
Oracle® Cloud
Developing with Oracle Content Management
As a Headless CMS

F24098-35
June 2023



Oracle Cloud Developing with Oracle Content Management As a Headless CMS,

F24098-35

Copyright © 2019, 2023, Oracle and/or its affiliates.

Primary Authors: Clare Yan, Hareesh S Kadlabalu, Keith MacDonald, Bruce Silver, Ron van de Crommert,
Mark Paterson, Preston So, Ankur Saxena, Sarah Maslin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Resources vii

Conventions vii

1   Get Started

Overview of Oracle Content Management 1-1

Access Oracle Content Management 1-2

Understand Roles 1-2

Manage Assets 1-3

Collaborate on Documents 1-3

Build Sites 1-4

Integrate and Extend Oracle Content Management 1-4

Oracle Content Management As a Headless CMS 1-4

Content Management 1-5

Content Delivery 1-6

Key Concepts 1-6

Content Model 1-7

Assets 1-8

Asset Management 1-8

Asset Properties 1-9

Asset Types 1-10

Create Asset Types 1-10

Content API for Assets 1-12

Digital Asset Types 1-16

Seeded Digital Asset Types 1-16

Custom Digital Asset Types 1-17

Creating Custom Digital Asset Types 1-18

Creating Digital Assets 1-20

Content API for Digital Assets 1-21

Content Item Types 1-24

iii



Create Content Item Types 1-25

Create Content Items 1-29

Content API for Content Items 1-31

Asset Repositories 1-34

Videos 1-36

Multilingual Content and Translations 1-39

Language Attributes of Assets 1-41

Discover Available Translations 1-41

Fetch a Specific Translation of an Asset 1-42

Translation Jobs 1-42

Content Versions 1-44

Publishing and Channels 1-45

Publishing 1-45

Channels 1-46

Policies 1-46

Publishing Process 1-47

Taxonomies 1-47

Taxonomies from a Management Perspective 1-48

Taxonomy Life Cycle 1-50

Taxonomies from a Delivery Perspective 1-51

Discovering the Structure of a Taxonomy 1-51

Discovering Asset Categorization 1-51

Friendly URLs for Assets 1-53

Quick Start 1-54

Register for Oracle Cloud 1-55

Select an Account Name and Home Region 1-55

Provide Payment Information 1-56

Provision an Instance of Oracle Content Management 1-57

Choose a Storage Compartment 1-58

Create Your Oracle Content Management Instance 1-59

Add a Content Model, Some Content, and a Channel 1-61

Create a Content Type 1-61

Create a Publishing Channel 1-63

Create an Asset Repository 1-64

Create a Content Item (Asset) 1-65

Publish Content Assets to a Channel 1-66

Configure Oracle Content Management As a Headless CMS 1-67

Configure Cross-Origin Resource Sharing (CORS) 1-68

Acquire and Refresh API Access Tokens 1-68

Issue Your First Request to Oracle Content Management 1-69

Retrieve Content Through Postman 1-70

iv



Retrieve Content Through cURL 1-72

Retrieve Content Through an XMLHttp Request 1-73

Next Steps 1-73

2   Oracle Content Management REST APIs for Headless Development

REST API for Content Delivery 2-1

REST API for Content Management 2-2

3   Oracle Content Management SDKs

Content SDK for JavaScript 3-1

Mobile SDKs 3-1

Content SDK for Java 3-1

Content SDK for Swift 3-2

Sites SDK 3-2

Translation Connector SDK 3-3

4   Starter Site CLI for React Development

Install the Starter Site CLI 4-1

Run CLI Commands 4-2

Get Content from Oracle Content Management 4-3

Set Up the Oracle Content Management Server Connection 4-3

Create a Site 4-3

Build a Site 4-5

Run a Site in Development Mode 4-5

Run a Site with Oracle Content Management Server Content 4-5

Build a Site for Production 4-6

Run a Site in Production Mode 4-6

Structure of the React JS Site Template 4-6

Generated Components 4-9

Starter Site Runtime 4-10

5   Connecting to Headless Experiences

Create an Experience Object 5-1

Configure Experience Object Properties 5-2

Add Outgoing Targets to Experience Objects 5-2

Add a TARGET_IDENTIFIER Token 5-3

Enable and Disable Incoming Webhook 5-3

Analyze and Extract Payload Information 5-4

v



View Event Information for an Experience 5-6

View Connected Headless Experiences 5-6

Launch Properties After a Successful Experience Creation 5-7

Set Security Admin Settings Through APIs 5-7

Sharing an Experience Object 5-7

6   Instrumenting Headless Sites with Consumption Analytics

Analytics Script 6-1

Asset Events 6-2

Page Instrumentation 6-2

Component Attributes 6-3

JavaScript API Calls 6-4

Configuration Options 6-5

Add data-asset-operation Markup for Digital Assets 6-6

Add data-asset-operation Markup for Referenced Field Types 6-7

Use a Site-Specific Oracle Infinity Account 6-7

Use Your Own Oracle Infinity Tag 6-7

7   Samples

vi



Preface

Developing with Oracle Content Management As a Headless CMS describes how to use
Oracle Content Management as a headless content management system (CMS) to develop
advanced websites and web applications using modern technologies.

Audience
Developing with Oracle Content Management As a Headless CMS is intended for developers
who want to use a headless content management system (CMS) and modern web
technologies to develop advanced websites and web applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources
For more information, see these Oracle resources:

• Getting Started with Oracle Cloud

• Administering Oracle Content Management

• Building Sites with Oracle Content Management

• Collaborating on Documents with Oracle Content Management

• Integrating and Extending Oracle Content Management

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

viii



1
Get Started

The Oracle Help Center has lots of resources to help you get started with Oracle Content
Management.

Resources in the Oracle Help Center include documentation, videos, guided tours, and
developer information. And if you need it, there's support and a community to help.

The following sections also provide information to help you get started:

• Overview of Oracle Content Management

• Oracle Content Management As a Headless CMS

• Key Concepts

– Asset Repositories

– Content Item Types

– Assets

– Digital Asset Types

– Multilingual Content and Translations

– Content Versions

– Publishing and Channels

– Taxonomies

– Friendly URLs for Assets

• Quick Start

Overview of Oracle Content Management
Whether you need to manage digital assets, publishing to multiple channels in various
languages, or oversee business documents gathered from a variety of sources, Oracle
Content Management helps you throughout the entire content lifecycle. Create, capture,
organize, review, and protect all your content as it flows through your organization with
integrated processes and data. Oracle Content Management is a cloud-based content hub,
offering scalability, security, and governance, so you can eliminate the typical inefficiencies in
content management—including organizing and tagging new content and locating existing
documents—and do more with fewer resources.

Using Oracle Content Management for digital asset management, you can rapidly collaborate
internally and externally on any device to approve content and create contextualized
experiences. Built-in business-friendly tools make building new web experiences with
stunning content a breeze. You can drive digital engagement with all your stakeholders using
the same content platform and the same processes. Technical and organizational bottlenecks
are gone, so you no longer have barriers to create engaging experiences, improving
customer and employee engagement.

1-1

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=content-cloud-getstarted
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=content-cloud-books
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=content-cloud-videos
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=content-cloud-guidedtours
https://support.oracle.com
https://cloudcustomerconnect.oracle.com/resources/f987e90cba/


Using Oracle Content Management for business document management, you have
the same collaboration capabilities internally and externally on any device to manage
your content. Integrated tools such as content connectors enable you to upload
content from third-part cloud storage, and Content Capture makes it easy to automate
document discovery and capture.

Note:

Oracle Content Management Starter Edition has a limited feature set. To take
advantage of the full feature set, upgrade to the Premium Edition.

Access Oracle Content Management
After you've been granted access to Oracle Content Management, you receive a
welcome email with details about the instance URL and your user name. You'll need
this information to log in to the service, so it's a good idea to keep it for future
reference.

There are different ways to interact with Oracle Content Management:

• The web interface provides easy access from your favorite web browser. You can
manage your content in the cloud, share files and folders with others, start and
participate in conversations, create websites (if allowed), and more.

• The desktop app lets you keep your files and folders synchronized between the
cloud and your computer. You can sync your own files and those shared with you,
making sure you always have access to the latest versions.

• A Microsoft Office add-on gives you access to Oracle Content Management
features directly from Microsoft Word, Excel, PowerPoint, and Outlook.

• Mobile apps for Android and iOS provide easy access on your phone or other
mobile devices. The mobile apps are instantly familiar, because they look and act
just like the service in your web browser. You can access your cloud content,
search and sort your files and folders, share content, and work with conversations.

• REST APIs and SDKs provide developers with powerful tools to programmatically
incorporate Oracle Content Management functionality into web applications and
mobile apps.

Understand Roles
The Oracle Content Management features that you can access depend on the role
you’ve been assigned. You’ll see different options depending on your application role.
Standard users can work with documents, conversations, and sites. Enterprise users
can also access assets. Developers see options to build and customize website pieces
such as templates, themes, components, and layouts. Administrators see options to
configure the service, integrate the service with other business applications, and set
up asset repositories.

There are different types of roles in Oracle Content Management:

• Organization roles — Your role within your organization determines what tasks
you need to perform and how you use features.

Chapter 1
Overview of Oracle Content Management

1-2



• Application roles — Application roles control what features you see in Oracle Content
Management.

• Resource roles (permissions) — What you can see and do with a resource, such as a
document, content item, site, or template, depends on the role you’re assigned when the
resource is shared with you.

Learn more...

Manage Assets
Oracle Content Management offers enterprise users powerful capabilities to manage all your
assets whether you need to manage digital assets, publishing to multiple channels in various
languages, or oversee business documents gathered from a variety of sources. It provides a
central content hub for all your assets, where you can organize them into repositories and 
collections, and create rules to define how they can be used and where.

There are also extensive management and workflow features to guide assets through their
creation and approval process and to ensure that only authorized versions are available for
use.

It's easy to tag and filter assets so you can quickly find the assets you need. And smart
content features will tag and suggest assets automatically as you use them!

Create asset types to define what information you need to collect when users create assets.
Digital asset types define the custom attributes required for your digital assets (files, images,
and videos) and business documents. Content types group different pieces of content into
reusable units. Users can then create digital assets, business documents, and content items
based on these asset types for consistent use.

Learn more...

Collaborate on Documents
With Oracle Content Management, you can manage your content in the cloud, all in one
place and accessible from anywhere.

You can group your files in folders and perform common file management operations (copy,
move, delete, and so on) in much the same way as on your local computer. And since all your
files reside in the cloud, you have access to them wherever you go, also on your mobile
devices. If you install the desktop app, all your content can be automatically synchronized to
your local computer, so you always have the most recent versions at your fingertips.

After you get all your content in the cloud, it’s easy to share your files or folders to collaborate
with others inside or outside your organization. Everyone you share your content with has
access to the latest information—wherever they are, whenever they need it. You can grant
access to entire folders or provide links to specific items. All access to shared items is
recorded, so you can monitor how and when each shared item was accessed.

Conversations in Oracle Content Management allow you to collaborate with other people by
discussing topics and posting comments in real time. You can start a stand-alone
conversation on any topic, adding files as needed. Or you can start a conversation about a
specific file, folder, asset, or site for quick and easy feedback.

All messages, files, and annotations associated with a conversation are retained, so it’s easy
to track and review the discussion. And your conversations live in the cloud, so you can also
view them and participate on the go from your mobile devices.

Chapter 1
Overview of Oracle Content Management

1-3



Learn more...

Build Sites
With Oracle Content Management, you can rapidly build and publish marketing and
community websites—from concept to launch—to provide engaging online
experiences. The process is completely integrated: content, collaboration, and
creativity are combined in a single authoring and publishing environment.

To get started quickly, use an out-of-the-box template, drag-and-drop components,
sample page layouts, and site themes to assemble a site from predefined building
blocks. Or developers can create custom templates, custom themes, or custom
components to create unique online experiences.

Add YouTube videos, streaming videos, images, headlines, paragraphs, social media
links, and other site objects simply by dragging and dropping components into
designated slots on a page. Switch themes and rebrand a site at the touch of a button
to provide an optimized, consistent look and feel across your organization.

You can work on one or more updates, preview an update in the site, and then, when
you're ready, publish the update with a single click.

In addition to creating and publishing sites in Site Builder, Oracle Content
Management also supports 'headless' site development using REST APIs, React JS,
Node JS, and other web technologies.

Learn more...

Integrate and Extend Oracle Content Management
As an Oracle Platform-as-a-Service (PaaS) offering, Oracle Content Management
works seamlessly with other Oracle Cloud services.

You can embed the web UI into your web applications so users can interact with
content directly. Use the Application Integration Framework (AIF) to integrate third-
party services and applications into the Oracle Content Management interface through 
custom actions. Or develop content connectors to bring content that you have already
created elsewhere into Oracle Content Management, manage it centrally, and use it in
new experiences across multiple channels.

With a rich set of REST APIs and SDKs for content and site management, delivery,
and collaboration, you can incorporate Oracle Content Management functionality into
your web applications.

Create client applications that interact with your content SDKs and assets in the cloud.
Develop custom integrations with collaboration objects or retrieve assets for use
wherever you need them. You can access and deliver all your content and assets
optimized for each channel, whether it’s through a website, content delivery network
(CDN), or mobile apps.

Learn more...

Oracle Content Management As a Headless CMS
Oracle Content Management can be used as a powerful and flexible back-end content
management system (CMS) in the cloud. It's built from the ground up as a central

Chapter 1
Oracle Content Management As a Headless CMS

1-4



content hub that makes content accessible through REST APIs for publication in any context
or display on any device.

There are two fundamental perspectives to look at Oracle Content Management: content
management and content delivery. The following diagram shows a logical view of the
overall architecture.

 

 

Content Management
Oracle Content Management offers many tools for effective content management, which
involves content definition, creation, collaboration, approval, and administration. All this can
be done from a variety of user interfaces (web browser, mobile apps, Microsoft Office,
desktop app), and this is how content authors mostly experience the product.

When you sign in to Oracle Content Management as a content author, you'll typically manage
your content and collaborate with other people from any of the clients. You can add assets,
manage assets, share assets with other people, or have context-specific conversations on
individual assets. You can also get insight into what content is being authored, how it's being
published, and what workflows it's in through content analytics dashboards.

Oracle Content Management also provides management interfaces that allow content and
system administrators to perform system administrative and monitoring tasks.

Different roles can be assigned to users to control what they can do in the content
management environment, and workflows may be in place to guide the content creation and
management processes.

Oracle Content Management can handle all kinds of content, including digital assets,
structured content, rich media, and content assets. Assets can be stored in repositories,
where they can be categorized using taxonomies and accessed for further processing. The
structure and interdependencies of all content are captured in the content model, which
basically defines the content management environment.

Even though Oracle Content Management offers front-end user interfaces to manage
content, all management operations can also be accomplished programmatically, through a
set of management REST APIs. The content management user interfaces use these

Chapter 1
Oracle Content Management As a Headless CMS

1-5



management APIs. These APIs are available to you as well for performing
integrations, data massaging, or any other data manipulation needs.

Content Delivery
Content delivery is another important aspect of Oracle Content Management. This is
all about getting content to end users, such as website visitors or app users. These are
the content consumers.

Once content is authored and has gone through an approval process, it can be
published, which makes it available for websites and apps to use. Published content is
made available to clients in read-only format through a set of RESTful application
program interfaces (APIs).

Publishing content involves a certain set of policies (checks and balances) and a
logical notion of a destination or channel. Content can be published to many channels
at the same time. It's also possible to withdraw content from a channel by unpublishing
it. The acts of publishing and unpublishing alter the visibility of content in a particular
context.

Content delivery as such doesn't have a user interface in Oracle Content
Management. However, published content is visible in the management interfaces. It’s
useful to think of published content as read-only copies of assets in the management
perspective.

All content delivery can be done programmatically, through a set of delivery REST
APIs. This allows you to develop websites and applications using Oracle Content
Management as a "headless" back-end content management system (CMS). Several
tutorials are available to get you started with various technologies.

Key Concepts
Some key concepts can help you understand how to develop with Oracle Content
Management as a headless CMS:

• Content Model

• Assets

• Digital Asset Types

• Content Item Types

• Asset Repositories

• Videos

• Multilingual Content and Translations

• Content Versions

• Publishing and Channels

• Taxonomies

• Friendly URLs for Assets

• GraphQL

• Cross-Origin Resource Sharing (CORS)

Chapter 1
Key Concepts

1-6



Content Model
Oracle Content Management is your universal content hub in the cloud, providing an API-first
content management and delivery platform.

To learn more about Oracle Content Management, visit https://www.oracle.com/content-
experience.

