
Oracle® Cloud
Integrating and Extending Oracle Content
Management

F24100-76
September 2023

Oracle Cloud Integrating and Extending Oracle Content Management,

F24100-76

Copyright © 2017, 2023, Oracle and/or its affiliates.

Primary Author: Clare Yan

Contributors: Bruce Silver, Bonnie Vaughan, Sarah Bernau, Promila Chitkara, Kannan Appachi, Robert
Briggs, David Jones, Bob Lies, Keith MacDonald, Mark Paterson, Angelo Santagata, Ankur Saxena, Keith
Sholes, Ron van de Crommert, Archana Vishnu, Igor Polyakov

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Diversity and Inclusion xii

Related Resources xii

Conventions xiii

Part I Introduction

1 Get Started

Understand Integrations 1-1

Integration Interfaces 1-4

Part II Enabling Oracle Content Management Integrations

2 Integrate with Other Oracle Applications and Services

Integrate with Oracle Business Intelligence Publisher 2-2

Integrate with Oracle Cobrowse Cloud Service 2-4

Integrate with Oracle Commerce 2-5

Integrate with Oracle Developer Cloud Service 2-7

Integrate with Oracle Eloqua 2-7

Choose an Asset Repository and Create a Publishing Channel 2-8

Provide Oracle Content Management Information for the Eloqua Integration 2-9

Enable Oracle Content Management Embedded Content 2-10

Use an Asset in an Eloqua Landing Page 2-10

Integrate with Oracle Enterprise Contracts 2-12

Integrate with Oracle Integration 2-14

Configure Oracle Integration Settings in Oracle Content Management 2-16

Oracle Integration with Assets 2-18

iii

Oracle Integration with Documents 2-22

Oracle Integration with Sites 2-25

Pass a CSS Style Sheet to Oracle Integration 2-25

Start the Default Version of an Oracle Integration Process 2-25

Integrate with Oracle Intelligent Advisor 2-26

Integrate with Oracle JD Edwards 2-27

Integrate with Oracle Logistics Cloud 2-28

Integrate with Oracle Maxymiser 2-29

Integrate with Oracle Responsys 2-30

Choose an Asset Repository and Create Two Publishing Channels 2-31

Enable the Integration 2-31

Create and Publish Assets in Oracle Content Management 2-32

View Images in Responsys Message Preview 2-34

Integrate with Oracle Visual Builder 2-35

Use Oracle Content Management Components in Oracle Visual Builder Applications 2-37

Embed Oracle Visual Builder Applications in an Oracle Content Management Site Page 2-39

Embed a VBCS Visual App in an Oracle Content Management Page 2-40

Embed a VBCS Page in a Site Page 2-43

Build an Oracle Content Management VBCS Form and Data Report Components 2-48

Build an Oracle Content Management VBCS Public Form Component 2-48

Build an Oracle Content Management VBCS Secure Form Component 2-56

Build an Oracle Content Management VBCS Public Gated Form Component 2-66

Build an Oracle Content and Experience VBCS Data Report Component 2-76

Build an Oracle Content Management VBCS Multipage Form As a Web App
Component 2-80

Provide a VBCS Endpoint As a URL for Select Menus 2-87

Integrate with Oracle WebCenter Content 2-89

3 Integrate with Third-Party Applications

Integrate with Desygner 3-1

Add Desygner as SAML Application in Oracle Identity Cloud Service 3-2

Create an Application User for Desygner 3-7

Enable Desygner Integration in Oracle Content Management 3-9

Work with Desygner Asset Types 3-12

Integrate with Kaltura Video Management 3-13

Integrate with Microsoft Office 3-14

Add Oracle Content as a Save/Open Location in Microsoft Office Applications 3-15

Access Oracle Content Features Within Microsoft Office Applications 3-15

Add Links to Cloud Items Directly from Microsoft Outlook 3-16

Create or Edit Microsoft Office Files from the Oracle Content Management Web
Interface 3-18

iv

Integrate with Slack 3-19

Enable and Configure Integration with Slack in Oracle Content Management 3-20

Create an App for Slack Using the Slack Website and Install 3-21

Add the App Credentials to Oracle Content Management 3-21

4 Use Content Connectors

Enable a Content Connector 4-2

Disable a Content Connector 4-3

Configure a Google Drive Content Connector 4-3

Configure a Microsoft OneDrive Content Connector 4-6

Configure a Dropbox Content Connector 4-8

Enable Jax-WS 4-10

Configure a WordPress.org Content Connector 4-10

Configure a YouTube Content Connector 4-11

Configure a Microsoft SharePoint Online Content Connector 4-13

Configure a Contentful Content Connector 4-15

Configure a Drupal Content Connector 4-16

Configure Oracle WebCenter Content Server and Oracle Content Management for the
WCC Connector v2.0 4-17

