
Oracle® Cloud
Using Oracle Autonomous JSON Database

F32276-19
March 2025

Oracle Cloud Using Oracle Autonomous JSON Database,

F32276-19

Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Diversity and Inclusion vii

Related Documents vii

Conventions vii

1 Get Started Using Autonomous JSON Database

About Autonomous JSON Database 1-1

Work with JSON Documents in Autonomous Database 1-2

Typical Workflow for Developing Applications with Autonomous JSON Database 1-4

Upgrade Autonomous JSON Database to Autonomous Transaction Processing 1-5

2 Create an Autonomous JSON Database

Provision an Autonomous JSON Database Instance 2-1

3 Use Oracle Database Actions with JSON Collections

About Database Actions (SQL Developer Web) 3-1

Use Oracle Database Actions with SODA 3-1

Use Oracle Database Actions with SQL over SODA Collections 3-3

4 Develop RESTful Services

About Oracle REST Data Services in Autonomous Database 4-1

Access RESTful Services and SODA for REST 4-1

Use SODA for REST with Autonomous Database 4-2

Overview of Using SODA for REST 4-2

Load Purchase-Order Sample Data Using SODA for REST 4-4

Use SODA for REST with OAuth Client Credentials 4-5

iii

5 Build an Application

The Basics of Building an Application 5-1

Build a Java Application 5-2

Configure Your Java Development System 5-2

Set JVM Networking Properties 5-4

Code Database Connections and SQL Statements 5-5

Build a Node.js Application 5-6

Configure Your Node.js Development System 5-6

Code Database Connections and SQL Statements 5-8

Build a Python Application 5-9

Configure Your Python Development System 5-9

Code Database Connections and SQL Statements 5-11

6 Load JSON

About Loading JSON Documents 6-1

Load a JSON File of Line-Delimited Documents into a Collection 6-1

Load an Array of JSON Documents into a Collection 6-3

Create Credentials and Copy JSON Data into an Existing Table 6-5

Monitor and Troubleshoot COPY_COLLECTION Loads 6-7

Import SODA Collection Data Using Oracle Data Pump Version 19.6 or Later 6-8

Textual JSON Objects That Represent Extended Scalar Values 6-11

7 Oracle Tools for Database Access

Connect with Built-In Oracle Database Actions 7-1

Access Database Actions as ADMIN 7-1

Provide Database Actions Access to Database Users 7-2

Connect Oracle SQL Developer with a Wallet (mTLS) 7-3

Connect Oracle SQLcl Cloud with a Wallet (mTLS) 7-5

Connect SQL*Plus with a Wallet (mTLS) 7-7

8 Oracle Extensions for IDEs

Use Oracle Cloud Infrastructure Toolkit for Eclipse 8-1

Use Oracle Developer Tools for Visual Studio 8-1

Use Oracle Developer Tools for VS Code 8-2

9 Code for High Performance

Connect for High Performance 9-1

Code for High Performance 9-2

iv

Tools for Monitoring and Tuning Performance 9-3

A Autonomous JSON Database for Experienced Oracle Database Users

Autonomous Database – Oracle Database Features A-1

SODA Notes A-2

About Autonomous Database for Experienced Oracle Database Users A-2

Transaction Processing and JSON Database Workloads with Autonomous Database A-2

Autonomous Database Views A-3

Track Table and Partition Scan Access with Autonomous Database Views A-3

GV$TABLE_ACCESS_STATS and V$TABLE_ACCESS_STATS Views A-3

ALL_TABLE_ACCESS_STATS and DBA_TABLE_ACCESS_STATS Views A-4

USER_TABLE_ACCESS_STATS View A-4

Track Oracle Cloud Infrastructure Resources, Cost and Usage Reports with
Autonomous Database Views A-4

Prerequisite Steps to Use OCI Resource Views A-5

OCI_AUTONOMOUS_DATABASES View A-6

OCI_BUDGET_ALERT_RULES View A-8

OCI_BUDGET_SUMMARY View A-9

OCI_COST_DATA View A-10

OCI_OBJECTSTORAGE_BUCKETS View A-11

OCI_USAGE_DATA View A-12

Always Free Autonomous Database – Oracle Database 21c A-13

Always Free Autonomous Database Oracle Database 21c Features A-13

Always Free Autonomous Database Oracle Database 21c Notes A-18

Autonomous Database RMAN Recovery Catalog A-18

Use Autonomous Database as an RMAN Recovery Catalog A-18

Notes for Users Migrating from Other Oracle Databases A-19

Initialization Parameters A-19

SESSION_EXIT_ON_PACKAGE_STATE_ERROR A-22

SYSDATE_AT_DBTIMEZONE Select a Time Zone for SYSDATE on Autonomous
Database A-22

SQL Commands A-25

Data Types A-28

PL/SQL Package Notes for Autonomous Database A-29

Oracle XML DB A-34

Oracle Text A-35

Oracle Flashback A-36

Oracle Database Real Application Security A-36

Oracle LogMiner A-37

Choose a Character Set for Autonomous Database A-38

Notes for Character Set Selection A-39

v

Database Features Unavailable in Autonomous Database A-39

B SODA Collection Metadata on Autonomous Database

SODA Default Collection Metadata on Autonomous Database B-1

SODA Customized Collection Metadata on Autonomous Database B-3

vi

Preface

This document describes how to work with Oracle Autonomous Databases to develop
applications.

Audience
This document is intended for application developers whose applications store and retrieve
data in Oracle Autonomous JSON Databases.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit Oracle
Accessibility Learning and Support if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents
• Getting Started with Oracle Cloud

• Oracle Cloud Infrastructure Object Storage

• Simple Oracle Document Access (SODA)

• Oracle as a Document Store

• Oracle Database JSON Developer’s Guide

Conventions
The following text conventions are used in this document.

vii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://cloud.oracle.com/en_US/infrastructure/storage
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Get Started Using Autonomous JSON
Database

Oracle Autonomous JSON Database simplifies the task of developing applications that use
JavaScript Object Notation (JSON) data. The following features, in particular, support the
development of high-performing, high-security applications:

• Automatic database administration. Routine database administration tasks such as
patching and taking backups are performed automatically, so you can concentrate on
developing your application.

• Automatic performance tuning. You spend less time defining and tuning your database.
See Autonomous Database – Oracle Database Features.

• Preconfigured high performance. When you connect to the database with an Oracle
client using connection pools you take advantage of high performance features configured
on the database side of your connection. See Code for High Performance.

• Predefined, workload-specific database services. Client applications can connect to the
database using a connection service that best matches the type of database operations
they need. (For most applications that use JSON documents you use the typical
connection service for transaction processing, tp.) See Database Service Names for
Autonomous Transaction Processing and Autonomous JSON Database in Using Oracle
Autonomous Database Serverless.

• Long-Term Backups. You can create a long-term backup as a one-time backup or as
scheduled long-term backup. You can create a new database by cloning from a long-term
backup. You cannot use a long-term backup to recover or restore the same database
where the long-term backup was created. See Long-Term Backups on Autonomous
Database in Using Oracle Autonomous Database Serverless

Autonomous JSON Database is specialized for developing NoSQL-style applications that use
JavaScript Object Notation (JSON) documents using Simple Oracle Document Access (SODA)
APIs. You can also use Oracle Application Express (APEX) for low-code development of
dashboards over your JSON data.

But just as for Autonomous Transaction Processing, JSON data stored in a JSON database is
also fully accessible using Structured Query Language (SQL), for analytics and interfacing with
relational tools. You can promote an Autonomous JSON Database anytime to an Autonomous
Transaction Processing database, which lets you store more non-JSON data.

About Autonomous JSON Database
Oracle Autonomous JSON Database is Oracle Autonomous Transaction Processing, but
designed for developing NoSQL-style applications that use JavaScript Object Notation (JSON)
documents. You can promote an Autonomous JSON Database service to an Autonomous
Transaction Processing service.

See About Autonomous Transaction Processing for a full description of the Autonomous
Transaction Processing service. Autonomous JSON Database provides all of the same
features, with this important limitation: you can store only up to 20 GB of data other than JSON
document collections.1 There is no storage limit for JSON collections.

1-1

Development of NoSQL-style, document-centric applications is particularly flexible because the
applications use schemaless data. This lets you quickly react to changing application
requirements. There's no need to normalize the data into relational tables, and no impediment
to changing data structure or organization at any time, in any way. A JSON document has
internal structure, but no relation is imposed on separate JSON documents.

With Oracle Autonomous JSON Database your JSON document-centric applications typically
use Simple Oracle Document Access (SODA), which is a set of NoSQL-style APIs for various
application-development languages and for the representational state transfer (REST)
architectural style. You can use any SODA API to access any SODA collection.

SODA document collections are backed by ordinary database tables and views. To use other
kinds of data, subject to the 20 GB limit, you typically need some knowledge of Structured
Query Language (SQL) and how that data is stored in the database.

With Oracle Autonomous JSON Database, a SODA collection can only contain JSON data. For
example, you cannot have a collection of image documents or a collection that contains both
JSON documents and image documents. This is a limitation relative to Autonomous
Transaction Processing, where you can define such heterogeneous collections.

No matter what kind of data your applications use, whether JSON or something else, you can
take advantage of all Oracle Database features. This is true regardless of the kind of Oracle
Autonomous Database you use.

JSON data is stored natively in the database. In a SODA collection on an Autonomous
Database JSON data is stored in Oracle's native binary format, OSON.

Work with JSON Documents in Autonomous Database
Autonomous Database supports JavaScript Object Notation (JSON) data natively in the
database. You can use NoSQL-style APIs to develop applications that use JSON document
collections without needing to know Structured Query Language (SQL) or how the documents
are stored in the database.

Oracle provides two sets of such APIs:

• Simple Oracle Document Access (SODA)

• Oracle Database API for MongoDB (also called the MongoDB API)

For example, this SODA for Java code opens a collection of cart documents, carts, then
inserts and saves a new document:

OracleCollection coll = db.openCollection("carts");

// Insert and save a cart document.
OracleDocument doc = db.createDocumentFromString(
 "{\"customerId\":123, \"items\":[...]}");
coll.save(doc);

And this code finds a document that has a field customerId with a value of 123.

// Find and retrieve a document having customerID 123.
doc = coll.find().filter("{\"customerId\"}:123").getOne();

1 You can subscribe to information event AJDNonJsonStorageExceeded, to be informed when the 20 GB limit is exceeded.
See About Information Events on Autonomous Database in Using Oracle Autonomous Database Serverless.

Chapter 1
Work with JSON Documents in Autonomous Database

1-2

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/overview-soda.html#GUID-BE42F8D3-B86B-43B4-B2A3-5760A4DF79FB

Although SODA and the MongoDB API are your main ways of working with JSON documents
when developing applications, the data in JSON collections, like other database data, can be
accessed from outside an application, including using SQL and database clients such as Java
Database Connectivity (JDBC), Oracle Call Interface, and Microsoft .NET Framework. For
information about access using SQL see Oracle Tools for Database Access.

Oracle SQL and PL/SQL provide additional ways to use JSON data, beyond what is provided
by SODA and the MongoDB API. All Oracle Autonomous Databases fully support the SQL/
JSON standard, for example. See Oracle Database JSON Developer’s Guide for complete
information.

And because collections are backed by ordinary database tables and views, you can take
advantage of all sorts of standard Oracle Database features, for use with the content of JSON
documents.

With Autonomous JSON Database a collection can only contain JSON data. But you can
combine (join) JSON data in collections with other data (JSON or non-JSON) that is not in a
collection, in arbitrarily complex ways. Then, using features such as Oracle Machine Learning,
you can analyze the data and create reports.

SODA and the MongoDB API give you fast, flexible, scalable application development without
losing the ability to leverage SQL for analytics, machine learning, and reporting. There are no
restrictions on the types of SQL queries that you can express over JSON data.

As a simple example of using SQL with a collection, here is a query that gets the customerId
values of all documents in collection carts. (Database column json_document of table carts
underlies collection carts.)

SELECT c.json_document.customerId FROM carts c;

And assuming fields unitPrice and quantity, this next query applies SQL aggregate function
sum to the result of applying multiplication operator * to those field values for each document.
That is, sum aggregates the products of unit price and quantity across all documents of the
collection. (See https://github.com/oracle-quickstart/oci-cloudnative/blob/master/src/carts/sql/
examples.sql for more such examples.)

SELECT sum(c.json_document.unitPrice.number()
 *
 c.json_document.quantity.number())
 FROM carts c;

In Autonomous Database, JSON data can be stored in Oracle's native binary format, OSON.
OSON format is always used for JSON data in a collection. For other JSON data, which you
store directly in a relational column of type BLOB, Oracle recommends that you specify OSON
format for that column using a check constraint of IS JSON FORMAT OSON with CREATE TABLE.
For example:

CREATE TABLE my_table (id NUMBER, json_doc BLOB
 CHECK (json_doc IS JSON FORMAT OSON))

If your database is release 19 or earlier and you use SQL/JSON function json_query to
retrieve JSON data stored in OSON format, then by default (no RETURNING clause) native
binary JSON values are automatically serialized to textual format (VARCHAR2(4000)).

Chapter 1
Work with JSON Documents in Autonomous Database

1-3

https://github.com/oracle-quickstart/oci-cloudnative/blob/master/src/carts/sql/examples.sql
https://github.com/oracle-quickstart/oci-cloudnative/blob/master/src/carts/sql/examples.sql

But if you retrieve an entire JSON document then no such automatic serialization takes place.
If you want the document in textual format then use SQL/JSON function json_serialize to
serialize it. Here's an example:

SELECT json_serialize(c.json_document) FROM carts c;

SODA drivers are available for several languages and frameworks: Java, Node.js, Python, C
(using Oracle Call Interface), PL/SQL, and REST. SODA for REST maps SODA operations to
Uniform Resource Locator (URL) patterns, so it can be used with most programming
languages.

Note:

If you use SODA to access collections in Oracle Database 19c, Oracle recommends
that you use the instant client for Oracle Database 21c or later, in order to smooth
migration to the use of JSON data type when your database is upgraded to release 21
or greater.

To get started with SODA or the MongoDB API, see the following:

• Oracle video Demonstration: Using Autonomous Transaction Processing (ATP) Service as
a JSON Document Store, which covers the examples shown here, and more, using an
Always Free Autonomous Database

• Overview of SODA in Oracle Database Introduction to Simple Oracle Document Access
(SODA)

• Overview of SODA Filter Specifications (QBEs) in Oracle Database Introduction to Simple
Oracle Document Access (SODA)

• Overview of Oracle Database API for MongoDB in Oracle Database API for MongoDB

For complete information, see the following:

• Simple Oracle Document Access (SODA)

• Oracle Database API for MongoDB

Typical Workflow for Developing Applications with Autonomous
JSON Database

Task Description More Information

Create and log in to your
cloud account

Provide your information and sign up for an
Oracle Cloud Service.

Request and Manage Free Oracle Cloud
Promotions

Create a JSON database Create the database that your application will
use.

Create an Autonomous JSON Database

Begin building an application Start building an application that takes
advantage of the high-performance features
of a JSON database.

Build an Application

Chapter 1
Typical Workflow for Developing Applications with Autonomous JSON Database

1-4

https://www.youtube.com/watch?v=3L1goERwqXI
https://www.youtube.com/watch?v=3L1goERwqXI
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/index.html
https://docs.oracle.com/en/database/oracle/mongodb-api/
https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/signingup.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/signingup.htm

Upgrade Autonomous JSON Database to Autonomous
Transaction Processing

You can promote an Autonomous JSON Database to an Autonomous Transaction Processing
database at any time.

An Autonomous JSON Database is the same as an Autonomous Transaction Processing
database, except that an Autonomous JSON Database is limited in these respects:

• You can store only up to 20 GB of data other than JSON document collections.2

(All Autonomous Databases, including , limit the storage of JSON data to 128 TB.)

• Collections cannot be heterogeneous. That is, they can only contain JSON documents.
For example, you cannot have a collection of image documents or a collection that
contains both JSON documents and image documents.

These limitations are appropriate if your use is primarily development of applications that use
JSON documents. If you have a greater need to use data other than JSON data then follow
these steps to promote your JSON database to an Autonomous Transaction Processing
database:

1. Open the Oracle Cloud Infrastructure Console by clicking the next to Oracle Cloud.

2. From the Oracle Cloud Infrastructure left navigation menu click Oracle Database, and
then click Autonomous JSON Database.

3. Choose your JSON Database from those listed in the compartment, by clicking its name in
column Display name.

4. Do one of the following:

• From the More actions drop-down list, select Change workload type.

• In tab Autonomous Database information, under heading General information, item
Workload type, click Edit.

5. Click Convert to confirm that you want to convert this JSON database to Autonomous
Transaction Processing.

6. If you were using the refreshable clone feature with your Autonomous JSON Database
then re-create the clone after promotion to Autonomous Transaction Processing. See
Using Refreshable Clones with Autonomous Database.

See Autonomous Database Billing Summary for more information.

2 You can subscribe to information event AJDNonJsonStorageExceeded, to be informed when the 20 GB limit is exceeded.
See About Information Events on Autonomous Database.

Chapter 1
Upgrade Autonomous JSON Database to Autonomous Transaction Processing

1-5

2
Create an Autonomous JSON Database

If you have an Oracle Cloud user account then you can use one of the following interfaces to
create an Oracle Autonomous JSON Database.

• The Oracle Cloud console. See Provision an Autonomous JSON Database Instance.

• The Oracle Cloud Infrastructure REST API. For information, see the
CreateAutonomousDatabase endpoint in Oracle Cloud Infrastructure API Documentation.
The body of the REST request must contain a single instance of
CreateAutonomousDatabaseBase, with dbWorkload set to AJD.

• The Oracle Cloud Infrastructure CLI. For information, see the oci db autonomous-
database create command in OCI CLI Command Reference . Set parameter --db-
workload [text] to AJD. That is, use command oci db autonomous-database create --
db-workload AJD.

• An Oracle Cloud Infrastructure SDK or Plug-in. For information, see Software
Development Kits and DevOps Tools and Plug-ins in Oracle Cloud Infrastructure API
Documentation.

You can promote an existing Always Free Autonomous JSON Database to a paid Autonomous
JSON Database. For more information see Always Free Autonomous Database in Using
Oracle Autonomous Database Serverless.

Provision an Autonomous JSON Database Instance
Follow these steps to provision a new Autonomous JSON Database instance using the Oracle
Cloud Infrastructure Console.

Perform the following prerequisite steps as necessary:

• Open the Oracle Cloud Infrastructure Console by clicking the next to Oracle Cloud.

• From the Oracle Cloud Infrastructure left navigation menu click Oracle Database, and
then click Autonomous JSON Database.

• Choose your region. See Switching Regions for information on switching regions and
working in multiple regions.

• Choose your Compartment. See Compartments for information on using and managing
compartments.

On the Autonomous Databases page, perform the following steps:

1. Click Create Autonomous Database.

2. Provide basic information for the Autonomous Database.

• Compartment. See Compartments for information on using and managing
compartments.

• Display name Specify a user-friendly description or other information that helps you
easily identify the resource. The display name does not have to be unique.

2-1

https://docs.cloud.oracle.com/iaas/api/#/en/database/20160918/AutonomousDatabase/CreateAutonomousDatabase
https://docs.cloud.oracle.com/iaas/api/#/en/database/20160918/datatypes/CreateAutonomousDatabaseBase
https://docs.cloud.oracle.com/iaas/tools/oci-cli/latest/oci_cli_docs/cmdref/db/autonomous-database/create.html
https://docs.cloud.oracle.com/iaas/tools/oci-cli/latest/oci_cli_docs/cmdref/db/autonomous-database/create.html
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/sdks.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/sdks.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/devopstools.htm#DevOpsToolsandPlugins
https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/console.htm#switchreg
https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/console.htm#one
https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/console.htm#one

The default display name is a generated 16-character string that matches the default
database name.

• Database name Specify the database name; it must consist of letters and numbers
only. The maximum length is 30 characters. The same database name cannot be used
for multiple Autonomous Databases in the same tenancy in the same region.

The default database name is a generated 16-character string that matches the default
display name.

3. Choose JSON from the workload-type choices:

• Data Warehouse

• Transaction Processing

• JSON

• APEX

4. Configure the database (ECPU compute model)

• Always Free: Select to show Always Free options.

You can only create a free instance in the tenancy's Home region.

• Developer: Select to show Autonomous Database for Developers options.

An Autonomous Database for Developers instance is a fixed shape database that is
suited for development and testing use cases.

Selecting this option sets the Compute resources to a fixed value of 4 ECPUs and the
Storage to 20 GB.

• Choose database version: Select the database version. The available database
versions are Oracle Database 23ai and Oracle Database 19c.

Note:

– In regions where Oracle Database 23ai is not available, Oracle Database
19c is the only choice.

– Autonomous Database with Oracle Database 23ai in the Paid tier is
available in all commercial public cloud regions except the following
region: Singapore West: Singapore (XSP)

– Always Free Autonomous Database with Oracle Database 23ai is
available in all commercial public cloud regions except the following
regions: Colombia Central: Bogota (BOG), Saudi Arabia Central (RUH),
Singapore West: Singapore (XSP), Spain Central: Madrid (MAD)

• ECPU count: Specify the number of CPUs for your database. The minimum value is 2.

• Compute auto scaling: By default compute auto scaling is enabled to allow the
system to automatically use up to three times more CPU and IO resources to meet
workload demand. If you do not want to use compute auto scaling then deselect this
option.

See Use Auto Scaling for more information.

• Storage: Specify your storage in Gigabytes (GB) or Terabytes (TB). Select GB or TB
for the Storage unit size.

Chapter 2
Provision an Autonomous JSON Database Instance

2-2

• By default, the IO capacity of your database depends on the number of ECPUs you
provision. When you provision 384 TB of storage, your database is entitled to the full
IO capacity of the Exadata infrastructure, independent of the number of ECPUs you
provision.

Autonomous Database uses Exadata Smart Flash Cache to automatically cache
frequently accessed data, delivering the high I/O rates and fast response times of
flash. The amount of flash cache for your database depends on the amount of storage
you provision, or the amount of allocated storage if you enable storage auto scaling.

If you want to provision more than 384 TB of storage, file a Service Request at Oracle
Cloud Support.

• Storage auto scaling: By default storage auto scaling is disabled. Select if you want
to enable storage auto scaling to allow the system to automatically expand to use up to
three times more storage.

With storage auto scaling disabled, the guaranteed minimum flash cache size is 10%
of your database's provisioned storage size.

With storage auto scaling enabled, the guaranteed minimum flash cache size is 10%
of your database's provisioned base storage size or its allocated storage size,
whichever is higher.

See Use Auto Scaling for more information.

• Show advanced options: Click to show additional options

– Enable elastic pool:

See Create or Join a Resource Pool While Provisioning or Cloning an Instance for
more information.

An Autonomous JSON Database can join an elastic pool, but it cannot be a pool
leader.

– Compute model: Shows the selected compute model.

Click Change compute model to change the compute model. After you select a
different compute model, click Save.

* ECPU
Use the ECPU compute model for Autonomous Database. ECPUs are based
on the number of cores elastically allocated from a pool of compute and
storage servers.

* OCPU
Use the legacy OCPU compute model if your tenancy is using the OCPU
model and you want to continue using OCPUs. The OCPU compute model is
based on physical core of a processor with hyper threading enabled.

Note:

OCPU is a legacy billing metric and has been retired for Autonomous
Data Warehouse (Data Warehouse workload type) and Autonomous
Transaction Processing (Transaction Processing workload type).
Oracle recommends using ECPUs for all new and existing
Autonomous Database deployments. See Oracle Support Document
2998742.1 for more information.

See Compute Models in Autonomous Database for more information.

Chapter 2
Provision an Autonomous JSON Database Instance

2-3

https://support.oracle.com/
https://support.oracle.com/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2998742.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2998742.1

– Bring your own license: If you want to Bring Your Own License to the database,
click Enable to show the Update license and Oracle Database Edition page.

See Choose Bring Your Own License Option While Provisioning or Cloning for
more information.

5. Backup retention

Automatic backup retention period in days You have the option to select the automatic
backup retention period, in a range from 1 to 60 days. You can restore and recover your
database to any point-in-time in this retention period.

Select Immutable backup retention to lock the backup retention period.

After setting the immutable backup retention option, you cannot disable this option or
change the retention period. To disable immutable backup retention or to change the
backup retention period, file a Service Request at Oracle Cloud Support.

See About Backup and Recovery on Autonomous Database for more information.

6. Create administrator credentials. Set the password for the Autonomous JSON Database
Admin user.

• Username This is a read only field.

• Password Set the password for the Autonomous JSON Database Admin user.

• Confirm password Enter the same password again to confirm your new password.

The password must meet the strong password complexity criteria based on Oracle Cloud
security standards. For more information on the password complexity rules, see About
User Passwords on Autonomous Database.

7. Choose network access

Note:

After you provision your Autonomous Database you can change the network
access option you select for the instance.

• Secure access from everywhere

By default, secure connections are allowed from everywhere.

• Secure access from allowed IPs and VCNs only

This option restricts connections to the database according to the access control lists
(ACLs) you specify. To add multiple ACLs for the Autonomous Database, click Add
access control rule.

See Configure Access Control Lists When You Provision or Clone an Instance for
more information.

• Private endpoint access only

This option assigns a private endpoint, private IP, and hostname to your database.
Specifying this option allows traffic only from the VCN you specify; access to the
database from all public IPs or VCNs is blocked. This allows you to define security
rules, ingress/egress, at the Network Security Group (NSG) level and to control traffic
to your Autonomous Database.

See Configure Private Endpoints When You Provision or Clone an Instance for more
information.

Chapter 2
Provision an Autonomous JSON Database Instance

2-4

https://support.oracle.com/

8. (Optional) Provide contacts for operational notifications and announcements

Click Add contact and in the Contact email field, enter a valid email address. To enter
multiple Contact email addresses, repeat the process to add up to 10 customer contact
emails.

See View and Manage Customer Contacts for Operational Issues and Announcements for
more information.

9. (Optional) Click Show advanced options to select advanced options.

• Encryption key
Encrypt using an Oracle-managed key: By default Autonomous Database uses
Oracle-managed encryption keys. Using Oracle-managed keys, Autonomous
Database creates and manages the encryption keys that protect your data and Oracle
handles rotation of the TDE master key.

Encrypt using a customer-managed key in this tenancy: If you select this option, a
master encryption key from a Oracle Cloud Infrastructure Vault in the same tenancy is
used to generate the TDE master key on Autonomous Database.

Encrypt using a customer-managed key located in a remote tenancy: If you select
this option, a master encryption key in the Oracle Cloud Infrastructure Vault located in
a remote tenancy is used to generate the TDE master key on Autonomous Database.

See Use Customer-Managed Encryption Keys on Autonomous Database for more
information.

• Maintenance
Patch level By default the patch level is Regular. Select Early to configure the
instance with the early patch level.

See Set the Patch Level for more information.

• Tools
If you want to view or customize the tools configuration, select the tools tab.

See Configure Autonomous Database Built-in Tools when you Provision or Clone an
Instance for more information.

• Security attributes
Add a security attribute to control access for your resources using Zero Trust Packet
Routing (ZPR) policies. To enter security attributes during provisioning you must
already have set up security attributes with Zero Trust Packet Routing. You also can
add security attributes after provisioning.

Note:

You can apply Oracle Zero Trust Packet Routing (ZPR) policies to a private
endpoint.

Specify a Namespace, Key, and Value security attribute.

Click Add security attribute to add additional security attributes.

See Overview of Zero Trust Packet Routing for more information.

• Tags
If you want to use Tags, enter the Tag key and Tag value. Tagging is a metadata
system that allows you to organize and track resources within your tenancy. Tags are
composed of keys and values which can be attached to resources.