Oracle Content Management manages three types of content, as shown in the diagram
below:

• Sites—You can build sites in an easy-to-use, feature-rich WYSIWYG environment using
content and assets managed in Oracle Content Management. See Building Sites with
Oracle Content Management for further information.

• Documents—This is content that’s mostly used for collaboration, syncing, or backup
purposes. It will often be business content such as documents, spreadsheets, or
presentations, but it can be any file type, including images and videos. See Collaborating
on Documents with Oracle Content Management for further information.

• Assets—This is content that’s typically used for content modeling, publishing, and
delivery. It will often be media files (images or videos), but they can also be documents or
structured content that includes text. In headless development, you’ll mostly be working
with assets, so that’s what we’ll be focusing on here. See Assets for further details, and
also Managing Assets with Oracle Content Management.

 

 

Chapter 1
Key Concepts

1-7

https://www.oracle.com/content-experience/
https://www.oracle.com/content-experience/


Note:

"Regular" (that is, non-asset) documents can easily be turned into assets if
their business use changes. New, separate copies of these documents will
then be created for use as assets.

Content authors and contributors typically manage and access sites, documents, and
assets in the Oracle Content Management web interface, desktop app, or mobile apps.
As a headless developer, you’ll primarily use the REST APIs—mostly the REST API
for Content Delivery and REST API for Content Management—to access content
programmatically for inclusion in applications or delivery to various publishing
channels.

 

 

Assets
Assets represent the smallest units of managed content in Oracle Content
Management. They’re typically used for content modeling, publishing, and delivery.

As such, they differ from "regular" (that is, non-asset) documents, which are mostly
used for collaboration, syncing, or backup purposes. Assets will often be media files
(images or videos), but they can also be documents or structured content that includes
text. In headless development, you’ll mostly be working with assets.

Asset Management
Content contributors manage assets in repositories in the Oracle Content
Management web interface.

Depending on their assigned privileges, content contributors can perform a number of
asset management tasks, including:

• Manage asset types

Chapter 1
Key Concepts

1-8



• Manage localization policies

• Manage publishing channels

• Manage taxonomies

• Manage repositories

• Manage workflows

• Manage audience attributes

• Use digital assets

• Use structured content

• Use recommendations

• Use collections

See Managing Assets with Oracle Content Management for more information.

 

 

Asset Properties
All assets share a number of common properties, while different types of assets also have
their own additional sets of properties.

Each of these properties can be programmatically accessed using the REST APIs for content
modeling and delivery.

These are some of the basic properties that every asset of any type has:

• id

• type

• typeCategory

• name

Chapter 1
Key Concepts

1-9



• description

• slug

• language

• translatable

• createdDate (value, timezone)

• updatedDate (value, timezone)

In addition to these standard properties, assets of different types also have other sets
of properties. For example, some image and video properties include:

• mediaType

• mimeType

• width

• Height

• size

• extension

• formats

• duration (videos only)

Asset Types
Every asset in Oracle Content Management is categorized as a specific asset type.
These types determine how an asset can be managed and published.

There are two main types of assets:

• Digital asset types—These define file media types (MIME types) and sets of
attributes for assets of that type. There are a number of seeded (out-of-the-box)
digital asset types, but you can also define your own custom digital asset types.
For example, you could have a "Logo" digital asset type, which consists of a PNG
or JPG file along with some associated attributes such as copyright statement and
caption. When you create an asset from a digital asset type, it’s called a digital
asset (so file plus associated attributes).

• Content item types—These are defined groups of data fields of various data types.
For example, you might create a blog article content type, where each asset stores
values for title, body, author, photo, date created, and a list of references to related
articles. When you create an asset from a content item type, it’s called a content
item.

Create Asset Types
If you have the required administrative privileges, you can create asset types in the
Oracle Content Management web interface (under Administration > Content).

 

Chapter 1
Key Concepts

1-10



 
When creating a new asset type, you choose to create either a content item type or a digital
asset type.

Create Assets
Content contributors can create new digital assets by uploading new files from their local
computer or adding existing items in their Documents section of Oracle Content
Management.

While adding assets, content contributers can assign digital asset types, categories, 
channels, tags, and collections to support content modeling, routing, and delivery.

Similarly, they can also create new content items based on the content item types made
available to them.

Note:

Assets must be published before they're available for use in publishing channels
(and also through REST APIs).

 

Chapter 1
Key Concepts

1-11



 

Content API for Assets
Assets exist both in a management context and in a delivery context. For an authored
asset to be used in an application, it must first be published, so it becomes available in
the delivery context.

We’ll mostly focus on the delivery context here as that is of primary interest to
developers. See Managing Assets with Oracle Content Management for more
information on assets from a management perspective.

Once published, each asset is available as a REST resource. You can see the address
to the resource as part of the asset properties, which you can find in the Oracle
Content Management web interface.

 

 

Chapter 1
Key Concepts

1-12



Let's explore what such a REST resource looks like in the delivery context. First, the delivery
URL has a specific form.

https://.../content/published/api/v1.1/items/
CORE6F39A82DD76F408C8C31F7D8FCB3E8C0?
channelToken=1c92cd5b68b245ax87ffb8898ff2fdbd

• The access context identifier /published indicates that this is about delivering published
content.

• The object identifier /items indicates that we're working with asset items (and not other
object types).

• This is followed by the identifier of the asset, which is a series of letters and numbers (for
example, CORE6F39A82DD76F408C8C31F7D8FCB3E8C0). Each asset has its own unique
identifier.

• At the end is a query parameter, channelToken, which is an identifier for the channel that
this asset has been published to. It's the context in which the asset is being accessed.

You can see the full JSON response data for an asset by clicking the {} brackets next to the
delivery URL. It looks something like this:

Or, in text form:

{
  "id": "CORE6F39A82DD76F408C8C31F7D8FCB3E8C0",
  "type": "Press-Release",
  "typeCategory": "ContentType",
  "name": "The Power of Coffee",
  "description": "Press release 'The Power of Coffee' for marketing kit",
  "slug": "1481786546522-the-power-of-coffee",
  "language": "en-US",
  "translatable": true,
  "createdDate": {
    "value": "2021-03-29T18:33:13.732Z",

Chapter 1
Key Concepts

1-13



    "timezone": "UTC"
  },
  "updatedDate": {
    "value": "2021-03-29T23:55:37.057Z",
    "timezone": "UTC"
  },
  "fields": {
    "body_text": "\n\rOur annual \"Power of Coffee\" fundraiser raised 
over $1 million to help families in need.  With your donations last 
month, and Cafe Supremo's dollar for dollar matching, we hit our 
highest numbers ever!  Thank you for being a part of our community and 
giving back to our community.   Our annual \"Power of Coffee\" 
fundraiser raised over $1 million to help families in need.  With your 
donations last month, and Cafe Supremo's dollar for dollar matching, 
we hit our highest numbers ever!  Thank you for being a part of our 
community and giving back to our community. ",
    "photo": {
      "id": "CONTA37AC23CE5284C46ACF4D3C3B10A9950",
      "type": "DigitalAsset",
      "typeCategory": "DigitalAssetType",
      "name": "Coffee Beans and Ground Coffee.jpg",
      "links": [
        {
          "href": "https://.../content/published/api/v1.1/items/
CONTA37AC23CE5284C46ACF4D3C3B10A9950?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
          "rel": "self",
          "method": "GET",
          "mediaType": "application/json"
        }
      ]
    },
    "title": "The Power of Coffee!"
  },
  "links": [
    {
      "href": "https://.../content/published/api/v1.1/items/
CORE6F39A82DD76F408C8C31F7D8FCB3E8C0?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
      "rel": "self",
      "method": "GET",
      "mediaType": "application/json"
    },
    {
      "href": "https://.../content/published/api/v1.1/items/
CORE6F39A82DD76F408C8C31F7D8FCB3E8C0?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
      "rel": "canonical",
      "method": "GET",
      "mediaType": "application/json"
    },
    {
      "href": "https://.../content/published/api/v1.1/metadata-catalog/
items/CORE6F39A82DD76F408C8C31F7D8FCB3E8C0?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",

Chapter 1
Key Concepts

1-14



      "rel": "describedby",
      "method": "GET",
      "mediaType": "application/schema+json"
    }
  ]
}

The JSON data matches the various metadata fields for the asset in Oracle Content
Management:

Fields in green are all standard fields; they are present in every asset. One such standard
field is the unique identifier (id) of the asset. Other standard fields are asset properties such
as type, name, description, slug, language, translatability status (translatable), and the
creation and update dates (createdDate and updatedDate).

A child "fields" node contains all user-defined field values, such as title, body, photo, or
whatever else was specified in the asset type definition.

Looking at the "photo" field in the example above, you may notice that this looks a bit
different. That’s because it’s a reference field. These don’t contain the complete data set for
the asset, but merely an identifier, a name, a type, and a link to the asset. In fact, any media
field (the data type for the "photo" field) is actually a reference field behind the scenes. It’s a
reference to an out-of-the-box type called DigitalAsset (which is why "type" under the photo
field says “DigitalAsset”).

Now, suppose you have an "Article" content item with an "author" reference field, and you
want to access all of the author field along with the article without having to incur additional
network calls. You can easily do that by simply adding expand=fields.author as a query
parameter, and the author field expands inside the Article JSON response.

Chapter 1
Key Concepts

1-15



Digital Asset Types
Digital assets in Oracle Content Management are often media files such as images or
videos for use in websites or other publishing channels, but they can be any file type,
including documents.

There are two different digital assets types in Oracle Content Management:

• Seeded digital asset types

• Custom digital asset types

Seeded Digital Asset Types
Oracle Content Management natively classifies digital assets into one of four out-of-
the-box (seeded) classes, which are essentially predefined asset types in their own
right.

• Image

• Video

• Video Plus (if enabled in Oracle Content Management)

• File (essentially anything that’s not an image or video)

Note:

If you go to the Asset Types page in the Oracle Content Management web
interface, you’ll see these seeded asset types in your list, and you can’t
delete them.

This classification—along with repositories, categories, tags, collections, and so on—
helps content modelers design their model to represent their business needs
accurately. The out-of-the-box digital asset types are automatically assigned to any
assets that are uploaded to Oracle Content Management, unless a custom digital
asset type is selected instead.

Users can easily filter their repositories in the Oracle Content Management web
interface to show only assets of a specific type.

 

Chapter 1
Key Concepts

1-16



 
The "type" field in a JSON response for an asset shows its type; for example:

"id": "CONT8760313315D948B68E76A7A07F840DCC",
"type": "Image",
"typeCategory": "DigitalAssetType",
...

Custom Digital Asset Types
Sometimes the seeded (out-of-the-box) digital asset types don’t provide enough control over
content modeling. In addition to the out-of-the-box digital asset types, you can also create
your own custom digital asset types. These provide a powerful mechanism for managing
digital asset content models.

For example, you may want to create a set of enterprise-approved marketing images that
content authors can choose from to include in their marketing content. These marketing
images are just like any other image in the system, but they’re a class of their own.

To support use cases like this, Oracle Content Management allows you to create custom
digital asset types, which are essentially just like any other content type, but they’re built
around a file. Custom digital asset types can limit the file extensions that are allowed, and
can also have custom fields (attributes), just like any other type (with some limitations).

Let’s go back to the marketing images as an example. You could define a custom digital
asset type called "Marketing-Images", which limits the file type to PNG and JPG, and requires
a caption and copyright statement to be provided. This enables you to provide a more
controlled experience for content authors as well as type safety in the content model. This is
what the custom digital asset type would look like:

Chapter 1
Key Concepts

1-17



Creating Custom Digital Asset Types
If you have the required administrative privileges, you can create custom digital asset
types in the Oracle Content Management web interface (under Administration >
Content).

 

 

Chapter 1
Key Concepts

1-18



When creating a new asset type, you choose to create either a content item type or a digital
asset type.

You can select media types that are allowed for a digital asset type. They can be any
combination of media types.

 

 
In addition to media types, you can also add custom fields, which can be any data type
except Media and Reference fields. Content authors can capture additional business context
in these custom fields and use them in content discovery. Developers can use these fields in
their applications, just like any other type.

 

Chapter 1
Key Concepts

1-19



 
Other content types can reference custom digital asset types for media fields under
Media Settings. Oracle Content Management will limit authors’ choices to what’s
defined in the settings.

Creating Digital Assets
After a digital asset type has been defined and made available to a repository, content
authors can add assets to that repository and designate them to be of that type.

They’ll have to meet the file type requirements set for the type, and content authors
will need to provide the attributes required (say, a caption or copyright statement).

Once the custom digital asset is in Oracle Content Management, it can be managed
and accessed like any other asset.

 

Chapter 1
Key Concepts

1-20



 

Content API for Digital Assets
Digital assets based on digital asset types behave exactly like any other asset in Oracle
Content Management. They can participate in content workflows, they can be discovered and
routed using API calls, and so on.

Once published, each digital asset is available as a REST resource. The address to the
resource can be found as part of the content item properties.

 

 
You can see the full JSON response data for an asset by clicking the { } brackets next to the
delivery URL. Here’s an example of what part of the JSON response looks like for a custom

Chapter 1
Key Concepts

1-21



digital asset (note "DigitalAssetType" in the typeCategory field and the custom digital
asset type name in the type field):

{
  "id": "CONTA0DFE7A472374C3E8B25C6AC65F797F4",
  "type": "Marketing-Images",
  "typeCategory": "DigitalAssetType",
  "name": "We Love Coffee!.jpg",
  "description": "",
  "slug": "1481786684329-we-love-coffee!",
  "createdDate": {
    "value": "2021-04-01T22:54:46.569Z",
    "timezone": "UTC"
  },
  "updatedDate": {
    "value": "2021-04-01T22:54:46.569Z",
    "timezone": "UTC"
  },
  "fields": {
    "copyright": "(c) 2021  Acme Corporation. All rights reserved.",
    "metadata": {
      "width": "5184",
      "height": "3456"
    },
    "size": 11903181,
    "native": {
      "links": [
        {
          "href": "https://.../content/published/api/v1.1/assets/
CONTA0DFE7A472374C3E8B25C6AC65F797F4/native/We+Love+Coffee%21.jpg?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
          "rel": "self",
          "method": "GET",
          "mediaType": "image/jpeg"
        }
      ]
    },
    "caption": "We love coffee!",
    "renditions": [
      {
        "name": "Thumbnail",
        "formats": [
          {
            "format": "jpg",
            "size": 0,
            "mimeType": "image/jpeg",
            "metadata": {
              "width": "150",
              "height": "100"
            },
            "links": [
              {
                "href": "https://.../content/published/api/v1.1/assets/
CONTA0DFE7A472374C3E8B25C6AC65F797F4/Thumbnail/We+Love+Coffee%21.jpg?
format=jpg&type=responsiveimage&channelToken=1c92bb5b68b245da87ffb8672f

Chapter 1
Key Concepts

1-22



f2fddb",
                "rel": "self",
                "method": "GET",
                "mediaType": "image/jpeg"
              }
            ]
          },
          {
            "format": "webp",
            "size": 0,
            "mimeType": "image/webp",
            "metadata": {
              "width": "150",
              "height": "100"
            },
            "links": [
              {
                "href": "https://.../content/published/api/v1.1/assets/
CONTA0DFE7A472374C3E8B25C6AC65F797F4/Thumbnail/We+Love+Coffee%21.jpg?
format=webp&type=responsiveimage&channelToken=1c92bb5b68b245da87ffb8672ff2fdd
b",
                "rel": "self",
                "method": "GET",
                "mediaType": "image/webp"
              }
            ]
          }
        ],
        "type": "responsiveimage"
      },
      {
        "name": "Medium",
        "formats": [
          {
            "format": "jpg",
            "size": 0,
            "mimeType": "image/jpeg",
            "metadata": {
              "width": "1024",
              "height": "682"
            },
[etc.]

Digital assets authored and classified as custom digital asset types have exactly the same
API contract as the seeded asset types, including renditions and properties.

 

Chapter 1
Key Concepts

1-23



 
Learn More...

• Manage Asset Types

• Create a Digital Asset Type

• Add and Remove Assets

Content Item Types
A content type in Oracle Content Management basically represents a "content model"
for a specific kind of content. The content model defines what constitutes a piece of
content of that type.

Say, you want to create a set of articles. Each article has a specific (structured) format:
it has a title, a body, an author, and a picture. You can then define a content type that
includes these properties. If content authors want to create an article, they must
include all these elements for the article to be complete and valid.

Users can easily filter their repositories in the Oracle Content Management web
interface to show only structured content items based on content types.

