
Oracle® Cloud
Using Oracle Spatial AI on Autonomous
Database Serverless

F91895-02
December 2024



Oracle Cloud Using Oracle Spatial AI on Autonomous Database Serverless,

F91895-02

Copyright © 2021, 2024, Oracle and/or its affiliates.

Primary Author: Lavanya Jayapalan

Contributors: David Lapp, Siva Ravada, Qingyun (Jeffrey) Xie, Jayant Sharma, Hector Alejandro Saucedo Briseno,
David Esparza

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Resources vii

Conventions vii

1   About Oracle Spatial AI

What is Oracle Spatial AI? 1-1

Real-World Applications of Oracle Spatial AI 1-2

Spatial Machine Learning Concepts and Algorithms 1-2

Spatial Dependence 1-3

Spatial Heterogeneity 1-3

Spatial Feature Engineering 1-4

Spatial Clustering and Regionalization 1-4

Spatial Anomaly Detection 1-5

Spatial Regression 1-5

Spatial Classification 1-5

Spatial AI Modeling Workflow 1-6

Integration of Spatial AI with OML 1-7

Python API for Spatial AI 1-8

Notebook Examples 1-9

About Python Libraries in Oracle Spatial AI 1-9

2   Get Started with Oracle Spatial AI

3   Access Spatial Data

About Accessing Data in Spatial AI 3-1

Data Access Workflow 3-2

Data Manipulation with SpatialDataFrame 3-2

iii



4   Preprocess Spatial Data

Categorical Lag Transformer 4-1

Spatial Lag Transformer 4-3

Spatial Coordinates Transformer 4-4

Spatial Imputer 4-5

Splitting Datasets 4-7

5   Perform Spatial Analysis

Oracle Spatial Based Analysis 5-1

Spatial Colocation Analysis 5-3

Spatial Weights 5-6

Spatial Autocorrelation 5-7

Global Spatial Autocorrelation 5-7

Local Spatial Autocorrelation 5-8

Metrics for Spatial Regression 5-10

6   Apply Spatial Clustering

About Spatial Clustering 6-1

LISA Hotspot 6-1

DBSCAN with Regionalization 6-3

Agglomerative with Regionalization 6-5

K-Means 6-7

7   Apply Spatial Anomaly Detection

About Spatial Anomaly Detection 7-1

Local Outlier Factor 7-1

8   Apply Spatial Regression

About Spatial Regression 8-1

Spatial Diagnostics Using OLS 8-1

Spatial Cross-Regressive Model 8-4

Spatial Lag Model 8-7

Spatial Error Model 8-9

Geographical Regressor 8-12

Geographically Weighted Regression 8-14

Spatial Regimes 8-17

Spatial Fixed Effects 8-23

iv



Adaptive Spatial Regression 8-26

9   Apply Spatial Classification

About Spatial Classification 9-1

SLX Classifier 9-1

Geographical Classifier 9-4

GWR Classifier 9-7

10  
 

Work with Spatial Pipeline

About Spatial Pipeline 10-1

Spatial Feature Union 10-2

Spatial Column Transformer 10-4

Spatial Pipeline 10-5

11  
 

Work with Data Visualization

Plot Geometries 11-1

Plot Clusters 11-2

Add a Basemap 11-4

12  
 

Run Post-Processing Tasks

Store Data into Database Tables or Files 12-1

Save a Model to a OML4Py Datastore 12-3

Load a Model from an OML4Py Datastore 12-3

13  
 

Use Spatial AI with OML Embedded Python Execution

About Embedded Python Execution 13-1

Store a Function for Embedded Execution 13-2

Call an Embedded Function from Python 13-2

Call an Embedded Function with SQL and REST APIs 13-3

Predefined Spatial Functions Available from OML Embedded Python Execution 13-5

compute_spatial_weights 13-6

compute_global_spatial_autocorrelation 13-7

compute_local_spatial_autocorrelation 13-8

create_spatial_lag 13-9

clustering 13-10

v



14  
 

Review Use Cases for Using Spatial AI

Spatial Regression Use Case Scenario 14-1

Load the Data 14-1

Explore the Data 14-2

Train the Model 14-5

Evaluate the Model 14-7

Score 14-7

Run the Post-Processing Steps 14-9

Spatial Clustering Use Case Scenario 14-10

Load the Data 14-10

Explore the Data 14-10

Train the Model 14-12

Visualize the Result 14-13

Run the Post-Processing Steps 14-14

A   Additional References

vi



Preface

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Using Oracle Spatial AI on Autonomous Database Serverless describes how to use Oracle
Spatial Artificial Intelligence (AI) on Autonomous Database Serverless.

Audience
This document is intended for data scientists, spatial developers, Geographic Information
System (GIS) users, and business users.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Related Resources
For more information, see these Oracle resources:

• Oracle Machine Learning Notebooks

• Oracle Machine Learning Notebooks Interactive Tour

• Oracle Machine Learning for Python User's Guide

• Python API Reference for Oracle Spatial AI

Conventions
The following text conventions are used in this document:

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/machine-learning/oml-notebooks&id=OMLUG-GUID-009B9073-4B45-4505-8DAD-F1F04FD3E160
https://docs.oracle.com/en/cloud/paas/autonomous-database/oml-tour/
http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/machine-learning/oml4py/2&id=MLPUG-GUID-D00976CA-3663-4F32-A6A2-B6BF5A843ADC
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Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action, or
terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples, text
that appears on the screen, or text that you enter.
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1
About Oracle Spatial AI

Learn about Oracle Spatial Artificial Intelligence (AI).

Topics:

• What is Oracle Spatial AI?

• Real-World Applications of Oracle Spatial AI

• Spatial Machine Learning Concepts and Algorithms

• Spatial AI Modeling Workflow

• Integration of Spatial AI with OML

• Python API for Spatial AI

• Notebook Examples

• About Python Libraries in Oracle Spatial AI

What is Oracle Spatial AI?
In general, Geospatial Artificial Intelligence (GeoAI) or Spatial AI refers to geospatial machine
learning and deep learning capabilities that gather usable information and intelligence, which
enable users to detect, track, discover, classify, predict, and analyze location related business
events, geospatial objects, and ground features on the Earth.

Geospatial data is everywhere, and most events and business data are associated with
location. Location plays a critical role in affecting environment, events, and businesses.
Therefore, analyzing and applying location and related information to gather useful intelligence
for various applications is important.

The following lists a few use cases where Spatial AI helps organizations to understand better
the business opportunities, environmental impacts, or operational risks and gain valuable
insights to make informed decisions:

• Analyzing patterns of cancer and epidemic disease such as cholera, SARS, and Covid-19.

• Finding hot spots of crime to help police to make staffing and patrolling decisions.

• Identifying patterns of car accidents or pedestrian deaths to help optimize arrangements of
red lights and road networks.

• Predicting house prices based on census data and location information and helping to
choose a home considering the home’s proximity to economic opportunities, schools,
health care, and roadways for commutes.

The current release of Oracle Spatial AI provides geospatial machine learning algorithms for
analyzing and modeling geospatial vector data and location related events. It provides
geospatial machine learning techniques, end-to-end workflow, and related APIs.

Spatial AI is integrated with Oracle Machine Learning (OML) and is deployed with OML4Py on
Oracle Autonomous Database Serverless cloud service. This implies that you can access
Spatial AI through OML interfaces and services on you Autonomous Database Serverless
instance.

1-1



You can leverage this product to prepare and analyze data stored in Oracle Spatial and Oracle
Cloud Infrastructure (OCI) Object Storage, train spatial machine learning models, and apply
the models in a variety of applications. For example, you can apply clustering techniques to
identify spatial patterns of events, detect hot spots, cold spots, anomalies and outliers. You can
also apply spatial regression and classification techniques to analyze spatial data, predict
house prices, and classify poverty levels.

Real-World Applications of Oracle Spatial AI
Oracle Spatial AI can be used to add value in several application areas.

• Spatial Data Analysis and Modeling
Geospatial data scientists and application users can leverage Oracle Spatial AI to prepare
and analyze data stored in Oracle Spatial and OCI object storage, train spatial machine
learning models, and apply these models in a variety of applications. For example, users
can use clustering, regionalization, and anomaly detection techniques to identify spatial
patterns and anomalies. Users can also apply spatial regression and classification
techniques to do predictive analysis.

• Enterprise Applications
Enterprise applications include HCM, ERP, CRM, and industry solutions for utilities,
defense, and public sectors. Most business data have a spatial component and therefore
spatial analyzing and modeling capabilities adds significant value to those applications. For
example, HR systems can leverage clustering to analyze grievances, safety violations, and
disciplinary hot spots. Utility applications may train models to detect electric vehicle
charging locations from their heavy load.

• OML Functionalities
Oracle Spatial AI is delivered as part of OML. It fully leverages OML functionalities and
complements OML by adding spatial modeling capabilities. Spatial AI, together with OML,
enhances the user experience for data scientists and, in particular, geospatial users.

Spatial Machine Learning Concepts and Algorithms
Learn about the Spatial AI machine learning concepts.

Spatial Machine Learning is machine learning on spatial and location data to gather usable
information and intelligence for various applications.

The majority of data are associated with location. Location and location relationships affect
business and event outcomes. This kind of impact of location is called a spatial effect. There
are two types of spatial effects, namely, Spatial Dependence and Spatial Heterogeneity.
Spatial machine learning incorporates these spatial effects by taking into account the location
data (in addition to business or attribute data) to improve the analytical and predictive models.

One approach of spatial machine learning is to use traditional machine learning models by
integrating spatially explicit independent variables generated using spatial feature engineering
operations. Oracle Spatial AI provides some Spatial Feature Engineering algorithms for this
purpose. However, this approach may be limited by what spatially engineered features are
used, as these may not be able to fully cover the spatial effects in most application scenarios.

Besides using traditional machine learning models involving spatial feature engineering,
Spatial AI allows you to create specialized machine learning models designed to fully
incorporate spatial information and spatial relationships or spatial effects (such as spatial
dependence and spatial heterogeneity).

In summary, the following table lists the spatial machine learning techniques and the
corresponding algorithms supported by Spatial AI. Using these techniques, you can build

Chapter 1
Real-World Applications of Oracle Spatial AI
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spatial machine learning models or generate spatially engineered features for use in traditional
machine learning models to detect patterns and make predictions.

Techniques Algorithms

Spatial Feature Engineering • Spatial Lag Transformer
• Categorical Lag Transformer
• Spatial Coordinates Transformer
• Spatial Imputer

Spatial Clustering • LISA Hotspot
• DBSCAN with Regionalization
• Agglomerative with Regionalization

Spatial Anomaly Detection • Local Outlier Factor (LOF)

Spatial Regression • Spatial Cross-Regressive Model (SLX)
• Spatial Lag Model (or Spatial Autoregressive (SAR)

model)
• Spatial Error Model (SEM)
• Geographical Regressor (GR)
• Geographically Weighted Regression (GWR)
• Spatial Regimes (OLS_Regimes)
• Spatial Fixed Effects (SFE)

Spatial Classification • SLX Classifier
• GWR Classifier
• Geographical Classifier

Spatial Dependence
Spatial dependence means that a variable’s values at different locations are related to or
affected by each other depending on their distances. The closer the distance, the more similar
the values of the variable, and conversely.

This is according to Tobler's first law of geography, Everything is related to everything else, but
near things are more related than distant things. It reflects the fact that the characteristics of
the observations are affected by their spatial arrangement, and the values of observations are
related to each other through distance.

Spatial dependence is also called or measured as spatial autocorrelation. A typical example of
spatial dependence is house prices in a district. The more expensive houses are closer to each
other, and the price of a house sold would affect the selling prices of its neighbors. Spatial
dependence is one major type of spatial effects a spatial machine learning model needs to
take into consideration when it exists.

Spatial Heterogeneity
Spatial heterogeneity refers to the uneven distribution of a variable’s values or systematic
variation of outcomes across space.

Spatial heterogeneity means that parts of the machine learning model may vary systematically
with geography, that is, the parameters or error terms of the model may change according to
the location. The error term change of a model, or the presence of variance in the residuals, is
caused by spatial heteroskedasticity, a special type of heterogeneity. For example, the climate
and weather might change dramatically across different climate zones, affecting forestation/
deforestation and crop yields. If spatial heterogeneity exists as a spatial effect, then it needs to
be considered by spatial machine learning models.

Chapter 1
Spatial Machine Learning Concepts and Algorithms
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In the real world, spatial dependence may sometimes play a bigger role in affecting other
independent variables or dependent variables (outcomes). But at other times, spatial
heterogeneity may play a bigger role than spatial dependence. However, both play a role in
many scenarios. This implies that for a specific use case you may choose different machine
learning algorithms for different applications, depending upon the spatial effect.

Oracle Spatial AI takes into consideration the spatial relationships and spatial effects in all its
spatial machine learning algorithms. For that purpose, spatial weight is a required parameter
for all algorithms. Spatial weight is how spatial relationships are quantified. Spatial effects can
be tested using statistics, such as Autocorrelation/Moran’s I, Lagrange Multipliers, and
Koenker-Basset Test.

See Spatial Weights, Spatial Autocorrelation, and Metrics for Spatial Regression for more
information.

Spatial Feature Engineering
Spatial feature engineering refers to using geographic information to “construct” new data or
develop additional information from geographic information.

For example, given a dataset of metro stations, generate metrics for the number of restaurants
and theaters within several distances. Or, given a neighborhood, generate the average house
price surrounding a specific house or location. The results then are usually either numerical or
categorical variables. These are also called spatially explicit independent or exogenous
variables in the spatial modeling context. The purpose of spatial feature engineering is to
generate those new features from spatial data, which can be treated as extra independent
variables and be directly fed into general machine learning algorithms (without modification of
the algorithms) for analysis and predictions.

Machine learning based on spatial feature engineering reflects that those processes are not
the same everywhere geographically. This is one type of spatial machine learning. However,
depending on the application cases, this may not fully consider more intrinsic spatial
relationships or neighborhood effects. Thus an application may require some specialized
machine learning algorithms provided by Spatial AI.

You can leverage Oracle Spatial database functionalities to engineer new features based on
spatial data. In addition, the following three new feature engineering methods are supported - 
Spatial Lag Transformer, Categorical Lag Transformer, and Spatial Coordinates Transformer.

Spatial Clustering and Regionalization
Spatial clustering is a fundamental method of geographical analysis that detects patterns from
location data.

The following lists a few use cases where you can apply spatial clustering:

• Finding crime hotspots to help police make staffing and patrolling decisions.

• Identifying patterns of car accidents or pedestrian deaths to help optimize arrangements
for red lights and road networks.

Spatial clustering consists of labeling the observations of a dataset, so that observations with
the same label share common characteristics spatially. Clustering is widely used to provide
insights into the geographic structure of complex spatial data. LISA Hotspot is a spatial
clustering algorithm that fully considers spatial dependence.

Regionalization is a special kind of clustering to group observations, which are similar not only
in their statistical attributes, but also in their spatial location. Observations are grouped so that

Chapter 1
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each spatial cluster, or region, is spatially-coherent as well as data-coherent. DBSCAN with
Regionalization and Agglomerative with Regionalization are two such clustering algorithms.

Spatial Anomaly Detection
Anomaly detection finds outliers and novelties, defined as observations that are significantly
different from the others.

Outlier detection estimators try to fit the regions where the training data is the most
concentrated, ignoring the deviant observations. Novelty detection finds whether a new
observation is an outlier, in which case an outlier is also called a novelty. However, novelty
detection assumes no outliers in the training data.

An example use case can be analyzing all environmental or traffic monitoring sensor data to
find out the anomaly that could lead to identifying dysfunctional sensors.

Spatial anomaly detection identifies observations that are geographically isolated using spatial
weights with standard anomaly detection methods (see the Local Outlier Factor anomaly
detection method). In addition, Spatial Clustering and Regionalization algorithms can also be
used to detect outliers and analyze anomalies.

Spatial Regression
Spatial regression is a particular type of regression that introduces space or geographical
context into the statistical framework of regression for prediction or inferring causal
relationships.

Although spatial regression can be done to some extent through traditional regression
algorithms based on spatial feature engineering, its main task and focus is to provide unique
regression algorithms that consider spatial relationships such as spatial dependence or spatial
heterogeneity. Some example use cases include predicting house prices based on census
data and location information, or finding a home considering the property’s proximity to
economic opportunities, schools, health care, and roadways for commutes.

The following spatial regression algorithms are supported:

• Spatial Cross-Regressive Model (SLX)

• Spatial Lag Model (SAR)

• Spatial Error Model (SEM)

• Geographical Regressor (GR)

• Geographically Weighted Regression (GWR)

• Spatial Regimes (OLS_Regimes)

• Spatial Fixed Effects (SFE)

Spatial Classification
Spatial classification is a particular type of classification that introduces space or geographical
context into the statistical framework of a classification to assign an object to a class in a set of
categories.

Although spatial classification can be done to some extent through traditional classification
algorithms based on spatial feature engineering, its main task and focus is to provide unique
classification algorithms considering spatial dependence or spatial heterogeneity.

Chapter 1
Spatial Machine Learning Concepts and Algorithms
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The following describes a few use cases where you can apply spatial classification to predict
emergency responses and help in the decision-making process:

• Analyzing and predicting the crime rate based on zones and related demographic data

• Analyzing and predicting the severity of air pollution based on industrialization status and
population density across a geographic region

The following three spatial classification algorithms are supported:

• SLX Classifier

• GWR Classifier

• Geographical Classifier

Spatial AI Modeling Workflow
Learn about the Spatial AI modeling workflow for both supervised and unsupervised machine
learning.

The following flowchart shows the typical workflow of Spatial AI modeling and analysis.

 

 
As seen in the preceding figure, the workflow comprises the following steps - data loading,
preprocessing, training and evaluating ML models, predicting using the trained model, post-
processing the results, and exporting the results back into database or files in other storage.

The workflow applies to both supervised (regression, classification, and anomaly detection)
and unsupervised (clustering and regionalization) machine learning . However, in the latter
case, the training and prediction actions are merged together into one step.

The workflow actions shown in the preceding figure are supported by the following
components:

• Data Access: This component helps for reading from and writing into one of the following
data sources - Autonomous Database Serverless, OCI Object Storage, or local files.
However, note that the main storage system is the Autonomous Database Serverless
database. A single proxy spatial data frame is used for both data loading and data
exporting.
See Access Spatial Data for more information.

• Preprocessing: This component prepares, processes, and augments source data. It
includes filling missing values, scaling data, engineering new features, and splitting the
source dataset into training dataset, validation dataset, and test dataset.

Chapter 1
Spatial AI Modeling Workflow
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See Preprocess Spatial Data for more information.

• Spatial Analysis: This component provides basic spatial analytics. These are then used
together with or to facilitate machine learning modeling to achieve better results or gain
better insights.
See Perform Spatial Analysis for more information.

• AI Machine Learning Algorithms: This component is at the core of Spatial AI and
provides algorithms and techniques for descriptive and predictive analysis.
Each algorithm provides methods that allows you to create or train models and make
predictions.

– Regression, classification, and anomaly detection algorithms: These are
supervised learning algorithms where each algorithm has a fit method for training, a
score method for evaluation, and a predict method for prediction.
See Apply Spatial Regression, Apply Spatial Classification, and Apply Spatial Anomaly
Detection for more information.

– Clustering and regionalization algorithms: These are unsupervised learning
algorithms where each algorithm has a fit method for both training and clustering.
See Apply Spatial Clustering for more information.

In addition to training and applying each model individually, this component also provides
adaptive spatial regression. This tool enables you to automatically search and evaluate
different regression algorithms and find out the best algorithm for a specific application.

• Post-processing: This component generally includes cleaning the results, removing
redundancy, georeferencing spatial data, converting data formats, and generating and
storing useful spatial layers.
As the Spatial AI machine learning is applied only with spatial vector data, the results are
relatively simple without much need of post-processing. The resulting data can be directly
stored back in the database using the data access component. You can then further
process the data through Oracle Spatial functionalities.

See Run Post-Processing Tasks for more information.

• Spatial pipeline: The pipeline provides the capabilities to organize and simplify spatial
machine learning workflow. The spatial pipeline extends the existing scikit-learn pipeline
to take spatial information such as geometry data and spatial weights.
See Work with Spatial Pipeline for more information.

Integration of Spatial AI with OML
Oracle Spatial AI is a Python library deployed with Oracle Machine Learning (OML) and runs in
Oracle Database spawned OML4Py servers in the Autonomous Database Serverless
environment.

Spatial AI is integrated with OML, mainly OML Notebooks and OML4Py. It is therefore
considered as an extension to the OML product with added spatial modeling capabilities.

The following diagram shows the architecture of Oracle Spatial AI integrated with OML on
Autonomous Database Serverless.

 

Chapter 1
Integration of Spatial AI with OML
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You can interact with the database using the secure OML connection. Besides Autonomous
Database, Oracle Spatial AI can also access spatial data from OCI Object Storage or the local
file system.

You can access Oracle Spatial AI through the OML User Interface (see Get Started with Oracle
Machine Learning User Interface). Using this interface you can perform the following:

• Create and manage projects and notebooks.

• Schedule and monitor model training and prediction jobs.

• Publish Python functions and models through the OML4Py Embedded Execution REST
and SQL APIs to leverage the scalability and high-performance of Autonomous Databases
(see Oracle Machine Learning for Python User's Guide).

See Get Started with Oracle Spatial AI for more information.

Python API for Spatial AI
You can perform the spatial machine learning workflow using the Python API provided by
Oracle Spatial AI.

The Python API includes the following major packages:

• oraclesai.data: Provides a unified structure for data access (read and write) to database
and object storage as well as data processing in the machine learning workflow.

• oraclesai.preprocessing: Provides functionalities for data preprocessing, feature
engineering, and label preparation.

• oraclesai.analysis: Provides some basic data analysis, particularly enable users to
leverage Oracle Spatial functionality through Python.

• oraclesai.clustering: Provides spatial clustering techniques and algorithms.

Chapter 1
Python API for Spatial AI
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• oraclesai.outliers: Provides spatial anomaly detection techniques and algorithms.

• oraclesai.regression: Provides spatial regression techniques and algorithms.

• oraclesai.pipeline: Provides spatial pipeline for chaining the processing steps in a
machine learning workflow.

• oraclesai.classification: Provides spatial classification techniques and algorithms.

See Python API Reference for Oracle Spatial AI for more details on the packages.

Notebook Examples
Spatial AI provides over 20 sample notebooks which demonstrates how to use the spatial
machine learning techniques in different use case scenarios.

These notebooks are self-contained and hosted on the OML User Interface (UI). You can
directly access and run the example notebooks using the OML UI on your Autonomous
Database Serverless instance.

Task Notebooks

Data Access • OML4Py Spatial AI PAR Object Store

Spatial Feature Engineering • OML4Py Spatial AI Categorical Lag Transformer
• OML4Py Spatial AI Scoord Transformer
• OML4Py Spatial AI Spatial Imputer
• OML4Py Spatial AI Spatial Lag Transformer

Spatial Clustering • OML4Py Spatial AI Agglomerative Clustering and
Regionalization

• OML4Py Spatial AI DBSCAN Accidents
• OML4Py Spatial AI Hotspot Clustering

Spatial Anomaly Detection • OML4Py Spatial AI LOF Accidents

Spatial Regression • OML4Py Spatial AI Geographical Regressor
• OML4Py Spatial AI GWR Regressor
• OML4Py Spatial AI OLS Regressor
• OML4Py Spatial AI Spatial Lag and Error Regressors
• OML4Py Spatial AI Spatial Fixed Effects Regressor

Spatial Classification • OML4Py Spatial AI Geographical Classifier
• OML4Py Spatial AI SLX Classifier

Spatial Analysis • OML4Py Spatial AI Exploratory Analysis
• OML4Py Spatial AI Spatial Operations

OML4Py • OML4Py Spatial AI Embedded Execution for SQL
• OML4Py Spatial AI SpatialDataFrame to OML

DataFrame
• OML4Py Spatial AI Save Load Run

About Python Libraries in Oracle Spatial AI
Oracle Spatial AI is deployed with OML4Py which comes installed with Oracle Autonomous
Database Serverless.

The OML4Py installation includes Python, additional required Python libraries, and the
OML4Py server components. A Python interpreter is included with Oracle Machine Learning
Notebooks in Autonomous Database. See About the Python Components and Libraries in
OML4Py for the list of Python libraries included in OML4Py.

Chapter 1
Notebook Examples
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Also, note the following for Spatial AI:

• Python: The Python installation used is 3.12.0 version.

• Required Python Libraries for Oracle Spatial AI:

– SQLAlchemy 2.0.15
– contextily 1.3.0
– geopandas 1.0.1
– shapely 2.0.3
– fiona 1.10b2
– pyproj 3.6.1
– esda 2.5.1
– libpysal 4.9.2
– mgwr 2.2.1
– spglm 1.1.0
– spreg 1.4.2
The preceding libraries are included with Python on your Oracle Autonomous Database
Serverless instance.

Chapter 1
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2
Get Started with Oracle Spatial AI

Oracle Spatial AI is a Python package automatically deployed with OML4Py.

The following steps enable you to get started with Oracle Spatial AI:

1. Provision an Autonomous Database Serverless instance.

See Provision Autonomous Database for more information.

2. Obtain your Oracle Machine Learning (OML) user credentials.

You can request your Service Administrator to create and provide access to your OML
account.

3. Access the OML user interface (UI) on your Autonomous Database instance.

See Access Oracle Machine Learning User Interface for more information.

4. Create or open a notebook, and connect to the Python interpreter.

See Use the Python Interpreter in a Notebook Paragraph for more information.

Note:

Installing OML4Py automatically installs Spatial AI. When you connect to a
Python interpreter in a notebook paragraph from the OML UI, an OML4Py
container gets created on Oracle Cloud Infrastructure (OCI), and the Spatial AI
package gets installed together with other OML4Py packages automatically. See 
Oracle Machine Learning for Python User's Guide for more information on
OML4Py.

You can now interact with Spatial AI through Oracle Machine Learning Notebooks.
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3
Access Spatial Data

Spatial AI can retrieve spatial data from different data sources for analysis and machine
learning modeling.

Spatial AI can work with spatial data stored in Oracle database tables (as geometry layers), or
access spatial data in OCI Object Storage, or from your local file system (in their original file
formats, such as Shapefiles and GeoJSON files).

