graph Visualization 9-1

Enable Visible Graph Mode 9-2

Expand Vertices Using Smart Expand 9-3

Group Vertices Using Smart Group 9-6

Annotate a Graph 9-8

Visualize a Dynamic Graph 9-9

Use Live Search in Graph Visualization 9-10

Settings for Graph Visualization 9-12

General 9-12

Graph Exploration 9-18

v

Styles 9-19

Smart Explorer 9-22

About Table Visualization 9-22

Settings for Table Visualization 9-23

10

Interactive Graph Visualization in Oracle APEX Applications

About the APEX Graph Visualization Plug-in 10-1

Prerequisites for Using the APEX Graph Visualization Plug-in 10-2

Get Started with the APEX Graph Visualization Plug-in (Oracle Database 23ai) 10-2

Get Started with the APEX Graph Visualization Plug-in (Oracle Database 19c) 10-5

Configure Attributes for the APEX Graph Visualization Plug-in 10-7

Settings 10-7

Appearance 10-7

Layout 10-9

Captions 10-11

Evolution 10-12

Advanced Options 10-13

General Settings 10-14

Rule-Based Styles 10-14

Base Styles 10-15

Smart Groups 10-16

Evolution Settings 10-17

Callback Options 10-17

Expand 10-18

11

Work with Jobs in Graph Studio

About Jobs 11-1

Inspect a Job 11-1

Review a Job Log 11-2

Cancel a Job 11-2

Retry a Job 11-3

Delete a Job 11-3

Retention of Finished Jobs 11-4

What to do When a Job Fails 11-4

12

Manage the Compute Environment

About the Compute Environment 12-1

About Implicit Environment Creation Through Notebooks 12-1

Inspect the Compute Environment 12-2

vi

Manually Manage the Compute Environment 12-5

A Autonomous Database Graph PGX API Limitations

B Submit a Service Request

C Known Issues for Graph Studio

D Move PG Objects to PGQL or SQL Property Graph

vii

Preface

This document describes how to use and manage Graph Studio in Autonomous Database and
provides references to related documentation.

Audience
This document is intended for Oracle Cloud users who want to use and manage Graph Studio
to load and query property graph and RDF graph data.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
• Getting Started With Oracle Cloud

• Oracle Database Graph Developer's Guide for Property Graph

• Property Graph Visualization Developer's Guide and Reference

• Oracle Database Graph Developer's Guide for RDF Graph

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action, or
terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples, text
that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=oci_get_started
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=SPGDG
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=PGVTR
https://docs.oracle.com/en/database/oracle/oracle-database/21/rdfrm/index.html

1
What's New in Graph Studio on Oracle
Autonomous Database

Learn about the latest enhancements and features for the Graph Studio user interface on
Oracle Autonomous Database. Also, provides information on the deprecated and desupported
features.

Feature Description

Added support for loading a
subset of graph properties
into memory.

You can load all the graph properties or select specific vertex and edge
properties to load into the graph server memory.
See Manage Property Graphs for more information.

Added support for querying
SQL property graphs in Query
Playground page.

You can query a SQL property graph in the SQL tab of the Query
Playground page if you are using an Autonomous Database instance
with Oracle Database 23ai.
See Manage Property Graphs for more information.

Enhanced Graph Visualization
Settings panel.

The Graph Visualization Settings panel provides a great user experience
with a new Captions section for better labeling, and an updated Styles
tab for enhanced customization.
See Settings for Graph Visualization for more information.

Added support for jumping to
a specific notebook
paragraph.

You can directly jump to a specific paragraph inside a notebook.
See Jump to a Paragraph for more information.

Added support for configuring
notebook states inside a
notebook.

When sharing a notebook, you can control the actions a user can
perform in the notebook.
See Notebook States for more information.

Added support for visual edge
creation when using the
property graph wizard for
creating graphs.

Graph Studio allows visual creation of edges between two vertex tables
through drag and drop action.
See Add New Edges During Graph Creation for more information.

Added support for loading
graphs into memory inside a
notebook.

You can easily load (or unload) a graph into the graph server memory
using the Quickview button inside a notebook.
See Load Graphs Into Memory Using the Quickview Option for more
information.

Added support for using OCI
Vault secret credentials.

Graph Studio provides a secure way to access secret credentials stored
in Oracle Cloud Infrastructure (OCI) Vault, in a Python notebook
paragraph.
See Use OCI Vault Secret Credentials for more information.

Added support for converting
a PGQL property graph to
SQL graph.

You can migrate a PGQL property graph to SQL property graph if you
are using an Autonomous Database instance with Oracle Database
23ai.
See Convert a PGQL Property Graph to SQL Property Graph for more
information.

Added support for visualizing
the result of a SQL graph
query.

You can visualize the result of a SQL graph query if you are using an
Autonomous Database instance with Oracle Database 23ai.
See SQL Interpreter for more information.

1-1

Feature Description

Enhanced and improved
graph visualization interface.

The graph visualization panel in the notebook paragraphs is redesigned
to provide a new look and feel to enhance user experience in visualizing
graphs.
However, if you wish to use the previous graph visualization interface,
select Preferences from the username drop-down menu (on the top
right) and disable the Enable Oracle Graph Visualization Library
option.

Added support for creating
RDF graphs with .ttl
and .trig formats.

In addition to .nt (N-Triples) and .nq (N-Quads) RDF data formats,
Graph Studio supports creation of RDF graphs by uploading RDF data
files with .ttl (Turtle) or .trig (TriG) extensions.
See Create an RDF Graph in Graph Studio for more information.

Added support for creating
SQL Property Graphs.

The option to work with SQL property graphs is available only in Oracle
Database 23ai. Therefore, you can create and query SQL property
graphs in Graph Studio only if you are using an Autonomous Database
instance with Oracle Database 23ai.
See Create a Property Graph from Existing Relational Tables and SQL
Interpreter for more information.

Added support for estimating
the in-memory graph size.

Graph Studio computes the estimated in-memory graph size at the time
of creating or editing a PGQL property graph. In addition, when you
recompute the graph metadata on the Graphs page, the estimated in-
memory graph size gets updated.
See Create a Property Graph from Existing Relational Tables and
Manage Property Graphs for more information.

Added support for sharing an
RDF graph.

Graph Studio supports sharing of RDF graphs and RDF graph
collections between different users.
See Share an RDF Graph for more information.

Added support for creating a
PGQL property graph from an
RDF graph.

Graph Studio supports a new Create PGQL Property Graph option on
an RDF graph. This option guides you through a workflow to create a
PGQL property graph from an existing RDF graph.
See Create a Property Graph from an RDF Graph for more information.

Added support for visualizing
property graphs in APEX
applications.

You can use the APEX Graph Visualization plug-in to visualize and
interact with property graphs in an APEX application.
See Interactive Graph Visualization in Oracle APEX Applications for
more information.

Simplified workflow for
creating property graphs.

The Graphs page in Graph Studio is enhanced to support the creation of
property graphs using a new workflow, without using graph models.
To support this new graph creation workflow:

• Models page is removed in Graph Studio.
Also, note the following:

– You can access any existing graph that was created earlier
using a model.

– You cannot access the model for a graph anymore.
• The property graph wizard guides you through the steps to create a

property graph.
See Create a Property Graph from Existing Relational Tables for
more information.

• You can also directly edit the graph.
See Create a Property Graph by Editing an Existing Graph for more
information.

Enhanced Graph Studio user
interface

The Graph Studio user interface now supports the Redwood theme. The
improved design is user-friendly and makes Graph Studio more intuitive
and easier to use.

Chapter 1

1-2

Desupported Features

• The PG Objects graph type for property graphs is desupported. It is recommended that
you create a PGQL Property Graph or SQL Property Graph. See Move PG Objects to
PGQL or SQL Property Graph for more information.

Chapter 1

1-3

2
Get Started Using Graphs

Graph Studio, a component of Oracle Autonomous Database, simplifies the task of developing
applications that use graph analysis. The following features, in particular, support the
development of high-performing, high-security applications:

• Automatic database administration. Routine database administration tasks such as
patching and taking backups are performed automatically, so you can concentrate on
developing your application.

• Automatic performance tuning. You spend less time defining and tuning your database.

• Predefined, workload-specific database services.

• Property graph data stored in Autonomous Database is fully accessible using Structured
Query Language (SQL) and Property Graph Query Language (PGQL), for analytics and
interfacing with relational tools.

• Semantic linked data (based on Resource Description Framework (RDF) stored in
Autonomous Database can be queried using SPARQL Protocol and RDF Query Language
(SPARQL).

• Interactive graph visualization. You can visualize the graph query results to find
connections, patterns and dependencies within graph data.

Topics

• About Graph Data Support in Autonomous Database

• Typical Workflow for Using Graph Studio

About Graph Data Support in Autonomous Database
All Oracle Database releases support both the Property graph and the RDF graph features that
offer powerful graph support to explore and discover complex relationships in data sets. This
applies to all databases in the cloud and on-premises environments.

Property Graph Support

Property graph support provides you a different way to look at your data. You can model your
data as a graph by making data entities vertices in the graph, and relationships between them

2-1

as edges in the graph. For example, in a banking scenario, customer accounts can be vertices,
and cash transfer relationships between them can be edges.

When you view your data as a graph, you can analyze your data based on the connections
and relationships between them. You can run on dozens of graph analysis algorithms, like
PageRank, to measure the relative importance of data entities based on the relationships
between them, for example, links between web pages.

For more information about property graph support in Oracle Database, see Property Graph
Support Overview in Oracle Database Graph Developer's Guide for Property Graph.

For a quick start with Oracle Database property graph features, see the topic Quick Starts for
Using Oracle Property Graph.

RDF Graph Support

RDF graphs conform to a set of W3C (Worldwide Web Consortium) standards. The RDF graph
support in Oracle Database is well suited for knowledge graphs and data integration
applications because URIs provide globally unique identifiers and the simple, schemaless triple
structure makes it very easy to combine data from several different RDF graphs into a single
graph.

You can query and analyze your RDF graph using SPARQL query language.

For more information about RDF graph support in Oracle Database, see RDF Graph Overview
in Oracle Database Graph Developer's Guide for RDF Graph.

For a quick start with Oracle Database RDF graph features, see the topic Quick Start for Using
Semantic Data.

Typical Workflow for Using Graph Studio
A typical workflow with Graph Studio involves several operations.

More Information Task Description

Provision Autonomous Database Create an Autonomous
Database from the Oracle
Cloud Infrastructure Console

Create an Autonomous
Database Serverless
instance for one of the
following workload types:

• Data Warehouse
• Transaction Processing

Create a Graph User Create Graph Users for
Graph Studio

Use Database Actions in
Oracle Cloud Infrastructure
Console to create and assign
Graph users roles

Access the Graph Studio Application Connect to your Autonomous
Database using Graph Studio

Start and sign in to Graph
Studio

Chapter 2
Typical Workflow for Using Graph Studio

2-2

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pg_overview
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pg_overview
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pg_quickstarts
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pg_quickstarts
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-F422BB9F-8473-4980-9D6C-848F708C10E0
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-E8EEC80D-AF74-4444-8504-916220E7C203
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-E8EEC80D-AF74-4444-8504-916220E7C203

3
Introduction to Graph Data in Autonomous
Database

Oracle Autonomous Database contains features that enable it to function as a scalable graph
database.

This chapter outlines the key terms, graph concepts, and the interactive Graph Studio for
working with graphs in an Autonomous Database.

Topics

• Overview of Graph Data in Autonomous Database

• Key Terms and Concepts for Working with Graphs

• Graph Studio: Interactive, Self-Service User Interface

• Use Accessibility Mode

• Tutorials and Other Resources

Overview of Graph Data in Autonomous Database
The graph features of Graph Studio automate the creation of property graphs and RDF graphs
in Oracle Autonomous Database.

In-memory property graphs are designed using the property graph wizard on the Graphs page
in Graph Studio. This feature automates the creation of property graph from relational
database tables.

RDF graphs are created by importing RDF data stored in Oracle Autonomous Database into
Graph Studio.

The features include notebooks and developer APIs for executing property graph queries using
PGQL, over 60 built-in property graph algorithms, dozens of visualizations including native
graph visualization, and executing RDF graph queries using SPARQL.

Key Terms and Concepts for Working with Graphs
This section briefly explains the key concepts of graphs and other graph features. These may
be helpful when working with the interactive Graph Studio available in Autonomous Database.

Graph Studio

Graph Studio is a user interface available with Oracle Autonomous Database that provides
access to all available graph features. You can:

• Create property graphs, execute PGQL queries, graph visualizations, and perform
analytics.

• Create RDF graphs, execute SPARQL queries and perform graph visualizations.

3-1

Property Graph

A property graph consists of vertices that are linked together by edges. Both vertices and
edges can have a set of properties attached to them. Common properties are id and label. The
label property often identifies what the vertex or edge represent. For example, a vertex
representing a bank account may have the label Account, while an edge representing a
transfer of funds between accounts may have the label Transfer.

A property graph is the main data structure used with Graph Studio.

Property Graph Wizard

The property graph wizard in Graph Studio guides you through the steps to easily create a
property graph from existing relational database tables.

This graph creation workflow comprises the following steps:

1. Overview: Provide the graph name and description.

2. Select Tables: Select the input tables.

3. Define Graph: View the graph definition and iteratively refine the mappings.

4. Summary: View the property graph summary and create the graph for analysis and
visualization.

RDF

RDF (Resource Description Framework) is a W3C-standard data model for representing linked
data. RDF uses Uniform Resource Identifiers (URIs) as globally-unique identifiers for
resources and also uses URIs to identify the type of relationship between two resources. In
addition to URIs, RDF uses literals to represent scalar values such as numbers, strings and
timestamps.

RDF Graph

RDF models linked data as a directed, labeled RDF graph, where each edge is usually called a
triple. The source vertex of the edge is called the subject of the triple. The label or name of the
edge is called the predicate of the triple, and the destination vertex of the edge is called the
object of the triple.

RDF Graph Collection

An RDF graph collection is an RDF graph that contains all triples from a collection of individual
RDF graphs. The collection can also include entailed triples inferred by applying rules and
ontologies to the graph collection.

Rule, Rulebase, and Inferencing

A rule is an object that can be applied to draw inferences from semantic data.

A rulebase is an object that contains rules.

Inferencing is the ability to make logical deductions based on rules.

Entailment

An entailment (rules index) is an object containing precomputed triples that can be inferred
from applying a specified set of rule bases to a specified set of RDF graphs.

Chapter 3
Key Terms and Concepts for Working with Graphs

3-2

RDF N-Triple Format

N-Triple (.nt) is one of the common RDF data formats. Each statement in the file represents a
triple:{subject or resource, predicate or property, object or value}.

RDF N-Quad Format

N-Quad (.nq) is another popular RDF data format. This format allows both regular triples and
extended triples. An extended triple is made up of four components: {subject or resource,
predicate or property, object or value, graph name}. The graph name component of an RDF
triple must either be null or a URI.

RDF Turtle Format

The Turtle (.ttl) format defines a textual syntax for RDF graph.

RDF TriG Format

The TriG (.trig) format is a compact textual representation of RDF graph. It is an extension of
the Turtle format.

RDF Wizard

The RDF wizard utility in Graph Studio guides you on the steps to create an RDF graph or
RDF graph collection.

PGQL Graph Queries

PGQL (Property Graph Query Language) is a graph pattern-matching query language for
property graphs. PGQL combines graph pattern matching with familiar constructs from SQL,
such as SELECT, FROM, and WHERE. See Property Graph Query Language (PGQL) for
more information on PGQL specifications.

SPARQL Queries

SPARQL Protocol and RDF Query Language (SPARQL) is one of the technologies
standardized by the W3C for querying RDF data. See the W3C SPARQL 1.1 standard for more
information.

Graph Algorithm

A graph algorithm is a pre-packaged set of instructions to traverse or analyze a graph. For
example, you can find a shortest path or important vertices in your graph. PageRank is a well
known graph algorithm, which ranks the importance of vertices. Graph Studio notebooks
expose over 60 such algorithms as built-in functions.

Notebooks

Notebooks are interactive browser-based applications that enable data engineers, analysts,
and scientists to be more productive by developing, organizing, executing, and sharing code,
and by visualizing results without using the command line or needing to install anything.
Notebooks enable you to execute code, to work interactively with long workflows, and to
collaborate on projects.

In addition to code execution, notebooks support a large set of built-in visualization capabilities.

Chapter 3
Key Terms and Concepts for Working with Graphs

3-3

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/property-graph/21.1&id=SPGDG-SPGDG-GUID-301FF092-1A07-43D2-91E5-0C5AFF3467CC
https://www.w3.org/TR/sparql11-overview/

Job

A job is a potentially long-running asynchronous operation in Graph Studio. An example of a
job is loading a graph into memory or creating a graph from tables.

Graph Studio: Interactive, Self-Service User Interface
Graph Studio is the main user interface (UI) for creating, querying, analyzing, and visualizing
graphs.

It includes notebooks and developer APIs where you can execute property graph queries using
PGQL, RDF graph queries using SPARQL, and over 60 built-in graph algorithms. It also offers
dozens of visualizations including native graph visualization.

The overall layout comprises of a left navigation panel that provides quick access to major
actions, and the right side that displays content appropriate for the selected option on the left
side menu.

The following figure shows the Graph Studio UI.

The navigation menu consists of:

• Overview

• Graphs

• Notebooks

• Templates

• Jobs

Overview

The Overview menu link directs you to the main or landing page. It consists of two sections:

The right section is a welcome panel which shows the following:

• A link to a video which describes how Graph Studio makes it easy to create and work with
graphs in Autonomous Database.

• A Learn More section with links to documentation, blogs, and tutorials.

The middle section shows either of the following:

Chapter 3
Graph Studio: Interactive, Self-Service User Interface

3-4

• A collapsible panel with links to Graphs, Notebooks, and Jobs pages for a first-time user
as shown in the preceding figure.

• Cards listing existing graphs, notebooks, and jobs for a returning user with existing content
as shown in the following screen .

Graphs

The Graphs menu link directs you to the Graphs page which contains the following two tabs:

• Property Graph

• RDF Graph

All existing graphs corresponding to the selected graph type are listed on the Graphs page.
Clicking on any graph displays the graph details in the bottom panel.

Depending on the graph, you can perform any of the following actions on this page:

• Property Graph

– Create a new property graph.

– Query an existing property graph using PGQL.

– You can also use any of the following supported options in the graph details section:

Chapter 3
Graph Studio: Interactive, Self-Service User Interface

3-5

* Explore the Summary of the graph and optionally load the graph into memory,
share the graph with other users, rename or delete the graph.

* Preview the graph.

* View the graph Properties.

* View the graph Source.

• RDF Graph

– Create a new RDF graph.

– Query an existing RDF graph using SPARQL.

– Explore the RDF graph properties (RDF statements) in the graph details section.

Query Playground

Clicking </> Query on the Graphs page will direct you to the Query Playground page. It serves
as a notepad for entering and executing simple SQL or PGQL queries on a SQL or PGQL
property graph, or SPARQL queries for an RDF graph. It is not meant for testing complex
queries or for use in a production environment.

Queries submitted in the playground are executed directly against the graph stored in the
Autonomous Database as shown:

This means you do not require Graph Studio to be attached to the internal compute
environment or initially have the graph loaded into memory in case of property graphs.

The Query Playground page can comprise one or both of the following tabs depending on the
Oracle Database version used in your Autonomous Database instance:

• SQL: This default tab is displayed only for Oracle Database 23ai. You can run SQL graph
queries on SQL property graphs in this tab.

• PGQL: You can run PGQL queries on PGQL property graphs in this tab. This is the only
tab for Oracle Database 19c.

In case of RDF graphs, the Query Playground interface allows you to select the RDF graph
against which the SPARQL query is to be executed as shown:

Chapter 3
Graph Studio: Interactive, Self-Service User Interface

3-6

Notebooks

The Notebooks menu link takes you to the Notebooks page that lists existing notebooks.

Templates

The Templates menu link directs you to the Templates page. This page consists of a left pane
that lists all the existing templates. They are custom built templates with predefined graph
visualization and notebook settings. Clicking on an existing template displays the custom data
settings on the right pane. These template formats are applied to a notebook.

The page also contains the following buttons:

• Create: To build a new template

• Update: To update a template

• Delete: To delete a template

• Share: To share a template

• Import: To import a template

• Export: To export a template

Chapter 3
Graph Studio: Interactive, Self-Service User Interface

3-7

Jobs

The Jobs menu link directs you to the Jobs page that lists previous and current jobs.

Use Accessibility Mode
You can turn on accessibility mode to allow the use of assistive technology, such as screen
readers, to use the Graph Studio interface more effectively.

Some of the features of Graph Studio are not fully accessible. Based on your personal
preference, you can turn on Accessibility Mode in Graph Studio.

To enable Accessibility Mode, click on your username in the top-right drop-down menu of your
interface page and then select Preferences.

The default setting for Accessibility Mode is Off. To turn on Accessibility Mode, select On.

Chapter 3
Use Accessibility Mode

3-8

Tutorials and Other Resources
In addition to this user documentation, several tutorials and other resources are available to
help you get started with the Graph Studio tool and to become proficient working with graph
data.

This user documentation describes the Graph Studio and provides brief descriptions of its main
features. It does not list all possible options, and the explanations are often brief. However, the
user interface is clear and intuitive, and often provides hover-over context-sensitive help.

You can take two approaches (or a combination) to using this documentation and the available
tutorials:

• Continue reading the documentation starting with the major topics such as Work with Jobs
in Graph Studio, Work with Notebooks in Graph Studio, and Visualize and Interact with
Graph Data in Graph Studio.
Then try one or more of the tutorials.

or

• Try one or more of the tutorials and use this documentation as needed for explanations
and reference.

Note:

With both approaches, you are encouraged to first read the following topics for
understanding:

• Key Terms and Concepts for Working with Graphs

• Graph Studio: Interactive, Self-Service User Interface

Chapter 3
Tutorials and Other Resources

3-9

Tutorials for Working with Graph Data

The tutorials are all available on the Oracle LiveLabs platform. Enter Graph Studio, Property
Graph or RDF Graph in the search box.

Other Resources for Working with Graph Data

Other resources include the following technical documentations:

• Oracle Database Graph Developer's Guide for Property Graph

• Oracle Database Graph Developer's Guide for RDF Graph

Chapter 3
Tutorials and Other Resources

3-10

https://apexapps.oracle.com/pls/apex/f?p=133:1
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pg_overview
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/21&id=GUID-F422BB9F-8473-4980-9D6C-848F708C10E0

4
Create a Graph User

Working with Graphs in Graph Studio, requires users with granted roles.

You can create Graph users with the correct set of roles and privileges using Oracle Database
Actions.

Before you begin:

• Sign in to the OCI console using your Oracle Cloud credentials and navigate to your
Oracle Autonomous Database instance.

• Access Database Actions from the Oracle Cloud Infrastructure Console as the ADMIN
user. See Access Database Actions as ADMIN for more information.

You can then perform the following steps to create a graph user:

1. Click Database Users in the Launchpad page under the Administration group.

2. Click Create User on the Database Users page, in the All Users area.

3. Enter User Name , Password and enter the password again to confirm the password.

4. Switch on the Graph toggle to create a graph-enabled user.

The GRAPH_DEVELOPER role gets automatically assigned to the user.

5. Switch on the Web Access toggle to provide the new user access to Database Actions in
Autonomous Database.

Note:

You must provide Web Access to the new graph user in order to perform any of
the following Database Actions:

• Run SQL statements or queries in the SQL worksheet

• Load and access data from local files

6. Enter your desired Quota on tablespace DATA.

7. Click Create User.

This creates a new user.

See Lab 1 of the LiveLabs workshop for an example.

4-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database&id=create-graph-user

5
Access the Graph Studio Application

You can access the Graph Studio application in Autonomous Database from the Oracle Cloud
Infrastructure console or with Database Actions.

Additionally, you can access some of the Graph Studio features programmatically through a
Java or Python code.

Topics

• Access Graph Studio Using Oracle Cloud Infrastructure Console

• Access Graph Studio Using Database Actions

• Access Graph Studio Features Using Autonomous Database Graph Client

Access Graph Studio Using Oracle Cloud Infrastructure Console
You can access the Graph Studio application from the Oracle Cloud Infrastructure Console as
shown in the following steps:

1. Sign in to Oracle Cloud.

2. Select an Autonomous Database instance.

This opens the Autonomous Database details page.

3. Select the Tool configuration tab on the Autonomous Database details page.

4. Copy the Public access URL for Graph Studio.

Graph Studio access URL gets copied to the clipboard.

5. Paste the URL in your browser to launch the Graph Studio application.

The Graph Studio login screen opens as shown:

6. Enter your graph enabled username and password and then click Sign In.

5-1

You are now connected to Oracle Autonomous Database using Graph Studio.

Access Graph Studio Using Database Actions
You can access the Graph Studio application using Database Actions.

1. Sign in to Oracle Cloud.

2. Select an Autonomous Database instance and on the Autonomous Database details page
click View all database actions in the Database actions drop-down list.

3. Click Graph Studio in the Development tab.

Graph Studio login screen opens in a new tab.

4. Enter your graph enabled username and password and then click Sign In.

You are now connected to Oracle Autonomous Database using Graph Studio.

Access Graph Studio Features Using Autonomous Database
Graph Client

Using the AdbGraphClient API, you can access Graph Studio features in Autonomous
Database programmatically using the Oracle Graph Client or through your Java or Python
application.

This API provides the following capabilities:

• Authenticate with Autonomous Database

• Manage the Graph Studio environment

• Execute graph queries and algorithms against the graph server (PGX)

• Execute graph queries directly against Oracle Database

To use the AdbGraphClient API, you must have access to Oracle Graph Client installation. The
API is provided by the Oracle Graph Client library which is a part of the Oracle Graph Server
and Client distribution. See Installing Oracle Graph Client on how to install and get started with
the graph client shell CLIs for Java or Python.

Also, prior to using the Autonomous Database Graph Client, ensure you meet all the
prerequisite requirements explained in Prerequisites for Using Autonomous Database Graph
Client.

The following example shows using the AdbGraphClient API to establish a connection to
Graph Studio, start an environment with allocated memory, load a PGQL property graph into
memory, execute PGQL queries and run algorithms against the graph.

Note:

See the Javadoc and Python API Reference for more information on AdbGraphClient
API.

1. Start the interactive graph shell CLI and connect to your Autonomous Database instance
with the AdbGraphClient using one of the following methods:

Configuring the AdbGraphClient using Tenancy Details

Chapter 5
Access Graph Studio Using Database Actions

5-2

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graph_clients
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=adb_graph_client_java
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=adb_graph_client_python

• JShell

• Java

• Python

JShell

cd /opt/oracle/graph
./bin/opg4j --no_connect
For an introduction type: /help intro
Oracle Graph Server Shell 24.4.0
opg4j> import oracle.pg.rdbms.*
opg4j> var config = AdbGraphClientConfiguration.builder()
opg4j> config.database("<DB_name>")
opg4j> config.tenancyOcid("<tenancy_OCID>")
opg4j> config.databaseOcid("<database_OCID>")
opg4j> config.username("ADBDEV")
opg4j> config.password("<password_for_ADBDEV>")
opg4j> config.endpoint("https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/")
opg4j> var client = new AdbGraphClient(config.build())
client ==> oracle.pg.rdbms.AdbGraphClient@7b8d1537

Java

import oracle.pg.rdbms.*;

var config = AdbGraphClientConfiguration.builder();
config.tenancyOcid("<tenancy_OCID>");
config.databaseOcid("<database_OCID>");
config.database("<DB_name>");
config.username("ADBDEV");
config.password("<password_for_ADBDEV>");
config.endpoint("https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/");

var client = new AdbGraphClient(config.build());

Python

cd /opt/oracle/graph
./bin/opg4py --no_connect
Oracle Graph Server Shell 24.4.0
>>> from opg4py.adb import AdbClient
>>> config = {
... 'tenancy_ocid': '<tenancy_OCID>',
... 'database': '<DB_name>',
... 'database_ocid': '<DB_OCID>',
... 'username': 'ADBDEV',
... 'password': '<password_for_ADBDEV>',
... 'endpoint': 'https://<hostname-

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-3

prefix>.adb.<region>.oraclecloudapps.com/'
... }
>>> client = AdbClient(config)

Configuring the AdbGraphClient using JDBC Connection
You can also configure the AdbGraphClient to use a JDBC connection to connect to your
Autonomous Database instance (as shown in the following code). See Connect with JDBC
Thin Driver in Using Oracle Autonomous Database Serverless on how to obtain the JDBC
URL to connect to the Autonomous Database.

However, ensure that you have READ access to the v$pdbs view in your Autonomous
Database instance. By default, the ADMIN user has READ access to the v$pdbs view. For
all other users (non-administrator users), the READ access can be granted by the ADMIN
(GRANT SELECT ON v$pdbs TO <user>).

• JShell

• Java

• Python

JShell

import oracle.pg.rdbms.*
opg4j> var conn = DriverManager.getConnection(<jdbcUrl>, <username>,
<password>)
opg4j> var config = AdbGraphClientConfiguration.fromConnection(conn,
<password>)
opg4j> var client = new AdbGraphClient(config)

Java

import oracle.pg.rdbms.*;
AdbGraphClientConfiguration config =
AdbGraphClientConfiguration.fromCredentials(<jdbcUrl>, <username>,
<password>);
AdbGraphClient client = new AdbGraphClient(config);

Python

>>> from opg4py.adb import AdbClient
>>> client = AdbClient.from_connection(<jdbcUrl>, <username>, <password>)

2. Start the PGX server environment with the desired memory as shown in the following
code.

This submits a job in Graph Studio for environment creation. job.get() waits for the
environment to get started. You can always verify if the environment has started

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-4

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-5ED3C08C-1A84-4E5A-B07A-A5114951AA9E

successfully with client.isAttached(). The method returns a boolean true if the
environment is running.
However, you can skip the step of creating an environment, if client.isAttached()
returns true in the first step of the code.