 

Chapter 1
Key Concepts

1-24



 

Create Content Item Types
If you have the required administrative privileges, you can create content item types in the
Oracle Content Management web interface (under Administration > Content).

 

Chapter 1
Key Concepts

1-25



 
When creating a new asset type, you choose to create either a content item type or a
digital asset type:

 

 
Let’s have a closer look at a content item type called "Article". It could have four data
fields: article_title, article_body, article_author, and article_picture. The Author data

Chapter 1
Key Concepts

1-26



field is a reference to a content type called "Author", which itself has three data fields:
author_name, author_photo, and author_bio

 

 
This is what the "Article" content item type definition looks like:

Chapter 1
Key Concepts

1-27



And here’s the "Author" content item type:

 

 
Each content item type consists of a set of field definitions. Fields support various data
types and relationships along with constraints and validation rules. In the preceding
example, four fields have been defined for the content item type named "Article":
Article Title (article_title), Article Body (article_body), Article Author (article_author),
and Article Picture (article_picture).

A content type can have any number of fields, and each field can be any of the
supported data types (Text, Large Text, Media, Reference, Date, and so on). Fields
can also have a single value or multiple values. Among field types, Reference is a
special type. References make it possible for types to link to each other. For example,
the Article content type has a field called Author of type Reference, which allows
instances of the Author content type to be linked to instances of the Article content
type. In relational database terms, this is similar to a foreign key. References, like any
other field, can have multiple values. You can create sophisticated data models using
content types and references.

Chapter 1
Key Concepts

1-28



Oracle Content Management automatically creates data entry forms with the defined fields for
a content type, along with content discovery and smart suggestions. Content authors use
these forms to create pieces of content based on that content type. These structured content
items are managed by Oracle Content Management as individual units, and they can be
published and used in any channel just like any other content.

Create Content Items
Once a content type is defined and made available to a repository, content authors can go
into the repository that the content type is associated with and create a new content item
based on the Author or Article content type, as well as any media content associated with
them (for example, photos).

This will open auto-generated forms for creating assets of a specific content type, showing all
data fields defined for that content type. For example, the Article form would look as shown in
the following image, where each field type shows up with a specific editor (as configured
when the content type was created), so content authors can create content in a way that
makes sense.

Chapter 1
Key Concepts

1-29



Once created, all content items appear in the associated asset repository. From there,
they can be published so they become available in their assigned channels.

 

 
It’s important to note that a content type only dictates what content of that type
consists of, and not how the content is presented. For that purpose, a content type can
have any number of content layouts associated with it, which determine how the
content appears and what information is used in that particular layout. This allows for
easy reuse of information.

Chapter 1
Key Concepts

1-30



 

 

Content API for Content Items
Content items behave exactly like any other asset in Oracle Content Management: they can
be part of a workflow, they can be discovered and routed using API calls, and so on.

Once published, each content item is available as a REST resource. The address to the
resource can be found as part of the content item properties.

Chapter 1
Key Concepts

1-31



You can see the full JSON response data for a content item by clicking the { } brackets
next to the delivery URL. Here’s an example of what the JSON response looks like for
a content item (note "ContentType" in the typeCategory field and the content item type
name in the type field):

{
  "id": "CORE662AF63A872D4A1692CAB0E9FA0AEFFE",
  "type": "Article",
  "typeCategory": "ContentType",
  "name": "The Power of Coffee",
  "description": "Article 'The Power of Coffee' for marketing 
material",
  "slug": "3000000150001-the-power-of-coffee",
  "language": "en-US",
  "translatable": true,
  "createdDate": {
    "value": "2021-04-06T05:14:02.433Z",
    "timezone": "UTC"
  },
  "updatedDate": {
    "value": "2021-04-06T05:14:02.433Z",
    "timezone": "UTC"
  },
  "fields": {
    "article_title": "The Power of Coffee!",
    "article_author": {
      "id": "CORE9D70A006F41D43268922AB55DBA0A100",
      "type": "Author",
      "typeCategory": "ContentType",
      "name": "David Smith",
      "links": [
        {
          "href": "https://.../content/published/api/v1.1/items/
CORE9D70A006F41D43268922AB55DBA0A100?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
          "rel": "self",

Chapter 1
Key Concepts

1-32



          "method": "GET",
          "mediaType": "application/json"
        }
      ]
    },
    "article_picture": {
      "id": "CONTA37AC23CE5284C46ACF4D3C3B10A9950",
      "type": "Image",
      "typeCategory": "DigitalAssetType",
      "name": "Coffee Beans and Ground Coffee.jpg",
      "links": [
        {
          "href": "https://.../content/published/api/v1.1/items/
CONTA37AC23CE5284C46ACF4D3C3B10A9950?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
          "rel": "self",
          "method": "GET",
          "mediaType": "application/json"
        }
      ]
    },
    "article_body": "Our annual \"Power of Coffee\" fundraiser raised 
over $1 million to help families in need. With your donations last month, 
and Cafe Supremo's dollar for dollar matching, we hit our highest numbers 
ever! Thank you for being a part of our community and giving back to our 
community. Our annual \"Power of Coffee\" fundraiser raised over $1 million 
to help families in need. With your donations last month, and Cafe Supremo's 
dollar for dollar matching, we hit our highest numbers ever! Thank you for 
being a part of our community and giving back to our community."
  },
  "links": [
    {
      "href": "https://.../content/published/api/v1.1/items/
CORE662AF63A872D4A1692CAB0E9FA0AEFFE?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
      "rel": "self",
      "method": "GET",
      "mediaType": "application/json"
    },
    {
      "href": "https://.../content/published/api/v1.1/items/
CORE662AF63A872D4A1692CAB0E9FA0AEFFE?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
      "rel": "canonical",
      "method": "GET",
      "mediaType": "application/json"
    },
    {
      "href": "https://.../content/published/api/v1.1/metadata-catalog/items/
CORE662AF63A872D4A1692CAB0E9FA0AEFFE?
channelToken=1c92bb5b68b245da87ffb8672ff2fddb",
      "rel": "describedby",
      "method": "GET",
      "mediaType": "application/schema+json"
    }

Chapter 1
Key Concepts

1-33



  ]
}

Learn More...

• Manage Asset Types

• Create a Content Type

• Add and Remove Assets

Asset Repositories
An asset repository is basically a big "bucket" in which content is managed. It's a
container of all assets that an organization or team needs to work with—a conceptual
entity that helps them organize and manage content.

Consider different departments in a company, such as sales, finance, and marketing.
All these departments have their own teams of people working on content. Content
from the finance department may not be relevant (and sometimes not even accessible)
to people in the sales department, at least during part of the content life cycle. Content
used by the marketing department can be accessible to teams working in other
departments, but restricted only to review and not to modify or to publish.

Asset repositories help model the content in such scenarios. An organization could
create separate repositories for each department and assign their respective teams as
users of that repository with specific rights. When users sign in to Oracle Content
Management, they are assigned to relevant repositories, and access privileges are
granted to them for repositories, to allow for contribution, review, or approval. Some
users might be involved with more than one department and may need access to
content in multiple repositories.

All aspects of the content life cycle—including management, workflow, publishing, and
revision tracking—are available in the context of asset repositories that assets are part
of.

It's important to note that content delivery has no concept of repositories; published
content is published to a channel regardless of which asset repository content
originates from.

 

Chapter 1
Key Concepts

1-34



 
Administratively, a number of other entities are explicitly assigned to asset repositories:

• Content types are assigned to a repository to control which kinds of content can be
created in that repository. This is helpful in controlling which types matter to a specific
domain that the repository is supposed to work with.

• Channels are assigned to a repository to control the publishing targets for content in that
repository.

• Taxonomies can be assigned to a repository, which allows authors to classify content in
that repository. Additionally, the management interface shows classified content in a
category view.

Please note that these are many-to-many relationships:

• A repository can publish to any number of channels, and a channel can be enabled for
any number of repositories.

• Asset types are shared between repositories for which they are enabled.

• Taxonomy definitions can be shared between repositories.

Asset repositories are silos, which means that content from one repository can't be seen or
referenced by another repository. It must be copied into another repository. On the other
hand, assets from multiple repositories can be published to the same channel. This means
that even though content in repositories is managed in silos, they can be consumed together
in clients.

An asset repository is also a place for a number of other configuration settings:

• An asset repository controls which languages are available for content authors to create
content in. Each repository also has a default language, which is the language that’s
assumed for all content if no language is specified.

• Configuration of content connectors, which are used to bring data into Oracle Content
Management from an external system.

• On/off control of smart content discovery, which includes the ability to automatically tag
content and search by them, recommend assets based on the content topic, and much
more. This switch enables or disables certain background processing of content for

Chapter 1
Key Concepts

1-35



enrichment and discovery as well as behavior of the user interface and supporting
APIs to surface relevant content.

Learn More...

• Manage Repositories

Videos
Oracle has partnered with Kaltura to provide built-in, advanced video management
capabilities called Video Plus within Oracle Content Management.

This integration makes it easy to create, edit, and publish video content directly within
Oracle Content Management, and then deliver that video content to any channel. The
Video Plus integration feature needs to be enabled in the Oracle Content Management
administration web interface: an administrator clicks the Integrations option in the left
navigation menu and then opens the Applications page. Make sure the Kaltura
Video Management - Video Plus option is enabled.

All video management, collaboration, and workflow are done within Oracle Content
Management. Under the covers, though, the video content is converted on the Kaltura
platform, and then delivered from Kaltura. This ensures that you can manage your
videos as part of the central Oracle Content Management asset hub, include them as
part of your sites and experiences, and deliver those videos in an optimized way to all
your channels.

If you’re creating your site in Oracle Content Management using Site Builder, then
Oracle offers out-of-the-box components that you can use to deliver the videos to your
sites. However, with more and more people taking advantage of Oracle Content
Management as a headless content management system, the site you’re building can
be created using a tool or platform outside of Oracle Content Management. You can
embed the video from Kaltura within any page and still take advantage of the Kaltura
features in a way that’s more customized for your audience.

At a high level, you can embed a video from Kaltura in a number of ways:

• Using the web browser’s default HTML5 video support

• Using another custom video player

• Using the Kaltura JavaScript player

Embed the Kaltura player

The example below shows how to embed the Kaltura player in your page and then pull
or load the published video content from Oracle Content Management. The process is
pretty straightforward:

1. Obtain the configuration parameters for the video—partner ID, player ID (or user
interface configuration ID), and entry ID for the video—through the REST API for
Content Management.

2. Add the JavaScript for the Kaltura player to your page.

3. Pass the configuration parameters to the Kaltura player on your page.

Obtain the Configuration Parameters

Before loading the player JavaScript library, you need to know the following IDs:

• Partner ID

Chapter 1
Key Concepts

1-36



• Player ID (or UI configuration ID)

• Entry ID of the item you want to include

If you have the ID for the video you want to embed, you can use the REST API for Content
Management to extract all of this information.

If you don’t have the video ID, you can use the REST API for Content Management or REST
API for Content Delivery (for published content). Alternatively, you can get that information
from the Oracle Content Management web interface directly; for example, by looking at the
API properties of the Video Plus asset.

 

 
Then use the REST API for Content Management to get the video:

GET http://{host}/content/management/api/v1.1/items/{item_ID}

This will return data in the following format (not all data values are shown):

{
    "id": "CONT4879B63407F3431487E694FF1E1616D7",
    "type": "DigitalAsset",
    "name": "Mobile.mp4",
    "description": "",
    "fields": {
        "metadata": {
            "width": "1920",
            "height": "1080"
        },
        "advancedVideoInfo": {
            "provider": "kaltura",
            "properties": {
                "duration": 58,

Chapter 1
Key Concepts

1-37



                "videoStripProperties": "n15,h168,w300",
                "extension": "mp4",
                "searchText": “Mobile.mp4 ",
                "name": "Mobile.mp4",
                "status": "READY",
                "entryId": "1_9ijq4y5e",
                "endpoint": "https://www.kaltura.com",
                "partner": {
                    "id": "2735841"
                },
                "player": {
                    "id": "46290582"
                }
            }
        },
        "renditions": [ . . . ],
        "mimeType": "video/mp4",
        "fileGroup": "AdvancedVideos",
        "version": "1",
        "fileType": "mp4"
    },
}
                "status": "READY",
                "entryId": "1_9ijq4y5e",
                "endpoint": "https://www.kaltura.com",
                "partner": {
                    "id": "2735841"
                },
                "player": {
                    "id": "46290582"
                }
            }
        },
        "renditions": [ . . . ],
        "mimeType": "video/mp4",
        "fileGroup": "AdvancedVideos",
        "version": "1",
        "fileType": "mp4"
    },
}

Note the entryID, partnerID, and playerID values that were returned (shown in bold
above). You’ll use these values to configure the player later.

Add the JavaScript Embed Code for the Kaltura Player

Add the embed code for the Kaltura player.

Pass the Configuration Parameters

Update the entryID, partnerID, and playerID placeholders with values that are specific
to the Video Plus asset you want to embed. Additionally if you published the videos to
a secure channel in Oracle Content Management, you will need to update the ks token
field. But if you published your videos to a public channel, the token field is optional.

Chapter 1
Key Concepts

1-38



Note:

Please obtain the token by using this API call.

  <div id="my-player" style="width: 640px;height: 360px"></div>
  
  <script type="text/javascript" src="http://cdnapisec.kaltura.com/p/
{partnerID}/embedPlaykitJs/uiconf_id/{playerID}">
  </script>
  
  <script type="text/javascript">
  try {
    var config = {
        targetId: "my-player",
        provider: {
           partnerId: {partnerID},
           uiConfId: {playerID},
           ks: {token}
        }
    };
    var kalturaPlayer = KalturaPlayer.setup(config);
        kalturaPlayer.loadMedia({entryId: '{entryID}'});
  } catch (e) {
    console.error(e.message);
  }
  </script>

And that’s it. The playerID value is the player configuration for the Kaltura player, as defined
for playback within Oracle Content Management. However, you can modify the settings for
the Kaltura player and do something different than the Oracle Content Management default.

Learn More...

• View and Manage Digital Assets

Multilingual Content and Translations
Assets in Oracle Content Management can exist in any number of languages. When content
authors create assets, they can choose from any languages that are enabled for the
repository. A repository will always have a default language for assets, which is the language
that’s set if none is selected.

Assets can also be translations of each other. Suppose you have an article in English and
want it translated to Spanish. You can then create a Spanish article, which is a translation of
the English asset. An asset can have as many translations as there are languages enabled
for the repository. All translations of an asset need to be of the same type.

A collection of translations of the same content item is called a translation set. A translation
set has a master asset, which is usually the asset that was the source for the other
translations. You can change translation sets and mark any asset of a set to be the master.

 

Chapter 1
Key Concepts

1-39

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-delivery/api-provider-tokens.html


 
Alternatively, assets can be marked as nontranslatable. These assets don’t have the
option to add translations.

Translations of assets are managed in Oracle Content Management, as shown in the
following image. In this example, the translation set contains two assets, with English
as the master and Spanish its translation.

 

 
Each translation of an asset is a complete asset itself. Even though all translations are
shown in the Oracle Content Management interface as one item, each translation is an
asset in its own right behind the scenes. This means that translations can be created,
updated, deleted, or published independently of any other assets in a translation set.
(Publishing of translations is subject to localization policies defined for the publishing 
channel.)

Chapter 1
Key Concepts

1-40



When translations are published, they’re available in the content delivery API. Furthermore,
published translations continue to retain information about the translation relationship they
have with the other assets in the translation set that have also been published.

Language Attributes of Assets
The content delivery and management APIs express the language and translatability of an
asset in a translation set as standard fields in the API payload.

The following example shows the language and translatable fields.

 

 

Discover Available Translations
You can discover the available published translations in the content delivery API by invoking
the following variations resource endpoint.

GET
      https:/. . ./content/published/api/v1.1/{id}/variations/language?
channelToken=. . .

This produces a collection that is the translation set. Notice that items[] in the following
example has two elements, which is the number of assets in this translation set. You can
follow the links to each of the assets in the translation set.

{
  "setId": "98F6BD881DF46650E053020011ACE0E4",
  "masterItem": "CORE6BEF829DE27F41AA9ACC0A3B6825D6C9",
  "items": [
    {

Chapter 1
Key Concepts

1-41



      "id": "CORE6BEF829DE27F41AA9ACC0A3B6825D6C9",
      "value": "en-US",
      "links": [
        {
          "href": "http://. . .oraclecloud.com:8080/content/
published/api/v1.1/items/. . .?channelToken=. . .",
          "rel": "self",
          "method": "GET",
          "mediaType": "application/json"
        }
      ]
    },
    {
      "id": "CORE8D451A7D43FE401EAC96A80E111406B4",
      "value": "es",
      "links": [
        {
          "href": "http://. . .oraclecloud.com:8080/content/
published/api/v1.1/items/CORE8D451A7D43FE401EAC96A80E111406B4?
channelToken=abb5f9190dd54a99979a7fa04b5506ba",
          "rel": "self",
          "method": "GET",
          "mediaType": "application/json"
        }
      ]
    }
  ],
  "links": []
}

Fetch a Specific Translation of an Asset
In a client application, you’ll often want to switch to translated content automatically
without listing translations.