Chapter 2
Provision an Autonomous JSON Database Instance

2-5

https://preview.content.oci.oracleiaas.com/en-us/iaas/Content/zero-trust-packet-routing/overview.htm?bundle=18634&showfilteredtoc=true

See Tagging Overview for more information.

10. Optionally, you can save the resource configuration as a stack by clicking Save as Stack.
You can then use the stack to create the resource through the Resource Manager service.

Enter the following details on the Save as Stack dialog, and click Save.

• Name: Optionally, enter a name for the stack.

• Description: Optionally, enter a description for this stack.

• Save in compartment: Select a compartment where this Stack will reside.

• Tag namespace, Tag key, and Tag value: Optionally, apply tags to the stack.

For requirements and recommendations for Terraform configurations used with Resource
Manager, see Terraform Configurations for Resource Manager. To provision the resources
defined in your stack, apply the configuration.

11. Click Create Autonomous Database.

On the Oracle Cloud Infrastructure console the Lifecycle state shows Provisioning until the
new database is available.

Chapter 2
Provision an Autonomous JSON Database Instance

2-6

https://docs.cloud.oracle.com/en-us/iaas/Content/Tagging/Concepts/taggingoverview.htm
https://docs.oracle.com/en-us/iaas/Content/ResourceManager/Concepts/terraformconfigresourcemanager.htm
https://docs.cloud.oracle.com/iaas/Content/ResourceManager/Tasks/create-job-apply.htm

3
Use Oracle Database Actions with JSON
Collections

Oracle Database Actions is a browser-based interface for Oracle SQL Developer. With it, you
can run SODA commands or SQL code to create, query, index, and update collections of
JSON documents, and to perform other tasks on your database.

Topics

• About Database Actions (SQL Developer Web)

• Use Oracle Database Actions with SODA

• Use Oracle Database Actions with SQL over SODA Collections

About Database Actions (SQL Developer Web)
Database Actions provides a web-based interface with development, data tools, administration,
monitoring, and download features for Autonomous Database.

The following table lists the main features of Database Actions. Database Actions on your
Autonomous Database instance may include additional cards if you download applications
from Oracle Cloud Marketplace.

Feature Area Database Actions Cards

Development SQL, Data Modeler, REST, JSON, Charts, Scheduling, Oracle Machine
Learning, Graph Studio, and Oracle APEX

Data Studio Data Load, Catalog, Data Insights, Data Transforms, and Data Analysis

Administration Database Users, APEX Workspaces, Data Pump, Download Client
Credentials, and Set Resource Management Rules

Monitoring Performance Hub and Database Dashboard

Downloads Download Oracle Instant Client and Download SODA Drivers

Related Services Restful Data Services (ORDS) and SODA and Access Oracle Machine
Learning Restful Services

See About Database Actions in Using Oracle Database Actions for more information.

Use Oracle Database Actions with SODA
You can use Oracle Database Actions to work with SODA collections directly, using its built-in
SODA commands. Database Actions provides a browser-based development environment and
a data modeler interface for Autonomous JSON Database.

See Connect with Built-In Oracle Database Actions for information about connecting to
Database Actions.

A common set of SODA command-line commands are provided by Database Actions and
Oracle SQL Developer Command Line, SQLcl. SQLcl is a Java-based command-line interface

3-1

https://cloudmarketplace.oracle.com/marketplace

for Oracle Database. You can use it to execute SQL and PL/SQL statements interactively or in
batch. It provides inline editing, statement completion, command recall, and it supports existing
SQL*Plus scripts.

See SODA Commands in Using Oracle Database Actions for complete information about the
SODA command-line commands.

See Oracle video Demonstration: Using Autonomous Transaction Processing (ATP) Service as
a JSON Document Store, for a demonstration of the examples shown here

You enter commands in the Worksheet area of Database Actions, click the green right-arrow,
and see results and other information in the tabs below the worksheet. The simple examples
here create a collection, insert a JSON document into the collection, and query the collection.

• Create a collection named emp.

soda create emp

The creation is echoed in tab Script Output, below the worksheet.

• List the existing SODA collections, using command soda list.

soda list

The list, shown in Script Output, includes collection emp.

• Insert five JSON documents into the collection, one by one.

soda insert emp {"name" : "Blake", "job" : "Intern", "salary" : 30000}
soda insert emp {"name" : "Smith", "job" : "Programmer", "salary" : 80000}
soda insert emp {"name" : "Miller", "job" : "Programmer", "salary" : 90000}
soda insert emp {"name" : "Clark", "job" : "Manager", "salary" : 100000}
soda insert emp {"name" : "King", "job" : "President", "salary" : 200000,
 "email" : "king@example.com"}

Each insertion is echoed in Script Output.

• Get (retrieve) documents, filtering the collection with a SODA query-by-example (QBE)
pattern that matches "Miller" as the name. (Switch -f means list the documents that
match the QBE.)

soda get emp -f {"name":"Miller"}

Script Output shows the one matching document that's selected (returned), along with the
key for that document, which is a universally unique identifier (UUID) that identifies it.

• Get the documents that have a salary field whose value is at least 50,000. The QBE
pattern uses SODA greater-than-or-equal operator, $ge, comparing target field salary,
with the value 100,000.

soda get emp -f {"salary" : {"$ge" : 100000}}

Two documents are returned in this case, for employees Clark, and King, each of whose
salary is at least 100,000.

Chapter 3
Use Oracle Database Actions with SODA

3-2

https://www.youtube.com/watch?v=3L1goERwqXI
https://www.youtube.com/watch?v=3L1goERwqXI

Use Oracle Database Actions with SQL over SODA Collections
You can use Oracle Database Actions with SQL to work with SODA collections. In this case,
you act directly on the backing-store tables or views that underlie SODA collections.

The examples here use the employees SODA collection, emp, created in topic Use Oracle
Database Actions with SODA. (That topic creates the collection using Database Actions SODA
commands, but the collection could be created, and it can be modified, using any supported
SODA language or framework — Java, Node.js, Python, C, PL/SQL, or REST.)

Collection emp has these five employee documents:

{"name" : "Blake", "job" : "Intern", "salary" : 30000}
{"name" : "Smith", "job" : "Programmer", "salary" : 80000}
{"name" : "Miller", "job" : "Programmer", "salary" : 90000}
{"name" : "Clark", "job" : "Manager", "salary" : 100000}
{"name" : "King", "job" : "President", "salary" : 200000,
 "email" : "king@example.com"}

In Database Actions, you can see the complete backing-store database table that underlies
this SODA collection in the Navigator tab to the left of the worksheet. In this case, expand EMP
there to show the columns of that table.

• ID — Document key column.

• CREATED_ON — Creation timestamp column.

• LAST_MODIFIED — Last-modified timestamp column.

• JSON_DOCUMENT — JSON content column (in this case, employee data).

You can use Structured Query Language (SQL) directly on this underlying data.

You enter SQL statements in the Worksheet area of Database Actions, click the green right-
arrow, and see results and other information in the tabs below the worksheet. The simple
examples here select documents, project JSON fields from them, and perform aggregate
operations on selected fields.

• Select each of the documents in the collection.

SELECT json_serialize(json_document) FROM emp;

The documents are listed in tab Script Output, below the worksheet.

Because this query retrieves an entire JSON document you need to convert Oracle's
native binary JSON format, OSON, to textual format using standard SQL/JSON function
json_serialize. (When you use SQL to retrieve JSON objects or arrays from within JSON
documents you need not use json_serialize; that data is automatically serialized to
textual format.)

• Query the collection, projecting out the value of each of the fields from each document, as
a SQL value.

SELECT e.json_document.name,
 e.json_document.job,
 e.json_document.salary,

Chapter 3
Use Oracle Database Actions with SQL over SODA Collections

3-3

 e.json_document.email
 FROM emp e;

The projected field values are listed in Script Output in tabular form. The values for each
document form one row of the table.

In the query, we give table EMP the alias e, and we use a simple dot notation
<table>.<JSON column>.<field> to target each field.

The simple dot notation is handy for drilling down into JSON data. Just be aware of two
particularities with respect to most SQL syntax: (1) A table alias is required when you use
dot notation. (2) Although SQL is case-insensitive in general, with the dot notation <field>
corresponds to JSON data, so it is interpreted case-sensitively (JSON, like JavaScript, is
case-sensitive).

The value for each field except salary is a SQL string (VARCHAR2 data type). The value for
field salary is a SQL number (NUMBER data type). The value for field email for employee
King is the VARCHAR2 value king@example.com. The value for field email for the other
employees is shown as (null), meaning that the field is absent.

• Query the collection, projecting field job joining it with the result of an aggregate operation
that counts employees that have each job (as a group) across the collection.

SELECT e.json_document.job, count(*) FROM emp e
 GROUP BY e.json_document.job;

SQL queries over SODA collections can perform arbitrarily complex joins and aggregate
operations.

Chapter 3
Use Oracle Database Actions with SQL over SODA Collections

3-4

4
Develop RESTful Services

You can develop and deploy RESTful Services with native Oracle REST Data Services
(ORDS) support on Autonomous Databases. Simple Oracle Document Access (SODA) for
REST lets you use a JSON database as a simple JSON document store.

Topics

• About Oracle REST Data Services in Autonomous Database

• Access RESTful Services and SODA for REST

• Use SODA for REST with Autonomous Database

About Oracle REST Data Services in Autonomous Database
Oracle REST Data Services (ORDS) makes it easy to develop REST interfaces for relational
data in a JSON database.

ORDS is a mid-tier Java application that maps HTTP(S) verbs, such as GET, POST, PUT,
DELETE, and so on, to database transactions, and returns any results as JSON data.

Note:

The Oracle REST Data Services (ORDS) application in Autonomous JSON Database
is preconfigured and fully managed. ORDS connects to the database using the low
predefined database service with a fixed maximum number of connections (the
number of connections for ORDS does not change based on the number of ECPUs
(OCPUs if your database uses OCPUs). It is not possible to change the default
ORDS configuration.
See About Customer Managed Oracle REST Data Services on Autonomous
Database for information on using an additional alternative ORDS deployment that
enables flexible configuration options.

See Oracle REST Data Services for information on using Oracle REST Data Services.

See Database Service Names for Autonomous Transaction Processing and Autonomous
JSON Database in Using Oracle Autonomous Database Serverless for information on the low
database service.

Access RESTful Services and SODA for REST
Each Autonomous JSON Database includes Oracle REST Data Services (ORDS) that
provides HTTPS interfaces for working with the contents of your Oracle Database in REST
enabled schemas.

Perform the following prerequisite steps as necessary:

4-1

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/19.1/index.html

• Open the Oracle Cloud Infrastructure Console by clicking the next to Oracle Cloud.

• From the Oracle Cloud Infrastructure left navigation menu click Oracle Database, and
then click Autonomous JSON Database.

• On the Autonomous Databases page select an Autonomous Database from the links under
the Display name column.

To use Oracle REST Data Services and SODA for REST:

1. From the Autonomous Database details page select Database Actions and in the list click
View all database actions.

2. On the Database Actions launchpad, under Related Services, click the RESTful Services
and SODA card to see the base URL.

3. Click Copy to copy the URL.

If you are using Always Free Autonomous Database with Oracle Database 23ai Oracle
recommends the following:

• For projects that were started using a database release prior to Oracle Database 21c,
explicitly specify the metadata for the default collection as specified in the example in the
section SODA Drivers.

• For projects started using release Oracle Database 21c or later, just use the default
metadata.

See SODA Drivers for more information.

Use SODA for REST with Autonomous Database
Autonomous JSON Database supports Simple Oracle Document Access (SODA) for REST.

Overview of Using SODA for REST
SODA for REST is a predeployed REST service for managing JSON documents using CRUD
operations (create, read, update and delete), and for querying them using NoSQL-style query-
by-example (QBE) requests.
To use SODA for REST you need a database schema (user) that is enabled for Oracle REST
Data Services (ORDS). With this SQL code a database user with administrator privileges, such
as user ADMIN, can create such an ORDS-enabled schema (in this case TEST). (For information
about access using SQL see Oracle Tools for Database Access.)

CREATE USER test IDENTIFIED BY <password>;
GRANT DWROLE TO test;
GRANT UNLIMITED TABLESPACE TO test;
EXEC ords.enable_schema(P_SCHEMA => 'TEST');

SODA for REST is deployed in ORDS under the following URL pattern, where schema
corresponds to a REST-enabled database schema.

/ords/schema/soda/latest/*

The following examples use the cURL command line tool (http://curl.haxx.se/) to submit REST
requests to the JSON database. However, other 3rd party REST clients and libraries should

Chapter 4
Use SODA for REST with Autonomous Database

4-2

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/soda-drivers.html
http://curl.haxx.se/

work as well. The examples use database schema ADMIN, which is REST-enabled. You can
SODA for REST with cURL commands from the Oracle Cloud Shell.

This command creates a new collection named "fruit" in the ADMIN schema:

> curl -X PUT -u 'ADMIN:<password>' \
"https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/latest/fruit"

These commands insert three JSON documents into the fruit collection:

> curl -X POST -u 'ADMIN:<password>' \
 -H "Content-Type: application/json" --data '{"name":"orange", "count":42}' \
 "https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/latest/fruit"

{"items":[{"id":"6F7E5C60197E4C8A83AC7D7654F2E375"...

> curl -X POST -u 'ADMIN:<password>' \
 -H "Content-Type: application/json" --data '{"name":"pear", "count":5}' \
 "https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/latest/fruit"

{"items":[{"id":"83714B1E2BBA41F7BA4FA93B109E1E85"...

> curl -X POST -u 'ADMIN:<password>' \
 -H "Content-Type: application/json" \
 --data '{"name":"apple", "count":12, "color":"red"}' \
 "https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/latest/fruit"

{"items":[{"id":"BAD7EFA9A2AB49359B8F5251F0B28549"...

This example retrieves a stored JSON document from the collection:

> curl -X POST -u 'ADMIN:<password>' \
 -H "Content-Type: application/json" --data '{"name":"orange"}' \
 "https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/latest/fruit?
action=query"

{
 "items": [
 {
 "id":"6F7E5C60197E4C8A83AC7D7654F2E375",
 "etag":"57215643953D7C858A7CB28E14BB48549178BE307D1247860AFAB2A958400E16",
 "lastModified":"2019-07-12T19:00:28.199666Z",
 "created":"2019-07-12T19:00:28.199666Z",
 "value":{"name":"orange", "count":42}
 }
],
 "hasMore":false,
 "count":1
}

This SQL query accesses the fruit collection:

SELECT
 f.json_document.name,

Chapter 4
Use SODA for REST with Autonomous Database

4-3

https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellgettingstarted.htm

 f.json_document.count,
 f.json_document.color
FROM fruit f;

The query returns these three rows:

name count color
--------- --------- -------
orange 42 null
pear 5 null
apple 12 red

Note:

If you are using Always Free Autonomous Database with Oracle Database 23ai,
Oracle recommends the following:
For projects that were started using a database release prior to Oracle Database 21c,
explicitly specify the metadata for the default collection as specified in the example in
the section SODA Drivers. For projects started using release Oracle Database 21c or
later, just use the default metadata. See SODA Drivers for more information.

These examples show a subset of the SODA and SQL/JSON features. See the following for
more information:

• SODA for REST for complete information on Simple Oracle Document Access (SODA)

• SODA for REST HTTP Operations for information on the SODA for REST HTTP
operations

Load Purchase-Order Sample Data Using SODA for REST
Oracle provides a substantial set of JSON purchase-order documents, in plain-text file
POList.json, as a JSON array of objects, where each such object represents a document.

The following examples use the cURL command line tool (http://curl.haxx.se/) to submit REST
requests to the JSON database. However, other 3rd party REST clients and libraries should
work as well. The examples use database schema ADMIN, which is REST-enabled. You can
use SODA for REST with cURL commands from the Oracle Cloud Shell.

You can load this sample purchase-order data set into a collection purchaseorder on your
Autonomous Database with SODA for REST, using these curl commands:

curl -X GET "https://raw.githubusercontent.com/oracle/db-sample-schemas/
master/order_entry/POList.json" -o POList.json

curl -X PUT -u 'ADMIN:password' \
"https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/
latest/purchaseorder"

curl -X POST -H -u 'ADMIN:password' 'Content-type: application/json' -d
@POList.json \

Chapter 4
Use SODA for REST with Autonomous Database

4-4

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/adsdi/soda-drivers.html
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/rest/index.html
http://curl.haxx.se/
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellgettingstarted.htm

"https://example-db.adb.us-phoenix-1.oraclecloudapps.com/ords/admin/soda/
latest/purchaseorder?action=insert"

You can then use this purchase-order data to try out examples in Oracle Database JSON
Developer’s Guide.

For example, the following query selects both the id of a JSON document and values from the
JSON purchase-order collection stored in column json_document of table purchaseorder. The
values selected are from fields PONumber, Reference, and Requestor of JSON column
json_document, which are projected from the document as virtual columns (see SQL NESTED
Clause Instead of JSON_TABLE for more information).

SELECT id, t.*
 FROM purchaseorder
 NESTED json_document COLUMNS(PONumber, Reference, Requestor) t;

See the following for more information:

• SODA for REST for complete information on Simple Oracle Document Access (SODA)

• SODA for REST HTTP Operations for information on the SODA for REST HTTP
operations

Use SODA for REST with OAuth Client Credentials
You can access SODA for REST on Autonomous Database using OAuth authentication.
Depending on your application, accessing SODA for REST with OAuth authentication can
improve performance and security.

Perform the following steps to use OAuth authentication to provide limited access to SODA for
REST on Autonomous Database:

1. As the ADMIN user, access Database Actions and create a user with the required
privileges.

a. Access Database Actions as ADMIN.

See Access Database Actions as ADMIN for more information.

b. In Database Actions, click to show the available actions.

c. In Database Actions, under Administration select Database Users.

d. Click Create User.

e. In the Create User area, on the User tab enter User Name and a Password and
confirm the password.

f. Select Web Access.

g. In the Create User area, select the Granted Roles tab and grant DWROLE to the user.

h. Click Create User.

See Manage Users and User Roles on Autonomous Database - Connecting with Database
Actions in Using Oracle Autonomous Database Serverless for more information.

2. Use a SQL worksheet in Database Actions to grant user privileges required to load data.

a. Access Database Actions as ADMIN.

See Access Database Actions as ADMIN for more information.

Chapter 4
Use SODA for REST with Autonomous Database

4-5

https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/rest/index.html

b. In Database Actions, click to show the available actions.

c. In Database Actions, under Development click SQL to open a SQL worksheet.

d. Grant user privileges required to load data to the user from Step 1.

GRANT UNLIMITED TABLESPACE TO user_name;

See Manage User Privileges on Autonomous Database - Connecting with a Client Tool for
more information.

3. Sign out as the ADMIN user.

4. Sign in to Database Actions as the user that is setting up to use OAuth authentication.

5. In Database Actions, use a SQL worksheet to register the OAuth client.

a. Register the OAuth client.

For example, enter the following commands into the SQL worksheet, where you supply
the appropriate values for your user and your client application.

BEGIN
 OAUTH.create_client(
 p_name => 'my_client',
 p_grant_type => 'client_credentials',
 p_owner => 'Example Company',
 p_description => 'A client for my SODA REST resources',
 p_support_email => 'user_name@example.com',
 p_privilege_names => 'my_priv'
);

 OAUTH.grant_client_role(
 p_client_name => 'my_client',
 p_role_name => 'SQL Developer'
);

 OAUTH.grant_client_role(
 p_client_name => 'my_client',
 p_role_name => 'SODA Developer'
);
 COMMIT;
END;
/

b. In the SQL worksheet, click Run Script to run the command.

See OAUTH PL/SQL Package Reference for more information.

This registers a client named my_client to access the my_priv privilege using OAuth client
credentials.

6. Obtain the client_id and client_secret required to generate the access token.

For example, in the SQL worksheet run the following command:

SELECT id, name, client_id, client_secret FROM user_ords_clients;

7. Obtain the access token. To get an access token you send a REST GET request to
database_ORDS_urluser_name/oauth/token.

Chapter 4
Use SODA for REST with Autonomous Database

4-6

The database_ORDS_url is available from Database Actions, under Related Services, on
the RESTful Services and Soda card. See Access RESTful Services and SODA for
REST for more information.

In the following command, use the client_id and the client_secret you obtained in Step
6.

The following example uses the cURL command line tool (http://curl.haxx.se/) to submit
REST requests to Autonomous Database. However, other 3rd party REST clients and
libraries should work as well.
You can use the cURL command line tool to submit the REST GET request. For example:

> curl -i -k --user SBA-iO9Xe12cdZHYfryBGQ..:vvUQ1AagTqAqdA2oN7afSg.. --
data "grant_type=client_credentials"https://mqssyowmqvgac1y-
doc.adb.region.oraclecloudapps.com/ords/user_name/oauth/token
HTTP/1.1 200 OK
Date: Mon, 22 Jun 2020 15:17:11 GMT
Content-Type: application/jsonTransfer-Encoding: chunked
Connection: keep-alive
X-Frame-Options: SAMEORIGIN

{"access_token":"JbOKtAuDgEh2DXx0QhvPGg","token_type":"bearer","expires_in"
:3600}

To specify both the client_id and the client_secret with the curl --user argument, enter
a colon to separate the client_id and the client_secret. If you only specify the user
name, client_id, curl prompts for a password and you can enter the client_secret at
the prompt.

8. Use the access token to access the protected resource.

The token obtained in the previous step is passed in the Authorization header. For
example:

> curl -i -H "Authorization: Bearer JbOKtAuDgEh2DXx0QhvPGg" -X GET https://
database_id.adb.region.oraclecloudapps.com/ords/user_name/soda/latest
HTTP/1.1 200 OK
Date: Mon, 22 Jun 2020 15:20:58 GMT
Content-Type: application/json
Content-Length: 28
Connection: keep-alive
X-Frame-Options: SAMEORIGIN
Cache-Control: private,must-revalidate,max-age=0

{"items":[],"hasMore":false}

See Configuring Secure Access to RESTful Services for complete information on secure
access to RESTful Services.

Chapter 4
Use SODA for REST with Autonomous Database

4-7

http://curl.haxx.se/

5
Build an Application

Oracle Autonomous JSON Database supports application development in a wide variety of
programming languages and platforms.

In general, you follow the same general guidelines and high-level system configuration steps to
build an application, regardless of the language or platform. These guidelines and steps are
described in The Basics of Building an Application.

For some languages and platforms, you can follow specific step-by-step instructions instead of
the general guidelines:

The Basics of Building an Application
Regardless of the language you use to build an application, you follow the same guidelines to
build an application that takes advantage of the high-performance features of a JSON
database:

• Connect through an Oracle client. When you connect to the database through an Oracle
client, almost all connection-management operations are performed by the client,
permitting you to concentrate on the business logic of your application. Depending on your
programming language, you use the Oracle Database JDBC Driver or the Oracle Instant
Client.

• Use connection pools. When you code your application to use connection pools instead
of creating and destroying connections individually, you gain performance improvements.
How you code to use connection pools depends on your programming language.

• Connect to the appropriate database service. Autonomous JSON Database provides
several database services to use when connecting to your database. These database
connection services are designed to support different kinds of database operations, as
described in Database Service Names for Autonomous Transaction Processing and
Autonomous JSON Database in Using Oracle Autonomous Database Serverless.

Also regardless of the language you use to build an application, you perform the same basic
tasks to configure your system to support application development:

1. Download and install the basic software to develop in the given language. For example,
you download and install JDK to develop Java applications.

2. Download and install any extension library or module necessary to permit applications in
the given language to connect to an Oracle Database and make SQL calls. For example,
you download and install the cx_Oracle extension module to develop Python applications.

3. Download and install the Oracle client appropriate for the given language and extension
library or module.

4. Download the client credentials for the database and make them available to Oracle client
you installed.

5-1

Build a Java Application
To build a Java application that accesses a JSON database, you start by configuring your
development system to support database access that can take advantage of the high
performance features of Autonomous JSON Database. Then, in your application you code
database connections and SQL statements to take advantage of these features.

Topics

• Configure Your Java Development System

• Code Database Connections and SQL Statements

Configure Your Java Development System
To configure your development system so that your Java application can take advantage of the
high performance features of a JSON database, perform these steps.

To configure your development system so that your Java application can take advantage of the
high performance features of a JSON database, perform these steps.

1. Download and install the Java Development Kit (JDK).

2. Download the client credentials for your Autonomous Database.

3. Get the Oracle Java Database Connectivity (JDBC) drivers.

Download and Install the JDK

Go to the Java SE Downloads page. Then, download and install JDK 8u221 or later by
following the instructions on the page.

Download the Client Credentials for Your Autonomous Database

1. Download the zip file containing client credentials for your database to a secure directory
on your computer.

This zip file is available for download from the database's Details page in the Oracle Cloud
console. If you have an Oracle Cloud user account that permits you to access this page,
download the credentials as follows. If you don't have such an account, you need to get
the zip file from the administrator of the database, together with the password that was
used to protect the zip file.

a. In your web browser, sign in to Oracle Cloud and navigate to the Details page for the
JSON database.

b. Click DB Connection.

c. On the Database Connection page click Download.

d. In the Download Wallet dialog, enter a password in the Password field and confirm
the password in the Confirm Password field.

The password must be at least 8 characters long and must include at least 1
letter and either 1 numeric character or 1 special character.

e. Click Download and unzip, to save the client credentials zip file to a secure directory.

Chapter 5
Build a Java Application

5-2

https://www.oracle.com/technetwork/java/javase/downloads/index.html

Get the Oracle JDBC Drivers

Get the Oracle JDBC drivers, version 19.6.0.0 or later, from either Maven Central or the JDBC
Downloads page at Oracle Technical Resources. (See the Oracle Technologies JDBC Home
page for related videos and other resources.)

To get the JDBC drivers from Maven Central, follow these steps.

1. Get the Oracle JDBC drivers from Central Maven Repository. Choose version 19.6.0.0 or
later.

Provide the driver Maven dependency GAV (GroupID, ArtifactID, VersionID), to pull
ojdbc8.jar, along with other jars such as oraclepki.jar, osdt_core.jar, and
osdt_cert.jar. See Maven Central Guide.

For ojdbc8.jar version 19.6.0.0, provide this GAV:

<groupId>com.oracle.database.jdbc</groupId>
<artifactId>ojdbc8</artifactId>
<version>19.7.0.0</version>

For ojdbc8.jar version 19.7.0.0, provide this GAV:

<groupId>com.oracle.database.jdbc</groupId>
<artifactId>ojdbc8-production</artifactId>
<version>19.7.0.0</version>
<type>POM</type>

To get the JDBC drivers from Oracle Technical Resources, follow these steps.

1. Go to the Oracle JDBC Downloads page. Choose the link for version 19.6.0.0 or later, to
go to its download page.

2. Download and unzip this archive to the directory where you want to place the JDBC driver:
ojdbc8-full.tar.gz.

3. Point the connection URL to your Autonomous JSON Database.

Append TNS_ADMIN to the connection URL, setting its value to the full path of the directory
where you unzipped the client credentials. For example:

// Use TNS alias name plus TNS_ADMIN with JDBC driver 18.3 or higher
DB_URL="jdbc:oracle:thin:@wallet_dbname?
TNS_ADMIN=/Users/test/wallet_dbname";

// For Microsoft Windows, use this for TNS_ADMIN:
// TNS_ADMIN=C:\\Users\\test\\wallet_dbname”;

4. Add the paths to the following unzipped JAR files to the CLASSPATH environment variable
you use when you compile and run Java programs.

Use DataSourceSample.java or UCPSample.java to verify the connection to your
Autonomous JSON Database.