• JShell

• Java

• Python

JShell

opg4j> client.isAttached()
$9 ==> false
opg4j> var job=client.startEnvironment(10)
job ==> oracle.pg.rdbms.Job@117e9a56[Not completed]
opg4j> job.get()
$11 ==> null
opg4j> job.getName()
$11 ==> "Environment Creation - 16 GBs"
opg4j> job.getType()
$12 ==> ENVIRONMENT_CREATION
opg4j> job.getCreatedBy()
$13 ==> "ADBDEV"
opg4j> client.isAttached()
$11 ==> true

Java

 if (!client.isAttached()) {
 var job = client.startEnvironment(10);
 job.get();
 System.out.println("job details: name=" + job.getName() + "type=
" + job.getType() +"created_by= " + job.getCreatedBy());
 }
job details: name=Environment Creation - 16 GBstype=
ENVIRONMENT_CREATIONcreated_by= ADBDEV

Python

>>> client.is_attached()
False
>>> job = client.start_environment(10)
>>> job.get()
>>> job.get_name()
'Environment Creation - 16 GBs'
>>> job.get_created_by()
'ADBDEV'
>>> client.is_attached()
True

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-5

3. Create an instance and a session object as shown:

• JShell

• Java

• Python

JShell

opg4j> var instance = client.getPgxInstance()
instance ==> ServerInstance[embedded=false,baseUrl=https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com/graph/pgx]
opg4j> var session = instance.createSession("AdbGraphSession")
session ==> PgxSession[ID=c403be26-
ad0c-45cf-87b7-1da2a48bda54,source=AdbGraphSession]

Java

ServerInstance instance = client.getPgxInstance();
PgxSession session = instance.createSession("AdbGraphSession");

Python

>>> instance = client.get_pgx_instance()
>>> session = instance.create_session("adb-session")

4. Load a PGQL property graph from your Autonomous Database instance into memory.

• JShell

• Java

• Python

JShell

opg4j> var graph = session.readGraphByName("BANK_GRAPH",
GraphSource.PG_PGQL)
graph ==> PgxGraph[name=BANK_GRAPH,N=1000,E=5001,created=1647800790654]

Java

PgxGraph graph = session.readGraphByName("BANK_GRAPH",
GraphSource.PG_PGQL);

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-6

Python

>>> graph = session.read_graph_by_name("BANK_GRAPH", "pg_pgql")

5. Create an Analyst and execute a Pagerank algorithm on the graph as shown:

• JShell

• Java

• Python

JShell

opg4j> session.createAnalyst().pagerank(graph)
$16 ==> VertexProperty[name=pagerank,type=double,graph=BANK_GRAPH]

Java

session.createAnalyst().pagerank(graph);

Python

>>> session.create_analyst().pagerank(graph)
VertexProperty(name: pagerank, type: double, graph: BANK_GRAPH)

6. Execute a PGQL query on the graph and print the result set as shown:

• JShell

• Java

• Python

JShell

opg4j> graph.queryPgql("SELECT a.acct_id AS source, a.pagerank, t.amount,
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ORDER BY a.pagerank DESC
LIMIT 3").print()

Java

PgqlResultSet rs = graph.queryPgql("SELECT a.acct_id AS source,
a.pagerank, t.amount, b.acct_id AS destination FROM MATCH (a)-[t]->(b)

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-7

ORDER BY a.pagerank DESC LIMIT 3");
rs.print();

Python

>>> rs = graph.query_pgql("SELECT a.acct_id AS source, a.pagerank,
t.amount, b.acct_id AS destination FROM MATCH (a)-[t]->(b) ORDER BY
a.pagerank DESC LIMIT 3").print()

On execution, the query produces the following output:

+--+
| source | pagerank | amount | destination |
+--+
387	0.007302836252205922	1000.0	188
387	0.007302836252205922	1000.0	374
387	0.007302836252205922	1000.0	577
+--+

7. Optionally, you can execute a PGQL query directly against the graph in the database as
shown in the following code.

In order to establish a JDBC connection to the database, you must download the wallet
and save it in a secure location. See JDBC Thin Connections with a Wallet on how to
determine the JDBC URL connection string.

• JShell

• Java

• Python

JShell

opg4j> String jdbcUrl="jdbc:oracle:thin:@<tns_alias>?
TNS_ADMIN=<path_to_wallet>"
opg4j> var conn =
DriverManager.getConnection(jdbcUrl,"ADBDEV","<password_for_ADBDEV>")
conn ==> oracle.jdbc.driver.T4CConnection@36ee8c7b
opg4j> var pgqlConn = PgqlConnection.getConnection(conn)
pgqlConn ==> oracle.pg.rdbms.pgql.PgqlConnection@5f27d271
opg4j> var pgqlStmt = pgqlConn.createStatement()
pgqlStmt ==> oracle.pg.rdbms.pgql.PgqlExecution@4349f52c
opg4j> pgqlStmt.executeQuery("SELECT a.acct_id AS source, t.amount,
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK_GRAPH LIMIT
3").print()

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-8

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/adbsa&id=GUID-BE543CFD-6FB4-4C5B-A2EA-9638EC30900D

Java

import oracle.pg.rdbms.pgql.PgqlConnection;
import oracle.pg.rdbms.pgql.PgqlStatement;
import oracle.pg.rdbms.pgql.PgqlResultSet;
import oracle.pgx.api.*;
import oracle.pg.rdbms.GraphServer;
import oracle.pg.rdbms.pgql.jdbc.PgqlJdbcRdbmsDriver;
….
DriverManager.registerDriver(new PgqlJdbcRdbmsDriver());
String jdbcUrl="jdbc:oracle:thin:@<tns_alias>?TNS_ADMIN=<path_to_wallet>";
Connection conn =
DriverManager.getConnection(jdbcUrl,"ADBDEV","<password_for_ADBDEV>");
PgqlConnection pgqlConn = PgqlConnection.getConnection(conn);
PgqlStatement pgqlStmt = pgqlConn.createStatement();
PgqlResultSet rs = pgqlStmt.executeQuery("SELECT a.acct_id AS source,
t.amount, b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK_GRAPH
LIMIT 3");
rs.print();

Python

>>> jdbcUrl = "jdbc:oracle:thin:@<tns_alias>?TNS_ADMIN=<path_to_wallet>"
>>> pgql_conn =
opg4py.pgql.get_connection("ADBDEV","<password_for_ADBDEV>", jdbcUrl)
>>> pgql_statement = pgql_conn.create_statement()
>>> pgql_statement.execute_query("SELECT a.acct_id AS source, t.amount,
b.acct_id AS destination FROM MATCH (a)-[t]->(b) ON BANK_GRAPH LIMIT
3").print()

On execution, the query produces the following output:

+-------------------------------+
| SOURCE | AMOUNT | DESTINATION |
+-------------------------------+
1000	1000	921
1000	1000	662
1000	1000	506
+-------------------------------+

8. Close the session after executing all graph queries as shown:

• JShell

• Java

• Python

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-9

JShell

opg4j> session.close()

Java

opg4j> session.close();

Python

>>> session.close()

Prerequisites for Using Autonomous Database Graph Client
As a prerequisite requirement to get started with the AdbGraphClient API, you must:

• Provision an Autonomous Database instance in Oracle Autonomous Database.

• Obtain the following information if you are configuring the AdbGraphClient using the
tenancy details. Otherwise, skip this step.

Key Description More Information

tenancy
OCID

The Oracle Cloud ID (OCID)
of your tenancy

To determine the OCID for your tenancy, see "Where to
Find your Tenancy's OCID" in: Oracle Cloud Infrastructure
Documentation.

databas
e

Database name of your
Autonomous Database
instance

1. Open the OCI console and click Oracle Database in
the left navigation menu.

2. Click Autonomous Database and navigate to the
Autonomous Databases page.

3. Select the required Autonomous Database under the
Display Name column and navigate to the
Autonomous Database Details page.

4. Note the Database Name under "General Information"
in the Autonomous Database Information tab.

databas
e OCID

The Oracle Cloud ID (OCID)
of your Autonomous
Database

1. Open the OCI console and click Oracle Database in
the left navigation menu.

2. Click Autonomous Database and navigate to the
Autonomous Databases page.

3. Select the required Autonomous Database under the
Display Name column and navigate to the
Autonomous Database Details page.

4. Note the Database OCID under "General Information"
in the Autonomous Database Information tab.

usernam
e

Graph enabled Autonomous
Database username, used
for logging into Graph Studio

See Create a Graph User for more information.

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-10

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.oracle.com/en/cloud/paas/autonomous-database/csgru/create-graph-user.html

Key Description More Information

passwor
d

Database password for the
graph user

If the password for a graph user is forgotten, then you can
always reset password for the graph user by logging into
Database Actions as the ADMIN user. See Edit User for
more information.

endpoint Graph Studio endpoint URL 1. Select your Autonomous Database instance and
navigate to the Autonomous Database Details page.

2. Click the Tools tab.

3. Click on Graph Studio.

4. Copy the URL of the new tab that opens the Graph
Studio login screen.

5. Edit the URL to remove the part after
oraclecloudapps.com to obtain the endpoint URL.
For example, the following shows the format of a
sample endpoint URL:

https://
<hostname_prefix>.adb.<region_identifier>.
oraclecloudapps.com

• Access Graph Studio and create a PGQL property graph.

• Download, install and start the Oracle Graph Java or Python client.

Using the PGX JDBC Driver with the AdbGraphClient API
Starting from Graph Server and Client Release 24.1.0, you can use the PGX JDBC driver with
the AdbGraphClient API to query graphs stored in the memory of the graph server in Graph
Studio on Autonomous Database.

To use the PGX JDBC driver to connect to your Autonomous Database instance, note the
following:

• Register the PGX JDBC driver with the DriverManager:

import java.sql.DriverManager;
import oracle.pgx.jdbc.PgxJdbcDriver;
...
DriverManager.registerDriver(new PgxJdbcDriver());

• Use one of the following two ways to establish the connection using the PGX JDBC Driver:

– Using Properties

properties = new Properties();
properties.put("tenancy_ocid", "<tenancy_OCID>");
properties.put("database_ocid", "<database_OCID>");
properties.put("database", "<database_name>");
properties.put("username", "<username>");
properties.put("password", "<password>");
Connection connection =
DriverManager.getConnection("jdbc:oracle:pgx:https://<hostname-
prefix>.adb.<region>.oraclecloudapps.com", properties);

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-11

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/sql-developer-web&id=GUID-856BBD92-DFEC-4C6E-A8EE-54368078F699

– Using a Wallet

Connection connection =
DriverManager.getConnection("jdbc:oracle:pgx:@<db_TNS_name>?
TNS_ADMIN=<path_to_wallet>", "<ADB_username>", "<ADB_password>")

Note that the JDBC URL in the preceding code samples, use jdbc:oracle:pgx: as the
prefix.

Example 5-1 Using the PGX JDBC Driver to run graph queries in Autonomous
Database

The following example establishes a connection using the PGX JDBC driver to connect to an
Autonomous Database instance, starts the compute environment in Graph Studio, loads a
graph into the graph server (PGX), creates a statement, and runs a PGQL query on the graph.

import java.sql.*;
import oracle.pgx.jdbc.*;
import oracle.pg.rdbms.*;
import oracle.pgx.api.*;

public class AdbPgxJdbc {

 public static void main(String[] args) throws Exception {

 DriverManager.registerDriver(new PgxJdbcDriver());

 try (Connection conn =
DriverManager.getConnection("jdbc:oracle:pgx:@<db_TNS_name>?
TNS_ADMIN=<path_to_wallet>","ADB_username","<ADB_password>")) {
 AdbGraphClient client = conn.unwrap(AdbGraphClient.class);
 if (!client.isAttached()) {
 var job = client.startEnvironment(10);
 job.get();
 System.out.println("job details: name=" + job.getName() + "type= " +
job.getType() +"created_by= " + job.getCreatedBy());
 }
 PgxSession session = conn.unwrap(PgxSession.class);
 PgxGraph graph = session.readGraphByName("BANK_PGQL_GRAPH",
GraphSource.PG_PGQL);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * "+
 "FROM GRAPH_TABLE (BANK_PGQL_GRAPH
"+
 "MATCH (a IS ACCOUNTS) -[e IS
TRANSFERS]-> (b IS ACCOUNTS) "+
 "WHERE a.ID = 179 AND b.ID = 688 "+
 "COLUMNS (e.AMOUNT AS AMOUNT))");
 while(rs.next()){
 System.out.println("AMOUNT = " + rs.getLong("AMOUNT"));
 }

 }
 }
}

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-12

The resulting output of the preceding code is as shown:

AMOUNT = 7562

Chapter 5
Access Graph Studio Features Using Autonomous Database Graph Client

5-13

6
Work with Graphs in Graph Studio

Graph Studio allows you to work with the two popular graph models, property graphs and RDF
graphs.

You can easily create and manage either of the graph models. You can validate the graphs by
executing queries and exploring their properties.

Topics:

• Create a Graph

• Manage Graphs

Create a Graph
Graph Studio provides you with an intuitive user interface that enables you to create a graph
easily.

You can create both property graphs and RDF graphs using Graph Studio.

Topics:

• Create a Property Graph in Graph Studio

• Create an RDF Graph in Graph Studio

Create a Property Graph in Graph Studio
There are several ways to create a property graph using Graph Studio in your Autonomous
Database instance.

Topics:

• Create a Property Graph from Scratch

• Create a Property Graph from Existing Relational Tables

• Create a Property Graph by Editing an Existing Graph

• Create a Property Graph from an RDF Graph

Create a Property Graph from Scratch
You can create graphs from scratch by using the CREATE PROPERTY GRAPH PGQL statement in
the Query Playground page.

To create a graph from scratch:

1. Click Graphs on the left navigation menu and navigate to the Graphs page.

2. Click </> Query in the Property Graph tab and navigate to the Query Playground page.

6-1

3. Enter the CREATE PROPERTY GRAPH PGQL statement to create a PGQL graph. For example:

CREATE PROPERTY GRAPH BANK_GRAPH
 VERTEX TABLES (
 bank_accounts
 KEY (id)
 LABEL Accounts PROPERTIES (id, name)
)
 EDGE TABLES (
 bank_txns
 SOURCE KEY (from_acct_id) REFERENCES bank_accounts (id)
 DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (id)
 LABEL transfers PROPERTIES (amount, description, from_acct_id,
to_acct_id, txn_id)
)OPTIONS (PG_PGQL)

4. Click Run.

This creates a graph of type PGQL Property Graph. It is essentially a property graph view
over data that is stored in the relational database tables.

Create a Property Graph from Existing Relational Tables
You can create a property graph from existing relational tables.

Note:

• The PG Objects graph type is desupported. It is recommended that you create a
PGQL Property Graph or SQL Property Graph.

• SQL property graphs are supported only in Oracle Database 23ai. Therefore, if
you are using an Autonomous Database instance with Oracle Database 23ai,
then you have the option to create SQL property graphs.

It is also important to note that when creating a graph, the property graph wizard will throw a
warning if the source tables used to create a PGQL or SQL property graph include any
Datetime data types in the primary key. Additionally, a warning will be issued if the tables
contain composite vertex keys in the case of PGQL property graphs.

However, you can still create a property graph by ignoring the warning. But you cannot load the
property graph into memory.

To create a property graph from existing relational tables:

1. Navigate to the Graphs page.

2. Select the Property Graph tab and click Create Graph.

The property graph wizard opens displaying the Overview page.

3. Enter the Graph Name

Chapter 6
Create a Graph

6-2

4. Optionally enter the graph Description and click Next.

5. Select the required Graph Type.

Graph Studio supports the creation of two types of property graphs:

• SQL Property Graph: The option to create a SQL property graph is available only if
you are using an Autonomous Database instance with Oracle Database 23ai.

• PGQL Property Graph: The option to create a PGQL property graph is available on
all types of tenancies and supported on all database versions.

6. Select the data tables that are required as input for the graph and move them to the
Selections section on the right.

The following table shows a few supported input types and the corresponding default
mapping when transformed into graph properties:

Chapter 6
Create a Graph

6-3

Oracle Database Type1 Oracle PGX Type

NUMBER The following implicit type conversion rules apply:
• NUMBER => LONG (for key columns)

• NUMBER => DOUBLE (for non-key columns)

• NUMBER(m) (number having precision m) with m <= 9
=> INTEGER

• NUMBER(m) (number having precision m) with 9 < m
<= 18 => LONG

• NUMBER(m,n) (number having precision m and scale
n) => DOUBLE
Note that this applies if n > 0. Otherwise, it follows
the same mapping as NUMBER(x), where x = m-n
(that is, subtracting the scale from the precision). The
PGX type can then vary, depending on the x value as
shown:

– x <= 9 => INTEGER
– 9 < x <= 18 => LONG
– x > 18 => DOUBLE

For instance, consider a scenario where n =
-100 and m = 1. In this case, x = 101 (m-n),
which is greater than 18. Extremely large numbers
cannot be encoded to fit in INTEGER or LONG and
therefore require the DOUBLE data type.

CHAR or NCHAR STRING
VARCHAR, VARCHAR2, or NVARCHAR2 STRING
BINARY_FLOAT FLOAT
BINARY_DOUBLE DOUBLE
FLOAT The following implicit type conversion rules apply:

• FLOAT(m) with m <= 23 => FLOAT
• FLOAT(m) with 23 < m => DOUBLE
In the preceding entries, m is the variable for precision.

CLOB STRING
DATE or TIMESTAMP TIMESTAMP
TIMESTAMP WITH LOCAL TIME ZONE TIMESTAMP
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

1 Data types for PGQL property graphs and SQL property graphs share a one-to-one mapping with Oracle
Database data types.

7. Click Next to view the suggested graph definition.

Chapter 6
Create a Graph

6-4

You can modify the graph definition if required.

Note:

Verify if the vertex and edge table keys are defined for the graph. These keys are
generated automatically by the property graph wizard. In case the wizard is
unable to generate the vertex and edge table keys, then you must manually
specify these keys. Otherwise, the wizard will not proceed to the next step of
graph creation. See Specify Vertex and Edge Table Keys for more information on
how to add or edit the vertex and edge table keys.

See Add New Edges During Graph Creation for visually adding new edges between two
vertices inside the Designer tab at this step.

8. Click Next to view the graph summary.

Graph Studio evaluates the graph definition and displays a summary of the graph if the
validation is successful.
Otherwise it may report errors, warnings, or both:

Chapter 6
Create a Graph

6-5

The errors and warnings may vary depending on the graph type. Also, note the following:

• Errors: Errors appear at the beginning in the Errors and Warnings slider. You need to
resolve the errors in order to create a graph.

• Warnings: Warnings are reported following the errors. Graph Studio allows you to
create a graph despite the warnings, but the graph cannot be loaded into memory. See
Warnings During Property Graph Creation for more information on the warnings details
when creating a property graph.

You can choose one of the following actions provided on the error or warning message:

• Remove Column: Removes the column from the vertex or edge table and the graph
definition is updated and re-validated.

• Remove Table: Removes the vertex or edge table and the graph definition is updated
and re-validated.

• Ignore: Dismisses the error or warning message. Ignoring a warning allows you to
continue to the next step of creating a graph. However, ignoring an error does not
allow you to proceed with the graph creation. If all the reported errors and warnings
are ignored, the Errors and Warnings slider is automatically closed.

• Remove All: Removes all the tables and columns that cause errors or warnings and
the graph definition is updated and re-validated.

• Ignore All: Closes the Errors and Warnings slider.

Chapter 6
Create a Graph

6-6

9. Click Create Graph.

This opens the Create Graph slider as shown:

10. Optionally, switch on or off the Load Into Memory toggle.

By default, the Load Into Memory toggle is disabled. If you had ignored any warnings
reported on the graph definition, then the toggle remains disabled as the graph cannot be
loaded into memory.
The Estimated in memory graph size is also computed and displayed in the slider. Also,
note the following with respect to the status of the compute environment:

• Detached:

– If the estimated graph size is less than the graph server (PGX) memory that is
configured in the compute environment settings, then this new estimated value will
be automatically saved as the default memory preference for the graph server
(PGX). In this case, the slider will additionally display the following message:
This value will be saved as memory preference when compute environment
is started.

– If the estimated graph size is greater than the maximum memory allowed to be
allocated to the graph server (PGX) in the compute environment settings, then the
following warning will be displayed in the slider:
A graph of this size will likely result in OutOfMemory errors during
loading or analysis. Consider loading a subgraph instead.

Chapter 6
Create a Graph

6-7

• Attached: If the estimated graph size is greater than the graph server (PGX) memory
available for allocation in the compute environment settings, then the following warning
will be displayed in the slider:
A graph of this size will likely result in OutOfMemory errors during
loading or analysis. Consider loading a subgraph instead.

11. Optionally, switch on or off the Preserve Case toggle.

By default, the Preserve Case toggle is switched off.

12. Optionally, switch on or off the Ignore Invalid Edges Errors toggle.

The Ignore Invalid Edges Errors toggle determines the behavior for handling edges with
missing source or destination vertices when the graph is loaded into memory. When set:

• ON: It specifies that Graph Studio will ignore those edges with missing source or
destination vertices.

• OFF: This is the default option. It allows you to create the graph when there are edges
with missing source or destination vertices. But Graph Studio throws an error when
you attempt to load the graph into memory. However, you can reload the graph into
memory from the Graphs page by switching on the Ignore Invalid Edges Error toggle.
See Load Graph Into Memory for more information.

13. Click Create Graph to create the property graph.

Warnings During Property Graph Creation
When creating a property graph, the property graph wizard validates the designed graph and
reports any validation errors or warnings.

It is important to note that you can still create a property graph by ignoring the warnings that
are generated at the time of creating the graph. However, the graph cannot be loaded into
memory.

The following table lists the warning messages that are generated during property graph
creation.

Warning Message Reason

Vertex table <table_name> has
composite key (<composite_key>)
which will prevent this graph
from being loaded into memory.
See the documentation for more
details

Vertex table cannot have a composite key. Note that this
applies only for PGQL property graphs.

Key column <column_name> of
vertex table <table_name> has a
data type which will prevent
this graph from being loaded
into memory.
See the documentation for details
and a list of supported
datatypes

Vertex table key must be one of the following types:
VARCHAR, VARCHAR2, NVARCHAR2, CHAR, NCHAR, NUMBER

Chapter 6
Create a Graph

6-8

Warning Message Reason

Key column <column_name> of
edge table <table_name> has a
data type which will prevent
this graph from being loaded
into memory.
See the documentation for details
and a list of supported
datatypes

Edge table key must be one of the following types:
VARCHAR, VARCHAR2, NVARCHAR2, CHAR, NCHAR, NUMBER,
BINARY_FLOAT, BINARY_DOUBLE, DATE, TIMESTAMP,
TIMESTAMP_WITH_LOCAL_TIME_ZONE,
TIMESTAMP_WITH_TIME_ZONE

Column <column_name> of table
<table_name> will prevent this
graph from being loaded into
memory.
See the documentation for details
and a list of supported
datatypes

Vertex or edge table columns must be one of the following
types:
VARCHAR, VARCHAR2, NVARCHAR2, CHAR, NCHAR, NUMBER,
BINARY_FLOAT, BINARY_DOUBLE, CLOB, DATE, TIMESTAMP,
TIMESTAMP_WITH_LOCAL_TIME_ZONE,
TIMESTAMP_WITH_TIME_ZONE

Specify Vertex and Edge Table Keys
The property graph wizard in Graph Studio allows you to specify keys for the vertex and edge
tables when creating a graph.

It is important to note the following key concepts:

• All the vertex and edge tables of a graph must have vertex and edge keys defined
respectively.

• By default, the wizard generates the vertex and edge table keys using the primary key of
the underlying database tables for the vertex and edge tables respectively.

• By default, the edge source key and edge destination key for an edge table corresponds to
a unique key (foreign key) of the source and destination tables respectively.

• If there is no primary key defined in the source database tables, then you must specify the
required vertex or edge key in order to proceed with the graph creation.

• Similarly, you can specify the edge source key, referenced source vertex key, edge
destination key, or referenced destination vertex key for an edge table, if they are not
automatically generated.

Therefore, you can perform the following at the Define Graph step of the property graph
wizard workflow:

• Specify a vertex key for a vertex table.

• Specify an edge key for an edge table.

• Specify an edge source key for an edge table.

• Specify an edge destination key for an edge table.

• Specify a source vertex key for an edge table.

• Specify a destination vertex key for an edge table.

The following steps explain how to perform the preceding operations. The instructions assume
that you are on the third step of the property graph wizard workflow.

1. To specify a vertex key for a vertex table:

a. Click the required vertex table in the Editor tab.

Chapter 6
Create a Graph

6-9

The Source Table name along with the Vertex Key, Vertex Label and Vertex
Properties are displayed in the bottom pane.

b. Click the Edit Vertex Key icon.
The Edit Vertex Key slider opens as shown:

Any existing primary key constraint is displayed in this key selection dialog.

c. Select the required columns for the vertex key.
Ensure you have selected at least one key column and the selected vertex key
columns are unique.

d. Click Save.
The Vertex Key is saved.

Alternatively, you can provide the vertex key directly in the Source tab using the KEY
clause for the vertex tables.

2. To specify an edge key for an edge table:

a. Click the required edge table in the Editor tab.
The Source Table name along with the Edge Key, Source vertex key, Destination
vertex key, Edge Label and Edge Properties are displayed in the bottom pane.

b. Click the Edit Edge Key icon.
The Edit Edge Key slider opens as shown:

Chapter 6
Create a Graph

6-10

Any existing primary key constraint is displayed in this key selection dialog.

c. Select the required columns for the edge key.
Ensure you have selected at least one key column and the selected edge key columns
are unique.

d. Click Save.
The Edge Key is saved.

Alternatively, you can provide the edge key directly in the Source tab using the KEY clause
for the edge tables.

3. To specify an edge source key, edge destination key, source vertex key, or destination
vertex key for an edge table:

a. Click the edge table in the Editor tab.

b. Click the icon, corresponding to the Source Key, References source vertex key,
Destination Key, or References destination vertex key which you wish to specify or
change:

This opens the corresponding Edit Edge Source Key, Edit Edge Source
References, Edit Edge Destination Key, or Edit Edge Destination References
slider. Any existing key value is shown highlighted.

c. Select the required columns for the keys.
Ensure you have selected at least one key column and the selected key columns are
unique.

d. Click Save.

Alternatively, you can provide the SOURCE KEY, DESTINATION KEY, referenced source or
destination vertex keys directly in the Source tab for the edge tables.

Add New Edges During Graph Creation
When creating or editing a graph, you can visually add new edges between two vertex tables
through drag and drop action.

You can perform this action inside the Designer tab at the Define Graph step of the graph
creation workflow.

The following steps describe the process for visually creating a new edge when using the
property graph wizard. The instructions assume that you are at the Define Graph step of the
property graph wizard, and more than one vertex tables are selected for building the graph.

1. Click the Designer tab.

A preview of the graph to be created is displayed. For example:

Chapter 6
Create a Graph

6-11

You can drag and move the vertices as required inside the tab. When you hover over a
vertex, a tooltip describing the vertex properties is displayed. Alternatively, you can right-
click on a vertex to view the vertex properties.

2. Click Create Edge (shown highlighted in the preceding figure) to activate the mode to add
a new edge.

In this mode, starting a drag action from a vertex will start drawing an arrow (depicting an
edge) from the source vertex until it is released on the destination vertex.

3. Drag an arrow from the desired source vertex and drop it on the target destination vertex to
add a new edge.

Note that if you drag an arrow from a vertex table to itself, then a self edge is created. This
indicates that the source and destination tables are the same.
The Create Edge slider opens as shown:

Chapter 6
Create a Graph

6-12

4. Select the Edge Table.

The list of choices for the edge table is obtained from the input tables selected in the
Select Tables step of the property graph wizard.

5. Select the Edge Source key and Edge Destination key.

6. Select the source and destination vertex keys using the References source vertex key
and References destination vertex key drop-downs respectively.

Chapter 6
Create a Graph

6-13

Note that these key columns must correspond to a unique (foreign) key of the source and
destination vertex tables.

7. Optionally, modify the Edge Label.

8. Select the Edge Properties.

You can choose any combination of the columns of the edge table as edge properties. By
default, these edge properties will automatically be assigned the name of the column. If
you wish to add all the columns of the edge table, then you can simply click Add all
properties.

9. Click Create Edge.

The new edge is shown displayed between the two vertex tables. You can click on the
edge to review and verify the edge configuration as shown.

Optionally, you can click Delete Edge if you wish to delete the edge.

Chapter 6
Create a Graph

6-14

All edges added or deleted in the Designer tab will be reflected in the CREATE PROPERTY
GRAPH statement in the Source tab.

Create a Property Graph by Editing an Existing Graph
You can edit an existing property graph on the Graphs page in Graph Studio.

The following lists a few scenarios for editing a graph:

• Add or remove tables from the graph

• Rename labels for edges or vertices

• Alter the orientation of the edges

• Add or remove a vertex or edge property

• Rename a vertex or an edge property

To edit a graph, perform the following steps:

1. Navigate to the Graphs page using the Graphs menu link.

You can see the list of existing graphs in the Property Graph tab.

2. Select the graph which you want to edit and click open the additional options menu as
shown:

3. Click Edit Graph in the context menu.

The property graph wizard opens and displays the Overview page with the graph details.
You can choose to perform one of the following actions:

• Save the edited graph as a new Property Graph:

a. Rename the graph by entering a new Graph Name.

b. Follow the graph creation workflow from step-4 to step-7 as explained in Create a
Property Graph from Existing Relational Tables, and edit the graph as required.

Caution:

When editing a graph, if you update the list of selected tables, then
Graph Studio will generate a new property graph statement that will
overwrite the current one.

Chapter 6
Create a Graph

6-15

c. Click the enabled Save a Copy button.
The Edit Graph slider opens.

The Estimated in memory graph size is computed and displayed in the slider.
See Estimated in memory graph size for more information.

d. Click Confirm to save a copy of the graph with the new name.
The new property graph gets created.

• Update the existing property graph:

a. Use the same initial Graph Name in order to overwrite the existing graph.

b. Follow the graph creation workflow from step-4 to step-7 as explained in Create a
Property Graph from Existing Relational Tables, and edit the graph as required.

Caution:

When editing a graph, if you update the list of selected tables, then
Graph Studio will generate a new property graph statement that will
overwrite the current one.

c. Click the enabled Save button.
The Edit Graph slider opens.

The Estimated in memory graph size is computed and displayed in the slider.
See Estimated in memory graph size for more information.

d. Click Confirm to overwrite the graph.

Caution:

If you overwrite an existing property graph, then notebooks using these
graphs may not work and hence they need to be manually updated.