Topics:

• About Accessing Data in Spatial AI

• Data Access Workflow

• Data Manipulation with SpatialDataFrame

About Accessing Data in Spatial AI
Spatial data refers to layers of geometries, such as points, lines, and polygons.

The geometries record the location and shape of spatial objects and are associated with other
types of data for analysis (refer to Oracle Spatial Developer's Guide for more information).
Spatial AI API provides the SpatialDataFrame class, a data structure that unifies how spatial
data is accessed in spatial analysis and machine learning workflows.

A SpatialDataFrame instance is created by calling the create() class method and passing in
a reference to the data, which is called a dataset. A dataset refers to a data source and
contains the connection and location of the source data.

The following table lists the four types of datasets (or data sources) that are supported.

Data Source Description

DBSpatialDataset A reference to a database table with a geometry layer.

FileSpatialDataset A reference to a directory or file in a spatial format within a
local file system.

PARObjStoreSpatialDataset A reference to a folder or object in a spatial format located in
OCI Object Store containing a Pre-Authenticated Request
URL.

GeoDataFrameDataset A reference to an existing GeoDataFrame.

The following code example shows how to create an instance of SpatialDataFrame using
DBSpatialDataset as data source to reference the database table la_block_groups.

import oml
from oraclesai import SpatialDataFrame, DBSpatialDataset

block_groups = 
SpatialDataFrame.create(DBSpatialDataset(table='la_block_groups', 
schema='oml_user'))

3-1

http://www.oracle.com/pls/topic/lookup?ctx=en/database/oracle/oracle-database/23&id=SPATL-GUID-EEEED709-34A1-46EA-9AF3-869FD06E3076


Data Access Workflow
Learn about the spatial data access workflow for the supported data sources.

The following figure shows the spatial vector data model and its internal data access workflow:

 

 
As seen in the preceding figure, creation of SpatialDataFrame depends on the data source:

• Spatial database: SpatialDataFrame is created by Spatial AI itself.

• Files: SpatialDataFrame is created through GeoPandas/Fiona/OGR.

You can convert a SpatialDataFrame to GeoPandas GeoDataFrame and its columns to NumPy
arrays when more complex in-memory analysis is required or when the data needs to be
passed to a standard library such as scikit-learn or PySAL. Conversely, you can also convert
a GeoPandas GeoDataFrame to a SpatialDataFrame.

All Oracle Spatial AI API algorithms accept SpatialDataFrame as input. Some algorithms can
also accept GeoPandas GeoDataFrame or NumPy arrays.

Data Manipulation with SpatialDataFrame
Review the properties and methods available in the SpatialDataFrame class for data
manipulation.

Chapter 3
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Properties and Methods Description

columns Returns a list of column names.

index_columns Returns a list of columns that represent the index; these columns are
not part of the property columns.

shape Returns a tuple with the dimensionality of the current instance.

head Returns the first rows of the data.

add_column Adds a new column to the current instance. The new column must have
the same number of rows as the current instance.

drop Returns a new instance of SpatialDataFrame with the specified
columns removed.

dropna Removes rows containing missing values and returns a new instance of
SpatialDataFrame.

iterrows Iterates through all the rows of the current instance.

create Creates a SpatialDataFrame instance based on the dataset type.

as_geo_data_frame Returns a GeoPandas GeoDataFrame based on the current instance.

get_values Returns the data of the current instance as a NumPy array.

write Writes the data of the current instance into the destination specified in
the parameter dataset.

sort_values Returns a new instance of SpatialDataFrame sorted by the values of
the specified columns.

The SpatialDataFrame class also functions as the Python API for Oracle Spatial database
enabling Python access to Oracle Spatial functionalities and in-database spatial analysis.

See Perform Spatial Analysis for more information.

Chapter 3
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4
Preprocess Spatial Data

You can prepare, process, and augment source data for spatial analysis using Oracle Spatial
AI.

You can use the processing methods provided by Spatial AI for filling missing values, scaling
data, engineering new features, and splitting the source dataset into training, validation, and
test datasets.

Note that data preprocessing may vary for different scenarios. Also, some methods work only
for numerical data, and the others work only for categorical variables. However, the machine
learning algorithms work with numbers, and the preprocessing methods aim to provide "good"
data to the algorithms to produce meaningful results.

The following preprocessing methods are implemented in Oracle Spatial AI.

Topics:

• Spatial Lag Transformer

• Categorical Lag Transformer

• Spatial Coordinates Transformer

• Spatial Imputer

• Splitting Datasets

Categorical Lag Transformer
The categorical lag is used for categorical variables and represents the most common value in
the neighborhood.

For example, given a feature representing a property type (such as house, apartment,
townhouse, and so on), the categorical lag is the most common property in the surroundings.

This is also a feature engineering method which computes categorical lag values that can be
directly used to train any machine learning models. The CategoricalLagTransformer class
computes the categorical lag of a given training data and changes the value of an observation
for its categorical lag. It transforms an observation's value with the most common value in the
neighborhood.

An instance of this class takes the spatial_weights_definition parameter, which defines the
relationship between the neighboring observations.

The main methods of the class are described in the following table.

Method Description

fit Calculates the spatial weights of the training data using the algorithm
associated with the spatial_weights_definition parameter and
the geometry column.
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Method Description

transform Returns the most common value from each location's neighbors. By
defining the use_fit_lag parameter, the method can use the
neighbors from the training set, or the data passed into the transform
method. The output is a NumPy array.

fit_transform Calls the fit and transform methods in sequence with the training
set.

See the CategoricalLagTransformer class in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the block_groups SpatialDataFrame and the
CategoricalLagTransfomer method to transform the values from the INCOME_CLASS feature for
the most common value of the corresponding neighbors.

The INCOME_CLASS column has four categories: High, Medium-High, Medium-Low, Low. These
represent the income level for a specific observation. The target variable (MEDIAN_INCOME) and
the geometry column are not part of the output.

from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.preprocessing import CategoricalLagTransformer 
import pandas as pd 
 
# Create a categorical variable based in the median income
labels=['Low', 'Medium-Low', 'Medium-High', 'High'] 
block_groups_extended = block_groups.add_column("INCOME_CLASS", 
pd.qcut(block_groups["MEDIAN_INCOME"].values, [0, 0.25, 0.5, 0.75, 1], 
labels=labels).tolist()) 
 
# Define the variables of the training data
X = block_groups_extended[["MEDIAN_INCOME", "INCOME_CLASS", "geometry"]] 
print(f">> Original data:\n {X['INCOME_CLASS'].values[:10]}")
 
# Define the spatial weights
weights_definition = KNNWeightsDefinition(k=20) 
 
# Create an instance of CategoricalLagTransformer
categorical_lag_transformer = CategoricalLagTransformer(weights_definition) 
 
# Transforms the training data with the categorical lag 
X_categorical_lag = categorical_lag_transformer.fit_transform(X, 
y='MEDIAN_INCOME', geometries='geometry') 
 
# Displays the transformed data
print(f"\n>> Transformed data:\n {X_categorical_lag[:10, :]}")

The resulting output is a NumPy array with a single column, representing the categorical lag of
the INCOME_CLASS column. Note that both the target variable (MEDIAN_INCOME) and the
geometries are not part of the output.

>> Original data:
 ['Medium-Low' 'Medium-High' 'Medium-High' 'High' 'High' 'High' 'High'
 'High' 'Medium-High' 'Medium-Low']

Chapter 4
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>> Transformed data:
 [['High']
 ['High']
 ['High']
 ['High']
 ['High']
 ['High']
 ['High']
 ['Medium-High']
 ['Medium-High']
 ['Medium-High']]

Spatial Lag Transformer
The spatial lag of a particular feature reflects the average value of that feature in the
neighborhood around each observation.

For example, in a given neighborhood, the spatial lag of the house price is the average house
price surrounding a specific house or location. This is a feature engineering method which
computes spatial lag values that can be directly used to train any machine learning models.

The SpatialLagTransformer class calculates the spatial lag of training data and changes the
value of an observation to its spatial lag. In other words, it changes an observation's value to
the average value of its neighbors.

To create an instance of SpatialLagTransformer, it is necessary to define the
spatial_weights_definition parameter, which establishes the relationship between
neighboring locations.

The main methods of the class are described in the following table.

Method Description

fit Computes the spatial lag for all the features in the training set.

transform Changes the spatial lag value depending on the use_fit_lag
parameter. If use_fit_lag=True, then it calculates the spatial lag from
the training set. Otherwise, it computes the spatial lag from the data
passed into the transform method. The function returns a NumPy
array.

fit_transform Calls the fit and transform methods in sequence with the training
data.

See the SpatialLagTransformer class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and the
SpatialLagTransformer method to change the MEAN_AGE and HOUSE_VALUE features values to
determine their spatial lag values. Note that the MEDIAN_INCOME feature is ignored since it is
defined as the target variable. The geometry feature is used to calculate the spatial lag, but it is
not part of the output from the transformer.

from oraclesai.weights import KNNWeightsDefinition
from oraclesai.preprocessing import SpatialLagTransformer
 
# Define the variables
X = block_groups[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", "geometry"]]

Chapter 4
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# Print original data
print(f">> Original data:\n {X[['MEAN_AGE', 'HOUSE_VALUE']].get_values()
[:5]}")
 
# Define spatial weights
weights_definition = KNNWeightsDefinition(k=5)
 
# Create an instance of SpatialLagTransformer
spatial_lag_transformer = 
SpatialLagTransformer(spatial_weights_definition=weights_definition)
 
# Print the transformed data
X_spatial_lag = spatial_lag_transformer.fit_transform(X, y="MEDIAN_INCOME", 
geometries="geometry")
print(f"\n>> Transformed data:\n {X_spatial_lag[:5, :]}")

The resulting output is a NumPy array with the spatial lag of the MEAN_AGE and HOUSE_VALUE.

>> Original data:
 [[4.75847626e+01 4.56300000e+05]
 [3.88231812e+01 8.36300000e+05]
 [4.78076096e+01 1.12630000e+06]
 [4.65636330e+01 9.60400000e+05]
 [5.11550865e+01 1.01090000e+06]]

>> Transformed data:
 [[4.03809292e+01 6.23460000e+05]
 [3.95882790e+01 8.20100000e+05]
 [4.69466225e+01 1.22280000e+06]
 [4.25439751e+01 1.04664000e+06]
 [4.43390564e+01 1.14368000e+06]]

Spatial Coordinates Transformer
The SCoordTransformer class takes input data containing a geometry column with geometries
and produces a NumPy array containing the centroids of the geometries, which represent the x
and y coordinates.

This transformer can be used to pass location information directly to a model.

The main methods of the class are described in the following table.

Method Description

fit Not yet implemented as it does not perform any calculations with the
training data.

transform Returns the XY coordinates of the geometries. In case of non-point
spatial objects (such as lines and polygons), it returns the centroids of
the geometries.

fit_transform Calls the fit and transform methods sequentially with the training
data.

See the SCoordTransformer class in Python API Reference for Oracle Spatial AI for more
information.
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The following example uses the block_groups SpatialDataFrame and the SCoordTransformer
class to obtain the centroid’s coordinates from a SpatialDataFrame. The geometries are
specified in the geometry column.

from oraclesai.preprocessing import SCoordTransformer 
 
# Define the variables of the training data
X = block_groups[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", "geometry"]] 
 
# Use a referenced coordinate system
X = X.to_crs("epsg:3857") 
 
# Print the given data
print(f">> Original data:\n {X['geometry'].head(5)}")
 
# Transform the data with the SCoordTransformer
coordinates = SCoordTransformer().fit_transform(X) 
 
# Print the transformed data
print(f"\n>> Transformed data:\n {coordinates[:5, :]}")

The resulting output consists of the centroids of the geometries.

>> Original data:
                                             geometry
0  POLYGON ((-13175658.713 4010761.859, -13174935...
1  POLYGON ((-13175749.772 4004714.769, -13174771...
2  POLYGON ((-13179169.173 4002635.119, -13178970...
3  POLYGON ((-13177695.971 4003360.046, -13177503...
4  POLYGON ((-13177368.803 4002939.500, -13176993...

>> Transformed data:
 [[-13174765.1034151    4010231.26409032]
 [-13175173.61624862   4003637.47437617]
 [-13178654.77968995   4002868.5566815 ]
 [-13176298.82436636   4002826.86495246]
 [-13176753.58959072   4002684.55714192]]

Spatial Imputer
The SpatialImputer class allows us to fill the missing value of an observation using data from
its neighbors.

According to Tobler's law, closer things are more related than the distant ones. Therefore, the
goal is to leverage spatial weights to compute the missing values.

The following table describes the parameters of the SpatialImputer class.

Parameter Description

spatial_weights_definition Defines the relationship between the neighboring locations. It
is necessary to retrieve information from the neighbors.

missing_values All occurrences of missing_values will be imputed
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Parameter Description

strategy By default, SpatialImputer uses “mean” to fill in the
missing values. In other words, the weighted average from the
neighboring observations replaces the missing values. The
other options are "median", "maximum", and "minimum".

The SpatialImputer class is a transformer, and its main methods are described the following
table.

Method Description

fit Calculates the spatial lag from the training data.

transform Returns a NumPy array with the data parameters passed according to
the specified strategy. It determines whether to use the neighbors
from the training set by defining the use_fit_lag parameter.

fit_transform Calls the fit and transform methods sequentially with the training
data.

See the SpatialImputer class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame that was created earlier and
performs the following:

1. Adds the missing values in the INTERNET column.

2. Defines the spatial weights using the K-Nearest Neighbors method.

3. Calls the fit_transform method of the SpatialImputer to fill in the missing values of the
training set.

Note that the target column (MEDIAN_INCOME) and the column geometry are not part of the
output.

import random
import numpy as np 
from oraclesai import GeoDataFrameDataset 
from oraclesai.preprocessing import SpatialImputer 
from oraclesai.weights import KNNWeightsDefinition 

random.seed(32) 
block_groups_missing_df = block_groups.as_geodataframe() 

# Assign missing values randomly to the internet column 
ix = [row for row in range(block_groups.shape[0])] 
for row in random.sample(ix, int(round(.1*len(ix)))): 
    block_groups_missing_df.loc[row, "INTERNET"] = np.nan 

# Create a SpatialDataFrame with the data containing missing values 
block_groups_missing_pdf = 
SpatialDataFrame.create(GeoDataFrameDataset(block_groups_missing_df)) 

# Define the variables of the model 
X = block_groups_missing_pdf[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", 
"INTERNET", "geometry"]] 
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# Define the spatial weights 
weights_definition = KNNWeightsDefinition(k=10) 

# Print the total number of missing values 
print(f"Missing Values Before Imputation = 
{np.sum(np.isnan(X.get_values()))}") 

# Create an instance of SpatialImputer 
spatial_imputer = SpatialImputer(missing_values=np.nan, 
spatial_weights_definition=weights_definition) 

# Fill the missing values of the training data 
X_imputed = spatial_imputer.fit_transform(X, y="MEDIAN_INCOME") 

# Print the total number of missing values (0 is expected) 
print(f"Missing Values After Imputation = {np.sum(np.isnan(X_imputed))}")

The resulting output shows the number of missing values before and after imputation.

Missing Values Before Imputation = 344
Missing Values After Imputation = 0

Splitting Datasets
Spatial AI provides two ways of splitting a dataset into different subsets.

The following sections describe both the supported methods for splitting a dataset:

Using the SpatialDataFrame.split Function

A SpatialDataFrame can be split into two or more subsets by calling the split method. The
split method takes a tuple containing the size ratio of each subset.

The number of elements contained in the ratio tuples dictates the number of subsets
SpatialDataFrames returned.

See the SpatialDataFrame.split method in Python API Reference for Oracle Spatial AI for more
information.

The following example splits the given SpatialDataFrame into train, test, and validation
subsets, each containing 50%, 30%, and 20% of the number of elements of the original
SpatialDataFrame, respectively.

# Print the size of the SpatialDataFrame defined as X
print(f"\n>> X (shape):\n {X.shape}")

# Split X into smaller SpatialDataFrames
X_train, X_test, X_validation = X.split(ratio=(0.5, 0.3, 0.2))

# Print the size of the resulting datasets
print(f"\n>> X_train (shape):\n {X_train.shape}")
print(f"\n>> X_test (shape):\n {X_test.shape}")
print(f"\n>> X_validation (shape):\n {X_test.shape}")
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The output for the preceding example is:

>> X (shape):
(3437, 5)

>> X_train (shape):
(1718, 5)

>> X_test (shape):
(1031, 5)

>> X_validation (shape):(688, 5)

Using the spatial_train_test_split Function

The spatial_train_test_split function receives an instance of the SpatialDataFrame class
and splits it into the training and test subsets.

Each subset is divided into the explanatory variables X, geometries, and target variable y. X is
a vector of (n-samples * n-features), while geometry and y are vectors of n-samples. The
training subsets can then be further split into training and validation subsets
SpatialDataFrameby calling the same function.

See the spatial_train_test_split function in Python API Reference for Oracle Spatial AI for more
information.

The following example splits the data stored in the block_groups SpatialDataFrame into two
variables. X_train contains 90% of the original data, and X_test contains the remaining 10%.
The proportion is indicated in the test_size parameter.

from oraclesai.preprocessing import spatial_train_test_split 
 
# Define variables
X = block_groups_missing_pdf[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", 
"INTERNET", "geometry"]] 
 
# Print the size of the data
print(f"\n>> X (shape):\n {X.shape}") 
 
# Split the data into training and test sets, using 10% for testing
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.1) 
 
# Print the size of the training and test sets
print(f"\n>> X_train (shape):\n {X_train.shape}") 
print(f"\n>> X_test (shape):\n {X_test.shape}")

The code prints the original size of the data and the size of the two subsets from the split. The
number of features in both subsets remains the same after the split.

>> X (shape):
 (3437, 5)

>> X_train (shape):
 (3093, 5)
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>> X_test (shape):
 (344, 5)
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5
Perform Spatial Analysis

Learn about the Oracle Spatial AI modules that help you to run spatial analysis.

This component contains the following five modules:

Topics:

• Oracle Spatial Based Analysis

• Spatial Colocation Analysis

• Spatial Weights

• Spatial Autocorrelation

• Metrics for Spatial Regression

Oracle Spatial Based Analysis
Spatial AI provides a basic Python API for geometry data in Oracle Spatial database.

This enables Spatial database-based analysis using the Python API provided by the
oraclesai.data package which is implemented in the SpatialDataFrame class. It provides
data access to Oracle Spatial and also data processing functionalities from Oracle Spatial.

These analyses include basic spatial operations, such as geometry computation, spatial query,
aggregation, summary, join, and optimization. They are provided by Python calls to the Oracle
Spatial database, which also enables in-database processing.

If the dataset is from the database, then the methods of the SpatialDataFrame class will push
all the operations to Oracle Spatial and do in-database processing. Otherwise, all the
operations are executed in memory.

The following table describes some of the techniques for spatial analysis.

Operation Description

aggregate Operation is executed over columns, and the
supported functions are count, avg, sum, and mbr.
The result is a SpatialDataFrame object.

area Returns a new SpatialDataFrame instance
containing the areas of each geometry.

buffer Constructs a buffer around each geometry. The
result contains the same rows and columns but
with the geometry buffered.

combine Combines the geometries from the current
SpatialDataFrame instance with the geometries
from the parameter tgt. The result is a
SpatialDataFrame object with the combined
geometries.

crs Returns the coordinate reference system
associated to the geometry.
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Operation Description

groupby Involves splitting a SpatialDataFrame object by
the given criteria, applying a function, and
combining the results.

length Returns a new SpatialDataFrame object with the
lengths of the geometries.

merge Joins two instances of SpatialDataFrame by
comparing the joining keys. The result is another
SpatialDataFrame with columns from both the
instances. It allows to specify the joining keys and
how the join is executed. It is also possible to
define the geometry column for the resulting object.

nearest_neighbors Returns a SpatialDataFrame object with
observations that are closer to a given location,
which can be either a shapely geometry or another
instance of SpatialDataFrame. For the latter, the
result will contain observations containing
information from both SpatialDataFrame objects.

relate Executes a primary spatial filter based on a
specified spatial operator from {anyinteract,
inside, contains, equal, coveredby, on,
covers, overlapbyintersect,
overlapbydisjoint}. It returns a new
SpatialDataFrame instance.

spatial_join Joins two instances of SpatialDataFrame by a
specified interaction defined in the spatial_op
parameter, which can contain any spatial
interaction supported by the relate operation.

The resulting object contains data from both input
objects and the geometry from the calling instance
is used as the geometry in the result.

total_bounds The total_bounds property calculates the
minimum bounding rectangle enclosing all the
data. It returns the result as a tuple with the
following elements (min_x, min_y, max_x,
max_y).

to_crs Returns a new SpatialDataFrame object with the
geometries in the specified CRS

within_distance Returns a SpatialDataFrame object containing
only observations located within a certain distance
from a query window specified as a shapely query
window or another.

distance Returns a new SpatialDataFrame with the
distance between the geometries of the current
instance and the parameter qry_win.

See the SpatialDataFrame class in Python API Reference for Oracle Spatial AI for more
information.
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The following example creates an instance of SpatialDataFrame containing the name and
location of schools in Los Angeles. It uses a DBSpatialDataset to get the data from the
schools table.

import oml
from oraclesai import SpatialDataFrame, DBSpatialDataset

schools = SpatialDataFrame.create(DBSpatialDataset(table='schools', 
schema='oml_user'))

Then, using the block_groups SpatialDataFrame, the within_distance and the groupby
operations, the example computes the number of schools within two kilometers of each block
group, and stores the result in another SpatialDataFrame. The index comes from the column
GEOID.

schools_counts = block_groups.within_distance(schools, 
distance=2000).groupby('GEOID').aggregate(count={'GEOID': 'SCHOOLS_COUNT'})
print(schools_counts["SCHOOLS_COUNT"])

By printing the resulting SpatialDataFrame, note the SCHOOLS_COUNT column, which indicates
the number of schools within two kilometers from a block group.

      SCHOOLS_COUNT                                           geometry
0                 5  POLYGON ((-118.29131 34.26285, -118.29132 34.2...
1                 5  POLYGON ((-118.30075 34.25961, -118.30229 34.2...
2                 4  POLYGON ((-118.30076 34.26321, -118.30075 34.2...
3                 4  POLYGON ((-118.30320 34.27333, -118.30275 34.2...
4                 5  POLYGON ((-118.29069 34.27071, -118.29078 34.2...
...             ...                                                ...
3412             15  POLYGON ((-118.34312 33.99558, -118.34343 33.9...
3413             13  POLYGON ((-118.34930 33.99942, -118.34929 33.9...
3414             14  POLYGON ((-118.34432 33.99074, -118.34486 33.9...
3415             26  POLYGON ((-118.25165 34.08038, -118.25124 34.0...
3416             22  POLYGON ((-118.51849 34.18498, -118.51849 34.1...

Spatial Colocation Analysis
Spatial colocation measures and analyzes relationships between point features of different
classes from the same spatial layer and, most often, from different spatial layers.

A typical example is determining whether different restaurants, such as McDonald's and
Chipotle, are colocated. Further analysis is needed to identify whether McDonald's restaurants
are colocated with metro stations and shopping centers and how they relate to population
density and income levels. These help companies in site selection, site optimization, and also
to minimize costs.

Colocation analysis is a tool that measures proximity patterns between two categories of point
features, A and B, using the Local Colocation Quotient (LCLQ) statistic. For each feature of the
Category of Interest (category A), it calculates its LCLQ score.

• Points of category A with a LCLQ score greater than one are more likely (than random) to
have points of category B within their neighborhood.
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• Points of category A with a LCLQ score less than one are less likely (than random) to have
points of category B within their neighborhood.

• A point with a LCLQ score equal to one indicates that the proportion of categories within its
neighborhood represents the proportion of the categories throughout the entire study area.

The LCLQ score indicates if a feature point is colocated, isolated, or undefined. The following
table describes the possible scenarios.

LCLQ Type Description

Colocated - Significant The LCLQ score is greater than 1 with either a p-
value less than 0.05 or a p-value of None.

Colocated – Not Significant The LCLQ score is greater than 1 with a p-value
equal to or greater than 0.05.

Isolated - Significant The LCLQ score is equal to or less than 1 with
either a p-value less than 0.05 or a p-value of
None.

Isolated – Not Significant The LCLQ score is equal to or less than 1 with a p-
value equal to or greater than 0.05.

Undefined The feature point did not have any neighbors from
the neighboring category.

The colocation relationship is not symmetric. The LCLQ scores calculated when comparing
category A to category B will be different than the LCLQ scores calculated when comparing
category B to category A.

Some of the parameters required to execute colocation analysis are described in the following
table.

Parameters Description

feature_data Data with point features.

spatial_weights_definition Defines the relationship between neighboring
locations. It is necessary to retrieve information
from the neighbors.

interest_category Two values that indicates the field and value of the
category of interest. If the interest_category
and neighbor_category parameters are defined,
then the colocation analysis is executed using
these values from the data specified in
feature_data.

neighbor_category Two values that indicates the field and value of the
neighboring category.

neighbor_feature_data If defined, ignores the interest_category and
neighbor_category parameters. The category of
interest is the point features in feature_data,
while the other category is the point features
defined in this parameter.

n_permutations The number of permutations used to calculate the
significance level of the colocation quotient scores.
If None, then the significance level is not computed,
and None is returned. Increasing the number of
permutations also increases the processing time.

is_time_window_analysis A Boolean parameter indicating if time-window
analysis is required.
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Parameters Description

interest_time_window Indicates the field, start-time, and end-time of
the category of interest.

neighbor_time_widow Indicates the field, start-time, and end-time of
the neighboring category.

The result of the colocation analysis consists of a Pandas DataFrame with the following
columns:

Column Description

row_index The observation’s index in the DataFrame
containing the category of interest.

lclq The LCLQ score.

t_stat The t-statistic associated with the LCLQ score.

p_value The p-value associated with the LCLQ score,
indicating the significance level of the LCLQ score.

lclq_type The colocation type (as described in the earlier
table).