This can be done in a single call, like the following one:

GET https:/. . ./content/published/api/v1.1/{id}/variations/
language/es?channelTpken={. . .}

The response for this request would be the Spanish (es) asset in the translation set. If
the client asks for a translation that doesn’t exist, the result would be a 404 error
response, as expected. However, you can configure Oracle Content Management to
fall back to a default language instead of returning a 404 error response. This can be
done by associating a localization policy with the channel. If a localization policy with a
default language is associated with the channel, then requests for nonexisting
translations will return the asset of the default language.

Translation Jobs
It’s often necessary to translate a large number of assets in bulk, possibly using third-
party tools or translation teams. Oracle Content Management supports this process
through translation jobs.

Chapter 1
Key Concepts

1-42



This process involves a number of steps:

1. First, you add assets to be translated to a translation job, which is a trackable activity
through the life cycle of asset translation.

2. Next, the translation job exports the translatable assets into an export file. This is an
archive (zip file) of all contents of the asset that needs to be translated. A third party or an
integration can inspect this archive and provide the desired translations. These
translations are themselves added to the same archive as part of the translation process.

3. The archive with the translated assets is then imported back into Oracle Content
Management. Upon import, translated assets are created and linked to their master/
original assets and with each other to create translation sets.

4. The translations are now in Oracle Content Management, linked to their master asset and
available for further processing and publishing.

 

 
Learn More...

• Work With Language Assets

• Review and Add Languages to a Content Item

• Localize Content Items

• Manage Asset Translation Jobs

Chapter 1
Key Concepts

1-43



Content Versions
Changes to content in Oracle Content Management are tracked as revisions. This
means Oracle Content Management maintains a snapshot, or version, of each update
to an asset.

The content snapshots of an asset are readily available to the content author in the
Properties panel on the Activity tab, as the following image shows.

 

 
Content authors can see content versions either for all languages or just for the
currently selected asset (Current Language).

Please note the numbering of content versions, which follows a very specific format:
{published version}.{local version}. For example, v1.002 means that this asset has
been published at version 1 and two subsequent updates exist for this asset, but those
changes have not yet been unpublished (local versions). If an asset was never
published, its published version is 0.

When an asset is published, its published version number is set to the next number.
For example, if an asset goes through updates marked v0.001, v0.002, and v0.003,
and is then published, the new version for the current asset will be v1.000 (marked
simply as v1). Subsequent numbering continues with v1.xxx as local updates are
made to the asset (v1.001, v1.002, and so on).

 

Chapter 1
Key Concepts

1-44



 
Even though all content versions are retained in Oracle Content Management, only the
current (latest) version is available for content management operations. This means that only
the latest version of the asset can be approved or published or associated with other assets.
Older versions exist for the purposes of tracking and review by content authors, not for actual
use of that content.

Learn More...

• View and Manage Content Items

• View and Manage Digital Assets

Publishing and Channels
Publishing content is the act of making that content available to clients. It means that the
content is accessible from delivery APIs in read-only form. Publishing is a copy operation—
that is, users can freely change an asset after publishing without affecting the client.

A channel is a logical entity to which a publishing operation is initiated.

The act of publishing involves three key elements:

1. The actual assets that are being published

2. The channel to which the assets are being published

3. The policies that govern the publishing operation

Publishing
Any asset that’s managed in an asset repository can be published to one or more channels.
Once published, content is available to the delivery API in read-only form.

It’s important to note that even though published content retains the same identifier as
managed content, a published asset is essentially a copy (or snapshot) of the managed

Chapter 1
Key Concepts

1-45



asset. This means that after a piece of content has been published, it can continue to
change in the management context, but those changes are not reflected in the
published entity until the content is republished.

Publishing assets involves dependency management at its core. One of the key tenets
of publishing is to never cause broken links in the published content. Say there is a
blog asset that’s published. If that asset has references to an image or other assets,
then these must also be published along with the blog asset. This ensures that the
published content is always self-contained and complete.

Publishing always carries delta data only since the last publishing operation to the
same channel. If a referenced asset is already published to the same channel, then
only the originating asset is published. This is the case even if the referenced asset
has changed since the last publishing operation. This way each asset can have its
own change management life cycle, while referential integrity is maintained at the
same time.

Channels
Channels are logical entities to which content can be published. Channels can be
thought of as containers for configuration and policies related to publishing content.

Channels can be public or secure. Public channels allow access to published content
by any user. They are intended primarily for use in applications such as public
websites and apps.

Secure channels allow content access only to users who are logged in. Secure
channels are intended for use in more closed contexts, such as intranets, employee
portals, and secure applications.

Each channel has a channel token that a client must present to get access to
published content. The token can show up either as a query parameter or as an http
header. This token is not an encrypted entity (that is, it does not represent secure or
shared knowledge between a client and server); it’s merely an identifier of the channel.

Policies
Policies control the nature of the validation process that happens before assets are
published.

There are two kinds of policies:

• Workflow policies—A channel can be configured to accept any published content
or only approved published content. In some situations, it might be necessary to
safeguard against inadvertent publishing of content that might not be ready. A
workflow policy helps ensure that each asset that ultimately gets published, either
directly or indirectly (through a reference), is explicitly approved by an approving
authority.

• Language policies—There might be situations where the publishing of content
requires translations of that content to be published at the same time. For
example, there might be legal requirements to publish content in a set of
languages and ensure that each translation is up to date and published together
with the other translations. A language policy ensures that such constraints can be
met and safeguards against accidental publication of content without the required
language translations. Language policies are managed as a separate

Chapter 1
Key Concepts

1-46



configuration set and assigned to a channel. See Multilingual Content for further details.

Publishing Process
Publishing involves a number of steps. It’s useful to look at this from a flow perspective to
understand how and when policies come into play.

Publishing starts with the user initiating a publish operation, either for a single asset or a set
of assets. The first step in the publishing process is to gather all necessary assets for
publication. This involves recursively walking through the content relationships to gather all
unpublished related content.

Once all content to be published is gathered, a verification step happens to ensure that
workflow policies, language policies, user rights, and so on are all validated.

After the content and the required publication permissions have been validated, the content is
actually published, which basically creates a copy of the content. All published content is
stored safely so that no broken links exist in published content. Once the publishing process
is complete, the delivery API would be able to serve clients with the newly published content.

Learn More...

• Publish Assets

• Manage Asset Publishing Jobs

• Manage Publishing Channels

• Manage Workflows

• Manage Localization Policies

• Content Delivery

Taxonomies
A taxonomy is a hierarchical grouping of related concepts. In Oracle Content Management,
taxonomies help content authors and client applications classify content into well-defined
categories.

Let’s have a closer look by taking a vehicles taxonomy as an example.

 

Chapter 1
Key Concepts

1-47



 
In this example, the Vehicles taxonomy has two top categories (Cars and Trucks), and
these categories in turn have several children. Of course, those child categories can
each have their own child categories, and so on. Such a structure of logical entities
essentially represents a hierarchical set of categories.

The following topics describe Oracle Content Management taxonomies:

• Taxonomies from a Management Perspective

• Taxonomy Life Cycle

• Taxonomies from a Delivery Perspective

• Discovering the Structure of a Taxonomy

• Discovering Asset Categorization

Taxonomies from a Management Perspective
Once a taxonomy and categories are defined, content authors can classify content into
categories of that taxonomy.

For example, an asset called Ford Fiesta would be classified under /Vehicles/Cars/
Sedan. Any number of assets of any kind can be classified into a category. A category
is merely a logical placeholder for content that belongs to a specific concept.

Adding assets to a category is simple: select the assets to be added to a category and
choose the category to add them to.

 

Chapter 1
Key Concepts

1-48



 
Once assets are added to categories, the Oracle Content Management web interface shows
them in an intuitive tree-like navigation structure. Content authors can select a specific
category to view or manage its content. This lets you use taxonomies as an organization tool
for content management.

 

 
An Oracle Content Management instance can have as many taxonomies as needed. A single
repository can have multiple taxonomies, and the same taxonomy can be enabled in multiple
repositories. In addition, assets in a management context can belong to multiple taxonomies.

Chapter 1
Key Concepts

1-49



This many-to-many relationship between taxonomies, repositories, and assets helps
content architects design and use sophisticated content-classification models.

 

 
Taxonomies themselves might change over time. When a taxonomy changes, the
categorization of the assets also changes as a result (automatic recategorization).
Suppose a category is moved from one parent category to another. In that case,
assets that belong to the category that moved (children of the category) continue to
belong to the same parent, but would acquire a new grandparent. If a category is
deleted, however, the assets belonging to that category are promoted to the parent
category, as you would expect.

In this sense, categories are not containers of assets. Instead, the right way to think
about categorization is in terms of relationships. Assets, by virtue of categorization, are
associated with a category.

Taxonomy Life Cycle
Changes to a taxonomy itself can have far-reaching consequences for the nature of
categorization. Such taxonomy changes are likely to be a multistep process involving a
number of people and potentially multiple groups or teams.

That’s why Oracle Content Management uses an orchestrated life cycle for taxonomy
changes:

• Taxonomies are always created in a draft state. They are initially considered to be
in the process of structural definition and don’t allow assets to be added to their
categories.

• Once the taxonomy authors are satisfied with the structure of a taxonomy, they
graduate it to a promoted state. This is the state at which the taxonomy can be
enabled for a repository, which allows content authors to start classifying content
into it. However, no changes to the taxonomy structure itself are allowed in this
state.

• If the structure of a taxonomy needs to change after assets have been classified
into it, that taxonomy needs to be versioned and turned back into draft mode.
However, users can continue to categorize content into the promoted version of
the taxonomy. The draft taxonomy can subsequently be promoted, which results in

Chapter 1
Key Concepts

1-50



automatic recategorization of assets into the new structure of the taxonomy (using the
general rules described in the preceding text).

• A taxonomy itself can be published to channels like any other asset. Once published,
taxonomy and categorization information is available in the delivery API. This helps
clients present content based on taxonomy (such as product listings, faceted navigation,
and some types of menus).

 

 

Taxonomies from a Delivery Perspective
Taxonomies are published, just like assets. Once a taxonomy is published, it’s available in the
delivery API.

There are two places where taxonomy information surfaces in the delivery API:

1. Discovering the Structure of a Taxonomy

2. Discovering Asset Categorization

Discovering the Structure of a Taxonomy
There are many APIs that help navigate the structure of a taxonomy or category by category
listing.

One simple way to get all category information of a taxonomy is using an API in this form:

GET http://.../content/published/api/v1.1/taxonomies/
52446BF67CE74F229AF9F178448BCB80/
categories?fields=ancestors&channelToken=c240e6a4209946549a9eef53c8ed3ab0

Discovering Asset Categorization
The standard asset-listing resource can also list assets classified to a specific category (or
categories).

Chapter 1
Key Concepts

1-51



This is done with this simple form of the API:

GET http://.../published/api/v1.1/items?q=(taxonomies.categories.id eq 
"77BD937EFCA54051905DD6D525E37E58")&channelToken=c240e6a4209946549a9eef
53c8ed3ab0

This produces a response like the following one:

{
  "items": [
    {
      "name": "Ford Fiesta",
      "description": "",
      "links": [],
      "id": "CORE23B05BB961AE4EE3AE4ED9962A0440ED",
      "type": "Vehicles"
    },
    {
      "name": "Ford Fiesta 2019 Launch",
      "description": "",
      "links": [],
      "id": "COREC6C72D74EAA0477AAE966CF154CB16C7",
      "type": "Marketing-Blog"
    }
  ],
  "links": []
}

To make this type of request, you would have to know the ID of the category. However,
there is another way to discover assets of a category by using a friendly ID (slug or
API name). Each category can have a unique handle, which is a string that’s both
human-readable and addressable as an ID. The API name of a category can simply be
added to a category at the time of creation or any time thereafter. The API name itself
can be used instead of the category ID. Also note that the API name of a category, like
its ID, must be unique across taxonomies.

Suppose we have all-cars as the API name for the Cars category and all-
cars.sedans for the Cars/Sedan category. Then the preceding API call can also be
written as follows:

GET http://.../content/published/api/v1.1/items?
q=(taxonomies.categories.apiName eq 
"all-cars.sedans")&channelToken=c240e6a4209946549a9eef53c8ed3ab0

This lets client applications surface meaningful URLs instead of passing around IDs.

Learn More...

• Manage Taxonomies

• Assign Asset Categories

Chapter 1
Key Concepts

1-52



Friendly URLs for Assets
Oftentimes an asset is all that’s needed to render a whole page, such as a blog post. In
situations like that, it would be nice to have the URL of the web page contain the title of the
blog.

Suppose I have a blog post titled “Morning Starts with Coffee”. I would want the URL of the
page that shows this blog post to be something like https://..../blog-morning-starts-with-
coffee.html. This is very easy to accomplish with Oracle Content Management because you
can enable friendly URLs for content types.

Once friendly URLs are enabled for a content type, a new field is added to assets of that
type. Furthermore, Oracle Content Management automatically populates the friendly URL
field with the asset name. As soon as I create a blog asset, its "Friendly Item Name for
URL"—also called slug in the API—shows the name of the asset (with some automatic
character replacements for better URL handling).

Of course, you can change this friendly URL to anything you want. Oracle Content
Management handles all the necessary validations to make sure it’s unique.

 

 
This slug field is now part of the asset’s data. When you get this asset (say, from a search
list), you can fetch the slug field and use that in your client to construct the URL of a page.

Chapter 1
Key Concepts

1-53



More interestingly, Oracle Content Management provides a way to fetch the asset
using just the slug value. For example, instead of accessing this blog asset with

https://.../content/published/api/v1.1/items/
COREB6795E95BE27481690961D6657D5B70E?
channelToken=83e8e3bc1f5f55f9b02a8183622589ad

you can use the slug in the URL:

https://.../content/published/api/v1.1/items/.by.slug/blog-morning-
starts-with-coffee?channelToken=83e8e3bc1f5f55f9b02a8183622589ad

This means that if the slug of an asset is in the URL of a page, all that the client needs
to do is grab that string and request the underlying asset by slug. This saves a round
trip to look up or search for an asset with a slug and then fetch its assets.

It’s useful to note that every variation of the API that exists for an /items/{id} also exists
for /items/.by.slug/{value}. These two APIs are therefore equivalent from the
perspective of the content delivery API.

Learn More...

• Create a Content Type

• Create a Digital Asset Type

Quick Start
Oracle Content Management is an enterprise-grade content management system
(CMS) and intelligent content platform that can serve a wide variety of content
management and delivery needs. This includes headless environments, where it's
leveraged primarily as a content server for consumption by other applications,
including websites and other digital experiences.

In those scenarios, Oracle Content Management can support entire digital ecosystems
with a single source of truth for content.

To accomplish this, Oracle Content Management offers a rich set of application
programming interfaces (APIs) that allow arbitrary read and write queries of a variety
of resources managed by the system.

It's easy to get started with Oracle Content Management as a headless CMS. This
quick start tutorial is for developers who want to get up and running quickly and dive
into the content delivery and management APIs provided by Oracle Content
Management. It basically consists of these steps:

1. Register for Oracle Cloud

2. Provision an Instance of Oracle Content Management

3. Add a content model, content, and a channel

4. Configure Oracle Content Management as a headless CMS

5. Issue your first request to Oracle Content Management

This will get you from zero to productivity in no time.

Chapter 1
Quick Start

1-54

https://docs.oracle.com/en/cloud/paas/content-cloud/apisdk.html
https://docs.oracle.com/en/cloud/paas/content-cloud/apisdk.html


Register for Oracle Cloud
If you create an Oracle Cloud account, you can access the 30-day trial that Oracle Content
Management offers to all new users. This free trial provides thirty days of free access and
USD 300 in free credits (known in Oracle parlance as Universal Credits).

If you already have an Oracle Cloud account, you can skip this step and proceed to provision
an instance of Oracle Content Management.

 

 

Select an Account Name and Home Region
First, navigate to Oracle.com and click Try Oracle Cloud Free Tier, then click Start for free.
Enter your email address and select your location, and click Next to proceed.