• ojdbc8.jar: the core JDBC driver

• oraclepki.jar, osdt_core.jar, and osdt_cert.jar: for an Autonomous JSON
Database that uses wallet-based authentication

Chapter 5
Build a Java Application

5-3

https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
https://www.oracle.com/database/technologies/appdev/jdbc.html
https://www.oracle.com/database/technologies/appdev/jdbc.html
https://repo1.maven.org/maven2/com/oracle/database/
https://www.oracle.com/database/technologies/maven-central-guide.html
https://www.oracle.com/technetwork/database/application-development/jdbc/downloads/index.html
https://github.com/oracle/oracle-db-examples/blob/master/java/jdbc/ConnectionSamples/DataSourceSample.java
https://github.com/oracle/oracle-db-examples/blob/master/java/jdbc/ConnectionSamples/UCPSample.java

• ucp.jar: for Universal Connection Pooling (UCP)

Download, Install, and Configure SODA for Java

Follow these steps to download, install, and configure SODA for Java.

1. Go to the SODA for Java downloads page on GitHub: https://github.com/oracle/soda-
for-java/releases.

2. Choose the latest release of SODA for Java, and download the following:

• Jar file orajsoda-<relno>.jar, where <relno> is the release number

• The zip or tar.gz source-code archive

Note:

The SODA for Java driver is also available on Central Maven Repository.

3. Extract the source-code archive to the directory where you want to install SODA for Java.

4. Consult the documentation in file README.md and the files in folder doc, for instructions
about building the source code and getting started.

Note:

Autonomous Database does not support Metadata builder. To customize collection
metadata for a given collection, pass collection metadata strings directly to method
createCollection. See SODA Collection Metadata on Autonomous Database for more
information.

Set JVM Networking Properties
Autonomous Database uses DNS names that map to multiple IP addresses (multiple load
balancers) for better availability and performance. Depending on your application, you may
want to configure certain JVM networking properties.

For the Java Virtual Machine (JVM) address cache, any address resolution attempt caches the
result whether it was successful or not, so that subsequent identical requests do not have to
access the naming service. The address cache properties allow you to tune how the cache
operates. In particular, the networkaddress.cache.ttl value specifies the number of seconds
a successful name lookup is kept in the cache. A value of -1, the default value, indicates a
“cache forever” policy, while a value of 0 (zero) means no caching.

If your Java Virtual Machine (JVM) is configured to cache DNS address lookups, your
application may be using only one IP address to connect to your Autonomous Database,
resulting in lower throughput. To prevent this you can change your JVM's
networkaddress.cache.ttl value to 0, so that every connection request does a new DNS
lookup. This ensures that different threads in your application are distributed over multiple load
balancers.

To change the networkaddress.cache.ttl value for all applications, or in your application, do
one of the following:

• Configure the security policy to set the value for all applications:

Chapter 5
Build a Java Application

5-4

https://github.com/oracle/soda-for-java/releases
https://github.com/oracle/soda-for-java/releases
https://repo1.maven.org/maven2/com/oracle/database/
http://oracle.github.io/soda-for-java/oracle/soda/rdbms/OracleRDBMSMetadataBuilder.html
http://oracle.github.io/soda-for-java/oracle/soda/OracleDatabaseAdmin.html#createCollection-java.lang.String-oracle.soda.OracleDocument-

Set networkaddress.cache.ttl=0 in the file $JAVA_HOME/jre/lib/security/
java.security

• Set the following property in your application code:

java.security.Security.setProperty("networkaddress.cache.ttl" , "0");

Code Database Connections and SQL Statements
Follow these guidelines to achieve high performance of your application's connections to the
database:

• Use connection pools.

• Use the predefined database service that best matches the operations you will be
performing. For most purposes working with JSON data, this is service tp, the typical
application connection service for transaction processing operations. For information about
the available predefined database services see Database Service Names for Autonomous
Transaction Processing and Autonomous JSON Database in Using Oracle Autonomous
Database Serverless.

For example:

import java.sql.Connection;
import javax.sql.PooledConnection;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.replay.OracleDataSourceFactory;
import oracle.jdbc.replay.OracleDataSource;
import oracle.jdbc.replay.OracleConnectionPoolDataSource;
...
 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
 // Set the connection factory first before all other properties

pds.setConnectionFactoryClassName("oracle.jdbc.replay.OracleConnectionPoolData
SourceImpl");
 pds.setURL("jdbc:oracle:thin:@tp?TNS_ADMIN=/users/jdoe/adbcredentials");
 pds.setUser("appuser");
 pds.setPassword("<password>");
 pds.setConnectionPoolName("JDBC_UCP_POOL");

 Connection conn = pds.getConnection();

 // Create an OracleRDBMSClient instance.
 // This is the starting point of the SODA for Java application.
 OracleRDBMSClient cl = new OracleRDBMSClient();

 // Get a database.
 OracleDatabase db = cl.getDatabase(conn);

 // Create a collection with the name "MyJSONCollection".
 OracleCollection col =
 db.admin().createCollection("MyJSONCollection");

Additional Resources

For information about SODA for Java, see Oracle Database SODA for Java Developer's Guide

Chapter 5
Build a Java Application

5-5

For detailed information about the Oracle Database JDBC Driver, see Oracle Database JDBC
Developer's Guide and Oracle Database JDBC Java API Reference.

For detailed information about the Universal Connection Pool, see Oracle Universal
Connection Pool Developer's Guide and Oracle Universal Connection Pool API Reference.

Build a Node.js Application
To build a Node.js application that accesses a JSON database, you start by configuring your
development system to support database access that can take advantage of the high
performance features of Autonomous JSON Database. Then, in your application you code
database connections and SQL statements to take advantage of these features.

Topics

• Configure Your Node.js Development System

• Code Database Connections and SQL Statements

Configure Your Node.js Development System
To configure your development system so that your Node.js application can take advantage of
the high performance features of a JSON database, you perform these steps.

1. Download and install Node.js.

2. Download and install Oracle Instant Client.

3. Download and install node-oracledb.

4. Download the client credentials for the database and make them available to Oracle
Instant Client.

Download and Install Node.js

Download and install Node.js for your system's OS and architecture:

• Oracle Linux:

Run these commands to download and install the latest version of Node.js:

sudo yum install -y oracle-release-el7 oracle-nodejs-release-el7
sudo yum install -y nodejs

• Other OSes and architectures:

Go to the Node.js Downloads page, select the latest LTS (Long Term Support) version for
your system's OS and architecture, and install it.

Download and Install Oracle Instant Client

You need Oracle Instant Client libraries version 19.6 or later.

Download and install the Oracle Instant Client basic package for your system's OS and
architecture:

• Oracle Linux:

Run these commands to download and install the Oracle Instant Client basic package:

sudo yum -y install oracle-release-el7
sudo yum -y install oracle-instantclient19.3-basic

Chapter 5
Build a Node.js Application

5-6

https://nodejs.org/en/download/

(If you want to see a list of all Instant Client packages, go to http://yum.oracle.com/repo/
OracleLinux/OL7/oracle/instantclient/x86_64/index.html.)

• Other OSes and architectures:

1. Go to the Oracle Instant Client Downloads page and select the download for your
system's OS and architecture.

2. On the download page, accept the Oracle Technology Network License Agreement,
download the latest version of the Basic Package, and then install it by following the
instructions at the bottom of the download page.

Download and Install node-oracledb

Download and install the node-oracledb add-on for Node.js for your system's OS and
architecture:

• Oracle Linux:

Run these commands to download and install the latest version of node-oracledb:

sudo yum install -y oracle-release-el7 oracle-nodejs-release-el7
sudo yum install -y node-oracledb-node10

• Other OSes and architectures:

Go to the Installing node-oracledb page, choose the "My database is on another machine"
instructions for your OS and architecture, and then follow the Install the add-on
instructions.

Download and Install Client Credentials for the Database

1. Download the zip file containing client credentials for your database to a secure directory
on your computer.

This zip file is available for download from the database's Details page in the Oracle Cloud
console. If you have an Oracle Cloud user account that permits you to access this page,
download the credentials as follows. If you don't have such an account, you need to get
the zip file from the administrator of the database, together with the password that was
used to protect the zip file.

a. In your web browser, sign in to Oracle Cloud and navigate to the Details page for the
JSON database.

b. Click DB Connection.

c. On the Database Connection page click Download.

d. In the Download Wallet dialog, enter a wallet password in the Password field and
confirm the password in the Confirm Password field.

The password must be at least 8 characters long and must include at least 1
letter and either 1 numeric character or 1 special character.

e. Click Download to save the client credentials zip file to a secure directory.

2. After downloading the zip file, follow these steps:

a. Unzip the client credentials zip file.

b. Edit the sqlnet.ora file provided in the client credentials, replacing "?/network/
admin" with the full path of the directory where you unzipped the client credentials; for
example, change:

(DIRECTORY="?/network/admin")

Chapter 5
Build a Node.js Application

5-7

http://yum.oracle.com/repo/OracleLinux/OL7/oracle/instantclient/x86_64/index.html
http://yum.oracle.com/repo/OracleLinux/OL7/oracle/instantclient/x86_64/index.html
https://www.oracle.com/database/technologies/instant-client/downloads.html
https://oracle.github.io/node-oracledb/INSTALL.html#instructions

to:

(DIRECTORY="/users/jdoe/adbcredentials")

c. Create the TNS_ADMIN environment variable, setting its value to the full path of the
directory where you unzipped the client credentials.

Code Database Connections and SQL Statements
Follow these steps to ensure optimal performance of your application's use of the database.

1. Add the dependency on the node-oracledb add-on to your application's package.json file.

2. Code connections for high performance.

Add the node-oracledb Dependency to package.json
Edit the dependencies object in the package.json file for your application, adding the oracledb
package and version. (Use command npm init to generate package.json if it doesn't exist.)
For example:

. . .
"dependencies": {
 . . .,
 "oracledb": "^4.0",
 . . .
},
. . .

For detailed information about the dependencies object, see the npm-package.json page. To
display the oracledb version installed, you can use the npm list command; for example:

npm list -g --depth=0

Code Connections for High Performance

To achieve high performance, follow these guidelines when making connections to the
database.

• Use connection pools.

• Use the predefined database service that best matches the operations you will be
performing. For most purposes working with JSON data, this is service tp, the typical
application connection service for transaction processing operations. For information about
the predefined database services, see Database Service Names for Autonomous
Transaction Processing and Autonomous JSON Database in Using Oracle Autonomous
Database Serverless.

For example:

var oracledb = require('oracledb');
var config = {
 user: process.env.NODE_ORACLEDB_USER || "ADMIN",
 password: process.env.NODE_ORACLEDB_PASSWORD,
 connectString : process.env.NODE_ORACLEDB_CONNECTIONSTRING || "mydb_tp",
 poolMin: 10,
 poolMax: 10,
 poolIncrement: 0,
}

Chapter 5
Build a Node.js Application

5-8

https://docs.npmjs.com/files/package.json#dependencies

async function getCollection() {
 oracledb.autoCommit = true;
 await oracledb.createPool(config);
 var conn = await oracledb.getConnection();
 var soda = conn.getSodaDatabase();
 var collection = await soda.createCollection('myCollection');
conn.close();
}

getCollection();

This example creates a pool for connections to database service tp.

Additional Resources

For detailed information about node-oracledb, go to the node-oracledb Documentation page,
which includes both an API Reference and a User Guide.

For code examples that demonstrate a wide variety of node-oracledb features, go to the node-
oracledb examples folder.

Build a Python Application
To build a Python application that accesses a JSON database, you start by configuring your
development system to support database access that can take advantage of the high
performance features of Autonomous JSON Database. Then, in your application you code
database connections and SQL statements to take advantage of these features.

Topics

• Configure Your Python Development System

• Code Database Connections and SQL Statements

Configure Your Python Development System
To configure your development system so that your Python application can take advantage of
the high performance features of a JSON database, you perform these steps.

1. Download and install Python.

2. Download and install Oracle Instant Client.

3. Download and install cx_Oracle.

4. Download the client credentials for the database and make them available to Oracle
Instant Client.

Download and Install Python

• Oracle Linux:

Oracle Linux 7 includes Python 2.7, so you simply run this command::

sudo yum -y install oracle-release-el7
• Other OSes and architectures:

Chapter 5
Build a Python Application

5-9

https://oracle.github.io/node-oracledb/doc/api.html
https://github.com/oracle/node-oracledb/tree/master/examples
https://github.com/oracle/node-oracledb/tree/master/examples

Go to the python.org Downloads page and download and install the latest Python 2.7 or
Python 3.5 (or later) version for your OS and architecture.

Download and Install Oracle Instant Client

You need Oracle Instant Client libraries version 19.6 or later.

Download and install the Oracle Instant Client basic package for your system's OS and
architecture:

• Oracle Linux:

Run these commands to download and install the Oracle Instant Client basic package:

sudo yum -y install oracle-release-el7
sudo yum -y install oracle-instantclient19.3-basic

(If you want to see a list of all Instant Client packages, go to http://yum.oracle.com/repo/
OracleLinux/OL7/oracle/instantclient/x86_64/index.html.)

• Other OSes and architectures:

1. Go to the Oracle Instant Client Downloads page and select the download for your
system's OS and architecture.

2. On the download page, accept the Oracle Technology Network License Agreement,
download the latest version of the Basic Package, and then install it by following the
instructions at the bottom of the download page.

Download and Install cx_Oracle

Use Python's pip package to install cx_Oracle from PyPI (the Python Package Index).:

• Oracle Linux:

Run these commands to download the pip package and then use it to install cx_Oracle:

sudo yum -y install oracle-release-el7
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
sudo python get-pip.py
python -m pip install cx_Oracle --upgrade

• Other OSes and architectures:

Run this command:

python -m pip install cx_Oracle --upgrade

Download and Install Client Credentials for the Database

1. Download the zip file containing client credentials for your database to a secure directory
on your computer.

This zip file is available for download from the database's Details page in the Oracle Cloud
console. If you have an Oracle Cloud user account that permits you to access this page,
download the credentials as follows. If you don't have such an account, you need to get
the zip file from the administrator of the database, together with the password that was
used to protect the zip file.

a. In your web browser, sign in to Oracle Cloud and navigate to the Details page for the
JSON database.

b. Click DB Connection.

c. On the Database Connection page click Download.

Chapter 5
Build a Python Application

5-10

https://www.python.org/downloads/
http://yum.oracle.com/repo/OracleLinux/OL7/oracle/instantclient/x86_64/index.html
http://yum.oracle.com/repo/OracleLinux/OL7/oracle/instantclient/x86_64/index.html
https://www.oracle.com/database/technologies/instant-client/downloads.html

d. In the Download Wallet dialog, enter a wallet password in the Password field and
confirm the password in the Confirm Password field.

The password must be at least 8 characters long and must include at least 1
letter and either 1 numeric character or 1 special character.

e. Click Download to save the client credentials zip file to a secure directory.

2. After downloading the zip file, follow these steps:

a. Unzip the client credentials zip file.

b. Edit the sqlnet.ora file provided in the client credentials, replacing "?/network/
admin" with the full path of the directory where you unzipped the client credentials; for
example, change:

(DIRECTORY="?/network/admin")

to:

(DIRECTORY="/users/jdoe/adbcredentials")

c. Create the TNS_ADMIN environment variable, setting its value to the full path of the
directory where you unzipped the client credentials.

Code Database Connections and SQL Statements
Follow these guidelines to achieve high performance for your application's connections to the
database.

• Use connection pools.

• Use the predefined database service that best matches the operations you will be
performing. For information about the predefined database services, see Database Service
Names for Autonomous Transaction Processing and Autonomous JSON Database in
Using Oracle Autonomous Database Serverless.

For example:

pool = cx_Oracle.SessionPool("appuser",
 SampleEnv.GetMainPassword(),
 "tp",
 events=True,
 threaded=True)

This example creates a pool for connections to the tp database service.

Additional Resources

For detailed information about cx_Oracle, go to the cx_Oracle Documentation page.

For code examples that demonstrate a wide variety of cx_Oracle features, go to the python-
cx_Oracle samples folder.

Chapter 5
Build a Python Application

5-11

https://cx-oracle.readthedocs.io/en/latest/index.html
https://github.com/oracle/python-cx_Oracle/tree/master/samples
https://github.com/oracle/python-cx_Oracle/tree/master/samples

6
Load JSON

The PL/SQL procedure DBMS_CLOUD.COPY_COLLECTION provides support for loading JSON
documents into SODA collections. The procedure DBMS_CLOUD.COPY_DATA provides support for
loading JSON data into an existing table in Autonomous Database.

About Loading JSON Documents
You load SODA collections into Autonomous JSON Database using the PL/SQL procedure
DBMS_CLOUD.COPY_COLLECTION and you load JSON data into a table using
DBMS_CLOUD.COPY_DATA.

• DBMS_CLOUD.COPY_COLLECTION supports the following typical document loading procedures:

– Loading line-delimited JSON into a collection. See Load a JSON File of Line-Delimited
Documents into a Collection for this procedure.

– Loading an array of JSON documents into a collection. See Load an Array of JSON
Documents into a Collection for this procedure.

• DBMS_CLOUD.COPY_DATA supports the following for loading from JSON data in Object Store:

– Create Credentials and Copy JSON Data into an Existing Table

Load a JSON File of Line-Delimited Documents into a Collection
For loading data from collections in the Cloud, you must first store your object storage
credentials in your Autonomous Database and then use the procedure
DBMS_CLOUD.COPY_COLLECTION to load documents into a collection.

This example loads JSON values from a line-delimited file and uses the JSON file
myCollection.json. Each value, each line, is loaded into a collection on your JSON
database as a single document.

Here's an example of such a file. It has three lines, with one object per line. Each of those
objects gets loaded as a separate JSON document.

{ "name" : "apple", "count": 20 }
{ "name" : "orange", "count": 42 }
{ "name" : "pear", "count": 10 }

Before loading the data from myCollection.json into your database, copy the file to your
object store:

• Create a bucket in the object store. For example, create an Oracle Cloud Infrastructure
Object Storage bucket from the Oracle Cloud Infrastructure Object Storage link, and then
in your selected compartment click Create Bucket, or use a command such as the
following OCI CLI command to create a bucket:

oci os bucket create --name fruit_bucket -c <compartment id>

6-1

• Copy the JSON file to your object store bucket. For example use the following OCI CLI
command to copy the JSON file to the fruit_bucket on Oracle Cloud Infrastructure Object
Storage:

oci os object put --bucket-name fruit_bucket \
 --file "myCollection.json"

Load the JSON file from object store into a collection named fruit on your JSON database
as follows:

1. Store your object store credentials using the procedure DBMS_CLOUD.CREATE_CREDENTIAL,
as shown in the following example:

SET DEFINE OFF
BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'DEF_CRED_NAME',
 username => 'ads_user@example.com',
 password => 'password'
);
END;
/

This operation stores the credentials in the database in an encrypted format. You can use
any name for the credential name. Note that this step is required only once unless your
object store credentials change. Once you store the credentials, you can use the same
credential name for loading all documents.

Creating a credential to access Oracle Cloud Infrastructure Object Store is not required if
you enable resource principal credentials. See Use Resource Principal to Access Oracle
Cloud Infrastructure Resources for more information.

See CREATE_CREDENTIAL Procedure for detailed information about the parameters.

Note:

Some tools like SQL*Plus and SQL Developer use the ampersand character (&)
as a special character. If you have the ampersand character in your password,
then use the SET DEFINE OFF command in those tools as shown in the example
to disable the special character, and get the credential created properly.

2. Load the data into a collection using the procedure DBMS_CLOUD.COPY_COLLECTION.

BEGIN
 DBMS_CLOUD.COPY_COLLECTION(
 collection_name => 'fruit',
 credential_name => 'DEF_CRED_NAME',
 file_uri_list =>
 'https://objectstorage.us-ashburn-1.oraclecloud.com/n/namespace-string/b/
fruit_bucket/o/myCollection.json',
 format =>
 JSON_OBJECT('recorddelimiter' value '''\n'''));

Chapter 6
Load a JSON File of Line-Delimited Documents into a Collection

6-2

END;
/

The parameters are:

• collection_name: is the name of the target collection.

• credential_name: is the name of the credential created in the previous step. The
credential_name parameter must conform to Oracle object naming conventions. See
Database Object Naming Rules for more information.

• file_uri_list: is a comma delimited list of the source files that you want to load.

• format: defines the options that you can specify to describe the format of the source
file. The format options characterset, compression, encryption,
ignoreblanklines, jsonpath, maxdocsize, recorddelimiter, rejectlimit,
type, unpackarrays are supported while loading JSON data. Any other formats
specified will result in an error.

If the data in your source files is encrypted, decrypt the data by specifying the format
parameter with the encryption option. See Decrypt Data While Importing from Object
Storage for more information on decrypting data.

See DBMS_CLOUD Package Format Options for more information.

Where namespace-string is the Oracle Cloud Infrastructure object storage namespace
and fruit_bucket is the bucket name. See Understanding Object Storage Namespaces
and Overview of Object Storage for more information.

For detailed information about the parameters, see COPY_COLLECTION Procedure.

The collection fruit on your JSON database now contains one document for each line in
the file myCollection.json.

Load an Array of JSON Documents into a Collection
To load data from collections in the Cloud, you first store your object storage credentials in your
Autonomous Database and then use PL/SQL procedure DBMS_CLOUD.COPY_COLLECTION to load
documents into a collection. This topic explains how to load documents to your database from
a JSON array in a file.

Note:

You can also load documents from a JSON array in a file into a collection using
SODA for REST. See Load Purchase-Order Sample Data Using SODA for REST.

This example uses the JSON file fruit_array.json. The following shows the contents of
the file fruit_array.json:

[{"name" : "apple", "count": 20 },
 {"name" : "orange", "count": 42 },
 {"name" : "pear", "count": 10 }]

Before loading data into Autonomous JSON Database, copy the data to your object store as
follows:

Chapter 6
Load an Array of JSON Documents into a Collection

6-3

https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm

• Create a bucket in the object store. For example, create an Oracle Cloud Infrastructure
Object Store bucket from the Oracle Cloud Infrastructure Object Storage link, in your
selected Compartment, by clicking Create Bucket, or use a command line tool such as the
following OCI CLI command:

oci os bucket create -name json_bucket -c <compartment id>

• Copy the JSON file to the object store. For example, the following OCI CLI command
copies the JSON file fruit_array.json to the object store:

oci os object put --bucket-name json_bucket --file "fruit_array.json"

Load the JSON file from object store into a SODA collection named fruit2 on your JSON
database:

1. Store your object store credentials using the procedure DBMS_CLOUD.CREATE_CREDENTIAL,
as shown in the following example:

SET DEFINE OFF
BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'DEF_CRED_NAME',
 username => 'ads_user@example.com',
 password => 'password'
);
END;
/

This operation stores the credentials in the database in an encrypted format. You can use
any name for the credential name. Note that this step is required only once unless your
object store credentials change. Once you store the credentials, you can use the same
credential name for loading all documents.

See CREATE_CREDENTIAL Procedure for detailed information about the parameters.

Note:

Some tools like SQL*Plus and SQL Developer use the ampersand character (&)
as a special character. If you have the ampersand character in your password,
then use the SET DEFINE OFF command in those tools as shown in the example
to disable the special character, and get the credential created properly.

2. Load the data into a collection using the procedure DBMS_CLOUD.COPY_COLLECTION.

BEGIN
 DBMS_CLOUD.COPY_COLLECTION(
 collection_name => 'fruit2',
 credential_name => 'DEF_CRED_NAME',
 file_uri_list => 'https://objectstorage.us-ashburn-1.oraclecloud.com/n/
namespace-string/b/json/o/fruit_array.json',
 format => '{"recorddelimiter" : "0x''01''", "unpackarrays" : "TRUE",
"maxdocsize" : "10240000"}'
);

Chapter 6
Load an Array of JSON Documents into a Collection

6-4

END;
/

In this example you load a single JSON value which occupies the whole file, so there is no
need to specify a record delimiter. To indicate that there is no record delimiter, you can use
a character that does not occur in the input file. For this example, to indicate that there is
no delimiter, the control character 0x01 (SOH) is set to load the JSON documents into a
collection,. Thus, you specify a value for the recorddelimiter that does not occur in the
JSON file. For example, you can use value "0x''01''" because this character does not
occur directly in JSON text.

When unpackarrays parameter for format value is set to TRUE, the array of documents is
loaded as individual documents rather than as an entire array. The unpacking of array
elements is however limited to single level. If there are nested arrays in the documents,
those arrays are not unpacked.

The parameters are:

• collection_name: is the name of the target collection.

• credential_name: is the name of the credential created in the previous step. The
credential_name parameter must conform to Oracle object naming conventions. See
Database Object Naming Rules for more information.

• file_uri_list: is a comma delimited list of the source files that you want to load.

• format: defines the options that you can specify to describe the format of the source
file. The format options characterset, compression, encryption,
ignoreblanklines, jsonpath, maxdocsize, recorddelimiter, rejectlimit,
type, unpackarrays are supported for loading JSON data. Any other formats
specified will result in an error.

If the data in your source files is encrypted, decrypt the data by specifying the format
parameter with the encryption option. See Decrypt Data While Importing from Object
Storage for more information on decrypting data.

See DBMS_CLOUD Package Format Options for more information.

In this example, namespace-string is the Oracle Cloud Infrastructure object storage
namespace and bucketname is the bucket name. See Understanding Object Storage
Namespaces for more information.

For detailed information about the parameters, see COPY_COLLECTION Procedure.

The load of fruit_array.json, with DBMS_CLOUD.COPY_COLLECTION using the format option
unpackarrays recognizes array values in the source and instead of loading the data as a single
document, as it would by default, the data is loaded in the collection fruit2 with each value in
the array as a single document.

Create Credentials and Copy JSON Data into an Existing Table
Use DBMS_CLOUD.COPY_DATA to load JSON data in the cloud into a table.

The source file in this example is a JSON data file.

1. Store your object store credentials using the procedure DBMS_CLOUD.CREATE_CREDENTIAL.
For example:

SET DEFINE OFF
BEGIN

Chapter 6
Create Credentials and Copy JSON Data into an Existing Table

6-5

https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm

 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'DEF_CRED_NAME',
 username => 'ads_user@example.com',
 password => 'password'
);
END;
/

This operation stores the credentials in the database in an encrypted format. You can use
any name for the credential name. Note that this step is required only once unless your
object store credentials change. Once you store the credentials you can then use the same
credential name for all data loads.

For detailed information about the parameters, see CREATE CREDENTIAL Procedure.

Creating a credential to access Oracle Cloud Infrastructure Object Store is not required if
you enable resource principal credentials. See Use Resource Principal to Access Oracle
Cloud Infrastructure Resources for more information.

2. Load JSON data into an existing table using the procedure DBMS_CLOUD.COPY_DATA.

For example:

CREATE TABLE WEATHER2
 (WEATHER_STATION_ID VARCHAR2(20),
 WEATHER_STATION_NAME VARCHAR2(50));
/

BEGIN
 DBMS_CLOUD.COPY_DATA(
 table_name => 'WEATHER2',
 credential_name => 'DEF_CRED_NAME',
 file_uri_list => 'https://objectstorage.us-
phoenix-1.oraclecloud.com/n/namespace-string/b/bucketname/o/jsonfiles*',
 format => JSON_OBJECT('type' value 'json', 'columnpath'
value '["$.WEATHER_STATION_ID",
 "$.WEATHER_STATION_NAME"]')
);
END;
/

The parameters are:

• table_name: is the target table’s name.

• credential_name: is the name of the credential created in the previous step.

• file_uri_list: is a comma delimited list of the source files you want to load. You can
use wildcards in the file names in your URIs. The character "*" can be used as the
wildcard for multiple characters, the character "?" can be used as the wildcard for a
single character.

• format: for DBMS_CLOUD.COPY_DATA with JSON data, the type is json. Specify other
format values to define the options to describe the format of the JSON source file. See
DBMS_CLOUD Package Format Options for more information.