See the spatial_colocation_analysis function in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the schools SpatialDataFrame and splits the data into two
instances of SpatialDataFrame - X and Y, which represent two different classes and then
executes a colocation analysis between the two classes. It requires to define the spatial
weights since colocation analysis uses neighboring locations to calculate the LCLQ scores.

from oraclesai.weights import KernelBasedWeightsDefinition
from oraclesai.preprocessing import spatial_train_test_split
from oraclesai.analysis import spatial_colocation_analysis

# Split the data to create two different classes.
X, Y, _, _, _, _ = spatial_train_test_split(schools, y="", test_size=0.3, 
random_state=32)

# Define spatial weights
spatial_weights_definition = KernelBasedWeightsDefinition(k=25, fixed=False, 
function="gaussian")

# Execute colocation analysis between the two classes
colocation_analysis = spatial_colocation_analysis(X, 
spatial_weights_definition, neighbor_feature_data=Y, n_permutations=20)

# Print the result
print(colocation_analysis[:10])

The preceding code prints the results of the colocation analysis for the first ten observations in
X, which contains the LCLQ score and the significance level.

   row_index      lclq    t_stat   p_value              lclq_type
0          2  1.054835       NaN       NaN  COLOCATED_SIGNIFICANT
1          3  0.948375  4.358899  0.000338   ISOLATED_SIGNIFICANT
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2          4  0.944819  4.358899  0.000338   ISOLATED_SIGNIFICANT
3          6  1.113996  4.358899  0.000338  COLOCATED_SIGNIFICANT
4          7  1.013247       NaN       NaN  COLOCATED_SIGNIFICANT
5          9  0.999595 -4.358899  0.000338   ISOLATED_SIGNIFICANT
6         10  1.078993 -4.358899  0.000338  COLOCATED_SIGNIFICANT
7         11  1.012721       NaN       NaN  COLOCATED_SIGNIFICANT
8         14  0.978001  4.358899  0.000338   ISOLATED_SIGNIFICANT
9         20  0.961042 -4.358899  0.000338   ISOLATED_SIGNIFICANT

Spatial Weights
Spatial weights are used to quantify spatial relationships for analysis and modeling in Spatial
AI.

The spatial weights are represented as a weighted graph, where each observation in a dataset
represents a node. If two nodes are neighbors in a geographic context, then there is an edge
between them with a weight associated with it. In some cases, the weight is binary, indicating
that both nodes are spatially connected; in other cases, the weight is based on the distance
between the nodes. As it is a common practice to work with sparse graphs, the spatial weights
are usually implemented with an adjacency list.

Many machine learning algorithms and spatial analytics, such as spatial autocorrelation
statistics and regionalization algorithms, rely on spatial weights in Spatial AI. The following
table describes the spatial weights supported in Spatial AI.

Spatial Weights Description

KNNWeightsDefinition It is based on proximity and defines a spatial
relationship of K-nearest neighbors.

KernelBasedWeightsDefinition It uses a kernel function to define spatial
relationships, and it is a decay function, which
means that closer neighbors have larger values
while further neighbors have smaller ones.
• The bandwidth parameter is the distance

used for the kernel function.
• The fixed parameter indicates if the

bandwidth is constant for all the observations.
• The function parameter is the kernel that will

be used; this can be one of the following
values: {'triangular', 'uniform',
'quadratic', 'gaussian'}.

• The parameter k is required to estimate the
bandwidth, representing the number of
neighbors for each observation.

DistanceBandWeightsDefinition Uses the distance between two nodes as the
weight for the edge connecting them. If the binary
parameter is True, then the weight is 1 for all the
neighbors at a distance less than the threshold
value. Otherwise, it uses the decay parameter
alpha to estimate the weight. By default, it uses
the Euclidean distance metric.

RookWeightsDefinition The relationship is based on contiguity, where two
geometries are neighbors if they share at least one
edge.
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Spatial Weights Description

QueenWeightsDefinition This definition is based on contiguity. Two
geometries with a common vertex are neighbors
with a weight of 1.

The type of spatial weights depends on the problem scenario to be resolved. In the case of
spatial weights not based on contiguity, the data must be in a projected referenced system.
See the oraclesai.weights module in Python API Reference for Oracle Spatial AI for more
information.

The following example shows how to create an instance of the SpatialWeights class from the
block_groups SpatialDataFrame using the KNNWeightsDefinition and
SpatialWeights.create functions.

from oraclesai.weights import SpatialWeights, KNNWeightsDefinition

spatial_weights = SpatialWeights.create(block_groups, 
KNNWeightsDefinition(k=5))

print(f"neighbors' indexes: {spatial_weights.neighbors[0]}")
print(f"neighbors' weights: {spatial_weights.weights[0]}")

The preceding code prints the neighbors’ indexes of the first observation and their weights. In
this case, all the weights are binary. The neighbors and their weights can be referenced using
the neighbors and weights properties respectively.

neighbors' indexes: [2806, 81, 1717, 80, 1916]
neighbors' weights: [1.0, 1.0, 1.0, 1.0, 1.0]

Spatial Autocorrelation
Spatial autocorrelation is a metric that measures the relationship of a variable in a particular
location with the same variable in other locations.

In practice, it is commonly calculated using neighboring observations to identify if the location
influences the variable’s value.

A positive spatial autocorrelation of a particular variable indicates the similarity of that variable
among neighboring observations, meaning that similar values tend to be together. For
instance, you can consider house prices as an example because the location influences a
house price, causing neighboring houses to have similar prices.

A negative spatial autocorrelation indicates that neighboring observations have dissimilar
values, causing a checkerboard pattern or the presence of spatial variance across the region.
This is less common in social phenomena. One example is the distribution of supermarkets of
different brands, or of hospitals. To avoid direct competition, the distribution of the supermarks
or hospitals should be away from each other to have a better spatial coverage. In other words,
it follows a pattern of negative spatial dependence.

Global Spatial Autocorrelation
The global spatial autocorrelation is a way to measure the overall trend followed by the values
of a certain variable across different locations.

Chapter 5
Spatial Autocorrelation

5-7

https://docs.oracle.com/en/cloud/paas/autonomous-database/serverless/saipy/reference/ai_vector_weights.html#module-oraclesai.weights


The Moran’s I statistic is a common way to calculate the global spatial autocorrelation and is
defined by the following formula.

 

 

In the preceding formula, n is the number of observations, W is the spatial weights matrix, and Z
is the standardized variable of interest.

A positive value of Moran’s I statistic indicates the presence of clusters where similar values
tend to be together, reflecting the effect of spatial dependence. In contrast, a negative value of
Moran’s I statistic suggests the presence of a checkerboard pattern or spatial variance where
neighboring observations have dissimilar values, reflecting the effect of spatial heterogeneity.

Oracle Spatial AI provides the MoranITest.create function as part of oraclesai.analysis,
which calculates the Moran’s I statistic for a given variable of a dataset.

See the MoranITest class in Python API Reference for Oracle Spatial AI for more information.

The following code uses the MoranITest.create function to calculate the Moran’s I statistic of
the MEDIAN_INCOME column from the SpatialDataFrame block_groups. The class uses spatial
weights to obtain the values from neighboring locations, which must be passed as a parameter,
along with the dataset and the column of interest.

from oraclesai.analysis import MoranITest
from oraclesai.weights import SpatialWeights, KNNWeightsDefinition

spatial_weights = SpatialWeights.create(block_groups["geometry"].values, 
KNNWeightsDefinition(k=5))  

moran_test = MoranITest.create(block_groups, spatial_weights, 
column_name="MEDIAN_INCOME")

print(f"Moran's I = {moran_test.i}")
print(f"p-value = {moran_test.p_value}")

The preceding code prints the Moran’s I statistic and its p-value. The positive value of the
statistic indicates the presence of clustering where locations of similar income tend to be
together.

Moran's I = 0.652331479721869
p-value = 0.001

Local Spatial Autocorrelation
The local spatial autocorrelation measures the relationships between each observation and its
surroundings.
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Although Moran’s I statistic helps understand the overall behavior of a variable across different
locations in the whole dataset, it does not explain the relationship between a specific
observation and its surroundings. For example, a positive value of Moran’s I statistic indicates
the presence of clusters but it does not indicate where the clusters are or explain the degree of
similarity of a variable in a given location with its neighbors. The local spatial autocorrelation
fills this gap as it explain the relationship between a specific observation and its surroundings.

The Local Moran’s I statistic represents the local spatial autocorrelation of a specific
observation and is given by the following formula.

 

 
The Moran’s I statistic is the sum of all local Moran’s I divided by the spatial weights.

A positive local Moran’s I statistic indicates similarity with neighboring locations; it can be either
a high value surrounded by high values or a low value surrounded by low values.

A negative local Moran’s I statistic represents variance with neighboring locations; it can be
either a high value around low values or a low value surrounded by high values. This metric
helps to identify outliers in the dataset.

The LocalMoranITest.create function inside oraclesai.analysis calculates the local
Moran’s I statistic of each observation in a dataset.

See the LocalMoranITest class in Python API Reference for Oracle Spatial AI for more
information.

The following code uses the LocalMoranITest.create function to calculate the local spatial
autocorrelation for the MEDIAN_INCOME column of each observation in the block_groups
dataset. The class uses spatial weights to obtain the values from neighboring locations and
compute the local Moran’s I.

from oraclesai.analysis import LocalMoranITest
from oraclesai.weights import SpatialWeights, KNNWeightsDefinition

spatial_weights = SpatialWeights.create(block_groups["geometry"].values, 
KNNWeightsDefinition(k=5))  

local_moran_test = LocalMoranITest.create(block_groups, spatial_weights, 
column_name="MEDIAN_INCOME")

print(f"Local Moran's I: {local_moran_test.i_list[:10]}")
print(f"p-values: {local_moran_test.p_values[:10]}")

The preceding code prints the Local Moran’s I and the corresponding p-value of the first ten
observations of the dataset.

Local Moran's I: [-0.09208001 -0.16105385  0.34887379  2.13410581  
2.53000192  0.96564933
  0.77039582  1.04246212 -0.01040734 -0.11960612]
p-values: [0.28  0.069 0.011 0.011 0.001 0.054 0.023 0.102 0.342 0.19 ]
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Metrics for Spatial Regression
Data analysis is essential to build better machine learning models, particularly for spatial
regression. Some common tasks involve analyzing multicollinearity, normal distribution bias,
nonstationarity or heterogeneity, and spatial autocorrelation.

After training a regression model, a variety of statistics-based metrics are available to assess
the model results. This helps you to choose the best spatial model for the task at hand. The
following table describes some of these statistics which you can access in the
oraclesai.metrics module. All the methods receive a spatial regression model as a
parameter.

Metric Description

koenker_bassett It is helpful to identify the presence of variance in the residuals, which
can be caused by spatial heteroskedasticity, a particular type of
heterogeneity.

lm_error Lagrange multiplier test to identify if a regression algorithm that includes
the spatial lag over the error term is needed.

lm_lag Lagrange multiplier test to identify if a regression algorithm that includes
the spatial lag over the target variable is required.

rlm_error Robust Lagrange multiplier test for Spatial Error model.

rlm_lag Robust Lagrange multiplier test for Spatial Lag model.

moran_res Test correlation between residuals and the spatial lag of residuals. A
positive and significant value indicates the presence of spatial clustering,
where regions with similar values tend to be together, reflecting the
effect of spatial dependence. A negative and significant value indicates
the presence of spatial variance or the checkerboard pattern, reflecting
the effect of spatial heterogeneity.

log_likelihood Returns the log-likelihood of the regression model. It is a way to
measure the model fit.

aic The Akaike Information Criteria, AIC, estimates the amount of
information loss by the model.

jarque_bera It is a test for normality in the residuals of a spatial regression model.

vif The variance inflation factor (VIF) is helpful to detect multicollinearity.
Multicollinearity happens when a spatial regression model has a
correlation between the explanatory variables. It measures how much
the variance of an estimated regression coefficient increases because of
collinearity.
Sometimes, features with high multicollinearity with another feature
should be removed from the spatial model.

See the oraclesai.metrics module in Python API Reference for Oracle Spatial AI for more
information.
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6
Apply Spatial Clustering

Learn and apply the different machine learning algorithms for spatial clustering using Oracle
Spatial AI.

Topics:

• About Spatial Clustering

• LISA Hotspot

• DBSCAN with Regionalization

• Agglomerative with Regionalization

• K-Means

About Spatial Clustering
Clustering allows you to identify patterns and understand the data distribution.

General clustering is the task of assigning a label to an observation so that observations with
the same label share common characteristics. The same applies to spatial clustering
algorithms, with the difference that these algorithms add a spatial context, so not only
observations with the same label share common properties but they also are geographically
connected.

This allows us to identify patterns and understand the data distribution. The same applies to
spatial clustering algorithms, with the difference that these algorithms add a spatial context, so
not only observations with the same label share common properties but they also are
geographically connected.

LISA Hotspot
Local Indicators of Spatial Association (LISAs) are widely used to identify geographical clusters
as well as finding geographical outliers. This clustering approach is called LISA Hoptspot
clustering.

Possible use cases for this spatial clustering include finding hot spots of crime to help police to
make staffing and patrolling decisions, identifying patterns of car accidents or pedestrian
deaths to help optimize arrangements of red lights and road networks.

The LISA Hotspot clustering algorithm does local autocorrelation analysis and summarizes the
co-variation between observations and their immediate surroundings. It allows us to identify
areas of high values (hot spots) and areas of low values (cold spots). For each region, there
are four different labels representing each of the quadrants.

1. HH (High-High). A High value surrounded by high values.

2. LH (Low-High). A low value surrounded by high values.

3. LL (Low-Low). A low value surrounded by low values.

4. HL (High-Low). A high value around low values.
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The LISA Hotspot clustering algorithm computes a local Moran’s I (that is, LISA) for each
location.

• A location with a positive local Moran’s I statistic indicates the presence of neighbors with
similar values (either high or low values), representing hot or cold spots.

• A location with a negative local Moran’s value indicates neighbor locations with different
values; it can be a high value surrounded by low values or a low value surrounded by high
values, representing spatial outliers.

The LISAHotspotClustering class implements the LISA Hotspot clustering, and the following
table describes its parameters.

Parameters Description

column A number that indicates a column, with which the algorithm
uses the data associated to run the LISA Hotspot clustering
method. If the column is not defined, the algorithm expects a
dataset with a single column.

spatial_weights_definition Defines the relationship between neighboring locations. It is
required to retrieve information from the neighbors.

max_p_value Used to label regions with a p-value below this threshold
value. For regions with p-values equal to or greater than this
threshold value, the algorithm assigns the label -1.

supported_quadrants A list indicating that only observations from these quadrants
are labeled. Values indicate quadrant location: 1 (High-
High), 2 (Low-High), 3 (Low-Low), 4 (High-Low). The
remaining observations are assigned a label -1.

seed Ensures reproducibility of conditional randomization.

n_jobs The maximum number of concurrently running jobs.

Once an instance of LISAHotspotClustering is created, the clustering algorithm is executed
by calling the fit method. The label assigned to each observation can be retrieved with the
labels_ property. The following table describes the main properties available from this class.

Parameters Description

labels_ The label assigned to each observation. Labels indicate quadrant
location: 1 (High-High), 2 (Low-High), 3 (Low-Low), 4 (High-
Low). Depending on the parameters passed to the object, observations
can have a label -1.

regions_ A dictionary representing observations with the same label that are
geographically connected according to the spatial weights.

Is The Local Moran’s I of each observation.

ps The p-value of the Local Moran’s I of each observation.

See the LISAHotspotClustering class in Python API Reference for Oracle Spatial AI for more
information.

The following example executes a hot spot analysis over the MEDIAN_INCOME column of the
block_groups SpatialDataFrame. It does not require defining a target variable when passing
the training data to the fit method. The labels_ property returns the label assigned to each
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observation, with hot spots marked with 1, cold spots with 3, and outliers represented by 2 and
4.

from oraclesai.weights import DistanceBandWeightsDefinition 
from oraclesai.clustering import LISAHotspotClustering 

# Define variables and CRS 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'geometry']].to_crs('epsg:3857') 

# Create an instance of LISAHotspotClustering
lisa_model = LISAHotspotClustering(column="MEDIAN_INCOME", 
max_p_value=0.05, 
spatial_weights_definition=DistanceBandWeightsDefinition(threshold=2500)) 

# Train the model
lisa_model.fit(X) 

# Print the labels
print(f"labels = {lisa_model.labels_[:10]}")

The program prints the labels of the first ten observations.

labels = [ 2  2  1  1  1  1 -1 -1 -1 -1]

DBSCAN with Regionalization
DBSCAN is a density-based clustering technique capable of finding clusters of different shapes
and sizes from a large amount of data.

This algorithm does not require the number of clusters as a parameter. Instead, it uses the
following parameters.

• min_samples: The minimum number of points required for a region to be considered a
cluster.

• eps: The distance threshold for searching points in the neighborhood of a point.

The algorithm starts at any point. If at least min_samples points are within a radius of eps, then
all the points in the neighborhood are considered part of the same cluster. The process is then
repeated for all the points in the neighborhood. There are three types of points or observations:

• Core Point: At least has a min_samples number of points in its neighborhood within the
radius eps.

• Border Point: It is reachable from a core point, but there are fewer than min_samples
number of points within its neighborhood.

• Noise Point: It is neither a core point nor a border point. It is a point that is not reachable
from any core points.

The following image is an example displaying the different types in the DBSCAN algorithm.
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Standard DBSCAN clustering does not fully consider the observation’s spatial location. When
this algorithm is applied on spatial data, it often results in data points of a cluster dispersed
across spatial regions. Regionalization is used to provide a spatial context to the DBSCAN
algorithm, this way, observations of the same cluster are similar not only in their attributes, but
also in their spatial location.

The DBSCAN algorithm with regionalization performs the following steps:

1. Creates an instance of the DBScanClustering class specifying the parameters:
min_samples, eps, and spatial_weights_definition.

2. Calls the fit method passing the data as parameter to train the model.

3. The labels_ property indicates the label assigned to each observation. Noise points are
labeled with -1. Use the labels and the location of each observation to visualize the
clusters in a map.

If you do not provide the eps parameter, it is estimated automatically (see [1] for more details
on eps estimation method). The initial eps value is estimated by:

• Calculating the Euclidean distance between each pair of neighboring locations using the K-
nearest neighbors approach, where the value of k is equal to min_samples.

• Obtaining the distance to the nearest neighbor for each observation and sorting the
distances in ascending order.

• Plotting the sorted distances to form an elbow curve.

• The estimated value of eps is the distance associated with the elbow's location, which is
represented by the furthest point from the line that crosses the first and last points.

See the DBScanClustering class in Python API Reference for Oracle Spatial AI for more
information.

The following code fits a DBSCAN model with training data from the block_groups
SpatialDataFrame. The goal is to identify geographic areas with similar characteristics.
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The clustering model is the final step of a spatial pipeline, which contains a preprocessing step
to standardize the data. The geometry column is not considered a feature but it is used to
compute the spatial weights.

from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.clustering import DBScanClustering 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 
 
# Define variables and CRS 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'geometry']].to_crs('epsg:3857') 
 
# Create an instance of DBScanClustering
reg_dbscan = DBScanClustering(eps=0.9,  
                              min_samples=5,  
                              
spatial_weights_definition=KNNWeightsDefinition(k=30)) 
 
# Add the model into a Spatial Pipeline with a preprocessing step
reg_dbscan_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('clustering', reg_dbscan)]) 
 
# Train the model
reg_dbscan_pipeline.fit(X) 
 
# Print the labels
print(f"labels = 
{reg_dbscan_pipeline.named_steps['clustering'].labels_[:20]}")

The preceding code prints the label assigned to the first 20 observations using the DBSCAN
algorithm with regionalization.

labels = [ 0  0  0  0  0  0  0 -1  0  0  0  0  0 -1  0  0  0  0  0  0]

Agglomerative with Regionalization
Agglomerative clustering performs a hierarchical clustering using a bottom up approach.

In agglomerative clustering, initially there is one cluster for each observation. In each iteration,
the two closest clusters are merged. The algorithm continues until any one of the following
stopping criteria applies:

• Reaches a certain number of clusters.

• The distance between two clusters is larger than a certain threshold.

Standard Agglomerative clustering does not fully consider the observation's spatial location.
When this algorithm is applied on spatial data, it often results in data points of a cluster
dispersed across spatial regions. Regionalization is used to provide a spatial context to the
agglomerative algorithm. By defining spatial weights, agglomerative with regionalization
includes a spatial constraint in the clustering algorithm, so elements of the same cluster share
common characteristics and are geographically connected.

See the AgglomerativeClustering class in Python API Reference for Oracle Spatial AI for more
information.
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The following table describes some of the properties of the AgglomerativeClustering class.

Parameters Description

n_clusters_ The algorithm stops when reaching the specified number of
clusters.

distance_threshold The algorithm stops if the distance between the two closest
clusters is greater than this value. If this parameter is defined,
then it requires to set n_clusters=None.

spatial_weights_definition Defines the relationship between neighboring locations. It is
required to retrieve information from the neighbors.
Only KNN and DistanceBand weights are supported.

linkage The strategy followed to identify the distance between two
clusters. The options are:
• ward: The variance between two clusters.

• average: The distance between the average of two
clusters.

• complete: The maximum distance between a pair of
points from two distinct clusters.

• single: The minimum distance between a pair of points
from two distinct clusters.

affinity The metric used to compute the distance.

n_jobs The maximum number of concurrently running jobs.

The following code uses the block_groups SpatialDataFrame and AgglomerativeClustering
to identify locations sharing common characteristics according to certain features. It uses
regionalization to keep the clusters geographically connected.

from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.clustering import AgglomerativeClustering 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define training features 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'geometry']] 

# Use geodetic reference systems to calculate distances. 
X = X.to_crs('epsg:3857') 
# Create an instance defining stopping criteria and spatial weights 
reg_agglomerative = AgglomerativeClustering(n_clusters=6, 
spatial_weights_definition=KNNWeightsDefinition(k=5)) 

# Create a spatial pipeline with preprocessing and clustering steps. 
agglomerative_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('clustering', reg_agglomerative)]) 

# Train the model 
agglomerative_pipeline.fit(X) 

# Print the labels associated with each observation 
print(f"labels = 
{agglomerative_pipeline.named_steps['clustering'].labels_[:20]}")
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The output are the labels associated to the first 20 observations of the data.

labels = [1 4 4 4 4 0 0 0 1 1 1 1 1 1 1 1 0 2 0 2]

K-Means
K-means is a widely used clustering algorithm. It is based on proximity.

It starts with a set of cluster centroids, and each observation is assigned to the closest
centroid. Then, a cluster's centroid is updated with the average of the observations assigned to
it. The process continues until the centroids are no longer updated, or until a maximum number
of iterations is reached.

The KMeansClustering class does not support regionalization. This means that elements of the
same clusters can be geographically disconnected. However, you can use K-means as a
benchmark for comparison purposes. It can directly take an instance of SpatialDataFrame as
input parameter for modeling, even though the spatial information is not leveraged. It can then
be incorporated into the Spatial Pipeline.

The K-Means algorithm requires defining the number of clusters with the n_clusters
parameter. But if this is not known, the KMeansClustering class provides two methods to
estimate the number of clusters. The user can specify any of the following methods in the
init_method parameter.

• The Elbow method: This strategy runs the K-Means algorithm for different values of K
and keeps track of the sum squared error (SSE) for each one. By plotting the errors
against the values of K, the optimal value of K is given by the graph's "elbow" as shown in
the following figure:
 

 

• The Silhouette method: This method runs the K-Means algorithm for different values of K
and measures the Silhouette score for each run. It returns the value of K associated with
the greatest score. The Silhouette score measures how well each observation lies within
its cluster. The measure is in the range [-1, 1], and it can be interpreted as follows:

– A silhouette coefficient near 1 indicates that the observation is far from the neighboring
clusters.

– A value of 0 suggests that the observation is close to or on the decision boundary
between two adjacent clusters.
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– A negative value indicates that the observation might have been assigned to the wrong
cluster.

If the n_clusters parameter is not defined, then the algorithm uses the elbow method to
estimate it. See the KMeansClustering class in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the blocks_groups SpatialDataFrame and the KMeansClustering
class to identify clusters based on specific features.

from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.clustering import KMeansClustering 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define training features 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'geometry']] 

# Create an instance of KMeansClustering with K=5 
kmeans_model = KMeansClustering(n_clusters=5) 

# Create a spatial pipeline with preprocessing and clustering steps. 
kmeans_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('clustering', kmeans_model)]) 

# Train the model 
kmeans_pipeline.fit(X) 

# Print the labels associated with each observation 
print(f"labels = {kmeans_pipeline.named_steps['clustering'].labels_[:20]}")

The output consists of the labels of the first 20 observations.

labels = [3 1 3 1 3 3 1 1 3 3 2 2 1 3 2 2 1 1 1 1]
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7
Apply Spatial Anomaly Detection

Learn and apply the Local Outlier Factor (LOF) algorithm for spatial anomaly detection using
Oracle Spatial AI.

Topics:

• About Spatial Anomaly Detection

• Local Outlier Factor

About Spatial Anomaly Detection
Anomaly detection identifies outliers and novelties, defined as observations that are
significantly different from the others.

Also, note the following:

• Outlier detection estimators identify regions where the training data is concentrated,
ignoring the deviant observations.

• Novelty detection identifies whether a new or unseen observation is an outlier according to
an already defined training set.

Spatial anomaly detection identifies geographically isolated observations using spatial weights
with standard anomaly detection methods. Examples include analyzing all environmental or
traffic monitoring sensor data to find anomalies, which can lead to identifying dysfunctional
sensors.

Local Outlier Factor
Local Outlier Factor (LOF) measures the LOF score for each observation, representing the
local deviation of the density of that observation concerning its neighbors.

The LOF score depends on how isolated an observation is with respect to the surrounding
neighborhood. The larger the LOF score, the more isolated is the observation.

Using the k-nearest neighbors, the algorithm compares the local density of a sample to the
local densities of its neighbors. Those samples with a significantly lower density than their
neighbors are considered outliers.

In a spatial context, the LOF score helps to identify geographically isolated samples. For
example, analyzing locations with a high concentration of car accidents and labeling isolated
accident locations as outliers, which can be targeted for further examination.

The LOF method (see [2] for more details on the LOF method) consists of the following steps:

1. Define a method to measure the distance between two observations - according to either
features or geography. If spatial weights are defined, then the distance comes from the
corresponding weight, except for binary weights, where the distance is calculated based on
the geometries.