Create a Property Graph from an RDF Graph
Graph Studio provides a modeler interface where you can map from an existing RDF graph to
a create a PGQL property graph.

You can then load this graph into the graph server to run graph analytics.

Perform the following steps to invoke the modeler interface and follow the workflow to create a
PGQL property graph from an RDF graph.

1. Navigate to the Graphs page using the Graphs menu link.

2. Click the RDF Graph tab.

The list of RDF graphs to which you have access are displayed as shown:

Chapter 6
Create a Graph

6-16

3. Select the RDF graph from which you want to create a property graph and click open the
additional options menu as shown in the preceding figure.

4. Click Create PGQL Property Graph in the context menu.

The modeler interface opens and displays the Overview page as shown:

5. Enter the Graph Name and click Next.

The Define Views page opens as shown:

This page displays the list of RDF classes for the graph in the top left Vertex Views pane.
These RDF classes can be translated into vertices for the property graph. This step of the
modeler interface also allows you to create the edges for the selected vertices in the top
right Edge Views pane. For any selected vertex or edge view, you can view the
corresponding Properties or Sample data details in the bottom pane of the page.

It is important to note that you must add atleast two vertex views and one edge view on
this page.

Chapter 6
Create a Graph

6-17

6. Select two or more RDF classes to define the required Vertex Views (as shown
highlighted in the preceding figure) for the graph.

7. Optionally, review the Properties or the Sample data for any selected vertex view in the
bottom details pane.

You can choose to perform any of the following actions, if required, when viewing the
Vertex view properties:

• Change the View Name.

• Change the Vertex Key name.

• View columns by applying the following column filters:

– Filter by Number

– Filter by Text

– Filter by Time

– Filter by Boolean

8. Add one or more edge views by clicking Add in the top right Edge Views section (shown
highlighted in the figure in the following step).

A new row gets added to the panel where you can provide the source and destination
vertices along with the edge label.

9. Select a Source Vertex, Edge Label, and Destination Vertex.

10. Optionally, choose to perform any of the following actions for any added edge view.

• : Review the edge Properties and optionally, change the Edge View name in the
bottom details section.

• : Review the Sample data.

• : Delete the edge view.

11. Click Next to proceed.

The Model page of the workflow opens as shown:

Chapter 6
Create a Graph

6-18

This page comprises the following three tabs:

• Designer: To review the selected vertices and edges of the property graph. Also, you
can determine the properties to be included for a vertex and configure the nullable
constraint for a vertex property.

• Source: To view the CREATE PROPERTY GRAPH source statement for the graph.

• Preview: To preview the modeled graph.

12. Optionally, click any vertex view in the Designer tab and choose to perform any of the
following actions in the bottom Vertex properties for view details pane.

• Include: Switch ON or OFF this toggle to indicate if a property is included or excluded.
Note that atleast one property must be included for a vertex view. Otherwise, you
cannot proceed to the next step of the workflow.

• Nullable: Switch ON or OFF this toggle to indicate the nullable constraint for a
property.

– TRUE: Vertices with NULL (missing) values for the property will be included.

– FALSE: Vertices with NULL (missing) values for the property will be excluded.

Note that atleast one FALSE property must be included.

13. Click Next to view the property graph Summary.

14. Click Create Graph.

The graph creation job is initiated on the Jobs page. Once the job completes successfully,
you can view the newly created PGQL property graph on the Graphs page in the Property
Graph tab.

Chapter 6
Create a Graph

6-19

Once the graph is created, you can run PGQL queries on the graph in the Query
Playground page or analyze and visualize the graph using a Notebook.

The following figure shows an example PGQL query that is executed on the graph in the
Query Playground page:

Create an RDF Graph in Graph Studio
You can create an RDF graph or an RDF graph collection using Graph Studio in Oracle
Autonomous Database.

Note:

You can also see the Oracle LiveLabs workshop, Working with RDF Graphs in Graph
Studio, for a complete example on creating, querying and visualizing an RDF graph.

1. Navigate to the Graphs page.

2. Select the RDF Graph tab.

All the RDF graphs to which you have access are displayed.

3. Click Create Graph.

Chapter 6
Create a Graph

6-20

The RDF graph type selection slider opens as shown:

4. Choose to create an RDF graph or an RDF graph collection as required.

• To create a single RDF graph by importing RDF data from Oracle Cloud Infrastructure
Object Storage:

a. Select RDF graph as the RDF graph type.

b. Click Confirm.
RDF wizard displays the OCI Storage input files page. See Use RDF Wizard to
Create an RDF Graph for more information.

• To create an RDF graph collection from existing RDF graphs:

a. Select RDF graph collection as the RDF graph type.

b. Click Confirm.
RDF wizard displays the General page. See Use RDF Wizard to Create an RDF
Graph Collection for more information.

Use RDF Wizard to Create an RDF Graph
You can create a new RDF graph using the RDF wizard feature in Graph Studio.

As a prerequisite, you must upload the RDF data to Oracle Cloud Infrastructure Object
Storage. You can then access the RDF data store from Graph Studio with or without
credentials. See Perform Prerequisites to Use RDF Graph Wizard for more information.

The RDF wizard consists of two pages:

• On the first page, you can provide the OCI object store credentials to create a new
credential or select any existing object store credential. Otherwise, you can simply provide
a pre-authenticated request URL to access the object store without credentials.

• On the second page, you can provide the RDF graph information.

To create an RDF graph, perform the following steps in the RDF wizard:

Chapter 6
Create a Graph

6-21

1. Enter the URI path or the Pre-Authenticated Request URL to the RDF object store in
your OCI bucket.

2. Optionally, enter the Buffer read size for each row in file.

3. Choose the required Credential option:

• Select an existing credential:

a. Click Select Credential.

b. Select a credential name from the Oracle Cloud Infrastructure Credentials drop-
down list.
On selection, the Oracle Cloud Infrastructure User Name value is automatically
populated.

• Create a new credential:

a. Click Create Credential.

b. Enter a Credential Name.

c. Enter your Oracle Cloud Infrastructure User Name.

d. Enter the Auth Token value.

• Click No Credential to access the object store using pre-authenticated request URL.

4. Click Next.

5. Enter the RDF Graph Name.

6. Click Create.

This redirects you to the Jobs page, where the RDF graph creation job is initiated.

Successful completion of the job indicates that the RDF data is imported and the RDF
graph is created successfully. The newly created graph appears on the Graphs page in the
RDF Graph tab.

Perform Prerequisites to Use RDF Graph Wizard
Prior to using the RDF graph wizard utility in Graph Studio, you must upload the RDF data to
Oracle Cloud Infrastructure Object Storage.

You can then access the RDF data store from Graph Studio with or without credentials.

Chapter 6
Create a Graph

6-22

You must perform the following prerequisite actions using the same Oracle Cloud credentials
used for creating the graph user. See Create a Graph User for more information.

Topics:

• Get the URI or Pre-Authenticated Request URL to Access the Object Store

• Get the Object Store Credentials

Get the URI or Pre-Authenticated Request URL to Access the Object Store

You must determine the URI or the pre-authenticated request URL for the RDF source data
object in Oracle Cloud Infrastructure Object Storage which is to be imported in Graph Studio.

Perform the following steps to find the URI or the pre-authenticated request URL for the RDF
object store:

1. Sign in to the OCI console using your Oracle Cloud credentials.

2. Open the navigation menu and select Storage.

3. Under Object Storage & Archive Storage, select Buckets and navigate to your Object
Storage.

4. Select a Compartment to view the list of buckets that are existing in that compartment.

Optionally, If you need to create a new bucket, then perform the following steps:

a. Select your Compartment and click Create Bucket.
The Create Bucket dialog opens.

b. Enter the Bucket Name and click Create.
The bucket is created and appears on the Buckets table.

5. Select the required bucket Name.

The objects uploaded to the bucket are listed in the Objects section on the Bucket Details
page.
Optionally, if you need to create a new object store, then perform the following steps:

a. Click on the required bucket and navigate to the Bucket Details page.

b. Click Upload in the Objects section.
The Upload Objects slider opens.

c. Select the file containing RDF data on your local system and click Upload.

Note:

• Files with extensions .nt (N-triples), .nq (N-quads), .trig (TriG),
and .ttl (Turtle) are supported in Graph Studio.

• Graph Studio supports only five million rows of data for .ttl and .trig
files. In case these files contain more than 5 million rows, then you must
convert your input .ttl or .trig file to a .nt file.

d. Click Close to return to the Bucket Details page.
The uploaded file is listed under Objects section.

6. Select the Actions menu for the required Object and click one of the following options as
required:

Chapter 6
Create a Graph

6-23

• Click View Object Details if you want to access the object store with credentials. You
can determine the URI path on the Object Details page as shown:

The URL Path (URI) field displays the URI to access the object store.

• Click Create Pre-Authenticated Request if you want to access the object store
without credentials. To obtain the pre-authenticated request URL on the Create Pre-
Authenticated Request page, see the Oracle Cloud Infrastructure Documentation for
more information.

Get the Object Store Credentials

You need to determine your object store credentials if you want to authorize Graph Studio to
access the RDF data source objects in Oracle Cloud Infrastructure Object Storage.

Note:

This section only applies if Graph Studio must access the object store using
credentials. You can skip this section if you are using a pre-authenticated request
URL to access the object store.

Perform the following steps to determine the username and password (auth token) to access
the RDF object store:

1. Sign in to the OCI console using your Oracle Cloud credentials.

2. Click the avatar icon in the top right corner to open your profile.

Note the first entry under Profile. This is your OCI user name.
The OCI user name is the username to be used to access the object store.

3. Create an auth token:

a. Click User Settings in the Profile menu.

b. Click Auth Tokens on the left side under Resources.

c. Click Generate Token.
The Generate Token dialog opens.

d. Enter a token Description.

Chapter 6
Create a Graph

6-24

https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm#usingconsole

e. Click Generate Token.
The auth token is generated. Copy the token string immediately. Save it for later use
as you cannot retrieve the token after closing the dialog box.

The auth token is the password to be used to access the object store.

Use RDF Wizard to Create an RDF Graph Collection
You can create an RDF graph collection, with one or more existing graphs, using the RDF
wizard feature in Graph Studio.

Optionally, you can perform inferencing by applying a rulebase to the graph collection.
Therefore, an RDF graph collection is a virtual combination of one or more RDF graphs.
Additionally, it may include entailments when a rulebase is used.

To create an RDF graph collection, perform the following steps in the RDF wizard:

1. Enter the name for the RDF graph collection in the General step as shown:

2. Optionally, switch the Overwrite toggle to overwrite an existing graph collection, if you
have provided an existing graph collection name in the preceding step.

3. Click Next to go to the Graphs step.

4. Select one or more RDF graphs under RDF Graphs Selection.

5. Click Next to go to the Rulebases step.

Chapter 6
Create a Graph

6-25

6. Optionally, if you want to perform inferencing operation, then select Select a rulebase and
select the required Rulebase for the graph collection. Otherwise, you can skip this step.

7. Click Next to view the Summary of the parameters selected for creating an RDF graph
collection.

If you have selected rulebases, then Graph Studio validates if an entailment for the
selected RDF graphs and rulebases in the collection already exists. If there is no valid
entailment, then a new one is created. As creating a new entailment is a long running
process, an appropriate warning is displayed when creating a new entailment.

8. Click Create.

The job to create an RDF graph collection is initiated on the Jobs page. On successful
completion of the job, the newly created RDF graph collection is listed on the Graphs page
in the RDF Graph tab.

Manage Graphs
You can explore and manage your graphs in Graph Studio.

Topics:

• Manage Property Graphs

• Manage RDF Graphs

Chapter 6
Manage Graphs

6-26

Manage Property Graphs
You can load a property graph into memory, share, edit, rename, delete or preview a graph.

To manage property graphs:

1. Click Graphs on the left navigation menu and navigate to the Graphs page.

2. Select the Property Graph tab.

You can see a list of property graphs for which you have access in the Autonomous
Database as shown in the following figure.

In the preceding figure:

• The Type column indicates the type of the graph.
Graph Studio supports the creation of two types of property graphs:

– SQL Property Graph: The option to create a SQL property graph is available only
if you are using an Autonomous Database instance with Oracle Database 23ai.

– PGQL Property Graph: The option to create a PGQL property graph is available
on all types of tenancies and supported on all database versions.

• The In Memory column indicates the property graphs that are loaded into memory.
You must ensure to load a full graph or selected properties into memory before
accessing it, as the notebook interpreters operate only on the in-memory graphs. See
Available Notebook Interpreters for more information on notebook interpreters.

3. Select any property graph.

The details of the graph are displayed in the graph details section of the Graphs page.
Note that this section also displays the previously computed Estimated In-Memory Graph
Size.

4. Optionally, click to perform any one of the following actions on the property graph:

Action Description

To recompute the graph metadata to refresh metadata information about the graph which
might have become stale, like the total number of vertices and edges. This action also
recomputes and updates the Estimated In-Memory Graph Size.

Chapter 6
Manage Graphs

6-27

Action Description

To rename the graph.

To edit the graph.

To share the graph with other users.

To load the complete graph or selected properties into memory for analysis.

Note:

Optionally, you can load a PGQL Property Graph by name directly in the
notebook. See Load Graphs into Memory Programmatically for an example.

When you click the Load Graph Into Memory icon, the Load Graph into memory slider
is displayed:

You can choose one of the following options:

• Load Graph with All Properties: In this case, the complete graph with all its
properties will be loaded into memory.

• Load Graph with Selected Properties: The slider will display the list of available
vertex and edge properties for the graph. By default, all the properties are selected.
You can choose to select (or deselect) specific vertex or edge properties that you
wish to load into memory. Note that the properties that are unsupported by the graph
server (PGX) will appear disabled.

Chapter 6
Manage Graphs

6-28

Action Description

To delete the graph.

To convert a PGQL property graph into SQL graph.
Note that this option is supported only if you are using an Autonomous Database instance
with Oracle Database 23ai. Also, this action is available only for PGQL property graphs.
See Convert a PGQL Property Graph to SQL Property Graph for more information.

This executes the desired action on the property graph.

5. Optionally, click the </> Query button if you wish to query and validate the selected
property graph in the Query Playground page.

The following example shows running SQL graph queries on a SQL property graph in the
SQL tab of the Query Playground page. Note that the SQL tab is displayed only for
Autonomous Database based on Oracle Database 23ai.

The following example shows running PGQL graph queries on a PGQL property graph in
the PGQL tab of the Query Playground page:

Chapter 6
Manage Graphs

6-29

Also, note the following when using the Query Playground page:

• CREATE PROPERTY GRAPH and DROP PROPERTY GRAPH statements are supported.

• SELECT queries are supported, and the SELECT query results can be visualized, if
applicable.

• INSERT and UPDATE queries are not supported.

• All queries are executed as the currently logged in user.

• The current query will be persisted in the browser's local storage once executed.

• You cannot run multiple statements or queries separated by semi-colon in the SQL
tab. Only one SQL statement or query is allowed.

Convert a PGQL Property Graph to SQL Property Graph
Graph Studio allows you to convert an existing PGQL property graph to SQL property graph.

Before you begin the migration operation, note the following:

• SQL property graphs are supported only on Oracle Database 23ai. Therefore, ensure that
you are using an Autonomous Database instance with Oracle Database 23ai.

• PGQL property graphs based on database views cannot be migrated. If you attempt to
migrate a PGQL graph based on views, then an error message is displayed and the
original PGQL property graph is preserved.

• The migration operation does not delete the original PGQL property graph.

• The following describes a few basic characteristics of the newly created SQL property
graph:

– The SQL graph will have the original name of the PGQL property graph and the
original graph will be renamed by appending _PGQL at the end of the name.

– The SQL graph will consist of the same vertex and edge tables as the original PGQL
property graph.

– The SQL graph will be owned by the user who triggered the migration operation,
regardless of the owner of the PGQL property graph.

1. Navigate to the Graphs page using the Graphs menu link.

2. Click the Property Graph tab.

The list of property graphs to which you have access are displayed.

3. Select the PGQL Property Graph that you wish to migrate and click open the additional
options menu as shown:

Chapter 6
Manage Graphs

6-30

4. Click Convert to SQL Graph in the context menu.

The Confirm Migration to SQL Property Graph window opens as shown:

5. Click Confirm.

If the migration operation is successful, then both the newly created SQL property graph
and the renamed original PGQL property graph are displayed on the Graphs page.
Otherwise, only the PGQL property graph in its original state is displayed.

Manage RDF Graphs
You can explore and validate an RDF graph or an RDF graph collection in Graph Studio.

Topics:

• Explore and Validate an RDF Graph

• Explore and Validate an RDF Graph Collection

Explore and Validate an RDF Graph
You can view the list of RDF graphs to which you have access in Graph Studio and explore
their properties.

Also, you can execute SPARQL queries on an RDF graph in the Query Playground page.

1. Navigate to the Graphs page.

2. Select the RDF Graph tab.

All the RDF graphs to which you have access are displayed.

3. Select the required row having the Type as RDF.

The graph properties are displayed on the bottom panel as shown:

Chapter 6
Manage Graphs

6-31

You can view the RDF statements that are loaded for the graph.

4. Optionally, click open the additional options menu to perform any of the following actions.

• Click Rename Graph to rename an RDF graph.

• Click Share Graph to share an RDF graph with another user. See Share an RDF
Graph for more information.

• Click Append to Graph to append RDF data obtained from OCI Object Storage to an
existing RDF graph. See Append RDF Data to an RDF Graph for more information.

• Click Create PGQL Property Graph to create a property graph from an RDF graph.

• Click Delete to delete an RDF graph.
It is important to note that when an RDF graph is deleted, Graph Studio removes all
the RDF graph collections and entailments using this RDF graph. An appropriate
warning is displayed as shown:

Chapter 6
Manage Graphs

6-32

5. Optionally, click the </> Query button and run any SPARQL query on the selected RDF
graph type in the Query Playground page.

For example:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ms: <http://www.example.com/moviestream/>
SELECT DISTINCT ?gname
WHERE {
?movie ms:actor/ms:name "Keanu Reeves" ;
ms:genre/ms:genreName ?gname .
}
ORDER BY ASC(?gname)

The query gets executed and the resulting query output is displayed.

Append RDF Data to an RDF Graph
You can import RDF data from the OCI Object Storage and append this data to an existing
RDF graph in Graph Studio.

To append RDF data to an RDF graph, perform the following steps:

1. Navigate to the Graphs page.

Chapter 6
Manage Graphs

6-33

2. Select the RDF Graph tab.

You can see the list of RDF graphs to which you have access.

3. Select the RDF graph to which additional RDF data needs to be appended.

4. Click Append to Graph from the additional options menu.

The Append to RDF Graph slider opens as shown:

5. Enter the Object Store URI path or the Pre-Authenticated Request URL to access the
RDF object store in your OCI bucket.

See Get the URI or Pre-Authenticated Request URL to Access the Object Store for more
information.

6. Choose one of the following credential options:

• Selecting an existing credential:

a. Click Select Credential.

b. Select a credential name from the Oracle Cloud Infrastructure Credentials drop-
down list.

• Creating a new credential:

a. Click Create Credential.

b. Enter a Credential Name.

c. Enter your Oracle Cloud Infrastructure User Name.

d. Enter the Auth Token value.

• Click No Credential to access the object store using pre-authenticated request URL.

7. Click Confirm.

The job to load data from the given RDF data source gets initiated. On successful
completion of the job, the new data gets appended to the RDF graph.

You can verify by selecting the RDF graph to which the RDF data was appended on the
Graphs page. The bottom panel displays the RDF statements for both the initial and
appended RDF data.

Chapter 6
Manage Graphs

6-34

Share an RDF Graph
You can share your RDF graph or RDF graph collection to allow other users to run SPARQL
queries on the graph.

In order to query a shared RDF graph or RDF graph collection, the specified user must have
READ privilege on the graph.
Perform the following steps for sharing RDF graphs.

1. Navigate to the Graphs page.

2. Select the RDF Graph tab.

All the RDF graphs and RDF graph collections to which you have access are displayed.

3. Select the required graph row.

4. Select the Share Graph option either from the additional options menu or by directly

clicking the icon in the bottom panel of the Graphs page.

The Share RDF Graph slider opens as shown.

All existing users who already have READ privilege on the graph are shown listed under
Current Privileges.

5. Select the user with whom you intend to share the graph from the drop-down.

Chapter 6
Manage Graphs

6-35

For example, in the preceding figure, the logged user ($TEST_USER2) shares the RDF
graph with a different user, $TEST_USER1.

6. Click Save to share the RDF graph with the user.

The Current Privileges section gets updated and displays the new user with whom the
graph is shared.

Also, note the following:

• The new user can access the shared graph on the Graphs page only for querying
purpose. All other graph actions such as Rename Graph, Append to Graph, Share
Graph, Create PGQL Property Graph, and Delete Graph remain disabled for the
user.

• The user can run SPARQL queries on the shared graph in the Query Playground
page. For example:

As seen in the preceding figure, the shared graph appears in the drop-down along with
its owner name.

• Similarly, the user can also query the shared graph using the RDF interpreter in a
notebook paragraph.

• If you want to revoke the graph sharing privilege for a specific user, then click the
icon against the user in the Share RDF Graph slider.

Chapter 6
Manage Graphs

6-36

Explore and Validate an RDF Graph Collection
You can view the list of RDF graph collections to which you have access in Graph Studio and
explore their properties.

Also, you can execute SPARQL queries on an RDF graph collection in the Query Playground
page.

1. Navigate to the Graphs page.

2. Select the RDF Graph tab.

All the RDF graphs and RDF graph collections to which you have access are displayed.

3. Select the required row having the Type as RDF Graph Collection.

The graph collection properties are displayed on the bottom panel as shown:

You can view the RDF statements that are loaded for the graph collection.

4. Optionally, click open the additional graph options menu to perform any of the followings
actions.

• Click Share Graph to share an RDF graph collection with another user. See Share an
RDF Graph for more information.

• Click Datasets to view the summary of the selected RDF graph collection as shown:

Chapter 6
Manage Graphs

6-37

• Click Delete to delete an RDF graph collection.

5. Optionally, click the </> Query button and execute any SPARQL query on the selected
RDF graph collection in the Query Playground page.

For example:

The query is executed successfully and the resulting query output is displayed.

Chapter 6
Manage Graphs

6-38

7
Work with Notebooks in Graph Studio

After you create a graph, you can analyze it and visualize the results by using a notebook.

Caution:

Different Graph Studio users working on the same Autonomous Database Serverless
instance can share the same CPU and memory resources when executing code in
notebooks. Therefore, while designing your applications, it is recommended that you
consider ways to mitigate any potential risks caused by shared hardware resources.

Note:

The graph visualization panel in the notebook paragraphs is redesigned to enhance
user experience. However, if you wish to use the previous graph visualization
interface, select Preferences from the username drop-down menu (on the top right)
and disable the Enable Oracle Graph Visualization Library option.

Topics

• About Notebooks

• Create a Notebook

• Export a Notebook

• Find a Notebook

• Import a Notebook

• Move a Notebook

• Notebook States

• Jump to a Paragraph

• Available Notebook Interpreters

• Use OCI Vault Secret Credentials

• Reference Graphs in Notebook Paragraphs

• Store a PgxFrame in Database

• Visualize Output of Paragraphs

• Apply Machine Learning on a Graph

• Dynamic Forms

• Notebook Forms

• Paragraph Dependencies

• Keyboard Shortcuts for Notebooks

7-1

• Example Notebooks

About Notebooks
A notebook is an interactive, browser-based object that enables data engineers, data analysts,
and data scientists to be more productive by developing, organizing, executing, and sharing
code, and by visualizing results without using the command line or needing to install anything.
Notebooks enable you to execute code and to work interactively with long workflows.

You can create any number of notebooks, each of which can be a collection of
documentation, snippets of code, and other visualizations. You can enter your input in
paragraphs, each of which is configured to be run with a particular interpreter. See Available
Notebook Interpreters to view the different notebook interpreters supported in Graph Studio.

In order to run the notebook paragraphs using the interpreters, Graph Studio must attach itself
to an internal compute environment. This attachment happens implicitly when you open a
notebook. See About Implicit Environment Creation Through Notebooks for more information.

After running a notebook paragraph, you can display the results in different ways, such as
tables, charts, or as an interactive graph.

Create a Notebook
You can create a notebook to query, analyze and visualize a graph.

The following are the steps to create a notebook:

1. Click Notebooks on the left navigation menu and navigate to the Notebooks page.

2. Click Create on the top-right side of the page.

The Create Notebook window opens.

3. Enter the Name of the notebook.

Notebooks can be organized into a directory hierarchy. To create a new directory or to add
or to move a notebook to a directory, simply give the notebook a name with slashes to
indicate the directory structure.

Chapter 7
About Notebooks

7-2

For example, the notebook name dir1/dir2/MyNotebook will create a notebook named
MyNotebook inside a directory dir2, which is inside a root directory dir1.

4. Optionally enter Description and Tags.

5. Click Create.

This creates a new notebook which opens to a blank paragraph page.

Export a Notebook
You can export one or more selected notebooks from Graph Studio to your local system.

You can choose to export the notebook in Native (.dsnb) file format, Jupyter (.ipynb) format,
Zeppelin (.zpln) format, or HTML (.html) format. However, any functionality (such as tags,
layout, dynamic forms, and so on) that is not supported by the chosen format will not be
exported.
Perform the following steps to export a notebook:

1. Navigate to the Notebooks page.

2. Click Select Notebooks on the top right corner of the page.

3. Select one or more notebooks that you wish to export and click Export Notebooks (as
shown highlighted in the following figure).

Alternatively, to export an individual notebook, you can click open a specific notebook and
click Export Notebook in the notebook toolbar at the top of the page.

The Export notebooks window opens as shown:

4. Select the Export Type.

5. Optionally, select any Additional Settings options.

6. Click Export.

The notebooks are exported and saved in your local system.

Chapter 7
Export a Notebook

7-3

Find a Notebook
You can search for a notebook on the Notebooks page.

On the Notebooks page, you can use the search bar to search for a notebook by title,
description, or tags. Additionally you can use keyboard shortcuts when working with
notebooks.

1. Click Notebooks on the left navigation menu and navigate to the Notebooks page.

2. Enter the name of the notebook to find in the search bar.

This opens the desired notebook.

Import a Notebook
You can import previously exported notebooks into Graph Studio from your local system.

The following file formats are supported for importing a notebook:

• .dsnb: Native file format

• .zpln: Zeppelin file format

• .ipynb: Jupyter file format

Perform the following steps to import a notebook:

1. Navigate to the Notebooks page.

2. Click Import on the top right corner of the page.

The Import notebook(s) window opens as shown:

3. Select one or more files from your local system or drag and drop the required files in the
Drag and Drop section.

4. Optionally, review and verify the Selected files. Click Delete if you wish to remove a
selected file.

5. Click Import.

The files are imported as notebooks in Graph Studio.

Chapter 7
Find a Notebook

7-4

Move a Notebook
You can move a notebook to another directory in Graph Studio.

Notebooks can be moved from:

• the notebooks main workspace in to a directory or conversely

• one directory to another

The following are the steps to move a notebook:

1. Navigate to the Notebooks page.

2. Click to open the notebook you want to move.

3. Click the Modify Notebook icon on the notebook toolbar at the top of the page.

The window to modify the notebook details opens.

4. Enter a Name with the new directory path as required. This path determines the
destination directory where you want to move the notebook.

Note:

Notebooks can be organized into a directory hierarchy. To create a new directory
or to add or to move a notebook to a directory, simply give the notebook a name
with slashes to indicate the directory structure.

For example, the notebook name dir1/dir2/MyNotebook will create a notebook named
MyNotebook inside a directory dir2, which is inside a root directory dir1.

5. Optionally, enter the Description and the Tags.

6. Click Save.

The notebook is moved to the destination directory.

Notebook States
When sharing a notebook, you can control the actions that a user can perform in the notebook
by setting up the notebook state.

You can view the notebook state by clicking the Update Notebook State icon on the top right
of the notebook as shown highlighted in the following figure:

You can configure the notebook state by selecting or deselecting the checkboxes for Editable
and Runnable options. Depending on what actions you wish the users to perform, you can set
any one of the following three states:

Chapter 7
Move a Notebook

7-5

• Editable and Runnable (default): This allows a user to edit and run the notebook
paragraphs.

• Non-editable and Runnable: This allows a user to run the notebook paragraphs, but the
user cannot make any changes in the notebook.

• Non-editable and Non-runnable: This disallows a user to edit or run the notebook
paragraphs.

Also, note the following:

• In a non-editable notebook state, although a user cannot edit a notebook paragraph, some
actions like changing the notebook layout, paragraph visibility, and paragraph results are
allowed. However, these changes are not persistent.

• Editable and Non-runnable state is not supported.

Jump to a Paragraph
You can jump to a specific paragraph inside a notebook.

1. Navigate to the Notebooks page and click open the required notebook.

2. Click Jump to paragraph on the top left of the notebook toolbar at the top of the page.

A drop-down menu listing all the paragraphs in the notebook opens as shown:

Note that each paragraph is displayed by its title. If a paragraph is untitled, then a snippet
of the first line of code or a placeholder (<Empty Paragraph>) is displayed.

3. Select the desired paragraph from the drop-down menu.

The control shifts to the selected paragraph.

Chapter 7
Jump to a Paragraph

7-6

Available Notebook Interpreters
An interpreter executes code input and renders the output visually.

The following types of interpreters are supported:

Note:

Graph Studio allows you to configure memory for the interpreters. See Manually
Manage the Compute Environment for more information.

Topics

• Markdown Interpreter

• Java (PGX) Interpreter

• Python (PGX) Interpreter

• PGQL (PGX) Interpreter

• PGQL (RDBMS) Interpreter

• SPARQL (RDF) Interpreter

• SQL Interpreter

• Custom Algorithm (PGX) Interpreter

• Conda Interpreter

Markdown Interpreter
You can format text using Markdown interpreter in a notebook paragraph.

Markdown paragraphs start with %md and accept Markdown syntax as input. When executed,
the underlying Markdown interpreter converts the input into HTML output. You can use the
Markdown interpreter to explain your notebook in a formatted way and to add media elements
like images or even videos.

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
Markdown Paragraph icon to open a Markdown paragraph instantly in the notebook.