In this example, namespace-string is the Oracle Cloud Infrastructure object storage
namespace and bucketname is the bucket name. See Understanding Object Storage
Namespaces for more information.

Chapter 6
Create Credentials and Copy JSON Data into an Existing Table

6-6

https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm

For detailed information about the parameters, see COPY_DATA Procedure.

Monitor and Troubleshoot COPY_COLLECTION Loads
All data load operations you perform using the PL/SQL package DBMS_CLOUD are logged in the
tables dba_load_operations and user_load_operations. Use these tables to monitor
loading with DBMS_CLOUD.COPY_COLLECTION.

• dba_load_operations shows all load operations

• user_load_operations shows the load operations in your schema

You can query these tables to see information about ongoing and completed data loads. For
example, the following SELECT statement with a WHERE clause predicate on the TYPE column
shows load operations of the type COPY:

SELECT table_name, owner_name, type, status, start_time, update_time,
logfile_table, badfile_table
 FROM user_load_operations WHERE type = 'COPY';
TABLE_NAME OWNER_NAME TYPE STATUS START_TIME
UPDATE_TIME LOGFILE_TABLE BADFILE_TABLE
FRUIT ADMIN COPY COMPLETED 2020-04-23 22:27:37 2020-04-23
22:27:38 "" ""
FRUIT ADMIN COPY FAILED 2020-04-23 22:28:36 2020-04-23
22:28:37 COPY$2_LOG COPY$2_BAD

The LOGFILE_TABLE column shows the name of the table you can query to look at the log of a
load operation. For example, the following query shows the log of the load operation with
status FAILED and timestamp 2020-04-23 22:28:36:

SELECT * FROM COPY$2_LOG;

The column BADFILE_TABLE shows the name of the table you can query to review information
for the rows reporting errors during loading. For example, the following query shows the
rejected records for the load operation:

SELECT * FROM COPY$2_BAD;

Depending on the errors shown in the log and the rows shown in the BADFILE_TABLE table, you
might be able to correct errors by specifying different format options with
DBMS_CLOUD.COPY_COLLECTION.

Note:

The LOGFILE_TABLE and BADFILE_TABLE tables are stored for two days for each load
operation and then removed automatically.

See DELETE_ALL_OPERATIONS Procedure for information on clearing the
user_load_operations table.

Chapter 6
Monitor and Troubleshoot COPY_COLLECTION Loads

6-7

Import SODA Collection Data Using Oracle Data Pump Version
19.6 or Later

Shows the steps to import SODA collections into Autonomous Database with Oracle Data
Pump.

You can export and import SODA collections using Oracle Data Pump Utilities starting with
version 19.6. Oracle recommends using the latest Oracle Data Pump version for importing
data from Data Pump files into your JSON database.
Download the latest version of Oracle Instant Client, which includes Oracle Data Pump, for
your platform from Oracle Instant Client Downloads. See the installation instructions on the
platform install download page for the installation steps required after you download Oracle
Instant Client.

In Oracle Data Pump, if your source files reside on Oracle Cloud Infrastructure Object Storage
you can use Oracle Cloud Infrastructure native URIs, Swift URIs, or pre-authenticated URIs.
See DBMS_CLOUD Package File URI Formats for details on these file URI formats.

If you are using an Oracle Cloud Infrastructure pre-authenticated URI, you still need to supply
a credential parameter. However, credentials for a pre-authenticated URL are ignored (and
the supplied credentials do not need to be valid). See DBMS_CLOUD Package File URI
Formats for information on Oracle Cloud Infrastructure pre-authenticated URIs.

This example shows how to create the SODA collection metadata and import a SODA
collection with Data Pump.

1. On the source database, export the SODA collection using the Oracle Data Pump expdp
command.

See Export Your Existing Oracle Database to Import into Autonomous JSON Database for
more information.

2. Upload the dump file set from Step 1 to Cloud Object Storage.

3. Create a SODA collection with the required SODA collection metadata on your
Autonomous Database.

For example, if you export a collection named MyCollectionName from the source
database with the following metadata:

• The content column is a BLOB type.

• The version column uses the SHA256 method.

Then on the Autonomous Database where you import the collection, create a new
collection:

• By default on Autonomous Database for a new collection the content column is set to
BLOB with the jsonFormat specified as OSON.

• By default on Autonomous Database for a new collection the versionColumn.method is
set to UUID.

See SODA Default Collection Metadata on Autonomous Database for details.

For example:

DECLARE
 collection_create SODA_COLLECTION_T;

Chapter 6
Import SODA Collection Data Using Oracle Data Pump Version 19.6 or Later

6-8

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/autonomous-data-warehouse-cloud&id=instant-client-download

BEGIN
 collection_create := DBMS_SODA.CREATE_COLLECTION('MyCollectionName');
END;
/
COMMIT;

You can use the PL/SQL function DBMS_SODA.LIST_COLLECTION_NAMES to discover existing
collections. See LIST_COLLECTION_NAMES Function for more information.

You can view the metadata for the SODA collections by querying the view
USER_SODA_COLLECTIONS. See USER_SODA_COLLECTIONS for more information.

4. Store your Cloud Object Storage credential using DBMS_CLOUD.CREATE_CREDENTIAL.

For example, to create Oracle Cloud Infrastructure Auth Token credentials:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL(
 credential_name => 'DEF_CRED_NAME',
 username => 'ads_user@example.com',
 password => 'password'
);
END;
/

For more information on Oracle Cloud Infrastructure Auth Token authentication
CREATE_CREDENTIAL Procedure.

For example, to create Oracle Cloud Infrastructure Signing Key based credentials:

BEGIN
 DBMS_CLOUD.CREATE_CREDENTIAL (
 credential_name => 'DEF_CRED_NAME',
 user_ocid =>
‘ocid1.user.oc1..aaaaaaaauq54mi7zdyfhw33ozkwuontjceel7fok5nq3bf2vwetkpqsoa’
,
 tenancy_ocid =>
‘ocid1.tenancy.oc1..aabbbbbbaafcue47pqmrf4vigneebgbcmmoy5r7xvoypicjqqge32ew
nrcyx2a’,
 private_key =>
‘MIIEogIBAAKCAQEAtUnxbmrekwgVac6FdWeRzoXvIpA9+0r1.....wtnNpESQQQ0QLGPD8NM//
JEBg=’,
 fingerprint =>
‘f2:db:f9:18:a4:aa:fc:94:f4:f6:6c:39:96:16:aa:27’);
END;
/

For more information on Oracle Cloud Infrastructure Signing Key based credentials see
CREATE_CREDENTIAL Procedure.

Supported credential types:

• Data Pump Import supports Oracle Cloud Infrastructure Auth Token based credentials
and Oracle Cloud Infrastructure Signing Key based credentials.

For more information on Oracle Cloud Infrastructure Signing Key based credentials
see CREATE_CREDENTIAL Procedure.

Chapter 6
Import SODA Collection Data Using Oracle Data Pump Version 19.6 or Later

6-9

• Data Pump supports using an Oracle Cloud Infrastructure Object Storage pre-
authenticated URL for the dumpfile parameter. When you use a pre-authenticated
URL, providing the credential parameter is required and impdp ignores the
credential parameter. When you use a pre-authenticated URL for the dumpfile, you
can use a NULL value for the credential in the next step. See Using Pre-Authenticated
Requests for more information.

5. Run Data Pump Import with the dumpfile parameter set to the list of file URLs on your
Cloud Object Storage and the credential parameter set to the name of the credential you
created in the previous step.

Note:

Import the collection data using the option CONTENT=DATA_ONLY.

Specify the collection you want to import using the INCLUDE parameter. This is useful if a
data file set contains the entire schema and the SODA collection you need to import is
included as part of the dump file set.

Use REMAP_DATA to change any of the columns during import. This example shows using
REMAP_DATA to change the version column method from SHA256 to UUID.

impdp admin/password@ADS1_high \
 directory=data_pump_dir \
 credential=def_cred_name \
 dumpfile= https://namespace-string.objectstorage.us-ashburn-1.oci.customer-
oci.com/n/namespace-string/b/bucketname/o/export%l.dmp \

 encryption_pwd_prompt=yes \
 SCHEMA=my_schema \
 INCLUDE=TABLE:\"= \'MyCollectionName\'\" \
 CONTENT=DATA_ONLY \
 REMAP_DATA=my_schema.'\"MyCollectionName\"'.VERSION:SYS.DBMS_SODA.TO_UUID

Notes for Data Pump parameters:

• If during the export with expdp you used the encryption_pwd_prompt=yes parameter
then use encryption_pwd_prompt=yes and input the same password at the impdp
prompt that you specified during the export.

• The dumpfile parameter supports the %L and %l wildcards in addition to the legacy %U
and %u wildcards. For example, dumpfile=export%L.dmp. Use the %L or %l wildcard for
exports from Oracle Database Release 12.2 and higher. This wildcard expands the
dumpfile file name into a 3-digit to 10-digit, variable-width incrementing integer, starting
at 100 and ending at 2147483646.

Use the legacy %U or %u wildcard for exports from Oracle Database prior to Release
12.2. If you use this option and more than 99 dump files are needed, you must specify
multiple dumpfile names, each with the %U or %u parameter.

For dumpfile, this example uses the recommended URI format using OCI Dedicated
Endpoints for commercial realm (OC1). The namespace-string is the Oracle Cloud
Infrastructure object storage namespace and bucketname is the bucket name. See Object
Storage Dedicated Endpoints, Regions and Availability Domains, and Understanding
Object Storage Namespaces for more information.

Chapter 6
Import SODA Collection Data Using Oracle Data Pump Version 19.6 or Later

6-10

https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/dedicatedendpoints.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/dedicatedendpoints.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm
https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/understandingnamespaces.htm

In Oracle Data Pump version 19.6 and later, the credential argument authenticates Oracle
Data Pump to the Cloud Object Storage service you are using for your source files. The
credential parameter cannot be an Azure service principal, Amazon Resource Name
(ARN), or a Google service account. See Accessing Cloud Resources by Configuring
Policies and Roles for more information on resource principal based authentication.

The dumpfile argument is a comma delimited list of URLs for your Data Pump files.

For the best import performance use the HIGH database service for your import connection
and set the parallel parameter to one quarter the number of ECPUs (.25 x ECPU count).
If you are using OCPU compute model, set the parallel parameter to the number of OCPUs
(1 x OCPU count).

For information on which database service name to connect to run Data Pump Import, see
Manage Concurrency and Priorities on Autonomous JSON Database.

For the dump file URL format for different Cloud Object Storage services, see
DBMS_CLOUD Package File URI Formats.

Note:

To perform a full import or to import objects that are owned by other users, you
need the DATAPUMP_CLOUD_IMP role.

For information on disallowed objects in Autonomous JSON Database, see SQL
Commands.

In this import example, the specification for the REMAP_DATA parameter uses the function
DBMS_SODA.TO_UUID to generate UUID values. By default, for on-premise databases, the
version column of a SODA collection is computed using SHA-256 hash of the document's
content. On Autonomous Database the version column uses UUID generated values,
which are independent of the document's content.

In this example the REMAP_DATA parameter uses the DBMS_SODA.TO_UUID function to replace
the source collection version type with UUID versioning. If in the export dump file set that
you are importing the versionColumn.method is already set to UUID, then the REMAP_DATA
for this field is not required.

For detailed information on Oracle Data Pump Import parameters see Oracle Database
Utilities.

The log files for Data Pump Import operations are stored in the directory you specify with the
Data Pump Import DIRECTORY parameter. See Accessing the Log File for Data Pump Import for
more information.

Textual JSON Objects That Represent Extended Scalar Values
Native binary JSON data (OSON format) extends the JSON language by adding scalar types,
such as date, that correspond to SQL types and are not part of the JSON standard. Oracle
Database also supports the use of textual JSON objects that represent JSON scalar values,
including such nonstandard values.

When you create native binary JSON data from textual JSON data that contains such
extended objects, they can optionally be replaced with corresponding (native binary) JSON
scalar values.

Chapter 6
Textual JSON Objects That Represent Extended Scalar Values

6-11

An example of an extended object is {"$numberDecimal":31}. It represents a JSON scalar
value of the nonstandard type decimal number, and when interpreted as such it is replaced by
a decimal number in native binary format.

For example, when you use the JSON data type constructor, JSON, if you use keyword
EXTENDED then recognized extended objects in the textual input are replaced with
corresponding scalar values in the native binary JSON result. If you do not include keyword
EXTENDED then no such replacement occurs; the textual extended JSON objects are simply
converted as-is to JSON objects in the native binary format.

In the opposite direction, when you use SQL/JSON function json_serialize to serialize binary
JSON data as textual JSON data (VARCHAR2, CLOB, or BLOB), you can use keyword EXTENDED to
replace (native binary) JSON scalar values with corresponding textual extended JSON objects.

Note:

If the database you use is an Oracle Autonomous Database then you can use
PL/SQL procedure DBMS_CLOUD.copy_collection to create a JSON document
collection from a file of JSON data such as that produced by common NoSQL
databases, including Oracle NoSQL Database.

If you use ejson as the value of the type parameter of the procedure, then
recognized extended JSON objects in the input file are replaced with corresponding
scalar values in the resulting native binary JSON collection. In the other direction, you
can use function json_serialize with keyword EXTENDED to replace scalar values
with extended JSON objects in the resulting textual JSON data.

These are the two main use cases for extended objects:

• Exchange (import/export):

– Ingest existing JSON data (from somewhere) that contains extended objects.

– Serialize native binary JSON data as textual JSON data with extended objects, for
some use outside the database.

• Inspection of native binary JSON data: see what you have by looking at corresponding
extended objects.

For exchange purposes, you can ingest JSON data from a file produced by common NoSQL
databases, including Oracle NoSQL Database, converting extended objects to native binary
JSON scalars. In the other direction, you can export native binary JSON data as textual data,
replacing Oracle-specific scalar JSON values with corresponding textual extended JSON
objects.

Tip:

As an example of inspection, consider an object such as {"dob" :
"2000-01-02T00:00:00"} as the result of serializing native JSON data. Is
"2000-01-02T00:00:00" the result of serializing a native binary value of type date, or
is the native binary value just a string? Using json_serialize with keyword EXTENDED
lets you know.

Chapter 6
Textual JSON Objects That Represent Extended Scalar Values

6-12

The mapping of extended object fields to scalar JSON types is, in general, many-to-one: more
than one kind of extended JSON object can be mapped to a given scalar value. For example,
the extended JSON objects {"$numberDecimal":"31"} and {"$numberLong:"31"} are both
translated as the value 31 of JSON-language scalar type number, and item method type()
returns "number" for each of those JSON scalars.

Item method type() reports the JSON-language scalar type of its targeted value (as a JSON
string). Some scalar values are distinguishable internally, even when they have the same
scalar type. This generally allows function json_serialize (with keyword EXTENDED) to
reconstruct the original extended JSON object. Such scalar values are distinguished internally
either by using different SQL types to implement them or by tagging them with the kind of
extended JSON object from which they were derived.

When json_serialize reconstructs the original extended JSON object the result is not always
textually identical to the original, but it is always semantically equivalent. For example,
{"$numberDecimal":"31"} and {"$numberDecimal":31} are semantically equivalent, even
though the field values differ in type (string and number). They are translated to the same
internal value, and each is tagged as being derived from a $numberDecimal extended object
(same tag). But when serialized, the result for both is {"$numberDecimal":31}. Oracle always
uses the most directly relevant type for the field value, which in this case is the JSON-language
value 31, of scalar type number.

Table 6-1 presents correspondences among the various types used. It maps across (1) types
of extended objects used as input, (2) types reported by item method type(), (3) SQL types
used internally, (4) standard JSON-language types used as output by function
json_serialize, and (5) types of extended objects output by json_serialize when keyword
EXTENDED is specified.

Table 6-1 Extended JSON Object Type Relations

Extended Object Type (Input) Oracle
JSON
Scalar Type
(Reported
by type())

SQL Scalar Type Standard
JSON Scalar
Type (Output)

Extended Object Type
(Output)

$numberDouble with value a JSON
number, a string representing the
number, or one of these strings:
"Infinity", "-Infinity", "Inf", "-
Inf", "Nan"1

double BINARY_DOUBLE number $numberDouble with value a
JSON number or one of these
strings: "Inf", "-Inf",
"Nan"2

$numberFloat with value the same as
for $numberDouble

float BINARY_FLOAT number $numberFloat with value the
same as for $numberDouble

$numberDecimal with value the same
as for $numberDouble

number NUMBER number $numberDecimal with value
the same as
for $numberDouble

$numberInt with value a signed 32-bit
integer or a string representing the
number

number NUMBER number $numberInt with value the
same as for $numberDouble

$numberLong with value a JSON
number or a string representing the
number

number NUMBER number $numberLong with value the
same as for $numberDouble

Chapter 6
Textual JSON Objects That Represent Extended Scalar Values

6-13

Table 6-1 (Cont.) Extended JSON Object Type Relations

Extended Object Type (Input) Oracle
JSON
Scalar Type
(Reported
by type())

SQL Scalar Type Standard
JSON Scalar
Type (Output)

Extended Object Type
(Output)

$binary with value one of these:

• a string of base-64 characters
• An object with fields base64 and

subType, whose values are a
string of base-64 characters and
the number 0 (arbitrary binary) or 4
(UUID), respectively

When the value is a string of base-64
characters, the extended object can
also have field $subtype with value 0
or 4, expressed as a one-byte integer
(0-255) or a 2-character hexadecimal
string. representing such an integer

binary BLOB or RAW string

Conversion is
equivalent to
the use of
SQL function
rawtohex.

One of the following:
• $binary with value a

string of base-64
characters

• $rawid with value a string
of 32 hexadecimal
characters, if input had a
subType value of 4
(UUID)

$oid with value a string of 24
hexadecimal characters

binary RAW(12) string

Conversion is
equivalent to
the use of
SQL function
rawtohex.

$rawid with value a string of
24 hexadecimal characters

$rawhex with value a string with an
even number of hexadecimal characters

binary RAW string

Conversion is
equivalent to
the use of
SQL function
rawtohex.

$binary with value a string of
base-64 characters, right-
padded with = characters

$rawid with value a string of 24 or 32
hexadecimal characters

binary RAW string

Conversion is
equivalent to
the use of
SQL function
rawtohex.

$rawid

$oracleDate with value an ISO 8601
date string

date DATE string $oracleDate with value an
ISO 8601 date string

$oracleTimestamp with value an ISO
8601 timestamp string

timestamp TIMESTAMP string $oracleTimestamp with
value an ISO 8601 timestamp
string

$oracleTimestampTZ with value an
ISO 8601 timestamp string with a
numeric time zone offset or with Z

timestamp
with time
zone

TIMESTAMP WITH
TIME ZONE

string $oracleTimestampTZ with
value an ISO 8601 timestamp
string with a numeric time zone
offset or with Z

Chapter 6
Textual JSON Objects That Represent Extended Scalar Values

6-14

Table 6-1 (Cont.) Extended JSON Object Type Relations

Extended Object Type (Input) Oracle
JSON
Scalar Type
(Reported
by type())

SQL Scalar Type Standard
JSON Scalar
Type (Output)

Extended Object Type
(Output)

$date with value one of the following:

• An integer millisecond count since
January 1, 1990

• An ISO 8601 timestamp string
• An object with field numberLong

with value an integer millisecond
count since January 1, 1990

timestamp
with time
zone

TIMESTAMP WITH
TIME ZONE

string $oracleTimestampTZ with
value an ISO 8601 timestamp
string with a numeric time zone
offset or with Z

$intervalDaySecond with value an
ISO 8601 interval string as specified for
SQL function to_dsinterval

daysecondInt
erval

INTERVAL DAY
TO SECOND

string $intervalDaySecond with
value an ISO 8601 interval
string as specified for SQL
function to_dsinterval

$intervalYearMonth with value an
ISO 8601 interval string as specified for
SQL function to_yminterval

yearmonthInt
erval

INTERVAL YEAR
TO MONTH

string $intervalYearMonth with
value an ISO 8601 interval
string as specified for SQL
function to_yminterval

Two fields:

• Field $vector with value an array
whose elements are numbers or
the strings "Nan", "Inf", and "-
Inf" (representing not-a-number
and infinite values).

• Field $vectorElementType with
string value either"float32" or
"float64". These correspond to
IEEE 32-bit and IEEE 64-bit
numbers, respectively.

vector VECTOR array of
numbers

Two fields:

• Field $vector with value
an array whose elements
are numbers or the strings
"Nan", "Inf", and "-
Inf" (representing not-a-
number and infinite
values).

• Field $vectorElementTy
pe with string value
either"float32" or
"float64".

1 The string values are interpreted case-insensitively. For example, "NAN" "nan", and "nAn" are accepted and equivalent, and similarly
"INF", "inFinity", and "iNf". Infinitely large ("Infinity" or "Inf") and small ("-Infinity" or "-Inf") numbers are
accepted with either the full word or the abbreviation.

2 On output, only these string values are used — no full-word Infinity or letter-case variants.

See Also:

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

Chapter 6
Textual JSON Objects That Represent Extended Scalar Values

6-15

https://en.wikipedia.org/wiki/IEEE_754

7
Oracle Tools for Database Access

For many database operations you need SQL or PL/SQL access. Oracle Database tools like
SQL Developer, SQLcl and SQL*Plus provide such access to JSON databases.

The following sections provide step-by-step instructions for setting up these tools.

Topics

• Connect with Built-In Oracle Database Actions

• Connect Oracle SQL Developer with a Wallet (mTLS)

• Connect Oracle SQLcl Cloud with a Wallet (mTLS)

• Connect SQL*Plus with a Wallet (mTLS)

Connect with Built-In Oracle Database Actions
You can access Database Actions from Autonomous JSON Database. Database Actions
provides development tools, data tools, administration, and monitoring features for
Autonomous JSON Database. Using Database Actions you can run SQL statements, queries,
and scripts in a worksheet.

Access Database Actions as ADMIN
Database Actions (also known as SQL Developer Web) is bundled with each Autonomous
Database instance.

Database Actions runs in Oracle REST Data Services and access is provided through schema-
based authentication. To use Database Actions, you must sign in as a database user whose
schema is enabled for Database Actions. By default the ADMIN user is enabled to access
Database Actions.

See Provide Database Actions Access to Database Users to enable another database user's
schema to access Database Actions.

Note:

If your Autonomous JSON Database is configured to use a Private Endpoint, then
you can only access Database Actions from clients in the same Virtual Cloud
Network (VCN).

To access Database Actions from the Oracle Cloud Infrastructure Console:

1. On the Autonomous Database Details page click the Database actions dropdown list.

2. Select a quick link to go directly to a quick link action or select View all database actions
to access the full Database Actions Launchpad.

7-1

For example, click SQL to use a SQL Worksheet. On the SQL Worksheet you can use the
Consumer Group drop-down list to select the consumer group to run your SQL or PL/SQL
code. See Executing SQL Statements in the Worksheet Editor for more information.

Depending on your browser, if the Console cannot access the database as ADMIN you will be
prompted for your database ADMIN username and password.

Provide Database Actions Access to Database Users
The ADMIN user provides access to Database Actions for other database users.

Database users who are not service administrators do not have access to the Oracle Cloud
Infrastructure Console. The ADMIN user provides access to Database Actions as follows:

• Use Database Actions to create a user and assign roles to the user. If the user already
exists, check that Web Access is selected for the schema (with Web Access selected, the
user's card shows REST Enabled).

See Create Users on Autonomous Database for information on adding database users.

See Required Roles to Access Tools from Database Actions for information on required
roles for Database Actions.

• Provide the user with a URL to access Database Actions.

After adding a user and selecting Web Access, the ADMIN provides a user with the URL to
access Database Actions:

1. In Database Actions, click to show the available actions.

2. Under Administration select Database Users.

This displays information about users, such as user names, whether a user is REST
Enabled, and the last login date and time. On a user's card, the icon on the left displays
the user status with one of the following colors: green (Open), blue (Locked), or red
(Expired).

Chapter 7
Connect with Built-In Oracle Database Actions

7-2

The default view is Card View. You can select either grid view or card view by clicking the
Card View or Grid View icons.

3. A URL is displayed in the user's card only if the user is REST Enabled. It provides the URL

to access Database Actions. Click to copy the URL to the clipboard.

4. Provide the user with the URL you copied.

After you provide the URL to a user, to access Database Actions the user pastes the URL into
their browser and then enters their Username and Password in the Sign-in dialog.

See Manage Users and User Roles on Autonomous Database - Connecting with Database
Actions for more information.

Connect Oracle SQL Developer with a Wallet (mTLS)
Oracle SQL Developer is a free integrated development environment that simplifies the
development and management of Autonomous Database.

SQL Developer can connect to Autonomous Database and contains enhancements for key
Autonomous Database features. You can download the latest version of Oracle SQL Developer
for your platform from the Download link on this page: Oracle SQL Developer.

For connecting with mTLS authentication, Oracle SQL Developer provides support for wallet
files using the Cloud Wallet Connection Type. Oracle recommends that you use version 18.2
(or later); however, earlier versions of SQL Developer will work with Autonomous Database
using an Oracle Wallet.

For connecting with TLS authentication, Oracle SQL Developer provides support using the
Custom JDBC Connection Type. See Connect with Oracle SQL Developer with TLS
Authentication for details on connecting using TLS authentication.

To create a new mTLS connection to Autonomous JSON Database, do the following:

Obtain your credentials to access Autonomous JSON Database. For more information, see
Download Client Credentials (Wallets).

1. Start Oracle SQL Developer and in the connections panel, right-click Connections and
select New Database Connection....

Chapter 7
Connect Oracle SQL Developer with a Wallet (mTLS)

7-3

https://www.oracle.com/database/technologies/appdev/sql-developer.html

2. Choose the Connection Type Cloud Wallet.

3. Enter the following information:

• Connection Name: Enter the name for this connection.

• Username: Enter the database username. You can either use the default administrator
database account (ADMIN) provided as part of the service or create a new schema, and
use it.

• Password: Enter the password for the database user.

• Connection Type: Select Cloud Wallet

• Configuration File : Click Browse, and select the client credentials zip file.

• Service: Enter the database TNS name. The client credentials file includes a
tnsnames.ora file that provides database TNS names with corresponding services.

Chapter 7
Connect Oracle SQL Developer with a Wallet (mTLS)

7-4

4. Click Connect to connect to the database.

Note:

If you are using Microsoft Active Directory, then for Username enter the Active
Directory "AD_domain\AD_username" (you may include double quotes), and for the
Password, enter the password for the Active Directory user. See Use Microsoft
Active Directory with Autonomous Database for more information.

Connect Oracle SQLcl Cloud with a Wallet (mTLS)
SQLcl is a command-line interface used to enter SQL commands. You can use SQLcl to
connect to an Autonomous Database with client credentials configured (mTLS).

You can use SQLcl version 4.2 or later with Autonomous Database. Download SQLcl from
oracle.com.

SQLcl can connect to an Autonomous Database instance using either an Oracle Call Interface
(OCI) or a JDBC thin connection.

• If you use Oracle Call Interface (OCI), prepare for OCI, ODBC and JDBC OCI
Connections. See Prepare for Oracle Call Interface (OCI), ODBC, and JDBC OCI
Connections.

• If you use JDBC Thin, prepare for JDBC Thin Connections. See Prepare for JDBC Thin
Connections.

SQLcl with Oracle Call Interface

To connect using Oracle Call Interface, use the –oci option, supply the database user name, a
password, and the database service name provided in the tnsnames.ora file. For example:

sql -oci

SQLcl: Release 22.1 Production on Fri May 06 16:07:46 2022

Copyright (c) 1982, 2022, Oracle. All rights reserved.

Username? (''?) ads_user@adsc_medium
Password? (**********?) ***************
Connected.
SQL>

When connecting using Oracle Call Interface, the Oracle Wallet is transparent to SQLcl.