2. Define a method that computes the k-distance of an observation. The k-distance is the
distance to the furthermost neighbor or the K-th neighbor from KNN. If spatial weights are
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defined, then the neighboring observations are obtained according to the spatial weights,
and the distance between two observations comes from the corresponding weight, except
for binary weights, where the distance is calculated based on their geometries.

3. Define a method to compute the reachability-distance between two observations.
 

 

4. Compute the Local Reachibility Distance (LRD) of each observation according to the
following formula, where Nbi presents the neighbors of the i-th observation. If spatial
weights are defined, then the neighbors of the i-th observation come from the spatial
weights. Otherwise, the algorithm uses the k-nearest neighbors method.
 

 

5. Compute the LOF score of each observation.
 

 

Using LocalOutlierFactor for novelty detection requires setting the novelty parameter to
True and calling the predict method to identify whether the unseen or new data are outliers.

See the LocalOutlierFactor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses a dataset based on the report of accidents in a city. It contains the
location and severity of the car accidents. The example first creates an instance of
SpatialDataFrame based on a database table.

from oraclesai import SpatialDataFrame, DBSpatialDataset
import oml

accidents_pdf = 
SpatialDataFrame.create(DBSpatialDataset(table='chicago_accidents', 
schema='oml_user'))

The goal is to identify outliers in accidents where people get injured based on location. The
dataset contains a categorical variable, INJURY_RATING, that indicates the severity of the car
accident. The example focuses on accidents with INJURY_RATING greater than or equal to 3.

The following code uses the LocalOutlierFactor to calculate the LOF score of each
observation based on the neighboring locations according to the spatial_weights_definition
parameter.

from oraclesai.weights import KNNWeightsDefinition
from oraclesai.outliers import LocalOutlierFactor
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# Get records with INJURY_RATING >= 3
accidents_injury_pdf = accidents_pdf[accidents_pdf["INJURY_RATING"] >= 3]

# Keep columns INJURY_RATING and geometry, and use a geodetic coordinate 
system
X = accidents_injury_pdf[["INJURY_RATING", "geometry"]].to_crs("epsg:3857")

# Create an instance of the LOF model defining the spatial weights
slof_model = 
LocalOutlierFactor(spatial_weights_definition=KNNWeightsDefinition(k=20))

# Train the model
slof_model.fit(X)

# Get and print the LOF scores for each observation
slof_scores = -1 * slof_model.negative_outlier_factor_
print(slof_scores[:10])

The program prints the LOF score of the first 10 observations. Note that the
negative_outlier_factor_ property returns the negative LOF score.

[1.12403072 1.49269168 1.18196622 1.23728049 0.89957071 1.00487086
 1.03445893 0.98740889 1.01636585 1.00944292]
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8
Apply Spatial Regression

Learn and apply Oracle Spatial AI machine learning algorithms for spatial regression.

Topics:

• About Spatial Regression

• Spatial Diagnostics Using OLS

• Spatial Lag Model

• Spatial Error Model

• Spatial Cross-Regressive Model

• Spatial Regimes

• Spatial Fixed Effects

• Geographically Weighted Regression

• Geographical Regressor

• Adaptive Spatial Regression

About Spatial Regression
Spatial regression consists of predicting the value of a continuous variable based on input data
that is derived by identifying relationships between independent variables and a target variable
while considering a geographical context.

For example, a house price is impacted by the prices of nearby houses, and so including this
spatial effect in a regression model can help make more accurate predictions on the house
price. Spatial regression is essential in geographic applications and the following lists a few
more scenarios where it can be applied:

• Predict house prices based on census data and location information.

• Choose a house, considering its proximity to economic opportunities, schools, health care,
and roadways for daily commutes.

• Predict the median income of a specific region based on neighboring locations.

Depending on the nature of the data and the task, you should choose one of the algorithms
that works best for you. Oracle Spatial AI also provides tools to decide which algorithm to use
and suggests the resulting machine learning algorithm that better fits the data.

Spatial Diagnostics Using OLS
The first step in spatial modeling is to do some spatial diagnostics, such as analyzing
multicollinearity, normal distribution bias, spatial heterogeneity, and spatial dependence. You
can do this using the Ordinary Least Squre (OLS) model.

The OLS algorithm fits a line that minimizes the Mean Squared Error (MSE) from the training
set to predict new values. The formula of the ordinary linear regression is given as shown:
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In the preceding formula:α is the intercept or constant parameter, β is a vector of parameters
that give us information about to what extent each variable is related to the target variable y
and εi represents the error. The goal when training an OLS model is to estimate the
parameters α and β to predict values of y for new values of X.

The OLSRegressor class in Spatial AI adds the spatial_weights_definition parameter in the
general OLS model, which allows you to get spatial statistics after training the model. These
statistics help identify the presence of spatial dependence or spatial heterogeneity and
determine if another algorithm is required. So OLSRegressor intends to help user diagnose the
data to see if there are any special spatial relationships, which in turn helps decide which
spatial regression algorithm to use for the specific task. See Metrics for Spatial Regression for
more information on the statistics.

The following table describes the main methods of the OLSRegressor class.

Method Description

fit Trains the OLS model from the given training data and obtains spatial
statistics if the spatial_weights_definition parameter is specified.

predict Uses the trained parameters to estimate the target variable of the given
data.

fit_predict Calls the fit and predict methods sequentially with the training data.

score The R-squared statistic for the given data.

See the OLSRegressor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and creates an OLS model
defining the spatial_weights_definition parameter. After training the model, it calls the
predict and score methods. Finally, the program prints a summary of the model containing
the spatial statistics.

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.regression import OLSRegressor 
from oraclesai.weights import KNNWeightsDefinition 

# Define the training and test set. 
X = block_groups[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", "INTERNET", 
"geometry"]] 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2) 

# Create the OLSRegressor defining the spatial_weights 
spatial_ols_model = OLSRegressor(KNNWeightsDefinition(k=10)) 

# Train the model and specify the target variable 
spatial_ols_model.fit(X_train, "MEDIAN_INCOME") 

# Print the predictions of the test set 
ols_predictions_test = 
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spatial_ols_model.predict(X_test.drop(["MEDIAN_INCOME"])).flatten() 
print(f"\n>> predictions (X_test):\n {ols_predictions_test[:10]}") 

# Print the R-squared score of the test set 
ols_r2_score = spatial_ols_model.score(X_test, y="MEDIAN_INCOME") 
print(f"\n>> r2_score (X_test):\n {ols_r2_score}") 

# Prints a summary of the model 
print(spatial_ols_model.summary)

The program output includes the following:

• The predict method returns the estimated values of the target variable over the test set.

• The score method returns the R-squared metric of the model from the test set.

• The summary property provides multiple statistics and the parameters associated with each
explanatory variable. Also, it includes spatial statistics based on the
spatial_weights_definition parameter.

>> predictions (X_test):
 [84333.95556955 88819.9988673  52445.40662329 66192.50638257
 66613.63752196 53802.16810985 65151.54020825 29424.26087764
 37296.49147829 85676.22038382]

>> r2_score (X_test):
 0.6009367861353069
REGRESSION
----------
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
-----------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     dep_var                Number of 
Observations:        2750
Mean dependent var  :  70051.6531                Number of 
Variables   :           4
S.D. dependent var  :  40235.8666                Degrees of 
Freedom    :        2746
R-squared           :      0.6385
Adjusted R-squared  :      0.6381
Sum squared residual:1608810557754.003                F-
statistic           :   1616.7374
Sigma-square        :585874201.658                Prob(F-
statistic)     :           0
S.E. of regression  :   24204.838                Log likelihood        :  
-31659.426
Sigma-square ML     :585022021.001                Akaike info criterion :   
63326.852
S.E of regression ML:  24187.2285                Schwarz criterion     :   
63350.529

------------------------------------------------------------------------------
------
            Variable     Coefficient       Std.Error     t-Statistic     
Probability
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------------------------------------------------------------------------------
------
            CONSTANT    -61472.5132881    3718.3646558     -16.5321368       
0.0000000
            MEAN_AGE     798.8367637      94.5268152       8.4509011       
0.0000000
         HOUSE_VALUE       0.0558167       0.0014696      37.9805274       
0.0000000
            INTERNET    85961.1765144    3867.7192944      22.2252883       
0.0000000
------------------------------------------------------------------------------
------

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER           20.388

TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2         955.683           0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test                3        1198.122           0.0000
Koenker-Bassett test              3         526.447           0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST                           MI/DF       VALUE           PROB
Moran's I (error)              0.2395        29.493           0.0000
Lagrange Multiplier (lag)         1         426.035           0.0000
Robust LM (lag)                   1           4.674           0.0306
Lagrange Multiplier (error)       1         854.940           0.0000
Robust LM (error)                 1         433.579           0.0000
Lagrange Multiplier (SARMA)       2         859.614           0.0000

================================ END OF REPORT 
=====================================

Spatial Cross-Regressive Model
The Spatial Cross-Regressive (SLX) regression model executes a regular liner regression
involving a feature engineering step to add features that provide a spatial context to the data.

This is according to Tobler's law that closer things are more related than distant things. The
algorithm adds one or more columns with the spatial lag of certain features, representing the
average from neighboring observations.

The SLXRegressor class requires the definition of the spatial weights with the
spatial_weights_definition parameter to establish how the neighboring observations
interact. The following table describes the main methods of the SLXRegressor class.
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Method Description

fit The parameters of the fit method are the same for most of the
regression algorithms, except for the column_ids parameter, which
specify the columns that are used to compute the spatial lag.
The algorithm estimates the parameters of the explanatory variables
plus the parameters associated with those added with the spatial lag.

predict The predict method calculates the spatial lag of the dataset using the
same columns defined in the fit process and returns the value of the
OLS equation evaluated in the extended dataset.
By setting the use_fit_lag=True parameter, the algorithm calculates
the spatial lag from the training set. This is helpful when the prediction
dataset contains few observations.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the R-squared statistic for the given data.
By setting the use_fit_lag=True parameter, the algorithm calculates
the spatial lag from the training set. Otherwise, it computes the spatial
lag from the provided data.

See the SLXRegressor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and the SLXRegressor class
to train an SLX regression model with training data (X_train) using the MEDIAN_INCOME column
as the target variable. The MEAN_AGE, MEAN_EDUCATION_LEVEL, and HOUSE_VALUE columns are
used to calculate the spatial lag.

Using the test set (X_test), the code calls the predict and score methods to estimate the
values of the target variable and the R-squared metric respectively.

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.regression import SLXRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define the explanatory variables 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'INTERNET', 'geometry']] 

# Define the training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2, random_state=32) 

# Define the spatial weights 
weights_definition = KNNWeightsDefinition(k=10) 

# Create a SXL Regressor model 
slx_model = SLXRegressor(spatial_weights_definition=weights_definition) 

# Add the model to a pipeline along with a preprocessing step
slx_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('slx_regression', slx_model)]) 

# Train the model 
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slx_pipeline.fit(X_train, "MEDIAN_INCOME", 
slx_regression__column_ids=["MEAN_AGE", "MEAN_EDUCATION_LEVEL", 
"HOUSE_VALUE"]) 

# Print the predictions with the test set 
slx_predictions_test = 
slx_pipeline.predict(X_test.drop(["MEDIAN_INCOME"])).flatten()
print(f"\n>> predictions (X_test):\n {slx_predictions_test[:10]}") 

# Print the score with the test set 
slx_r2_score = slx_pipeline.score(X_test, y="MEDIAN_INCOME") 
print(f"\n>> r2_score (X_test):\n {slx_r2_score}")

The program produces the following output:

>> predictions (X_test):
 [102070.14467552 103393.34495125  18080.13247972  28780.88885959
 166553.11466239  47847.19216301  97311.05264284  28621.06664768
  86030.99787827  18315.17778001]

>> r2_score (X_test):
 0.6520502048458249

Note that printing the property summary of the trained model displays new parameters which
are associated with the spatial lag of the columns specified in the training process.

REGRESSION
----------
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
-----------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     dep_var                Number of 
Observations:        2750
Mean dependent var  :  69703.4815                Number of 
Variables   :           8
S.D. dependent var  :  39838.5789                Degrees of 
Freedom    :        2742
R-squared           :      0.6404
Adjusted R-squared  :      0.6395
Sum squared residual:1569034862694.453                F-
statistic           :    697.5148
Sigma-square        :572222779.976                Prob(F-
statistic)     :           0
S.E. of regression  :   23921.178                Log likelihood        :  
-31625.004
Sigma-square ML     :570558131.889                Akaike info criterion :   
63266.007
S.E of regression ML:  23886.3587                Schwarz criterion     :   
63313.362

------------------------------------------------------------------------------
------
            Variable     Coefficient       Std.Error     t-Statistic     
Probability
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------------------------------------------------------------------------------
------
            CONSTANT    69454.0719691     458.7116277     151.4111868       
0.0000000
            MEAN_AGE    3407.3842392     632.8239483       5.3844110       
0.0000001
MEAN_EDUCATION_LEVEL    11619.0976034    1254.9099676       9.2589093       
0.0000000
         HOUSE_VALUE    20550.0723247     970.0583796      21.1843666       
0.0000000
            INTERNET    10089.1251192     670.1690078      15.0545982       
0.0000000
        SLX-MEAN_AGE     106.5803082     136.9729582       0.7781120       
0.4365701
SLX-MEAN_EDUCATION_LEVEL    -995.5040769     172.6431756      
-5.7662521       0.0000000
     SLX-HOUSE_VALUE       3.1809763     136.4013684       0.0233207       
0.9813962
------------------------------------------------------------------------------
------

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER            9.435

TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2        1258.500           0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test                7        1083.843           0.0000
Koenker-Bassett test              7         436.439           0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST                           MI/DF       VALUE           PROB
Moran's I (error)              0.2586        31.945           0.0000
Lagrange Multiplier (lag)         1        1044.952           0.0000
Robust LM (lag)                   1          55.266           0.0000
Lagrange Multiplier (error)       1         997.181           0.0000
Robust LM (error)                 1           7.495           0.0062
Lagrange Multiplier (SARMA)       2        1052.447           0.0000

================================ END OF REPORT 
=====================================

Spatial Lag Model
The presence of spatial dependence indicates that values of observations are related to each
other through distance, and the spatial lag model that includes this dependence is expected to
perform better. The spatial lag model is also known as Spatial Autoregressive Model (SAR).

The SAR model considers spatial dependence over the target variable, meaning that the value
of a region's target variable is related to its neighbors' target variable.
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The SAR model includes the spatial lag of the dependent variable into the linear equation. This
results in an extra parameter associated with the spatial lag of the dependent variable as
shown in the following formula.

 

 
The equation can be represented as shown:

 

 
In the preceding equation, W is the standardized spatial weights matrix, and ρ is called the
spatial autoregressive coefficient.

The SpatialLagRegressor class requires setting of the spatial_weights_definition
parameter, which establishes the relationship between neighboring observations. The following
table describes the main methods of the SpatialLagRegressor class.

Method Description

fit Trains the SpatialLagRegressor model from the given training data.
The model includes a parameter for the spatial lag of the target variable.

predict Uses the trained parameters, including the one associated with the
spatial lag of the target variable, to estimate the target variable of the
given data.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the R-squared statistic for the given data.

See the SpatialLagRegressor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame. It creates an instance of
the SpatialLagRegressor class defining the spatial_weights_definition parameter. Then, it
creates a spatial pipeline with a preprocessing step to standardize the data and applies the
Spatial Lag model at the final step.

The model is trained using a training set (X_train) and the MEDIAN_INCOME column as the
target variable. Finally, it calls the predict and score methods with a test set (X_test) to
estimate the values of the target variables and obtain the model's R-Square score respectively.

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.regression import SpatialLagRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define features
X = block_groups[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", "INTERNET", 
"geometry"]] 

# Define training and test sets
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X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2, random_state=32) 

# Create an instance of SpatialLagRegressor
spatial_lag_model = 
SpatialLagRegressor(spatial_weights_definition=KNNWeightsDefinition(k=5)) 

# Add the model in a Spatial Pipeline with a preprocessing step
spatial_lag_pipeline = SpatialPipeline([("scaler", StandardScaler()), 
("spatial_lag", spatial_lag_model)]) 

# Train the model with MEDIAN_INCOME as the target variable
spatial_lag_pipeline.fit(X_train, "MEDIAN_INCOME") 

# Print the predictions with the test set
spatial_lag_predictions_test = 
spatial_lag_pipeline.predict(X_test.drop(["MEDIAN_INCOME"])).flatten() 
print(f"\n>> predictions (X_test):\n {spatial_lag_predictions_test[:10]}") 

# Print the R-squared metric with the test set
spatial_lag_r2_score = spatial_lag_pipeline.score(X_test, y="MEDIAN_INCOME") 
print(f"\n>> r2_score (X_test):\n {spatial_lag_r2_score}")

The program produces the following output:

>> predictions (X_test):
 [ 92285.13545208 100551.0381313   30910.61123168  45166.3218764
 177515.68764358  44088.89962954  98205.35728383  27788.19879028
  72553.17695035  24875.81828048]

>> r2_score (X_test):
 0.6150829472253789

Spatial Error Model
The Spatial Error Model (SEM) introduces a spatial lag in the error term of the linear equation.

By adding the spatial lag of the residual, the neighbors' errors influence the observation error.
This leads to an extra parameter to be associated with the spatial lag of the error term as
shown in the following formula:

 

 
In the preceding formula, W is the spatial weights matrix.
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The SpatialErrorRegressor class implements the spatial error model, which requires the
definition of the spatial_weights_definition parameter to use it. The following table
describes the main methods of the SpatialErrorRegressor class.

Method Description

fit Trains the SpatialErrorRegressor model from the given training
data. The model includes a parameter for the spatial lag of the error
term.

predict Uses the trained parameters, including the one associated with the
spatial lag of the error term, to estimate the target variable of the given
data.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the R-squared statistic for the given data.

See the SpatialErrorRegressor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame. It creates an instance of
the SpatialErrorRegressor class defining the spatial_weights_definition parameter which
establishes the relationship between neighboring observations. Then, it adds the model in a
spatial pipeline along with a preprocessing step to standardize the data. The model is trained
using a training set (X_train) and the MEDIAN_INCOME column as the target variable. Finally, it
calls the predict and score methods with the test set (X_test) to estimate the values of the
target variable and the model's R-Square score respectively.

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.regression import SpatialErrorRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define features
X = block_groups[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", "INTERNET", 
"geometry"]] 

# Define training and test sets
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2, random_state=32) 

# Create an instance of SpatialErrorRegressor
spatial_error_model = 
SpatialErrorRegressor(spatial_weights_definition=KNNWeightsDefinition(k=5)) 

# Add the model in a Spatial Pipeline along with a preprocessing step
spatial_error_pipeline = SpatialPipeline([("scaler", StandardScaler()), 
("spatial_error", spatial_error_model)]) 

# Train the model with MEDIAN_INCOME as the target variable
spatial_error_pipeline.fit(X_train, "MEDIAN_INCOME") 

# Print the predictions with the test set
spatial_error_predictions_test = 
spatial_error_pipeline.predict(X_test.drop(["MEDIAN_INCOME"])).flatten() 
print(f"\n>> predictions (X_test):\n {spatial_lag_predictions_test[:10]}") 
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# Print the R-squared metric with the test set
spatial_error_r2_score = spatial_error_pipeline.score(X_test, 
y="MEDIAN_INCOME") 
print(f"\n>> r2_score (X_test):\n {spatial_error_r2_score}")

The program produces the following output:

>> predictions (X_test):
 [ 92285.13545208 100551.0381313   30910.61123168  45166.3218764
 177515.68764358  44088.89962954  98205.35728383  27788.19879028
  72553.17695035  24875.81828048]

>> r2_score (X_test):
 0.635646418630968

Note that printing the property summary of the trained model displays an extra lambda
parameter. This parameter is associated with the spatial lag of the error term.

REGRESSION
----------
SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)
-------------------------------------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     dep_var                Number of 
Observations:        2750
Mean dependent var  :  69703.4815                Number of 
Variables   :           4
S.D. dependent var  :  39838.5789                Degrees of 
Freedom    :        2746
Pseudo R-squared    :      0.6285
Sigma-square ML     :472895616.755                Log likelihood        :  
-31440.423
S.E of regression   :   21746.163                Akaike info criterion :   
62888.846
                                                 Schwarz criterion     :   
62912.523

------------------------------------------------------------------------------
------
            Variable     Coefficient       Std.Error     z-Statistic     
Probability
------------------------------------------------------------------------------
------
            CONSTANT    70397.9327157     855.6991730      82.2694878       
0.0000000
            MEAN_AGE    4337.6721310     537.9090592       8.0639507       
0.0000000
         HOUSE_VALUE    20927.8165549     706.2614165      29.6318276       
0.0000000
            INTERNET    10643.3244395     580.3422845      18.3397363       
0.0000000
              lambda       0.5152500       0.0215703      23.8869736       
0.0000000
------------------------------------------------------------------------------
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------
================================ END OF REPORT 
=====================================

Geographical Regressor
A GeographicalRegressor is a spatial machine learning algorithm used to perform regression
by leveraging the existing scikit-learn regression algorithms which are used to create both,
a global model containing all the observations from the training data and a local model for each
observation and by summing the weighted results of the global model and the local model.

Both, GeographicalRegressor and GeographicalClassifier extend the Geographical
Random Forest algorithm by allowing the use of various underlying machine learning
algorithms besides Random Forest and supporting parallelism in the training of local models,
ensuring robust and scalable performance. See [4] for more information on the Geographical
Random Forest algorithm.

This algorithm is useful when there is a high degree of spatial heterogeneity in the data. This
implies that the data behaves differently in different geographical regions. Hence, it will be hard
to fit a single model appropriately. This algorithm supports any scikit-learn regression
algorithms. That means, for different applications, you can specify the underneath regression
algorithm, which includes random forest, support vector, gradient boosting, and decision tree.

The GeographicalRegressor class implements this regressor. You can specify the scikit-
learn regression algorithm when you create an instance of this class. First, a global model is
built using the parameters provided at creation time. If the spatial relationship is not specified
(by providing SpatialWeightsDefinition or bandwidth information), it is first computed. After
the spatial relation is defined, several local models are built. The prediction is performed by
locating the local model closer to the data to be predicted and summing the weighted results of
the global model and the local model. Specifically, the returned prediction is calculated as
follows:

local_model_prediction * local_weight + global_model_prediction * (1.0 - 
local_weight)

In the preceding calculation, local_weight can be a default or specified value.

When using the GeographicalRegressor class, you can specify a scikit-learn regression
algorithm to be used when you create an instance of this class. The following table describes
the principal methods of this class.

Method Description

fit First, the global model is built using the parameters provided at creation
time. If the spatial relationship is not specified (either by the
spatial_weights_definition or the bandwidth parameter), it is
internally computed. Then, several local models are trained.

predict The prediction is executed by locating the local model closer to the data
to be predicted and summing the weighted results of the global and local
models. The returned prediction is calculated as follows:
local_model_prediction * local_weight +
global_model_prediction * (1.0 - local_weight)
In the preceding calculation, local_weight is a parameter that can
specified by the user.

fit_predict Calls the fit and predict methods sequentially with the training data.
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Method Description

score Returns the R-squared statistic for the given data.

See the GeographicalRegressor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the houses_full SpatialDataFrame, with a connection to the
la_median_house_values database table. This table contains housing information from the city
of Los Angeles. The houses_full instance will be used in this example.

from oraclesai import SpatialDataFrame, DBSpatialDataset
import oml

houses_full = 
SpatialDataFrame.create(DBSpatialDataset(table='la_median_house_values', 
schema='oml_user'))
houses_full = houses_full.to_crs('epsg:3857')

The code then performs the following steps:

1. Defines the target variable (HOUSE_VALUE_MEDIAN) and the explanatory variables for the
regression model.

2. Splits the data into training and test sets.

3. Defines the spatial weights and creates an instance of GeographicalRegressor, which
runs multiple Random Forest regressors locally.

4. Calls the predict and score methods to estimate the target variable of the test set and the
R-squared statistic from the same test set.

from oraclesai.preprocessing import spatial_train_test_split
from oraclesai.weights import SpatialWeights, KNNWeightsDefinition
from sklearn.ensemble import RandomForestRegressor
from oraclesai.regression import GeographicalRegressor

# Define explanatory variables
feature_columns = [
    'BEDROOMS_TOTAL',
    'EDU_LEVEL_SCORE_MEDIAN',
    'POPULATION_DENSITY',
    'ROOMS_TOTAL',
    'COMPLETE_PLUMBING_PERC',
    'COMPLETE_KITCHEN_PERC',
    'HOUSE_AGE_MEDIAN',
    'RENTED_PERC',
    'UNITS_TOTAL'
]

# Define the target variable
target_column = 'HOUSE_VALUE_MEDIAN'

# Select a subset of columns
houses = houses_full[[target_column] + feature_columns]
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# Remove rows with null values
houses = houses.dropna()

# Define the training and test sets
X_train, X_test, y_train, y_test, geom_train, geom_test = 
spatial_train_test_split(houses, 
                                                                              
     y=target_column, 
                                                                              
     test_size=0.33, 
                                                                              
     numpy_result=True, 
                                                                              
     random_state=32)

# Define the spatial weights
weights_definition = KNNWeightsDefinition(k=3)
train_weights = SpatialWeights.create(geom_train, weights_definition)
test_weights = SpatialWeights.create(geom_test, weights_definition)

# Create an instance of GeographicalRegressor
grf_model = GeographicalRegressor(model_cls=RandomForestRegressor, 
n_estimators=10, random_state=32)

# Train the model
grf_model.fit(X_train, geometries=geom_train, y=y_train, 
spatial_weights=train_weights)

# Print the predictions with the test set
grf_predictions_test = grf_model.predict(X_test, 
geometries=geom_test).flatten()
print(f"\n>> predictions (X_test):\n {grf_predictions_test[:10]}")

# Print the score with the test set
grf_r2_score = grf_model.score(X_test, y_test, geometries=geom_test)
print(f"\n>> r2_score (X_test):\n {grf_r2_score}")

The output of the program is as follows:

>> predictions (X_test):
 [622135.  422560.  426457.5 749530.  925412.5 469420.  526467.5 880195.
 460922.5 421930. ]

>> r2_score (X_test):
 0.6774993920744854

Geographically Weighted Regression
The Geographically Weighted Regression (GWR) model is used in the presence of spatial
heterogeneity, which can be identified as a sign of regional variation.