The following is an example of a Markdown paragraph:

%md
My First Notebook
This is my first paragraph

Chapter 7
Available Notebook Interpreters

7-7

Java (PGX) Interpreter
Java (PGX) paragraphs start with %java-pgx and expose the full Java language (based on JDK
11) as well as all the available Java (PGX) APIs.

See the Javadoc for more information on the Java APIs.

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
Java-PGX Paragraph icon to open a Java (PGX) paragraph instantly in the
notebook.

Some variables are built-in to make interaction with PGX easier:

• session: the PgxSession object bound to your user. You can access all graphs currently
loaded into memory via the session object. Note that sessions time out after a while of not
being used. A new session will be created when you log back in to the notebook; thus, the
underlying session ID is not always the same.

• instance: the ServerInstance pointing to the PGX server.

• visualQuery: a helper object to convert PGQL queries into visualizable output.

The following imports are available on all Java (PGX) paragraphs:

import java.io.*
import java.util.concurrent.TimeUnit
import org.apache.commons.io.*
import oracle.pgx.common.*
import oracle.pgx.common.mutations.*
import oracle.pgx.common.types.*
import oracle.pgx.api.*
import oracle.pgx.api.admin.*
import oracle.pgx.config.*
import oracle.pg.rdbms.pgql.*
import oracle.pg.rdbms.pgql.pgview.*
import oracle.pgx.api.filter.*
import oracle.pgx.api.PgxGraph.SortOrder
import oracle.pgx.api.PgxGraph.Degree
import oracle.pgx.api.PgxGraph.Mode
import oracle.pgx.api.PgxGraph.SelfEdges
import oracle.pgx.api.PgxGraph.MultiEdges
import oracle.pgx.api.PgxGraph.TrivialVertices

The following is an example of a Java (PGX) paragraph:

%java-pgx
var g = session.getGraph("MY_FIRST_GRAPH") // reference in-memory graphs by
name
session.createAnalyst().pagerank(g) // run algorithms

Chapter 7
Available Notebook Interpreters

7-8

https://docs.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc

You can also define new helper classes/functions inside paragraphs. For example:

%java-pgx
import java.lang.Math // import

// can define new classes
public class Functions {
 public static double haversine(double lat1, double lon1, double lat2,
double lon2) {
 double delta_lon = (lon2 - lon1) * Math.PI / 180;
 double delta_lat = (lat2 - lat1) * Math.PI / 180;
 double a = Math.pow(Math.sin(delta_lat / 2), 2) + Math.cos(lat1 *
Math.PI / 180) * Math.cos(lat2 * Math.PI / 180) *
Math.pow(Math.sin(delta_lon / 2), 2);
 double c = 2 * Math.asin(Math.sqrt(a));
 double r = 6371; // Radius of the Earth in kilometers. Use 3956 for
miles
 return c * r;
 }
}

Functions.haversine(30.26, 97.74, 48.13, 11.58)

Internally, the Java (PGX) interpreter operates on the same PGX session as the Python (PGX)
interpreter. So, any analysis results computed in Python (PGX) paragraphs are available for
querying in subsequent Java (PGX) paragraphs.

The following example show the PageRank values computed on a graph in a Python (PGX)
paragraph. The pagerank property on the graph is then queried in the subsequent Java (PGX)
paragraph.

%python-pgx
g = session.get_graph("MY_FIRST_GRAPH")
analyst.pagerank(g,tol=0.001,damping=0.85,max_iter=100,norm=False,rank='pagera
nk')

%java-pgx
session.getGraph("MY_FIRST_GRAPH").queryPgql("SELECT x.pagerank FROM MATCH
(x)").print(out,10,0)

See Known Issues for Graph Studio to learn about any known problems when executing a
Java (PGX) paragraph.

Python (PGX) Interpreter
Python (PGX) paragraphs start with %python-pgx and allows you to use the available PyPGX
APIs.

See the Python API Reference for more information on PyPGX APIs.

Chapter 7
Available Notebook Interpreters

7-9

https://docs.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
Python-PGX Paragraph icon to open a Python (PGX) paragraph instantly in the
notebook.

The following variables are built-in for easier PGX interaction when using a Python paragraph:

• session: the PgxSession object bound to your user. You can access all graphs currently
loaded into memory via the session object. Note that sessions time out after a while of not
being used. A new session will be created when you log back in to the notebook; thus, the
underlying session ID is not always the same.

• instance: the ServerInstance pointing to the PGX server.

• visual_query: a helper object to convert PGQL queries into visualizable output.

• analyst: a helper object providing access to all built-in graph analytics such as PageRank
and Betweenness Centrality.

The following import is available by default on all Python (PGX) paragraphs:

import pypgx

Also, the Python (PGX) interpreter supports the following Python libraries. However, you must
import these modules in order to use them in a Python (PGX) paragraph.

• NumPy
• scikit-learn
• oracledb
• Matplotlib
• pandas
• SciPy
• requests
• openpyxl
The following is an example of a Python (PGX) paragraph which runs a built-in algorithm to
counts the number of triangles inside a graph:

%python-pgx
Reference in-memory graphs by name
graph = session.get_graph("FIRST_GRAPH")
Running an algorithm to determine the number of triangles in a graph
analyst.count_triangles(graph, True)

You can also define new helper classes/functions inside Python paragraphs. For example:

%python-pgx
import math
Define helper classes/functions
class Functions:

Chapter 7
Available Notebook Interpreters

7-10

 def haversine (lat1, lon1, lat2, lon2):
 delta_lon = (lon2 - lon1) * math.pi/180
 delta_lat = (lat2 - lat1) * math.pi/180
 a = math.pow(math.sin(delta_lat/2),2) + math.cos(lat1 * math.pi/180) *
math.cos(lat2 * math.pi / 180) * math.pow(math.sin(delta_lon / 2), 2)
 c = 2 * math.asin(math.sqrt(a))
 r = 6371 # Radius of the Earth in kilometers. Use 3956 for miles
 return c * r
Functions.haversine(30.26, 97.74, 48.13, 11.58)

Internally, the Python (PGX) interpreter operates on the same PGX session as the Java (PGX)
interpreter. So, any analysis results computed in Java (PGX) paragraphs are available for
querying in subsequent Python (PGX) paragraphs.

The following example show the PageRank values computed on a graph in a Java (PGX)
paragraph. The pagerank property on the graph is then queried in the subsequent Python
(PGX) paragraph.

%java-pgx
var g = session.getGraph("MY_FIRST_GRAPH")
session.createAnalyst().pagerank(g)

%python-pgx
session.execute_pgql("SELECT x.pagerank FROM MATCH (x) ON
MY_FIRST_GRAPH").print()

PGQL (PGX) Interpreter
You can run PGQL queries that are supported in the graph server (PGX) in your notebook
paragraphs.

See the PGQL Specification for more information on PGQL queries.

PGQL (PGX) paragraphs start with %pgql-pgx and accept PGQL queries supported in the
graph server(PGX) as input.

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
PGQL-PGX Paragraph icon to open a PGQL (PGX) paragraph instantly in the
notebook.

The following is an example of a PGQL(PGX) paragraph:

%pgql-pgx
SELECT v, e FROM MATCH (v)-[e]->() ON MY_FIRST_GRAPH

Internally, the PGQL-PGX interpreter operates on the same PGX session as the Java (PGX)
interpreter or the Python (PGX) interpreter. So, any analysis results computed in Java (PGX)
paragraphs or Python (PGX) paragraphs are available for querying in the subsequent PGQL
(PGX) paragraphs.

Chapter 7
Available Notebook Interpreters

7-11

https://pgql-lang.org/spec/latest/

For example, the vertex ranking computed for each vertex using the Vertex Betweenness
Centrality algorithm in the Java (PGX) paragraph is used for querying in the following PGQL
(PGX) paragraph:

%java-pgx
var g = session.getGraph("MY_FIRST_GRAPH")
session.createAnalyst().approximateVertexBetweennessCentrality(g, 3)

%pgql-pgx
SELECT city, e
FROM MATCH (city) -[e] -> () ON MY_FIRST_GRAPH
ORDER BY city.approx_betweenness

PGQL (RDBMS) Interpreter
You can run PGQL queries directly against your property graph data in Oracle Database using
the PGQL-RDBMS interpreter in Graph Studio.

In addition to creating the property graphs from the Graphs page, you can now create these
graphs directly in the database using the PGQL-RDBMS interpreter.

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
PGQL-RDBMS Paragraph icon to open a PGQL (RDBMS) paragraph instantly in the
notebook.

The following example shows the creation of a PGQL Property Graph using the CREATE
PROPERTY GRAPH statement in a PGQL (RDBMS) paragraph.

Chapter 7
Available Notebook Interpreters

7-12

PGQL (RDBMS) paragraphs begin with %pgql-rdbms.

You can then run PGQL INSERT, SELECT, UPDATE or DELETE queries directly on the graph
without having to load the graph into memory. See Executing PGQL Queries Against PGQL
Property Graphs in Oracle Database Graph Developer's Guide for Property Graph for more
information.

For example, the following figure shows the graph visualization output using a PGQL SELECT
query on the PGQL Property Graph created in the earlier example:

Also, see the table in Supported PGQL Features and Limitations for more information on the
supported PGQL functionalities for the graphs in the database.

Chapter 7
Available Notebook Interpreters

7-13

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pgql_on_rdbms
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pgql_on_rdbms

Supported PGQL Features and Limitations
This section provides the complete list of supported and unsupported PGQL functionalities in
PGQL queries that can be performed directly on the PGQL and SQL property graphs in the
database and those that are run after loading the graphs into memory.

Feature PGQL on RDBMS PGQL on RDBMS PGQL on the Graph
Server (PGX)

(PGQL Property Graph) (SQL Property Graph1)

CREATE
PROPERTY GRAPH

Supported Supported Supported
Limitations:
• No composite keys for

vertices
• Properties need to be

column references;
arbitrary property
expressions are not
supported unless the
graph is first created
in the database and
then loaded into the
graph server (PGX).

DROP PROPERTY
GRAPH

Supported Supported Not Supported

Fixed-length
pattern matching

Supported Supported Supported

Variable-length
pattern matching
goals

Supported:
• Reachability
• Path search prefixes:

– ANY
– ANY SHORTEST
– SHORTEST k
– ALL

• Path modes:
– WALK
– TRAIL
– SIMPLE
– ACYCLIC

Limitations:

• Path search prefixes:
– ALL SHORTEST
– ANY CHEAPEST
– CHEAPEST k

Not Supported Supported:
• Reachability
• Path search prefixes:

– ANY
– ANY SHORTEST
– SHORTEST k
– ALL SHORTEST
– ANY CHEAPEST
– CHEAPEST k
– ALL

• Path modes:
– WALK
– TRAIL
– SIMPLE
– ACYCLIC

Chapter 7
Available Notebook Interpreters

7-14

Feature PGQL on RDBMS PGQL on RDBMS PGQL on the Graph
Server (PGX)

(PGQL Property Graph) (SQL Property Graph1)

Variable-length
pattern matching
quantifiers

Supported:
• *
• +
• ?
• { n }
• { n, }
• { n, m }
• { , m }

Not Supported Supported:
• *
• +
• ?
• { n }
• { n, }
• { n, m }
• { , m }
Limitations:

• ? is only supported for
reachability

• In case of ANY
CHEAPEST and TOP k
CHEAPEST, only * is
supported

Variable-length
path unnesting

Supported:
• ONE ROW PER STEP

Limitation: Quantifier *
not supported

Not supported:

• ONE ROW PER
VERTEX

Not Supported Supported:
• ONE ROW PER

VERTEX
• ONE ROW PER STEP
Limitation:

• * quantifier is not
supported

OPTIONAL MATCH Not supported Not supported Supported

GROUP BY Supported Supported Supported

HAVING Supported Supported Supported

Aggregations Supported:
• COUNT
• MIN, MAX, AVG, SUM
• LISTAGG
• JSON_ARRAYAGG
Limitations:

• ARRAY_AGG

Supported:
• COUNT
• MIN, MAX, AVG, SUM
• LISTAGG
Not supported:
• ARRAY_AGG
• JSON_ARRAYAGG

Supported:
• COUNT
• MIN, MAX, AVG, SUM
• LISTAGG
• ARRAY_AGG
Not Supported:

• JSON_ARRAYAGG
DISTINCT
• SELECT

DISTINCT
• Aggregation

with
DISTINCT
(such as,
COUNT(DISTI
NCT
e.prop))

Supported Supported Supported

SELECT v.* Supported Not Supported Supported

ORDER BY
(+ASC/DESC),
LIMIT, OFFSET

Supported Supported Supported

Chapter 7
Available Notebook Interpreters

7-15

Feature PGQL on RDBMS PGQL on RDBMS PGQL on the Graph
Server (PGX)

(PGQL Property Graph) (SQL Property Graph1)

Data Types All available Oracle
RDBMS data types
supported

All available Oracle
RDBMS data types
supported

Supported:
• INTEGER (32-bit)
• LONG (64-bit)
• FLOAT (32-bit)
• DOUBLE (64-bit)
• STRING (no maximum

length)
• BOOLEAN
• DATE
• TIME
• TIME WITH TIME

ZONE
• TIMESTAMP
• TIMESTAMP WITH

TIME ZONE
JSON Supported:

• JSON storage:
– JSON strings

(VARCHAR2)

– JSON objects
• JSON functions:

Any JSON function
call that follows the
syntax,
json_function_nam
e(arg1, arg2,…).
For example:

json_value(depart
ment_data,
'$.department')

Limitations:
• Simple Dot Notation
• Any optional clause in

a JSON function call
(such as RETURNING,
ERROR, and so on) is
not supported. For
example:
json_value(depart
ment_data,
'$.employees[1].h
ireDate'
RETURNING DATE)

Supported:
• JSON storage:

– JSON strings
(VARCHAR2)

– JSON objects
• JSON functions:

Any JSON function
call that follows the
syntax,
json_function_nam
e(arg1, arg2,…).
For example:

json_value(depart
ment_data,
'$.department')

Limitations:
• Simple Dot Notation
• Any optional clause in

a JSON function call
(such as RETURNING,
ERROR, and so on) is
not supported. For
example:
json_value(depart
ment_data,
'$.employees[1].h
ireDate'
RETURNING DATE)

No built-in JSON support.
However, JSON values
can be stored as STRING
and manipulated or
queried through user-
defined functions (UDFs)
written in Java or
JavaScript.

Operators Supported:
• Relational: +, -, *, /,

%, - (unary minus)

• Arithmetic: =, <>, <, >,
<=, >=

• Logical: AND, OR, NOT
• String: || (concat)

Supported:
• Relational: +, -, *, /,

%, - (unary minus)

• Arithmetic: =, <>, <, >,
<=, >=

• Logical: AND, OR, NOT
• String: || (concat)

Supported:
• Relational: +, -, *, /,

%, - (unary minus)

• Arithmetic: =, <>, <, >,
<=, >=

• Logical: AND, OR, NOT
• String: || (concat)

Chapter 7
Available Notebook Interpreters

7-16

Feature PGQL on RDBMS PGQL on RDBMS PGQL on the Graph
Server (PGX)

(PGQL Property Graph) (SQL Property Graph1)

Functions and
predicates

Supported are all available
functions in the Oracle
RDBMS that take the form
function_name(arg1,
arg2, ...) with optional
schema and package
qualifiers.

Supported PGQL
functions/predicates:

• IS NULL, IS NOT
NULL

• JAVA_REGEXP_LIKE
(based on CONTAINS)

• LOWER, UPPER
• SUBSTRING
• ABS, CEIL/CEILING,

FLOOR, ROUND
• EXTRACT
• ID
• LABEL, HAS_LABEL
• ALL_DIFFERENT
• CAST
• CASE
• IN and NOT IN
Limitations:

• LABELS
• IN_DEGREE,

OUT_DEGREE

Supported are all available
functions in the Oracle
RDBMS that take the form
function_name(arg1,
arg2, ...) with optional
schema and package
qualifiers.

Supported PGQL
functions/predicates:

• IS NULL, IS NOT
NULL

• LOWER, UPPER
• SUBSTRING
• ABS, CEIL/CEILING,

FLOOR, ROUND
• EXTRACT
• CAST
• CASE
• IN and NOT IN
Unsupported PGQL
functions/predicates are all
vertex/edge functions

Supported:
• IS NULL, IS NOT

NULL
• JAVA_REGEXP_LIKE

(based on CONTAINS)

• LOWER, UPPER
• SUBSTRING
• ABS, CEIL/CEILING,

FLOOR, ROUND
• EXTRACT
• ID, VERTEX_ID,

EDGE_ID
• LABEL, LABELS, IS

[NOT] LABELED
• ALL_DIFFERENT
• IN_DEGREE,

OUT_DEGREE
• CAST
• CASE
• IN and NOT IN
• MATCHNUM
• ELEMENT_NUMBER
• IS [NOT] SOURCE

[OF], IS [NOT]
DESTINATION [OF]

• VERTEX_EQUAL,
EDGE_EQUAL

User-defined
functions

Supported:
• PL/SQL functions
• Functions created via

the Oracle Database
Multilingual Engine
(MLE)

Supported:
• PL/SQL functions
• Functions created via

the Oracle Database
Multilingual Engine
(MLE)

Supported:
• Java UDFs
• JavaScript UDFs

Subqueries:
• Scalar

subqueries
• EXISTS and

NOT EXISTS
subqueries

• LATERAL
subquery

Supported:
• EXISTS and NOT

EXISTS subqueries

• Scalar subqueries
• LATERAL subquery

Supported subqueries:
• EXISTS
• NOT EXISTS
Not supported:
• Scalar subqueries
• LATERAL subquery

Supported

GRAPH_TABLE
operator

Supported
Extension:

• BASE GRAPHS clause
in CREATE PROPERTY
GRAPH for creating
graphs based on
metadata of other
graphs

Not supported Supported

Chapter 7
Available Notebook Interpreters

7-17

Feature PGQL on RDBMS PGQL on RDBMS PGQL on the Graph
Server (PGX)

(PGQL Property Graph) (SQL Property Graph1)

INSERT/UPDATE/
DELETE

Supported Not supported Supported

INTERVAL literals
and operations

Not supported Not supported Supported literals:

• SECOND
• MINUTE
• HOUR
• DAY
• MONTH
• YEAR
Supported operations:

• Add INTERVAL to
datetime (+)

• Subtract INTERVAL
from datetime (-)

1 SQL Property Graphs are supported only in Oracle Database 23ai.

SPARQL (RDF) Interpreter
Graph Studio provides a SPARQL (RDF) interpreter which allows you to run SPARQL queries
on an RDF graph in a notebook paragraph.

See SPARQL Protocol and RDF Query Language (SPARQL) for more information on W3C
SPARQL 1.1 standard.

To use the SPARQL (RDF) interpreter, you must specify %sparql-rdf at the beginning of the
notebook paragraph and then input the SPARQL query.

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
RDF Paragraph icon to open an SPARQL (RDF) paragraph instantly in the
notebook.

You can run the following types of SPARQL queries:

• SELECT
• ASK
• CONSTRUCT
• DESCRIBE
• INSERT, DELETE, CLEAR, and other supported SPARQL queries for graph update operations.

See SPARQL 1.1 Update Specification for more information.

Also, note that execution of SPARQL SELECT and ASK queries return a tabular output and
execution of SPARQL CONSTRUCT and DESCRIBE queries return a graph view of the resulting
output.

Chapter 7
Available Notebook Interpreters

7-18

https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
https://www.w3.org/TR/sparql11-update/

If your user account is associated with just one RDF graph, then you can directly run the
SPARQL query as shown:

%sparql-rdf
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ms: <http://www.example.com/moviestream/>

SELECT ?title ?revenue
WHERE {
 ?movie ms:actor ?actor .
 ?actor ms:name "Kevin Bacon" .
 ?movie ms:title ?title .
 ?movie ms:grossInUSD ?revenue
}

The preceding SELECT SPARQL query is automatically applied on the default RDF graph
existing in the account. The query aims to project the title and revenue in USD of all movies
starring "Kevin Bacon", using multiple triple patterns in the WHERE clause. On execution, the
query output is displayed in a tabular format as shown:

In case you have multiple RDF graphs in your account, then a selection box is displayed when
you run the first SPARQL query in the notebook. You can select the desired graph and then
rerun the paragraph. This selection is automatically applied to all other SPARQL (RDF)
paragraphs.

The following example performs a SPARQL update operation. The example uses a SPARQL
INSERT query to add new data for a movie.

%sparql-rdf
##
Insert new data for Minions: The Rise of Gru
##

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX ms: <http://www.example.com/moviestream/>

Chapter 7
Available Notebook Interpreters

7-19

INSERT DATA {
 ms:movie_4004 ms:title "Minions: The Rise of Gru" ;
 ms:year "2022"^^xsd:decimal ;
 ms:openingDate "2022-07-01"^^xsd:date ;
 ms:runtimeInMin "87"^^xsd:decimal ;
 ms:director ms:entity_kyle%20balda ;
 ms:views "100"^^xsd:decimal .
}

SQL Interpreter
Graph Studio provides a SQL interpreter which allows you to run SQL statements in a
notebook paragraph.

To use the SQL interpreter, you must specify %sql at the beginning of the notebook paragraph
and then input the SQL statement. You can run only one SQL statement in a single paragraph.

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
SQL Paragraph icon to open a SQL paragraph instantly in the notebook.

The database connection is established for the currently logged in user. For example, the
following SQL statement retrieves the name of the user logged on to the database.

%sql
-- Get Current user
SELECT SYS_CONTEXT('USERENV','CURRENT_USER') FROM DUAL;

The following examples describe a few scenarios using the SQL interpreter.

Example: Visualization Using Charts

You can visualize any tabular output from a SQL query using charts in a notebook paragraph.
For example, the following SQL query to determine the products bought by a specific
customer, is visualized using a Bar Chart:

%sql
SELECT p.prod_name, count(p.prod_name) AS sold
FROM sh.products p, sh.sales s, sh.customers c
WHERE p.prod_id = s.prod_id AND s.cust_id = c.cust_id AND c.cust_id= 3221
GROUP BY p.prod_name;

Chapter 7
Available Notebook Interpreters

7-20

Example: Creating, Querying, Visualizing, and Deleting SQL Property Graphs

If you are using an Autonomous Database instance with Oracle Database 23ai, then you can
create, query, and visualize SQL property graphs using the SQL interpreter.

The following code uses the CREATE PROPERTY GRAPH DDL statements for creating a SQL
property graph in a notebook paragraph:

%sql
CREATE PROPERTY GRAPH bank_sql_pg
 VERTEX TABLES (
 bank_accounts
 KEY (id)
 LABEL account
 PROPERTIES ALL COLUMNS
)
 EDGE TABLES (
 bank_txns
 KEY (txn_id)
 SOURCE KEY (from_acct_id) REFERENCES bank_accounts (id)
 DESTINATION KEY (to_acct_id) REFERENCES bank_accounts (id)
 LABEL transfer
 PROPERTIES ALL COLUMNS
);

You can query the SQL property graph using SQL graph queries.

%sql
SELECT * FROM GRAPH_TABLE (bank_sql_pg
 MATCH
 (a IS account WHERE a.id = 816) -[e IS transfer]-> (b IS account)
 COLUMNS (a.id AS acc_a, e.amount AS amount, b.id AS acc_b)
);

The preceding query produces the following output:

ACC_A AMOUNT ACC_B
816 8781 287
816 6381 590
816 9011 934
816 6890 289
816 4443 812

Chapter 7
Available Notebook Interpreters

7-21

You can also visualize the output of SQL graph queries. In order to visualize the vertices and
edges of the SQL graph query, you must return the vertex and edge IDs. For example:

SELECT id_a, id_e, id_b
FROM GRAPH_TABLE (BANK_GRAPH
MATCH (a) -[e]-> (b)
COLUMNS (vertex_id(a) AS id_a, edge_id(e) AS id_e, vertex_id(b) AS id_b)
) FETCH FIRST 10 ROWS ONLY

Note that the COLUMNS clause in the preceding query uses the VERTEX_ID and EDGE_ID
operators. The visualization output of the SQL graph query is as shown:

Finally, you can delete the SQL property graph using the DROP PROPERTY GRAPH DDL statement
as shown:

%sql
DROP PROPERTY GRAPH bank_sql_pg;

See Also:

• SQL DDL Statements for Property Graphs in Oracle Database Graph
Developer's Guide for Property Graph

• SQL Graph Queries in Oracle Database Graph Developer's Guide for Property
Graph

• Vertex and Edge Identifiers in Oracle Database Graph Developer's Guide for
Property Graph

Chapter 7
Available Notebook Interpreters

7-22

http://www.oracle.com/pls/topic/lookup?ctx=db23&id=GUID-6EEB2B99-C84E-449E-92DE-89A5BBB5C96E
http://www.oracle.com/pls/topic/lookup?ctx=db23&id=GUID-35E9A1DE-26C0-4B42-971E-E9AAEFAC084E
http://www.oracle.com/pls/topic/lookup?ctx=db23&id=SPGDG-GUID-1B1A6F82-3984-47CB-A578-A71501D856F8

Example: Creating and Using Custom Database Views for PGQL Property Graphs

Another example scenario is to create custom database views using the SQL interpreter, which
are then used to create a property graph. Note that this example scenario applies only for
PGQL property graphs.

As shown in the following sequence of SQL paragraphs, database views are created on the
SALES and CUSTOMERS tables in SH schema. Also, the primary key and foreign key constraints
are defined for the views.

%sql
CREATE VIEW sh_customers
AS SELECT cust_id, cust_first_name, cust_last_name, country_id, cust_city,
cust_state_province
FROM sh.customers;

%sql
ALTER VIEW sh_customers
ADD CONSTRAINT shcustomers_id PRIMARY KEY (cust_id)
DISABLE NOVALIDATE;

%sql
CREATE VIEW sh_sales
AS SELECT rownum sale_id, cust_id, prod_id, channel_id, promo_id,
quantity_sold, amount_sold
FROM sh.sales;

%sql
ALTER VIEW sh_sales
ADD CONSTRAINT shsales_id PRIMARY KEY (sale_id)
DISABLE NOVALIDATE;

%sql
ALTER VIEW sh_sales
ADD CONSTRAINT shsale_cust_fk FOREIGN KEY (cust_id)
REFERENCES sh_customers DISABLE NOVALIDATE;

You can then create a PGQL Property Graph graph using these database views (see Create
a Property Graph from Existing Relational Tables) and then perform graph visualizations in a
PGQL (PGX) paragraph as shown:

Chapter 7
Available Notebook Interpreters

7-23

Example: XML Support in Table Visualization

Graph Studio provides support for visualizing tabular data with XMLType and CLOB data type
columns. The results of these columns are parsed and rendered as tree of items. You can
modify the rendering by changing the XML Expansion Level in the table visualization settings.
The default is 1.

Custom Algorithm (PGX) Interpreter
Using the custom algorithm (PGX) interpreter, you can write your own custom PGX graph
algorithms in a notebook paragraph in Graph Studio.

A custom algorithm (PGX) paragraph starts with %custom-algorithm-pgx and a custom graph
algorithm can be written using Java syntax. See the PGX Algorithm APIs in the Javadoc for
more information.

On running the custom algorithm (PGX) paragraph, the algorithm gets compiled. You can then
use the compiled algorithm in a Java (PGX) or Python (PGX) paragraph.

Chapter 7
Available Notebook Interpreters

7-24

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=java_doc

Tip:

You can hover over the bottom part of a notebook paragraph and click the Add
CUSTOM-ALGORITHM-PGX Paragraph icon to open a custom algorithm (PGX)
paragraph instantly in the notebook.

For example, consider the following graph algorithm:

%custom-algorithm-pgx
package oracle.pgx.algorithms;

import oracle.pgx.algorithm.annotations.GraphAlgorithm;
import oracle.pgx.algorithm.PgxGraph;
import oracle.pgx.algorithm.VertexProperty;
import oracle.pgx.algorithm.annotations.Out;

@GraphAlgorithm
public class IndegreeCentrality {
 public void indegreeCentrality(PgxGraph g, @Out VertexProperty<Integer>
indegreeCentrality) {
 g.getVertices().forEach(n ->
 indegreeCentrality.set(n, (int) n.getInDegree())
);
 }
}

After running the preceding code, you can integrate the compiled algorithm
(indegreeCentrality) in a Java (PGX) or Python (PGX) paragraph as shown:

• %java-pgx

• %python-pgx

%java-pgx

var graph = session.getGraph("HR_GRAPH")
var centrality = graph.createVertexProperty(PropertyType.INTEGER,
"centrality")
var algorithm = session.getCompiledProgram("indegreeCentrality")
algorithm.run(graph, centrality)
graph.queryPgql("SELECT x.centrality, x.last_name FROM MATCH (x:employees)
ORDER BY x.centrality DESC LIMIT 10").print(out,10,0)

%python-pgx

graph = session.get_graph("HR_GRAPH")
centrality = graph.create_vertex_property("integer", "centrality")
algorithm = session.get_compiled_program("indegreeCentrality")
algorithm.run(graph, centrality)

Chapter 7
Available Notebook Interpreters

7-25

graph.query_pgql("SELECT x.centrality, x.last_name FROM MATCH (x:employees)
ORDER BY x.centrality DESC LIMIT 10").print()

The graph query produces the following output:

+------------------------+
| centrality | last_name |
+------------------------+
14	King
9	Kaufling
8	Weiss
8	Vollman
8	Fripp
8	Mourgos
7	Kochhar
6	Zlotkey
6	Russell
6	Cambrault
+------------------------+

See Using Custom PGX Graph Algorithms in Oracle Database Graph Developer's Guide for
Property Graph for more information.

Also, see Built-In Algorithms on GitHub for detailed information about the supported graph
built-in algorithms.

Conda Interpreter
Using the Conda interpreter, you can create a custom Conda environment by installing specific
third-party Python packages and use the activated environment in a Python(PGX) notebook
paragraph.

Conda is an open source package management system and environment management system
for Python. Conda supports multiple environments with different versions of Python and other
libraries.

To use the Conda interpreter, you must specify %conda at the beginning of a notebook
paragraph. See About the Default Conda Environment to learn more about the base Conda
environment in Graph Studio.

The Conda environment and package management can be performed only by ADMIN users.
An ADMIN user can be any graph-enabled user with GRAPH_ADMINISTRATOR role or the default
ADMIN user in your Autonomous Database instance. The ADMIN user can create a Conda
environment, install the required packages, and upload the environment. The uploaded
environment is persisted internally and is shared only by the graph users. Other graph users
can then simultaneously access, download, and work on one or more Conda environments in
their respective notebook sessions.