SQLcl with a JDBC Thin Connection

To connect using a JDBC Thin connection, first configure the SQLcl cloud configuration and
then connect to the database.

1. Start SQLcl with the /nolog option.

sql /nolog
2. Configure the SQLcl session to use your Oracle Wallet:

SQL> set cloudconfig directory/client_credentials.zip

Chapter 7
Connect Oracle SQLcl Cloud with a Wallet (mTLS)

7-5

http://www.oracle.com/technetwork/developer-tools/sqlcl/overview/index.html

3. Connect to the database:

SQL> connect username@servicename
password

To avoid the prompt, connect and supply the password inline:

SQL> connect username/password@servicename

For example:

sql /nolog

SQLcl: Release 22.1 Production on Fri May 06 14:48:26 2022

Copyright (c) 1982, 2022, Oracle. All rights reserved.

SQL> set cloudconfig /home/adb/Wallet_db2022ADB.zip

SQL> connect ads_user@adsc_medium

Password? (**********?) ***************
Connected.
SQL>

SQLcl with a JDBC Thin Connection with an HTTP Proxy

1. Start SQLcl with the /nolog option.

sql /nolog
2. Configure the SQLcl session to use a proxy host and your Oracle Wallet:

SQL> set cloudconfig -proxy=proxyhost:port directory/client_credentials.zip
3. Connect to the database.

SQL> connect username@servicename
password

To avoid the prompt, connect and supply the password inline:

SQL> connect username/password@servicename

For example:

sql /nolog

SQLcl: Release 22.1 Production on Fri May 06 11:59:38 2022

Copyright (c) 1982, 2022, Oracle. All rights reserved.
SQL> set cloudconfig -proxy=http://myproxyhost.com:80 /home/adb/
Wallet_db2022.zip

SQL> connect ads_user@adsc_medium

Password? (**********?) ****************
Connected.
SQL>

Chapter 7
Connect Oracle SQLcl Cloud with a Wallet (mTLS)

7-6

Note:

If you are connecting to Autonomous Database using Microsoft Active Directory
credentials, then connect using an Active Directory user name in the form of
"AD_domain\AD_username" (double quotes must be included), and Active Directory
user password. See Use Microsoft Active Directory with Autonomous Database for
more information.

For more information, on the connection types specified in tnsnames.ora, see Database
Service Names for Autonomous Transaction Processing and Autonomous JSON Database.

For information on SQLcl, see Oracle SQLcl.

Connect SQL*Plus with a Wallet (mTLS)
SQL*Plus is a command-line interface used to enter SQL commands. SQL*Plus connects to
an Oracle database.

To install and configure the client and connect to the Autonomous JSON Database using
SQL*Plus with client credentials (mTLS), do the following:

1. Prepare for Oracle Call Interface (OCI), ODBC and JDBC OCI Connections. See Prepare
for Oracle Call Interface (OCI), ODBC, and JDBC OCI Connections with Wallets (mTLS).

2. Connect using a database user, password, and database TNS name provided in the
tnsnames.ora file.

For example:

sqlplus ads_user@adsc_medium

SQL*Plus: Release 19.0.0.0.0 - Production on Mon Nov 23 15:08:48 2020
Version 19.8.0.0.0

Copyright (c) 1982, 2020, Oracle. All rights reserved.

Enter password:
Last Successful login time: Wed Nov 18 2020 12:36:56 -08:00

Connected to:
Oracle Database 19c Enterprise Edition Release 19.0.0.0.0 - Production
Version 19.5.0.0.0

SQL>

Chapter 7
Connect SQL*Plus with a Wallet (mTLS)

7-7

http://www.oracle.com/technetwork/developer-tools/sqlcl/overview/index.html

Notes:

• The Oracle Wallet is transparent to SQL*Plus because the wallet location is
specified in the sqlnet.ora file. This is true for any Oracle Call Interface (OCI),
ODBC, or JDBC OCI connection.

• If you are connecting to a JSON database using Microsoft Active Directory
credentials, then connect using an Active Directory user name in the form of
"AD_domain\AD_username" (double quotes must be included), and Active
Directory user password. See Use Microsoft Active Directory with Autonomous
Database for more information.

Chapter 7
Connect SQL*Plus with a Wallet (mTLS)

7-8

8
Oracle Extensions for IDEs

Oracle extensions let developers connect to, browse, and manage Autonomous Databases
directly from common IDEs.

Use Oracle Cloud Infrastructure Toolkit for Eclipse
Oracle Cloud Infrastructure Toolkit for Eclipse is a plugin that enables Java developers to
easily connect to Oracle Autonomous Database through their IDE. The plugin is free and is
available for Linux, UNIX, Microsoft Windows, and Apple Mac OS.

You can use the plugin to perform cloud and database operations right from Eclipse, such as
creating Autonomous Databases, stopping and starting, scaling up and down, and so on. You
can also use the plugin to easily connect to the databases to browse the schema, access
tables, execute SQL statements, and perform other development tasks.

Users with permissions to manage the databases can perform a number of actions, including
those listed below. For detailed information about permissions, see Toolkit for Eclipse in the
Oracle Cloud Infrastructure documentation. You can:

• Create Autonomous Databases

• Start, stop, terminate, clone, and restore Autonomous Databases

• Scale up and down

• Download the client credentials zip file (database wallet)

• Connect to Autonomous Databases

• Browse the schema

• Choose compartments and regions

• Change the administrator password, and so on

Download the latest version of the plugin from GitHub (com.oracle.oci.eclipse-
version.zip, where version is the latest version, for instance 1.2.0):

https://github.com/oracle/oci-toolkit-eclipse/releases
Then follow the installation instructions and details about how to get started in this step-by-step
walkthrough:

New Eclipse Plugin for Accessing Autonomous Database (ATP/ADW)

Use Oracle Developer Tools for Visual Studio
Oracle Developer Tools for Visual Studio is a tightly integrated extension for Microsoft Visual
Studio and Oracle Autonomous Database. The extension is free and supports Visual Studio
2019 and Visual Studio 2017 on Microsoft Windows.

You can use the extension to perform database management operations right from Visual
Studio, such as creating Autonomous Databases, stopping and starting, scaling up and down,
and so on. You can also use the extension to easily connect to the databases and perform

8-1

https://docs.cloud.oracle.com/en-us/iaas/Content/API/SDKDocs/eclipsetoolkit.htm
https://github.com/oracle/oci-toolkit-eclipse/releases
https://blogs.oracle.com/dev2dev/new-eclipse-plugin-for-accessing-autonomous-database-atpadw

development tasks, such as browsing your Oracle schema and launching integrated Oracle
designers and wizards to create and alter schema objects.

Users with permissions to manage the databases can perform a number of actions, including
the following:

• Sign up for Oracle Cloud

• Connect to a cloud account using a simple auto-generated config file and key file

• Create new or clone existing Always Free Autonomous Database, Autonomous Database
Dedicated, and Autonomous Database Serverless databases

• Automatically download credentials files (including wallets) and quickly connect, browse,
and operate on Autonomous Database schemas

• Change compartments and regions without reconnecting

• Start, stop, or terminate Autonomous Database

• Scale up/down Autonomous Database resources

• Restore from backup

• Update instance credentials

• Rotate wallets

• Convert Always Free Autonomous Database to paid:

Note:

Promotion of Always Free to a paid Autonomous Database is supported only if
the database version for the Always Free Autonomous Database is Oracle
Database 19c or Oracle Database 23ai.

Download the extension from Visual Studio Marketplace:

• Oracle Developer Tools for Visual Studio 2019

• Oracle Developer Tools for Visual Studio 2017

You'll find lots of information about the extension on those Marketplace pages.

Then follow the installation instructions and details about how to get started in this step-by-step
walkthrough:

New Release: Visual Studio Integration with Oracle Autonomous Database

For detailed information about how to use the extension, see the online documentation that's
optionally installed with Oracle Developer Tools for Visual Studio. Press the F1 key to display
the context-sensitive help for each dialog.

Use Oracle Developer Tools for VS Code
Oracle Developer Tools for VS Code is a tightly integrated extension for Microsoft Visual Studio
Code (VS Code) and Oracle Autonomous Database. The extension is free and is available for
Linux, Microsoft Windows, and Apple Mac OS.

You can use the extension to connect to Autonomous Databases right from Visual Studio Code
and easily explore database schema, view table data, and edit and execute SQL and PL/SQL.

Chapter 8
Use Oracle Developer Tools for VS Code

8-2

https://marketplace.visualstudio.com/items?itemName=OracleCorporation.OracleDeveloperToolsForVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=OracleCorporation.OracleDeveloperToolsforVisualStudio2017
https://medium.com/oracledevs/visual-studio-integration-with-oracle-autonomous-database-7c6243eca329

Download the extension from Visual Studio Marketplace:

Oracle Developer Tools for VS Code

Installation instructions and information about how to get started can be found in this quick
start guide:

Getting Started Using Oracle Developer Tools for VS Code

Chapter 8
Use Oracle Developer Tools for VS Code

8-3

https://marketplace.visualstudio.com/items?itemName=Oracle.oracledevtools
https://www.oracle.com/database/technologies/appdev/dotnet/odtvscodequickstart.html

9
Code for High Performance

Oracle Autonomous JSON Database includes several features that automatically monitor,
analyze and optimize the performance of your JSON database.

How your application connects to your database and how you code SQL calls to the database
determine the overall performance of your application's transaction processing and reporting
operations.

To ensure optimal performance of your application's use of the database, you need to make
sure it:

• Connects to the database based on the kind of database operation being performed, as
described in Connect for High Performance.

• Uses efficient SQL calls to perform the operation, as described in Code for High
Performance.

Oracle provides several tools to help you monitor performance, diagnose performance
problems, and tune the performance of your SQL code and the database. See Tools for
Monitoring and Tuning Performance.

Connect for High Performance
When making connections to your JSON database, two factors have great impact on the
performance of your application's interaction with the database:

• Which database service you connect to: connect to the database service that best matches
the database operations you are performing. (For most applications that use JSON
documents you use the typical connection service for transaction processing, tp.) For a list
of the database services and their characteristics, see Database Service Names for
Autonomous Transaction Processing and Autonomous JSON Database in Using Oracle
Autonomous Database Serverless.

• Whether you use connection pools: use connection pools to reduce the performance
overhead of repeatedly creating and destroying individual connections. For more
information, see Use Connection Pools.

Use Connection Pools

The use of connection pools instead of individual connections can benefit almost every
transaction processing application. A connection pool provides the following benefits.

• Reduces the number of times new connection objects are created.

• Promotes connection object reuse.

• Quickens the process of getting a connection.

• Controls the amount of resources spent on maintaining connections.

• Controls the amount of resources spent on maintaining connections.

• Reduces the amount of coding effort required to manually manage connection objects.

9-1

Special-Purpose Connection Features

Oracle Net Services (previous called SQL*Net) provides a variety of connection features that
improve performance in specific connection scenarios. These features are described in Oracle
Database Net Services Administrator's Guide.

• Colocation tagging is one such feature that is useful in certain transaction processing
applications. If your application repeatedly makes connections to the same database
service, colocation tagging permits all such connections to be directed to the same
database instance, bypassing the load-balancing processing normally done on the
database side of connections. For more information, see COLOCATION_TAG of Client
Connections.

• Shared Server Configuration is another feature supported by Oracle Autonomous JSON
Database for maintaining legacy applications designed without connection pooling. The
shared server architecture enables the database server to allow many client processes to
share very few server processes. This increases the number of users that can be
supported by the application. Using the shared server architecture for such legacy
applications enables them to scale up without making any changes to the application itself.

By default, the shared server mode is disabled for Autonomous JSON Database. To
enable it, submit an SR in My Oracle Support requesting support operations to assist you
with shared server configuration for the required Exadata Infrastructure OCIDs.

See also Oracle Database Net Services Administrator's Guide for more detailed
information about shared server, including features such as session multiplexing.

The client that wants to use the shared server configuration must configure
(SERVER=shared) in the CONNECT_DATA section of the connect descriptor. For example:

sales=
(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=sales.us.example.com)
(SERVER=shared))

Tip:

You can disable Shared Server for a specific Autonomous JSON Database
created under a Shared Server enabled Autonomous Container Database by
setting its SHARED_SERVERS value to 0. To re-enable Shared Servers for that
Autonomous JSON Database, run the ALTER SYSTEM RESET SHARED_SERVERS
command.

Code for High Performance
Great applications begin with well written SQL. Oracle Autonomous Database provides
numerous features that enable you to build high performance applications and validate your
SQL and PL/SQL code. Some of these features are new in Release 19c; for example:

• Automatic Indexing

• Automatic resolution of SQL plan regressions

• Automatic quarantine of runaway SQL statements

Chapter 9
Code for High Performance

9-2

• SQL Plan comparison function

Others such features have been available in Oracle Database and used by developers for
years; for example:

• SQL Plan Management

• SQL Tuning sets

• SQL Tuning Advisor

• SQL Access Advisor

As you develop your application, you can quickly learn how these features are affecting the
SQL code you write and so improve your code by using the Worksheet tool provided by both
Oracle Database Actions (which is built into your JSON database) and Oracle SQL Developer
(a free application you install on your development system). For more information about these
tools, see Tools for Monitoring and Tuning Performance.

Tools for Monitoring and Tuning Performance
Several situations can give rise to application performance issues: changing workloads,
resource limitations on application and database servers, or simply network bottlenecks.

Oracle provides a wide range of tools to help you monitor performance, diagnose performance
issues, and tune your application or the database to resolve the issue.

A readily available feature-rich tool is the Performance Hub, which is available in each of the
following:

• The Oracle Cloud Infrastructure console — see Monitor Autonomous Database with
Performance Hub in Using Oracle Autonomous Database Serverless.

• Oracle Database Actions — see Connect with Built-In Oracle Database Actions

• Oracle Management Cloud

You can monitor the performance of SQL statements by choosing SQL Monitoring from the
Performance Hub. See Monitor SQL Statements in Using Oracle Autonomous Database
Serverless.

To turn monitoring on or off for a given SQL statement add the hint MONITOR or NO MONITOR,
respectively, to the statement. See MONITOR and NO_MONITOR Hints in Oracle Database
SQL Tuning Guide.

With SODA for Java you can use the same hints to monitor the SQL statements that underlie
SODA operations. See the following topics in Oracle Database SODA for Java Developer's
Guide:

• SODA for Java Read and Write Operations

• Inserting Documents into Collections with SODA for Java

• Saving Documents into Collections with SODA for Java

Two other commonly used tools are the Automatic Workload Repository (AWR) and the
Automatic Database Diagnostic Monitor (ADDM). AWR stores performance related statics for
an Oracle database, and ADDM is a diagnostic tool that analyzes the AWR data on a regular
basis, locates root causes of any performance problems, provides recommendations for
correcting the problems, and identifies non-problem areas of the system. Because AWR is a
repository of historical performance data, ADDM can analyze performance issues after the
event, often saving time and resources in reproducing a problem. For instructions on using
these tools, as well as detailed information about database performance monitoring and tuning,

Chapter 9
Tools for Monitoring and Tuning Performance

9-3

see Oracle Database Performance Tuning Guide. For a quick introduction to database
performance monitoring and tuning, see Oracle Database Get Started with Performance
Tuning.

For a complete list of the SQL tuning and performance management features of Oracle
Autonomous Database, and instructions on how to use them, see Oracle Database SQL
Tuning Guide.

Chapter 9
Tools for Monitoring and Tuning Performance

9-4

A
Autonomous JSON Database for Experienced
Oracle Database Users

This appendix provides information on using Autonomous JSON Database for experienced
Oracle Database users with Autonomous Database Serverless.

For equivalent information about using Oracle Database features and options with
Autonomous Database on dedicated Exadata infrastructure, see Oracle Database Features in
Dedicated Autonomous Database Deployments.

Autonomous Database – Oracle Database Features
Describes Oracle Database features available with Autonomous Database.

Autonomous JSON Database includes features that:

• Automate index management tasks, such as creating, rebuilding, and dropping indexes
based on changes in the application workload.

See Manage Automatic Indexing on Autonomous Database in Using Oracle Autonomous
Database Serverless for more information.

Note:

There are restrictions for Automatic Indexing when you use JSON data with
Autonomous JSON Database. See SODA Notes for more information.

• Gather real-time statistics automatically while a conventional DML workload is running.
Because statistics can go stale between stats gathering jobs, online statistics gathering for
conventional DML helps the optimizer generate more optimal plans. Online statistics aim to
reduce the possibility of the optimizer being misled by stale statistics.

See Real-Time Statistics for more information.

• Gather statistics automatically on a more frequent basis. High-Frequency Automatic
Optimizer Statistics Collection complements the standard statistics collection job. By
default, the collection occurs every 15 minutes, meaning that statistics have less time in
which to be stale. High-Frequency Automatic Optimizer Statistics Collection is enabled by
default.

See Configuring High-Frequency Automatic Optimizer Statistics Collection for more
information.

• Quarantine execution plans for SQL statements, for example, statements that are
terminated by the Resource Manager for consuming excessive system resources in an
Oracle Database. Automatic SQL Quarantine based on Resource Manager consumption
limit violations is disabled by default but any manually quarantined SQL statement will be
honored.

See Quarantine for Execution Plans for SQL Statements Consuming Excessive System
Resources for more information.

A-1

• Automatically assess the opportunity for SQL plan changes to improve the performance for
known statements.

See Managing the SPM Evolve Advisor Task for more information.

• Apache ORC format is supported in Autonomous Database for loading and querying data
in object store.

See Create Credentials and Load Data Pump Dump Files into an Existing Table and Query
External Data with ORC, Parquet, or Avro Source Files in Using Oracle Autonomous
Database Serverless for more information.

• Complex types are supported in Autonomous Database for ORC, Avro, and Parquet
structured files.

See DBMS_CLOUD Package ORC, Parquet and Avro Complex Types in Using Oracle
Autonomous Database Serverless for more information.

SODA Notes
When you use SODA with Autonomous Database the following restrictions apply:

• Automatic indexing is not supported for SQL and PL/SQL code that uses the SQL/JSON
function json_exists. See SQL/JSON Condition JSON_EXISTS for more information.

• Automatic indexing is not supported for SODA query-by-example (QBE).

About Autonomous Database for Experienced Oracle Database
Users

Autonomous JSON Database configures and optimizes your database for you. You do not
need to perform administration operations for configuring the database. SQL commands used
for database administration such as CREATE TABLESPACE are not available. Similarly, other
administrative interfaces and utilities such as RMAN are not available.

See Transaction Processing and JSON Database Workloads with Autonomous Database

Transaction Processing and JSON Database Workloads with Autonomous
Database

Autonomous JSON Database configures and optimizes your database for you, based on your
workload.

Characteristics of Autonomous Database with Transaction Processing or JSON Database
workloads:

• The default data and temporary tablespaces for the database are configured automatically.
Adding, removing, or modifying tablespaces is not allowed. Autonomous Database creates
one tablespace or multiple tablespaces automatically depending on the storage size.

• The database character set is Unicode AL32UTF8. See Choose a Character Set for
Autonomous Database for more information.

• Compression is not enabled by default but Autonomous JSON Database honors a
compression clause if compression is specified on a table.

Accessing a JSON database:

Appendix A
SODA Notes

A-2

• You do not have direct access to the database node. You can create and drop directories
with CREATE DIRECTORY and DROP DIRECTORY, as described in Create and Manage
Directories.

You can use DBMS_CLOUD procedures such as DBMS_CLOUD.DELETE_FILE,
DBMS_CLOUD.GET_OBJECT, and DBMS_CLOUD.PUT_OBJECT with files and objects. You do not
have direct access to the local file system.

Parallel Execution with Transaction Processing or JSON Database workloads:

• Parallelism is determined by the database service you use. See Database Service Names
for Autonomous Database for details about parallelism support for each database service.

• When you want to run DML operations in parallel and the database service you are using
allows this, you can enable parallel DML in your session using the following SQL
command:

ALTER SESSION ENABLE PARALLEL DML;

See VLDB and Partitioning Guide for more information on parallel DML operations.

• If you create an index manually and specify the PARALLEL clause, the PARALLEL attribute
remains after the index is created. In this case SQL statements can run in parallel
unbeknownst to the end user.

To specify serial execution, change the INDEX parallel clause to NOPARALLEL or set the
PARALLEL degree attribute to 1 to specify serial execution:

ALTER INDEX index_name NOPARALLEL;

or

ALTER INDEX index_name PARALLEL 1;

Autonomous Database Views
Autonomous Database provides several views that are not available in Oracle Database 19c.
This topic lists the Autonomous Database specific views.

Track Table and Partition Scan Access with Autonomous Database Views
Oracle Autonomous Database tracks the scan count for tables and partitions. Use the table
access stats data dictionary and dynamic views to retrieve scan count information.

GV$TABLE_ACCESS_STATS and V$TABLE_ACCESS_STATS Views
The GV$TABLE_ACCESS_STATS and V$TABLE_ACCESS_STATS views list the scan count for tables
and partitions. The scan data collection begins at instance startup time.

Column Datatype Description

READ_COUNT NUMBER Aggregated scan count since instance startup

OBJECT_ID NUMBER Object ID of the table or partition

Appendix A
Autonomous Database Views

A-3

Column Datatype Description

INST_ID NUMBER Instance number where table/partition was
scanned

This column (INST_ID) is only shown in
GV$TABLE_ACCESS_STATS

CON_ID NUMBER Container ID of the database

ALL_TABLE_ACCESS_STATS and DBA_TABLE_ACCESS_STATS Views
The ALL_TABLE_ACCESS_STATS and DBA_TABLE_ACCESS_STATS views list the scan count for
tables and partitions. The scan data collection begins at instance startup time.

Note:

The ALL_TABLE_ACCESS_STATS and DBA_TABLE_ACCESS_STATS views do not list scan
count information for Oracle-maintained schemas.

Column Datatype Description

TABLE_OWNER VARCAR2(128) Owner of the table

TABLE_NAME VARCAR2(128) Name of the table

PARTITION_NAME VARCAR2(128) Name of the partition

A NULL value specifies a non-partitioned table

INSTANCE_ID NUMBER Instance number where table or partition was
scanned

READ_COUNT NUMBER Aggregated scan count since instance startup

USER_TABLE_ACCESS_STATS View
The USER_TABLE_ACCESS_STATS view lists the scan count for the user's tables and partitions.
The scan data collection begins at instance startup time.

Column Datatype Description

TABLE_NAME VARCAR2(128) Name of the table

PARTITION_NAME VARCAR2(128) Name of the partition

A NULL value specifies a non-partitioned table

INSTANCE_ID NUMBER Instance number where table/partition was
scanned

READ_COUNT NUMBER Aggregated scan count since instance startup

Track Oracle Cloud Infrastructure Resources, Cost and Usage Reports with
Autonomous Database Views

Oracle Autonomous Database tracks the Oracle Cloud Infrastructure resources, cost and
usage reports. You can access these reports using the OCI views.

Appendix A
Autonomous Database Views

A-4

Prerequisite Steps to Use OCI Resource Views
Describes the prerequisite steps you must perform to use OCI resource views on Autonomous
Database.

Note:

Only ADMIN user has access to the OCI resource views by default. To access these
views as another user, the ADMIN must grant READ privileges.

To query an OCI resource view, do the following:

1. Create a dynamic group that includes your Autonomous Database instance and define the
required policies to access a view.

For example, the Autonomous Database instance is specified in the resource.id
parameter with an OCID:

resource.id = '<your_Autonomous_Database_instance_OCID>'

Each view shows the details for the policy that you must define to query the view.

See Perform Prerequisites to Use Resource Principal with Autonomous Database for
details on creating a dynamic group and defining policies.

For example, to access all of the views, define the following policy:

Define tenancy usage-report as
ocid1.tenancy.oc1..aaaaaaaaned4fkpkisbwjlr56u7cj63lf3wffbilvqknstgtvzub7vhq
kggq
Endorse dynamic-group <group-name> to read objects in tenancy usage-report
Allow dynamic-group <group-name> to read buckets in tenancy
Allow dynamic-group <group-name> to read autonomous-database in tenancy
Allow dynamic-group <group-name> to read usage-budgets in tenancy

Note:

Do not replace the OCID in this policy with another OCID. This usage-report
OCID provides the Oracle Cloud Infrastructure usage data for your tenancy.

2. Verify that resource principal is enabled for the ADMIN user on the Autonomous Database
instance.

SELECT owner, credential_name FROM dba_credentials
 WHERE credential_name = 'OCI$RESOURCE_PRINCIPAL' AND owner = 'ADMIN';

OWNER CREDENTIAL_NAME
----- ---------------------
ADMIN OCI$RESOURCE_PRINCIPAL

Appendix A
Autonomous Database Views

A-5

If the resource principal is not enabled, then enable the resource principal:

EXEC DBMS_CLOUD_ADMIN.ENABLE_RESOURCE_PRINCIPAL();

See Use Resource Principal to Access Oracle Cloud Infrastructure Resources for more
information.

3. Run a query on an OCI resource view.

For example:

SELECT NAME, APPROXIMATESIZE FROM OCI_OBJECTSTORAGE_BUCKETS;
SELECT * FROM OCI_USAGE_DATA;

OCI_AUTONOMOUS_DATABASES View
OCI_AUTONOMOUS_DATABASES describes all the Oracle Cloud Infrastructure Autonomous
Databases in the Oracle Cloud Infrastructure tenancy obtained from the current Autonomous
Database instance.