The GWR model creates a local linear regression model for every observation in the dataset. It
incorporates the target and explanatory variables from the observations within their
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neighborhood, allowing the relationships between the independent and dependent variables to
vary by locality.

The following shows the equation for the GWR model:

 

 
In the preceding equation, W is the spatial weights matrix, yj(i) is the estimation of the target
variable for observation j at location i .

The GWRRegressor class trains local linear regressions for every sample in the dataset,
incorporating the dependent and independent variables of locations falling within a specified
bandwidth.

The following table describes the main methods of the GWRRegressor class.

Method Description

fit The algorithm requires a bandwidth, which can be set by the user with
the bandwidth parameter or by specifying the
spatial_weights_definition parameter.
If the bandwidth parameter is defined, the algorithm ignores the
bandwidth associated with the spatial weights. The bandwidth can be
either a threshold distance or a value of k for the K-Nearest Neighbors
method.

If neither the bandwidth nor the spatial_weights_definition
parameters are defined, then the bandwidth is estimated internally
based on the geometries.

predict To make predictions, GWR creates a model for each observation on the
prediction set using neighboring observations from the training data.
Then, it uses those models to estimate the target variable.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the R-squared statistic for the given data.

See the GWRRegressor class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and the GWRRegressor to
train a model to predict the target variable, MEDIAN_INCOME. It uses a training set to train the
model and a test set to make predictions of the target variable and obtain the R-squared
statistic.

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import DistanceBandWeightsDefinition 
from oraclesai.regression import GWRRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define target and explanatory variables 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'INTERNET', 'geometry']] 

# Use a referenced coordinate system 
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X = X.to_crs("epsg:3857") 

# Define training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.1, random_state=32) 

# Define the spatial weights 
weights_definition = DistanceBandWeightsDefinition(threshold=10000) 

# Create an instance of GWR passing the spatial weights 
gwr_model = GWRRegressor(spatial_weights_definition=weights_definition) 

# Add the regressor to a pipeline along with a preprocessing step 
gwr_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('gwr_regression', gwr_model)]) 

# Train the model specifying the target variable 
gwr_pipeline.fit(X_train, "MEDIAN_INCOME") 

# Print the predictions with the test set 
gwr_predictions_test = 
gwr_pipeline.predict(X_test.drop(["MEDIAN_INCOME"])).flatten() 
print(f"\n>> predictions (X_test):\n {gwr_predictions_test[:10]}") 

# Print the score with the test set 
gwr_r2_score = gwr_pipeline.score(X_test, y="MEDIAN_INCOME") 
print(f"\n>> r2_score (X_test):\n {gwr_r2_score}")

The output of the program is shown is as shown:

>> predictions (X_test):
 [111751.58871802 123406.64795915  25850.4248602   23565.60954771
 180171.51825151  47052.37667604 118800.80714934  31067.07113894
  62079.81316461  30673.82128591]

>> r2_score (X_test):
 0.6942389040067138

The summary property includes statistics of the OLS and GWR models. As for the estimated
parameters, it displays the average value from all the local models.

===========================================================================
Model type                                                         Gaussian
Number of observations:                                                3093
Number of covariates:                                                     5

Global Regression Results
---------------------------------------------------------------------------
Residual sum of squares:                                       
1816309978579.363
Log-likelihood:                                                  -35614.052
AIC:                                                              71238.104
AICc:                                                             71240.132
BIC:                                                           
1816309953761.425
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R2:                                                                   0.635
Adj. R2:                                                              0.634

Variable                              Est.         SE  t(Est/SE)    p-value
------------------------------- ---------- ---------- ---------- ----------
X0                               69761.518    436.080    159.974      0.000
X1                                2555.817    564.452      4.528      0.000
X2                                5613.607    843.158      6.658      0.000
X3                               19204.921    602.745     31.862      0.000
X4                               10031.929    637.215     15.743      0.000

Geographically Weighted Regression (GWR) Results
---------------------------------------------------------------------------
Spatial kernel:                                          Fixed bisquare
Bandwidth used:                                                   10000.000

Diagnostic information
---------------------------------------------------------------------------
Residual sum of squares:                                       
1247690194588.343
Effective number of parameters (trace(S)):                          117.770
Degree of freedom (n - trace(S)):                                  2975.230
Sigma estimate:                                                   20478.262
Log-likelihood:                                                  -35033.321
AIC:                                                              70304.183
AICc:                                                             70313.751
BIC:                                                              71021.184
R2:                                                                   0.749
Adjusted R2:                                                          0.739
Adj. alpha (95%):                                                     0.002
Adj. critical t value (95%):                                          3.075

Summary Statistics For GWR Parameter Estimates
---------------------------------------------------------------------------
Variable                   Mean        STD        Min     Median        Max
-------------------- ---------- ---------- ---------- ---------- ----------
X0                    62341.157  12808.790 -66225.562  64262.819  94371.705
X1                     2998.233   3153.236 -12716.566   3338.876  18130.392
X2                    10539.611   7148.106  -7226.756   9336.382  70067.037
X3                    16577.403   9934.050  -9579.528  16819.683  47874.385
X4                     9771.744   4232.729   1656.213   9326.487  44417.212
===========================================================================

Spatial Regimes
In the spatial regimes algorithm, the regression equation parameters are estimated according
to a categorical variable called regime.

This categorical variable can represent different things, such as a region in a spatial context.
Neighborhoods, such as district or block names, can be used to define regimes. The model
reflects spatial heterogeneity across regions, with different regions having their own regression
models.
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The SpatialRegimesRegressor class consists of linear regression models where the terms of
the linear equation vary depending on the regime. The following table describes the main
methods of the SpatialRegimesRegressor class.

Method Description

fit The regime parameter indicates the categorical variable used as
regime. An OLS is run for each regime, obtaining a different set of
parameters for each regime.

predict To predict new values, the algorithm uses the parameters associated
with the regimes of the prediction data.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the R-squared statistic for the given data. For each observation,
it uses the model associated with the corresponding regime.

Even when the SpatialRegimesRegressor class does not consider spatial weights in the
training process, it uses the spatial_weights_definition parameter to obtain spatial
diagnostics.

See the SpatialRegimesRegressor class in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the block_groups SpatialDataFrame and the
SpatialRegimesRegressor class. However, before executing the regression task, the example
requires to define a categorical variable as regime. Then the functions split the geographical
area of a SpatialDataFrame into a grid with a certain number of rows and columns, where
each grid cell is represented by an integer number that will serve as the categorical variable.

import bisect

def get_cell_id(array_x, array_y, point, ncols):
    point_x, point_y = point.x, point.y
    grid_x = bisect.bisect_left(array_x, point_x) - 1
    grid_y = bisect.bisect_left(array_y, point_y) - 1
    
    return grid_y * ncols + grid_x
    
def create_grid(pdf_data, grid_column, nrows=2, ncols=2):
    min_x, min_y, max_x, max_y = pdf_data.total_bounds
    geometries = pdf_data["geometry"].values
    centroids = [geom.centroid for geom in geometries]
    
    step_x = (max_x - min_x) / ncols
    step_y = (max_y - min_y) / nrows
    
    split_x = [min_x + step_x * i for i in range(ncols + 1)]
    split_y = [min_y + step_y * i for i in range(nrows + 1)]
    
    column_values = []
    for centroid in centroids:
        column_values.append(get_cell_id(split_x, split_y, centroid, ncols))
        
    return pdf_data.add_column(grid_column, column_values)

Using the preceding functions, the following code:
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1. Creates another instance of SpatialDataFrame with a categorical variable, GRID_ID,
representing the grid cells that will serve as the regimes.

2. Stores the regimes into a separate variable and removes the categorical variable from the
dataset.

3. Trains the SpatialRegimesRegressor model with the training set (X_train) by calling the
fit method, setting the regime parameter, and using the MEDIAN_INCOME column as the
target variable.

4. Calls the predict and score methods using the test set (X_test), to estimate the target
variable and obtain the R-squared metric.

from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.regression import SpatialRegimesRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Create a categorical variable by splitting the geographic region in a grid 
block_groups_grid = create_grid(block_groups, "GRID_ID", nrows=3, ncols=3) 

# Define the explanatory variables 
X = block_groups_grid[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'INTERNET', 'GRID_ID', 'geometry']] 

# Define the training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2, random_state=32) 

# Get the regime values 
regimes_train = X_train["GRID_ID"].values.tolist() 
regimes_test = X_test["GRID_ID"].values.tolist()

# Discard the categorical variable 
X_train = X_train.drop("GRID_ID") 
X_test = X_test.drop("GRID_ID") 

# Define the spatial weights 
weights_definition = KNNWeightsDefinition(k=10) 

# Create a Spatial Regimes Regressor model 
spatial_regimes_model = 
SpatialRegimesRegressor(spatial_weights_definition=weights_definition) 

# Add the model to a spatial pipeline along with a preprocessing step 
spatial_regimes_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('spatial_regimes', spatial_regimes_model)]) 

# Train the model using "MEDIAN_INCOME" as the target variable and specifying 
the regime values 
spatial_regimes_pipeline.fit(X_train, "MEDIAN_INCOME", 
spatial_regimes__regimes=regimes_train) 

# Print the predictions with the test set
spatial_regimes_predictions_test = 
spatial_regimes_pipeline.predict(X_test.drop(["MEDIAN_INCOME"]), 
spatial_regimes__regimes=regimes_test).flatten() 
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print(f"\n>> predictions (X_test):\n 
{spatial_regimes_predictions_test[:10]}") 

# Print the score with the test set 
spatial_regimes_r2_score = spatial_regimes_pipeline.score(X_test, 
y="MEDIAN_INCOME", spatial_regimes__regimes=regimes_test) 
print(f"\n>> r2_score (X_test):\n {spatial_regimes_r2_score}")

The output of this program is as follows:

>> predictions (X_test):
 [ 99973.28903064 119316.0422925   21627.0522275   26862.24033126
 176529.76909922  55563.36270093 115297.87445691  33401.15374394
  63827.11873494  26992.92679579]

>> r2_score (X_test):
 0.67377148094271

Since the spatial_weights_definition parameter was set when creating the
SpatialRegimesRegressor instance, the summary property of the trained model displays spatial
statistics. Note that there is a set of parameters for each regime, as well as some spatial
statistics, such as Moran’s I and Lagrange Multipliers for spatial dependence.

REGRESSION
----------
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES
---------------------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     dep_var                Number of 
Observations:        2750
Mean dependent var  :  69703.4815                Number of 
Variables   :          40
S.D. dependent var  :  39838.5789                Degrees of 
Freedom    :        2710
R-squared           :      0.6974
Adjusted R-squared  :      0.6930
Sum squared residual:1320270117156.439                F-
statistic           :    160.1405
Sigma-square        :487184545.076                Prob(F-
statistic)     :           0
S.E. of regression  :   22072.257                Log likelihood        :  
-31387.645
Sigma-square ML     :480098224.421                Akaike info criterion :   
62855.290
S.E of regression ML:  21911.1438                Schwarz criterion     :   
63092.065

------------------------------------------------------------------------------
------
            Variable     Coefficient       Std.Error     t-Statistic     
Probability
------------------------------------------------------------------------------
------
          1_CONSTANT    67301.4371567    1953.6056568      34.4498578       
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0.0000000
          1_MEAN_AGE    -787.8377162    1485.8378441      -0.5302313       
0.5959950
1_MEAN_EDUCATION_LEVEL    19399.3182180    3114.5763711       6.2285576       
0.0000000
       1_HOUSE_VALUE    18607.2342406    1584.1781459      11.7456703       
0.0000000
          1_INTERNET    13025.7000079    2370.5082392       5.4948976       
0.0000000
          2_CONSTANT    70316.2663016    3128.3635757      22.4770122       
0.0000000
          2_MEAN_AGE    4475.1151552    1602.7038604       2.7922283       
0.0052714
2_MEAN_EDUCATION_LEVEL    6155.3917348    2436.3442043       2.5264869       
0.0115775
       2_HOUSE_VALUE    8287.3366860    4847.3374558       1.7096678       
0.0874418
          2_INTERNET    9610.2177802    1714.0106903       5.6068599       
0.0000000
          3_CONSTANT    24528.5879950    5872.7675236       4.1766659       
0.0000305
          3_MEAN_AGE    4605.8239137    1904.1647555       2.4188159       
0.0156366
3_MEAN_EDUCATION_LEVEL    22124.7054269    5152.1353075       4.2942788       
0.0000181
       3_HOUSE_VALUE    22528.7956619    1505.5002005      14.9643259       
0.0000000
          3_INTERNET    22442.8115822    3672.8299785       6.1104956       
0.0000000
          4_CONSTANT    60346.7138163    1011.7946534      59.6432424       
0.0000000
          4_MEAN_AGE    2025.4934828    1131.5366834       1.7900378       
0.0735594
4_MEAN_EDUCATION_LEVEL    12613.8139792    1879.7592801       6.7103347       
0.0000000
       4_HOUSE_VALUE    15802.2959953    1094.1149414      14.4429944       
0.0000000
          4_INTERNET    7544.7984901    1423.9963625       5.2983271       
0.0000001
          5_CONSTANT    60570.6305539    1375.4910298      44.0356420       
0.0000000
          5_MEAN_AGE    4004.8956000    1338.2798927       2.9925695       
0.0027914
5_MEAN_EDUCATION_LEVEL    7093.5634835    1762.1713354       4.0254675       
0.0000584
       5_HOUSE_VALUE    4973.1688262    2760.5550262       1.8015105       
0.0717336
          5_INTERNET    5212.2336124    1092.1003496       4.7726691       
0.0000019
          6_CONSTANT    74193.6261803    1593.8110537      46.5510802       
0.0000000
          6_MEAN_AGE    8804.9736797    1830.8258733       4.8092906       
0.0000016
6_MEAN_EDUCATION_LEVEL    -1282.6669985    2732.9823394      -0.4693287       
0.6388725
       6_HOUSE_VALUE    24763.0330906    2724.0892923       9.0903896       
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0.0000000
          6_INTERNET    14378.1718270    2116.0137823       6.7949330       
0.0000000
          7_CONSTANT    72053.1153887    1522.5496169      47.3239851       
0.0000000
          7_MEAN_AGE    3957.0149819    1885.0370696       2.0991709       
0.0358941
7_MEAN_EDUCATION_LEVEL    -1604.5557316    2759.9951560      -0.5813618       
0.5610450
       7_HOUSE_VALUE    25077.4167626    3315.7621906       7.5630927       
0.0000000
          7_INTERNET    11840.4394166    2062.1006321       5.7419309       
0.0000000
          8_CONSTANT    58026.3709199    3699.6679150      15.6842107       
0.0000000
          8_MEAN_AGE    4496.6200307    2673.0921045       1.6821792       
0.0926493
8_MEAN_EDUCATION_LEVEL    17341.3083231    5737.4485722       3.0224773       
0.0025306
       8_HOUSE_VALUE    35050.3546911    3390.1281391      10.3389469       
0.0000000
          8_INTERNET    15125.8210946    3364.7884860       4.4953260       
0.0000072
------------------------------------------------------------------------------
------
Regimes variable: unknown

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER           10.296

TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2        1869.657           0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test               39        1548.245           0.0000
Koenker-Bassett test             39         544.999           0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST                           MI/DF       VALUE           PROB
Moran's I (error)              0.1497        19.689           0.0000
Lagrange Multiplier (lag)         1         174.856           0.0000
Robust LM (lag)                   1           1.572           0.2099
Lagrange Multiplier (error)       1         334.438           0.0000
Robust LM (error)                 1         161.155           0.0000
Lagrange Multiplier (SARMA)       2         336.010           0.0000

REGIMES DIAGNOSTICS - CHOW TEST
                 VARIABLE        DF        VALUE           PROB
                 CONSTANT         7         141.366           0.0000
              HOUSE_VALUE         7          74.722           0.0000
                 INTERNET         7          41.075           0.0000
                 MEAN_AGE         7          19.445           0.0069
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     MEAN_EDUCATION_LEVEL         7          54.041           0.0000
              Global test        35         566.146           0.0000
================================ END OF REPORT 
=====================================

Spatial Fixed Effects
The spatial fixed effects algorithm computes an intercept or constant parameter for each
regime, while the other model parameters remain constant. It is a simplified version of the
spatial regimes algorithm.

The SpatialFixedEffectsRegressor class consists of regression models where each model
has a different constant parameter, one for each regime. The rest of the parameters of the
models are the same. To predict new values, it gets the constant parameter for the
corresponding regime internally and uses that parameter in the regression equation along with
the other parameters. You can also pass in the spatial_weights_definition parameter to
obtain spatial diagnostics for analyzing the input features and fine tune the model.

The following table describes the main methods of the SpatialFixedEffectsRegressor class.

Method Description

fit The regime parameter indicates the categorical variable used as
regime. The intercept parameter of the linear equation is different for
each regime, while the rest of the parameters remain constant.

predict To predict new values, the algorithm gets the intercept of the linear
equation from the corresponding regime (according to the regime
parameter), and uses it along with the other parameters.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the R-squared statistic for the given data. For each observation,
it uses the intercept associated with the corresponding regime,
according to the regime parameter.

When creating an instance of the SpatialFixedEffectsRegresssor class, it is possible to
define the spatial_weights_definition parameter to obtain spatial diagnostics after training
the model.

See the SpatialFixedEffectsRegressor class in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the block_groups SpatialDataFrame and the functions defined in 
Spatial Regimes to create the regimes by splitting the geographical area into a grid, where
each cell represents a regime.

Then, trains the Spatial Fixed Effects model. Finally, using the test set, it calls the predict
and score methods to estimate the target variable and the R-squared metric respectively.

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.regression import SpatialFixedEffectsRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Create a categorical variable by splitting the geographic region in a grid 
block_groups_grid = create_grid(block_groups, "GRID_ID", nrows=3, ncols=3) 
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# Define the explanatory variables 
X = block_groups_grid[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'INTERNET', 'GRID_ID', 'geometry']] 

# Define the training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2, random_state=32) 

# Get the regime values 
regimes_train = X_train["GRID_ID"].values.tolist() 
regimes_test = X_test["GRID_ID"].values.tolist() 

# Discard the categorical variable 
X_train = X_train.drop("GRID_ID") 
X_test = X_test.drop("GRID_ID") 

# Define the spatial weights 
weights_definition = KNNWeightsDefinition(k=10) 

# Create a Spatial Fixed Effects Regressor model 
sfe_model = 
SpatialFixedEffectsRegressor(spatial_weights_definition=weights_definition) 

# Add the model to a spatial pipeline along with a preprocessing step 
sfe_pipeline = SpatialPipeline([('scale', StandardScaler()), ('sfe', 
sfe_model)]) 

# Train the model using "MEDIAN_INCOME" as the target variable and specifying 
the regimes 
sfe_pipeline.fit(X_train, "MEDIAN_INCOME", sfe__regimes=regimes_train) 

# Print the predictions with the test set 
sfe_predictions_test = sfe_pipeline.predict(X_test.drop(["MEDIAN_INCOME"]), 
sfe__regimes=regimes_test).flatten() 
print(f"\n>> predictions (X_test):\n {sfe_predictions_test[:10]}") 

# Print the score with the test set 
sfe_r2_score = sfe_pipeline.score(X_test, y="MEDIAN_INCOME", 
sfe__regimes=regimes_test) 
print(f"\n>> r2_score (X_test):\n {sfe_r2_score}")

The program prints the predictions of the target variable of the first 10 observations, and the R-
squared metric for the test set as shown:

>> predictions (X_test):
 [101512.84282764 109422.92724391  29615.01694646  29230.32429018
 162356.33498145  53108.14145735 105985.63259313  28588.56284749
  81056.36661461  19790.46314804]

>> r2_score (X_test):
 0.6701128016747615

The intercept values for each regime can be visualized using the summary property, and if the
spatial_weights_definition parameter was defined when creating the regressor, the
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summary also includes spatial statistics, such as the Moran’s I and Lagrange Multipliers for
spatial lag and spatial error.

REGRESSION
----------
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES - REGIMES
---------------------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     dep_var                Number of 
Observations:        2750
Mean dependent var  :  69703.4815                Number of 
Variables   :          12
S.D. dependent var  :  39838.5789                Degrees of 
Freedom    :        2738
R-squared           :      0.6573
Adjusted R-squared  :      0.6559
Sum squared residual:1495203246049.754                F-
statistic           :    477.4024
Sigma-square        :546093223.539                Prob(F-
statistic)     :           0
S.E. of regression  :   23368.638                Log likelihood        :  
-31558.731
Sigma-square ML     :543710271.291                Akaike info criterion :   
63141.461
S.E of regression ML:  23317.5957                Schwarz criterion     :   
63212.494

------------------------------------------------------------------------------
------
            Variable     Coefficient       Std.Error     t-Statistic     
Probability
------------------------------------------------------------------------------
------
          1_CONSTANT    75646.5430042    1406.0974938      53.7989317       
0.0000000
          2_CONSTANT    77794.0850074    1338.3185516      58.1282273       
0.0000000
          3_CONSTANT    58981.5644323    1948.7462992      30.2664151       
0.0000000
          4_CONSTANT    60320.9906786    1002.6995461      60.1585898       
0.0000000
          5_CONSTANT    69884.3635458    1076.5155202      64.9171909       
0.0000000
          6_CONSTANT    75355.5269590    1338.6764983      56.2910659       
0.0000000
          7_CONSTANT    71531.4267958    1445.6625603      49.4800300       
0.0000000
          8_CONSTANT    72960.0800416    1983.5523209      36.7825337       
0.0000000
    _Global_MEAN_AGE    2989.5036511     583.1586204       5.1263988       
0.0000003
_Global_MEAN_EDUCATION_LEVEL    6304.4360113     904.9392927       
6.9666950       0.0000000
 _Global_HOUSE_VALUE    21452.9209086     664.4420803      32.2871196       
0.0000000
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    _Global_INTERNET    8352.1786588     664.9940434      12.5597797       
0.0000000
------------------------------------------------------------------------------
------
Regimes variable: unknown

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER            4.274

TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2        1415.811           0.0000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test               11        1252.140           0.0000
Koenker-Bassett test             11         486.455           0.0000

DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST                           MI/DF       VALUE           PROB
Moran's I (error)              0.2201        27.742           0.0000
Lagrange Multiplier (lag)         1         317.696           0.0000
Robust LM (lag)                   1           1.495           0.2214
Lagrange Multiplier (error)       1         722.582           0.0000
Robust LM (error)                 1         406.382           0.0000
Lagrange Multiplier (SARMA)       2         724.078           0.0000

REGIMES DIAGNOSTICS - CHOW TEST
                 VARIABLE        DF        VALUE           PROB
                 CONSTANT         7         184.738           0.0000
              Global test         7         184.738           0.0000
================================ END OF REPORT 
=====================================

Adaptive Spatial Regression
The AdaptiveSpatialRegressor class consists of an automated approach that finds the
regression algorithm that better fits the data. This is the best approach when you do not know
which model to use.

The algorithm trains an OLSRegressor model specifying the spatial_weights_definition
parameter to get the spatial diagnostics. Based on spatial statistics, it suggests the regression
algorithm. You have to provide spatial weights definition when using this algorithm, otherwise,
the algorithm recommends OLSRegressor.

The following figure shows the current workflow for choosing the best algorithm.
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From spatial diagnostics, the algorithm gets the Moran's I statistic. If the value is statistically
significant, then it is interpreted as follows:

• A positive value of Moran's I statistic indicates the presence of spatial dependence, or
spatial clustering, and an algorithm that includes this spatial dependence is preferred. Two
algorithms that consider spatial dependence are SpatialLagRegressor and
SpatialErrorRegressor. Depending on the Lagrange Multipliers obtained from spatial
diagnostics, the algorithm selects one of them (see [3] for more detailed information about
spatial regression diagnostics).

• If the Moran's I statistic is negative, then it indicates the presence of regional variance or
spatial heteroskedasticity, and a local method such as GWRRegressor is more suitable.

In case the Moran’s I statistic is not statistically significant but the variability of the residuals is
significant, then the algorithm selects the GWRRegressor.

See the SpatialAdaptiveRegressor class in Python API Reference for Oracle Spatial AI for
more information.
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The following example uses the block_groups SpatialDataFrame and
SpatialAdaptiveRegressor to train a model from a training set. Then, using a test set, the
code estimates the target variable and gets the R-squared metric.

%python

from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.regression import SpatialAdaptiveRegressor 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Define target and explanatory variables 
X = block_groups[['MEDIAN_INCOME', 'MEAN_AGE', 'MEAN_EDUCATION_LEVEL', 
'HOUSE_VALUE', 'INTERNET', 'geometry']] 

# Define training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
test_size=0.2, random_state=32) 

# Define spatial weights 
weights_definition = KNNWeightsDefinition(k=5) 

# Create an instance of SpatialAdaptiveRegressor 
spreg_model = 
SpatialAdaptiveRegressor(spatial_weights_definition=weights_definition)

# Add the model to a spatial pipeline along with a preprocessing step 
spreg_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('spreg_regression', spreg_model)]) 

# Train the model 
spreg_pipeline.fit(X_train, "MEDIAN_INCOME") 

# Print the selected model 
print(f">> Algorithm chosen: 
{spreg_pipeline.named_steps['spreg_regression'].model_type.__name__}") 

# Print the predictions with the test set 
spreg_predictions_test = 
spreg_pipeline.predict(X_test.drop("MEDIAN_INCOME")).flatten() 
print(f"\n>> predictions (X_test):\n {spreg_predictions_test[:10]}") 

# Print the score with the test set 
spreg_r2_score = spreg_pipeline.score(X_test, "MEDIAN_INCOME") 
print(f"\n>> r2_score (X_test):\n {spreg_r2_score}")

The output of the program consists of the name of the algorithm chosen by
SpatialAdaptiveRegressor, the predictions of the first 10 observations of the test set, and the
R-squared metric of the test set.

> Algorithm chosen: ErrorModel

>> predictions (X_test):
 [101563.4135695  105231.46019748  24081.18722085  38529.02025428
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 164280.78271333  50332.38349005 102590.59769969  27659.63416001
  81911.84382123  17657.93225933]

>> r2_score (X_test):
 0.6456845274014411
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9
Apply Spatial Classification

Learn and apply the machine learning algorithms for spatial classification.

Topics:

• About Spatial Classification

• SLX Classifier

• GWR Classifier

• Geographical Classifier

About Spatial Classification
A spatial classification task consists of training a model that predicts the value of a target
variable according to explanatory variables, where the target variable is categorical.