Note:

You do not have to install any additional third-party software through this Conda
feature in order to use any of the graph features of Oracle Autonomous Database.

Chapter 7
Available Notebook Interpreters

7-26

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=custom_graph_algorithms
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=github_custom_graph_algorithms

Caution:

Oracle is not responsible for vulnerability management and license compliance of all
the third-party Python packages installed in a Conda environment using this feature.
It is solely your responsibility.

As a graph user, you can download and activate the preinstalled environment. You can then
access the activated Conda environment from a Python(PGX) notebook paragraph to quickly
develop and visualize analytical workloads. Also, you can switch between different preinstalled
Conda environments.

The following sections explain more on the supported Conda interpreter tasks:

Topics

• About the Default Conda Environment

• Supported Conda Interpreter Tasks

• Create and Publish a Conda Environment

• Work with Preinstalled Conda Environments

About the Default Conda Environment
Graph Studio uses the basegraph environment as the default Conda environment.

For instance, before you start creating or downloading a Conda environment, run the Conda
info command in a Conda paragraph:

As seen in the preceding output, the basegraph environment is set as the default Conda
environment. To view the default packages in the basegraph environment, you can run the
Conda list command.

It is important to note the following:

• It is recommended that you do not install any third-party Python library in the default
basegraph environment.

• The oracle-pypgx-client package, which is required to work with PyPGX APIs, is
available in the basegraph environment by default. Therefore, to work using this graph

Chapter 7
Available Notebook Interpreters

7-27

Python client library along with other external Python packages, you must create a Conda
environment by copying the default basegraph environment. See step-2 in Create and
Publish a Conda Environment for an example.

Supported Conda Interpreter Tasks
You can learn the different tasks that are supported by the Conda interpreter in Graph Studio.

The following table describes the supported conda commands and the users authorized to
perform these tasks:

Task Command Authorized Users

Create a new Conda environment using
a specific Python version

create -n <env_name>
python==<python_version>

• ADMIN1

Create a Conda Environment by copying
the default basegraph environment

copy-local-env -n <env_name> • ADMIN

Install an external package from public
Conda channel in a Conda environment

install -n <env_name>
<package_name>

• ADMIN

Uninstall a specific package from a
Conda environment

uninstall -n <env_name>
<package_name>

• ADMIN

Upload a Conda environment to internal
storage

upload <env_name> --description
'<write_description>' -t
<tag_name> <tag_value>

• ADMIN

Get information about the Conda
installation

info • ADMIN
• Graph User2

List the packages installed in the active
environment

list • ADMIN
• Graph User

Search on a specific package in the
Conda environment

search <package_name> • ADMIN

Get specific command-line help <conda_command> --help • ADMIN
• Graph User

Download and unpack a specific Conda
environment from internal storage

download <env_name> --skip-if-
exists

• ADMIN
• Graph User

List all the uploaded Conda
environments

list-saved-envs • ADMIN
• Graph User

List all the available Conda
environments

env list • ADMIN
• Graph User

List the local Conda environments
created by the user

list-local-envs • ADMIN
• Graph User

Activate a Conda environment activate <env_name> • ADMIN
• Graph User

Deactivate a Conda environment deactivate • ADMIN
• Graph User

Remove a Conda environment locally env remove -n <env_name> • ADMIN
• Graph User

Delete a persisting Conda environment delete <env_name> • ADMIN

1 Default ADMIN user in your Autonomous Database instance or a graph-enabled user with
GRAPH_ADMINISTRATOR role.

2 See Create a Graph User.

Chapter 7
Available Notebook Interpreters

7-28

Create and Publish a Conda Environment
All administrative tasks for managing the Conda environment can be performed only by the
ADMIN user.

The following example describes the steps to create a new Conda environment, install external
Python packages, and persist the environment in internal storage. Note that these tasks can be
performed only by the ADMIN user.

1. Navigate to the Notebooks page and open a new notebook.

2. Create a new Conda environment in a Conda paragraph.

Tip:

You can hover over the bottom part of a notebook paragraph and click the
Add Conda Paragraph icon to open a Conda paragraph instantly in the
notebook.

The following describes two choices for creating a new Conda environment. You can
choose the option that applies to you:

• To work with PyPGX APIs and other external Python packages, run the following
command:

%conda
copy-local-env -n graphenv

The following example creates a Conda environment, graphenv, by copying the
basegraph environment:

• To work with external Python packages only, create a Conda environment by
running the following command:

%conda
create -n graphenv python==3.6.8

The following example creates a Conda environment, graphenv, with the specified
Python version:

Chapter 7
Available Notebook Interpreters

7-29

3. Install any third-party Python package in the newly created graphenv. For example, the
following command installs the pandas 1.3.5 package in the graphenv.

%conda
install -n graphenv pandas=1.3.5

Chapter 7
Available Notebook Interpreters

7-30

As an ADMIN user, you can also choose to install a different Python version other than the
one provided in the basegraph environment. For this, you must first activate the Conda
environment created in the preceding step. Then you can uninstall the default Python
library and install the required Python version as shown:

activate <env_name>
uninstall python
install python=3.9

4. Upload the Conda environment as shown:

%conda
upload graphenv --overwrite --description 'Conda environment with Pandas'

5. Optionally, verify by listing all the uploaded environments as shown:

%conda
list-saved-envs

Chapter 7
Available Notebook Interpreters

7-31

Work with Preinstalled Conda Environments
As a graph user, you can download and activate a preinstalled Conda environment.

You can then access the activated environment in a Python(PGX) paragraph. The following
example describes the steps for a graph user to work with a preinstalled Conda environment.

1. Navigate to the Notebooks page and open a new notebook.

2. List all the available preinstalled Conda environments:

%conda
list-saved-envs

3. Download the required Conda environment.

The following example downloads the saved graphenv:

%conda
download graphenv

Chapter 7
Available Notebook Interpreters

7-32

Note the following:

• If you wish to skip the download in case the Conda environment already exists, then
you can run the following command:

download <env_name> --skip-if-exists

• If you wish to overwrite an already downloaded Conda environment, then you can run
the command as shown:

download <env_name> --overwrite

• You can download multiple Conda environments and can always switch between your
environments by using the Conda activate <env> command.

• If the environment download exceeds the maximum local storage limit of 8 GB, then
the Conda interpreter throws an error. In such a case, you can remove an environment
from the local storage, using the following command, and repeat the download
operation:

env remove -n <env_name>

4. Activate the required environment.

%conda
activate graphenv

Chapter 7
Available Notebook Interpreters

7-33

When you activate a specific Conda environment, the earlier active environment is
automatically deactivated. Therefore, when you are working with multiple environments, it
is recommended that you activate the required environment before switching to another.

5. Access the environment in a Python(PGX) paragraph.

As a prerequisite, perform the following steps:

• Run the Conda info or env list command and verify that you have activated the
required environment. If not, run the Conda activate command, as described in the
preceding step, to activate the required environment.

• Run the Conda list command to verify that the activated environment contains the
required packages that you need to access in the Python(PGX) paragraph.

• This step applies only if you want to work with the PyPGX APIs. Verify that the output
of the Conda list command shows the oracle-pypgx-client package. If this
package is not available in the activated environment, then you cannot work using the
PyPGX APIs. See step-2 in Create and Publish a Conda Environment for more
information.

Once you have verified the active environment and the packages installed in the active
environment, then you can access the environment in the Python(PGX) paragraph. For
instance, the following example uses the pandas package in the activated conda
environment to convert a PGQL result set into Pandas dataframe.

Use OCI Vault Secret Credentials
As the default ADMIN user of the Autonomous Database instance, you can access secret
credentials stored in Oracle Cloud Infrastructure (OCI) Vault, in a Python notebook paragraph
in Graph Studio.

Topics:

• Prerequisites to Use OCI Vault Secret Credentials

• Attach Vault Secret Credentials to Graph Studio

• Attach and Access a Secret in a Python Notebook Paragraph

Chapter 7
Use OCI Vault Secret Credentials

7-34

Prerequisites to Use OCI Vault Secret Credentials
Before you begin to use Oracle Cloud Infrastructure (OCI) Vault secret credentials in Graph
Studio, you must first perform a few prerequisite steps.

The following steps describe the process to configure an OCI Vault and secrets in your
Autonomous Database instance, enable the resource prinicipal, and attach the vault credential
in Graph Studio. Ensure you are the default ADMIN user of the Autonomous Database
instance to access resources and run OCI operations at tenancy level or at the compartment
level.

1. Create a Vault in your Autonomous Database instance.

See Creating a Vault for more information.

2. Create a Master Encryption Key for the vault.

See Creating a Master Encryption Key for more information.

3. Create a Secret specifying the encryption key created in the previous step.

See Creating a Secret in a Vault for more information.

4. Create a Dynamic Group to provide access to the vault in your Autonomous Database
instance.

a. Click Identity & Security in the OCI Console.

b. Click Domains under Identity and select the required domain.

c. Click Dynamic groups under Identity domain.

d. Click Create dynamic group.

i. Enter Name and Description.

Chapter 7
Use OCI Vault Secret Credentials

7-35

https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults_topic-To_create_a_new_vault.htm
https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys_topic-To_create_a_new_key.htm#createnewkey
https://docs.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingsecrets_topic-To_create_a_new_secret.htm

ii. Add a Rule to specify that your Autonomous Database instance is part of the
dynamic group as shown in the following code:

resource.id = '<your_Autonomous_Database_instance_OCID>'

In case the tenancy uses an identity domain, then you need to also include the
domain name as shown:

resource.id = '<identity_domain_name/
your_Autonomous_Database_instance_OCID>'

Note that you can find the database OCID on the Autonomous Database details
page under General Information in the OCID field.

See Use Resource Principal with Autonomous Database for more information on
how to define a rule.

iii. Click Create.

5. Create a Policy for the dynamic group (created in the previous step) to allow access to the
vault, keys, and secrets.

a. Click Identity & Security in the OCI Console.

b. Click Policies under Identity.

c. Click Create Policy.

i. Enter Name and Description.

ii. Select the required Compartment.

iii. Add the policy statements (as shown in the following figure) using the Show
manual editor option:

Chapter 7
Use OCI Vault Secret Credentials

7-36

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=ADBSB-GUID-3CF59CED-F7DF-46AF-B3CF-E703ED0BB3EE

iv. Click Create.

6. Copy the OCID for the secret from the Secret Details page under Secret Information in
the OCID field.

7. Login to Graph Studio as the ADMIN user, and enable the resource principal (see Use
Resource Principal to Access Oracle Cloud Infrastructure Resources) by running the
following code in a SQL paragraph.

%sql
BEGIN
 DBMS_CLOUD_ADMIN.ENABLE_RESOURCE_PRINCIPAL();
END;

Alternatively, you can connect to Database Actions on your Autonomous Database
instance, and run the preceding code on the SQL page.

8. Attach the secret credentials to Graph Studio by following the steps in Attach Vault Secret
Credentials to Graph Studio.

Attach Vault Secret Credentials to Graph Studio
As the ADMIN user, you can attach a credential to Graph Studio which can be later accessed
in a Python notebook paragraph.

Perform the following steps as the ADMIN user to upload a secret from Oracle Cloud
Infrastructure (OCI) Vault to Graph Studio. The steps assume that you have already created an
OCI vault and stored a secret as described in Prerequisites to Use OCI Vault Secret
Credentials.

1. Click Credentials on the left navigation menu and go to the Credentials page.

2. Click Attach from OCI Vault.

The Attach credential dialog opens as shown:

Chapter 7
Use OCI Vault Secret Credentials

7-37

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-E283804C-F266-4DFB-A9CF-B098A21E496A
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-database/serverless&id=GUID-E283804C-F266-4DFB-A9CF-B098A21E496A

3. Enter a Credential name.

4. Enter the OCI Vault Secret ID (OCID) (that was copied earlier).

5. Enter the OCI Principal value as OCI$RESOURCE_PRINCIPAL.

6. Click Attach.

Graph Studio will fetch the credential from OCI Vault and the newly created credential gets
listed on the Credentials page.

Attach and Access a Secret in a Python Notebook Paragraph
As the ADMIN user, you can attach the credential created in Graph Studio to a notebook. You
can then access the secret in a Python paragraph.

Ensure that you meet all the prerequistes described in Prerequisites to Use OCI Vault Secret
Credentials.

Perform the following steps to attach and access a secret in a Python notebook paragraph:

1. Click open a notebook in the Notebooks page.

2. Click the Credential icon on the top left of the page.

The Attach credentials window opens as shown:

Chapter 7
Use OCI Vault Secret Credentials

7-38

The window displays the currently attached credentials to the notebook. It also allows you
to attach a new credential.

3. Click the Attach icon, shown highlighted in the preceding figure.

The Attach new credential window opens as shown.

4. Enter the Credential Alias and Credential Description.

5. Click Select and choose a secret from the list.

6. Click Attach.

The newly added credential gets attached to the notebook.

7. Access the secret in a Python paragraph by referencing it using the alias (provided earlier)
as shown.

Chapter 7
Use OCI Vault Secret Credentials

7-39

Caution:

The following code snippet is for illustrative purposes only. It is recommended
that you do not print secrets in plain text in a paragraph output to maintain
confidentiality.

%python
from ds_interpreter_client.context.ds_context import PyDataStudioContext

ds = PyDataStudioContext()
print('My secret: ' + ds.get_credential('my_secret'))

The following shows the output on running the preceding code:

8. Optionally, share the notebook with another graph user by clicking Share Notebook in the
notebook toolbar at the top of the page.

Note that sharing the notebook with any permission allows the graph user to run the
Python code in the previous step successfully. However, the user cannot view or attach the
credential to their notebooks.
Also, if you do not wish the user to modify the paragraph, then ensure that you do not grant
Modify Paragraph permission. Alternatively, you can update the notebook state as Non-
editable. See Notebook States for more information.

Reference Graphs in Notebook Paragraphs
In order to reference graphs in notebook paragraphs that belong to the PGX interpreter group,
the graph must be loaded into the graph server memory.

In addition to loading graphs into memory from the Graphs page (see), you can also perform
this action using the following two ways:

Topics:

• Load Graphs Into Memory Using the Quickview Option

• Load Graphs into Memory Programmatically

Chapter 7
Reference Graphs in Notebook Paragraphs

7-40

Load Graphs Into Memory Using the Quickview Option
Graph Studio allows you to easily load a graph into memory using the Quickview option inside
a notebook.

1. Navigate to the Notebooks page and click open a notebook.

2. Click Quickview at the top of the notebook.

The Graph Quick View slider opens as shown:

As seen in the preceding figure, all user owned graphs that are already loaded into
memory are displayed by default.

3. Select the graph that you wish to load into memory using the Select Graph drop-down.

The slider displays the graph summary along with the Load into memory button as
shown:

Chapter 7
Reference Graphs in Notebook Paragraphs

7-41

As seen in the preceding figure, the graph details are displayed under the following
collapsible sections:

• Summary: This shows the graph summary such as the number of vertices and edges
in the graph, the underlying source vertex and edge tables, and the estimated in-
memory graph size.

• Properties: This shows the vertex and edge properties of the graph.

Also, note the following:

• Graphs that are already loaded into memory are indicated by in the Select Graph
drop-down.

• In case you choose to select a graph that is already loaded into memory, then the
Graph Quick View slider displays the Unload from memory button.

• For graphs that cannot be loaded into memory, the Load into memory button is
disabled.

• If the Load into memory or Unload from memory button is disabled, then hovering
over the button provides you with information on why the specific button is disabled.

4. Click Load into memory.

Chapter 7
Reference Graphs in Notebook Paragraphs

7-42

A job to load the graph into memory is initiated at the background. On successful
completion of the job, the graph will be listed with the icon. In case the job fails, an error
message will be displayed.
Also, note that while a graph loading action is in progress, you can continue to load other
graphs into memory.

5. Optionally, verify that the graph is loaded into memory.

For example, run the following code from a PGQL (PGX) paragraph and view the results:

%pgql-pgx
SELECT *
FROM GRAPH_TABLE (country
MATCH (a IS countries) -[e IS countries_regions]-> (b IS regions)
COLUMNS (e.country_name AS country, b.region_name AS region)
)

Load Graphs into Memory Programmatically
You can use the readGraphByName() API to programmatically load graphs into the graph server
memory.

The following example loads a SQL Property Graph named BANK_GRAPH into memory using
the readGraphByName() API.

• %java-pgx

• %python-pgx

%java-pgx

var graph = session.readGraphByName("BANK_GRAPH", GraphSource.PG_SQL)

%python-pgx

graph = session.read_graph_by_name("BANK_GRAPH", "pg_sql")

The following example loads a PGQL Property Graph named BANK_GRAPH into memory using
the readGraphByName() API.

• %java-pgx

• %python-pgx

%java-pgx

var graph = session.readGraphByName("BANK_GRAPH", GraphSource.PG_PGQL)

Chapter 7
Reference Graphs in Notebook Paragraphs

7-43

%python-pgx

graph = session.read_graph_by_name("BANK_GRAPH", "pg_pgql")

Once a graph is loaded into memory, you can access the graph in any subsequent notebook
paragraphs. For example, you can reference the graph in a PGQL (PGX) paragraph as shown:

%pgql-pgx
SELECT *
FROM GRAPH_TABLE (bank_graph
MATCH (a IS accounts) -[e IS transfers]-> (b IS accounts)
COLUMNS (e.amount AS amount)
) FETCH FIRST 10 ROWS ONLY

Store a PgxFrame in Database
You can store a PgxFrame output to relational database tables.

The outputs of the property graph machine learning algorithms are PgxFrame(s) and this data
structure can be stored in the database. The columns and rows of the PgxFrame correspond to
the columns and rows of the database table.

The following example converts a PGQL result set to a PgxFrame, which is then stored as a
table to the database.

• %java-pgx

• %python-pgx

%java-pgx

var g = session.readGraphByName("BANK_GRAPH", GraphSource.PG_VIEW)
var query = "SELECT s.acct_id FROM MATCH (s) LIMIT 10"
var rs = g.queryPgql(query)
if (rs != null) {
 rs.toFrame().write().db()
 .tablename("accounts") // name of the DB table
 .overwrite(true)
 .store();
}

%python-pgx

g = session.read_graph_by_name("BANK_GRAPH", "pg_view")
query = "SELECT s.acct_id FROM MATCH (s)"
rs = g.execute_pgql(query)
if (rs != None):
 rs.to_frame().write().db().table_name("accounts").overwrite(True).store()

Chapter 7
Store a PgxFrame in Database

7-44

On executing the notebook paragraph, the PgxFrame data gets inserted in the appropriate
database table. You can verify this by viewing and querying the database table using Database
Actions. See SQL Page in Database Actions for more information on running SQL statements
in Database Actions.

Also, note the following:

• The generated table name and column names are case-sensitive. The preceding code
example creates a database table having a lowercase name "accounts" with a column
named "acct_id".
If however, the query is:

 "SELECT s.acct_id as ACCT_ID FROM MATCH (s) limit 10"

and table name is specified as tablename("ACCOUNTS"), then the database table will have
a uppercase name "ACCOUNTS" with a column named "ACCT_ID".

• If a database table with the same name is already existing, then you can use the overwrite
mode by setting overwrite(true) as seen in the preceding example. The previous table
gets truncated and the data is then inserted. By default, the value is set to false.

• If you are using an Always Free Autonomous Database instance (that is, one with only 1
OCPU and 20GB of storage), then you must also specify that only one connection must be
used when writing the PgxFrame to the table in a Java (PGX) notebook paragraph. For
example, you must invoke write() as shown:

rs.toFrame().write().db().connections(1).tablename("accounts").overwrite(tr
ue).store();

Visualize Output of Paragraphs
If a paragraph returns data rows separated by \n (newline) and columns separated by \t (tab)
with the first row as the header row, Graph Studio will render the result visually.

In addition to table-based visualization, the results of PGQL queries can be rendered using
graph visualization. %pgql-pgx paragraphs will be rendered as graph visualization
automatically, if possible.

The following example shows the Java and the Python interpreter using a helper object to
generate graph visualization output:

• %java-pgx

• %python-pgx

%java-pgx

out.println(visualQuery.queryPgql("SELECT v,e,m FROM MATCH (v)-[e]->(m) ON SH
LIMIT 50"))

Chapter 7
Visualize Output of Paragraphs

7-45

%python-pgx

print(visual_query.query_pgql("SELECT v, e, m FROM MATCH (v)-[e]->(m) ON SH
LIMIT 50"))

Only a subset of queries can be visualized. If a query cannot be visualized, the notebook will
render the result set as a table instead.

Apply Machine Learning on a Graph
You can use machine learning on your property graph data in Graph Studio using the PGX
machine learning library.

The following are a few of the supported machine learning algorithms:

• DeepWalk

• Supervised GraphWise

• Unsupervised GraphWise

• Pg2vec

See Using the Machine Learning Library (PgxML) for Graphs in Oracle Database Graph
Developer's Guide for Property Graph for more information.
Running machine learning algorithms is supported in a notebook paragraph using the following
interpreters:

• Java (PGX): See oracle.pgx.api.mllib package in Java API Reference for more
information.

• Python (PGX): See the PyPGX MLlib package in Python API Reference for more
information.

For example, the following steps describe the usage of the DeepWalk model on a graph in a
notebook paragraph.

1. Load the required graph into memory and reference the graph in the notebook.

See Load Graphs into Memory Programmatically for more information.

2. Build a DeepWalk model using customized hyper-parameters.

• %java-pgx

• %python-pgx

%java-pgx

import oracle.pgx.api.mllib.DeepWalkModel
var model = session.createAnalyst().deepWalkModelBuilder().
 setMinWordFrequency(1).
 setBatchSize(512).
 setNumEpochs(1).
 setLayerSize(100).

Chapter 7
Apply Machine Learning on a Graph

7-46

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=pgx_ml
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc

 setLearningRate(0.05).
 setMinLearningRate(0.0001).
 setWindowSize(3).
 setWalksPerVertex(6).
 setWalkLength(4).
 setSampleRate(0.00001).
 setNegativeSample(2).
 setValidationFraction(0.01).
 build()

%python-pgx

model = analyst.deepwalk_builder(min_word_frequency= 1,
 batch_size= 512,
 num_epochs= 1,
 layer_size= 100,
 learning_rate= 0.05,
 min_learning_rate= 0.0001,
 window_size= 3,
 walks_per_vertex= 6,
 walk_length= 4,
 sample_rate= 0.00001,
 negative_sample= 2,
 validation_fraction= 0.01)

3. Train the DeepWalk model on the graph data.

• %java-pgx

• %python-pgx

%java-pgx

model.fit(g)

%python-pgx

model.fit(g)

You can now perform one or more of the following functionalities on the DeepWalk model:

4. Compute the loss value on the data.

• %java-pgx

• %python-pgx

Chapter 7
Apply Machine Learning on a Graph

7-47

%java-pgx

var loss = model.getLoss()

%python-pgx

loss = model.loss

5. Fetch similar vertices for a list of input vertices.

• %java-pgx

• %python-pgx

%java-pgx

import oracle.pgx.api.frames.*
List<java.lang.Object> vertices = Arrays.asList("3244407212344026742",
"371586706748522153")
var batchSimilars = model.computeSimilars(vertices, 2)
batchSimilars.print(out,10,0)

%python-pgx

vertices = ["3244407212344026742", "371586706748522153"]
batch_similars = model.compute_similars(vertices, 2)
batch_similars.print()

The output results in the following format:

+--+
| srcVertex | dstVertex | similarity |
+--+
3244407212344026742	3244407212344026742	1.0
3244407212344026742	3510061098087750671	0.2863036096096039
371586706748522153	371586706748522153	1.0
371586706748522153	2128822953047004384	0.3220503330230713
+--+

6. Retrieve and store all trained vertex vectors to the database.

• %java-pgx

• %python-pgx

Chapter 7
Apply Machine Learning on a Graph

7-48

%java-pgx

var vertexVectors = model.getTrainedVertexVectors().flattenAll()
vertexVectors.write().db().name("deepwalkframe").tablename("vertexVectors")
.overwrite(true).store()

%python-pgx

vertex_vectors = model.trained_vectors.flatten_all()
vertex_vectors.write().db().table_name("vertex_vectors").overwrite(True).st
ore()

If you are using an Always Free Autonomous Database instance (that is, one with only 1
OCPU and 20GB of storage), then you must also specify that only one connection must be
used when writing the PgxFrame to the table in a Java (PGX) notebook paragraph. For
example, you must invoke write() as shown:

vertexVectors.write().db().name("deepwalkframe").tablename("vertexVectors")
.overwrite(true).connections(1).store()

The columns in the database table for the flattened vectors will appear as:

+--+---------------------
+
| vertexid | embedding_0 | embedding_1
|
+--+---------------------
+

7. Store the trained model to the database.

• %java-pgx

• %python-pgx

%java-pgx

model.export().db().modelstore("bank_model").modelname("model").descriptio
n("DeepWalk Model for Bank data").store()

%python-pgx

model.export().db(model_store="bank_model",
 model_name="model", model_description="DeepWalk Model
for Bank data", overwrite=True)

Chapter 7
Apply Machine Learning on a Graph

7-49

The model gets stored as a row in the model store table.

8. Load a pre-trained model from the database.

• %java-pgx

• %python-pgx

%java-pgx

var model =
session.createAnalyst().loadDeepWalkModel().db().modelstore("bank_model").m
odelname("model").load()

%python-pgx

model = analyst.get_deepwalk_model_loader().db(model_store="bank_model",
 model_name="model")

9. Destroy a DeepWalk model.

• %java-pgx

• %python-pgx

%java-pgx

model.destroy()

%python-pgx

model.destroy()

Dynamic Forms
Graph Studio allows the creation of dynamic forms. A dynamic form is a user input field that is
generated from the code of a paragraph.

The following two ways of creating dynamic forms are supported.

Topics:

• Create Fixed Dynamic Forms

• Create Programmatic Dynamic Forms

Chapter 7
Dynamic Forms

7-50

Create Fixed Dynamic Forms
Fixed dynamic forms use values that are hard-coded in the paragraph code to generate the
dynamic form.

The structure for the dynamic form is ${my-form-info}. On execution, the placeholders in the
code will be replaced with the custom user input in the respective input fields.

The following input fields are currently supported:

• Use Textbox to input any string of characters.

${<name>(<label>)=<default_value>}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– label: The label that is displayed on top of the dynamic form. A customized label can
be specified using ${name (myLabel)}.

– default_value (optional): The default value that is given to the dynamic form when it
is first created.

For example:

%md
My name is ${textbox(Title of textbox)=Graph Studio}

• Use Select to choose a value from a drop-down list.

${<name>(<label>)=<default_value>,<option_value_a>(<option_label_a>)|
<option_value_b>(<option_label_b>)}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values.

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in the dropdown list or in respective boxes created by a
checkbox.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

For example:

%md
Country: ${country=US,US(United States)|UK|JP}

Chapter 7
Dynamic Forms

7-51

• Use Multiple Select to select one or multiple values from a list.

$
{selectMultiple(<join_parameter>):<name>(<label>)=<default_value>,<option_v
alue_a>(<option_label_a>)|<option_value_b>(<option_label_b>)}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– label: The label that is displayed on top of the dynamic form.

– default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values.

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in the dropdown list.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

– join_parameter: The value that will be inserted between multiple selected values. For
instance, consider that a Multiple Select dynamic form having two elements A and B
with a join parameter of or. If the user selects both A and B and runs the paragraph,
then the result will be A or B.

For example:

${selectMultiple(OR):country=US|JP, US(United States)|UK|JP}

• Use Slider to select within a specified range.

%md
${slider(<minimum>,<maximum>,<step_size>):<name>(<label>)=<default_value>}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– minimum: The minimum value of the slider. Must be a number.

– maximum: The maximum value of the slider. Must be a number.

– step_size: The step size of the slider. Must be a number and divider of (maximum -
minimum).

– default_value (optional): The default value that is given to the dynamic form when it
is first created (minimum <= default_value <= maximum).

For example:

%md
My age is: ${slider(18.0,30.0,5.0):My Age=25.0}

Chapter 7
Dynamic Forms

7-52

• Use Checkbox to select one or more specified values.

$
{checkbox(<join_parameter>):<name>(<label>)=<default_value>,<option_value_a
>(<option_label_a>)|<option_value_b>(<option_label_b>)}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values.

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in the dropdown list or in respective boxes created by a
checkbox.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

– join_parameter: The value that will be inserted between multiple selected values. For
instance, consider that a Checkbox dynamic form having two elements A and B with a
join parameter of or. If the user selects the checkbox for both A and B and runs the
paragraph, then the result will be A or B.

For example:

%md
${checkbox(or):country(Country)=US|JP, US(United States)|UK|JP}

• Use Date Picker to select a date.

${date(<date_format>):<name>(<label>)=<default_value>}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– date_format (optional, recommended): The date format that is used for displaying the
selected date in the input field and for formatting the resulting date when the
paragraph is run.

– default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the date_format or in yyyy-MM-dd
format if the date_format is not provided.

For example:

%md
${date(EEEE):myName(my-label)=1994-06-15T09:00:00}

Chapter 7
Dynamic Forms

7-53

• Use Time Picker to select a time.

${time(<time_format>):<name>(<label>)=T13:30}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– time_format (optional, recommended): The time format that is used for displaying the
selected time in the input field and for formatting the resulting time when the paragraph
is run.

For example:

%md
${time(hh:mm:ss):myName(my-label)=1994-06-15T09:00:00}

• Use DateTime Picker to select one or more specified values.

${dateTime(<dateTime_format>):<name>(<label>)=<default_value>}

In the preceding code:

– name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

– dateTime_format (optional, recommended): The dateTime format that is used for
displaying the selected date and time in the input field and for formatting the resulting
date and time when the paragraph is run.

– default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the dateTime_format or in yyyy-MM-
dd HH:mm format if the dateTime_format is not provided.

For example:

%md
${dateTime(YYYY-M-dd hh:mm:ss):myName(my-label)=1995-06-15T09:00:00}

Create Programmatic Dynamic Forms
Graph Studio allows you to programmatically create dynamic forms using the Java (PGX) and
Python (PGX) interpreters.