 

Chapter 1
Quick Start

1-55

https://cloud.oracle.com
https://cloud.oracle.com


 
On the following screen, provide an account name, which you'll use to access your
Oracle Cloud account, and a home region, which you select from a list of Oracle data
regions. You'll then be asked to provide contact information, including your mobile
phone number for account verification.

 

 

Provide Payment Information
Oracle Cloud requires trial users to provide payment information such as credit card
details, but you won't be charged unless you choose to upgrade the account to a paid
subscription.

 

 
After providing payment information, you'll be asked to agree to the terms and
conditions of the Oracle Cloud Services Agreement.

 

Chapter 1
Quick Start

1-56



 
When you confirm to complete the sign-up, Oracle Cloud will proceed to create your account.
This may take up to fifteen minutes, and you'll receive a confirmation at the email address
you provided during the sign-up process.

 

 

Provision an Instance of Oracle Content Management
Next, you need to create an instance of Oracle Content Management. If you already have an
Oracle Content Management instance, you can skip this step and proceed to add a content
model, some content, and a channel.

Log in to your Oracle Cloud account. Note that your cloud account name is distinct from your
user name and password. You can think of the cloud account name as representing your
entire organization and your Oracle Cloud user name and password as representing you as
an individual user. After logging in, you'll see your Infrastructure Dashboard.

Chapter 1
Quick Start

1-57



 

 
Open the hamburger menu in the upper left-hand corner (the three horizontal lines)
and, under Solutions and Platform, hover over Application Integration and choose
Content Management.

 

 

Choose a Storage Compartment
In Oracle Cloud, compartments are used to organize cloud resources for a variety of
purposes, including isolation, access, and billing. Due to security reasons, it is highly
recommended to create and use a new storage compartment rather than using the
existing root storage compartment.

 

Chapter 1
Quick Start

1-58



 

Create Your Oracle Content Management Instance
Now, click Create Instance to create your new service instance of Oracle Content
Management.

 

 
Provide a name for the instance and an optional description, and then click Create.

Chapter 1
Quick Start

1-59



It will take some time for the instance to be created, but the instance list page
refreshes automatically to keep you updated on the status of the creation process.
Once provisioning has completed, you can click the instance name to access its
details.

 

 
Finally, once the instance has been created, you can click Open Instance to navigate
to the web interface of the provisioned instance. Now we're ready to do some content
modeling, add some content, and publish it to a channel!

 

Chapter 1
Quick Start

1-60



 

Add a Content Model, Some Content, and a Channel
By default, every new instance of Oracle Content Management comes empty, with an empty
content model and no created content.

To use Oracle Content Management as a headless CMS, we need to supply a content model,
create content, and publish it to a channel.

If you already have content published to a channel, you can skip this step and proceed to 
configure Oracle Content Management as a headless CMS.

Open your instance. Note that in previous screenshots the Oracle Content Management
instance we created is named XalcoInstance01.

Create a Content Type
You can create a content model that contains particular content types and associated fields.
Content authors choose a content type every time they want to create a new content item.
Responses that developers ingest in their applications also adhere to the created content
schema.

First, sign in to the Oracle Content Management web interface as an administrator. Click
Content in the left sidebar and then choose Content Types from the selection list in the
header.

Note:

If you don't see the Content option in the left sidebar, your user login doesn't have
the required administrative privileges.

Chapter 1
Quick Start

1-61



Next, click Create in the upper right corner. The Create Content Type dialog opens,
where you can provide a name for your content type and an optional description.

 

 
 

 
For the purposes of getting started quickly, we need only a simple content type. Let's
call this content type NewsArticle. Give the NewsArticle content type four fields
(each reflecting a distinct field type), with the following values filled in on the Settings
step of the Text Settings dialog (we'll skip Appearance for now):

• The Author field is a required single-value Text field having the display name
Author and the machine name newsarticle_author.

• The Date field is a required single-value Date field having the display name Date
and the machine name newsarticle_date.

• The Content field is a required single-value Large Text field having the display
name Content and the machine name newsarticle_content.

• The Image field is a required single-value Image field having the display name
Image and the machine name newsarticle_image.

Chapter 1
Quick Start

1-62



 

 
The following screenshot shows our settings for the Author field as an example. Depending
on the field type, the structure of the form may be different.

 

 
Now that we've created our content type, we can turn to creating a publishing channel and an 
asset repository, which will allow us to create content items.

Create a Publishing Channel
In Oracle Content Management, a publishing channel represents ranges of digital
experiences that need to be served content by the headless CMS. You can also think of
channels as containers for configuration and policies related to publishing content.

Though channels can be public or secure depending on requirements, we'll focus only on
public channels here.

Chapter 1
Quick Start

1-63



Suppose you have a React application that needs to consume content from Oracle
Content Management. By creating a channel with a name like JavaScript, you can
publish content to the JavaScript channel and make it available to any JavaScript
application that may need to consume that content, including your React application.
Instead of using channels to represent sets of digital experiences, you can also
designate channels for individual experiences (for example, channels named
AugmentedReality or DigitalSignage).

Click Content in the left sidebar and choose Publishing Channels from the selection
list in the header. You'll see an empty list without any channels created. In the upper
right corner, click Create to create a new channel. Give the channel the name
QuickstartChannel for the purposes of this quick start tutorial and keep the access
public. Click Save to create the channel.

Create an Asset Repository
In Oracle Content Management, an asset repository is essentially a large bucket that
contains all the content items (known in Oracle Content Management as assets) an
organization needs to work with.

Click Content in the left sidebar and choose Repositories from the selection list in the
header. You'll see an empty list without any asset repositories created. In the upper
right corner, click Create to create a new asset repository. Give the asset repository
the name QuickstartRepo for the purposes of this quick start tutorial.

Specify the NewsArticle content type under Content Types to indicate to Oracle
Content Management that assets of the type NewsArticle can be created in the
QuickstartRepo asset repository.

 

Chapter 1
Quick Start

1-64



 
Finally, specify the QuickstartChannel channel under Publishing Channels to indicate to
Oracle Content Management that content in the QuickstartRepo repository can be published
to the QuickstartChannel channel.

 

 
For now, you can leave everything else untouched and click Save to create the asset
repository.

Create a Content Item (Asset)
In Oracle Content Management, an asset is the atomic unit of managed content and adheres
to a particular content type. Each content item is an asset. For developers coming from other
CMS ecosystems, assets in Oracle Content Management are most similar to what many
CMSs call entities or records.

To create your first asset, click Assets in the left sidebar and click Create in the upper right
corner. You'll see a selection list of available content types, including NewsArticle. Select this
content type to continue.

 

Chapter 1
Quick Start

1-65



 
In the Create Content Item form, enter "My First News Article" as the name under
Content Item Properties and insert filler content under Content Item Data Fields,
which contains the fields we defined for the NewsArticle content type. Then, in the
Channels sidebar, click Add and select QuickstartChannel to identify it as the
channel to which we'll be publishing.

 

 
The image you choose to add will become an asset as well.

Publish Content Assets to a Channel
Now, to make the content we just created available to the QuickstartChannel
channel, we need to publish both newly created assets to that channel, including the
NewsArticle content item and the image associated with it.

Navigate to Assets in the left sidebar, where you'll find both of these assets available
as unpublished assets. Select them both and click Publish in the action links that
appear above the selected assets.

 

Chapter 1
Quick Start

1-66



 
On the following Validation Results screen, verify that the assets you want to publish to the
QuickstartChannel channel are represented. Click Publish in the upper right corner to
verify. This will publish both assets to the channel, now making them available for public
consumption.

 

 

Configure Oracle Content Management As a Headless CMS
To enable Oracle Content Management as a headless CMS, we need to configure cross-
origin resource sharing (CORS) for security reasons and acquire an API access token for our
publishing channel.

If you already have CORS configured and an API access token at hand, you can skip this
step and proceed to configure Oracle Content Management as a headless CMS.

Note also that for the purposes of providing a base URL of your CMS backend, the instance
URL is the domain name in your URL bar that ends with oraclecloud.com.

Chapter 1
Quick Start

1-67



Configure Cross-Origin Resource Sharing (CORS)
Cross-origin resource sharing (CORS) prevents unauthorized requests from
overloading your API and causing distributed denial-of-service (DDoS) attacks. To
configure CORS, click System in the left sidebar and then choose Security in the
selection list in the header.

If you already have domains ready for your consumer applications, you can insert
them into the Front Channel CORS Origins field, which allows access to content
through Oracle Content Management's REST APIs and embedded components.

 

 
As you can see in the preceding screenshot, we have configured CORS to allow
requests originating from the https://example.com domain. To include additional
domains that are allowed access to the Oracle Content Management REST APIs,
insert a comma-separated list of domains (no quotation marks or other delimiters
necessary). Any domains specified here will be able to issue requests successfully to
the APIs provided by Oracle Content Management.

Acquire and Refresh API Access Tokens
As we saw earlier in this quick start tutorial, assets in Oracle Content Management
must be published to a channel for that content to be available to other consumers,
such as mobile or JavaScript applications.

Since channels can have differentiated sets of published assets, each channel
provides its own unique API access token, which must be included in every request to
target an individual channel.

Click Content in the left sidebar and choose Publishing Channels in the selection list
in the header. Select the QuickstartChannel channel from the list of channels. Under
the API Information header, you'll see two fields whose values can be copied to the
clipboard: Channel ID and Channel Token. To refresh your channel's API access
token, click Refresh to the right of the channel token.

 

Chapter 1
Quick Start

1-68



 

Note:

You can also acquire your channel API access token programmatically by issuing a
request to the REST API for Content Management provided by Oracle Content
Management.

Issue Your First Request to Oracle Content Management
Our next step is to issue our first request to Oracle Content Management to determine that
our APIs are configured properly.

Recall that the instance URL is simply the domain at which your Oracle Content Management
instance resides, adhering to the following format, where {instance_name} is the name of the
instance and {cloud_account_name} is the cloud account name tied to your Oracle Cloud
account:

https://{instance_name}-{cloud_account_name}.cec.ocp.oraclecloud.com

Copy your instance URL and keep it handy, as this is the domain against which you'll be
issuing every API request from your consumer applications. In the coming tests, we'll be
retrieving the NewsArticle asset we created earlier and published to the QuickstartChannel
channel.

If you want to retrieve an individual asset with a GET request, you'll need to supply the
identifier of that asset in your request. To acquire the identifier of your NewsArticle asset,
click Assets in the left sidebar and select your NewsArticle asset, as seen in the following
screenshot. In the URL, you'll see a path adhering to the following format, where {asset_id}
is the asset identifier:

https://{instance_name}-
{cloud_account_name}.cec.ocp.oraclecloud.com/documents/assets/view/{asset_id}

Chapter 1
Quick Start

1-69

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/index.html


Copy this {asset_id} value and keep it handy for our coming GET requests.

 

 
In the next three sections, we'll use three different approaches to issue a request to
retrieve a published item: Postman, cURL, and a typical XMLHttpRequest. The
resource path takes the following format, with the added channelToken query
parameter, whose value is {channel_token}, the API access token we copied earlier:

https://{instance_name}-
{cloud_account_name}.cec.ocp.oraclecloud.com/content/published/api/
v1.1/items
/{asset_id}?channelToken={channel_token}

Without the channelToken query parameter included, you'll receive a "403 Forbidden"
error.

Retrieve Content Through Postman
One of the most ubiquitous developer tools for testing API requests is Postman, a free
API client and desktop application. Postman provides a convenient user interface to
form your request, including request headers and request body.

To test an API call from Postman, insert the following into the path for a new Postman
GET request, supplying the channelToken query parameter under the Params tab:

https://{instance_name}-
{cloud_account_name}.cec.ocp.oraclecloud.com/content/published/api/
v1.1/items
/{asset_id}?channelToken={channel_token}

 

Chapter 1
Quick Start

1-70



 
Upon issuing the GET request, you'll see a response with the code "200 OK," which begins
with the following JSON:

{
    "id": "CORE5E4EEA3FB332488589EA08D7D4705999",
    "type": "NewsArticle",
    "name": "My First News Article",
    "description": "",
    "slug": "1481786211989-my-first-news-article",
    "language": "en-US",
    "translatable": true,
    "createdDate": {
        "value": "2020-03-26T19:15:55.710Z",
        "timezone": "UTC"
    },
[...]

 

Chapter 1
Quick Start

1-71



 
Note that in the preceding two screenshots, the instance name and cloud account
name have been obfuscated and should be replaced with your own details.

Retrieve Content Through cURL
To retrieve our NewsArticle asset through the command line, we can use the
command-line tool cURL.

The Oracle Content Management REST API documentation contains information
about using cURL to access the REST API for Content Management, with useful initial
steps for those unfamiliar with cURL.

To test an API call from cURL, issue the following command, where {instance_name}
and {cloud_account_name} are your instance details:

curl -i -X GET https://{instance_name}-
{cloud_account_name}.cec.ocp.oraclecloud.com/content/published/api/
v1.1/items
/CORE5E4EEA3FB332488589EA08D7D4705999\?
channelToken\=99e76da7c5d24c11aa806ac5
8a46b42a

You'll receive a response that returns the JSON from the previous section, as seen in
the following screenshot (note that the instance name and cloud account name have
been obfuscated).

 

Chapter 1
Quick Start

1-72

https://docs.oracle.com/en/cloud/paas/content-cloud/apisdk.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/index.html


 

Retrieve Content Through an XMLHttp Request
Finally, we can also retrieve our NewsArticle asset from any JavaScript application or in the
browser by employing the XMLHttpRequest API.

To test an API call using XMLHttpRequest, issue a request by constructing an
XMLHttpRequest and invoking the send() method as follows, where {instance_name} and
{cloud_account_name} are your instance details:

var req = new XMLHttpRequest();
req.open("GET", "https://{instance_name}-
{cloud_account_name}.cec.ocp.oraclecloud.com/content/published/api/v1.1/items
/CORE5E4EEA3FB332488589EA08D7D4705999?channelToken=99e76da7c5d24c11aa806ac58a
46b42a");
req.send();

You'll receive a response that returns the JSON from the previous section. Note that if you're
issuing a variety of GET requests with diverse query parameters, you may want to employ a
utility function to handle arbitrary query parameters in lieu of inserting them into your
invocation of the open() method directly.

Next Steps
To learn more about using Oracle Content Management as a headless content management
system, see the documentation and sample websites.

You can browse the Headless CMS section of the Oracle Content Management
documentation, where you can find information about the content delivery and content
management APIs as well as software development kits that can aid your implementation.

In addition, you can download sample websites and learn about the open-source ecosystem
surrounding Oracle Content Management on the downloads page.

Chapter 1
Quick Start

1-73

https://docs.oracle.com/en/cloud/paas/content-cloud/headless-cms.html
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=content-cloud-getstarted
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=content-cloud-getstarted
https://docs.oracle.com/en/cloud/paas/content-cloud/apisdk.html
https://docs.oracle.com/en/cloud/paas/content-cloud/apisdk.html
https://docs.oracle.com/en/cloud/paas/content-cloud/apisdk.html
https://www.oracle.com/middleware/technologies/content-experience-downloads.html


2
Oracle Content Management REST APIs for
Headless Development

REST application programming interfaces (APIs) are available in Oracle Content
Management for content delivery and for management of content, conversations, documents,
and users and groups.

Which REST API you use depends on what you want to do:

• If you want to fetch assets that have been published to a channel or information about the
assets, use the REST API for Content Delivery.

• If you want to manage assets in Oracle Content Management, use the REST API for
Content Management. Assets include content items as well as digital assets and their
renditions.

In addition to these content APIs, Oracle Content Management offers a number of other
REST APIs that let you integrate or extend Oracle Content Management functionality:

• REST API for Activity Log

• REST API for Content Capture

• REST API for Content Preview

• REST API for Conversations

• REST API for Documents

• REST API for Self-Management

• REST API for Site Management

• REST API for Users and Groups

• REST API for Webhooks Management

REST API for Content Delivery
You can use the Oracle Cloud REST API for Content Delivery to fetch assets or information
about them from channels in an asset repository. Assets include content items as well as
digital assets and their renditions.

The REST API for Content Delivery has several categories of endpoints, which the following
table describes.

Category Description

AutoSuggestions Use the AutoSuggestions resource to suggest item keywords for auto-
completion of a default search.

Item Use the Item resource to get published items, previews of items, item
metadata, or taxonomies of items.

Item Variations Use the Item Variations resource to get item variations, a content item for
item variations, and item variations by variation type.

2-1

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-activity-log/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-capture/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-preview/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-conversations/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-self-management/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-sites-management/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-users-groups/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-webhooks-management/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-delivery/index.html


Category Description

Items Use the Items resource to search published items or get the metadata
catalog of published items.