Spatial classification algorithms provide a spatial context to the already known classification
algorithms. It is helpful when the variables are influenced by their geographic location.

The following lists a few use cases of spatial classification:

• Categorize the crime level of a particular zone.

• Identify the severity of air pollution across a geographic region and classify them into
different zones for decision-making.

• Estimate the outcome of a political election in different locations.

SLX Classifier
The Spatial Cross-Regressive (SLX) classification algorithm executes logistic regression
involving a feature engineering step to add features that provide a spatial context to the data.

The algorithm adds one or more columns with the spatial lag of certain features, representing
the average from neighboring observations.

Using the SLXClassifier class requires defining the spatial weights with the
spatial_weights_definition parameter, which establishes the interaction between
neighboring observations.

For a multi-class classification problem, the algorithm uses the one-vs-rest strategy, training a
model for each class. One common issue with this strategy is that it can result in an
imbalanced dataset, where the proportion of elements of one class is much larger than the
other. To handle this scenario, the SLXClassifier class provides the following two
oversampling methods:

• Random. This method creates duplicates of random samples (with replacement) from the
minority class.

• Synthetic Minority Oversampling Technique (SMOTE). This algorithm selects a random
sample of the minority class, a, and from its k nearest neighbors, it selects a random
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neighbor, b. The vector ab is multiplied by a random number in the range [0, 1], and the
result is added to sample a, generating a new synthetic instance. See [5] for more
information on SMOTE.

The following parameters specify the oversampling method and the number of new samples:

Parameter Description

balance_method The oversampling method. The default value is None, the other options
are random and smote.

balance_ratio A number in the range [0, 1] representing the desired ratio of
observations from the minority class. A value of 1 will result in the same
number of observations for both classes.

The following table describes the main methods of the SLXClassifier class.

Method Description

fit The parameters of the fit method are the same for most of the
regression algorithms, except for the column_ids parameter, which
specify the columns that are used to compute the spatial lag.
The algorithm estimates the parameters of the explanatory variables
plus the parameters associated with those added with the spatial lag.

predict The predict method calculates the spatial lag of the dataset using the
same columns defined in the fit process and returns the category with
the highest probability according to Logistic Regression.
By setting the use_fit_lag=True parameter, the algorithm calculates
the spatial lag from the training set. This is helpful when the prediction
dataset contains few observations.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the accuracy for the given data. By setting the
use_fit_lag=True, the algorithm calculates the spatial lag from the
training set. Otherwise, it computes the spatial lag from the provided
data.

See the SLXClassifier class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and performs the following
steps:

1. Creates a categorical variable, INCOME_LABEL, based on the MEDIAN_INCOME column, to use
as the target variable.

2. Creates an instance of SXLClassifier specifying the balance_method and balance_ratio
parameters.

3. Trains the model using a training set.

4. Prints the predictions from the model and the model's accuracy using the test set.

import numpy as np 
from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import KNNWeightsDefinition 
from oraclesai.classification import SLXClassifier 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 
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# Define the categories for the target variable 
labels=["low", "medium-low", "medium-high", "high"] 

# The target variable comes from the column MEDIAN_INCOME 
income_array = block_groups['MEDIAN_INCOME'].values 

# Define constants to create the target variable 
min_income = np.min(income_array) 
max_income = np.max(income_array) 
delta = (max_income - min_income) / 4 

# Define a function that returns a category based on the median income 
def get_label(income): 
    if income <= min_income + delta: 
        return "low" 
    elif min_income + delta < income <= min_income + 2 * delta: 
        return "medium-low" 
    elif min_income + 2 * delta < income <= min_income + 3 * delta: 
        return "medium-high" 
    return "high" 

# Create a new SpatialDataFrame with the target variable "INCOME_LABEL" 
block_groups_extended = block_groups.add_column("INCOME_LABEL", 
[get_label(income) for income in income_array]) 

# Define the target and explanatory variables 
X = block_groups_extended[['INCOME_LABEL', 'MEAN_AGE', 
'MEAN_EDUCATION_LEVEL', 'HOUSE_VALUE', 'INTERNET', 'geometry']] 

# Split the data into training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="INCOME_LABEL", 
test_size=0.2, random_state=32) 

# Define the spatial weights 
weights_definition = KNNWeightsDefinition(k=20) 

# Create the instance of SLXClassifier 
slx_classifier = SLXClassifier(spatial_weights_definition=weights_definition, 
                                                random_state=15, 
                                                balance_method="smote",  
                                                balance_ratio=0.05) 

# Add the model to a spatial pipeline along with a pre-processing step 
classifier_pipeline = SpatialPipeline([('scale', StandardScaler()), 
('classifier', slx_classifier)]) 

# Train the model specifying the target variable and the parameter column_ids 
classifier_pipeline.fit(X_train, "INCOME_LABEL", 
classifier__column_ids=["MEAN_AGE", "HOUSE_VALUE"]) 

# Print the predictions with the test set 
slx_predictions_test = 
classifier_pipeline.predict(X_test.drop("INCOME_LABEL")).flatten() 
print(f"\n>> predictions (X_test):\n {slx_predictions_test[:10]}") 

# Print the accuracy with the test set 
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slx_accuracy_test = classifier_pipeline.score(X_test, "INCOME_LABEL") 
print(f"\n>> accuracy (X_test):\n {slx_accuracy_test}")

The output consists of the predictions of the first ten observations and the model's accuracy
using the test set.

>> predictions (X_test):
 ['medium-low' 'medium-low' 'low' 'low' 'high' 'low' 'medium-low' 'low'
 'low' 'low']

>> accuracy (X_test):
 0.7438136826783115

The summary property displays the statistics of the trained model, or models in case of multi-
class, along with the mean value of the estimated parameters.

Multi-Class Logistic Model Results
---------------------------------------------------------------------------
      label    deviance          llf         aic           bic       D2   
adj_D2
       high  342.409525  -171.204763  356.409525 -21710.554931 0.553921 
0.552958
        low 1855.672117  -927.836058 1869.672117 -20197.292339 0.498926 
0.497844
 medium-low 2506.593561 -1253.296780 2520.593561 -19546.370895 0.249868 
0.248249
medium-high  840.588033  -420.294016  854.588033 -21212.376424 0.357128 
0.355741

Parameters (Average Results)
Variable                              Est.        STD        Min     
Median        Max
------------------------------- ---------- ---------- ---------- ---------- 
----------
constant                            -3.740      4.007     -9.350     
-3.432      1.256
MEAN_AGE                            -0.043      0.275     -0.345     
-0.062      0.296
MEAN_EDUCATION_LEVEL                 0.960      1.229     -1.077      
1.472      1.974
HOUSE_VALUE                         -0.037      0.867     -1.175     
-0.047      1.119
INTERNET                             0.652      1.369     -1.435      
0.824      2.394
SLX-MEAN_AGE                         0.018      0.016     -0.006      
0.022      0.035
SLX-HOUSE_VALUE                      0.001      0.026     -0.017     
-0.012      0.047

Geographical Classifier
Similar to GeographicalRegressor, the GeographicalClassifier class trains a global model
and multiple local models and predicts by combining the weighted results from both models.
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By defining the global_model and model_cls parameters, you can specify the scikit-learn
global and local classifiers respectively. The classifiers can be any scikit-learn classifiers,
including Random Forest, Support Vector, Gradient Boosting, Decision Trees, and so on.

Both, GeographicalClassifier and GeographicalRegressor extend the Geographical
Random Forest algorithm by allowing the use of various underlying machine learning
algorithms besides Random Forest and supporting parallelism in the training of local models,
ensuring robust and scalable performance. See [4] for more information on the Geographical
Random Forest algorithm.

The following table describes the main methods of the Geographical Classifier class.

Method Description

fit First, the global model is built using the parameters provided at creation
time. If the spatial relationship is not specified (either by the
spatial_weights_definition or the bandwidth parameter), it is
internally computed. Then, several local models are trained.

predict The following steps describe the prediction method:

1. The prediction is executed by locating the local model closer to the
observation to be predicted.

2. By using a weighted average of the predictions from the global and
local model, the algorithm estimates a discrete range of values
corresponding to classes, representing the probability of an
observation belonging to each class.

3. The category associated with the highest probability represents the
predicted value.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the model's accuracy for the given data.

See the Geographical Classifier class in Python API Reference for Oracle Spatial AI for more
information.

The following code uses the houses_full SpatialDataFrame, containing housing information
for the city of Los Angeles. The example performs the following steps:

1. Creates a categorical variable based on the HOUSE_VALUE_MEDIAN column.

2. Defines the training and test sets.

3. Creates an instance of GeographicalClassifier.

4. Trains the local model using the RandomForestClassifier from scikit-learn.

5. Calls the predict and score methods to estimate the target variable and the model’s
accuracy of a test set respectively.

from oraclesai.preprocessing import spatial_train_test_split
from oraclesai.weights import DistanceBandWeightsDefinition
from sklearn.ensemble import RandomForestClassifier
from oraclesai.classification import GeographicalClassifier

# Define explanatory variables
feature_columns = [
    'BEDROOMS_TOTAL',
    'EDU_LEVEL_SCORE_MEDIAN',
    'POPULATION_DENSITY',
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    'ROOMS_TOTAL',
    'COMPLETE_PLUMBING_PERC',
    'COMPLETE_KITCHEN_PERC',
    'HOUSE_AGE_MEDIAN',
    'RENTED_PERC',
    'UNITS_TOTAL'
]

# The target variable will be built from this column
target_column = 'HOUSE_VALUE_MEDIAN'

# Select a subset of columns
houses = houses_full[[target_column] + feature_columns]

# Remove rows with null values
houses = houses.dropna()

# Define training and test sets
X_train, X_test, y_train, y_test, geom_train, geom_test = 
spatial_train_test_split(houses,
                                                                              
     y=target_column, 
                                                                              
     test_size=0.33,
                                                                              
     numpy_result=True,
                                                                              
     random_state=32)

# Define constants to create a categorical variable
y = houses[target_column].values
y_mean = y.mean()
y_std = y.std()

# House prices below the mean minus 0.5 std are considered a low-value
# House prices above the mean plus 0.5 std are considered a high-value
mid_low_price =  y_mean - y_std * 0.5
mid_hi_price = y_mean + y_std * 0.5

# Define the function that generates the target variable based on the house 
value
def classify_house_value(house_value):
    if house_value < mid_low_price:
        return 0.0
    if house_value > mid_hi_price:
        return 2.0
    return 1.0

# Generate the target variable for the training and test sets
y_c_train = [classify_house_value(inc) for inc in y_train]
y_c_test = [classify_house_value(inc) for inc in y_test]

# Define the spatial weights
weights_definition = DistanceBandWeightsDefinition(threshold=2388.51)

# Create an instance of GeographicalClassifier
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grfc_model = GeographicalClassifier(model_cls=RandomForestClassifier, 
                                    n_estimators=10, 
                                    local_weight=0.80, 
                                    
spatial_weights_definition=weights_definition, 
                                    random_state=32) 
# Train the model
grfc_model.fit(X_train, y=y_c_train, geometries=geom_train, n_jobs=-1)

# Print the predictions with the test set
grfc_predictions_test = grfc_model.predict(X_test, 
geometries=geom_test).flatten()
print(f"\n>> predictions (X_test):\n {grfc_predictions_test[:10]}")

# Print the score with the test set
grfc_accuracy = grfc_model.score(X_test, y_c_test, geometries=geom_test)
print(f"\n>> accuracy (X_test):\n {grfc_accuracy}")

The output consists of the predictions of the first 10 observations of the test set and the
model's accuracy using the same test set.

>> predictions (X_test):
 [1 1 0 2 2 1 1 0 0 0]

>> accuracy (X_test):
 0.7343004295345901

GWR Classifier
The Geographically Weighted Regression (GWR) classifier is a binary classifier used in the
presence of spatial heterogeneity, which can be identified as a sign of regional variation.

The algorithm creates a local classifier for every observation in the dataset by incorporating the
target and explanatory variables from the observations within their neighborhood, allowing the
relationships between the independent and dependent variables to vary by locality.

The classifier trains a logistic regression model for every sample in the dataset, incorporating
the dependent and independent variables of locations falling within a specified bandwidth. The
goal is to maximize the cross-entropy loss function defined as follows.

 

 
In the preceding function, y is either 0 or 1, the function h is the activation function for Logistic
Regression, which is the Sigmoid function.

The following table describes the main methods of the GWRClassifier class.
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Method Description

fit The algorithm requires a bandwidth, which can be set by the user with
the bandwidth parameter or by specifying the
spatial_weights_definition parameter.
If the bandwidth parameter is defined, the algorithm ignores the
bandwidth associated with the spatial weights. The bandwidth can be
either a threshold distance or a value of k for the K-Nearest Neighbors
method.

If neither the bandwidth nor the spatial_weights_definition
parameters are defined, then the bandwidth is estimated internally
based on the geometries.

predict To make predictions, GWR trains a model for each observation on the
prediction set using neighboring observations from the training data.
Then, it uses those models to estimate the target variable.

fit_predict Calls the fit and predict methods sequentially with the training data.

score Returns the model's accuracy for the given data.

See the GWRClassifier class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and performs the following
steps:

1. Creates a categorical variable based on the MEDIAN_INCOME column to be used as the
target variable.

2. Creates an instance of GWRClassifier.

3. Trains the model using a training set.

4. Prints the predictions from the model and the model's accuracy using the trained model.

import pandas as pd 
from oraclesai.preprocessing import spatial_train_test_split 
from oraclesai.weights import DistanceBandWeightsDefinition 
from oraclesai.classification import GWRClassifier 
from oraclesai.pipeline import SpatialPipeline 
from sklearn.preprocessing import StandardScaler 

# Create a categorical variable, "INCOME_LABEL", based on the second quantile 
of the median income 
block_groups_extended = block_groups.add_column("INCOME_LABEL", 
pd.qcut(block_groups['MEDIAN_INCOME'].values, [0, 0.5, 1], labels=[0, 
1]).to_list()) 

# Set a referenced coordinate system 
block_groups_extended = block_groups_extended.to_crs('epsg:3857') 

# Define the target and explanatory variables 
X = block_groups_extended[['INCOME_LABEL', 'MEAN_AGE', 
'MEAN_EDUCATION_LEVEL', 'HOUSE_VALUE', 'INTERNET', 'geometry']] 

# Define the training and test sets 
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="median_income", 
test_size=0.2, random_state=32) 
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# Define the spatial weights definition 
weights_definition = DistanceBandWeightsDefinition(threshold=15000) 

# Create an instance of GWRClassifier 
gwr_classifier = GWRClassifier(spatial_weights_definition=weights_definition) 

# Add the model to a spatial pipeline along with a pre-processing step 
classifier_pipeline = SpatialPipeline([('scale', StandardScaler()), ('gwr', 
gwr_classifier)]) 

# Train the model specifying the target variable 
classifier_pipeline.fit(X_train, "INCOME_LABEL") 

# Print the predictions with the test set 
gwr_predictions_test = 
classifier_pipeline.predict(X_test.drop("INCOME_LABEL")).flatten() 
print(f"\n>> predictions (X_test):\n {gwr_predictions_test[:10]}") 

# Print the accuracy with the test set 
gwr_accuracy_test = classifier_pipeline.score(X_test, "INCOME_LABEL") 
print(f"\n>> accuracy (X_test):\n {gwr_accuracy_test}")

The output consists of the predictions of the first 10 observations and the model's accuracy
using the test set.

>> predictions (X_test):
 [1 1 0 0 1 0 1 0 0 0]

>> accuracy (X_test):
 0.8384279475982532

The summary property includes statistics of a global logistic regression and the GWRClassifier.
As for the estimated parameters, it displays the average value from all the local models.

===========================================================================
Model type                                                         Binomial
Number of observations:                                                2750
Number of covariates:                                                     5

Global Regression Results
---------------------------------------------------------------------------
Deviance:                                                          2088.938
Log-likelihood:                                                   -1044.469
AIC:                                                               2098.938
AICc:                                                              2098.960
BIC:                                                             -19649.694
Percent deviance explained:                                           0.452
Adj. percent deviance explained:                                      0.451

Variable                              Est.         SE  t(Est/SE)    p-value
------------------------------- ---------- ---------- ---------- ----------
X0                                  -0.044      0.061     -0.717      0.473
X1                                   0.439      0.072      6.084      0.000
X2                                   0.685      0.104      6.603      0.000
X3                                   0.542      0.109      4.989      0.000
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X4                                   1.298      0.092     14.088      0.000

Geographically Weighted Regression (GWR) Results
---------------------------------------------------------------------------
Spatial kernel:                                          Fixed bisquare
Bandwidth used:                                                   15000.000

Diagnostic information
---------------------------------------------------------------------------
Effective number of parameters (trace(S)):                           56.675
Degree of freedom (n - trace(S)):                                  2693.325
Log-likelihood:                                                    -888.994
AIC:                                                               1891.337
AICc:                                                              1893.765
BIC:                                                               2226.816
Percent deviance explained:                                         0.534
Adjusted percent deviance explained:                                0.524
Adj. alpha (95%):                                                     0.004
Adj. critical t value (95%):                                          2.850

Summary Statistics For GWR Parameter Estimates
---------------------------------------------------------------------------
Variable                   Mean        STD        Min     Median        Max
-------------------- ---------- ---------- ---------- ---------- ----------
X0                       -0.020      0.846     -1.630     -0.140      3.328
X1                        0.512      0.325      0.020      0.385      2.156
X2                        0.931      0.665     -1.213      1.168      2.893
X3                        0.995      0.981     -0.615      0.834      6.249
X4                        1.190      0.356      0.324      1.119      2.531
===========================================================================

Chapter 9
GWR Classifier

9-10



10
Work with Spatial Pipeline

Oracle Spatial AI provides spatial pipelining capabilities to organize and simplify spatial
machine learning workflow.

Topics:

• About Spatial Pipeline

• Spatial Feature Union

• Spatial Column Transformer

• Spatial Pipeline

About Spatial Pipeline
The spatial pipeline extends the existing scikit-learn pipeline to include spatial information
such as geometry data and spatial weights.

The SpatialPipeline class can easily chain together both spatial and non-spatial steps, and is
composed of estimators. An estimator can be one of the following:

• Transformer: An estimator with the fit and transform methods that are described in the
following table.

Method Description

fit The fit method computes statistics and other properties from the training
data.

transform The transform method applies the values calculated in the fit method to
change the data.

fit_transform Calls the fit and transform methods sequentially with the training data.

One typical example of a transformer is the StandardScaler, which standardizes the data
so that each feature has zero mean and unit variance. Usually, transformers are part of the
pre-processing step in a pipeline.

• Classifier/Regressor: This estimator must be the last step in a pipeline. It can be either a
regression or a classification task. The methods available in a pipeline correspond to those
in the final step. In this case, it has the fit, predict, and score methods along with the
other methods associated with the estimator. Usually, the pipeline goes through multiple
transformers before reaching this estimator.

• Composite Estimator: These estimators can combine multiple estimators and can be
chained with other estimators. For example, having a pre-processing pipeline to execute
multiple transformations to the data and then making this pipeline part of another pipeline
for a regression task. There are three composite estimators:

Estimator Description

SpatialPipeline A pipeline that includes spatial information.
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Estimator Description

SpatialFeatureUnion Concatenate resulting columns (features) from different estimators to
create a single input while sharing spatial information.

SpatialColumnTransform
er

Selects a subset of columns (features) from the input and passes
these columns to an estimator while sharing spatial information.

A spatial pipeline can take the same input as a regular scikit-learn pipeline plus the spatial
information which is required by spatial processes (spatial transformers and spatial models or
predictors). This additional spatial information can be divided into two categories:

• Data location/geometries: The geometry associated with each sample in the input data,
X, is a vector of geometries. This vector can be embedded in X if X is either a geopandas
GeoDataFrame or a SpatialDataFrame. It can also be defined in the parameter geometries.

• Spatial parameters: These are additional parameters used to provide context about
geometries (CRS), describe/quantify spatial relationships (spatial weights definition, spatial
weights objects), or help perform faster spatial searches (spatial index).

The following figure shows the data flow in a spatial pipeline.

 

 
As seen in the preceding figure, the input data comprising X, y, and (optionally) spatial
parameters are received by the spatial pipeline. Note that the input X can be split into X' (non-
spatial data) and geometries. Then, the spatial parameters and the geometries are extracted
and passed to all the spatial steps in the pipeline.

Spatial Feature Union
The SpatialFeatureUnion estimator shares spatial properties with multiple transformers and
concatenates the results.

The following table describes the main methods of the SpatialFeatureUnion class.

Method Description

fit Calls the fit method of all the transformers.

transform Calls the transform method of each transformer and concatenate the
results.

fit_transform Fits all the transformers, transforms the data, and concatenates the
results.

See the SpatialFeatureUnion class in Python API Reference for Oracle Spatial AI for more
information.
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The following example uses the block_groups SpatialDataFrame and SpatialFeatureUnion
to concatenate the output from two transformers. The first is a SimpleImputer from scikit-
learn, and the second is a SpatialLagTransformer. The dataset has three columns, excluding
the geometries, so the final result contains six columns.

from oraclesai.pipeline import SpatialFeatureUnion
from oraclesai.weights import KNNWeightsDefinition
from oraclesai.preprocessing import SpatialLagTransformer
from sklearn.impute import SimpleImputer
 
# Define training variables
X = block_groups[['MEAN_AGE', 'HOUSE_VALUE', "MEDIAN_INCOME", "geometry"]]
 
# Print X
print("=========================== X =================================")
print(X.get_values()[:5,:])
 
# Define spatial weights
weights_definition = KNNWeightsDefinition(k=5)
 
# Define a Spatial Lag Transformer
spatial_lag_transformer = 
SpatialLagTransformer(spatial_weights_definition=weights_definition)
 
# Use SpatialFeatureUnion to concatenate the output from all the transformers
slag_feature_union = SpatialFeatureUnion([("imputer", SimpleImputer()),
                                          ("spatial_lag", 
spatial_lag_transformer)])
 
# Print the final result
print("\n=================== X transformed ============================")
print(slag_feature_union.fit_transform(X)[:5, :])

The first three columns of the transformed data represent the output from the SpatialImputer,
and the other three represent the output from the SpatialLagTransformer.

=========================== X =================================
[[4.75847626e+01 4.56300000e+05 5.38280000e+04]
 [3.88231812e+01 8.36300000e+05 6.07240000e+04]
 [4.78076096e+01 1.12630000e+06 8.25380000e+04]
 [4.65636330e+01 9.60400000e+05 1.43661000e+05]
 [5.11550865e+01 1.01090000e+06 1.23977000e+05]]

=================== X transformed ============================
[[4.75847626e+01 4.56300000e+05 5.38280000e+04 4.03809292e+01
  6.23460000e+05 7.92068000e+04]
 [3.88231812e+01 8.36300000e+05 6.07240000e+04 3.95882790e+01
  8.20100000e+05 9.82008000e+04]
 [4.78076096e+01 1.12630000e+06 8.25380000e+04 4.69466225e+01
  1.22280000e+06 1.14899600e+05]
 [4.65636330e+01 9.60400000e+05 1.43661000e+05 4.25439751e+01
  1.04664000e+06 1.16867800e+05]
 [5.11550865e+01 1.01090000e+06 1.23977000e+05 4.43390564e+01
  1.14368000e+06 1.45833400e+05]]
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Spatial Column Transformer
The SpatialColumnTransformer shares spatial information with multiple transformers, applying
transformations to different columns and concatenating the results.

The following table describes the main methods of the SpatialColumnTransformer class.

Method Description

fit Calls the fit method of all the transformers.

transform Calls the transform method of each transformer and concatenates the
results.

fit_transform Fits all the transformers, transforms the data, and concatenates the
results.

See the SpatialColumnTransformer class in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the block_groups SpatialDataFrame and
SpatialColumnTransformer to concatenate the output from two different transformers. The first
is a SimpleImputer from scikit-learn, and the second is a SpatialLagTransformer applied
to HOUSE_VALUE and MEDIAN_INCOME columns. The final result contains five columns.

from oraclesai.pipeline import SpatialColumnTransformer
from oraclesai.weights import KNNWeightsDefinition
from oraclesai.preprocessing import SpatialLagTransformer
from sklearn.impute import SimpleImputer
 
# Define training variables
X = block_groups[["MEAN_AGE", "HOUSE_VALUE", "MEDIAN_INCOME", "geometry"]]
 
# Print X
print("=========================== X =================================")
print(X.get_values()[:5,:])
 
# Define spatial weights
weights_definition = KNNWeightsDefinition(k=5)
 
# Define a Spatial Lag Transformer
spatial_lag_transformer = 
SpatialLagTransformer(spatial_weights_definition=weights_definition)
 
# Use SpatialColumnTransformer to concatenate column subsets
slag_column_transformer = SpatialColumnTransformer([
    ("imputer", SimpleImputer(), ["MEAN_AGE", "HOUSE_VALUE", 
"MEDIAN_INCOME"]),
    ("spatial_lag", spatial_lag_transformer, ["HOUSE_VALUE",  
"MEDIAN_INCOME"])])
 
# Print the final result
print("\n=================== X transformed ============================")
print(slag_column_transformer.fit_transform(X)[:5, :])
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The first three columns of the transformed data represent the output of the first transformer,
and the other two columns represent the output of the second transformer.

=========================== X =================================
[[4.75847626e+01 4.56300000e+05 5.38280000e+04]
 [3.88231812e+01 8.36300000e+05 6.07240000e+04]
 [4.78076096e+01 1.12630000e+06 8.25380000e+04]
 [4.65636330e+01 9.60400000e+05 1.43661000e+05]
 [5.11550865e+01 1.01090000e+06 1.23977000e+05]]

=================== X transformed ============================
[[4.75847626e+01 4.56300000e+05 5.38280000e+04 6.23460000e+05
  7.92068000e+04]
 [3.88231812e+01 8.36300000e+05 6.07240000e+04 8.20100000e+05
  9.82008000e+04]
 [4.78076096e+01 1.12630000e+06 8.25380000e+04 1.22280000e+06
  1.14899600e+05]
 [4.65636330e+01 9.60400000e+05 1.43661000e+05 1.04664000e+06
  1.16867800e+05]
 [5.11550865e+01 1.01090000e+06 1.23977000e+05 1.14368000e+06
  1.45833400e+05]]

Spatial Pipeline
The SpatialPipeline class shares spatial information through a pipeline of transformers, other
estimators, and a final estimator.