To query this view you need a dynamic group that includes your Autonomous Database
instance and the following policy defined on that dynamic group:

Allow dynamic-group <group-name> to read autonomous-database in tenancy

This policy lets you list all Autonomous Databases in your tenancy. Optionally you can restrict it
to list Autonomous Databases in a given compartment:

Allow dynamic-group <group-name> to read autonomous-database in compartment
<compartment-name>

Column Datatype Description

DISPLAYNAME VARCHAR2 The user friendly name for the Autonomous Database

REGION VARCHAR2 Region Name

COMPARTMENTID VARCHAR2 The OCID of the compartment

ID VARCHAR2 The OCID of the Autonomous Database

DBNAME VARCHAR2 The database name

LIFECYCLESTATE VARCHAR2 The current state of the Autonomous Database

TIMECREATED VARCHAR2 The date and time the Autonomous Database was
created

DATASTORAGESIZEINTBS VARCHAR2 The quantity of data in the database in terabytes

LICENSEMODEL VARCHAR2 The Oracle license model that applies to the
Autonomous Database

SERVICECONSOLEURL VARCHAR2 The URL of the Service Console for the Autonomous
Database

APEXDETAILS CLOB Information about Oracle APEX Application
Development

AREPRIMARYWHITELISTEDIP
SUSED

VARCHAR2 Primary White Listed IPs

AUTONOMOUSCONTAINERDATA
BASEID

VARCHAR2 The Autonomous Container Database OCID

AUTONOMOUSMAINTENANCESC
HEDULETYPE

VARCHAR2 Maintenance Schedule Type

Appendix A
Autonomous Database Views

A-6

Column Datatype Description

AVAILABLEUPGRADEVERSION
S

VARCHAR2 List of Oracle Database versions available for a
database upgrade

BACKUPCONFIG CLOB Autonomous Database Backup Config

CONNECTIONSTRINGS CLOB Autonomous Database Connection Strings

CONNECTIONURLS CLOB Autonomous Database Connection URLs

CPUCORECOUNT NUMBER The number of OCPU cores to be made available to the
database

CUSTOMERCONTACTS CLOB The Customer Contacts

DATASAFESTATUS VARCHAR2 Status of the Data Safe registration for this Autonomous
Database

DATASTORAGESIZEINGBS NUMBER The quantity of data in the database in gigabytes

DBVERSION VARCHAR2 The Oracle Database version for the Autonomous
Database

DATAGUARDREGIONTYPE VARCHAR2 The Autonomous Data Guard region type of the
Autonomous Database

DBWORKLOAD VARCHAR2 The Autonomous Database workload type

DEFINEDTAGS CLOB Defined tags for the resource

FAILEDDATARECOVERYINSEC
ONDS

NUMBER Indicates the number of seconds of data loss for an
Autonomous Data Guard failover

FREEFORMTAGS CLOB Free form tags for the resource

INFRASTRUCTURETYPE VARCHAR2 The infrastructure type this resource belongs to

ISACCESSCONTROLENABLED VARCHAR2 Indicates if the database level access control is enabled

ISAUTOSCALINGENABLED VARCHAR2 Indicates if auto scaling is enabled for the Autonomous
Database

ISDATAGUARDENABLED VARCHAR2 Indicates whether the Autonomous Database has a local
Autonomous Data Guard enabled

ISDEDICATED VARCHAR2 True if the database uses dedicated Exadata
infrastructure

ISFREETIER VARCHAR2 Indicates if this is an Always Free resource

ISMTLSCONNECTIONREQUIRE
D

VARCHAR2 Indicates whether the Autonomous Database requires
mTLS connections

ISPREVIEW VARCHAR2 Indicates if the Autonomous Database version is a
preview version

ISREFRESHABLECLONE VARCHAR2 Indicates whether the Autonomous Database is a
refreshable clone

KEYHISTORYENTRY CLOB Key History Entry

KEYSTOREID VARCHAR2 The OCID of the key store

KEYSTOREWALLETNAME VARCHAR2 The wallet name for Oracle Cloud Infrastructure Vault

KMSKEYID VARCHAR2 The OCID of the key container that is used as the
master encryption key

KMSKEYLIFECYCLEDETAILS VARCHAR2 Customer managed key lifecycle details

LIFECYCLEDETAILS VARCHAR2 Information about the current lifecycle state

NSGIDS CLOB A list of the OCIDs of the network security groups NSGs

OCPUCOUNT NUMBER The number of OCPU cores to be made available to the
database

OPENMODE VARCHAR2 The Autonomous Database open mode

OPERATIONSINSIGHTSSTATU
S

VARCHAR2 Status of OCI Ops Insights for this Autonomous
Database

Appendix A
Autonomous Database Views

A-7

Column Datatype Description

PEERDBIDS VARCHAR2 The list of OCIDs of standby databases located in
Autonomous Data Guard

PERMISSIONLEVEL CLOB The Autonomous Database permission level

PRIVATEENDPOINT VARCHAR2 The private endpoint for the resource

PRIVATEENDPOINTIP VARCHAR2 The private endpoint IP address for the resource

PRIVATEENDPOINTLABEL VARCHAR2 The private endpoint label for the resource

REFRESHABLEMODE VARCHAR2 The refresh mode of the clone

REFRESHABLESTATUS VARCHAR2 The refresh status of the clone

ROLE VARCHAR2 The Autonomous Data Guard role

SOURCEID VARCHAR2 The OCID of the source Autonomous Database that was
cloned

SQLWEBDEVELOPERURL VARCHAR2 The Database Actions (SQL Developer Web) URL for
the Autonomous Database

STANDBYDB CLOB Autonomous Database Standby Summary

STANDBYWHITELISTEDIPS CLOB The client IP access control list

SUBNETID VARCHAR2 The OCID of the subnet the resource is associated with

SUPPORTEDREGIONSTOCLONE
TO

CLOB The list of regions that support the creation of
Autonomous Data Guard

SYSTEMTAGS CLOB System tags for this resource

TIMEDATAGUARDROLECHANGE
D

VARCHAR2 The date and time the Autonomous Data Guard role was
switched

TIMEDELETIONOFFREEAUTON
OMOUSDATABASE

NUMBER Time deletion of Free Autonomous Database

TIMELOCALDATAGUARDENABL
ED

VARCHAR2 The date and time that Autonomous Data Guard was
enabled for the Autonomous Database

TIMEMAINTENANCEBEGIN VARCHAR2 The date and time when maintenance will begin

TIMEMAINTENANCEEND VARCHAR2 The date and time when maintenance will end

TIMEOFLASTFAILOVER VARCHAR2 The timestamp of the last failover operation

TIMEOFLASTREFRESH VARCHAR2 The date and time of the last refresh

TIMEOFLASTREFRESHPOINT VARCHAR2 The refresh point timestamp

TIMEOFLASTSWITCHOVER VARCHAR2 The timestamp of the last switchover operation for the
Autonomous Database

TIMEOFNEXTREFRESH VARCHAR2 The date and time of next refresh

TIMERECLAMATIONOFFREEAU
TONOMOUSDATABASE

VARCHAR2 The date and time the Always Free database

USEDDATASTORAGESIZEINTB
S

NUMBER The amount of storage that has been used in terabytes

VAULTID VARCHAR2 The OCID of the Oracle Cloud Infrastructure Vault

WHITELISTEDIPS CLOB The client IP access control list

OCI_BUDGET_ALERT_RULES View
OCI_BUDGET_ALERT_RULES describes all the Oracle Cloud Infrastructure budget alert rules in the
Oracle Cloud Infrastructure tenancy obtained from the current Autonomous Database instance.

Queries against this view return results only if you have budgets and budget alerts created in
your tenancy.

Appendix A
Autonomous Database Views

A-8

See Budgets Overview for more information.

To query this view you need a dynamic group that includes your Autonomous Database
instance and the following policy defined on that dynamic group:

Allow dynamic-group <group-name> to read usage-budgets in tenancy

This policy lets you list budget summary and budget alerts in your tenancy (if you created a
budget and a budget alert). Optionally you can restrict the result returned by querying the view
to a given compartment:

Allow dynamic-group <group-name> to read usage-budgets in compartment <compartment-
name>

Column Datatype Description

BUDGETID VARCHAR2 The OCID of the budget

REGION VARCHAR2 Region name

COMPARTMENTID VARCHAR2 The compartment ID in which the bucket is authorized

DEFINEDTAGS CLOB Defined tags for the resource

DESCRIPTION VARCHAR2 The description of the alert rule

DISPLAYNAME VARCHAR2 The name of the alert rule

FREEFORMTAGS CLOB Free-form tags for the resource

ID VARCHAR2 The OCID of the alert rule

LIFECYCLESTATE VARCHAR2 The current state of the alert rule

MESSAGE VARCHAR2 The custom message that will be sent when the alert is
triggered

RECIPIENTS VARCHAR2 The audience that receives the alert when it triggers

THRESHOLD NUMBER The threshold for triggering the alert

THRESHOLDTYPE VARCHAR2 The type of threshold

TIMECREATED VARCHAR2 The time when the budget was created

TIMEUPDATED VARCHAR2 The time when the budget was updated

TYPE VARCHAR2 ACTUAL or FORECAST types of alert triggers

VERSION NUMBER The version of the alert rule

OCI_BUDGET_SUMMARY View
OCI_BUDGET_SUMMARY describes all the Oracle Cloud Infrastructure budget summaries in the
Oracle Cloud Infrastructure tenancy obtained from the current Autonomous Database instance.

Queries against this view return results only if you have budgets created in your tenancy.

See Budgets Overview for more information.

To query this view you need a dynamic group that includes your Autonomous Database
instance and the following policy defined on that dynamic group:

Allow dynamic-group <group-name> to read usage-budgets in tenancy

This policy lets you list budget summary and budget alerts in your tenancy (if you created a
budget and a budget alert). Optionally you can restrict the result returned by querying the view
to a given compartment:

Allow dynamic-group <group-name> to read usage-budgets in compartment <compartment-
name>

Appendix A
Autonomous Database Views

A-9

https://docs.oracle.com/en-us/iaas/Content/Billing/Concepts/budgetsoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Billing/Concepts/budgetsoverview.htm

Column Datatype Description

REGION VARCHAR2 Region name

COMPARTMENTID VARCHAR2 The OCID of the compartment

AMOUNT NUMBER The amount of the budget, expressed in the currency of
a rate card

DEFINEDTAGS CLOB Defined tags for the resource

FREEFORMTAGS CLOB Free-form tags for the resource

DISPLAYNAME VARCHAR2 The display name of the budget

LIFECYCLESTATE VARCHAR2 The current state of the budget

ACTUALSPEND NUMBER The actual spend in currency for the current budget
cycle

ALERTRULECOUNT NUMBER The total number of alert rules in the budget

BUDGETPROCESSINGPERIODS
TARTOFFSET

NUMBER The number of days offset from the first day of the
month, at which the budget processing period starts

DESCRIPTION VARCHAR2 The description of the budget

FORECASTEDSPEND NUMBER The forecasted spend in currency by the end of the
current budget cycle

ID VARCHAR2 The OCID of the budget

RESETPERIOD VARCHAR2 The reset period for the budget

TARGETS CLOB The list of targets on which the budget is applied

TARGETCOMPARTMENTID VARCHAR2 Target compartment OCID

TARGETTYPE VARCHAR2 The type of target on which the budget is applied

TIMECREATED VARCHAR2 The time the budget was created

TIMESPENDCOMPUTED VARCHAR2 The time the budget spend was last computed

TIMEUPDATED VARCHAR2 The time the budget was updated

VERSION VARCHAR2 The version of the budget

OCI_COST_DATA View
OCI_COST_DATA describes all the Oracle Cloud Infrastructure cost data for the Oracle Cloud
Infrastructure tenancy obtained from the current Autonomous Database instance.

To query this view you need a dynamic group that includes your Autonomous Database
instance and the following policy defined on that dynamic group:

Define tenancy usage-report as
ocid1.tenancy.oc1..aaaaaaaaned4fkpkisbwjlr56u7cj63lf3wffbilvqknstgtvzub7vhqkggq
Endorse dynamic-group <group-name> to read objects in tenancy usage-report

Note:

Do not replace the OCID in this policy with another OCID. This usage-report OCID
provides the Oracle Cloud Infrastructure usage data for your tenancy.

Column Datatype Description

REFERENCE_NUMBER VARCHAR2 Reference Number/Line identifier used for debugging
and corrections

Appendix A
Autonomous Database Views

A-10

Column Datatype Description

TENANT_ID VARCHAR2 The identifier (OCID) for the Oracle Cloud Infrastructure
tenant

INTERVAL_USAGE_START TIMESTAMP The start time of the usage interval for the resource in
UTC

INTERVAL_USAGE_END TIMESTAMP The end time of the usage interval for the resource in
UTC

SERVICE_NAME VARCHAR2 The service that the resource is in

COMPARTMENT_ID VARCHAR2 The ID of the compartment that contains the resource

COMPARTMENT_NAME VARCHAR2 The name of the compartment that contains the
resource

REGION VARCHAR2 The region that contains the resource

AVAILABILITY_DOMAIN VARCHAR2 The availability domain that contains the resource

RESOURCE_ID VARCHAR2 The identifier for the resource

BILLED_QUANTITY VARCHAR2 The quantity of the resource that has been billed over
the usage interval

BILLED_QUANTITY_OVERAGE VARCHAR2 The usage quantity for which you were billed

SUBSCRIPTION_ID VARCHAR2 A unique identifier associated with your commitment or
subscription

PRODUCT_SKU VARCHAR2 The Part Number for the resource in the line

PRODUCT_DESCRIPTION VARCHAR2 The product description for the resource in the line

UNIT_PRICE VARCHAR2 The cost billed to you for each unit of the resource used

UNIT_PRICE_OVERAGE VARCHAR2 The cost per unit of usage for overage usage of a
resource

MY_COST VARCHAR2 The cost charged for this line of usage

MY_COST_OVERAGE VARCHAR2 The cost billed for overage usage of a resource

CURRENCY_CODE VARCHAR2 The currency code for your tenancy

BILLING_UNIT_READABLE VARCHAR2 The unit measure associated with the usage/
billedQuantity in the line

SKU_UNIT_DESCRIPTION VARCHAR2 The unit used for measuring billed quantity

OVERAGE_FLAG CHAR Flag used for overage usage

IS_CORRECTION VARCHAR2 Used if the current line is a correction

BACK_REFERENCE_NUMBER VARCHAR2 Data amendments and corrections reference

CREATED_BY VARCHAR2 The user who created the service

CREATED_ON TIMESTAMP The time when the service was created

FREE_TIER_RETAINED VARCHAR2 Is the service retained on free tier

OCI_OBJECTSTORAGE_BUCKETS View
OCI_OBJECTSTORAGE_BUCKETS describes all the Oracle Cloud Infrastructure object storage
buckets in the Oracle Cloud Infrastructure tenancy obtained from the current Autonomous
Database instance.

To query this view you need a dynamic group that includes your Autonomous Database
instance and the following policy defined on that dynamic group:

Allow dynamic-group <group-name> to read buckets in tenancy

Appendix A
Autonomous Database Views

A-11

This policy lets you list object storage buckets in your tenancy. Optionally you can restrict the
result returned by querying this view to a given compartment:

Allow dynamic-group <group-name> to read buckets in compartment <compartment-name>

Column Datatype Description

REGION VARCHAR2 Region name

COMPARTMENTID VARCHAR2 The compartment ID in which the bucket is authorized

NAMESPACE VARCHAR2 The Object Storage namespace in which the bucket
resides

APPROXIMATECOUNT NUMBER The approximate number of objects in the bucket

APPROXIMATESIZE NUMBER The approximate total size in bytes of all objects in the
bucket

AUTOTIERING VARCHAR2 The auto tiering status on the bucket

CREATEDBY VARCHAR2 The OCID of the user who created the bucket

DEFINEDTAGS CLOB Defined tags for the resource

FREEFORMTAGS CLOB Free-form tags for the resource

ETAG VARCHAR2 The entity tag (ETag) for the bucket

ID VARCHAR2 The OCID of the bucket

ISREADONLY VARCHAR2 Whether or not this bucket is read only

KMSKEYID VARCHAR2 The OCID of a master encryption key

METADATA VARCHAR2 Arbitrary string keys and values for user-defined
metadata

NAME VARCHAR2 The name of the bucket

OBJECTEVENTSENABLED VARCHAR2 Whether or not events are emitted for object state
changes in this bucket

OBJECTLIFECYCLEPOLICYET
AG

VARCHAR2 The entity tag (ETag) for the live object lifecycle policy on
the bucket

PUBLICACCESSTYPE VARCHAR2 The type of public access enabled on this bucket

REPLICATIONENABLED VARCHAR2 Whether or not this bucket is a replication source

STORAGETIER VARCHAR2 The storage tier type assigned to the bucket

TIMECREATED VARCHAR2 The date and time the bucket was created

VERSIONING VARCHAR2 The versioning status on the bucket

OCI_USAGE_DATA View
OCI_USAGE_DATA describes all the Oracle Cloud Infrastructure usage data for the Oracle Cloud
Infrastructure tenancy obtained from the current Autonomous Database instance.

To query this view you need a dynamic group that includes your Autonomous Database
instance and the following policy defined on that dynamic group:

Define tenancy usage-report as
ocid1.tenancy.oc1..aaaaaaaaned4fkpkisbwjlr56u7cj63lf3wffbilvqknstgtvzub7vhqkggq
Endorse dynamic-group <group-name> to read objects in tenancy usage-report

Appendix A
Autonomous Database Views

A-12

Note:

Do not replace the OCID in this policy with another OCID. This usage-report OCID
provides the Oracle Cloud Infrastructure cost and usage data for your tenancy.

Column Datatype Description

REFERENCE_NUMBER VARCHAR2 Reference Number/Line identifier used for debugging
and corrections

TENANT_ID VARCHAR2 The identifier (OCID) for the Oracle Cloud Infrastructure
tenant

INTERVAL_USAGE_START TIMESTAMP The start time of the usage interval for the resource in
UTC

INTERVAL_USAGE_END TIMESTAMP The end time of the usage interval for the resource in
UTC

SERVICE_NAME VARCHAR2 The service that the resource is in

RESOURCE_NAME VARCHAR2 The resource name used by the metering system

COMPARTMENT_ID VARCHAR2 The ID of the compartment that contains the resource

COMPARTMENT_NAME VARCHAR2 The name of the compartment that contains the
resource

REGION VARCHAR2 The region that contains the resource

AVAILABILITY_DOMAIN VARCHAR2 The availability domain that contains the resource

RESOURCE_ID VARCHAR2 The identifier for the resource

CONSUMED_QUANTITY VARCHAR2 The quantity of the resource that has been consumed
over the usage interval

BILLED_QUANTITY VARCHAR2 The quantity of the resource that has been billed over
the usage interval

CONSUMED_QUANTITY_UNITS VARCHAR2 The unit for the consumed quantity and billed quantity

CONSUMED_QUANTITY_MEASU
RE

VARCHAR2 The measure for the consumed quantity and billed
quantity

IS_CORRECTION VARCHAR2 Used if the current line is a correction

BACK_REFERENCE_NUMBER VARCHAR2 Data amendments and corrections reference

CREATED_BY VARCHAR2 The user who created the service

CREATED_ON TIMESTAMP The time when the service was created

FREE_TIER_RETAINED VARCHAR2 Is the service retained on free tier

Always Free Autonomous Database – Oracle Database 21c
When you provision Always Free Autonomous Database you can select either Oracle
Database 19c or Oracle Database 23ai.

Always Free Autonomous Database Oracle Database 21c Features
When you provision Always Free Autonomous Database you can select either Oracle
Database 19c or Oracle Database 23ai.

Appendix A
Always Free Autonomous Database – Oracle Database 21c

A-13

Note:

With the availability of Always Free Autonomous Database Oracle Database 23ai,
Oracle Database 21c is no longer available as a provisioning or cloning option.
Existing Always Free Autonomous Databases running with Oracle Database 21c
continue as Always Free Autonomous Database.

Always Free Autonomous Database running with Oracle Database 21c offers many new
innovative autonomous and developer-oriented functionality, including but not limited to the
following:

Performance Features

• Automatic Zone Maps

Automatic zone maps are created and maintained for any user table without any customer
intervention. Zone maps allow the pruning of block ranges and partitions based on the
predicates in the queries. Automatic zone maps are maintained for direct loads, and are
maintained and refreshed for any other DML operation incrementally and periodically in the
background.

The feature is enabled as follows:

exec dbms_auto_zonemap.configure('AUTO_ZONEMAP_MODE','ON');

The feature is disabled as follows:

exec dbms_auto_zonemap.configure('AUTO_ZONEMAP_MODE','OFF');

See Summary of DBMS_AUTO_ZONEMAP Subprograms for more information.

• Object Activity Tracking System

Object Activity Tracking System (OATS) tracks the usage of various types of database
objects. Usage includes operations such as access, data manipulation, or refresh.

No manual intervention is required to enable OATS, and zero or minimal configuration is
required. See PL/SQL procedure DBMS_ACTIVITY.CONFIGURE and database dictionary
views DBA_ACTIVITY_CONFIG for details.

Application Development: Advanced Analytical SQL Capabilities

• SQL Macros

SQL Macros, the capability to factor out common SQL constructs supports scalar
expressions, increasing developer productivity, simplify collaborative code development,
and improve code quality. See SQL Macros for more information.

• Enhanced Analytic Functions

Window functions support the full ANSI Standard, including the support of EXCLUDE
options and the WINDOW clause. Supporting the full ANSI standard enables easier
migration of applications that were developed with other standard-compliant database
systems. See Windowing Functions for more information.

• New Analytical and Statistical Aggregate Functions

Appendix A
Always Free Autonomous Database – Oracle Database 21c

A-14

https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/summary-dbms_auto_zonemap-subprograms.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/arpls/DBMS_ACTIVITY.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/refrn/DBA_ACTIVITY_CONFIG.html#GUID-1595B113-AE5B-47C9-B1FA-889061C06131
https://docs.oracle.com/en/database/oracle/oracle-database/21/lnpls/release-changes.html#GUID-0A638FCA-89C2-44E0-A5D5-0D09800D920D
https://docs.oracle.com/en/database/oracle/oracle-database/21/dwhsg/sql-analysis-reporting-data-warehouses.html#GUID-2877E1A5-9F11-47F1-A5ED-D7D5C7DED90A

Several new analytical and statistical aggregate functions are available in SQL in Oracle
Database 21c. With these additional SQL aggregation functions, you can write more
efficient code and benefit from faster in-database processing.

– CHECKSUM computes the checksum of the input values or expression.

Supports the keywords ALL and DISTINCT.

– KURTOSIS functions KURTOSIS_POP and KURTOSIS_SAMP measure the tailedness of a
data set where a higher value means more of the variance within the data set is the
result of infrequent extreme deviations as opposed to frequent modestly sized
deviations. Note that a normal distribution has a kurtosis of zero.

Supports the keywords ALL, DISTINCT, and UNIQUE.

– SKEWNESS functions SKEWNESS_POP and SKEWNESS_SAMP are measures of asymmetry in
data. A positive skewness is means the data skews to the right of the center point. A
negative skewness means the data skews to the left.

Supports the keywords ALL, DISTINCT, and UNIQUE.

– ANY_VALUE, a function to simplify and optimize the performance of GROUP BY
statements, returns a random value in a group and is optimized to return the first value
in the group. It ensures that there are no comparisons for any incoming row and
eliminates the necessity to specify every column as part of the GROUP BY clause.

See Oracle Database 21c SQL Language Reference Guide for more information.

• Bitwise Aggregate Functions

With the new bitwise type processing functions BIT_AND_AGG, BIT_OR_AGG,
andBIT_XOR_AGG, native bitwise type processing is provided by Oracle Database 21c.
These functions enable a type of processing inside the database for new types of
application processing, improving the overall performance, avoiding unnecessary data
movement, and natively taking advantage of core database functionality such as parallel
processing. See Oracle Database 21c SQL Language Reference Guide. for more
information.

JavaScript Execution using DBMS_MLE

The DBMS_MLE package allows users to execute JavaScript code inside the Oracle Database
and exchange data seamlessly between PL/SQL and JavaScript. The JavaScript code itself
can execute PL/SQL and SQL through built-in JavaScript modules. JavaScript data types are
automatically mapped to Oracle Database data types and vice versa.

With the DBMS_MLE package, developers can write their data processing logic in JavaScript.
JavaScript is a widely-used and popular programming language that can now also be used for
writing programs that need to execute close to the data.

See DBMS_MLE for more information.

Blockchain Table

Blockchain tables are append-only tables in which only insert operations are allowed. Deleting
rows is either prohibited or restricted based on time. Rows in a blockchain table are made
tamper-resistant by special sequencing and chaining algorithms. Users can verify that rows
have not been tampered. A hash value that is part of the row metadata is used to chain and
validate rows.

Blockchain tables enable you to implement a centralized ledger model where all participants in
the blockchain network have access to the same tamper-resistant ledger.

Appendix A
Always Free Autonomous Database – Oracle Database 21c

A-15

https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982
https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982

A centralized ledger model reduces administrative overheads of setting up a decentralized
ledger network, leads to a relatively lower latency compared to decentralized ledgers,
enhances developer productivity, reduces the time to market, and leads to significant savings
for the organization. Database users can continue to use the same tools and practices that
they would use for other database application development.

See Managing Blockchain Tables for more information.

JSON Document Store Enhancements

• Enhancements to Data Guide

Enhances development flexibility and allows for materialized views, which may improve
query performance with a trade-off against DML performance.

– JSON_DATAGUIDE now gathers statistic information if you specify
DBMS_JSON.GATHER_STATS in the third argument. They are computed dynamically (up-
to-date) at the time of the function call.

– DBMS_JSON.CREATE_VIEW now gives you the option to create a materialized view
instead of a standard view. It also gives you the option to specify a particular path so
the view can be created on a subset of the data. Both CREATE_VIEW and
ADD_VIRTUAL_COLUMN are enhanced to allow automatic resolution of column naming
conflicts, to provide a prefix to be applied to column names, and to specify the case-
sensitivity of column names.

See JSON Data Guide for more information.

• Multivalue Index for JSON DataType

A new create index syntax CREATE MULTIVALUE INDEX allows you to create a functional
index on arrays of strings or numbers within a JSON datatype column. Each unique value
within the array will become a searchable index entry. This avoids the need for full JSON
scans to find values within arrays in JSON columns, when searched using the
JSON_EXISTS or JSON_VALUE operators. It provides similar benefits to conventional
functional indexes when searching JSON, but conventional functional indexes are limited
to a single indexed value per row.

See Creating Multivalue Function-Based Indexes for JSON_EXISTS and Using a
Multivalue Function-Based Index for more information.

• New JSON Data Type

JSON is a new SQL and PL/SQL data type for JSON data. Using this type provides a
substantial increase in query and update performance. JSON data type uses binary format
OSON that is optimized for SQL/JSON query and DML processing. Using the binary format
can yield database performance improvements for processing JSON data.

You can use JSON data type and its instances in most places where a SQL data type is
allowed, including:

– As the column type for table or view DDL

– With SQL/JSON functions and conditions, and with PL/SQL procedures and functions

– In Oracle dot-notation query syntax

– For creation of functional and search indexes

Oracle Call Interface and Java Database Connectivity (JDBC) clients now provide APIs
that can work directly with binary JSON datatype OSON format, significantly saving
network costs and server CPU cycles. Going forward, Oracle recommends using JSON
datatype to store and process JSON data.

Appendix A
Always Free Autonomous Database – Oracle Database 21c

A-16

https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/json-dataguide.html#GUID-219FC30E-89A7-4189-BC36-7B961A24067C
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/indexes-for-json-data.html#GUID-CA25E863-1EA2-4E9A-A898-E7CA9CD645B1
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/indexes-for-json-data.html#GUID-CC9F0E42-413E-48E0-AF1F-DD9130853347
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/indexes-for-json-data.html#GUID-CC9F0E42-413E-48E0-AF1F-DD9130853347
https://blogs.oracle.com/jsondb/osonformat
https://blogs.oracle.com/jsondb/osonformat

The Oracle Autonomous JSON Database uses OSON format to store and process JSON
data.

See Creating a Table With a JSON Column for more information.

• New Oracle SQL Function JSON_TRANSFORM

You can use SQL function JSON_TRANSFORM to update parts of a JSON document. You
specify which parts to modify, the modifications, and any new values. JSON_TRANSFORM is
optimized by doing partial updates at OSON format level to achieve better JSON datatype
update performance.

JSON_TRANSFORM makes it easier for an application to modify a JSON document, without
having to parse and rebuild it. In most cases, it also avoids a round-trip between the server
and client for the whole document.

See Oracle SQL Function JSON_TRANSFORM for more information.

• SQL/JSON Syntax Improvements

You can now express more complex SQL/JSON queries and express some queries more
succinctly:

– New SQL function JSON_SCALAR accepts a scalar instance of a SQL data type and
returns a scalar JSON value as an instance of JSON data type.

– New JSON path-language item methods support JSON_SCALAR: float(), double(),
binary(), ymInterval(), and dsInterval().

– The JSON path-language and dot-notation syntax support the aggregate item
methods: avg(), count(), minNumber(), maxNumber(), minString(), maxString(),
sum().

See Simple Dot-Notation Access to JSON Data and SQL/JSON Path Expression Item
Methods for more information.

SODA Enhancements: New JSON Data Type

The default collection storage changes to the JSON data type. See Creating a Document
Collection with SODA for PL/SQL for more information.

PL/SQL Enhancements

• PL/SQL is enhanced to help you program iteration controls using new iterators in loops
and in qualified expressions.

The new iterator constructs are clear, simple, understandable, and efficient.

See PL/SQL Extended Iterators for more information.

Gradual Database Password Rollover for Applications

An application can change its database passwords without an administrator having to schedule
downtime.

To accomplish this, a database administrator can associate a profile having a non-zero limit for
the PASSWORD_ROLLOVER_TIME password profile parameter, with an application schema. This
allows the database password of the application user to be altered while allowing the older
password to remain valid for the time specified by the PASSWORD_ROLLOVER_TIME limit. During
the rollover period of time, the application instance can use either the old password or the new
password to connect to the database server. When the rollover time expires, only the new
password is allowed.