You can pass dynamic values (such as variables, arrays, and so on) through Java or Python
code to generate dynamic forms.
As a prerequisite step, you must first import the context that allows you to display the forms
and define your own variable name and instantiate your context.

• %java-pgx

• %python-pgx

Chapter 7
Dynamic Forms

7-54

%java-pgx

import oracle.datastudio.interpreter.common.context.JavaDataStudioContext
JavaDataStudioContext ds = interpreter.getJavaDataStudioContext()

%python-pgx

from ds_interpreter_client.context.ds_context import PyDataStudioContext
ds = PyDataStudioContext()

The ds context allows you to display the forms and define your own variable name.
The following steps describe the programmatic creation of the Textbox, Select, Select
Multiple, Slider, Checkbox, Date Picker, Time Picker, and DateTime Picker forms. It is
important to note that only when you run the notebook paragraph with the dynamic form value
(or the default value), then the values are persisted on page reload.

• Create a Textbox dynamic form which allows you to input any string of characters.

• %java-pgx

• %python-pgx

%java-pgx

ds.textbox("<name>", "<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created.

For example:

Chapter 7
Dynamic Forms

7-55

%python-pgx

ds.textbox(name="<name>", default_value="<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created.

For example:

• Create a Select dynamic form which allows you to select a value from a drop-down menu.

• %java-pgx

• %python-pgx

%java-pgx

import oracle.datastudio.common.forms.ParamOption
List<ParamOption<String>> options = new ArrayList<>()
options.add(new ParamOption<>("<option_value_a>", "<option_label_a>"))
options.add(new ParamOption<>("<option_value_b>", "<option_label_b>"))
ds.select("<name>", options, "<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created.

Chapter 7
Dynamic Forms

7-56

For example:

%python-pgx

options = [("<option_value_a>", "<option_label_a>"),("<option_value_b>",
"<option_label_b>")]
ds.select(name="<name>", options=options, default_value="<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created.

For example:

• Create a Select Mulitple dynamic form which allows you to select one or more values
from a drop-down list.

Chapter 7
Dynamic Forms

7-57

• %java-pgx

• %python-pgx

%java-pgx

List<ParamOption<String>> options = new ArrayList<>();
options.add(new ParamOption<>("<option_value_a>", "<option_label_a>"));
options.add(new ParamOption<>("<option_value_b>", "<option_label_b>"));
List<String> defaultValues = new ArrayList<>();
defaultValues.add("<default_value>");
ds.selectMultiple("<name>", options, defaultValues, "<label>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* label (optional): The label that is displayed on top of the dynamic form.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values.

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in the drop-down list.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

For example:

%python-pgx

options = [('<option_value_a>', '<option_label_a>'),('<option_value_b>',
'<option_label_b>')]
ds.select_multiple(name='<name>', options=options,
default_value=['<default_value>'], label='<label>')

In the preceding code:

Chapter 7
Dynamic Forms

7-58

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* label (optional): The label that is displayed on top of the dynamic form.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values.

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in the drop-down list.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

For example:

• Create a Slider dynamic form which allows you to choose a number from a given range.

• %java-pgx

• %python-pgx

%java-pgx

ds.slider("<name>", <minimum>, <maximum>, <step_size>, <default_value>)

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* minimum: The minimum value of the slider. Must be a number.

* maximum: The maximum value of the slider. Must be a number.

Chapter 7
Dynamic Forms

7-59

* step_size: The step size of the slider. Must be a number and divider of (maximum -
minimum).

* default_value (optional): The default value that is given to the dynamic form when it
is first created (minimum <= default_value <= maximum).

For example:

%python-pgx

ds.slider(name="<name>", min=<minimum>, max=<maximum>, step=<step_size>,
default_value=<default_value>)

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* minimum: The minimum value of the slider. Must be a number.

* maximum: The maximum value of the slider. Must be a number.

* step_size: The step size of the slider. Must be a number and divider of (maximum -
minimum).

* default_value (optional): The default value that is given to the dynamic form when it
is first created (minimum <= default_value <= maximum).

For example:

• Create a Checkbox dynamic form which allows you to select one or multiple values.

• %java-pgx

• %python-pgx

%java-pgx

import oracle.datastudio.common.forms.ParamOption

Chapter 7
Dynamic Forms

7-60

List<ParamOption<String>> options = new ArrayList<>()
options.add(new ParamOption<>("<option_value_a>", "<option_label_a>"))
options.add(new ParamOption<>("<option_value_b>", "<option_label_b>"))
List<String> defaultValues = new ArrayList<>()
defaultValues.add("<default_value>")
ds.checkbox("<name>", options, defaultValues)

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values:

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in respective boxes created by a checkbox.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

For example:

%python-pgx

options = [("<option_value_a>", "<option_label_a>"),("<option_value_b>",
"<option_label_b>")]
ds.checkbox(name="<name>", options=options,
default_value=["<default_value>"])

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be one of the option values:

Chapter 7
Dynamic Forms

7-61

* An option comprises option_value and option_label. The option_value is used
to reference which default_value should be selected, and the (optional)
option_label is displayed in respective boxes created by a checkbox.

* An option_value can be either a string or a numeric value.

* Options are separated with the | character in parsed forms.

For example:

• Create a Date Picker dynamic form which allows you to select a date.

• %java-pgx

• %python-pgx

%java-pgx

ds.datePicker("<name>", "<date_format>", "<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* date_format (optional, recommended): The date format that is used for displaying the
selected date in the input field and for formatting the resulting date when the
paragraph is run.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the date_format or in yyyy-MM-dd
format if the date_format is not provided.

For example:

Chapter 7
Dynamic Forms

7-62

%python-pgx

ds.date_picker(name="<name>", format="<date_format>",
default_value="<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* date_format (optional, recommended): The date format that is used for displaying the
selected date in the input field and for formatting the resulting date when the
paragraph is run.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the date_format or in yyyy-MM-dd
format if the date_format is not provided.

For example:

• Create a Time Picker dynamic form which allows you to select a time.

• %java-pgx

• %python-pgx

Chapter 7
Dynamic Forms

7-63

%java-pgx

ds.timePicker("<name>", "<time_format>", "<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* time_format (optional, recommended): The time format that is used for displaying the
selected time in the input field and for formatting the resulting time when the paragraph
is run.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the time_format or in HH:mm format if
the time_format is not provided.

For example:

%python-pgx

ds.time_picker(name="<name>", format="<time_format>",
default_value="<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* time_format (optional, recommended): The time format that is used for displaying the
selected time in the input field and for formatting the resulting time when the paragraph
is run.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the time_format or in HH:mm format if
no time_format is provided.

For example:

Chapter 7
Dynamic Forms

7-64

• Define a DateTime Picker dynamic form which allows you to select a date and a time.

• %java-pgx

• %python-pgx

%java-pgx

ds.dateTimePicker("<name>", "<dateTime_format>", "<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* dateTime_format (optional, recommended): The dateTime format that is used for
displaying the selected date and time in the input field and for formatting the resulting
date and time when the paragraph is run.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the dateTime_format or in yyyy-MM-
dd HH:mm format if the dateTime_format is not provided.

For example:

Chapter 7
Dynamic Forms

7-65

%python-pgx

ds.date_time_picker("<name>", format="<dateTime_format>",
default_value="<default_value>")

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form. If you
want to reference a dynamic form multiple times in a paragraph, you can assign the
same name to do so and it will only be displayed once.

* dateTime_format (optional, recommended): The dateTime format that is used for
displaying the selected date and time in the input field and for formatting the resulting
date and time when the paragraph is run.

* default_value (optional): The default value that is given to the dynamic form when it
is first created. It must be specified according to the dateTime_format or in yyyy-MM-
dd HH:mm format if the dateTime_format is not provided.

For example:

Customize Dynamic Form Layout
You can use the columnSpan and nextRow parameters to enhance data entry and readability in
dynamic form layouts.

The layout of a dynamic form is based on a 12-column grid. By default, each form spans four
columns, allowing up to three forms per row. When the total column width exceeds 12, forms
automatically wrap to the next row. The layout is responsive:

• Small screens: Forms collapse to four columns (one form per row).

• Medium screens: 8-column grid (two forms per row).

• Large screens: Full 12-column grid (three forms per row).

As a prerequisite step, you must first import the context that allows you to display the forms
and define your own variable name and instantiate your context.

• %java-pgx

• %python-pgx

Chapter 7
Dynamic Forms

7-66

%java-pgx

import oracle.datastudio.interpreter.common.context.JavaDataStudioContext
JavaDataStudioContext ds = interpreter.getJavaDataStudioContext()

%python-pgx

from ds_interpreter_client.context.ds_context import PyDataStudioContext
ds = PyDataStudioContext()

• The following example describes how to programmatically create a half-width Textbox (6
columns):

• %java-pgx

• %python-pgx

%java-pgx

ds.textbox("<name>", "<defaultValue>", <"label">, <columnSpan>)

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form if no
<label> is set. If you want to reference a dynamic form multiple times in a paragraph,
you can assign the same name to do so and it will only be displayed once.

* defaultValue (optional): The default value that is given to the dynamic form when it is
first created.

* label (optional): The label that is displayed on top of the dynamic form.

* columnSpan: Number of columns (out of 12) a form occupies. The default value is four
(three forms per row).

For example:

Chapter 7
Dynamic Forms

7-67

%python-pgx

ds.textbox(name="<name>", default_value="<default_value>",
label="<label>", column_span="<column_span_value>"))

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form if no
<label> is set. If you want to reference a dynamic form multiple times in a paragraph,
you can assign the same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created.

* label (optional): The label that is displayed on top of the dynamic form.

* column_span: Number of columns (out of 12) a form occupies. The default value is four
(three forms per row).

For example:

• The following example describes how to programmatically create a form on a new row:

• %java-pgx

• %python-pgx

%java-pgx

ds.textbox("<name>", "<defaultValue>", <"label">, <columnSpan>, <nextRow>)

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form if no
<label> is set. If you want to reference a dynamic form multiple times in a paragraph,
you can assign the same name to do so and it will only be displayed once.

* defaultValue (optional): The default value that is given to the dynamic form when it is
first created.

Chapter 7
Dynamic Forms

7-68

* label (optional): The label that is displayed on top of the dynamic form.

* columnSpan: Number of columns (out of 12) a form occupies. The default value is four
(three forms per row).

* nextRow: A boolean parameter that determines if the form should start on a new row or
not. Note that you must explicitly set columnSpan when using nextRow.

For example:

%python-pgx

ds.textbox(name="<name>", default_value="<default_value>",
label="<label>", column_span="<column_span_value>,
next_row="<next_row_value>"))

In the preceding code:

* name: The name of the dynamic form. It is displayed on top of the dynamic form if no
<label> is set. If you want to reference a dynamic form multiple times in a paragraph,
you can assign the same name to do so and it will only be displayed once.

* default_value (optional): The default value that is given to the dynamic form when it
is first created.

* label (optional): The label that is displayed on top of the dynamic form.

* column_span: Number of columns (out of 12) a form occupies. The default value is four
(three forms per row).

* next_row: A boolean parameter that determines if the form should start on a new row
or not.

For example:

Chapter 7
Dynamic Forms

7-69

Notebook Forms
Graph Studio allows you to create notebook forms which can be made available to the entire
notebook.

The notebook form appears at the top of the notebook. In this way, a form created in one
paragraph can have its value used in other paragraphs of the same notebook.

This is in contrast to Dynamic Forms which appear under a paragraph and whose scope is
limited within the paragraph in which they are created.

Topics:

• Create Fixed Notebook Forms

• Create Programmatic Notebook Forms

Create Fixed Notebook Forms
Fixed notebook forms are similar to fixed dynamic paragraph forms and use values that are
hard-coded in the code.

The structure for the notebook form is $${<notebook-name>}. It is similar to Create Fixed
Dynamic Forms, except that it uses the escape character ($) twice. For example:

%md
This contains a $${notebook-form}.

This will show a notebook form as shown:

Chapter 7
Notebook Forms

7-70

In case there is a need to use the fixed notebook form syntax in a paragraph's code without
creating forms, then that can be achieved by preceding $$ with a backslash \. For instance,
\$${name} syntax will not create a form and will be parsed as $${name} in paragraph results.

If the escape functionality of the backslash \ is undesirable, then that itself can be escaped
with another backslash \ (\\$${name}).

Create Programmatic Notebook Forms
Graph Studio allows you to programmatically create notebook forms using the Java (PGX) and
Python (PGX) interpreters.

The prerequiste step (to import the context) and the methods to generate these forms are
similar to the methods described for Create Programmatic Dynamic Forms. However, the
methods take an optional argument (true) to indicate that the form should be a notebook form
as shown. This optional argument is false by default.

• %java-pgx

• %python-pgx

%java-pgx

ds.textbox("<name>", "<default_value>", "<label>", true)

In the preceding code:

• name: The name of the notebook form. It is displayed on top of the notebook form if no label
is set. If you want to reference a notebook form multiple times in a paragraph, you can
assign the same name to do so and it will only be displayed once.

• label (optional): The label that is displayed on top of the notebook form.

• default_value (optional): The default value that is given to the notebook form when it is
first created.

For example:

Chapter 7
Notebook Forms

7-71

%python-pgx

ds.textbox(name='<name>', default_value='<default_value>', label='<label>',
is_notebook=True)

In the preceding code:

• name: The name of the notebook form. It is displayed on top of the notebook form if no label
is set. If you want to reference a notebook form multiple times in a paragraph, you can
assign the same name to do so and it will only be displayed once.

• label (optional): The label that is displayed on top of the notebook form.

• default_value (optional): The default value that is given to the notebook form when it is
first created.

For example:

Paragraph Dependencies
You can add dependencies between paragraphs.

The dependents of a paragraph are automatically executed after the original paragraph itself or
any graph manipulation on the original paragraph is executed.

To start dependency mode, click the Dependencies button in the paragraph settings bar.

Dependency Mode

In dependency mode, you can select dependent paragraphs that will be executed after the
current paragraph has finished running.

Chapter 7
Paragraph Dependencies

7-72

You can save or cancel your changes by clicking Save or Cancel.

Viewing Dependents

To view dependencies of a paragraph when not in dependency mode, select the paragraph.
The dependents will be displayed with a light blue border and a number indicating that
paragraph's position in the execution order.

Keyboard Shortcuts for Notebooks
When working with notebooks, you can use keyboard shortcuts to trigger actions by using only
the keyboard.

You can open an overview of all keyboard shortcuts and perform a search for shortcuts by
using the context menu in the top-right corner. If the page you are currently on does not have
any keyboard shortcuts, this menu item will not appear. You can also search for shortcuts by
pressing Ctrl+Shift+F.

See Keyboard Shortcuts for Graph Studio in the Accessibility Guide for Oracle Cloud Services
for more information on keyboard shortcuts for notebooks in Graph Studio.

Example Notebooks
Graph Studio includes a set of examples.

You can find these examples in the Notebooks section.

• Getting Started: BANK_GRAPH

• Getting Started: Intro to PGQL using the SH property graph

• Getting Started: Get started with an in-memory graph

• Getting Started: SPARQL Introduction

• Getting Started: Using the built-in notebooks

• Use Cases: Graph Queries on the SH sample data

• Use Cases: Part 1 Exploring Social Networks: A Guide to Oracle Graph

Each of these notebooks contains a set of Markdown paragraphs that explain each step of the
example.

Each example notebook is ready to execute but read-only by default, so that they remain
unchanged for other users of Graph Studio. To remove the read-only state, first create a
private copy of the notebook by clicking Clone at the top of the example notebook.

After the private copy has been created, click Unlock to remove its read-only state.

After the private copy is unlocked, you can run each paragraph one-by-one by clicking Run.

Chapter 7
Keyboard Shortcuts for Notebooks

7-73

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/accessibility&id=GUID-829C3BA7-11FD-47B4-B9E1-BEFE144F03C6

8
Work with Templates in Graph Studio

A template allows you to persist graph visualization and notebook settings.

You can apply these custom built templates to your notebook.

Topics

• Create a Template

• Use a Template in a Notebook

• Import a Template

• Manage Templates

Create a Template
You can create custom templates that you can use in your notebook to quicky format your
graph visualization.

The following are the steps to create a template:

1. Click Templates on the left navigation menu and navigate to the Templates page.

2. Click Create.

The New Template window opens.

3. Enter the Name of the template.

4. Click Create.

This creates a new template and the new template name gets listed on the left pane.
Graph Studio displays the default settings for the template on the right pane. The right
pane is again divided into two sections. The left section lists the menu options for the
various components that can be configured in a template and the right section displays the
corresponding parameter settings for the selected menu item as shown:

5. Select the component to be formatted from the menu and configure the required settings.

8-1

6. Click Update at the bottom-right of the page.

The template gets saved with the custom settings.
You can also import and export settings using the Import and Export buttons.

Note:

Templates are imported and exported using the JSON file format only.

Use a Template in a Notebook
You can apply a custom template to your notebook.

The following are the steps to use a custom template in a notebook:

1. Click Notebook on the left navigation menu and navigate to the Notebooks page.

2. Open a Notebook.

3. Select the required template as shown:

The custom settings in the selected template gets applied to the notebook.

Import a Template
Graph Studio allows you to import a previously exported template in JSON format from your
local system.

Perform the following steps to import one or more templates:

1. Navigate to the Templates page.

2. Click Import on the top right corner of the page.

The Import template(s) window opens as shown:

Chapter 8
Use a Template in a Notebook

8-2

3. Select one or more files from your local system or drag and drop the required files in the
Drag and Drop section.

4. Optionally, review and verify the Selected files. Click Delete if you wish to remove a
selected file.

5. Click Import.

The files are imported as templates in Graph Studio.

Manage Templates
Graph Studio allows you to update, share, export, or delete an existing template.

To perform any one of the supported actions on an existing template:

1. Navigate to the Templates page.

2. Select the desired template on the left pane.

Choose to perform any one of the following actions:

• Update:

a. Modify the required parameter values for the template.

b. Click Update to update the template.

• Share:

a. Click Share to share the template.
The Share template window opens and displays the default template permissions.

b. Select the user or role from the Add New Permissions drop-down list.

c. Click Add and set the permissions for the selected user.

d. Click Save to share the template.

• Export:

– Click Export to export the template.
The template gets saved in JSON format to your local system.

• Delete:

a. Click Delete.

b. Confirm Delete to delete the template in Graph Studio.

Chapter 8
Manage Templates

8-3

9
Visualize and Interact with Graph Data in
Graph Studio

You can visualize graph data in the form of a graph or table visualization.

Graph Studio provides the option to switch between graph or table visualization.

Note:

All the graph visualization features explained in the following topics apply for property
graphs. In case of RDF graphs, only selected visualization features are supported.
Those features that do not apply will appear grayed out on the graph visualization
panel for RDF graphs.

Topics

• About Graph Visualization and Manipulation

• About Table Visualization

About Graph Visualization and Manipulation
The graph visualization feature allows you to visually explore a graph directly in the graph
visualization panel.

Graph visualization and manipulation actions are available in several parts of the Graph Studio
user interface, including:

• Property graph wizard - through the Preview tab in the Define Graph step.

• Graphs page - through the Preview tab in the graph details section for a selected graph.

• Notebooks.

Note:

Some graph visualization and manipulation features are not enabled in Preview
mode.

Manipulate a Graph Visualization
Graph manipulation lets you interact with a loaded graph visualization.

To manipulate a graph:

1. Navigate to the toolbar (shown highlighted in the following figure) on the Graph
Visualization panel.

9-1

2. Hover over any one of the icons to view a tooltip describing its purpose.

The following actions are available from the graph manipulation toolbar or tooltip:

• Expand fetches n-hop neighbors of selected vertices or neighbors that fulfill certain
criteria if Smart Expand is used.

• Drop removes selected vertices from the view.

• Focus shifts the focus of the view; it drops everything and fetches n-hop neighbors of
the selected vertex.

• Group groups selected vertices into a super vertex.
You can customize the appearance of super vertices by using the graph visualization
property Grouped Vertex in the Highlights tab of graph visualization settings modal.

• Ungroup ungroups a group (that is, ungroups a super vertex).

• Undo undoes (reverses the effect of) the last action.

• Redo repeats the last action.

• Reset resets the visualization to its default state.

3. Select the desired action.

The graph is altered accordingly.

You can also manipulate a graph visualization using the following features:

• Smart Explorer: Lets you specify conditions for properties for navigation and
destination vertices and edges that must be fulfilled when expanding or grouping
vertices.
See Expand Vertices Using Smart Expand for details on expanding vertices.

See Group Vertices Using Smart Group for details on grouping vertices.

• Visible Graph Mode: Allows you to store your graph data in a variable which can be
used in further graph queries.
See Enable Visible Graph Mode for more information.

Enable Visible Graph Mode
Visible Graph mode allows you to store your visible graph along with any graph manipulation
actions in a variable. You can later use this variable in your further queries.

To enable visible graph mode and to use the visible graph mode variable:

1. Click Settings on the Visualization panel.

This opens the Settings dialog.

Chapter 9
About Graph Visualization and Manipulation

9-2

2. Click the Graph Exploration tab.

3. Switch on the Enable Visible Graph Mode toggle in the Visible Graph Sharing section.

4. Optionally, change the default name of the variable in the Global Variable Name field.

5. Click the icon to copy the visible graph mode variable name to the clipboard.

6. Click X on the top-right to close the Settings dialog.

The graph data gets stored in the variable. You can now query the vertices and edges of
the graph using the variable as shown:

• Vertices: <visible_graph_mode_variable_name>.get("V")
• Edges: <visible_graph_mode_variable_name>.get("E")

7. Use the variable in your further queries.

The following example creates a prepared statement for a query. The visible graph mode
variable is used in the setArray method to set the bind variable to an array of values.

%java-pgx
var prepared_stmnt = graph.preparePgql("SELECT * FROM MATCH (v) WHERE
v.acct_id IN ?");
prepared_stmnt.setArray(1, visible_graph.get("E"));
var r = prepared_stmnt.executeQuery();
out.println(prepared_stmnt.executeQuery());

Expand Vertices Using Smart Expand
Smart Expand allows you to expand vertices based on specified conditions for properties of
navigation and destination vertices or edges.

You can configure Smart Expand on a graph visualization as described in the following steps:

1. Click Settings on the Visualization panel.

This opens the Settings dialog.

2. Click the Smart Explorer tab and click New Smart Explorer.

The New Smart Explorer window opens.

3. Set the Conditions for field to Smart Expand.

4. Enter a Name.

5. Optionally, select the Maximum Hops count.

This value determines the maximum path length. Smart Expand does not return vertices or
edges that are in any path longer than this path length. The default value is infinite.

Chapter 9
About Graph Visualization and Manipulation

9-3

6. Optionally, click to add Destination Conditions to identify the destination vertices or
edges when expanding a selected vertex.

Destination conditions are conditions that you apply to the last vertex or edge in the path. It
does not apply to the vertices selected for expand.

A row to create a new condition appears as shown:

Each condition includes the following options:

• target vertex or edge element that the navigation condition applies to

• property of the target element

• operator to apply (such as, =, <, >, and so on)

• value to be fulfilled for the operator and property

It uses numeric comparison if the property value is convertible to number and lexicographic
comparison otherwise.

Repeat this step to add as many destination conditions as required.

7. Optionally, if there are multiple destination conditions, then join your conditions by clicking
Match All or Match Any as required.

8. Optionally, click to add one or more Navigation Conditions that need to be fulfilled
when expanding a vertex.

Note the following:

• Navigation conditions are conditions applied to the vertices or edges that are not the
origin vertex or the destination vertex, but those that are on a path that connects the
origin and destination vertex.

• The conditions that you specify are applied to the vertices or edges that are on the
path of your expand. It does not apply to the vertices selected for expand.

Chapter 9
About Graph Visualization and Manipulation

9-4

The options for adding a navigation condition and joining multiple conditions is same as
described in the preceding steps for destination conditions.

9. Click Create.

10. Click X on the top-right to close the Settings dialog.

11. Click the Expand drop-down list in the exploration toolbar to view the list of Smart Expand
names.

12. Select the required Smart Expand Name.

For example:

13. Select a specific vertex or multiple vertices on the graph and click the Expand action on
the graph manipulation toolbar.

Tip:

Alternatively, you can apply Smart Expand from the tool tip. You can display the
tool tip by using a right-click on the selected vertex.

Smart Expand fetches a shortest path to the vertex or vertices that are within the specified
maximum path length, fulfilling the navigation and destination conditions for the selected
vertex or vertices.
The following example shows expanding on an employee vertex which fetches all two-hop
neighbors with employee_id > 100.

Note:

If you do not configure the maximum hop count, navigation or destination
conditions for Smart Expand, then the graph expands on the default infinite hop
count value.

Chapter 9
About Graph Visualization and Manipulation

9-5

Group Vertices Using Smart Group
Smart Group allows you to group vertices based on specified vertex conditions or edge
conditions or a combination of both.

There are two ways you can apply Smart Group:

• Automatic Smart Group: Applies grouping to the entire graph.

• Manual Smart Group: Applies grouping to the selected vertices that fulfill the specified
conditions. But, if no vertices are selected, it applies to the entire graph.

To configure and to apply Smart Group for your graph:

1. Click Settings on the Visualization panel.

This opens the Settings dialog.

2. Click the Smart Explorer tab and click New Smart Explorer.

The New Smart Explorer window opens.

3. Set the Conditions for field to Smart Group.

4. Enter a group Name.

Tip:

You can use this Group Name in Highlights to customize the appearance of
grouped vertices.

5. Switch on the Automatic toggle.

Note:

Switch off the Automatic toggle for manual Smart Group.

6. Optionally, select property value from the Group By drop-down list.

If Group By is set, Smart Group creates one group per each available value of the specified
property from all vertices fulfilling given conditions. Otherwise, Smart Group results in just
one group containing all allowable vertices.

If Smart Group has any edge conditions, then the created groups are further split into
separate parts where all vertices are reachable just through edges fulfilling specified edge
conditions.

7. Click to add a condition for grouping.

A row to create a new conditions appears as shown:

Chapter 9
About Graph Visualization and Manipulation

9-6

Each condition includes the following options:

• target vertex or edge element that the condition applies to

• property of the target element

• operator to apply (such as, =, <, > and so on)

• value to be fulfilled for the operator and property

It uses numeric comparison if the property value is convertible to number and lexicographic
comparison otherwise.

8. Set the required condition on the target Vertex or Edge element as applicable.

9. Optionally, join your conditions by clicking Match All or Match Any as required.

Note:

The join options are displayed only when you have multiple conditions.

10. Click Create to add one or more conditions.

11. Click X on the top-right to close the Settings dialog.

If the Smart Group is configured as automatic, then the conditional grouping is applied on
the whole graph displayed in the visualization panel.

Otherwise, perform the following steps to apply Manual Smart Group:

a. Click the Group drop-down list in the exploration toolbar.

b. Select the required Smart Group Name as shown:

Chapter 9
About Graph Visualization and Manipulation

9-7

The preceding example shows grouping of all employee vertices with salary >= 5000.

c. Click specific vertices on the graph and click the Group action on the graph
manipulation toolbar.

Vertices fulfilling the configured conditions are grouped together.

Note:

• If Smart Group has an edge condition, then you can select vertices that
are connected by the edge relationship.

• If you do not select vertices on the graph, then the manual Smart Group
is applied to the whole graph.

Annotate a Graph
Graph Annotation mode allows you to add vertices and edges on a graph visualization. You
can also add or edit the graph's properties for visualization.

To annotate a graph:

1. Set to graph Annotation Mode on the Graph Visualization panel.

2. Annotate the graph visualization by performing one of the following actions:

• Add a new vertex by clicking anywhere in the graph visualization canvas.

• Create a new edge by dragging the mouse from the source vertex to the target vertex.

• Move a vertex by dragging the mouse while holding the Shift key or with initial long
click on it.

• Add properties to new vertices and edges or edit the properties of existing ones.

All your edits are added to the graph manipulation action stack, so you can undo, redo, or
clear them using appropriate graph manipulation actions. The addedByUser and
editedByUser properties are added automatically to vertices and edges that you create or
edit, so that you can use them in Graph Highlights operations.

Note:

All graph annotations persist only on the graph visualization and not on the actual
graph itself. You can remove the graph annotations by resetting the graph
visualization to its default state.

Chapter 9
About Graph Visualization and Manipulation

9-8

Visualize a Dynamic Graph
Graph Studio allows you to visualize the evolution of a graph over time. This time-based
analysis provides great insights on the graph data.

To visualize a dynamic graph, you must have a date or a time property in your graph data. It
can either be a vertex or an edge property.

You must then configure the graph visualization settings to use these properties as shown in
the following steps:

1. Click Settings on the Visualization panel.

This opens the Settings dialog.

2. Click the Graph Exploration tab.

3. Switch on the Enable Network Evolution toggle.

4. Select a network element from the Based On drop-down list.

You can configure the network evolution to be based on vertices or edges or both.

Depending on your selection, you must select one or more of the following properties:

• Vertex Start Property: Select the name of the property to use for the vertex filtering.
The time frame for the graph will be after the Vertex Start Property.

• Vertex End Property: Optionally, select the name of the property to use for the vertex
filtering.
The time frame for the graph will be before the Vertex End Property.

• Edge Start Property: Select the name of the property to use for the edge filtering.
The time frame for the graph will be after the Edge Start Property.

• Edge End Property: Optionally, select the name of the property to use for the edge
filtering.
The time frame for the graph will be before the Edge End Property.

5. Select the data type value from the Data Type of the Property drop-down list.

Note that Graph Studio supports only Integer and Date type property values.

6. Optionally, enable Advanced Settings if you want to explore advanced network evolution
features and select one or more of the following options:

• Values to Exclude: Select values to additionally filter vertices or edges.

• Behavior: Select the behavior of the excluded values.

• Increment: Select the interval size.

• Chart Type: Select the type of the chart to be used to show the network evolution.

• Height: Select a value to specify the height of the network evolution chart.

• Milliseconds Between Steps: Select a value to specify how often does the playback
advance in ms.

• Number of Items per Step: Select a value to specify how many steps are taken per
time out during playback.

7. Click X on the top-right to close the Settings dialog.

A time bar showing the network evolution of your graph data is displayed at the bottom of
the graph visualization as shown:

Chapter 9
About Graph Visualization and Manipulation

9-9

You can view the graph animation by clicking the Play Network Evolution button. The
animation shows the changes in the graph network over time.