Note that the final estimator step of the pipeline is not optional in this case. A typical scenario
consists of having a preprocessing pipeline in charge of different tasks, such as cleaning the
data, filling missing values, and standardizing the data. Then, the preprocessing pipeline is part
of another pipeline with a final estimator, either a regressor or a classifier.

The following table describes the main methods of the SpatialPipeline class.

Method Description

fit Calls the fit method of the pipeline transformers and the final
estimator.

fit_predict Calls the fit and transform methods of the pipeline transformer and
the fit and predict methods of the final estimator.

predict Calls the transform method of all the transformers in the pipeline and
calls the predict method of the final estimator.

See the SpatialPipeline class in Python API Reference for Oracle Spatial AI for more
information.

The following example uses the block_groups SpatialDataFrame and
SpatialColumnTransformer to define a feature-engineering step, which creates new columns
representing the spatial lag of specific columns. Then, the feature-engineering step is added
into a SpatialPipeline, along with a pre-processing step that standardizes the data and a
final estimator consisting of a spatial error regression model.

from oraclesai.pipeline import SpatialColumnTransformer
from oraclesai.weights import KNNWeightsDefinition
from oraclesai.preprocessing import SpatialLagTransformer
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from oraclesai.regression import SpatialErrorRegressor
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
 
# Define target and explanatory variables
X = block_groups[["MEAN_AGE", "HOUSE_VALUE", "MEDIAN_INCOME", "geometry"]]
 
# Define spatial weights
weights_definition = KNNWeightsDefinition(k=10)
 
# Define a Spatial Lag Transformer
spatial_lag_transformer = 
SpatialLagTransformer(spatial_weights_definition=weights_definition)
 
# Create an instance of SpatialErrorRegressor
spatial_error_regressor = 
SpatialErrorRegressor(spatial_weights_definition=weights_definition)
 
# Use SpatialColumnTransformer to concatenate column subsets
feature_engineering_step = SpatialColumnTransformer([
    ("imputer", SimpleImputer(), ["MEAN_AGE", "HOUSE_VALUE"]),
    ("spatial_lag", spatial_lag_transformer, ["HOUSE_VALUE"])])
 
# Create a pipeline with three steps: Feature-Engineering, Scaler, Regressor
regression_pipeline = SpatialPipeline([
    ("feature_engineering", feature_engineering_step),
    ("scaler", StandardScaler()),
    ("regressor", spatial_error_regressor)
])
 
# Train the model
regression_pipeline.fit(X, y="MEDIAN_INCOME")
 
# Print the score of the training set
print(f"r2_score = {regression_pipeline.score(X, y='MEDIAN_INCOME')}")

The output consists of the R-squared metric from the final estimator. The example calls the
score method to run the transform methods of all the transformers in the pipeline.

r2_score = 0.5559292598577543
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11
Work with Data Visualization

Oracle Spatial AI provides visualization functions compatible with SpatialDataFrame.

The two main functionalities are plotting geometries and clusters based on Matplotlib.

Topics:

• Plot Geometries

• Plot Clusters

• Add a Basemap

Plot Geometries
The plot_geometries function in oraclesai.vis can take the exact parameters of the plot
function of a GeoDataFrame. Additionally, it supports data from a SpatialDataFrame or
GeoDataFrame by specifying the data parameter.

See the plot_geometries function in Python API Reference for Oracle Spatial AI for more
information.

The following example displays a map with the geometries in the block_groups
SpatialDataFrame with the color representing the value of the MEDIAN_INCOME column.

import matplotlib.pyplot as plt
from oraclesai.vis import plot_geometries

fig, ax = plt.subplots(figsize=(15,10)) 

# Set the titles  
ax.set_title('Choropleth Map - Median Income'); 
  
# Plot the choropleth map 
plot_geometries(data=block_groups, ax=ax, 
column=block_groups["MEDIAN_INCOME"].values, cmap=plt.get_cmap("jet"), 
legend=True, edgecolor='black', linewidth=0.1 )

The output is as shown:
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Plot Clusters
The plot_clusters function in oraclesai.vis allows you to associate geometries and labels,
and display this association in a map.

The function works with data from SpatialDataFrame or GeoDataFrame.

The following table describes the main parameters of the plot_clusters function.

Parameter Description

X The data with the geometries. It can be either a SpatialDataFrame or a
GeoDataFrame.

labels The labels associated with X. Each observation in X has a label assigned to it.

background_data A SpatialDataFrame or a GeoDataFrame with its geometries as background.

crs Indicates the coordinate reference system to be used for plotting. By default, it uses
X.crs.
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Parameter Description

with_bounds If True, each cluster is displayed with an enclosed polygon.

with_noise If False, all the observations with the label –1 are ignored. Otherwise, the
observations are assigned to a cluster.

with_legend If True, a legend indicating the cluster’s labels is displayed.

with_basemap If True, the default basemap is displayed. If a TileProvider instance is passed, it
uses it as the basemap. Alternatively, it can also take a dictionary with the
oracles.vis.add_basemap parameters except ax.

See the plot_clusters function in Python API Reference for Oracle Spatial AI for more
information.

The following example trains a clustering model with a LISAHotspotClustering instance using
the MEDIAN_INCOME column. It then displays the geometries and the corresponding labels using
the plot_clusters function in a map.

import matplotlib.pyplot as plt  
from oraclesai.weights import KNNWeightsDefinition
from oraclesai.clustering import LISAHotspotClustering 
from oraclesai.vis import plot_clusters 
 
X = block_groups["MEDIAN_INCOME"]  

# Define spatial weights  
weights_definition = KNNWeightsDefinition(k=10) 

# Create an instance of LISAHotspotClustering 
lisa_model = LISAHotspotClustering(max_p_value=0.05, 
                                   
spatial_weights_definition=weights_definition) 
# Train the model 
lisa_model.fit(X) 

fig, ax = plt.subplots(figsize=(12,12))   
plot_clusters(X, lisa_model.labels_, with_noise=False, with_basemap=True, 
cmap='Dark2', ax=ax)

The output is as shown:
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Add a Basemap
You can use the add_basemap function to add a basemap to be displayed as a background
map.

The basemap provider is specified in the source parameter which can be either a
xyzservices.TileProvider object or an URL. If the source parameter is not defined, then it
uses the default basemap.

Oracle Spatial AI already provides basemaps based on eLocation. The following basemaps
are available through oraclesai.vis.elocation:

• osm_positron (default)

• osm_bright
• osm_darkmatter
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• world_map_mb
See the add_basemap function in Python API Reference for Oracle Spatial AI for more details.

The following code displays the geometries of the block_groups SpatialDataFrame using two
different basemaps.

import matplotlib.pyplot as plt 
from oraclesai.vis import plot_geometries, add_basemap, elocation

fig, ax = plt.subplots(1, 2, figsize=(15,10))  

# Set the titles   
ax[0].set_title('Default Basemap');  
ax[1].set_title('osm_darkmatter Basemap'); 

plot_geometries(data=block_groups, with_basemap=True, ax=ax[0], 
edgecolor='black', linewidth=0.2 )  
plot_geometries(data=block_groups, ax=ax[1], edgecolor='black', 
linewidth=0.2 )  

add_basemap(ax=ax[1], source=elocation.osm_darkmatter, crs=block_groups.crs)

By defining the with_basemap=True parameter in the plot_geometries function, the default
basemap is displayed (see the left image in the following figure). A different basemap can be
added with the add_basemap function.

Alternatively, you can set the with_basemap=elocation.osm_darkmatter parameter in the
plot_geometries function (see the right image in the following figure). In this case, you can
omit calling the add_basemap function.

The following figure shows the background basemap added by both the preceding methods.
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12
Run Post-Processing Tasks

You can run post-processing tasks using the SpatialDataFrame class to interact with the
database tables and files.

Also, OML4Py provides the functionality to save and load models into a datastore.

Post-processing tasks in the Spatial AI workflow include the following:

• Storing the model’s predictions or transformations as database tables or files.
You can store data, such as features created as part of a feature engineering task or
changes made as part of a preprocessing task, in a database using the write function in
the SpatialDataFrame class.

• Saving a model to an OML4Py datastore.
Your can store trained models, transformers, estimators, and Python objects in an OML4Py
datastore.

• Loading a model from the OML4Py datastore.
You can retrieve and use previously stored models, transformers, or Python objects that
are available in an OML4Py datastore.

The post-processing tasks are explained in detail in the following sections:

Topics:

• Store Data into Database Tables or Files

• Save a Model to a OML4Py Datastore

• Load a Model from an OML4Py Datastore

Store Data into Database Tables or Files
Working on a machine learning task may involve data transformation activities (such as
creating meaningful features, data cleaning, encoding categorical variables, and so on) to
make the data more useful. You can then store these data changes in the database or files
using the write method of the SpatialDataFrame class.

All transformations of a SpatialDataFrame do not have any direct effect in the database tables
prior to calling the write method.

The following table describes the main parameters of the write function.

Parameter Description

dataset This parameter is an instance of SpatialDataset, and
represents the resulting dataset.

if_exists The options are fail and replace. Determines the action to
take if the resulting dataset already exists.

include_index If True, the index columns of the instance are written in the
result.
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Parameter Description

create_spatial_metadata If the spatial metadata needs to be created, then this value is
set to True . Used only for Oracle Spatial database datasets.

create_spatial_index This parameter is used only for Oracle Spatial database
datasets, and it is True if a spatial index needs to be created.

See the SpatialDataFrame.write function in Python API Reference for Oracle Spatial AI for
more information.

The following example uses the block_groups SpatialDataFrame and performs the following
steps:

1. Adds a new column with a categorical variable called INCOME_LABEL.

2. Calls the add_column method which returns a new instance of SpatialDataFrame with the
extended dataset.

3. Calls the write method to store the data in the database.

4. Loads the data from the recently created table in a SpatialDataFrame and verifies the
newly added column.

# The column INCOME_LABEL is not in the dataset
if "INCOME_LABEL" not in block_groups.columns:
    print("The column INCOME_LABEL is not part of the columns of 
block_groups")
 
# Create the variable "INCOME_LABEL" based on the median income
block_groups_extended = block_groups.add_column("INCOME_LABEL", 
pd.qcut(block_groups['MEDIAN_INCOME'].values, [0, 0.5, 1], labels=[0, 
1]).to_list())
 
 
# Store the extended data in the database
block_groups_extended.write(DBSpatialDataset(table='write_test'), 
                            if_exists='replace', 
                            create_spatial_index=True)
 
# Load the stored dataset in a new SpatialDataFrame
block_groups_new = 
SpatialDataFrame.create(DBSpatialDataset(table='write_test'))
 
# The column INCOME_LABEL is contained in the dataset's columns
if "INCOME_LABEL" in block_groups_new.columns:
    print("The column INCOME_LABEL is contained in the columns of 
block_groups_new")

The output confirms that the new column, INCOME_LABEL, is part of the dataset stored in the
database.

The column INCOME_LABEL is not part of the columns of block_groups
The column INCOME_LABEL is contained in the columns of block_groups_new
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Save a Model to a OML4Py Datastore
You can store spatial models and Python objects in the OML4Py datastore and use them for
other tasks.

The following code shows how to save a model into the OML4Py datastore. The example uses
a Python object, my_model, which represents a spatial estimator (such as a regressor,
classifier, or some other estimator). The model is saved as sai_ds in a datastore with an empty
description. Note that by setting overwrite=True, any existing datastore with the same name is
replaced.

import oml
oml.ds.save({'spatial_model': my_spatial_model}, 'sai_ds', description='some 
description', overwrite=True)

See Save Objects to a Datastore in Oracle Machine Learning for Python User’s Guide for more
information.

Load a Model from an OML4Py Datastore
You can call the oml.ds.load function to load a spatial model from its datastore and use it to
solve different problems.

The following code loads the object associated with the string spatial_model from the sai_ds
datastore. Note that by setting to_globals=False, the oml.ds.load function returns a
dictionary containing pairs of object names and values.

import oml
 
ds_objects = oml.ds.load('sai_ds', objs=['spatial_model'], to_globals=False)
my_spatial_model = ds_objects['spatial_model']

See Load Saved Objects From a Datastore in Oracle Machine Learning for Python User’s
Guide for more information.

You can list all the objects saved in a datastore as shown:

print(oml.ds.dir())
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13
Use Spatial AI with OML Embedded Python
Execution

Learn to use Spatial AI with OML Embedded Python Execution.

Topics:

• About Embedded Python Execution

• Store a Function for Embedded Execution

• Call an Embedded Function from Python

• Call an Embedded Function with SQL and REST APIs

• Predefined Spatial Functions Available from OML Embedded Python Execution

About Embedded Python Execution
Embedded Python execution is a feature of Oracle Machine Learning for Python (OML4Py)
that allows users to invoke user-defined Python functions directly in an Oracle database
instance.

See Embedded Python Execution in Oracle Machine Learning for Python User’s Guide for
more information.

To demonstrate how to use embedded execution, the following example prepares a spatial
regression model. This model is used in the subsequent topics in this chapter which describe
how to invoke a Python function using embedded execution, including creating a function that
uses that model to make predictions, and then using that function for embedded execution
from Python, SQL and REST.

The example steps are as follows:

1. Defines the regressor model using the block_groups SpatialDataFrame and
SpatialErrorRegressor.

2. Creates a Spatial Pipeline with a pre-processing step to standardize the data and the
regressor as the last step.

3. Trains the model using MEDIAN_INCOME as the target variable.

from oraclesai.preprocessing import spatial_train_test_split
from oraclesai.weights import KNNWeightsDefinition
from oraclesai.regression import SpatialErrorRegressor
from oraclesai.pipeline import SpatialPipeline
from sklearn.preprocessing import StandardScaler
 
# Define variables
X = block_groups[["MEDIAN_INCOME", "MEAN_AGE", "HOUSE_VALUE", "geometry"]]
 
# Define training and test sets
X_train, X_test, _, _, _, _ = spatial_train_test_split(X, y="MEDIAN_INCOME", 
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test_size=0.2, random_state=32)
 
# Create instance of SpatialErrorRegressor
spatial_error_model = 
SpatialErrorRegressor(spatial_weights_definition=KNNWeightsDefinition(k=5))
 
# Add the model into a Spatial Pipeline along with a pre-processing step
spatial_error_pipeline = SpatialPipeline([("scaler", StandardScaler()), 
("spatial_error", spatial_error_model)])
 
# Train the model with MEDIAN_INCOME as the target variable
spatial_error_pipeline.fit(X_train, "MEDIAN_INCOME")

Once the model is trained, save the model into an OML4Py datastore.

oml.ds.save({'spatial_error': spatial_error_pipeline}, 
    'spatial_error_ds', description='some description', 
    overwrite=True)

Store a Function for Embedded Execution
You can store a user-defined Python function for embedded execution.

The following Python code creates a function that receives prediction data. The function loads
the trained model from the OML4Py datastore and returns the result by calling the predict
method with the prediction data.

You need to register the function for embedded execution with OML by using the
oml.script.create method. Note that this function is enclosed within triple quotes.

func = """def error_model_predict_(X):
    import oml
    objs = oml.ds.load('spatial_error_ds', objs=['spatial_error'], 
to_globals=False)
    error_model = objs['spatial_error']
    pred = error_model.predict(X)
    return pred.tolist()"""
 
oml.script.create("errorModelPredict", func, is_global=True, overwrite=True)

The oml.script.create function adds a user-defined Python function to the OML script
repository. The is_global parameter specifies whether to create a global Python function or if
it is available only to the current user. The overwrite parameter specifies whether to overwrite
the Python function if it already exists.

Call an Embedded Function from Python
You must use the oml.do_eval function to run a user-defined Python function.
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The following example calls the errorModelPredict function, passing the test data without the
target variable.

spatial_error_predictions = oml.do_eval(func='errorModelPredict', 
X=X_test.drop("MEDIAN_INCOME"))
print(spatial_error_predictions[:10])

The code prints the first ten predictions for the test data.

[[85565.81571662657], [88769.98209276547], [46010.46116330226], 
[61275.919165868865], [163674.5321011373], [40178.55663104116], 
[89290.25850064949], [47908.54834079923], [83884.02318889851], 
[50495.29040429841]]

Call an Embedded Function with SQL and REST APIs
You can call an embedded function with SQL and REST APIs.

Perform the following steps:

1. Get an access token before calling OML embedded execution API from SQL or REST.

As a prerequisite, note the following information for your ADB environment:

• tenant_name: Tenancy ID

• database_name: Name of the database

• user_name: OML username

• password: Password for the OML user

• host: Root domain

Perform a REST request to get an access token. The REST request can be done using
different approaches. For example, the following code shows how to get a token using a
REST call through Python.

import json
import requests
import warnings
import os
 
token=None
 
response = requests.post(
        f"https://{host}:443/omlusers/tenants/{tenant_name}/databases/
{database_name}/api/oauth2/v1/token",
        headers={"Content-Type": "application/json", "Accept": 
"application/json"},
        json={"grant_type": "password", "username": username, "password": 
password},
        verify=False)
token = response.json()["accessToken"]
print(f"token='{token}'")

2. Call an Embedded Python Function from SQL.
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An access token must be set always before performing a call to OML Embedded Execution
from SQL. Set the access token in the token store through SQL or PL/SQL and the
pyqSetAuthToken function.

exec pyqSetAuthToken('<access-token>');

Call the OML's pyqEval function which then calls the user-defined Python function in a
SQL query.

The following code uses the pyqEval function to call the errorModelPredict function that
was previously created. The function also passes the X parameter consisting of a single
observation.

select *
    from table(pyqEval(
        par_lst => '{"X": [[30.6005898, 342200.000]]}',
        out_fmt => 'JSON',
        scr_name => 'errorModelPredict'
        ));

The result from the preceding code consists of the predicted median income for the given
observation.

NAME    VALUE
    [[48228.470695050346]]

3. Call an Embedded Python Function from REST.

Make a successful REST request by passing the Spatial AI function-specific parameters
within the parameters field as a JSON string.
The following examples use CURL to send a request that calls the errorModelPredict
function with the parameter X containing a single observation. Note that an access token
must first be obtained. In this example, the access token is set in the token environment
variable and is passed in the request.

curl -i -k -X POST --header 'Authorization: Bearer ${token}' \
--header 'Content-Type: application/json' --header 'Accept: application/
json' \
-d '{  "oml_connect": true, "parameters": "{\"X\": [[30.6005898, 
342200.000]]}" }' \
"${host}:8080/oml/tenants/${tenant_name}/databases/${database_name}/api/py-
scripts/v1/do-eval/errorModelPredict"

The following shows a sample response that includes the request status code and the
output of the function representing the estimated income value for the given observation.

HTTP/1.1 200 OK
Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1;mode=block
Strict-Transport-Security: max-age=31536000; includeSubDomains
X-Content-Type-Options: nosniff
Content-Security-Policy: frame-ancestors 'none'
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Set-Cookie: JSESSIONID=node0nyjijo5nrw2swfj850bvbauc43.node0; Path=/oml; 
Secure; HttpOnly
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json
Content-Length: 32

{"result":[[48228.470695050346]]}

Predefined Spatial Functions Available from OML Embedded
Python Execution

Spatial AI provides some pre-defined spatial functions. You can call the register_sai_scripts
function (in oraclesai.oml) to register the pre-defined spatial functions for embedded
execution.

The following code registers the pre-defined spatial functions for embedded execution into the
script repository and lists them using the oml.script.dir function.

import oml
from  oraclesai.oml import register_sai_scripts
 
# register for all the users and overwrite if already registered
register_sai_scripts(is_global=True, overwrite=True)
 
# list registered scripts
oml.script.dir(sctype='all')[['name']]

Note the errorModelPredict function (defined in Store a Function for Embedded Execution) in
the list of registered functions along with the other pre-defined functions.

                                     name
0                              clustering
1  compute_global_spatial_autocorrelation
2   compute_local_spatial_autocorrelation
3                 compute_spatial_weights
4                      create_spatial_lag
5                       errorModelPredict

The following table lists the parameters that are required for all the pre-defined spatial
functions.

Parameter Description

oml_connect This parameter must always be true since all the pre-defined
spatial functions require a connection to the database.

table The name of a database table.

The rest of the parameters may vary depending on the spatial function.

The following table describes each one of the pre-defined spatial functions for embedded
execution.
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Spatial Functions Description

compute_spatial_weights This function computes the spatial weights for the
given spatial table and stores a SpatialWeights
object in the data store according to the
save_weights_as parameter.

compute_global_spatial_autocorrelation Computes the Moran’s I statistic for the given
spatial table and column. The function returns the
value of the Moran’s I statistic, its z-value, and its p-
value.

compute_local_spatial_autocorrelation Calculates the Local Moran’s I statistic of all the
observations from the given spatial table. The
function returns a table containing the Local
Moran’s I statistic for each row, along with the z-
value and p-value.

create_spatial_lag Computes the spatial lag for the given column of
the provided spatial table. The function returns a
table with the calculated spatial lag for each row
from the input table.

clustering Executes a clustering algorithm with the data from
the given spatial table, using only the specified
columns or all the columns if the columns
parameter is not provided. Available clustering
methods are DBSCAN, AGGLOMERATIVE, and
KMEANS.

All the predefined spatial functions support computing the spatial weights and storing them in a
datastore for later use. The goal of these functions is to execute common tasks involving
spatial information. You can always add more functions for specific purposes as described in 
Store a Function for Embedded Execution.

compute_spatial_weights
The following code calculates the spatial weights of the dataset from the table specified in the
table parameter, using the strategy defined in the weights_def parameter. This example uses
the K-nearest neighbor approach with K=4. The result is saved into the spatial datastore with
the object name la_bg_knn4.

select *
    from table( 
        pyqEval(
            par_lst => '{  
                "oml_connect": true, 
                "table": "oml_user.la_block_groups", 
                "weights_def": {"type": "KNN", "k": 4},
                "save_weights_as": {"ds_name": "spatial", "obj_name": 
"la_bg_knn4", "append": true, "overwrite_obj": true}
            }',
            out_fmt => 'XML',
            scr_name =>  'compute_spatial_weights'
        )
    );
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compute_global_spatial_autocorrelation
The following example shows how to calculate Moran’s I statistic from a specific table column
using spatial weights already saved in a data store. It uses the median_income column and the
spatial weights obtained from the code example in compute_spatial_weights.

select *
    from table( 
        pyqEval(
            par_lst => '{  
                "oml_connect": true, 
                "table": "oml_user.la_block_groups", 
                "column": "median_income",
                "weights": {"ds_name":"spatial", "obj_name": "la_bg_knn4"}
            }',
            out_fmt => '{ "I": "NUMBER", "expected_I": "NUMBER",  "p_value": 
"NUMBER", "z_value": "NUMBER" }',
            scr_name => 'compute_global_spatial_autocorrelation'
        )
    );

The output contains the following fields:

• The value of Moran’s I statistic.

• The expected value under normality assumption.

• The p-value.

• The z-value.

The preceding example result will be similar to:

I    expected_I    p_value    z_value
0.6658882028    -0.0002910361    0.001    58.1778030148

If the spatial weights are not previously saved in a datastore, it is possible to calculate the
Moran’s I statistic and the spatial weights according to the weights_def parameter. The
following code calculates Moran’s I statistic of the MEDIAN_INCOME column and uses the Queen
strategy (two observations are neighbors if they share at least a common vertex) to calculate
the spatial weights, which are stored in the spatial datastore with the object name
la_bg_queen.

select *
    from table( 
        pyqEval(
            '{  
                "oml_connect": true, 
                "table": "oml_user.la_block_groups", 
                "column": "median_income",
                "weights_def": {"type":"Queen"},
                "save_weights_as": {"ds_name":"spatial", "obj_name": 
"la_bg_queen", "append": true, "overwrite_obj": true}
            }',
            '{ "I": "NUMBER", "expected_I": "NUMBER",  "p_value": "NUMBER", 
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"z_value": "NUMBER" }',
            'compute_global_spatial_autocorrelation'
        )
    );

The output of the Moran’s I statistic - the expected value under normality assumption, the p-
value, and the z-value are as shown.

I    expected_I    p_value    z_value
0.6765793161    -0.0002910361    0.001    64.9421284293

You can list all the objects in a datastore using the oml.ds.describe function. The following
code lists all the objects in the spatial datastore.

oml.ds.describe(name='spatial')

The output consists of all the objects in the spatial datastore, containing the previously
created la_bg_knn4 and la_bg_queen objects.

object_name         class    size  length  row_count  col_count
0   la_bg_knn4  OMLDSWrapper  696002       1          1          1
1  la_bg_queen  OMLDSWrapper  295285       1          1          1

compute_local_spatial_autocorrelation
The following example calculates the local Moran’s I statistic for each row in a table from a
specific column and uses the spatial weights already saved in a datastore. It uses the
median_income column and the spatial weights from the spatial datastore with the object
name la_bg_knn4, corresponding to the spatial weights calculated with the K-nearest
neighbors method with K=4.

select *
    from table( 
        pyqEval(
            '{  
                "oml_connect": true, 
                "table": "oml_user.la_block_groups", 
                "key_column": "geoid",
                "column": "median_income",
                "weights": {"ds_name":"spatial", "obj_name": "la_bg_knn4"}
            }',
            '{ "geoid": "VARCHAR2(50)", "I": "NUMBER", "p_value": "NUMBER",  
"z_value": "NUMBER", "quadrant": "NUMBER" }',
            'compute_local_spatial_autocorrelation'
        )
    );

For each row in the table, the result contains the following:

• The local Moran’s I statistic.

• The p-value.

Chapter 13
Predefined Spatial Functions Available from OML Embedded Python Execution

13-8



• The z-value.

• The belonging quadrant.

1. A high value surrounded by high values.

2. A low value around high values.

3. A low value surrounded by low values.

4. A high value around high values.

 

 

create_spatial_lag
The following code calculates the spatial lag of a specific column according to given spatial
weights. For each row, it calculates the average value of a particular column from neighboring
locations. It uses the median_income column and spatial weights from a datastore.

select *
    from table( 
        pyqEval(
            '{  
                "oml_connect": true, 
                "table": "oml_user.la_block_groups", 
                "key_column": "geoid",
                "column": "median_income",
                "weights": {"ds_name":"spatial", "obj_name": "la_bg_knn4"}
            }',
            '{ "geoid": "VARCHAR2(50)", "MEDIAN_INCOME_SLAG": "NUMBER" }',
            'create_spatial_lag'
        )
    );

The result contains the average income from neighboring locations for each row. Note that the
index comes from the key_column parameter, which is the geoid column in this case.
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clustering
This example shows how to run the agglomerative with regionalization algorithm over a given
dataset, specifying the number of clusters and the type of spatial weights.