Appendix A
Always Free Autonomous Database – Oracle Database 21c

A-17

https://www.oracle.com/autonomous-database/autonomous-json-database/
https://blogs.oracle.com/jsondb/osonformat
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/creating-a-table-with-a-json-column.html
https://blogs.oracle.com/jsondb/osonformat
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/oracle-sql-function-json_transform.html#GUID-7BED994B-EAA3-4FF0-824D-C12ADAB862C1
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/simple-dot-notation-access-to-json-data.html#GUID-7249417B-A337-4854-8040-192D5CEFD576
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/json-path-expressions.html#GUID-8656CAB9-C293-4A99-BB62-F38F3CFC4C13
https://docs.oracle.com/en/database/oracle/oracle-database/21/adjsn/json-path-expressions.html#GUID-8656CAB9-C293-4A99-BB62-F38F3CFC4C13
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/plsql/19/adsdp/using-soda-pl-sql.html#GUID-AC1A88D5-8C89-492D-AC57-E6F3694F6D96
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/plsql/19/adsdp/using-soda-pl-sql.html#GUID-AC1A88D5-8C89-492D-AC57-E6F3694F6D96
https://docs.oracle.com/en/database/oracle/oracle-database/21/lnpls/release-changes.html#GUID-60026B49-A592-4F2A-83FC-5C755695F850

In addition to the clause PASSWORD_ROLLOVER_TIME in the CREATE PROFILE and ALTER PROFILE
statements, the ALTER USER statement has a clause, EXPIRE PASSWORD ROLLOVER PERIOD. The
ACCOUNT_STATUS column of the DBA_USERS and USER_USERS data dictionary views have several
statuses indicating values to indicate rollover status.

See Managing Gradual Database Password Rollover for Applications for more information.

Always Free Autonomous Database Oracle Database 21c Notes
If you are using Always Free Autonomous Database with Oracle Database 21c, the following
Oracle Database 21c functionality is not supported:

• Automatic Materialized Views

• Autonomous Database only supports Cloud Links when your database version is Oracle
Database 19c. Cloud Links are not supported with database version Oracle Database 21c.
See Use Cloud Links for Read Only Data Access on Autonomous Database for more
information.

Autonomous Database RMAN Recovery Catalog
You can use Oracle Autonomous Database as a Recovery Manager (RMAN) recovery catalog.
A recovery catalog is a database schema that RMAN uses to store metadata about one or
more Oracle databases.

Use Autonomous Database as an RMAN Recovery Catalog
Recovery Manager (RMAN) recovery catalog is preinstalled in Autonomous Database in
schema RMAN$CATALOG. The preinstalled catalog version is based on the latest version of
Oracle Database and is compatible with all supported Oracle database versions.

The recovery catalog contains metadata about RMAN operations for each registered target
database. When RMAN is connected to a recovery catalog, RMAN obtains its metadata
exclusively from the catalog.

Note:

Autonomous Database is not supported as an RMAN target database. An RMAN
target database is an Oracle Database to which RMAN is connected with the TARGET
keyword. A target database is a database on which RMAN is performing backup and
recovery operations. See Backup and Restore Autonomous Database Instances for
information on Autonomous Database backup and recovery operations.

Access to RMAN Recovery Catalog

Access to the recovery catalog is provided through predefined user RMAN$CATALOG with the
appropriate access to the recovery catalog only. The RMAN$CATALOG user is locked by default.

You can either proxy to the predefined user RMAN$CATALOG through the ADMIN user or explicitly
unlock the preinstalled schema:

• ADMIN user proxy into RMAN$CATALOG using ADMIN user's password:

connect admin[rman$catalog]/password@connect_string

Appendix A
Autonomous Database RMAN Recovery Catalog

A-18

https://docs.oracle.com/en/database/oracle/oracle-database/21/dbseg/configuring-authentication.html#GUID-ACBA8DAE-C5B4-4811-A31D-53B97C50249B

• ADMIN user can set a password for RMAN$CATALOG. Then the RMAN$CATALOG user can
directly connect:

connect admin/password@connect_string
alter user rman$catalog identified by password account unlock;
connect rman$catalog/password@connect_string

Use the RMAN Recovery Catalog

You can use the RMAN recovery catalog by connecting RMAN to the preinstalled recovery
catalog. Registering a target database in the recovery catalog maintains the database’s
records in the recovery catalog. For example, to register a target database:

RMAN> connect catalog rman$catalog/password@connect_string;

connected to recovery catalog database
recovery catalog schema version 21.01.00.00. is newer than RMAN version

RMAN> register database;
database registered in recovery catalog
starting full resync of recovery catalog

To use your Autonomous Database as a recovery catalog, it is recommended to connect with
the LOW service.

See Registering a Database in the Recovery Catalog for more details about using the RMAN
recovery catalog.

Notes for Users Migrating from Other Oracle Databases
Describes information that is useful when you are migrating from other Oracle Databases to
Oracle Autonomous Database.

Initialization Parameters
Autonomous Database configures database initialization parameters automatically when you
provision a database. You do not need to set any initialization parameters to start using your
service. But, you can modify some parameters if you need to.

Modifiable Initialization Parameters

The following table shows the initialization parameters that are only modifiable with ALTER
SESSION.

Only Modifiable with ALTER SESSION More Information

CONSTRAINTS
CONTAINER
CURRENT_SCHEMA
CURSOR_INVALIDATION CURSOR_INVALIDATION

DEFAULT_COLLATION
DEFAULT_CREDENTIAL
EDITION

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-19

Only Modifiable with ALTER SESSION More Information

ISOLATION_LEVEL
JSON_BEHAVIOR This parameter is only applicable with Oracle Database 23ai.

See JSON_BEHAVIOR for more information.

JSON_EXPRESSION_CHECK JSON_EXPRESSION_CHECK

OPTIMIZER_SESSION_TYPE OPTIMIZER_SESSION_TYPE

OPTIMIZER_USE_INVISIBLE_INDEXES OPTIMIZER_USE_INVISIBLE_INDEXES

READ_ONLY
SQL_TRACE See Perform SQL Tracing on Autonomous Database for

details

SQL_TRANSLATION_PROFILE
SQL_TRANSPILER This parameter is only applicable with Oracle Database 23ai.

See SQL_TRANSPILER for more information.

STATISTICS_LEVEL STATISTICS_LEVEL

TIME_ZONE For more information on TIME_ZONE, see Oracle Database
SQL Language Reference.

XML_PARAMS This parameter is only applicable with Oracle Database 23ai.
See XML_PARAMS for more information.

The following table shows the initialization parameters that are only modifiable with ALTER
SYSTEM.

Only Modifiable with ALTER SYSTEM More Information

BLANK_TRIMMING BLANK_TRIMMING

FIXED_DATE FIXED_DATE

JOB_QUEUE_PROCESSES JOB_QUEUE_PROCESSES

LOCKDOWN_ERRORS See LOCKDOWN_ERRORS for details

MAX_IDLE_BLOCKER_TIME MAX_IDLE_BLOCKER_TIME
With a value higher than 5, the parameter acts as if it was set
to 5

MAX_IDLE_TIME MAX_IDLE_TIME

SESSION_EXIT_ON_PACKAGE_STATE_E
RROR

SESSION_EXIT_ON_PACKAGE_STATE_ERROR

The following table shows the initialization parameters that are modifiable with either ALTER
SESSION or ALTER SYSTEM.

Modifiable with ALTER SESSION or
ALTER SYSTEM

More Information

APPROX_FOR_AGGREGATION APPROX_FOR_AGGREGATION

APPROX_FOR_COUNT_DISTINCT APPROX_FOR_COUNT_DISTINCT

APPROX_FOR_PERCENTILE APPROX_FOR_PERCENTILE

CLIENT_PREFETCH_ROWS See CLIENT_PREFETCH_ROWS

CONTAINER_DATA CONTAINER_DATA

CURSOR_SHARING CURSOR_SHARING

DDL_LOCK_TIMEOUT DDL_LOCK_TIMEOUT

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-20

https://docs.oracle.com/en/database/oracle/oracle-database/23/refrn/JSON_BEHAVIOR.html#GUID-667487AB-7A2B-4C79-90CE-009DFB415733
https://docs.oracle.com/en/database/oracle/oracle-database/23/refrn/SQL_TRANSPILER.html#GUID-AB2F10A6-56FD-42AC-A311-7216C881476A

Modifiable with ALTER SESSION or
ALTER SYSTEM

More Information

GROUP_BY_POSITION
GROUP_BY_POSITION_ENABLED This parameter is only applicable with Oracle Database 23ai.

See GROUP_BY_POSITION_ENABLED for more information

HEAT_MAP HEAT_MAP

IGNORE_SESSION_SET_PARAM_ERRORS IGNORE_SESSION_SET_PARAM_ERRORS

LDAP_DIRECTORY_ACCESS LDAP_DIRECTORY_ACCESS

LOAD_WITHOUT_COMPILE
MAX_STRING_SIZE See Data Types for details

NLS_CALENDAR NLS_CALENDAR

NLS_COMP NLS_COMP

NLS_CURRENCY NLS_CURRENCY

NLS_DATE_FORMAT NLS_DATE_FORMAT

NLS_DATE_LANGUAGE NLS_DATE_LANGUAGE

NLS_DUAL_CURRENCY NLS_DUAL_CURRENCY

NLS_ISO_CURRENCY NLS_ISO_CURRENCY

NLS_LANGUAGE NLS_LANGUAGE

NLS_LENGTH_SEMANTICS NLS_LENGTH_SEMANTICS

NLS_NCHAR_CONV_EXCP NLS_NCHAR_CONV_EXCP

NLS_NUMERIC_CHARACTERS NLS_NUMERIC_CHARACTERS

NLS_SORT NLS_SORT

NLS_TERRITORY NLS_TERRITORY

NLS_TIME_FORMAT
NLS_TIME_TZ_FORMAT
NLS_TIMESTAMP_FORMAT NLS_TIMESTAMP_FORMAT

NLS_TIMESTAMP_TZ_FORMAT NLS_TIMESTAMP_TZ_FORMAT

OPTIMIZER_CAPTURE_SQL_QUARANTIN
E

OPTIMIZER_CAPTURE_SQL_QUARANTINE

OPTIMIZER_IGNORE_HINTS For more information on OPTIMIZER_IGNORE_HINTS, see
Manage Optimizer Statistics on Autonomous Database.

OPTIMIZER_IGNORE_PARALLEL_HINTS For more information on
OPTIMIZER_IGNORE_PARALLEL_HINTS, see Manage
Optimizer Statistics on Autonomous Database.

OPTIMIZER_MODE OPTIMIZER_MODE

OPTIMIZER_REAL_TIME_STATISTICS OPTIMIZER_REAL_TIME_STATISTICS

OPTIMIZER_USE_SQL_QUARANTINE OPTIMIZER_USE_SQL_QUARANTINE

PLSCOPE_SETTINGS PLSCOPE_SETTINGS

PLSQL_CCFLAGS PLSQL_CCFLAGS

PLSQL_DEBUG PLSQL_DEBUG

PLSQL_IMPLICIT_CONVERSION_BOOL This parameter is only applicable with Oracle Database 23ai.
See PLSQL_IMPLICIT_CONVERSION_BOOL

PLSQL_OPTIMIZE_LEVEL PLSQL_OPTIMIZE_LEVEL

PLSQL_WARNINGS PLSQL_WARNINGS

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-21

https://docs.oracle.com/en/database/oracle/oracle-database/23/refrn/GROUP_BY_POSITION_ENABLED.html#GUID-C8BD540E-0695-4BFD-BD6A-9CCBFD3824E0

Modifiable with ALTER SESSION or
ALTER SYSTEM

More Information

QUERY_REWRITE_INTEGRITY QUERY_REWRITE_INTEGRITY

RECYCLEBIN RECYCLEBIN

REMOTE_DEPENDENCIES_MODE REMOTE_DEPENDENCIES_MODE

RESULT_CACHE_INTEGRITY See RESULT_CACHE_INTEGRITY

RESULT_CACHE_MODE See RESULT_CACHE_MODE

SKIP_UNUSABLE_INEDEXES SKIP_UNUSABLE_INDEXES

SYSDATE_AT_DBTIMEZONE See SYSDATE_AT_DBTIMEZONE Select a Time Zone for
SYSDATE on Autonomous Database

XML_CLIENT_SIDE_DECODING See XML_CLIENT_SIDE_DECODING

For more information on initialization parameters see Oracle Database Reference.

SESSION_EXIT_ON_PACKAGE_STATE_ERROR
SESSION_EXIT_ON_PACKAGE_STATE_ERROR enables or disables special handling for stateful
PL/SQL packages running in a session.

Property Description

Parameter type Boolean

Default Value FALSE
Modifiable ALTER SYSTEM
Range of values TRUE | FALSE

SESSION_EXIT_ON_PACKAGE_STATE_ERROR specifies the handling for a stateful PL/SQL package
running in a session. When such a package undergoes modification, such as during planned
maintenance for Oracle-supplied objects, the sessions that have an active instantiation of the
package receive the following error when they attempt to run the package:

ORA-4068 existing state of package has been discarded

However, the application code that receives the ORA-4068 error may not be equipped to handle
this error with its retry logic.

Setting SESSION_EXIT_ON_PACKAGE_STATE_ERROR to TRUE provides different handling for this
case. When SESSION_EXIT_ON_PACKAGE_STATE_ERROR is TRUE, instead of just raising the
ORA-4068 error when the package state is discarded, the session immediately exits. This can
be advantageous because many applications are able to handle session termination by
automatically and transparently re-establishing the connection.

SYSDATE_AT_DBTIMEZONE Select a Time Zone for SYSDATE on Autonomous
Database

SYSDATE_AT_DBTIMEZONE enables special handling in a session for the date and time value
returned in calls to SYSDATE and SYSTIMESTAMP.

Depending on the value of SYSDATE_AT_DBTIMEZONE, you see either the date and time based on
the default Autonomous Database time zone, Coordinated Universal Time (UTC), or based on
the time zone that you set in your database.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-22

Property Description

Parameter type Boolean

Default Value FALSE
Modifiable ALTER SESSION, ALTER SYSTEM
Range of values TRUE | FALSE

Default Autonomous Database Time Zone

The default Autonomous Database time zone is Coordinated Universal Time (UTC) and by
default calls to SYSDATE and SYSTIMESTAMP return the date and time in UTC.

In order to change database time zone, you can run the following statement. This example sets
the database time zone to UTC-5.

ALTER DATABASE SET TIME_ZONE='-05:00';

Note:

You must restart the Autonomous Database instance for the change to take effect.

After you set the database time zone, by default SYSDATE and SYSTIMESTAMP continue to return
date and time in UTC (SYSDATE_AT_DBTIMEZONE is FALSE by default). If you set
SYSDATE_AT_DBTIMEZONE to TRUE in a session, SYSDATE and SYSTIMESTAMP return the database
time zone.

See Setting the Database Time Zone for more information on using the SET TIME_ZONE clause
with ALTER DATABASE.

Using SYSDATE_AT_DBTIMEZONE in a Session

When SYSDATE_AT_DBTIMEZONE is FALSE in a session, calls to SYSDATE and SYSTIMESTAMP return
values based on the default Autonomous Database time zone, Coordinated Universal Time
(UTC).

When SYSDATE_AT_DBTIMEZONE is TRUE in a session, calls to SYSDATE or SYSTIMESTAMP return
the date and time based on the database time zone.

Note:

Setting SYSDATE_AT_DBTIMEZONE to TRUE only affects the use of SYSDATE and
SYSTIMESTAMP as operators in application SQL (for example, in queries, DML, and
CTAS operations). When using this parameter, it is recommended that your client/
session timezone matches your database timezone.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-23

Example

The following example returns dates and times for two different time zones, based on the
SYSDATE_AT_DBTIMEZONE parameter value:

SQL> SELECT DBTIMEZONE FROM DUAL;

DBTIMEZONE

-05:00

SQL> ALTER SESSION SET SYSDATE_AT_DBTIMEZONE=FALSE;

Session altered.

SQL> SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP

27-JAN-22 06.59.45.708082000 PM GMT

SQL> ALTER SESSION SET SYSDATE_AT_DBTIMEZONE=TRUE;

Session altered.

SQL> SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP

27-JAN-22 02.14.47.578946000 PM -05:00

Note:

When a SYSDATE or SYSTIMESTAMP query is executed in SQL Worksheet of Database
Actions, the time and date value that is returned is in UTC (when
SYSDATE_AT_DBTIMEZONE parameter is set to TRUE or FALSE). To obtain the database
time zone when working in Database Actions, use TO_CHAR() as follows:

SQL> SELECT TO_CHAR(SYSTIMESTAMP,'YYYY-MM-DD"T"HH24:MI:SS TZH":"TZM')
FROM DUAL;

TO_CHAR(SYSTIMESTAMP,'YYYY-MM-DD"T"HH24:MI:SSTZH":"TZM')

2022-01-27T14:15:00 -05:00

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-24

SQL Commands
Autonomous Database allows most of the SQL commands available in Oracle Database. To
ensure the security and the performance of Autonomous Database, some SQL commands are
restricted.

This section provides a list of SQL command limitations that are required to protect security
and for the performance integrity of Autonomous Databases. Most of the standard SQL and
PL/SQL syntax and constructs available with Oracle Database work in Autonomous
Databases.

Note:

If you try to use a restricted SQL command the system reports:

ORA-01031: insufficient privileges

This error indicates that you are not allowed to run the SQL command in Autonomous
JSON Database.

The following SQL statements are not available in Autonomous Database:

• ADMINISTER KEY MANAGEMENT: By default Autonomous Database uses Oracle-managed
encryption keys. Using Oracle-managed keys, Autonomous Database creates and
manages the encryption keys that protect your data and Oracle handles rotation of the
TDE master key.

If you want customer-managed keys, a master encryption key in the Oracle Cloud
Infrastructure Vault is used to generate the TDE master key on Autonomous Database.
See Managing Encryption Keys on Autonomous Database for more information.

• CREATE TABLESPACE, ALTER TABLESPACE, and DROP TABLESPACE: Autonomous Database
automatically configures default data and temporary tablespaces for the database. Adding,
removing, or modifying tablespaces is not allowed. Autonomous Database creates one
tablespace or multiple tablespaces automatically depending on the storage size.

• CREATE DATABASE LINK
Use DBMS_CLOUD_ADMIN.CREATE_DATABASE_LINK to create database links in Autonomous
Database. See Use Database Links with Autonomous Database for more information.

• CREATE LIBRARY
• DROP DATABASE LINK

Use DBMS_CLOUD_ADMIN.DROP_DATABASE_LINK to drop database links in Autonomous
Database. See Use Database Links with Autonomous Database for more information.

Roles and Views Restrictions for Data Dictionary

Granting SELECT ANY DICTIONARY does not provide access to the SYS/SYSTEM schemas. You
can grant SELECT_CATALOG_ROLE to allow SELECT privileges on all data dictionary views, if
needed.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-25

SQL Statements with Restrictions in Autonomous Database

The following DDL statements are available in Autonomous Database with some restrictions:

SQL Command Restrictions

ALTER PLUGGABLE
DATABASE and ALTER
DATABASE

Only the following clauses are allowed:

DATAFILE AUTOEXTEND ON
DATAFILE AUTOEXTEND OFF
DEFAULT EDITION
SET TIME_ZONE
SET CMU_WALLET

ALTER PROFILE Using ALTER PROFILE, there are restrictions for a user defined
PASSWORD_VERIFY_FUNCTION. See Manage Password Complexity on
Autonomous Database for more information.

Using ALTER PROFILE, the optional CONTAINER clause is ignored if
specified.

See Create Users on Autonomous Database for information on the
password parameter values defined in the default profile.

ALTER SESSION Only the following clauses are allowed:

ADVISE COMMIT, ADVISE ROLLBACK, ADVISE NOTHING
CLOSE DATABASE LINK
ENABLE COMMIT IN PROCEDURE, DISABLE COMMIT IN PROCEDURE
ENABLE PARALLEL <QUERY|DDL|DML>, DISABLE PARALLEL <QUERY|
DDL|DML>, FORCE PARALLEL <QUERY|DDL|DML>

ENABLE RESUMABLE, DISABLE RESUMABLE
SET CONSTRAINTS
SET CURRENT_SCHEMA
SET DEFAULT_COLLATION
SET EDITION
SET ISOLATION_LEVEL
SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES
SET ROW ARCHIVAL VISIBILITY
SET STATISTICS_LEVEL
SET TIME_ZONE

ALTER SYSTEM ALTER SYSTEM is not allowed except ALTER SYSTEM SET and ALTER
SYSTEM KILL SESSION
SET can only be used to set parameters listed in Initialization
Parameters.

ALTER USER The following clause is ignored: DEFAULT TABLESPACE
The IDENTIFIED with the EXTERNALLY clause is not supported.

The IDENTIFIED BY VALUES clause is not allowed.

ALTER TABLE For restrictions, see ALTER TABLE Restrictions.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-26

SQL Command Restrictions

CREATE PROFILE PASSWORD_VERIFY_FUNCTION
See Manage Password Complexity on Autonomous Database for more
information.

Using ALTER PROFILE, the optional CONTAINER clause is ignored if
specified.

See Create Users on Autonomous Database for information on the
password parameter values defined in the default profile.

CREATE TABLE For restrictions, see CREATE TABLE Restrictions.

CREATE OR REPLACE
TRIGGER

The AFTER STARTUP and BEFORE SHUTDOWN events are not supported
with CREATE OR REPLACE TRIGGER.

CREATE USER The following clause is ignored:

• DEFAULT TABLESPACE
IDENTIFIED with the EXTERNALLY clause is not supported.

The IDENTIFIED BY VALUES clause is not allowed.

CREATE TABLE Restrictions

XMLType tables using XML schema-based storage are not allowed. See Oracle XML DB for
more information.

The clauses not in this list are allowed.

Clause Comment

cluster Ignored

ilm_clause Ignored

inmemory_table_clause Ignored

LOB_storage_clause The LOB_compression_clause is recognized. Other
LOB_storage_clause parameters are ignored.

See LOB_compression_clause for more information.

logging_clause Ignored

organization external Ignored

organization index Creates a regular table with a primary key. Using the
organization index clause does not create an index-
organized table. You should test and verify the
performance of the generated table for your application.

physical_properties Ignored

Note:

For more information on CREATE TABLE, see Database SQL Language Reference.

ALTER TABLE Restrictions

The clauses not in this list are allowed.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-27

Clause Comment

allocate_extent_clause Ignored

alter_iot_clauses Ignored

deallocate_unused_clause Ignored

ilm_clause Ignored

inmemory_table_clause Ignored

logging_clause Ignored

modify_LOB_storage_clause Ignored

physical_attributes_clause Ignored

shrink_clause Ignored

Note:

For more information on ALTER TABLE, see Database SQL Language Reference.

Data Types
Autonomous Database allows most of the data types available in Oracle Database. To ensure
the security and the performance of Autonomous Database, some data types are restricted.

The following data types are not supported or have limited support in Autonomous Database:

• Large Object (LOB) data types: only SecureFiles LOB storage is supported. BasicFiles
LOBs are automatically converted to SecureFiles LOBs.

• Media types are not supported (Oracle Multimedia is desupported)

Checking and Setting MAX_STRING_SIZE

By default Autonomous JSON Database uses extended data types and the value of
MAX_STRING_SIZE is set to the value EXTENDED. With this setting you can specify a maximum
size of 32767 bytes for the VARCHAR2, NVARCHAR2, and RAW data types. The default, EXTENDED, is
the recommended setting and allows Autonomous Database to take full advantage of database
capabilities.

Use DBMS_MAX_STRING_SIZE subprograms to check usage of extended data types and to
change the database to revert to the older style STANDARD, supporting a maximum size of 4000
bytes for VARCHAR2, NVARCHAR2, and RAW data types.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-28

Note:

Using DBMS_MAX_STRING_SIZE.MODIFY_MAX_STRING_SIZE is a one-way change that
cannot be reverted. After a database is switched back to the STANDARD style of
supporting a maximum length of 4000 bytes for the VARCHAR2, NVARCHAR2, and RAW
data types, you cannot re-enable EXTENDED data types.

The ADMIN user is granted EXECUTE privilege WITH GRANT OPTION clause on
DBMS_MAX_STRING_SIZE. Oracle recommends that you do not GRANT EXECUTE on this
package to other users.

1. Check whether your environment can be reverted to the old style, STANDARD behavior:

SELECT * FROM
TABLE(DBMS_MAX_STRING_SIZE.CHECK_MAX_STRING_SIZE('STANDARD'));

See CHECK_MAX_STRING_SIZE Function in Using Oracle Autonomous Database
Serverless for more information.

2. Check and correct all reported violations from Step 1, if applicable.

3. After fixing any reported violations found in Step 1, if you want to revert to a maximum
length of 4000 bytes for VARCHAR2, NVARCHAR2, and RAW data types, use
DBMS_MAX_STRING_SIZE.MODIFY_MAX_STRING_SIZE as follows:

EXEC DBMS_MAX_STRING_SIZE.MODIFY_MAX_STRING_SIZE('STANDARD');

See MODIFY_MAX_STRING_SIZE Procedure in Using Oracle Autonomous Database
Serverless for more information.

See MAX_STRING_SIZE for more information.

See Extended Data Types for details on extended data types.

For a list of Oracle data types see Oracle Database SQL Language Reference.

PL/SQL Package Notes for Autonomous Database
Notes for Oracle Database PL/SQL packages in Autonomous Database.

Unavailable PL/SQL Packages

• DBMS_DEBUG_JDWP
• DBMS_DEBUG_JDWP_CUSTOM

DBMS_LDAP PL/SQL Package Notes

Provides notes for the DBMS_LDAP package:

• Specifying an IP address in the host name is not allowed.

• The only allowed port is 636.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-29

• The SSLWRL and SSLWALLETPASSWD arguments to the OPEN_SSL procedure are ignored. The
default value for the SSLWRL property is set to the wallet that is used by UTL_HTTP and
DBMS_CLOUD for making outbound web requests on Autonomous Database.

• The DBMS_LDAP.SIMPLE_BIND_S and DBMS_LDAP.BIND_S subprograms perform
authentication to the directory server.

The DBMS_LDAP.SIMPLE_BIND_S and DBMS_LDAP.BIND_S subprograms are modified to
accept credential objects as an argument.

Following are the usage notes and examples of these modified subprograms:

– The modified SIMPLE_BIND_S and BIND_S subprograms enable you to pass credential
objects to set directory server authentication. Credential objects are schema objects,
hence they can be accessed only by privileged users and enable you to configure
schema-level privileges to access control the credentials. Passing scheduler
credentials is an appropriate and secure way to store and manage username/
password/keys for authentication.

– The modified SIMPLE_BIND_S and BIND_S subprograms are a secure and convenient
alternative to previously existed SIMPLE_BIND_S and BIND_S subprogram.

See FUNCTION simple_bind_s and FUNCTION bind_s for more information.

– The CREDENTIAL argument of the SIMPLE_BIND_S and BIND_S functions is used to
perform credential based authentication to the directory server.

– For example:

* Create a credential object:

BEGIN DBMS_CLOUD.CREATE_CREDENTIAL (
 credential_name => 'LDAP_CRED',
 username => 'web_app_user',
 password => 'password');
END;

This creates a credential object which creates a stored username/password pair.

See CREATE_CREDENTIAL Procedure for more information.

See Specifying Scheduler Job Credentials for more information.