Additionally, you can activate and deactivate network evolution, by clicking Activate
Network Evolution which is show highlighted in the preceding figure.

Use Live Search in Graph Visualization
Using the Live Search feature in Graph Studio, you can search the currently displayed graph
and add live fuzzy search score to each item.

Perform the following steps to configure and apply Live Search in your graph visualization. The
steps assume that a graph is displayed in the visualization panel.

1. Click Settings on the Visualization panel.

This opens the Settings dialog.

2. Switch ON the Enable Live Search toggle in the General tab.

This enables the search, adds the search input to the visualization, and allows you to
further customize the search. It is important to note that you can only search the graph that
is currently displayed in the visualization panel, and not the entire graph as stored in the
database.

3. Select whether you want to search the properties of either Vertices or Edges, or both
under Enable Search In.

4. Select one or more Properties To Search based on what you selected in the previous
step.

Note that if you disable search for any graph element (vertices or edges) for which you
already had selected the properties, then those properties will be stored and added back
when you enable search again for that graph element.

The following figure shows an example of configuring Live Search. As seen, Live Search is
enabled for the vertex property, country_name.

Chapter 9
About Graph Visualization and Manipulation

9-10

5. Optionally, enable Advanced Settings if you wish to fine-tune the search even more and
configure one or more of the following options:

• Location: This determines approximately where in the text property the pattern is
expected to be found. For instance, location value 0 indicates that the pattern is
matched from the beginning of the text. Location value 1 indicates that the pattern will
be matched from the second letter of the text and so on.

• Distance: This determines how close the match must be to the fuzzy location
(specified by location). An exact letter match which is distance characters away from
the fuzzy location would score as a complete mismatch. A distance of 0 requires the
match be at the exact location specified, a distance of 1000 would require a perfect
match to be within 800 characters of the location to be found using a threshold of 0.8.

• Min Char Match: The minimum length of the pattern that needs to match.

6. Close the Settings dialog and rerun the visualization query.

Chapter 9
About Graph Visualization and Manipulation

9-11

The search input will be displayed towards the right side of the graph visualization. If you
start typing the search keyword, the search will add a score to every vertex or edge, based
on the settings and the search match. The Live search score can be viewed inside the
tooltip, that can be triggered by right-clicking a vertex or edge. For example:

Settings for Graph Visualization
The Settings modal lets you specify options that control how graph data is displayed when it is
visualized.

You can invoke the settings modal by clicking the settings icon as shown highlighted in the
following figure:

The Settings modal contains the following tabs that group the options according to their scope:

General
The General tab contains the general settings that affect the entire visualization, including
search-related options. This tab comprises the following sections:

Chapter 9
About Graph Visualization and Manipulation

9-12

Customization

These are visualization settings that affect the visual aspects of the display.

Customization settings include the following options:

Option Description

Height Height of the visualization. Setting the value to 0 will take the default
height.

Theme Toggles the visualization between light and dark theme (useful for
presentations).

Similar Edges Similar edges can be collected when this button is checked. Toggled
edges give no overview of specific edges but a generalized tooltip.

Edge Marker Determines if the outgoing edges have an arrow to show the flow
direction.

Display Graph Legend The graph legend will be displayed when this toggle is enabled.

Caption

The Caption section is displayed as shown:

Chapter 9
About Graph Visualization and Manipulation

9-13

Caption settings include the following options:

Option Description

Vertex Caption Orientation Determines where the selected property will be displayed. Options are:
Bottom, Center, Top, Right, Left.

Vertex Captions A configurable list of captions based on vertex labels and their
associated properties. You can add or remove captions, and the
selected properties will be displayed on the corresponding vertices in the
graph.

Edge Captions A configurable list of captions based on edge labels and their associated
properties. You can add or remove captions, and the selected properties
will be displayed on the corresponding edges in the graph.

Maximum Visible Caption
Length

Maximal char length of a truncated caption.

Truncate Captions If enabled, captions will be truncated at a specific length as specified in
the previous option.

Show Caption on Hover If enabled, full captions will appear as a tooltip when hovering over a
vertex.

Layouts

Graph Studio supports many different graph layouts. Each layout has its own algorithm, which
computes the positions of the vertices and affects the visual structure of the graph.

Chapter 9
About Graph Visualization and Manipulation

9-14

The following graph layout options are supported:

Option Description

Random Layout Positions the vertices in random positions within the viewport.

Grid Layout Positions the vertices in a well-spaced grid. It supports the following
configurable property:
• Spacing: Sets the space between the elements in the grid.

Circle Layout Positions vertices in a circle. It supports the following configurable
property:
• Radius: Sets the radius of the circle.

Concentric Layout Positions vertices in concentric circles. It supports the following
configurable property:
• Minimum Vertex Spacing: Sets the minimum spacing in between

vertices. It is used for radius adjustment.

Force Layout Attempts to create an aesthetically-pleasing graph based on the
structure of the graph, with the goal of positioning the vertices in the
viewport so that all the edges are of approximately equal length and
there are as few crossing edges as possible. It has the following
configurable properties:
• Enable Cluster Layout: Determines if cluster based layout is

enabled. If this parameter is switched ON, then the following cluster
options will be displayed:
– Cluster By: By default, the cluster layout uses the first element

in vertex labels to form the cluster. Alternatively, this can be set
to the property name of a vertex, and the clusters will be
formed based on the property value.

– Distance Between Clusters: Influences the forces among
clusters (that is, to push clusters away from each other).

– Spacing Within Clusters: Determines how close different
vertices are rendered next to each other within the clusters.

Chapter 9
About Graph Visualization and Manipulation

9-15

Option Description

Hierarchical Layout Organizes the graph using a DAG (Directed Acyclic Graph) system. It is
especially suitable for DAGs and trees. It supports the following
configurable properties:
• Ranking Algorithm: Specifies the type of algorithm used to rank

the vertices. Possible values are Network Simplex, Tight Tree and
Longest Path.

• Network Simplex: Assigns ranks to each vertex in the input graph
and iteratively improves the ranking to reduce the length of the
edges.

• Tight Tree: Constructs a spanning tree with tight edges by adjusting
the ranks of the input vertex. The length of a tight edge matches its
minlen attribute.

• Longest Path: Pushes vertices to the lowest layer possible, leaving
the bottom ranks wide and leaving edges longer than necessary.

• Direction: Specifies the direction of the graph. Possible values are
Top Bottom, Bottom Top, Left Right, and Right Left

• Alignment of Rank Nodes: Determines the alignment of the
ranked vertices. Possible values are Up Left, Up Right, Down Left
and Down Right

• Vertex Separation: Sets the horizontal separation between the
vertices.

• Edge Separation: Sets the horizontal separation between the
edges.

• Rank Separation: Sets the separation between two ranks (levels) in
the graph.

Radial Layout Displays the dependency chain of a graph by using an outwards
expanding tree structure. It can be especially useful if the graph data has
a hierarchical structure and contains many children for each parent
vertex. It has the following configurable properties:
• Starting Point (left, top, right, bottom): Defines the starting point

of the radial layout and thus allows you to change the orientation.
• Arc Degree slider (0° - 360°): Specifies the arc degree of the circle

used for the radial layout. Higher arc degree values can help to
detangle the network; lower values make it more compact.

• Packing slider (0 - 5): Reduces the separation gap between
neighboring vertices if they share the same parent vertex. If set to 0,
no packing will be applied.

• Intelligent Separation: Reduces the separation gap proportionally
to the depth level of each vertex.

Chapter 9
About Graph Visualization and Manipulation

9-16

Option Description

Geographical Layout Enables you to overlay the graph on a map, given that latitude and
longitude coordinates exist as graph properties on the graph's vertices. It
has the following configurable properties:
• Latitude Property: The vertex property to use for determining the

latitude of a vertex.
• Longitude Property: The vertex property to use for determining the

longitude of a vertex.
• Map Type: You can select map type either in map visualization or

graph visualisation settings, or provide your own sources and layers.
Supported types are:
– World Map ("oracle-elocation")
– OSM Positron (default)
– OSM Bright
– OSM Darkmatter
– Custom type: Custom type has the following two additional

fields. It is important to note that you must provide these
attribute properties separately from visualization because of
security reasons.
* Sources: Provide your own sources in JSON format which

will be used in the map. For example:

{ "oracle-elocation":
 {
 "type": "raster",
 "tiles": ["https://
elocation.oracle.com/mapviewer/mcserver/
ELOCATION_MERCATOR/world_map_mb/{z}/{y}/
{x}.png"],
 "tileSize": 256,
 "minzoom": 0,
 "maxzoom": 18
 }
}

* Layers: Provide the layers that you want to display on the
map as an array of JSON elements. For example:

[{
 "id": "elocation-tiles",
 "type": "raster",
 "source": "oracle-elocation"
}]

Also, note the following when visualizing a graph on a map:

• You can change the viewport of the map by clicking and dragging
the mouse on the map.

• You can zoom into the map using the + / - buttons, through the
scrolling wheel of your mouse, or through pinching motions using
your trackpad.

• You can also use the Shift key and then click and drag the mouse
to define a field. The view will zoom into that area, changing both
viewport and zoom level at the same time.

• You can change the orientation and angle of the viewport by
pressing Ctrl and then clicking and dragging the mouse on the
map.

Chapter 9
About Graph Visualization and Manipulation

9-17

Pagination

The Pagination section appears as shown:

The parameter that supports pagination is:

• Page Size: This controls the number of items to be visualized on the page from the result
set.

Live Search

The Live Search section appears as shown:

You can enable Live Search to search the displayed graph. Live fuzzy search score is added to
each item and you can create a Style which visually shows the results of the search in the
graph immediately. See Use Live Search in Graph Visualization for more information.

Graph Exploration
The Graph Exploration tab appears as shown in the following figure:

Chapter 9
About Graph Visualization and Manipulation

9-18

The Graph Exploration tab comprises the following sections:

Graph exploration

• Number of Hops: You can specify the number of hops for graph manipulation.

Visible graph sharing

• Enable Visible Graph Mode: You can enable or disable the visible graph mode.
See Enable Visible Graph Mode for more information.

Network Evolution

• Enable Network Evolution: Enables you to visualize the evolution of a graph over time.

See Visualize a Dynamic Graph for more information.

Styles
The Styles tab allows you to customize the appearance of vertices and edges based on
search criteria. It allows you to modify collectively styling such as color, size, or icons for
vertices or edges that match the search criteria.

Chapter 9
About Graph Visualization and Manipulation

9-19

On the Styles tab, you can:

• View the list of existing styles for vertices and edges.

• Filter the list of styles based on an input string or applicable tags.

• Drag and reorder the items on the list.

• Create custom vertex or edge styles.

• Edit an existing style.

• Enable or disable a style.

The following describes the properties and operations when creating a new style:

Chapter 9
About Graph Visualization and Manipulation

9-20

• Name: Name of the style. This adds a text in the graph legend for elements where this
style applies. This field is mandatory for styles creation. Style value can be either constant
or interpolation based on some property value. Interpolation settings include:

– The property of the element

– The minimum or maximum value (If not specified, the minimum or maximum property
value from all matched elements will be used, and the highlight will be applied
proportionally between the selected minimum and maximum values of the specified
property.)

• Conditions The search condition lets you define how vertices or edges that are influenced
by a style are filtered. To configure a search criteria, you must specify the element type to
search for (vertex or edge), search conditions, condition operator (match all or any). Each
condition includes the property of the given element, the operator you want to apply (=, <,
<=, >, >=, !=, ~, *), the property value that needs to be fulfilled for the operator. It uses
numeric comparison if the property value is convertible to number and lexicographic
comparison otherwise.

• The following options apply to highlight the vertices or edges that match the search criteria:

Chapter 9
About Graph Visualization and Manipulation

9-21

– Size: Sets the size of the vertex or edge to the specific value. If interpolation is
selected, the slider will have two ends and the size of the vertex or edge is interpolated
based on the result of the search criteria.

– Color: Sets the color of the vertex or edge. If interpolation is selected, the combobox
will allow to add multiple colors. All vertices or edges are interpolated between these
colors based on the result of the search criteria.

– Icon: Sets an icon to the vertex (not applicable to edges). If interpolation is selected,
multiple icons can be selected.

– Caption: Sets the caption to the vertex or edge.

– Image: Sets an image to the vertex based on an href property (not applicable to
edges).

– Animations: Allows to set certain animation css classes to vertices and edges (such
as flashing, dotted-line, animated dotted-line, pulsating) and duration of an animation
cycle.

Smart Explorer
The Smart Explorer tab supports the following actions:

• Smart Expands: Allows you to expand vertices based on the specified conditions for
properties of navigation and destination vertices or edges. See Expand Vertices Using
Smart Expand for more information.

• Smart Groups: Allows you to group vertices based on specified conditions. See Group
Vertices Using Smart Group for more information.

About Table Visualization
You can visualize the result of a graph query in tabular format. The table can be sorted by
columns in ascending or descending order.

Additionally, the table can be filtered for a specific search term. Rows that do not contain this
term are hidden from view and the remaining rows highlight the location of the search term
within the row.

Chapter 9
About Table Visualization

9-22

Topics

• Settings for Table Visualization

Settings for Table Visualization
You can format the table by configuring the options in the Settings dialog.

The Settings dialog for a table visualization is as shown:

The Setup tab contains the following options.

• Height: This parameter changes the height of the visualization. Setting the value to 0 will
take the default height.

• Columns to Show: This parameter controls the columns (from the query results) to be
displayed in the Table. You can also change the order of the columns by removing and
adding them again at the desired position. The changes are reflected immediately in the
table.

• Number of Items on Page: This sets the pagination size. By default five items per page
are displayed.

Chapter 9
About Table Visualization

9-23

10
Interactive Graph Visualization in Oracle APEX
Applications

Using the APEX Graph Visualization plug-in, you can visualize and interact with property
graphs on your Autonomous Database instance in an APEX application.

Topics

• About the APEX Graph Visualization Plug-in

• Prerequisites for Using the APEX Graph Visualization Plug-in

• Get Started with the APEX Graph Visualization Plug-in (Oracle Database 23ai)

• Get Started with the APEX Graph Visualization Plug-in (Oracle Database 19c)

• Configure Attributes for the APEX Graph Visualization Plug-in

About the APEX Graph Visualization Plug-in
The APEX Graph Visualization plug-in integrates a Java Script Library that supports graph
visualization in APEX applications.

See Property Graph Visualization Developer's Guide and Reference for more information.

The plug-in mainly allows you to:

• Construct a property graph for visualization from the graph data in your Autonomous
Database instance.

• Explore the graph vertices and edges. You can also select and visualize these graph
elements individually or in groups.

• Interact with the graph visualization by performing various actions such as changing the
graph layouts, grouping or ungrouping selected vertices, removing selected vertices or
edges, and so on.

• Style the vertices and edges in the graph by configuring the style settings such as size,
color, icon, label values, and so on.

• Visualize and study the evolution of the graph over time.

The following figure shows an example of graph visualization in an APEX application using the
plug-in:

10-1

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=graphviz_js_doc

Note that the plug-in supports icons in the Font APEX library.

Prerequisites for Using the APEX Graph Visualization Plug-in
Review the prerequisites for using the Graph Visualization plug-in in APEX applications.

1. Ensure that the schema associated with the APEX application workspace, where the
Graph Visualization plug-in is imported, is a graph-enabled schema. To enable graph for a
schema:

a. Access Database Actions as an ADMIN user. See Access Database Actions as
ADMIN for more information.

b. Click Database Users in the Launchpad page under the Administration group.

c. Locate the user card for your schema on the User Management page and click the
Actions (three vertical dots) icon to open the context menu.

d. Select Enable Graph.
Graph gets enabled for the schema.

Alternatively, you can also select Edit, turn on the Graph toggle on the Edit User
page, and click Apply Changes.

2. The target application into which you want to import the plug-in exists in your APEX
instance.

3. The target application is connected to the desired database (19c or 23ai) and the property
graph to be used for visualization exists in the default database schema.

4. Note that the Graph Visualization plug-in version in the Oracle APEX 24.2 GitHub
repository is supported only on APEX 24.2 version.

Get Started with the APEX Graph Visualization Plug-in (Oracle
Database 23ai)

Get started with the APEX Graph Visualization plug-in in your APEX application on your
Autonomous Database instance using Oracle Database 23ai.

Before you begin, ensure that you meet the prerequisites described in Prerequisites for Using
the APEX Graph Visualization Plug-in.

1. Download the Graph Visualization (Preview) plug-in
(region_type_plugin_graphviz.sql) from the Oracle APEX GitHub repository.

2. Sign in to your APEX workspace in your Autonomous Database instance.

Chapter 10
Prerequisites for Using the APEX Graph Visualization Plug-in

10-2

https://oracle.github.io/font-apex/
https://oracle.github.io/apex/
https://oracle.github.io/apex/

3. Create the DBMS_GVT package in your APEX workspace.

a. Download the optional-23ai-only/gvt_sqlgraph_to_json.sql file from the Oracle
APEX GitHub repository.

b. Upload and run the gvt_sqlgraph_to_json.sql script in your APEX workspace (see
Uploading a SQL Script).

4. Import the downloaded plug-in script (region_type_plugin_graphviz.sql) file into your
target APEX application (see Importing Plug-ins).

5. Implement the plug-in in an application page to perform various graph visualizations.

The following basic example describes the steps to visualize a graph existing in your
database using the Graph Visualization plug-in.

a. Open the application page in Page Designer.

b. Select the Rendering tab on the left pane of the Page Designer.

c. Right-click an existing component and add a new region component.

d. Select the new region and configure the following attributes in the Region tab of the
Property Editor on the right pane of the Page Designer:

i. Enter the Identification Title.

ii. Select Graph Visualization (Preview) as Identification Type.

iii. Select the source Location as Local Database.

iv. Select the Type value.
You can choose either SQL Query or PropertyGraph as the Type value.

v. Embed the SQL graph query to retrieve the graph data.
Depending on the type selected in the previous step, you can provide the query as
shown in the following examples:

• SQL Query: Enter the SQL graph query input as shown:

SELECT *
 FROM GRAPH_TABLE (
 BANK_SQL_PG
 MATCH (a IS accounts) -[e IS transfers]-> (b IS
accounts)
 WHERE a.id = 816
 COLUMNS(vertex_id(a) AS id_a, edge_id(e) AS id_e,
vertex_id(b) AS id_b)
)

• PropertyGraph : Provide the SQL graph query as shown:

– Graph Name: Select the SQL property graph name.

– Match Clause: Enter the MATCH clause of the graph query. For example:
(a IS accounts) -[e IS transfers]-> (b IS accounts)

– Columns Clause: Enter the COLUMNS clause of the graph query. For
example:
(vertex_id(a) AS id_a, edge_id(e) AS id_e, vertex_id(b) AS id_b)

– Where Clause: Optionally, enter the WHERE clause of the query. For
example, a.id = 816.

e. Run the application page to visualize the graph rendered by the plugin.

Chapter 10
Get Started with the APEX Graph Visualization Plug-in (Oracle Database 23ai)

10-3

https://github.com/oracle/apex/tree/24.2/plugins/region/graph-visualization
https://github.com/oracle/apex/tree/24.2/plugins/region/graph-visualization
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/24.2&id=GUID-F1CA58DD-410F-403C-BF3C-FAF707DCB238#GUID-F1CA58DD-410F-403C-BF3C-FAF707DCB238
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/24.2&id=GUID-C35440FD-FE8A-4799-A63F-2DB7D34087A2

Note:

The APEX Graph Visualization plug-in on Oracle Database 23ai does not
support graphs that use vertex or edge keys with DATE or TIMESTAMP data
types. Visualizing graph query results on graphs with DATE or TIMESTAMP keys
may result in only a subset of graph data being shown.

6. Optionally, if you wish to implement pagination in the preceding graph visualization, then
perform the following steps:

a. Switch ON the SQL Query Supports Pagination setting in the Attributes tab of the
Property Editor for the graph visualization component in your APEX application.

b. Set the Page Size value in the Attributes tab of the Property Editor.

c. Save and rerun the application page.

The graph gets rendered with pagination.

7. Optionally, you can import and run the Sample Graph Visualizations application from
Oracle APEX GitHub repository.

• Import the sample-apps/sample-graph-visualizations/sample-graph-
visualizations_23ai.sql into your APEX instance and install the application by
following the steps in Importing an Application.

When installing the sample application, ensure that you have the CREATE VIEW
privilege for installing the supporting objects.
You can directly run the sample application once it is installed.

Also, note that the sample application requires a secure HTTPS connection. If you want
to disable secure connection, then perform the following steps:

Chapter 10
Get Started with the APEX Graph Visualization Plug-in (Oracle Database 23ai)

10-4

https://github.com/oracle/apex/tree/24.2/sample-apps/sample-graph-visualizations
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/importing-export-files.html#GUID-D01CF7A6-A593-4ACD-A92C-C94CAC100D61

Caution:

It is not recommended to disable secure connections in production
deployment.

i. Navigate to the sample application home page in App Builder.

ii. Click Shared Components.

iii. Click Authentication Schemes under Security.

iv. Click the Current authentication scheme.

v. Click the Session Sharing tab and turn off the Secure switch.

vi. Click Apply Changes and then run the application.

Get Started with the APEX Graph Visualization Plug-in (Oracle
Database 19c)

Get started with the APEX Graph Visualization plug-in in your APEX application on your
Autonomous Database instance using Oracle Database 19c.

Before you begin, ensure that you meet the prerequisites described in Prerequisites for Using
the APEX Graph Visualization Plug-in.

1. Download the Graph Visualization (Preview) plug-in from Oracle APEX GitHub
repository.

2. Sign in to your APEX workspace in your Autonomous Database instance.

3. Import the downloaded plug-in script (region_type_plugin_graphviz.sql) file into your
target APEX application by following the steps in Importing Plug-ins in the Oracle APEX
App Builder User’s Guide.

4. Implement the plug-in in an application page to perform graph visualization.

The following basic example describes the steps to visualize a graph existing in your
Autonomous Database instance using the Graph Visualization plug-in.

a. Open the application page in Page Designer.

b. Select the Rendering tab on the left pane of the Page Designer.

c. Right-click an existing component and add a new region component.

d. Select the new region and configure the following attributes in the Region tab of the
Property Editor on the right pane of the Page Designer:

i. Enter the Identification Title.

ii. Select Graph Visualization (Preview) as Identification Type.

iii. Select the source Location as Local Database.

iv. Select Type as SQL Query.

v. Run a SQL query, which wraps a PGQL query in the ORA_PGQL_TO_JSON PL/SQL
function, to retrieve the graph data.

Chapter 10
Get Started with the APEX Graph Visualization Plug-in (Oracle Database 19c)

10-5

https://oracle.github.io/apex/
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/apex/24.2&id=GUID-C35440FD-FE8A-4799-A63F-2DB7D34087A2

For example:

SELECT
 ORA_PGQL_TO_JSON(query => 'SELECT e FROM MATCH
 (e:employees) ON OEHR_EMPLOYESS LIMIT 20')
 FROM DUAL;

It is important to note the following:

• The plugin accepts the input graph data containing the vertex and edge
information in JSON format only. This is supported by the ORA_PGQL_TO_JSON
PL/SQL function which takes a PGQL query as input and returns the graph
output in JSON structure.

• The graph referenced in the PGQL query must exist in your Autonomous
Database instance.

e. Run the application page to visualize the graph rendered by the plug-in.

5. Optionally, if you wish to implement pagination in the preceding graph visualization, then
perform the following steps:

a. Switch ON the SQL Query Supports Pagination setting in the Attributes tab of the
Property Editor for the graph visualization component in your APEX application.

b. Bind the page_start and page_size parameters when calling the ORA_PGQL_TO_JSON
function in the SQL query as shown in the following example code:

SELECT
 ORA_PGQL_TO_JSON(query => 'SELECT e FROM MATCH
 (e:employees) ON OEHR_EMPLOYESS LIMIT 20',:page_start,:page_size)
 AS result FROM DUAL;

c. Set the Page Size value in the Attributes tab of the Property Editor.

Note that the page_start value is automatcially set.

d. Save and rerun the application page.

The graph gets rendered with pagination.

6. Optionally, download the Sample Graph Visualizations application from Oracle APEX
GitHub repository.

This application demonstrates the use of the Graph Visualization plug-in.

a. Import the downloaded sample-apps/sample-graph-visualizations/sample-graph-
visualizations_19adb.sql into your APEX instance by following the steps in
Importing an Application.

Chapter 10
Get Started with the APEX Graph Visualization Plug-in (Oracle Database 19c)

10-6

https://github.com/oracle/apex/tree/24.2/sample-apps/sample-graph-visualizations
https://github.com/oracle/apex/tree/24.2/sample-apps/sample-graph-visualizations
https://docs.oracle.com/en/database/oracle/apex/24.2/htmdb/importing-export-files.html#GUID-D01CF7A6-A593-4ACD-A92C-C94CAC100D61

b. Run the sample application from the application home page in App Builder.

Configure Attributes for the APEX Graph Visualization Plug-in
Learn how to customize your graph visualization using the Graph Visualization plug-in
attributes in your APEX application.

You can configure the attributes for the plug-in component in the Attributes tab (Property
Editor) on the right pane of the Page Designer. The attributes are grouped as per their scope in
the following panels:

Topics:

• Settings

• Appearance

• Layout

• Captions

• Evolution

• Advanced Options

• Callback Options

Settings
The Settings panel appears as shown:

The following table describes the attributes in the Settings panel:

Attribute Description

SQL Query supports
Pagination

Switch on this toggle if you are implementing the paginate interface.

Page Size An integer value that determines the number of vertices and edges to be
displayed per page if you enabled SQL Query supports Pagination.

Live Search Switch on this toggle to enable Live Search when visualizing the graph.

Show Legend Switch on this toggle to display the legend for the graph visualization.

Legend Width An integer value that controls the legend width if you have enabled
Show Legend. Default is 150.

Appearance
The Appearance panel appears as shown:

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-7

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=js_paginate

The following table describes the attributes in the Appearance panel:

Attribute Description

Height An integer value (in px) to set the size of the graph visualization panel.
Default value is 400 px.

Group Edges When this option is enabled, multiple edges between the same source
and target vertex will be grouped together in the graph. The grouped
edges will be shown as a single edge with a number on it, indicating how
many edges have been grouped.

Size Mode Two size modes are supported:
• Normal (default)
• Compact

Edge Marker Supported edge markers are:
• None
• Arrow (default)

Escape HTML in Tooltip Switch on this toggle if you wish to escapes HTML content used on
vertex or edge tooltip.

Tooltip Max Length An integer value that determines the maximum length of characters for
the tooltip. Default value is 100.

Dark Theme Enable this toggle to switch to a dark theme.

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-8

Attribute Description

Custom Theme Enable this toggle if you wish to configure a custom theme for the
following:
• Background Color: Enter a color code or pick a color for the

background.
• Text Color: Enter a color code or pick a color for the text.

Display You can enable or disable the Modes and Exploration options.
Supported Modes Options are:

• Interaction:
• Fit to Screen
• Sticky
• Evolution
Supported Exploration Options are:

• Expand: To retrieve n-hops neighbors of selected vertices.
• Focus: To shift the focus of view; it drops everything and fetches n-

hops neighbors of the selected vertex.
• Group: To group selected multiple vertices and collapse them into a

single one.
• Ungroup: To select a group of collapsed vertices and ungroup

them.
• Drop: To remove selected vertices or edges from the visualization.
• Undo: To undo the last action.
• Redo: To redo the last action.
• Reset: To reset the visualization to its default state.

Layout
The Layout panel allows you to choose one of the following layout options:

• Circle

• Concentric

• Force (default)

• Grid

• Hierarchical

• Radial

• Geographical

The layout configuration parameters may vary for different layouts.

Force Layout

The Force layout configuration parameters are described in the following table:

Attribute Description

Spacing Spacing determines how close different vertices are rendered
next to each other. Default is 1.5.

Alpha Decay Controls the rate at which the simulation's internal alpha
value, which influences node movement, decreases over time,
gradually stabilizing the force layout. Default is 0.01.

Velocity Decay Determines how fast a simulation ends. Default is 0.1.

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-9

Attribute Description

Edge Distance The simulation tries to set each edge to the specified length.
This can affect the padding between vertices. Default is 100.

Vertex Charge Influences the underlying forces (for example, to remain within
the viewport, to push vertices away from each other, and so
on). If Enable Cluster is true, then it influences the forces
among clusters. Default is -60.

Enable Cluster Switch on this toggle if you wish to enable cluster based
layout.

Cluster By By default, the cluster layout (if enabled) uses the first
element in vertex.labels to form the cluster. It can also be
set to the property name of a vertex, and the clusters will be
formed based on the property value.

Hide Unclustered Vertices Determines whether to display vertices that do not belong to
any cluster. Default is false.

Circle, Concentric, and Radial Layouts

The following layouts require only the Spacing configuration:

• Circle: Spacing sets the radius of the circle. Default is 2.

• Concentric: Spacing sets the minimum spacing in between vertices. It is used for radius
adjustment. Default is 2.

• Radial: Spacing sets separation gap between neighboring vertices if they share the same
parent vertex. If set to 0, then spacing will not be applied. Default is 2.

Grid Layout

The Grid layout supports the following configuration options:

• Spacing: Spacing sets the space between elements in the grid. Default is 2.

• Rows: Determines the number of rows in the grid.

• Columns: Determines the number of columns in the grid.

The default number of rows and columns are dynamically calculated depending on the height
and the width of the graph visualization panel.

Hierarchical Layout

The Hierarchical layout configuration parameters are described in the following table:

Attribute Description

Rank Direction Alignment of the ranked vertices.
Supported options are - Up to Left, Up to Right, Down
to Left, Down to Right, Top to Bottom, Bottom to
Top, Left to Right, Right to Left.

Ranker Specifies the type of algorithm used to rank the vertices.

Supported algorithms are: Network Simplex, Tight Tree, and
Longest Path.

Vertex Separation Sets the horizontal separation between the vertices.

Edge Separation Sets the horizontal separation between the edges.

Rank Separation Sets the separation between two ranks(levels) in the graph.

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-10

Geographical Layout

The Geographical layout configuration parameters are described in the following table:

Attribute Description

Map Type Select map type in map visualization or graph visualization
settings, or provide your own sources and layers.

Longitude Specify the vertex property to use for determining the
longitude of a vertex.

Latitude Specify the vertex property to use for determining the latitude
of a vertex.