Items by Slug Use the Items by Slug resource to manage items by slug and to provide
details about the metadata catalog preview, taxonomies, published
information, and variations of an item.

Provider Tokens Use the Provider Tokens resource to generate a provider token.

Published Item Use the Published Item resource to get the metadata catalog preview of an
item.

Recommendations Use the Recommendations resource to access published recommendation
results.

Renditions Use the Renditions resource to get a digital assets file and metadata
catalog, to get metadata for digital assets or renditions, or to get information
about published assets or renditions.

Taxonomies Use the Taxonomies resource to get the metadata of a category, published
taxonomies, or published categories, to list all taxonomies, to read a
published category or taxonomy, or to search published categories.

Version Catalog Use the Version Catalog resource to get information about APIs, API
versions, or API metadata.

REST API for Content Management
You can use the Oracle Cloud REST API for Content Management to manage assets
that have been published to a channel in an Oracle Content Management asset
repository. Assets include content items as well as digital assets and their renditions.

The REST API for Content Management has several categories of endpoints, which
the following table describes.

Category Description

AutoSuggestions Use the AutoSuggestions resource to suggest item keywords for auto-
completion of a default search.

Channel Secret Use the Channel Secret resource to generate, refresh, or delete a
channel secret.

Channels Use the Channels resource to create, delete, read, or update a
channel, to list all channels, or to list all permissions on a channel.

Collections Use the Collections resource to create, delete, read, or update a
collection, to list all collections in a repository, or to list all permissions
on a collection.

Connectors Use the Connectors resource to list all connectors.

Digital Item
Renditions

Use the Digital Item Renditions resource to get a rendition of a digital
item or a digital item native file with or without a file name.

File Extensions Use the File Extensions resource to list file extensions or to read a file
extension.

Item Revisions Use the Item Revisions resource to list item revisions, list item
revisions by slug, read an item revision, or read an item revision by
slug.

Item Variations Use the Item Variations resource to list all item variations of a variation
type, read an item or items by variation type, or update the master item
of an item variations set.

Chapter 2
REST API for Content Management

2-2

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/index.html


Category Description

Items Use the Items resource to:
• Create or delete a content item or digital item
• Generate taxonomy suggestions for content items on demand
• List all suggested taxonomies and categories or all taxonomies

and categories of an item
• Get the workflow instance details for an item
• List the time zones, channels, collections, published channels,

relationships, tags, or variations of an item
• Read the lock, publish, or version information of an item
• Read the on-demand taxonomy suggestion and operations status

or the workflows of an item
• Submit an item to workflow, take action on a workflow task, update

a digital item with a new file, update an item, or update the lock
status of an item

Items Bulk
Operations

Use the Items Bulk Operations resource to perform bulk items
operations, read item operations or status, or publish item IDs.

Items by Slug Use the Items by Slug resource to manage items by slug:
• List all item variations of a variation type
• List an item's channels, collections, lock information, permissions,

publish information, published channels, relationships, tags,
taxonomies, variations, version information, or workflow
information

• Read an item or an item variation of a variation type value by slug
• Read the master of an item variation set by slug

Items Search Use the Items Search resource to manage items search queries, get
the job status for similar items, query items, or query similar items.

Language Codes Use the Language Codes resource to create a custom language code,
delete a language code, list all valid language codes, read a language
code, or update a language code.

Languages Use the Languages resource to list the names of all known language
codes.

Localization Policies Use the Localization Policies resource to create, delete, read, or
update a localization policy or to list all localization policies.

Taxonomies Use the Taxonomies resource to manage your content:
• Create, update, or delete a taxonomy
• Get, create, update, copy, or delete a category in a taxonomy
• Create, copy, update, promote, read, publish, unpublish, or delete

a taxonomy
• List all taxonomies or list all categories in a taxonomy
• Copy, create, or delete a category
• Read a taxonomy, a category, or the copy category, draft creation,

the promote status
• Create a new draft version
• Read the promote, publish, or unpublish job status
• Search categories
• Update a category's properties, including moving it in the tree

After taxonomies are promoted, they can be assigned to repositories.
After taxonomies are assigned to repositories, users can apply
categories to assets.

OAuth Tokens Use the OAuth Tokens resource to generate an OAuth token.

Permission
Operations

Use the Permission Operations resource to perform permission
operations on a resource or to read permission operations status.

Chapter 2
REST API for Content Management

2-3



Category Description

Provider Tokens Use the Provider Tokens resource to generate a provider token for an
asset for a specific version.

Recommendations Use the Recommendations resource to manage recommendations:
• Create, delete, list, update, read, and publish recommendations
• Read a recommendation's published and unpublished item IDs
• Approve or reject a Recommendation
• Create, delete, list, read, and update audience attributes

Repositories Use the Repositories resource to create, delete, read, or update a
repository, to list all permissions on a repository, or to list all
repositories.

Tokens Use the Tokens resource to read a a Cross-Site Request Forgery
(CSRF) valid token.

Types Use the Types resource to create, delete, read, or update a type or to
list all types, all data types, or all permissions on a type.

Workflow Roles Use the Workflow Roles resource to add or remove members of a
process role, get members or details of a process role, or list the roles
of all registered workflows.

Workflow Tasks Use the Workflow Tasks resource to list workflow tasks assigned to the
current user, or to read a workflow task.

Workflows Use the Workflows resource to reregister or deregister a workflow, list
all workflows, list all permissions on a workflow, read a workflow, or
update a workflow.

Chapter 2
REST API for Content Management

2-4



3
Oracle Content Management SDKs

Oracle Content Management provides software development kits (SDKs) that help you
integrate Oracle Content Management functionality and simplify your application
development:

• Content SDK for JavaScript

• Content SDK for Java

• Content SDK for Swift

• Sites SDK

• Translation Connector SDK

Content SDK for JavaScript
The Content SDK for Oracle Content Management is a light-weight JavaScript wrapper that
interacts with the Content REST APIs.

This read-only SDK retrieves structured content, digital assets, and content layouts that are
managed in Oracle Content Management. The SDK can be used in web browsers or NodeJS
projects.

The Content SDK for JavaScript consists of three main modules:

• ContentSDK: The main entry-point object. The ContentSDK object lets you create client
objects to access content based on your requirements.

• ContentDeliveryClient : A client object that is set up to access published content items
and digital assets.

• ContentPreviewClient : A client object that is set up to access content types, draft
content items, and draft digital assets.

The Content SDK for JavaScript is available as an Oracle open-source project on GitHub.

The reference guide can be found here, Content SDK for JavaScript.

Mobile SDKs
For mobile application development, consider using the SDKs below:

• Content SDK for Java

• Content SDK for Swift

Content SDK for Java

Oracle Content Management provides a Content SDK for Java/Android. The read-only SDK
is a package of libraries for retrieving published content items, digital assets, and content
layouts that are managed in Oracle Content Management.

3-1

https://github.com/oracle/content-management-sdk
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-sdk-content-delivery


The SDK is a light-weight Android binding that interacts with the REST API for Content
Delivery. The SDK can easily be integrated with any third-party Android mobile
application. The SDK lets you fetch content from the server on the fly, without the need
for rebuilding the app to modify content. The SDK also provides a wide range of
advanced utilities and features such as response caching, a search request builder,
and request/response modeling.

The Content SDK for Java is available as an Oracle open-source project on GitHub.

The reference guide can be found here, Content SDK for Java/Android.

Note:

The SDK will work in stand-alone Java applications as it does not contain
any direct dependencies on the Android SDK; however, most examples are
shown as they would be coded in an Android application as it is assumed
that is the primary target platform. This SDK will also work for Android apps
written in Kotlin.

Content SDK for Swift

Oracle Content Management provides a Content SDK for Swift, which is a powerful
and intuitive programming language for iOS, iPadOS, macOS, tvOS, and watchOS.
The read-only SDK is a package of libraries for retrieving published content items,
digital assets, and content layouts that are managed in Oracle Content Management.

The SDK is a light-weight iOS binding that interacts with the REST API for Content
Delivery, and can be easily integrated with any third-party iOS mobile application. The
SDK lets you fetch content from the server on the fly, without the need for rebuilding
the app to modify content. The SDK also provides a wide range of advanced utilities
and features such as response caching, a search request builder, and request/
response modeling. There are two main libraries:

• OracleContentCore, which provides base functionality, including network
transport capabilities, that’s shared and required by multiple Oracle Content
libraries.

• OracleContentDelivery, which provides data models and APIs for consuming
content from Oracle Content Management.

The Content SDK for Swift is available as an Oracle open-source project on GitHub.

The reference guides can be found here:

• Content SDK for Swift/iOS (Core)

• Content SDK for Swift/iOS (Delivery)

Sites SDK
The Sites SDK for Oracle Content Management is a JavaScript library that provides a
set of functions which enable components to have a more integrated experience with
Oracle Content Management.

The Sites SDK is available for download from the Oracle Content Management server:

Chapter 3
Sites SDK

3-2

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
https://github.com/oracle-samples/content-management-java
https://docs.oracle.com/en/cloud/paas/content-cloud/content-sdk-java/index.html
https://developer.apple.com/swift/
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
https://github.com/oracle-samples/content-management-swift
https://docs.oracle.com/en/cloud/paas/content-cloud/content-sdk-swift/core/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/content-sdk-swift/delivery/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/sites-sdk/index.html


http://{server}/_sitesclouddelivery/renderer/app/sdk/js/sites.min.js

Translation Connector SDK
The Translation Connector SDK for Oracle Content Management is a sample NodeJS
implementation of the Translation Connector REST API. The sample accepts an Oracle
Content Management translation job zip file, translates all the resources in the file, and
returns a new zip file containing all the translations.

The Translation Connector SDK is part of Content Toolkit, which is available on GitHub.

The reference guide can be found here, Translation Connector SDK.

Chapter 3
Translation Connector SDK

3-3

https://docs.oracle.com/en/cloud/paas/content-cloud/solutions/overview-translation-connector-framework.html#GUID-D01EE067-5EE3-454F-ABA1-FB1E76B824B7
https://github.com/oracle/content-and-experience-toolkit
https://docs.oracle.com/en/cloud/paas/content-cloud/translation-connector-sdk/


4
Starter Site CLI for React Development

The Starter Site CLI for Oracle Content Management is a quick way to get started with React
development, and it requires no build configuration.

In this command-line interface, the create site command creates a generic site that is built
in React and is an independently runnable application. You can generate a site to run in
development mode and in production mode.

• Install the Starter Site CLI

• Run CLI Commands

• Get Content from Oracle Content Management

• Set Up the Oracle Content Management Server Connection

• Create a Site

• Build a Site

• Run a Site in Development Mode

• Run a Site with Oracle Content Management Server Content

• Build a Site for Production

• Run a Site in Production Mode

• Structure of the React JS Site Template

• Generated Components

• Starter Site Runtime

Install the Starter Site CLI
To install the Starter Site CLI for React development, you can download a zip file, unzip it,
and use the npm install command.

Follow these steps for installation:

1. Get the files for the Starter Site CLI from here:

git clone git@github.com:oracle/content-and-experience-toolkit.git

Or you can download from GitHub: https://github.com/oracle/content-and-
experience-toolkit

2.  cd content-and-experience-toolkit/react-starter-sites

4-1



3. If you are behind a corporate web proxy, configure npm to work with your proxy:

npm config set proxy http://proxy.company.example.com:8080 
npm config set https-proxy http://proxy.company.example.com:8080

4. Run the npm install command:

npm install -g

For a Mac, run the following command instead:

sudo npm install -g

If you want to reinstall the CLI, uninstall it first:

npm uninstall -g cecss-cli

For a Mac, use the following command instead to untinstall the CLI:

sudo npm uninstall -g cecss-cli

Run CLI Commands
After installation, you can run the command cecss -h to see the usage.

Usage: cecss <command> [options]
Run 'cecss <command> -h' to get the detailed help for the command.
Commands:
  cecss create-site <name>               Creates the site <name> for 
the 
content from local or from OCE server.
  cecss export-server-content <channel>  Create content template based 
on 
the channel <channel>, then export and download the archive from OCE 
server.
  cecss list-server-content-types        List all content types from 
server.
  cecss list-server-channels             List all channels from server.
  cecss develop                          Start development server. 
Watches 
files, rebuilds, and hot reloads if something changes.
  cecss build                            Build an OCE starter site.
  cecss serve                            Serve previoysly build OCE 
starter 
site.
Options:
  --help, -h     Show 
help                                                                   
                                                                       
       

Chapter 4
Run CLI Commands

4-2



[boolean]
  --version, -v  Show version number

Get Content from Oracle Content Management
To create a site to show Oracle Content Management content, you need to specify the source
of the content.

There are three ways to get Oracle Content Management content:

• Oracle Content Management templates

If an Oracle Content Management template contains content types and content items,
you can export it from the Oracle Content Management server and use the template zip
file to create a site.

• Published content from a channel

You can use the command cecss export-server-content to export all published content
items from a channel, and then use the generated zip file to create a site.

• Live content on an Oracle Content Management server.

Example content has been provided in StarterBlog_export.zip.

Set Up the Oracle Content Management Server Connection
Some CLI commands require Oracle Content Management server configuration.

Configure the Oracle Content Management server before you use the following commands:

cecss create-site <name > -s
cecss export-server-content <channel >
cecss list-server-content-types
cecss list-server-channels

To configure the Oracle Content Management server, create the file .cec_properties under
the user's home directory and configure the server as follows:

cec_url=<the oce server url>
cec_username=<user name>
cec_password=<password>
cec_env=pod_ec

Create a Site
You can use the create-site command and its options to create a site.

Run the command cecss create-site -h to see the usage and examples:

Usage: cec create-site <name>

Creates the Site <name> for the content from local or from OCE server. By 
default, it creates a StarterSite. Optionally specify -f <source> to create 

Chapter 4
Get Content from Oracle Content Management

4-3



from different source.

Options:
  --from, -f      <source> Source to create from
  --content, -c   <content> The absolute path of the local OCE 
template zip 
file
  --server, -s    flag to indicate to use the content types from server
  --navtypes, -n  <navtypes> The comma separated list of content types 
from 
server to be used as site navigation
  --types, -t     <types> The comma separated list of content types on 
the 
server, if not specified, all content types will be used
  --help, -h      Show 
help                                                                   
                                                                       
      
[boolean]

Examples: 
  cecss create-site NewSite -c StarterBlog_export.zip
  cecss create-site NewsSite -c ~/Downloads/NewsTemplate.zip
  cecss create-site NewsSite -f ~/Downloads/ReactSiteTemplate.zip -c 
~/Downloads/NewsTemplate.zip
  cecss create-site BlogSite -s -n Blog
  cecss create-site BlogSite -s -n Blog -t Blog,Author

Content Type Restriction

If the name of a content type contains the character "-" or starts with a digital
character, the generated React component for this type won't compile, and thus the
site won't be runnable. Do not use a content type whose name violates the restrictions.

Create a Site with Local Content

The local content can be the zip file of an exported Oracle Content Management
template or a zip file of exported channel content. For each content type in the zip file,
a React component will be generated and the type will also be used for site navigation.

cecss create-site NewsSite -c ~/Downloads/NewsTemplate.zip

The site created will be placed in a folder with the same name as the site.

Create a Site with Oracle Content Management Server Content

To create a site with content types from an Oracle Content Management server, you
need to configure the Oracle Content Management server first. At least one content
type should be specified to use for site navigation.

• Create a site for all content types on the Oracle Content Management server,
specifying which types to use in the navigation:

cecss create-site serverSite -s -n Article
cecss create-site serverSite -s -n Article,Author

Chapter 4
Create a Site

4-4



• Create a site with certain content types on the Oracle Content Management server. The
content types used for navigation will be included automatically.

cecss create-site serverSite -s -n Article,Author -t Employee

Build a Site
Before a site can be run, dependencies need to be fetched. This can be done with the npm
install command.

If a site is later edited, there is no need to run npm install again unless you want to add new
dependencies.

Ater you create a site, run the npm install command.

cd <site name>
npm install

Run a Site in Development Mode
Running a site in development mode starts a NodeJS server and allows changes to the site
to be automatically deployed to the running server.

cd <site name>
cecss develop

This command will start a hot-reloading development environment, and the site can be
viewed in a browser using the following URL:

http://localhost:9090/

After JavaScript, html, and css files are updated under src, the saved changes will live
reload in the browser.

Run a Site with Oracle Content Management Server Content
For a site created with content types from an Oracle Content Management server, it’s
required to set up the site to use the Oracle Content Management server to get the content.
Also, a site created from a local content zip file can be changed to run with content from an
Oracle Content Management server in the same way.