* Invoke DBMS_LDAP.SIMPLE_BIND_S:

DECLARE
 l_mail_conn DBMS_LDAP.INIT;
 BEGIN
 l_ldap_conn := DBMS_LDAP.INIT('ldap.example.com', 636);
 l_auth_result := DBMS_LDAP.SIMPLE_BIND_S(l_ldap_conn,
'LDAP_CRED');
 ...
END;

The code in this example first invokes the DBMS_LDAP.INIT function which
initializes a session with an LDAP server and establishes a connection with the
LDAP server ldap.example.com at port number 636. The value l_ldap_conn in the
SIMPLE_BIND_S function is the LDAP session handle and LDAP_CRED is the
credentials name.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-30

https://docs.oracle.com/en/middleware/idm/internet-directory/12.2.1.3/oimad/dbms_ldap-pl-sql-reference.html#GUID-73865639-6E25-4820-B201-C238B58181C5
https://docs.oracle.com/en/middleware/idm/internet-directory/12.2.1.3/oimad/dbms_ldap-pl-sql-reference.html#GUID-9E48476E-5BF7-4791-BCBA-DDF2B0B9A3DC

* The function bind_s performs complex authentication to the directory server. For
example:

DECLARE
 l_mail_conn DBMS_LDAP.INIT;
 BEGIN
 l_ldap_conn := DBMS_LDAP.INIT('ldap.example.com', 636);
 l_auth_result := DBMS_LDAP.BIND_S(l_ldap_conn, 'LDAP_CRED',
METH => DBMS_LDAP.AUTH_SIMPLE);
 ...
END;

The code in this example first invokes the DBMS_LDAP.INIT function which
initializes a session with an LDAP server and establishes a connection with the
LDAP server ldap.example.com at port number 636. The value l_ldap_conn in the
BIND_S function is the LDAP session handle and LDAP_CRED is the credentials
name. METH is the authentication method. The only valid value is
DBMS_LDAP_UTL.AUTH_SIMPLE.

– The EXECUTE privileges on DBMS_CLOUD or DWROLE is required to create scheduler
credentials.

– The passed credentials must be present in the current user schema and be in the
enabled state.

– A public or private synonym that points to a credential in a different user schema can
be supplied as a value for the CREDENTIAL parameter provided you have the EXECUTE
privilege on the base credential object pointed to by the synonym. See Overview of
Synonyms for more information.

• SSL/TLS is enforced for all communication happening between LDAP server and
Autonomous Database.

• When your Autonomous Database instance is configured with a private endpoint, set the
ROUTE_OUTBOUND_CONNECTIONS database parameter to 'PRIVATE_ENDPOINT' to specify that
all outgoing LDAP connections are subject to the Autonomous Database instance private
endpoint VCN's egress rules. See Enhanced Security for Outbound Connections with
Private Endpoints for more information.

• To use DBMS_LDAP for a connection on a private endpoint, use
DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE and specify the private_target parameter
with value TRUE.

Note:

If you set ROUTE_OUTBOUND_CONNECTIONS to PRIVATE_ENDPOINT, setting the
private_target parameter to TRUE is not required in this API. See Enhanced
Security for Outbound Connections with Private Endpoints for more information.

• DBMS_LDAP Error

Error Message Potential Cause

ORA-31400: Missing or invalid
scheduler credential

Passed credentials are NULL or invalid.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-31

See DBMS_LDAP in PL/SQL Packages and Types Reference for more information.

DBMS_NETWORK_ACL_ADMIN PL/SQL Package Notes

Provides notes for the DBMS_NETWORK_ACL_ADMIN package:

• Granting ACL privileges on IP addresses is not allowed.

• The HTTP_PROXY ACL is allowed on private endpoints.

See DBMS_NETWORK_ACL_ADMIN in PL/SQL Packages and Types Reference for more
information.

UTL_HTTP PL/SQL Package Notes

Provides notes for the UTL_HTTP package:

• Connections through IP addresses are not allowed.

• Only HTTPS is allowed when the Autonomous Database instance is on a public endpoint.
When the Autonomous Database instance is on a private endpoint, both HTTPS and
HTTP_PROXY connections are allowed (HTTP connections are disallowed for both public
endpoints and private endpoints).

• The UTL_HTTP.set_proxy API is allowed when the Autonomous Database instance is on a
private endpoint.

• When the Autonomous Database instance is on a private endpoint and you use
HTTP_PROXY or the UTL_HTTP.SET_PROXY API:

– DBMS_CLOUD requests do not honor the proxy server you set with UTL_HTTP.SET_PROXY.
This includes DBMS_CLOUD.SEND_REQUEST and all object storage access for DBMS_CLOUD
external tables that you define with DBMS_CLOUD.CREATE_EXTERNAL_TABLE,
DBMS_CLOUD.CREATE_EXTERNAL_PART_TABLE, or
DBMS_CLOUD.CREATE_HYBRID_PART_TABLE.

– APEX_WEB_SERVICE requests do not honor the proxy server you set with
UTL_HTTP.SET_PROXY.

• All web services must be secured. The only allowed port is 443 when the Autonomous
Database instance is on a public endpoint. When the Autonomous Database instance is on
a private endpoint this restriction does not apply.

Your Autonomous Database instance is preconfigured with an Oracle Wallet that contains
more than 90 of the most commonly trusted root and intermediate SSL certificates. The
Oracle Wallet is centrally managed. You can configure UTL_HTTP to use a wallet for a site
that is protected using self-signed SSL certificates. See Use a Customer-Managed Wallet
for External Calls with UTL_HTTP for more information.

• The SET_AUTHENTICATION_FROM_WALLET procedure is disallowed.

• The WALLET_PATH and WALLET_PASSWORD arguments for the CREATE_REQUEST_CONTEXT,
REQUEST, and REQUEST_PIECES procedures are ignored.

• The CREDENTIAL argument of the SET_CREDENTIAL procedure is used to pass the credential
object as an input to the procedure. See Specifying Scheduler Job Credentials and
CREATE_CREDENTIAL Procedure for more information.

• The EXECUTE privileges on DBMS_CLOUD or DWROLE is required to create credential objects.

• The passed credentials must be present in the current user schema and be in the enabled
state.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-32

• A public or private synonym that points to a credential in a different user schema can be
supplied as a value for the CREDENTIAL parameter provided you have the EXECUTE privilege
on the base credential object pointed to by the synonym. See Overview of Synonyms for
more information.

• Oracle Wallet configuration cannot be altered. All arguments for SET_WALLET procedure are
ignored.

• When your Autonomous Database instance is configured with a private endpoint, set the
ROUTE_OUTBOUND_CONNECTIONS database parameter to 'PRIVATE_ENDPOINT' to specify that
all outgoing UTL_HTTP connections are subject to the Autonomous Database instance
private endpoint VCN's egress rules. See Enhanced Security for Outbound Connections
with Private Endpoints for more information.

• UTL_HTTP Errors

The following table shows error messages and possible causes for these error messages
when using UTL_HTTP:

Error Message Potential Cause

ORA-12545: Connect failed because
target host or object does not exist

Target host or object does not exist or it is
private.

ORA-24247: network access denied by
access control list (ACL)

Access control list (ACL) for the specified host
could not be found.

ORA-29024: Certificate validation
failure

Certificate of the host does not exist or is not
among the supported certificates.

ORA-29261: Bad argument Passed credentials are invalid or disabled or the
user does not have sufficient privileges on the
credential.

See UTL_HTTP in PL/SQL Packages and Types Reference for more information.

UTL_INADDR PL/SQL Package Notes

Provides notes for the UTL_INADDR package:

• The UTL_INADDR package is available for use on an Autonomous Database instance with a
private endpoint (PE).

• The GET_HOST_ADDRESS function is available.

• The GET_HOST_NAME function is not available.

See UTL_INADDR in PL/SQL Packages and Types Reference for more information.

UTL_SMTP PL/SQL Package Notes

Provides notes for the UTL_SMTP package:

• The only supported email provider is Oracle Cloud Infrastructure Email Delivery service.
See Overview of the Email Delivery Service for more information.

• Mail with an IP address in the host name is not allowed.

• The only allowed ports are 25 and 587.

• The CREDENTIAL argument of the SET_CREDENTIAL function is used to pass the scheduler
credentials object as an input to the function. See Specifying Scheduler Job Credentials
and CREATE_CREDENTIAL Procedure for more information.

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-33

https://docs.cloud.oracle.com/iaas/Content/Email/Concepts/overview.htm

• The EXECUTE privileges on DBMS_CLOUD or DWROLE is required to create credential objects.

• The CREDENTIAL argument of the SET_CREDENTIAL procedure is used to pass the credential
objects object as an input to the procedure. See Specifying Scheduler Job Credentials for
more information.

• The passed credentials must be present in the current user schema and be in the enabled
state.

• A public or private synonym that points to a credential in a different user schema can be
supplied as a value for the CREDENTIAL parameter provided you have the EXECUTE privilege
on the base credential object pointed to by the synonym. See Overview of Synonyms for
more information.

• When your Autonomous Database instance is configured with a private endpoint, set the
ROUTE_OUTBOUND_CONNECTIONS database parameter to 'PRIVATE_ENDPOINT' to specify that
all outgoing UTL_SMTP connections are subject to the Autonomous Database instance
private endpoint VCN's egress rules. See Enhanced Security for Outbound Connections
with Private Endpoints for more information.

• UTL_SMTP Error

Error Message Potential Cause

ORA-29261: Bad argument Passed credentials are invalid or disabled or the
user does not have sufficient privileges on the
credential.

See UTL_SMTP in PL/SQL Packages and Types Reference for more information.

UTL_TCP PL/SQL Package Notes

Provides notes for the UTL_TCP package:

• The IP address is not allowed in the host name.

• The only allowed ports are: 443 (HTTP) 25 and 587 (SMTP).

• For port 443, only HTTPS URLs are allowed.

• The WALLET_PATH and WALLET_PASSWORD arguments for the OPEN_CONNECTION procedure
are ignored. The default value for the WALLET_PATH and WALLET_PASSWORD property are set
to the wallet that is used by UTL_HTTP and DBMS_CLOUD for making outbound web requests
on Autonomous Database.

• SSL/TLS is enforced for all communication happening over TCP/IP connections.

• When your Autonomous Database instance is configured with a private endpoint, set the
ROUTE_OUTBOUND_CONNECTIONS database parameter to 'PRIVATE_ENDPOINT' to specify that
all outgoing UTL_TCP connections are subject to the Autonomous Database instance
private endpoint VCN's egress rules. See Enhanced Security for Outbound Connections
with Private Endpoints for more information.

See UTL_TCP in PL/SQL Packages and Types Reference for more information.

Oracle XML DB
Describes Autonomous Database support for Oracle XML DB features. To ensure the security
and the performance of your Autonomous Database, some Oracle XML DB features are
restricted.

The following is supported, in addition to the features listed:

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-34

• Full support for XMLQuery, XMLTable, and other SQL/XML standard functions

• Indexing schema including functional indexes using SQL/XML expressions, Structured
XMLIndex and XQuery Full Text Index

Note:

If you migrate tables containing XMLType columns to Autonomous JSON Database
using Oracle Data Pump, you need to convert to Non-Schema Binary XML prior to
using Oracle Data Pump Export (expdp).

Area XML DB Feature Supported in
Autonomous
Database

More Information

Repository XML DB Protocol No Repository Access Using Protocols

Repository XML DB Resources No Oracle XML DB Repository Resources

Repository XML DB ACLs No Repository Access Control

Storage XML Schema Registration No 1 XML Schema Registration with Oracle
XML DB

Storage CLOB No Deprecated

Storage Object Relational No XML Schema and Object-Relational
XMLType

Storage Binary XML Yes (Non
schema-based
only)

XMLType Storage Models

Index Structured XML Index Yes XMLIndex Structured Component

Index XQuery Full Text Index Yes Indexing XML Data for Full-Text
Queries

Index Unstructured XMLIndex No XMLIndex Unstructured Component

Packages XML DOM package Yes PL/SQL DOM API for XMLType
(DBMS_XMLDOM)

Packages XML Parser Package Yes PL/SQL Parser API for XMLType
(DBMS_XMLPARSER)

Packages XSL Processor
(DBMS_XSLPROCESSOR)

Yes PL/SQL XSLT Processor for XMLType
(DBMS_XSLPROCESSOR)

1 While you cannot do XML schema registration, runtime validation of XML documents is available through
DBMS_XMLSCHEMA_UTIL.

For details on Oracle XML DB, see Oracle XML DB Developer's Guide.

Oracle Text
Describes Autonomous Database support for Oracle Text features. To ensure the security and
the performance of your Autonomous Database, some Oracle Text features are restricted.

Oracle Text Feature Supported in
Autonomous Database

More Information

All logging, and APIs which
perform logging such as
ctx_report.query_log_su
mmary

Not Supported QUERY_LOG_SUMMARY

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-35

Oracle Text Feature Supported in
Autonomous Database

More Information

File Datastore Not Supported (see
replacement
DIRECTORY_DATASTORE
)

Datastore Types

URL Datastore Not Supported (see
replacement
NETWORK_DATASTORE)

Datastore Types

CREATE INDEX with BIG_IO
option

Supported if you grant
the privilege to create a
trigger to the user
(GRANT CREATE
TRIGGER).

Improved Response Time Using the BIG_IO
Option of CONTEXT Index

OPTIMIZE_INDEX in rebuild
mode

Supported if you grant
the privilege to create a
trigger to the user
(GRANT CREATE
TRIGGER).

OPTIMIZE_INDEX

For details on Oracle Text, see Oracle Text Application Developer's Guide.

Oracle Flashback
Oracle Flashback Technology is a group of Oracle Database features that let you view past
states of database objects or to return database objects to a previous state without using point-
in-time media recovery.

To restore and recover your database to a point in time, see Restore and Recover your
Autonomous JSON Database Database.

Oracle Flashback Feature Supported in Autonomous Database

DBMS_FLASHBACK Yes except the procedure:

DBMS_FLASHBACK.TRANSACTION_BACKOUT
Flashback Data Archive Yes

Flashback Drop Yes

Flashback Query Yes

Flashback Table Yes

Flashback Transaction No

Flashback Transaction Query Yes

Flashback Version Query Yes

Oracle Database Real Application Security
Oracle Database Real Application Security is a database authorization model that: supports
declarative security policies, enables end-to-end security for multitier applications, provides an
integrated solution to secure database and application resources, and advances the security

Appendix A
Notes for Users Migrating from Other Oracle Databases

A-36

https://docs.oracle.com/en/database/oracle/oracle-database/21/ccref/oracle-text-indexing-elements.html#GUID-91576377-DD67-4CBA-91AD-127402C4B93A
https://docs.oracle.com/en/database/oracle/oracle-database/21/ccref/oracle-text-indexing-elements.html#GUID-91576377-DD67-4CBA-91AD-127402C4B93A

architecture of Oracle Database to meet existing and emerging demands of applications
developed for the Internet.

See Introducing Oracle Database Real Application Security more information.

Real Application Security works the same on Autonomous Database as on an on-premises
Oracle Database except you need to perform the following ADMIN tasks before using Real
Application Security on Autonomous Database:

• To create Real Application Security users/roles, you need the PROVISION system privilege.
As the ADMIN user run the following command to grant this privilege to a database user:

SQL> EXEC
XS_ADMIN_CLOUD_UTIL.GRANT_SYSTEM_PRIVILEGE('PROVISION','DB_USER');

In this example, DB_USER is a database user.

Running this command on Autonomous Database replaces the following on-premise
database command (note the _CLOUD_ is not in the following package name):

SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('PROVISION', 'DB_USER',
XS_ADMIN_UTIL.PTYPE_XS);

See General Procedures for Creating Application User Accounts for more information.

• To create Real Application Security data controls, you need the ADMIN_ANY_SEC_POLICY
privilege. As the ADMIN user run the following command to grant this privilege:

EXEC
XS_ADMIN_CLOUD_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_ANY_SEC_POLICY','DB_USER'
);

In this example, DB_USER is a database user.

Running this command on Autonomous Database replaces the following on-premise
database command (note the _CLOUD_ is not in the following package name):

SQL> EXEC
SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_ANY_SEC_POLICY','DB_USER');

See Creating Roles and Application Users for more information.

Oracle LogMiner
Describes restrictions for Oracle LogMiner on Autonomous Database.

Archived Log Retention Maximum is 48 Hours

Autonomous Database archived log files are kept for up to 48 hours. LogMiner can only access
up to 48 hours of archived log files.

If you attempt to mine log files older than 48 hours, LogMiner reports ORA-1285: "error
reading file".

Appendix A
Oracle LogMiner

A-37

Choose a Character Set for Autonomous Database
The Autonomous Database default database character set is Unicode AL32UTF8 and the
default national character set is AL16UTF16. When you provision a database, depending on
the workload type, you can select a database character set and a national character set.

Note:

Oracle recommends using the default Unicode database character set (AL32UTF8)
for its universality and compatibility with contemporary and future technologies and
language requirements.

If you are using an on-premises database with a non-Unicode character set, migrating to the
default Unicode character set can be a convoluted process requiring complex data analysis.
Thus, Autonomous Database lets you choose a character set when you provision an
Autonomous Database instance.

1. Create an Autonomous Database following the provisioning steps.

See Provision an Autonomous JSON Database Instance for more information.

2. On the Create Autonomous Database page expand Show Advanced Options.

3. In the advanced options area, select the Management tab.

• In the Character Set field, use the selector to choose a character set.

• In the National Character Set field, use the selector to choose a national character
set.

To make selecting a value easier, when you type in the text area this filters the list. For
example, if you type JA you see only the options containing JA, including: JA16EUC,
JA16EUCTILDE, JA16SJIS, JA16JA16SJISTILDE, and JA16VMS.

4. Click Create Autonomous Database to provision the Autonomous Database.

See the following for more information:

• Choosing an Oracle Database Character Set

Appendix A
Choose a Character Set for Autonomous Database

A-38

• Character Set Migration

• Support Note 788156.1

Notes for Character Set Selection
Provides notes and limitations for selecting a character set and a national character set on
Autonomous Database.

• When you provision an Autonomous Database instance you can only select a character
set for Data Warehouse, Transaction Processing, or APEX workload types.

The JSON Database workload type only supports the default character set and you cannot
select a different character set.

• Always Free Autonomous Database does not support character set selection.

• You cannot select a different character set when you clone an instance. A cloned
Autonomous Database instance has the same character set as the source database.

• You cannot change the character set of an existing Autonomous Database instance.

• APEX developer and administration pages are supported in English only when the
database character set is different from the default (AL32UTF8).

Translation of user applications into other languages or setting an application's primary
language to a value other than English is not supported. If you use APEX in a language
other than English, you may experience issues such as illegible, garbage text. You can,
however, use your APEX applications to process non-English user data, as long as the
languages of the data are supported by the selected database character set.

If you need full globalization support in APEX, migrate your applications and data to
AL32UTF8, the universal Unicode character set, which is the default and recommended
character set for Autonomous Database.

When you choose a character set other than the default Unicode character set
(AL32UTF8) on Autonomous Database, the APEX language selector only shows
languages that are supported in that database character set. For example, if you choose
the database character set WE8ISO8859P1 (ISO 8859-1 West European), the language
selector does not show Japanese or Korean.

• While you are provisioning an instance the Character Set selector on the Management
tab lists the supported character set names. If you want to see a list of supported database
character sets before you provision a database, refer to the following:

– See Table A-4 in Recommended Database Character Sets

– See Table A-6 in Other Character Sets

Database Features Unavailable in Autonomous Database
Lists the Oracle Database features that are not available in Autonomous Database.
Additionally, database features designed for administration are not available.

List of Unavailable Oracle Features

• Oracle Real Application Security Administration Console (RASADM)

• Oracle Industry Data Models

• Oracle Database Lifecycle Management Pack

Appendix A
Database Features Unavailable in Autonomous Database

A-39

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=229902388588547&parent=EXTERNAL_SEARCH&sourceId=BULLETIN&id=788156.1&_afrWindowMode=0&_adf.ctrl-state=1b8l0gigpb_4

• Oracle Data Masking and Subsetting Pack

Note:

Oracle Data Safe, available with Autonomous Database provides Data Masking.
See Use Oracle Data Safe with Autonomous Database for more information.

• Oracle Cloud Management Pack for Oracle Database

• Oracle Multimedia: Not available in Autonomous Database and deprecated in Oracle
Database 18c.

• Oracle Sharding

• Oracle XStream

• Custom locale objects, including: language, territory, character set, and collation (linguistic
sort) are not supported. Custom locale definitions created using Oracle Locale Builder
cannot be deployed on Autonomous Database. See Customizing Locale Data for more
information.

Appendix A
Database Features Unavailable in Autonomous Database

A-40

B
SODA Collection Metadata on Autonomous
Database

Describes default and customized collection metadata on Autonomous Database.

SODA Default Collection Metadata on Autonomous Database
Describes the default collection metadata on Autonomous Database, that is the metadata for a
collection that is added when custom metadata is not supplied.

Each SODA implementation provides a way to create a default collection when you supply a
collection name. For example, in SODA for Java you use the createCollection method and
supply just a collection name parameter:

db.admin().createCollection("myCol");

This creates a collection with default collection metadata. When you create a default collection
on your JSON database, the collection metadata includes the following information (regardless
of which SODA implementation you use to create the default collection):

{
 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "UUID"
 },

 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "BLOB",
 "jsonFormat" : "OSON"
 },
 "versionColumn" :
 {
 "name" : "VERSION",
 "method" : "UUID"
 },

 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },

 "creationTimeColumn" :
 {

B-1

 "name" : "CREATED_ON"
 },

 "readOnly" : false
}

Note:

Using Always Free Autonomous Database with Oracle Database 23ai, the default
metadata changes as follows.

{
 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "UUID"
 },

 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "JSON",
 },
 "versionColumn" :
 {
 "name" : "VERSION",
 "method" : "UUID"
 },

 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },

 "creationTimeColumn" :
 {
 "name" : "CREATED_ON"
 },

 "readOnly" : false
}

Appendix B
SODA Default Collection Metadata on Autonomous Database

B-2

SODA Customized Collection Metadata on Autonomous
Database

Describes SODA collection custom metadata on Autonomous Database.

Each SODA implementation provides a way to customize the collection metadata during
collection creation. For example, in SODA for Java, you can use the following command:

OracleDocument metadata = db.createDocumentFromString("metadata_string");
OracleCollection col = db.admin().createCollection("myCustomColl", metadata);

In this example, for metadata_string you can use the default metadata as the starting point,
and customize the following:

• Change keyColumn.assignmentMethod to CLIENT: Change the value of the
assignmentMethod under keyColumn in the metadata to CLIENT (instead of UUID).

Valid values for keyColumn.assignmentMethod on Autonomous Database:

– UUID (default): Keys are generated by SODA, based on the UUID.

– CLIENT: Keys are assigned by the client application.

The following example specifies client-assigned keys. Otherwise, the default settings are used.

{
 "keyColumn" :
 {
 "name" : "ID",
 "sqlType" : "VARCHAR2",
 "maxLength" : 255,
 "assignmentMethod" : "CLIENT"
 },

 "contentColumn" :
 {
 "name" : "JSON_DOCUMENT",
 "sqlType" : "BLOB",
 "jsonFormat" : "OSON"
 },

 "versionColumn" :
 {
 "name" : "VERSION",
 "method" : "UUID"
 },

 "lastModifiedColumn" :
 {
 "name" : "LAST_MODIFIED"
 },

 "creationTimeColumn" :
 {
 "name" : "CREATED_ON"

Appendix B
SODA Customized Collection Metadata on Autonomous Database

B-3

 },

 "readOnly" : false
}

Appendix B
SODA Customized Collection Metadata on Autonomous Database

B-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Get Started Using Autonomous JSON Database
	About Autonomous JSON Database
	Work with JSON Documents in Autonomous Database
	Typical Workflow for Developing Applications with Autonomous JSON Database
	Upgrade Autonomous JSON Database to Autonomous Transaction Processing

	2 Create an Autonomous JSON Database
	Provision an Autonomous JSON Database Instance

	3 Use Oracle Database Actions with JSON Collections
	About Database Actions (SQL Developer Web)
	Use Oracle Database Actions with SODA
	Use Oracle Database Actions with SQL over SODA Collections

	4 Develop RESTful Services
	About Oracle REST Data Services in Autonomous Database
	Access RESTful Services and SODA for REST
	Use SODA for REST with Autonomous Database
	Overview of Using SODA for REST
	Load Purchase-Order Sample Data Using SODA for REST
	Use SODA for REST with OAuth Client Credentials

	5 Build an Application
	The Basics of Building an Application
	Build a Java Application
	Configure Your Java Development System
	Set JVM Networking Properties

	Code Database Connections and SQL Statements

	Build a Node.js Application
	Configure Your Node.js Development System
	Code Database Connections and SQL Statements

	Build a Python Application
	Configure Your Python Development System
	Code Database Connections and SQL Statements

	6 Load JSON
	About Loading JSON Documents
	Load a JSON File of Line-Delimited Documents into a Collection
	Load an Array of JSON Documents into a Collection
	Create Credentials and Copy JSON Data into an Existing Table
	Monitor and Troubleshoot COPY_COLLECTION Loads
	Import SODA Collection Data Using Oracle Data Pump Version 19.6 or Later
	Textual JSON Objects That Represent Extended Scalar Values

	7 Oracle Tools for Database Access
	Connect with Built-In Oracle Database Actions
	Access Database Actions as ADMIN
	Provide Database Actions Access to Database Users

	Connect Oracle SQL Developer with a Wallet (mTLS)
	Connect Oracle SQLcl Cloud with a Wallet (mTLS)
	Connect SQL*Plus with a Wallet (mTLS)

	8 Oracle Extensions for IDEs
	Use Oracle Cloud Infrastructure Toolkit for Eclipse
	Use Oracle Developer Tools for Visual Studio
	Use Oracle Developer Tools for VS Code

	9 Code for High Performance
	Connect for High Performance
	Code for High Performance
	Tools for Monitoring and Tuning Performance

	A Autonomous JSON Database for Experienced Oracle Database Users
	Autonomous Database – Oracle Database Features
	SODA Notes
	About Autonomous Database for Experienced Oracle Database Users
	Transaction Processing and JSON Database Workloads with Autonomous Database

	Autonomous Database Views
	Track Table and Partition Scan Access with Autonomous Database Views
	GV$TABLE_ACCESS_STATS and V$TABLE_ACCESS_STATS Views
	ALL_TABLE_ACCESS_STATS and DBA_TABLE_ACCESS_STATS Views
	USER_TABLE_ACCESS_STATS View

	Track Oracle Cloud Infrastructure Resources, Cost and Usage Reports with Autonomous Database Views
	Prerequisite Steps to Use OCI Resource Views
	OCI_AUTONOMOUS_DATABASES View
	OCI_BUDGET_ALERT_RULES View
	OCI_BUDGET_SUMMARY View
	OCI_COST_DATA View
	OCI_OBJECTSTORAGE_BUCKETS View
	OCI_USAGE_DATA View

	Always Free Autonomous Database – Oracle Database 21c
	Always Free Autonomous Database Oracle Database 21c Features
	Always Free Autonomous Database Oracle Database 21c Notes

	Autonomous Database RMAN Recovery Catalog
	Use Autonomous Database as an RMAN Recovery Catalog

	Notes for Users Migrating from Other Oracle Databases
	Initialization Parameters
	SESSION_EXIT_ON_PACKAGE_STATE_ERROR
	SYSDATE_AT_DBTIMEZONE Select a Time Zone for SYSDATE on Autonomous Database

	SQL Commands
	Data Types
	PL/SQL Package Notes for Autonomous Database
	Oracle XML DB
	Oracle Text
	Oracle Flashback
	Oracle Database Real Application Security

	Oracle LogMiner
	Choose a Character Set for Autonomous Database
	Notes for Character Set Selection

	Database Features Unavailable in Autonomous Database

	B SODA Collection Metadata on Autonomous Database
	SODA Default Collection Metadata on Autonomous Database
	SODA Customized Collection Metadata on Autonomous Database