The clustering algorithm is set in the method parameter, while the number of clusters and the
spatial weights are defined in the n_clusters and weights_def parameters respectively. The
features considered for clustering are specified in the columns parameter.

select *
    from table( 
        pyqEval(
            '{  
                "oml_connect": true, 
                "table": "oml_user.la_block_groups",
                "columns": ["median_income"],
                "method": "AGGLOMERATIVE",
                "n_clusters": 6,
                "key_column": "geoid",
                "weights_def": {"type": "Queen"}
            }',
            '{ "geoid": "VARCHAR2(50)", "label": "NUMBER" }',
            'clustering'
        )
    );

The result contains the index column specified in the key_column parameter and the labels of
each row, indicating to which cluster they belong.
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You can visualize the clusters using the select IMAGE clause and the oml_graphics_flag
parameter set to true. In the following code, the plot parameter indicates that it uses a
basemap as background. Also, note that the output format (out_fmt) is set to PNG.

select IMAGE
    from table(
        pyqEval(
            par_lst => '{
            "oml_connect": true,
            "oml_graphics_flag": true,
            "table": "oml_user.la_block_groups",
            "columns": ["median_income"],
            "method": "AGGLOMERATIVE",
            "n_clusters": 6, 
            "key_column": "geoid",
            "weights_def": {"type": "Queen"},
            "plot": {"with_basemap": true}
        }',
        out_fmt => 'PNG',
        scr_name => 'clustering'
    )
);

The result is a map with the observations colored according to the cluster they are assigned.
Note that there are six clusters as specified in the n_clusters parameter. By defining spatial
weights, the agglomerative clustering algorithm executes regionalization. This means that
observations assigned to the same cluster share common characteristics and are
geographically connected.
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14
Review Use Cases for Using Spatial AI

Review the different use cases which show the end-to-end Spatial AI processes such as
loading the data, understanding the data, analyzing the data, training a model, visualizing the
results, and finalizing with post-processing tasks, such as saving a model in a datastore and
creating functions for embedded Python execution.

Topics:

• Spatial Regression Use Case Scenario

• Spatial Clustering Use Case Scenario

Spatial Regression Use Case Scenario
This use case aims to predict the median income of certain regions in the city of Los Angeles
according to certain features from the Los Angeles Income Census dataset.

The dataset is stored in the la_block_groups table in the database. Based on spatial analysis
and statistics, the example trains a regression model to estimate the median income.

During the exercise, different statistics are calculated to find out which spatial model is more
suitable for the given data. AdaptiveSpatialRegressor internally computes all those statistics
and suggests the best model. However, to show the analysis capabilities of Oracle Spatial AI,
the exercise goes through different steps to find the best regression model.

The following steps enable you to solve a regression task using an OML notebook.

Load the Data
Perform the following steps to load the data:

1. Create an instance of SpatialDataFrame.

The census dataset is stored in the la_block_groups table in the database. To load it into
Python, use a DBSpatialDataset and create an instance of SpatialDataFrame.

import oml
from oraclesai import SpatialDataFrame, DBSpatialDataset
 
block_groups = 
SpatialDataFrame.create(DBSpatialDataset(table='la_block_groups',
     schema='oml_user'))

The dataset contains information about different regions in the city of Los Angeles, and
features such as median_income and house_value provide information about each region's
income. Other features provide demographic information about gender, race, and age.

2. Review the variables (shown in the following table) of the SpatialDataFrame instance and
define the columns that represent the target variable, the explanatory variables, and the
geometries.
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Variable Description

MEDIAN_INCOME The target variable representing the median
income.

MEAN_AGE The average age.

MEAN_EDUCATION_LEVEL Score based on the different education levels
listed in the Census table.

HOUSE_VALUE Median value of houses in the region.

PER_WHITE Proportion of the white population in the region.

PER_BLACK Proportion of the black population in the region.

The following code selects a subset of columns from the SpatialDataFrame instance.

X = block_groups[['MEDIAN_INCOME', 
                  'MEAN_AGE', 
                  'MEAN_EDUCATION_LEVEL', 
                  'HOUSE_VALUE', 
                  'INTERNET', 
                  'geometry']]

3. Define the training, validation, and test sets.

a. Split the data into training and test sets using the spatial_train_test_split function
from oreaclesai.preprocessing. Assign 20% of the data for testing.

from oraclesai.preprocessing import spatial_train_test_split

X_train_valid, X_test, _, _, _, _ = spatial_train_test_split(X, 
y="MEDIAN_INCOME", 
    test_size=0.2, random_state=32)

b. Split the remaining 80% of the data again to create the training and validation sets,
using 10% for validation and the rest for training. The validation set is helpful to
evaluate the model’s performance before using it with the test set.

X_train, X_valid, _, _, _, _ = spatial_train_test_split(X_train_valid, 
y="MEDIAN_INCOME", 
    test_size=0.1, random_state=32)

Explore the Data
Exploring the data helps you to understand the variables individually and how they interact.

Perform the following steps to explore the data:

1. Understand the data by visualizing the first five observations of the training set using the
head method.

from oraclesai import enable_geodataframes
enable_geodataframes(z)

z.show(X_train.head())

The output is as shown:
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2. Define spatial weights to understand the influence of each variable in neighboring locations
(by establishing the relationship between neighboring locations).

Use the K-Nearest Neighbor approach, which indicates that for each observation, the
nearest K observations are considered neighbors.

from oraclesai.weights import KNNWeightsDefinition

weights_definition = KNNWeightsDefinition(k=10)

3. Calculate the spatial lag to study the interaction with the neighboring locations.

The spatial lag of an observation represents the average value of a certain feature among
its neighbors. For example, the average house value across neighboring locations.

The following code calculates the spatial lag for all the variables in the training set, except
the geometries.

from oraclesai.preprocessing import SpatialLagTransformer 

X_spatial_lag = 
SpatialLagTransformer(weights_definition).fit_transform(X_train)

According to Tobler's first law of geography, everything is related to everything else, but
near things are more related than distant things. To understand the relation between
features in a specific location, use the correlation between a feature and its spatial lag. For
example, a strong positive correlation between the median income and the average
income from neighboring locations could indicate an influence on the median income from
its neighbors.

The following code displays the correlation matrix of the spatial lag variables and the target
variable, where the spatial lag variables have the suffix _LAG.

import numpy as np
import pandas as pd 

# Append the target variable to the spatial lag variables 
X_target_spatial_lag = np.append(X_train["MEDIAN_INCOME"].get_values(), 
X_spatial_lag, 1) 

# Create a Pandas' DataFrame
columns = ["MEDIAN_INCOME", "MEDIAN_INCOME_LAG", "MEAN_AGE_LAG", 
"MEAN_EDUCATION_LEVEL_LAG", "HOUSE_VALUE_LAG", "INTERNET_LAG"] 
X_target_spatial_lag_df = pd.DataFrame(data=X_target_spatial_lag, 
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columns=columns)

z.show(X_target_spatial_lag_df.corr())

The output is as shown:

 

 

4. Measure the influence of neighbors.

There is a strong positive correlation between the target variable (MEDIAN_INCOME) and its
spatial lag (MEDIAN_INCOME_LAG). This indicates that locations with similar income tend to
be together, which is an indicator of spatial dependence.
To confirm the presence of spatial dependence, calculate the Moran’s I statistic, which
measures spatial autocorrelation.

• A positive and significant value indicates the presence of spatial clustering, where
regions with similar values (high or low) tend to be together, reflecting the effect of
spatial dependence.

• A negative and significant value indicates the presence of spatial variance or the
checkerboard pattern, reflecting the effect of spatial heterogeneity.

from oraclesai.analysis import MoranITest 
from oraclesai.weights import SpatialWeights 
# Create spatial weights from definition 
spatial_weights = SpatialWeights.create(X_train["geometry"].values, 
weights_definition) 

# Run the Moran's I test 
moran_test = MoranITest.create(X_train, spatial_weights, 
column_name="MEDIAN_INCOME") 

# Print the Moran's I and the p-value 
print("Moran's I = ", moran_test.i) 
print("p_value = ", moran_test.p_value)

The Moran’s I statistic is positive and significant, confirming the presence of spatial
dependence in the target variable.

Moran's I =  0.5744827266749303
p_value =  0.001

5. Get the spatial statistics.
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Some spatial statistics become available by running the OLS model with spatial
diagnostics. To get spatial diagnostics, it is required to define the spatial weights when
creating the instance of OLSRegressor.

from oraclesai.regression import OLSRegressor

ols_model = OLSRegressor(weights_definition).fit(X_train, "MEDIAN_INCOME")

Obtain the Moran’s I statistic from the model’s residuals using the moran_res metric from
oraclesai.metrics.

from oraclesai.metrics import moran_res 

morans_i, _, p_value = moran_res(ols_model) 

print(f"Moran's I = {morans_i}") 
print(f"p_value = {p_value}")

The positive and significant value of Moran’s I statistic of the residuals indicates the
presence of spatial dependence in the residuals, which means that the prediction error of
an observation is similar to the prediction error of its neighbors.

Moran's I = 0.2594180201084295
p_value = 9.432690077796932e-203

The two regression models , Spatial Lag Model and Spatial Error Model, include the effect
of spatial dependence in their regression equation.

Use the Lagrange Multipliers tests from the spatial diagnostics of the trained OLS model to
choose the best model for the data. The Lagrange Multiplier tests for Spatial Lag and
Spatial Error are part of oraclesai.metrics.

from oraclesai.metrics import lm_lag, lm_error, rlm_lag, rlm_error
 
print(f"Lagrange Multiplier (lag): {lm_lag(ols_model)}")
print(f"Robust LM (lag): {rlm_lag(ols_model)}")
print(f"Lagrange Multiplier (error): {lm_error(ols_model)}")
print(f"Robust LM (error): {rlm_error(ols_model)}")

Use the robust tests when Lagrange Multiplier tests are significant for Spatial Lag and
Spatial Error. Both robust tests are significant, but the value of the statistic for spatial error
is much larger, indicating that the Spatial Error model is a better fit for the data.

Lagrange Multiplier (lag): (357.8764476978743, 8.165543828650201e-80)
Robust LM (lag): (10.656323334376838, 0.001096952308135397)
Lagrange Multiplier (error): (904.2345462924114, 1.178375337257614e-198)
Robust LM (error): (557.0144219289139, 3.750470342578867e-123)

Train the Model
The Spatial Error model introduces a spatial lag in the error term of the regression equation. By
adding the spatial lag in the residual, the neighbors' errors influence the observation error.
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The following code creates an instance of SpatialErrorRegressor and trains the model using
a Spatial Pipeline with a preprocessing step to standardize the data.

from oraclesai.regression import SpatialErrorRegressor
from oraclesai.pipeline import SpatialPipeline
from sklearn.preprocessing import StandardScaler
 
# Create the instance of SpatialErrorRegressor
spatial_error_model = 
SpatialErrorRegressor(spatial_weights_definition=weights_definition)
 
# Add the regressor to a spatial pipeline along with a pre-processing step
spatial_error_pipeline = SpatialPipeline([("scaler", StandardScaler()), 
("spatial_error", spatial_error_model)])
 
# Train the Spatial Error model
spatial_error_pipeline.fit(X_train, "MEDIAN_INCOME")

The summary property of a regressor displays different statistics of the model and the estimated
parameters. The following code gets the trained model and prints its summary.

# Get the trained model
error_model_fit = spatial_error_pipeline.named_steps["spatial_error"]
 
# Print the summary of the trained model
print(error_model_fit.summary)

REGRESSION
----------
SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL ERROR (METHOD = FULL)
-------------------------------------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     dep_var                Number of 
Observations:        2475
Mean dependent var  :  69640.3568                Number of 
Variables   :           5
S.D. dependent var  :  39961.9492                Degrees of 
Freedom    :        2470
Pseudo R-squared    :      0.6285
Sigma-square ML     :454661980.170                Log likelihood        :  
-28246.730
S.E of regression   :   21322.804                Akaike info criterion :   
56503.460
                                                 Schwarz criterion     :   
56532.530

------------------------------------------------------------------------------
------
            Variable     Coefficient       Std.Error     z-Statistic     
Probability
------------------------------------------------------------------------------
------
            CONSTANT    70782.1082416    1248.2789978      56.7037564       
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0.0000000
            MEAN_AGE    2575.5035983     588.8525955       4.3737662       
0.0000122
MEAN_EDUCATION_LEVEL    11051.5768223    1050.1057765      10.5242511       
0.0000000
         HOUSE_VALUE    19081.0829838     814.4699114      23.4276094       
0.0000000
            INTERNET    7640.9119411     682.4557729      11.1962009       
0.0000000
              lambda       0.6563181       0.0239453      27.4090149       
0.0000000
------------------------------------------------------------------------------
------
================================ END OF REPORT 
=====================================

Evaluate the Model
Although the score method of a regressor returns the R-squared metric, there are other
metrics in oraclesai.metrics that are helpful to evaluate a model. For instance, the Akaike
Information Criteria (AIC), which measures the amount of information lost by the model.

from oraclesai.metrics import aic
 
print(f"AIC: {aic(error_model_fit)}")
 
score_train = spatial_error_pipeline.score(X_train, y="MEDIAN_INCOME")
print(f"r2_score (X_train): {score_train}")
 
score_valid = spatial_error_pipeline.score(X_valid, y="MEDIAN_INCOME")
print(f"r2_score (X_valid): {score_valid}")

Having a validation set helps to evaluate the model before making predictions with the test set.
Also, it can be used to determine if the model is overfitted or underfitted. The preceding code
shows the following metrics.

AIC: 56503.460498197666
r2_score (X_train): 0.6212791699175433
r2_score (X_valid): 0.6417600931041549

Score
You can call the predict method to make predictions with the test dataset, and the score
method to obtain the R-squared metric with the test dataset.

predictions_test = 
spatial_error_pipeline.predict(X_test.drop(["MEDIAN_INCOME"])).flatten()
print(f"\n>> predictions (X_test):\n {predictions_test[:10]}")
 
score_test = spatial_error_pipeline.score(X_test, y="MEDIAN_INCOME")
print(f"\n>> r2_score (X_test):\n {score_test}")
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The output is as shown:

>> predictions (X_test):
 [103705.9560757  107611.13674597  22112.24223308  37592.05306079
 170447.29190844  49590.69485066 104998.38030099  25865.98085974
  83318.68789415  15481.54002089]

>> r2_score (X_test):
 0.6433383305587677

The following code displays the test set and the model’s predictions in a map.

import matplotlib.pyplot as plt
from oraclesai.vis import plot_geometries

fig, ax = plt.subplots(1, 2, figsize=(15,10)) 

# Set plot's labels and titles  
ax[0].set_title('Test Data'); 
ax[1].set_title('Prediction - Spatial Error'); 
  
# Plot the choropleth map 
plot_geometries(data=X_test, ax=ax[0], column=X_test["MEDIAN_INCOME"].values, 
cmap=plt.get_cmap("jet"), legend=True, edgecolor='black', linewidth=0.1 ) 
plot_geometries(data=X_test, ax=ax[1], column=predictions_test, 
cmap=plt.get_cmap("jet"), legend=True, edgecolor='black', linewidth=0.1 )
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Run the Post-Processing Steps
Perform the following post-processing steps once the model is trained:

1. Save the model in a datastore.

The following code save the model in an OML datastore as part of the post-processing
step. The Spatial Pipeline is stored in the datastore named sai_regressor_ds, containing
a dictionary with object names and Python objects.

import oml
 
oml.ds.save({'spatial_error_pipeline': spatial_error_pipeline}, 
   'sai_regressor_ds', description='some description', overwrite=True)

2. Load the model from a datastore.

Use the oml.ds.load function to load the model from a datastore into Python for
predictions by specifying the name of the datastore and the name of the Python object with
the trained model.

ds_objs = oml.ds.load('sai_regressor_ds', objs=['spatial_error_pipeline'], 
to_globals=False)
error_model_loaded = ds_objs['spatial_error_pipeline']

3. Create and store a user-defined Python function that makes predictions with the trained
model given a prediction set.

The following code creates a Python user-defined function (UDF) that loads the trained
model from a datastore and uses it to make predictions with a given prediction set. The
UDF is then registered with OML using oml.script.create.

udf = """def error_model_pipeline_predict_(X):
    import oml   
    ds_objs = oml.ds.load('sai_regressor_ds', 
objs=['spatial_error_pipeline'], to_globals=False)   
    error_model_pipeline = ds_objs['spatial_error_pipeline']   
    pred = error_model_pipeline.predict(X)   
    return pred.tolist()"""   
    
oml.script.create("errorModelPipelinePredict", udf, is_global=True, 
overwrite=True)

4. Run a Python UDF with SQL.

The following code uses pyqEval to run the Python UDF errorModelPipelinePredict in
SQL by passing the X parameter consisting of a single observation.

select *
    from table(pyqEval(
        par_lst => '{"X": [[30.6005898, 12.1, 342200.000, 0.8]]}',
        out_fmt => 'JSON',
        scr_name => 'errorModelPipelinePredict'
        )
    );
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The Moran’s I statistic is positive and significant, confirming the presence of spatial
dependence in the target variable.

The response shows estimated median income for the given observation.

NAME    VALUE
    [[67428.20461759513]]

Spatial Clustering Use Case Scenario
This use case identifies hots spots, colds spots, and outliers of the median income in the city of
Los Angeles according to the Los Angeles Income Census dataset.

Based on spatial analysis and statistics, it trains a clustering algorithm based on the median
income that finds hot spots, cold spots, and outliers.

This example shows two ways to identify hot spots, cold spots, and outliers. The first consists
of executing a series of spatial analysis tasks, while the other consists of using the
LISAHotspotClustering class.

The following steps enable you to get started on this use case using OML notebook.

Load the Data
The census dataset is stored in the la_block_groups table of the database. You can load it
into Python using a DBSpatialDataset to create an instance of SpatialDataFrame.

import oml
from oraclesai import SpatialDataFrame, DBSpatialDataset
 
block_groups = 
SpatialDataFrame.create(DBSpatialDataset(table='la_block_groups', 
schema='oml_user'))

The dataset contains information about different regions in the city of Los Angeles. Features
such as median_income and house_value provide information about each region's income.
Other features provide demographic information about gender, race, and age.

Explore the Data
Exploring the data helps you to understand the variables individually and how they interact.

Perform the following steps to explore the data:

1. Understand the data by visualizing the first observations of the training set using the head
method. The following example uses the median_income column .

from oraclesai import enable_geodataframes 
enable_geodataframes(z)

X = block_groups["MEDIAN_INCOME"] 
z.show(X.head())

The output is as shown:
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2. Define spatial weights to understand the behavior of each variable in neighboring locations
(by establishing the relationship between the neighboring locations).

Use the K-Nearest Neighbor approach, which indicates that for each observation the
nearest K observations are considered neighbors.

from oraclesai.weights import KNNWeightsDefinition

# Define spatial weights 
weights_definition = KNNWeightsDefinition(k=10)

3. Calculate the global spatial autocorrelation.

The Moran’s I statistic is a measure of spatial autocorrelation. It computes the global
spatial autocorrelation if applied on the whole dataset.

• A positive and significant value indicates the presence of spatial clustering, where
regions with similar values tend to be together, reflecting the effect of spatial
dependence.

• A negative and significant value indicates the presence of spatial variance or the
checkerboard pattern, reflecting the effect of spatial heterogeneity.

The following code calculates the spatial lag for all the variables in the training set, except
the geometries.

from oraclesai.analysis import MoranITest 
from oraclesai.weights import SpatialWeights 

# Create spatial weights from definition 
spatial_weights = SpatialWeights.create(X["geometry"].values, 
weights_definition) 

# Run the Moran's I test 
moran_test = MoranITest.create(X, spatial_weights, 
column_name="MEDIAN_INCOME") 

# Print the Moran's I and the p-value 
print("Moran's I = ", moran_test.i) 
print("p_value = ", moran_test.p_value)

The output of the program is as shown:

Moran's I =  0.6086540661785302
p_value =  0.001
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A positive and significant value indicates the presence of Spatial Dependence, represented
by clusters of observations with similar income. However, it does not indicate the location
of such clusters.

4. Calculate the local spatial autocorrelation.

Use the Local Indicators of Spatial Association (LISA) method to find the clusters. The
algorithm calculates the Local Moran’s I statistic for each observation.

• A location with a positive local Moran’s I statistic indicates the presence of neighbors
with similar values (either high or low values), representing hot or cold spots.

• A location with a negative local Moran’s value indicates neighbor locations with
different values; it can be a high value surrounded by low values or a low value
surrounded by high values, representing spatial outliers.

The LocalMoranITest class calculates each observation's local spatial autocorrelation
index based on a specific feature and spatial weights. The following code prints the local
autocorrelation index and p-values of the first ten observations in the dataset.

from oraclesai.analysis import LocalMoranITest 

# Run the Local Moran's I test 
local_moran_test = LocalMoranITest.create(X, spatial_weights, 
column_name="MEDIAN_INCOME") 

# Print the Local Moran's I and  p-values 
print("Local Moran's I = ", local_moran_test.i_list[:10]) 
print("p_values = ", local_moran_test.p_values[:10])

The output of the code is as shown:

Local Moran's I =  [-0.28929661 -0.24813967  0.53874783  2.50789083  
2.59829807  0.96529687
  0.62729663  0.79068262 -0.00862826 -0.11777731]
p_values =  [0.025 0.003 0.001 0.001 0.001 0.019 0.015 0.088 0.336 0.119]

Train the Model
You can use the LISAHotspotClustering class for identifying clusters and outliers. It internally
performs all the analysis done so far, calculating the Local Moran’s I for each observation in the
dataset and assigns them to the corresponding quadrant.

Depending on the build parameters, some observations can be labeled with –1 (undefined).
For example, in the following code, setting the max_p_value=0.05 parameter causes all
observations with a p-value greater than 0.05 to be labeled with –1 in order to keep only
statistically significant values.

from oraclesai.clustering import LISAHotspotClustering
 
# Create an instance of LISAHotspotClustering
lisa_model = LISAHotspotClustering(column="MEDIAN_INCOME",
                                   max_p_value=0.05,
                                   
spatial_weights_definition=weights_definition)
 
# Train the model
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lisa_model.fit(X)
 
# Print the labels
lisa_labels = lisa_model.labels_
print(f"labels = {lisa_labels[:10]}")

The output of the program are the labels or quadrants assigned to the first ten observation of
the training set.

labels = [ 2  2  1  1  1  1  1 -1 -1 -1]

Hot spots are labeled with the number 1, while cold spots are labeled with the number 3. To
identify only hot and cold spots, perform the following.

import numpy as np

hotcold_labels = np.where(lisa_labels % 2 != 0, lisa_labels, -1)

A spatial outlier is an observation with a value different from its neighbors. These are
represented with the label 2 and 4. To identify the spatial outliers, run the following code.

outlier_labels = np.where(lisa_labels % 2 == 0, lisa_labels, -1)

Visualize the Result
Oracle Spatial AI implements a plotting functionality for clusters in the plot_clusters function.
The following code passes the training data and the labels as parameters. The
with_noise=False parameter avoids displaying the observations labeled with –1. The
with_basemap=True parameter sets a basemap as background.

from oraclesai.vis import plot_clusters

fig, ax = plt.subplots(figsize=(12,12))  

plot_clusters(X, lisa_labels, with_noise=False, with_basemap=True, 
cmap='Dark2', ax=ax)

The result consists of those observations with a local Moran’s I statistically significant, colored
according to their quadrant. Quadrants are defined as follows:

1. A high value surrounded by high values (hot spots).

2. A low value around high values (outliers).

3. A low value surrounded by low values (cold spots).

4. A high value around high values (outliers).
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Run the Post-Processing Steps
Perform the following post-processing steps once the model is trained:

1. Store the trained model in a datastore for later use and to avoid training the model again.

Use the oml.ds.save function specifying the name of the datastore and the name/object
pair as shown in the following code:

oml.ds.save({'lisa_model': lisa_model}, 'spatial_ai_ds', 
description='Hotspot Clustering for Median Income', overwrite=True)
print(oml.ds.dir())

Identify the recently created one from the directory of datastores.

        datastore_name  ...                           description
0     agglomerative_ds  ...                                      
1  dbscan_accidents_ds  ...                                      
2     sai_regressor_ds  ...                      some description
3              spatial  ...                                  None
4        spatial_ai_ds  ...  Hotspot Clustering for Median Income
5     spatial_error_ds  ...                      some description

[6 rows x 5 columns]

2. Load the model from a datastore.
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Use the oml.ds.load function to load the model from a datastore by specifying the name
of the datastore and the name of the Python object with the trained model.

ds_objs = oml.ds.load('spatial_ai_ds', objs=['lisa_model'], 
to_globals=False)
lisa_model_loaded = ds_objs['lisa_model']

print(lisa_model_loaded._labels[:10])

After loading the trained clustering model from a datastore, obtain the labels assigned to
each observation with the _labels property. The preceding code prints the labels from the
first ten observations:

[ 2  2  1  1  1  1  1 -1 -1 -1]

3. Create and store a user-defined Python function (UDF) that loads the trained model from a
datastore and returns the labels assigned to the training data.

The UDF is registered with OML using oml.script.create.

udf = """def get_lisa_labels_():
    import oml
    ds_objs = oml.ds.load('spatial_ai_ds', objs=['lisa_model'], 
to_globals=False)
    lisa_model = ds_objs['lisa_model']
    
    return lisa_model._labels.tolist()""" 

oml.script.create("lisaLabels", udf, is_global=True, overwrite=True)

4. Run a Python UDF with SQL.

The following code uses pyqEval to run the Python UDF lisaLabels in SQL.

select *  
    from table(pyqEval(
        par_lst => '{}', 
        out_fmt => 'JSON',  
        scr_name => 'lisaLabels'  
    )  
);

The response is the labels assigned to all the observations by the clustering algorithm. For
simplicity, the following output shows only the first ten labels.

[2,2,1,1,1,1,1,-1,-1,-1,…]
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