For each created site, an empty .cec_properties file is generated in the site directory:

#
# To show the content on Oracle Content Management server, cec_url and 
cec_channel_token must 
be set.
# If the channel is secure, cec_username and cec_password are also required.
# Only published items will be displayed.
# If the Oracle Content Management instance is a development env, set 
cec_env to dev_ec.

Chapter 4
Build a Site

4-5



#
cec_url=
cec_username=
cec_password=
cec_env=pod_ec
cec_content=server
cec_channel_token=

Edit the file and set the url and channel token, and username, password if needed.

You can get the channel token from the Oracle Content Management server or use the
CLI:

cecss list-server-channels

Build a Site for Production
The build command will generate an optimized production build of the site:

cecss build

Run a Site in Production Mode
Running in production mode optimizes a site and starts an optimized server, without
hot-update monitoring.

cd <site name>
cecss serve

This command will start a local node server for the site, and the site can be viewed in
a browser using the following URL:

http://localhost:8080/

To run the site on a different port, use:

cecss serve -p <port>

Structure of the React JS Site Template
The StarterSite.zip site template is used to create a site by default. This template
comes with the CLI.

You can find it here:

• Windows:

C:\Users\<userid>\AppData\Roaming\npm\node_modules\cecss-cli\data

Chapter 4
Build a Site for Production

4-6



• Mac

/usr/local/lib/node_modules/cecss-cli/data

 

 
In the template:

• index.html is the page template.

• index.js is the JavaScript entry point.

• Constants.js is where constants are defined.

• app/App.js is a React component that is the main parent component of the Simple Page
App. The React router is used to decide which component to show and which to hide.

• assets/app.css is the css used by the site.

• {{types}}/{{name}}.js is a placeholder. React components will be generated for each
content type to render the content item, content list, or search result of this content type,
based on parameters

• common/ContentItem.js is a React component that will render an item with passed-in
layout, and will also be responsible for kicking off the item query.

• common/ContentList.js is a React component that will render the content list with
passed-in layout, and will also be responsible for kicking off the items query.

Chapter 4
Structure of the React JS Site Template

4-7



• common/ItemMultiValues.js is a React component that will render an item's field
with multiple values.

• common/queryItems.js contains JavaScript APIs that create Redux actions to
fetch an item or items.

• common/queryReducer.js is the reducer that saves the query result into the Redux
store when it receives the fetch success action. It'll also set a loading flag to true
when the fetch begins, and false when it finishes or fails.

• common/Searchbar.js is a React component that will render the search field, and
also be responsible for kicking off the search for content items.

After a site is created, all the source code is under <site name>/SRC/.

 

 
In the SRC directory:

• content is the folder that contains the Oracle Content Management content.

• Starter_Blog_Author/Starter_Blog_Author.js contains React components
generated based on the placeholder in the site template for the content type
Starter_Blog_Author.

Chapter 4
Structure of the React JS Site Template

4-8



• Starter_Blog_Post/Starter_Blog_Post.js contains React components generated
based on the placeholder in the site template for the content type Starter_Blog_Post.

Generated Components
For each content type, React components are generated to render the content item, content
list, or search result, based on the parameters.

The component can be called as follows:

<Starter_Blog_Author />

Supported parameters for the component:

• id
• search
• limit
• orderBy (name:asc | name:des | updatedDate:des | updatedDate:asc)
The parameters should be passed in inside the match.params object:

{
   …
   match: {
       params: {
       }
   }
}

For example:

class Starter_Blog_PostDetail extends React.Component {
  render() {
    var item = this.props.item;
    if (!item) {
      return (
        <div />
      );
    }
    var authorId = item.fields['starter-blog-post_author'] ? 
item.fields['starter-
blog-post_author']['id'] : '';
    var authorProps = {match: {params: {id: authorId}}};
    return (
      <div>
      <div className="Starter_Blog_Post">
      <span>{item.fields['starter-blog-post_title']}</span>
      <span>{item.fields['starter-blog-post_summary']}</span>
      <div>{renderHTML(item.fields['starter-blog-post_content'])}</div>
      <span>{item.fields['starter-blog-post_category']}</span>
      <ItemMultiValues type='image' values={item.fields['starter-blog-
post_download_media']}/>

Chapter 4
Generated Components

4-9



      </div>
      <hr/>
      <Starter_Blog_Author {...authorProps} />
      </div>
    );
  }
}      

Starter Site Runtime
When a site is running in development mode, two servers are running. One is a node
Express server with Webpack middleware that helps with live and hot reloading. The
other is a node Express server that handles content query.

In production mode, there is only one server running. All the client-side code will be
bundled into static files using Webpack, and it will be served by the node Express
server.

Details about the starter site runtime follow.

 

 
In the starter site runtime:

• .babelrc is the Babel config. Babel is used to compile and also to convert JSX to
JavaScript.

• package.json contains the site's metadata.

• server.js is the entry point to the node Express server, which handles content
query.

• webpack-server.js is the entry point to the node Express server with Webpack
middleware, which handles live and hot reloading.

• webpack.config.js is the Webpack configuration for development mode.

• webpack.config-prd.js is the Webpack configuration for production mode.

Chapter 4
Starter Site Runtime

4-10



5
Connecting to Headless Experiences

Oracle Content Management provides a way to connect content repositories and publishing
channels to headless experiences developed and managed outside of Oracle Content
Management and automatically trigger deployments based on content changes or published
status.

Content providers can leverage the advantages of repository asset management such as
powerful tools to organize, retrieve, translate, collaborate on, approve, and publish content.
Then, without leaving Oracle Content Management, they can preview, in context and with
content, their headless applications.

Experience developers can work with tools they have and configure headless experiences to
automatically build based on changes to content in associated repositories or publishing
status of content in associated publishing channels, to drive continuous integration/
continuous deployment (CI/CD).

The following topics describe how to create and configure connections to experiences outside
of Oracle Content Management:

• Create an Experience Object

• Configure Experience Object Properties

• View Connected Headless Experiences

• Sharing an Experience Object

Create an Experience Object
To create an experience object in Oracle Content Management that connects to a headless
experience outside of Oracle Content Management, you need to be an enterprise user with
the developer role and have a good understanding of the 3rd party application used to create
and manage the experience you are connecting to.

Note:

Only one experience object can be created on an Oracle Content Management
Starter Edition instance. For unlimited objects, upgrade to Premium Edition.

1. Click Experiences on the side navigation panel.

2. On the Experiences page, click Create.

3. Enter a name, optional description, and default URL of the headless experience you are
connecting to, then click Create. The default URL is typically the site URL of the headless
experience you're connecting to and is necessary to view the experience in Oracle
Content Management.

Note: there are some limitations in the type of information that can be used in each field.

5-1



Field Limitation

Name (required) • Maximum string length is 256 characters.
• The string must not contain the

chacacters;":?<%>{}/#\|*
Description (optional) • Maximum string length is 500 characters.

• The string may contain any characters.

Experience URL (required to open experience
preview)

• Maximum string length is 4000 characters.
• The string may contain any characters

valid in a URL.
• The string should parse to be a valid URL.

Configure Experience Object Properties
Once an experience object has been created, you must configure it to include outgoing
targets that automate headless experience deployment based on content lifecycle
events from Oracle Content Management. When a target is triggered, Oracle Content
Management sends a request to the URL endpoint you specify in the outgoing target
when you define the target. A URL endpoint is typically implemented in your headless
experience to receive and respond to an outgoing target, typically automating a CI/CD
workflow. For example, a notification about updated content might initiate a new build
of the experience, flush caches, or take any other actions needed for the experience to
use the updated content.

1. On the Experiences page, select the experience object and click Properties in the
actions bar.

2. Under the properties tab, you can review information about the experience object,
modify the description or default URL, and enable or disable the headless
experience connection. Disabling it prevents content lifecycle events from
triggering targets in the experience object.

Up to ten targets per experience can be configured to handle different deployment
scenarios based on certain content lifecycle events. For example, one target may be
triggered when a new version of an unpublished asset is updated in a repository,
initiating a preview of the experience, while a second target may be triggered when an
asset is published or republished to a channel, initiating a new build.

The response received back from the endpoint is processed using rules defined in the 
Analyze tab when configuing the experience object properties. The response could
include:

• the target identifier that was included in the request

• a status message or code

• the URL at which the updated headless experience can be viewed

Add Outgoing Targets to Experience Objects
To automate deployment and preview of headless experiences from within Oracle
Content Management, you must add targets and specify trigger events on the
Outgoing tab of the experience object properties. You can configure up to ten targets
to handle different deployment scenarios based on certain content lifecycle events.

1. With the experience object properties panel open, click the Outgoing tab.

Chapter 5
Configure Experience Object Properties

5-2



2. To add an outgoing target, click Add.

3. Enter a name for the target, the URL endpoint, and specify which method to use, GET or
POST.

Note:

URL endpoints must use the secure https protocol.

4. Choose the Oracle Content Management event that triggers the target to deploy and
specify the repositories (for asset change events) or channels (for asset published
events).

• Changes—the target is triggered when an asset is changed in a specified repository.

• Publishes—the target is triggered when an asset is published in a specified
publishing channel.

5. Click Headers and Body to add any additional required information, if necessary.

6. Click Save.

7. Click Test to manually trigger the target. Triggering the target sends a request to the
target endpoint to solicit a response, typically in the form of a JSON body payload. If the
request is valid, you can refresh the events listed on the Events tab to see it listed with
additional information. If the request is invalid, an error message is displayed.

Add a TARGET_IDENTIFIER Token
You can add the {{TARGET_IDENTIFIER}} token to an outgoing target. This token will add
the target ID to the request when the target is triggered either automatically by content
lifecycle events or manually by clicking Test. Where you add the {{TARGET_IDENTIFIER}}
token depends on the 3rd party application you use to manage your headless experience. In
some cases it may be added to the URL endpoint, to the HTTP body, or HTTP header.

When an incoming payload is received, the payload is evaluated to see if a target ID exists. If
a target ID is found that matches an outgoing target ID in an Oracle Content Management
experience object, then that payload is associated with the outgoing target that has that ID.

Once a payload is associated with a target, then the event item is logged on the Events tab
with the proper title. If the payload is associated to a target and a URL is matched with the
URL introspect string configured on the Analyze tab of a target, then that URL is stored as
the preview URL for that target.

If a target ID is not found in an incoming payload that matches an outgoing target ID, the
payload cannot be associated to a target and it is displayed as Unknown in the Events tab.

Enable and Disable Incoming Webhook
Oracle Content Management makes it easy for your content contributor to view the latest
versions of your headless experience. When your headless experience is updated, your
deployment system can notify Oracle Content Management by sending a request to the
experience webhook. All incoming requests are logged to the Events tab.

You can review the incoming webhook URL and enable or disable it on the Incoming tab of
an experience properties panel.

Chapter 5
Configure Experience Object Properties

5-3



Analyze and Extract Payload Information
The Analyze tab allows you to extract information from an incoming response payload
and display it on the Events tab to provide information important to content editors and
contributors, such as when their content is saved, published, or goes live.

When a target is triggered and a request is sent to the endpoint URL of your headless
experience, the experience returns a response payload. The response payload is
combined with the request and the combined data structure is displayed as an event
item on the Events tab, with the response payload in an httpBody section of an event
item.

On the analyze tab, you can encode the JSON path to the information you want to
extract within double-braces {{}} to create an introspect string that extracts the
requested data from the httpBody section of a payload. The extracted information is
displayed in the event listing on the Events tab.

For example, let's say a section of the payload is as follows:

"httpBody": {
  "data": {
    "url": "https://sample.com",
    "status": "Building",
    "name": "Sample Target"
  }
}

You would specify the JSON paths to the URL, status, and name data on the Analyze
tab as the following URL Introspect strings:

{{data.url}}

{{data.status}}

{{data.name}}

Chapter 5
Configure Experience Object Properties

5-4



The URL, deployment status, and name of the deployment is then listed dynamically on the
Events tab.

Note:

The URL introspect string has special status and is reserved for identifying a URL to
preview the deployment of the associated target. This URL value is stored and used
to preview the latest results of a triggered target when viewing an experience
object.

Chapter 5
Configure Experience Object Properties

5-5



You can also hard-code string values. One reason to do this is to label the JSON path
result to easily identify the information for a content contributor. For example, when
extracting the name of a deployment, you could enter

Name: {{data.name}}

in an introspect string on the Analyze tab. This would result in Name: Sample
Preview being displayed on the Events tab for that target.

Similarly, you can combine encoded JSON paths and hard-coded strings in one
instrospect string entry. For example,

Name: {{data.name}} Status: {{data.status}}

would result in Name: Sample Preview Status: Building being displayed on the
Events tab for that target while the preview was building.

If there is a spelling or syntax error when encoding a JSON path in an introspect
string, the string interpretation will fail and the information will not be extracted from the
payload or displayed on the Events tab. If you are using more than one JSON path in
an event string, an error in one will cause all to fail.

View Event Information for an Experience
Event information for a headless experience is listed on the Events tab of an
experience object properties panel. You can expand an event in the list to see the
complete payload and review details about incoming and outgoing notifications useful
to a headless experience developer.

The Events tab logs all information contained in a payload. You can refine what
information is displayed in the event list in order to provide useful information to
content providers by using introspect strings on the Analyze tab. This helps you and
the content provider see useful information quickly, such as build status or preview
URL, withouth having to expand and review the entire payload to find the information.

View Connected Headless Experiences
Once a headless experience outside of Oracle Content Management is connected,
content providers can view headless experience events within Oracle Content
Management. This automates their workflow by publishing or building a preview of the
headless experience when they trigger an event, either by editing or publishing an
asset, depending on how the experience is configured.

To view a headless experience, select the experience object and choose View from

the right-click menu or click  on the actions bar.

Once the experience panel is displayed, choose the target you want to view from the
drop-down list. The headless experience is displayed in an iframe. If the experience
cannot be displayed properly in an iframe for security reasons, click Launch to view
the experience in a new browser tab.

Chapter 5
View Connected Headless Experiences

5-6



Launch Properties After a Successful Experience Creation
Users typically need to customize an experience after creating it. Oracle Content
Management launches the properties and switches to the Outgoing tab after you complete
the create wizard.

Set Security Admin Settings Through APIs
If you have a service administrator role, you can set security admin settings through APIs.

You can also update CORs lists to standardize CORS handling across Docs, Caas, and
OSN.

Sharing an Experience Object
If you have created an experience object or are a manager of an experience object that has
been shared with you, you can share it with others to allow them to use or edit the object.

Note:

Because experiences are available only to enterprise users, you can share
experience objects only with other enterprise users.

1. Open the Experiences page and select the experience object you want to share.

2. Select or click Members in the right-click menu or action bar.

3. Click Add Members in the side panel.

4. Enter the names or email addresses of the people with whom you want to share the
experience object. You can delete or modify the optional message sent to new members.

5. Select the role you want the added member or members to have. The selected role is
assigned to all members that you list in this process. You can go through the process
several times if you want to specify different roles for different members, or change the
roles individually once they've been added.

The following roles can be assigned to experience object members.

• Owner—The owner is the person who created the experience object and cannot be
changed. They have full control of the object, object properties, and members.

• Manager—A manager has full control of the object, object properties, and members.

• Contributor—A contributor has full control of the object and object properties, can
see the list of members, but cannot add or remove members.

• Viewer—A viewer can see and use an experience object, but cannot change it in any
way. They can also see the list of members, but cannot add or remove members.

• Remove—If you are an owner or manager, you have the option to remove the role
assigned to a member, which removes them as a member of the experience object.

6. When you've finished selecting the people you want to add, click Add. The people you
selected are listed as members in the members side panel.

Chapter 5
Launch Properties After a Successful Experience Creation

5-7



7. Click Done to close the members side panel.

Filtering Experience Objects on the Experience Page

You can select what experience objects are displayed on your Experiences page by
selecting an option from the title menu. The following filter options are available.

• All—All experience objects created by you or shared with you are listed.

• Owned by you—Only experience objects created by you are listed.

• Shared with you—Only experience objects shared with you are listed.

Chapter 5
Sharing an Experience Object

5-8



6
Instrumenting Headless Sites with
Consumption Analytics

Oracle Content Management provides consumption analytics features that enable you to
track the usage and popularity of assets on sites.

The following sections describe how ‘headless’ sites (that is, created and managed outside of
Oracle Content Management) can be instrumented with data collection capabilities to
integrate with the consumption analytics feature:

• Analytics Script

• Asset Events

• Page Instrumentation

– Component Attributes

– JavaScript API Calls

• Configuration Options

• Add data-asset-operation Markup for Digital Assets

• Add data-asset-operation Markup for Referenced Field Types

• Use a Site-Specific Oracle Infinity Account

• Use Your Own Oracle Infinity Tag

The data collection for consumption analytics happens in JavaScript, typically running in
client browsers. This is especially important for headless sites, which are manufactured
server-side. Data collection will happen at the point of consumption in the browser through
HTTP requests initiated from JavaScript.