App ID Specify the appId to fetch maps from http://
maps.oracle.com/elocation. If omitted, a generic appId
will be used.

Show Information Enabling this toggle, displays an info box in the visualization
that shows the latitude and longitude of the mouse position
and the zoom level of the map.

Navigation Displays the navigation controls towards the top right region
of the map.

Markers Displays location markers on the map

See Also:

Layouts page in Property Graph Visualization Developer's Guide and Reference

Captions
The Captions panel appears as shown:

The following table describes the attributes in the Caption panel:

Attribute Description

Vertex Caption Specify the property to be displayed as the vertex label.

Edge Caption Specify the property to be displayed as the edge label.

Maximum Caption Length Specify the maximum length of the caption.

Show full label text on
hover

Enable this toggle if you wish to display the vertex and edge caption
when hovering over a specific vertex or edge.

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-11

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=PGVTR-GUID-D9317575-C490-40A8-93BE-A52C356ABC47

Evolution
The Evolution panel appears as shown:

The following table describes the attributes in the Evolution panel:

Attribute Description

Enable Evolution Switch on this toggle to enable network evolution in the graph
visualization.

Height Specify the height of the chart.

Chart Select the chart type - Bar or Line.

Granularity Specify the aggregation granularity for the input unit.

Unit Select the unit of time for the increment.

Vertex Evolution Start
Property

Select the name of the property to use for the vertex filtering.
The time frame for the graph will be after the Vertex Evolution Start
Property.

Vertex End Property Select the name of the property to use for the vertex filtering.
The time frame for the graph will be before the Vertex End Property.

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-12

Attribute Description

Edge Start Property Select the name of the property to use for the edge filtering.
The time frame for the graph will be after the Edge Start Property.

Edge End Property Select the name of the property to use for the edge filtering.
The time frame for the graph will be before the Edge End Property.

Exclude Values Specify one or more values to be excluded.

Show Excluded Values Enable this toggle if you wish to display the excluded values.

Playback Step Specify a value to determine how often does the playback advance in
ms.

Playback Timeout Specify a value to determine how many steps are taken per time out
during playback.

Preserve Positions If switched on, network evolution will keep the original vertex positions of
the graph during playback.

Axis Select one of the supported values - vertices, edges, or both.

Label Format Specify a string that represents the format in which the date must be
displayed. Note that the format must include either YYYY, MM, or DD.
Otherwise, the format will be ignored.

Advanced Options
The Advanced panel appears as shown:

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-13

The Advanced panel allows you to configure custom and default styling for your graph
visualization using the following options:

General Settings
You can specify the general graph visualization settings (see settings) in JSON format.

For instance, the following JSON example specifies the theme, legend width, and layout
configurations:

{
"theme": "dark",
"layout": "hierarchical",
"legendWidth": "20"
}

The corresponding graph visualization is as shown:

Rule-Based Styles
Rule-based style expressions are used to specify the target element into which the given style
must be applied. The applied custom style is reflected in the legend panel as well. See Rule
Expressions in Property Graph Visualization Developer's Guide and Reference for more
information.

For instance, the following JSON example creates a custom color style for employee IDs
ranging from 100 to 110:

[
 {
 "_id": 1,
 "component": "vertex",
 "stylingEnabled": true,
 "target": "vertex",
 "visibilityEnabled": true,
 "conditions": {
 "operator": "and",
 "conditions": [
 {
 "property": "EMPLOYEE_ID",
 "operator": ">=",
 "value": "100"
 },
 {
 "property": "EMPLOYEE_ID",

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-14

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_settings
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=PGVTR-GUID-D6D95D93-3E4A-44C7-BCAD-24B51322DF65
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=PGVTR-GUID-D6D95D93-3E4A-44C7-BCAD-24B51322DF65

 "operator": "<=",
 "value": "110"
 }
]
 },
 "legendTitle": "Rule-Based Style",
 "style": {
 "color": "red"
 }
 }
]

The corresponding graph visualization is as shown:

For more examples, see Rule-Based Styles in Property Graph Visualization Developer's Guide
and Reference.

Base Styles
Base style expressions are used to overwrite the default styling for the vertices and edges in
the graph.

For instance, the following JSON example overwrites the default vertex styling:

{
 "vertex":{
 "size":12,
 "label":"${properties.EMPLOYEE_ID}",
 "icon":"fa-user"
 }
}

The corresponding graph visualization is as shown:

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-15

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=PGVTR-GUID-40EC1670-C0B6-4956-8351-2F35360E238D

For more examples, see Base Styles in Property Graph Visualization Developer's Guide and
Reference.

Smart Groups
You can specify the configuration for applying smart grouping in JSON format.

For instance, the following JSON example groups employees by their JOB_ID:

[
 {
 "_id": 1,
 "name": "Group By Job",
 "type": "group",
 "automatic": true,
 "enabled": true,
 "groupBy": "JOB_ID",
 "conditions": {
 "operator": "or",
 "conditions": [

]
 }
 }
]

The corresponding graph visualization is as shown:

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-16

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=PGVTR-GUID-90DF391E-476B-4CAB-A72C-75D95E2678C4

Evolution Settings
You can provide the configuration for network evolution in JSON format.

For example:

{
 "vertex": {
 "start": "properties.HIRE_DATE"
 },
 "unit": "year",
 "chart": "line"
}

The corresponding graph visualization is as shown:

Callback Options
The Callbacks panel appear as shown:

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-17

The Callbacks panel comprises the following options:

Attribute Description

Expand To expand a selected vertex in the graph visualization, see Expand for
more information.

FetchActions To retrieve the graph actions from a data source, refer to fetchActions for
more information.

Persist To persist the graph actions to a data source, refer to persist for more
information.

UpdateGraphdata Callback to handle events when the graph data is updated.

Expand
You can expand a selected vertex in the graph and fetch the adjacent vertices using the
Expand attribute in the Property Editor of the Page Designer.

1. Switch to the Processing tab on the left pane of the Page Designer and navigate to the
After Submit node.

2. Right-click and select Create Process from the context menu.

3. Enter the process Name.

4. Specify Type as Execute Code.

5. Select the source Location as Local Database.

6. Select the source Language as PL/SQL and enter the following code in the PL/SQL input
box.

DECLARE data clob;
id VARCHAR2(100) := apex_application.g_x01;
graph VARCHAR2(100) := "<graph-name>";
hops NUMBER := <hops>;
n NUMBER := hops - 1;
query VARCHAR2(1000) := 'SELECT e1 FROM MATCH ANY (x) ->{,' || n || '} (y)
ON ' || graph || ', MATCH (y) -[e1]-> () ON ' || graph || ' WHERE id(x) =

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-18

http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_fetchActions
http://www.oracle.com/pls/topic/lookup?ctx=property_graph_latest&id=js_persist

''' || id || '''';
BEGIN
SELECT ORA_PGQL_TO_JSON(query) INTO data FROM sys.dual;
htp.p(data);
END;

In the preceding code:

• <graph_name>: Name of the graph

• <hops>: Number of hops to be expanded

Note that the process takes the vertex id to be expanded as input and returns the resulting
output as JSON.

7. Select the execution Point as Ajax Callback.

8. Switch to the Rendering tab on the left pane of the Page Designer and select the graph
visualization component.

9. Switch to the Attributes tab on the right pane and enter the following code in the Expand
input box in the Callbacks panel.

const data = await apex.server.process('<process_name>', {
 x01: ids[0]
}, { dataType: 'text' });
try {
 return JSON.parse(data);
} catch (error) {
 return [];
}

In the preceding code, <process_name> refers to the name of process that was provided
at step-3.

10. Click Save.

11. Run the application page and you can now click expand on a specific vertex in the graph
as shown:

Chapter 10
Configure Attributes for the APEX Graph Visualization Plug-in

10-19

11
Work with Jobs in Graph Studio

A job in Graph Studio is a potentially long-running asychronous operation composed of a set
of tasks.

Topics

• About Jobs

• Inspect a Job

• Review a Job Log

• Cancel a Job

• Retry a Job

• Delete a Job

• Retention of Finished Jobs

• What to do When a Job Fails

About Jobs
A job is identified by an id, a name, a status, and a set of tasks. Additionally, a job includes
information about the operation's input, progress logs, progress output, and result (if
succeeded).

Types of jobs in Graph Studio may include:

• Creating an RDF graph.

• Loading a graph into memory to perform analytics.

• Starting, stopping and restarting the internal compute environment.

A job starts when an operation (for example: create graph, load into memory) is executed.
During a job execution, the job status is set to RUNNING and the progress logs and outputs are
updated to keep track of the executed tasks and processed entities. At the end of the job
execution, the job's status depends on the success or failure of its tasks:

• A failed job has a FAILED or TIMEOUT status and produces no result.

• A successful job has a SUCCEEDED status and produces a result.

A job can be canceled at any time during the job execution. When a job is canceled, its job
status is set to CANCELED and no result is produced.

Inspect a Job
You can inspect (that is, preview) a job.

The Jobs page provides features to review the current status, progress logs and outputs of the
existing jobs in Graph Studio.
To inspect the details of a job:

11-1

1. Click Jobs on the left navigation menu and navigate to the Jobs page.

2. Select the desired job on the Jobs page.

The details section of the Jobs page shows information about the job.

For example, a Graph Creation job will show the name of the job along with the graph
name, the creator, and the associated data tables. Note that a running job displays the
start date and elapsed time of the job execution. When a job execution finishes due to a
success, failure, or cancellation, the details section will include the ending time of the job
execution.

In addition, you can inspect the progress output, which includes the list of processed,
queued, and failed entities or tasks. For a running job, the status of the job includes the
progress percentage.

The Jobs page refreshes automatically without the need to manually refresh the page via
the browser. In addition, older, successful jobs get deleted automatically from the list.
Failed jobs stay for further inspection until explicitly deleted.

Review a Job Log
A job is also described by a log file.

The log file list out the tasks that have been started, executed, or finished that are part of the
job itself. If a task has failed, the log will display the reason behind the task failure. If a job has
been canceled, the log will display the last executed task, as well as details for the canceled
tasks.
To review a Job log:

1. Select a job on the Jobs page.

The job details are displayed in the job details section.

2. Click See Logs in the job details section.

The log details are displayed.

Cancel a Job
You can cancel a running job.

This action cannot be undone. After the job is canceled, all changes done to the entities
affected by the job execution will be rolled back.

Chapter 11
Review a Job Log

11-2

To cancel a job during its execution:

1. Select a job in progress on the Jobs page.

The job details are displayed in the job details section.

2. Click Cancel Job in the job details section.

The job is cancelled.

Retry a Job
You can retry the execution of a failed or canceled job.

When a job execution is retried, the job operation will be executed using the stored input.
To retry a job:

1. Select a failed or canceled job to retry on the Jobs page.

Note:

Retry option is not supported for job requests related to managing the compute
environment.

2. Click Retry in the details section of the selected job.

Provide additional information if requested.

Retrying a job removes the information about the previous job execution. Thus, after the
retry operation completes, the job status, progress, and logs will reflect the execution of the
retried job.

Delete a Job
You can delete a job that has successfully finished, has failed, or has been canceled.

To delete a job:

1. Select a job for deleting on the Jobs page.

2. Click Delete Job in the details section of the selected job.

Chapter 11
Retry a Job

11-3

Deleting a job removes the information about the job execution including the input,
progress log, and output. However, the job result and any changes made by the job are not
affected by this operation.

Retention of Finished Jobs
To optimize disk space usage, completed successful jobs are kept for 10 days after their
creation if they have not already been removed.

What to do When a Job Fails
A job's execution can fail for any of several reasons, including incorrect input, storage or
memory quota issues, timeouts or database connection problems.

If you want to re-execute a failed job, review the log and look for potential causes of the failure.
For example, if the operation to load a graph into memory failed due to storage quota
exceeded, increase the storage size of your Autonomous Database and try again.

If retrying the job keeps failing unexpectedly, please submit a support request. See Submit a
Service Request in the Appendix for more details on how to create and submit a service
request.

Chapter 11
Retention of Finished Jobs

11-4

12
Manage the Compute Environment

Graph Studio must be attached to an internal compute environment in order to perform all
graph analysis tasks.

Topics

• About the Compute Environment

• Inspect the Compute Environment

• Manually Manage the Compute Environment

About the Compute Environment
The internal compute environment in Graph Studio allows you to run notebooks and
accelerates analysis by running algorithms and queries parallelized in memory.

Graph Studio can attach to or detach from the internal compute environment automatically.
This ensures efficient use of computing resources, thereby saving cost.

The attachment happens at the background when you load property graphs into memory and
also implicitly when working with notebooks in Graph Studio. See About Implicit Environment
Creation Through Notebooks for more information.

When not in use for a certain period of time, Graph Studio detaches itself from the compute
environment. On detachment, any in-memory data stored in the environment is deleted.

Note:

The data deletion during the detachment process is only limited to in-memory copies
of property graph data and transient analysis results like in-memory algorithms or
query results. Graphs and notebooks (including input and generated output of
paragraphs) remain persisted in your Autonomous Database and are available even
in detached state.

Graph Studio automatically reconnects to the compute environment when you reload the
property graph into memory or rerun your notebook from the top.

The status of the Compute Environment is indicated on the top right of the header.

The compute environment also allows you to configure your preferred memory settings for the
graph server and the notebook interpreters. You can also choose to save the values as the
default memory settings to be used for creating the Graph Studio environment.

About Implicit Environment Creation Through Notebooks
The internal compute environment, required to run paragraphs in notebooks, is implicitly
created when you create a new or open an existing notebook in Graph Studio.

12-1

Graph Studio displays a message dialog indicating the environment status and the progress of
the environment creation when a notebook is opened. Once the environment is attached, the
message dialog automatically disappears.

Optionally, you can choose to Dismiss the message and continue to work on your notebook.
However, you cannot run the notebook paragraphs until the environment attachment is
complete.

For example, if you open a notebook when the Graph Studio environment is detached, then
the Compute Environment slider displays the detacheded environment status until the
environment creation job is started at the background:

Then attaching status is displayed until the environment gets attached successfully:

In case the environment creation job fails at the background, then an appropriate error
message is displayed. You can then navigate to the Jobs page to view the error details.

Inspect the Compute Environment
You can inspect the state of your internal compute environment to see if it is attached to Graph
Studio.

Additionally, you can also view the memory configuration for the graph server and the
supported notebook interpreters.

1. Click on your username on the top right drop-down menu of your interface.

The drop-down menu appears as shown:

Chapter 12
Inspect the Compute Environment

12-2

2. Select Compute Environment from the drop-down menu.

Tip:

You can click the compute environment status indicator in the header to directly
open the Compute Environment slider.

The Compute Environment slider opens as shown:

Chapter 12
Inspect the Compute Environment

12-3

You can view the following environment details:

• Status of your compute environment.
The compute environment can be available in one of the following states:

State Description

Attached Graph Studio is currently attached to a compute environment.

Chapter 12
Inspect the Compute Environment

12-4

State Description

Attaching Graph Studio is currently in the process of attaching to a compute
environment.

Detached Graph Studio is currently not attached to any compute
environment

Detaching Graph Studio is currently in the process of detaching from a
compute environment

If the compute environment status is Attached, then you can also view the total
amount of memory allocated to the environment.

• Graph server memory configuration.

• Click Interpreters to view the memory configuration for the interpreters.

Manually Manage the Compute Environment
Although Graph Studio can automatically manage the attaching and detaching process of the
compute environment in the background, you can also manually manage the environment.

The following lists a few situations which require manual intervention:

• Increase (or decrease) the maximum amount of the graph server (PGX) memory available
for analysis and optionally save the memory value as the default graph server (PGX)
memory configuration.

• Increase (or decrease) the maximum amount of memory available for notebook
interpreters and optionally save the memory values as the default memory configurations
for the interpreters.
For instance, if the result of your PGQL (RDBMS) query contains thousands of long
strings, you may have to increase the memory of the Database interpreter to avoid out of
memory errors.

• Code in a notebook accidentally caused the environment to enter a bad state.

• The environment ran out of memory.

To manually manage the environment:

1. Click on your username on the top right drop-down menu of Graph Studio and then select
Compute Environment.

The Compute Environment slider appears as shown:

Chapter 12
Manually Manage the Compute Environment

12-5

2. Click Restart or Attach or Detach as it may apply.

The following table describes all the supported manual options to manage the compute
environment:

Manual Options Description

Detach the compute
environment

If the compute environment is currently attached, you can detach it by
clicking the Stop button. This will cause the compute environment to
enter the Detaching state.

Chapter 12
Manually Manage the Compute Environment

12-6

Manual Options Description

Attach the compute
environment

If the compute environment is currently detached, you can:

a. Select the amount of Graph server memory you want to attach
to the compute environment.
It is important to note that currently Graph Studio does not allow
allocation of more than 109 GB of memory for graph analysis per
tenancy.

In case you get one of the following error messages, although
you selected less than 109 GB:
• Not enough memory available
• The number is too high
then the cause could be one of the following:
• Other Autonomous Databases in your tenancy currently

being attached to the compute environment.
• The sum of the memory given to the graph server and all

the interpreters has exceeded the maximum memory
allocation limit.

If you require more memory, please contact Oracle Cloud
Support.

b. Click Interpreters to configure memory for the interpreters:
• PGX interpreter memory

Note that this memory configuration applies for the following
interpreters as they all share the configured memory space:

– Java (PGX) interpreter
– PGQL (PGX) interpreter
– Custom Algorithm (PGX) interpreter

• Markdown interpreter memory
• Python interpreter memory
• Database interpreter memory

Note that this memory configuration applies for the following
interpreters as they all share the configured memory space:

– SQL interpreter
– PGQL (RDBMS) interpreter
– SPARQL (RDF) interpreter

• Conda interpreter memory

c. Optionally, click Save preferences to save the values as the
default memory settings.

d. Click Create to attach to the compute environment.

Note:

The total amount of memory allocated to the compute
environment is the sum of the memory given to the
graph server and all the interpreters.

Restart the compute
environment

You can detach and attach again in a single operation by clicking the
Restart button. In this case, Graph Studio will attach to a compute
environment with the same amount of memory as the current
configuration for the graph server and the interpreters.

3. Monitor the progress of any of the manual operations on the Jobs page.

Chapter 12
Manually Manage the Compute Environment

12-7

Chapter 12
Manually Manage the Compute Environment

12-8

A
Autonomous Database Graph PGX API
Limitations

The following features and APIs of the graph server available in our on-premises offering
(Oracle Graph Server and Client) are not available in the managed cloud service when being
invoked from within %java-pgx or %python-pgx paragraphs.

Using any of these APIs will result either in errors being returned upon invocation or in not
achieving the desired behavior.

Reference information about these on-premises APIs is included in the Oracle Database
documentation library. For Oracle Database Release 21c, refer to:

• Oracle Graph Java API Reference for Property Graph: See Javadoc for more information.

• Oracle Graph Python API Reference for Property Graph: See Python API Reference for
more information.

Manage the server state

All APIs that PGX offers to manage the server state are not available. This includes most of the
methods available on the ServerInstance object. The following example lists a few
administrative APIs that are not supported:

• Java API

• Python API

Java API
• ServerInstance#getServerState()
• ServerInstance#killSession()
• ServerInstance#shutdownEngine()

Python API
• ServerInstance.get_server_state()
• ServerInstance.kill_session()
• ServerInstance.shutdown_engine()

Instead, use the capabilities available in Graph Studio to manage the execution environment.

A-1

http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=java_doc
http://www.oracle.com/pls/topic/lookup?ctx=property-graph-latest&id=python_doc

Read graphs

APIs to read a graph directly from files or any other input sources are not available. For
example:

• Java API

• Python API

Java API
• PgxSession#readGraphWithProperties and similar methods

• PgxSession#readGraphFiles and similar methods

Python API
• PgxSession.read_graph_with_properties() and similar methods

• PgxSession.read_graph_files() and similar methods

Instead, import the data you want to analyze as a graph into the Autonomous Database using
any of the available data import capabilities such as DBMS_CLOUD, SQL Developer Web, or
Oracle Data Integrator. After the data is in the Autonomous Database, use Graph Studio to
convert the data into a graph or import it as a graph. Only graphs managed and loaded into
memory by Graph Studio can be accessed using PGX APIs.

Grant In-memory Graph Permissions to Other Users

APIs to grant permissions on in-memory graphs to other users are not available For example:

• Java API

• Python API

Java API
• PgxGraph#grantPermission() and similar methods

Python API
• PgxGraph.grant_permission() and similar methods

Instead, you can share graphs with other users through corresponding GRANT statements in
the Autonomous Database. You can also conveniently share graphs with other users using the
Share capability available in Graph Studio.

Appendix A

A-2

Export graphs

APIs to write in-memory graphs to the local file system are not available:

• Java API

• Python API

Java API
PgxGraph#store()

Python API
PgxGraph.store()

User defined functions (UDFs)

The ability to define and invoke UDFs is not available.

Changing the execution environment

Modifying the execution environment of the current session as shown in the following example
is not supported.

• Java API

• Python API

Java API
PgxSession#getExecutionEnvironment()

Python API
PgxSession.get_execution_environment()

Appendix A

A-3

B
Submit a Service Request

You can raise a service request with My Oracle Support, if you need help to resolve issues
when working with Graph Studio in Oracle Autonomous Database.

My Oracle Support is a customer portal that offers product services through various support
tools and contains a repository of useful information, where you can find solution to your issue.
You can raise a service request using this application through one of the following two
interfaces:

1. My Oracle Support

2. Cloud Support

You must meet the following prerequisites to create a service request:

• You must have a Support Identifier which verifies your eligibility for Support services.

• You must have an account at My Oracle Support

1. Access My Oracle Support at https://support.oracle.com.

You can choose to create a service request either from My Oracle Support interface or
from Cloud Support interface by using the switch toggle button on the top-right of the
window.

2. Perform the following steps to create a service request from My Oracle Support interface:

a. Click Create Technical SR on the Service Requests tab.

b. Enter the Problem Summary.

c. Enter the Problem Description.

Note:

It is important to provide your Region, Tenancy OCID and Database Name
along with your problem details. See Obtain Tenancy Details on how to
obtain the tenancy details for your instance.

d. Enter the Error Codes.

e. Select the Cloud tab under "Where is the Problem".

f. Specify Autonomous Database on Shared Infrastructure in the Service Type field.

g. Select a Problem Type and provide the Support Identifier details.

h. Click Next until you have provided all the mandatory information.

i. Click Submit.

Your service request is created.

3. Perform the following steps to create a service request from Cloud Support interface:

a. Click Create Technical SR on the Service Requests tab.

b. Follow through sub-steps 2.f to 2.i in the preceding step.

B-1

https://support.oracle.com

Your service request is created.

Appendix B

B-2

C
Known Issues for Graph Studio

You can learn about the issues you may encounter when using Graph Studio and how to work
around them.

Syntax error not thrown for a missing closing parenthesis ")" in a Java paragraph in
Notebook

Syntax error must be thrown when executing a %java-pgx paragraph containing an incomplete
Java statement due to a missing closing parenthesis. However, the Java interpreter in
notebook, returns a Successful execution: No result returned message, which is
incorrect. For example:

%java-pgx
out.println("This line is problematic";
<small><i>Successful execution: No result returned.</i></small>

This is because internally the paragraphs are interpreted through JShell which considers the
incomplete command statement to be of multiple lines. Until a command termination using the
closing parenthesis is executed, any other execution of %java-pgx in the subsequent
paragraphs inside the notebook are considered as continuation of the incomplete statement
and therefore will produce incorrect results. For example, executing the following paragraph
after running the preceding code does not retrieve the graph configurations as expected:

%java-pgx
PgxGraph g = session.getGraph("BANK_GRAPH")
<small><i>Successful execution: No result returned.</i></small>

Workaround

To work around this problem, you can use one of the following options:

• Restore the notebook environment to the normal state by performing the following steps:

1. Execute a closing parenthesis statement in a new %java-pgx paragraph to mark the
termination of the incomplete statement as shown:

%java-pgx
)
Error:
')' expected
out.println("This line is problematic";
 ^

Running the code displays the error message.

C-1

2. Fix the incorrect statement to include the closing parenthesis and re-execute the
statement.

%java-pgx
out.println("This line is problematic");
This line is problematic

• Restart the environment. See Manually Manage the Compute Environment for more
information to restart the environment.

After implementing one of the workaround options, any execution of %java-pgx paragraphs in
the notebook will produce the desired results. For example:

%java-pgx
PgxGraph g = session.getGraph("BANK_GRAPH")

PgxGraph[name=BANK_GRAPH,N=1000,E=5001,created=1628583419041]

Appendix C

C-2

D
Move PG Objects to PGQL or SQL Property
Graph

PG Objects graph type is desupported in Graph Studio. Therefore, you must move to PGQL or
SQL property graphs.

Perform the following steps:

1. Navigate to the Notebooks page and open a notebook.

2. Drop the PG Objects graph by calling the OPG_APIS.DROP_PG method using the SQL
interpreter in a notebook paragraph.

The following example drops the PG Objects graph named pg_graph.

%sql
begin
 OPG_APIS.DROP_PG('pg_graph');
end;

3. Create a PGQL Property Graph or SQL Property Graph.

See Create a Property Graph from Existing Relational Tables for more information.

D-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 What's New in Graph Studio on Oracle Autonomous Database
	2 Get Started Using Graphs
	About Graph Data Support in Autonomous Database
	Typical Workflow for Using Graph Studio

	3 Introduction to Graph Data in Autonomous Database
	Overview of Graph Data in Autonomous Database
	Key Terms and Concepts for Working with Graphs
	Graph Studio: Interactive, Self-Service User Interface
	Use Accessibility Mode
	Tutorials and Other Resources

	4 Create a Graph User
	5 Access the Graph Studio Application
	Access Graph Studio Using Oracle Cloud Infrastructure Console
	Access Graph Studio Using Database Actions
	Access Graph Studio Features Using Autonomous Database Graph Client
	Prerequisites for Using Autonomous Database Graph Client
	Using the PGX JDBC Driver with the AdbGraphClient API

	6 Work with Graphs in Graph Studio
	Create a Graph
	Create a Property Graph in Graph Studio
	Create a Property Graph from Scratch
	Create a Property Graph from Existing Relational Tables
	Warnings During Property Graph Creation
	Specify Vertex and Edge Table Keys
	Add New Edges During Graph Creation

	Create a Property Graph by Editing an Existing Graph
	Create a Property Graph from an RDF Graph

	Create an RDF Graph in Graph Studio
	Use RDF Wizard to Create an RDF Graph
	Perform Prerequisites to Use RDF Graph Wizard
	Get the URI or Pre-Authenticated Request URL to Access the Object Store
	Get the Object Store Credentials

	Use RDF Wizard to Create an RDF Graph Collection

	Manage Graphs
	Manage Property Graphs
	Convert a PGQL Property Graph to SQL Property Graph

	Manage RDF Graphs
	Explore and Validate an RDF Graph
	Append RDF Data to an RDF Graph
	Share an RDF Graph

	Explore and Validate an RDF Graph Collection

	7 Work with Notebooks in Graph Studio
	About Notebooks
	Create a Notebook
	Export a Notebook
	Find a Notebook
	Import a Notebook
	Move a Notebook
	Notebook States
	Jump to a Paragraph
	Available Notebook Interpreters
	Markdown Interpreter
	Java (PGX) Interpreter
	Python (PGX) Interpreter
	PGQL (PGX) Interpreter
	PGQL (RDBMS) Interpreter
	Supported PGQL Features and Limitations

	SPARQL (RDF) Interpreter
	SQL Interpreter
	Custom Algorithm (PGX) Interpreter
	Conda Interpreter
	About the Default Conda Environment
	Supported Conda Interpreter Tasks
	Create and Publish a Conda Environment
	Work with Preinstalled Conda Environments

	Use OCI Vault Secret Credentials
	Prerequisites to Use OCI Vault Secret Credentials
	Attach Vault Secret Credentials to Graph Studio
	Attach and Access a Secret in a Python Notebook Paragraph

	Reference Graphs in Notebook Paragraphs
	Load Graphs Into Memory Using the Quickview Option
	Load Graphs into Memory Programmatically

	Store a PgxFrame in Database
	Visualize Output of Paragraphs
	Apply Machine Learning on a Graph
	Dynamic Forms
	Create Fixed Dynamic Forms
	Create Programmatic Dynamic Forms
	Customize Dynamic Form Layout

	Notebook Forms
	Create Fixed Notebook Forms
	Create Programmatic Notebook Forms

	Paragraph Dependencies
	Keyboard Shortcuts for Notebooks
	Example Notebooks

	8 Work with Templates in Graph Studio
	Create a Template
	Use a Template in a Notebook
	Import a Template
	Manage Templates

	9 Visualize and Interact with Graph Data in Graph Studio
	About Graph Visualization and Manipulation
	Manipulate a Graph Visualization
	Enable Visible Graph Mode
	Expand Vertices Using Smart Expand
	Group Vertices Using Smart Group

	Annotate a Graph
	Visualize a Dynamic Graph
	Use Live Search in Graph Visualization
	Settings for Graph Visualization
	General
	Graph Exploration
	Styles
	Smart Explorer

	About Table Visualization
	Settings for Table Visualization

	10 Interactive Graph Visualization in Oracle APEX Applications
	About the APEX Graph Visualization Plug-in
	Prerequisites for Using the APEX Graph Visualization Plug-in
	Get Started with the APEX Graph Visualization Plug-in (Oracle Database 23ai)
	Get Started with the APEX Graph Visualization Plug-in (Oracle Database 19c)
	Configure Attributes for the APEX Graph Visualization Plug-in
	Settings
	Appearance
	Layout
	Captions
	Evolution
	Advanced Options
	General Settings
	Rule-Based Styles
	Base Styles
	Smart Groups
	Evolution Settings

	Callback Options
	Expand

	11 Work with Jobs in Graph Studio
	About Jobs
	Inspect a Job
	Review a Job Log
	Cancel a Job
	Retry a Job
	Delete a Job
	Retention of Finished Jobs
	What to do When a Job Fails

	12 Manage the Compute Environment
	About the Compute Environment
	About Implicit Environment Creation Through Notebooks

	Inspect the Compute Environment
	Manually Manage the Compute Environment

	A Autonomous Database Graph PGX API Limitations
	B Submit a Service Request
	C Known Issues for Graph Studio
	D Move PG Objects to PGQL or SQL Property Graph