Analytics Script
Include the following analytics script in the pages of the headless site:

<script type="text/javascript" src="//<instance>.ocecdn.oraclecloud.com/
_sitesclouddelivery/analytics/ocm-asset-analytics.js?channelId=<channel-id>" 
async></script>

Please note the following:

• This ocm-asset-analytics.js script will be served with a caching duration of two hours.

• When loaded, this will add a global variable, SCSAnalytics, to the window namespace.

The ocm-asset-analytics.js library delivered from the your Oracle Content Management
instance has the serviceId and accountId parameters embedded in it. The only parameter
you need to supply is channelId.

6-1



Parameter Name Description

serviceId The service ID of the Oracle Content
Management instance that holds the site
assets.

accountId The account ID of the analytics provider.

channelId The channel ID of the publishing channel
used to obtain the site assets.

Asset Events
Four events are currently supported and recorded for assets used on site pages. The
following table describes these events:

Event Type Description

load The asset is referenced on the site page.

view The asset on the site page is scrolled into
the browser viewport.

play The media asset on the site page has
started to play.

download The user initiated a download operation
on the asset.

Page Instrumentation
There are two methods of instrumenting pages for use with consumption analytics: you
can augment the rendered asset markup on the page, or manually produce asset
events with direct JavaScript calls.

To automatically record asset consumption events, you can add a special "data"
attribute to the rendered assets markup on the page:

data-asset-operation

This attribute instructs the ocm-asset-analytics.js library to automatically produce
analytic events.

The value syntax for the data-asset-operation attribute is "<page-event>:<asset-
id>:<asset-event>". Multiple asset operations can be specified, separated by
semicolons (;).

The following table lists the data-asset-operation parameters:

Chapter 6
Asset Events

6-2



Parameter Name Description

page-event A page-event normally corresponds to a
DOM event, like "click" and "play" events on
elements. The supported page events include
view, play, and click.

• view - the element has scrolled into the
browser viewport

• play - a <video> element has started to
play. (This corresponds to the DOM
"play" event on <video> elements.)

• click - the element has been clicked.
(This corresponds to the DOM "click"
event.)

asset-id The ID of the content item or digital asset.

asset-event One of the supported asset events, including:

• load

• view

• play

• download

For example, the final markup of a simple content item might look like this:

<div data-asset-operation="view:COREBE60D5159507409B97E9B5CD27937B82:view">
    Hello World!
</div>

On the first line, note the data-asset-operation attribute. The ocm-asset-analytics.js library
will automatically generate a "load" event for the asset when this markup appears on the
page. Additionally, when the item is scrolled into view in the browser viewport, a "view"
analytic event will be recorded.

The recordAssetOperation call will return a Boolean value indicating if the call was accepted
and will be recorded in the analytics provider. The value false will be returned for all other
conditions, including invalid parameters.

Component Attributes
To automatically record asset consumption events, you can add a special "data" attribute to
the rendered assets markup on the page.

The following table describes parameters for the data-asset-operation attribute.

Parameter Name Description

page-event A page-event normally corresponds to a
DOM event, like "click" and "play" events on

Chapter 6
Page Instrumentation

6-3



Parameter Name Description

elements. The supported page events include
view, play, and click.

• view - The element has scrolled into the
browser viewport.

• play - A <video> element has started to
play. (This corresponds to the DOM
"play" event on <video> elements.)

• click - The element has been clicked.
(This corresponds to the DOM "click"
event.)

asset-id The ID of the content item or digital asset.

asset-event One of the supported asset events:

• load

• view

• play

• download

For example, the final markup of a simple content item might look like this:

<div data-asset-
operation="view:COREBE60D5159507409B97E9B5CD27937B82:view">    
   Hello World!
</div>

JavaScript API Calls
Site JavaScript can make calls to the ocm-asset-analytics.js library to record asset
events. The SCSAnalytics object exposes a single function to record asset events.

SCSAnalytics.recordAssetOperation( assetId, assetEvent, options ) → {Boolean}

Name Type Required Description

assetId String Yes The ID of the
content item or
digital asset.

asset event String Yes One of the
supported asset
events, including:

• load

• view

• play

Chapter 6
Page Instrumentation

6-4



Name Type Required Description

• download

options Object No Provides options for
the recording
operation.
Properties include:

• immediate
(Boolean) -
Indicates that
the operation
should be
recorded
immediately, not
after a delay.

Configuration Options
JavaScript within the site page can define the SCSAnalytics.config object before loading the
ocm-asset-analytics.js library. Parameters can be supplied to the library without adding to its
URL query string.

You can supply the following config parameters:

Name Type Description

enableAnalytics Boolean Determines if the ocm-asset-
analytics.js library performs
any further actions after
loading.

Default: true.

serviceId String The service ID of the Oracle
Content Management
instance holding the site
assets.

channelId String The channel ID of the
publishing channel used to
obtain the site assets.

accountId String The account ID of the
analytics provider.

useObservers Boolean Determines if the ocm-asset-
analytics.js library should
install DOM Observers to

Chapter 6
Configuration Options

6-5



automatically record analytics
events.

Default: true.

loadProvider Boolean Instructs the ocm-asset-
analytics.js library to load the
analytics provider's
JavaScript. Set this to false if
the provider's JavaScript is
already included on the page.
Default: true.

ready Array An array of functions that
should be called after the
analytics library is loaded and
ready to record analytics
events.

The following example shows how the ocm-asset-analytics.js library can be
parameterized:

<script type="application/javascript">
window.SCSAnalytics = {    
    config: {        
        enableAnalytics: true,        
        serviceId: "<service-id>",        
        channelId: "<channel-id>",        
        accountId: "<account-id>",        
        useObservers: true,        
        loadProvider: true,        
        ready: [            
            function() {                
                console.log("The asset analytics library is ready.");
           }
       ]
    }
};
</script>
<script type="text/javascript" src="//
<instance>.ocecdn.oraclecloud.com/_sitesclouddelivery/analytics/ocm-
asset-analytics.js" async></script>

Add data-asset-operation Markup for Digital Assets
To add data-asset-operation markup for digital assets, add the following HTML code:

<img data-asset-operation="view:CONTBE5A53457DAE412B872C21DDC05FED5D" 
src="https://samples.mycontentdemo.com/content/published/api/v1.1/
assets/CONTBE5A53457DAE412B872C21DDC05FED5D/Medium/Blog400px.jpg?
channelToken=47c9fb78774d4485bc7090bf7b955632">

Chapter 6
Add data-asset-operation Markup for Digital Assets

6-6



Add data-asset-operation Markup for Referenced Field Types
To add data-asset-operation markup for referenced field types, add the following HTML code:

<ul data-asset-operation="view:COREBE60D5159507409B97E9B5CD27937B82:view">

  <li>Name: Joe Bloggs</li>
 
  <li>Age: 39</li>
 
  <li>Photo: <img data-asset-
operation="view:CONTBE5A53457DAE412B872C21DDC05FED5D:view" src="https://
samples.mycontentdemo.com/content/published/api/v1.1/assets/
CONTBE5A53457DAE412B872C21DDC05FED5D/Medium/Blog400px.jpg?
channelToken=47c9fb78774d4485bc7090bf7b955632"></li>
 
  <li>Video: <video data-asset-
operation="view:CONTBE5A53457DAE412B872C21DDC05FED5D:view;play:CONTBE5A53457D
AE412B872C21DDC05FED5D:play" src="https://samples.mycontentdemo.com/content/
published/api/v1.1/assets/CONTBE5A53457DAE412B872C21DDC05FED5D/Medium/
Blog400px.jpg?channelToken=47c9fb78774d4485bc7090bf7b955632"></video></li>
 
</ul>

Use a Site-Specific Oracle Infinity Account
The account-id parameter can be used to configure the ocm-asset-analytics.js library to
record asset operations in a specific Oracle Infinity account. In the script tag that includes the
ocm-asset-analytics.js library, specify which account ID to use.

<script type="text/javascript "src="//<instance>.ocecdn.oraclecloud.com/
_sitesclouddelivery/analytics/ocm-asset-analytics.js?channelId=<channel-
id>&accountId=<account-id>" async></script>

When recording to your own Oracle Infinity account, ensure that an Infinity tag named
ocm_asset_analytics is defined and enabled for production use.

Use Your Own Oracle Infinity Tag
The ocm-asset-analytics.js library can be configured to work with an existing Infinity tag
loaded on the headless site page.

Use the loadProvider configuration value (false) to avoid loading the default Infinity script.

<!-- Include Oracle Infinity analytics -->
<script type="text/javascript" async src="//c.oracleinfinity.io/acs/account/
<infinity-account-id>/js/<infinity-tag>/odc.js"></script>
 
<!-- Include the ocm-asset-analytics.js library, preventing it from loading 
its own copy of Infinity -->

Chapter 6
Add data-asset-operation Markup for Referenced Field Types

6-7



<script type="text/javascript" src="//
<instance>.ocecdn.oraclecloud.com/_sitesclouddelivery/analytics/ocm-
asset-analytics.js?channelId=<channel-id>&loadProvider=false" async></
script>

Chapter 6
Use Your Own Oracle Infinity Tag

6-8



7
Samples

The following samples and tutorials are available to help you build sites using Oracle Content
Management as a headless CMS.

React:

• Build a blog: GitHub | Tutorial | Video

• Build an image gallery: GitHub | Tutorial | Video

• Build a minimal site: GitHub | Tutorial | Video

• Use GraphQL: Tutorial | Video

• Use Video Plus assets: Tutorial

Vue:

• Build a blog: GitHub | Tutorial | Video

• Build an image gallery: GitHub | Tutorial | Video

• Build a minimal site: GitHub | Tutorial | Video

• Use GraphQL: Tutorial | Video

Gatsby:

• Build a blog: GitHub | Tutorial | Video

• Build an image gallery: GitHub | Tutorial | Video

• Build a minimal site: GitHub | Tutorial | Video

• Use GraphQL: Tutorial | Video

7-1

https://github.com/oracle/oce-react-blog-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-react-blog-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30280
https://github.com/oracle/oce-react-gallery-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-react-gallery-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30281
https://github.com/oracle/oce-react-minimal-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-react-minimal-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30675
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-react-graphql-tutorial/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31218
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-react-video-tutorial/index.html
https://github.com/oracle/oce-vue-blog-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-vue-blog-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30607
https://github.com/oracle/oce-vue-gallery-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-vue-gallery-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30608
https://github.com/oracle/oce-vue-minimal-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-vue-minimal-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30674
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-vue-graphql-tutorial/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31225
https://github.com/oracle/oce-gatsby-blog-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gatsby-blog-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30876
https://github.com/oracle/oce-gatsby-gallery-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gatsby-gallery-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30784
https://github.com/oracle/oce-gatsby-minimal-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gatsby-minimal-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30783
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gatsby-graphql-tutorial/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31217


• Use Video Plus assets: Tutorial

Svelte:

• Build a blog: GitHub | Tutorial | Video

• Build an image gallery: GitHub | Tutorial | Video

• Build a minimal site: GitHub | Tutorial | Video

Next.js:

• Build a blog: GitHub | Tutorial

• Build an image gallery: GitHub | Tutorial

• Build a minimal site: GitHub | Tutorial

Oracle Digital Assistant:

• Build an Oracle Digital Assistant chatbot: GitHub | Tutorial | Video

• Integrate Oracle Digital Assistant into a website: Tutorial

Oracle Visual Builder:

• Build an image gallery using Oracle Content Management components: GitHub | Tutorial
| Video

JavaScript:

• Build a blog: GitHub | Tutorial | Video

Chapter 7

7-2

https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gatsby-video-tutorial/index.html
https://github.com/oracle/oce-svelte-blog-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-svelte-blog-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31221
https://github.com/oracle/oce-svelte-gallery-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-svelte-gallery-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31223
https://github.com/oracle/oce-svelte-minimal-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-svelte-minimal-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31222
https://github.com/oracle/oce-nextjs-blog-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-nextjs-blog-sample/index.html
https://github.com/oracle/oce-nextjs-gallery-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-nextjs-gallery-sample/index.html
https://github.com/oracle/oce-nextjs-minimal-sample/
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-nextjs-minimal-sample/index.html
https://github.com/oracle/oce-integration-samples/tree/main/oce-oda-chatbot-sample
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=OCETR
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30609
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=OCETV
https://github.com/oracle/oce-integration-samples/tree/main/oce-vb-image-gallery-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-vb-gallery-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:31083
https://github.com/oracle/oce-javascript-blog-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-javascript-blog-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30278


Oracle JET:

• Build a blog: GitHub | Tutorial | Video

Chapter 7

7-3

https://github.com/oracle/oce-jet-blog-sample
https://docs.oracle.com/en/cloud/paas/content-cloud/oce-jet-blog-sample/index.html
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:30279

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Get Started
	Overview of Oracle Content Management
	Access Oracle Content Management
	Understand Roles
	Manage Assets
	Collaborate on Documents
	Build Sites
	Integrate and Extend Oracle Content Management

	Oracle Content Management As a Headless CMS
	Content Management
	Content Delivery

	Key Concepts
	Content Model
	Assets
	Asset Management
	Asset Properties
	Asset Types
	Create Asset Types
	Create Assets

	Content API for Assets

	Digital Asset Types
	Seeded Digital Asset Types
	Custom Digital Asset Types
	Creating Custom Digital Asset Types
	Creating Digital Assets
	Content API for Digital Assets

	Content Item Types
	Create Content Item Types
	Create Content Items
	Content API for Content Items

	Asset Repositories
	Videos
	Multilingual Content and Translations
	Language Attributes of Assets
	Discover Available Translations
	Fetch a Specific Translation of an Asset
	Translation Jobs

	Content Versions
	Publishing and Channels
	Publishing
	Channels
	Policies
	Publishing Process

	Taxonomies
	Taxonomies from a Management Perspective
	Taxonomy Life Cycle
	Taxonomies from a Delivery Perspective
	Discovering the Structure of a Taxonomy
	Discovering Asset Categorization

	Friendly URLs for Assets

	Quick Start
	Register for Oracle Cloud
	Select an Account Name and Home Region
	Provide Payment Information

	Provision an Instance of Oracle Content Management
	Choose a Storage Compartment
	Create Your Oracle Content Management Instance

	Add a Content Model, Some Content, and a Channel
	Create a Content Type
	Create a Publishing Channel
	Create an Asset Repository
	Create a Content Item (Asset)
	Publish Content Assets to a Channel

	Configure Oracle Content Management As a Headless CMS
	Configure Cross-Origin Resource Sharing (CORS)
	Acquire and Refresh API Access Tokens

	Issue Your First Request to Oracle Content Management
	Retrieve Content Through Postman
	Retrieve Content Through cURL
	Retrieve Content Through an XMLHttp Request

	Next Steps


	2 Oracle Content Management REST APIs for Headless Development
	REST API for Content Delivery
	REST API for Content Management

	3 Oracle Content Management SDKs
	Content SDK for JavaScript
	Mobile SDKs
	Content SDK for Java
	Content SDK for Swift

	Sites SDK
	Translation Connector SDK

	4 Starter Site CLI for React Development
	Install the Starter Site CLI
	Run CLI Commands
	Get Content from Oracle Content Management
	Set Up the Oracle Content Management Server Connection
	Create a Site
	Build a Site
	Run a Site in Development Mode
	Run a Site with Oracle Content Management Server Content
	Build a Site for Production
	Run a Site in Production Mode
	Structure of the React JS Site Template
	Generated Components
	Starter Site Runtime

	5 Connecting to Headless Experiences
	Create an Experience Object
	Configure Experience Object Properties
	Add Outgoing Targets to Experience Objects
	Add a TARGET_IDENTIFIER Token

	Enable and Disable Incoming Webhook
	Analyze and Extract Payload Information
	View Event Information for an Experience

	View Connected Headless Experiences
	Launch Properties After a Successful Experience Creation
	Set Security Admin Settings Through APIs
	Sharing an Experience Object

	6 Instrumenting Headless Sites with Consumption Analytics
	Analytics Script
	Asset Events
	Page Instrumentation
	Component Attributes
	JavaScript API Calls

	Configuration Options
	Add data-asset-operation Markup for Digital Assets
	Add data-asset-operation Markup for Referenced Field Types
	Use a Site-Specific Oracle Infinity Account
	Use Your Own Oracle Infinity Tag

	7 Samples