Verify Network Accessibility for a WCC Connector v2.0 4-18

Check WebCenter Content Server Readiness 4-18

Enable SSL 4-18

Enable Jax-WS 4-19

Set Up a Security Policy 4-19

Run the Indexer and File Formats Wizard 4-23

Check Oracle Content Management Readiness 4-24

Configure the Oracle WebCenter Content Connector v2.0 4-24

Specify WebCenter Content Connector v2.0 Mappings 4-25

Enable Oracle WebCenter Content Connector v2.0 for an Asset Repository 4-26

Use Oracle WebCenter Content Connector v2.0 4-27

Map to a Custom Asset Type 4-29

Revoke Authorized Users 4-30

Use Custom Digital Asset Types in Content Connectors 4-30

Import Assets Mapped to Digital Asset Types 4-30

Create and Configure a Custom Content Connector 4-31

Create Content Types for a Connector 4-32

Map Source Metadata to Fields in a Content Type 4-32

Provide Configuration Parameter Values for a Content Connector 4-33

Delete a Content Connector 4-33

v

Part III Developing Oracle Content Management Extensions

5 Develop Custom Actions with Application Integration Framework (AIF)

Understand the Application Integration Framework (AIF) 5-1

Manage Custom Applications 5-3

Configuration File Format 5-4

Application Properties 5-7

Action Command 5-8

Invoke Command 5-9

Presentation Command 5-9

Expressions 5-10

Variables 5-11

Localization 5-14

6 Develop Content Connectors

Connector REST API Interface 6-1

Connector SDK 6-1

Build a New Content Connector 6-2

REST Interfaces for Configuration, Authorization, and Fetching Content 6-4

REST Interfaces for File System Browsing and Searching 6-9

Content Picker 6-11

Authorization 6-17

Content Connector Configuration and Registration 6-21

Content Connector Execution Flow 6-21

Pexels Content Connector Sample Implementation 6-22

Install the Content Connector 6-22

Check Prerequisites for Installation 6-22

Build the Content Connector WAR File 6-23

Register the Content Connector 6-23

Test the Content Connector 6-24

Understand the Content Connector Source Code 6-25

Custom Picker UI 6-25

Pexels REST APIs 6-26

Change and Test the Content Connector Code 6-26

Download the CEC Content Connector Sample and SDK 6-26

7 Develop Custom Field Editors

Create a Custom Field Editor 7-1

vi

Configure Content Type to Use Custom Field Editor 7-2

Edit a Custom Field Editor 7-2

appinfo.json for Custom Field Editors 7-3

edit.html for Custom Field Editor 7-6

view.html for Custom Field Editor 7-9

Sample Content Field Editors 7-10

Slider 7-11

Location Selector 7-11

Content Field Editor SDK Reference 7-11

Content Field Editor SDK Object 7-12

getField() 7-12

getFields() 7-12

getLocale() 7-13

getSetting(setting) 7-13

getSettings() 7-14

registerDisable(callback) 7-14

setValidation(callback) 7-15

resize(size) 7-15

openContentPicker() 7-15

getDirection() 7-16

Custom Content Field Object 7-16

getName() 7-17

getDefaultValue() 7-17

getDataType() 7-17

setValue(value) 7-18

getValue() 7-18

on(event, callback) 7-18

8 Develop Custom Content Forms

Create a Custom Content Form 8-1

Configure a Content Type to Use a Custom Content Form 8-1

Edit a Custom Content Form 8-2

appinfo.json 8-2

edit.html for Custom Content Forms 8-4

Content Form SDK Reference 8-8

Custom Content Form SDK Object 8-8

Custom Content Form Type Object 8-15

Custom Content Form Item Object 8-16

Form Options 8-29

Custom Content Form Field Object 8-31

vii

CustomEditor Object 8-39

Sample Custom Form 8-41

Get Custom Form Sample 8-42

Add OCM Image Picker and Link Dialog Plug-ins for Rich Text Editor 8-42

9 Develop Translation Connectors for Language Service Providers

Overview of the Translation Connector Framework 9-2

Translation Connector SDK 9-2

Translation Connector REST APIs 9-3

Request a Lingotek Trial Connector for Content Translation 9-4

Enable a Lingotek LSP Translation Connector 9-7

Delete a Lingotek LSP Translation Connector 9-7

Register Multiple Lingotek Connectors 9-8

Add Custom Locales to a Lingotek Translation Connector 9-10

Translate Native Files in Assets 9-12

Build a New Translation Connector 9-12

REST Interfaces for Configuration and Authorization 9-13

REST Interfaces for Creating Translation Jobs and Returning Translated Content 9-19

Configure and Register a Translation Connector 9-20

Translation Connector Execution Flow 9-21

Translation Job Editor 9-21

Translation Jobs Validation 9-25

Sample Translation Connector Implementation 9-28

Create the Sample Translation Connector with Content Toolkit 9-28

Register the Sample Translation Connector 9-28

Test the Sample Translation Connector 9-29

Understand the Sample Translation Connector Source Code 9-30

Translation Job Original Zip File Format 9-32

Translation Job Translated Zip File Format 9-33

10

Develop External Processors

External Processor Execution Flow 10-1

Pull Model 10-2

REST API for Content Capture 10-2

External Processor SDK 10-3

External Processor Examples 10-3

viii

11

Compile Content Layouts as HTML

Part IV Developing Oracle Content Management Integrations

12

Understand Cross-Origin Resource Sharing (CORS)

13

Embed the Web User Interface in Other Applications

14

Oracle Content Management REST APIs

Integrate with Oracle Content Management Using OAuth 14-2

Cloud Account Using IAM Identity Domain 14-4

Access OCM Using Client Credentials (Two-Legged OAuth in Identity Domain) 14-4

Access OCM Using Authorization Code (Three-Legged OAuth Flow in Identity
Domain) 14-7

Access OCM Using Resource Owner (Identity Domain) 14-11

Cloud Account Using Oracle Identity Cloud Service 14-14

Access OCM Using Client Credentials (Two-Legged OAuth Flow) 14-14

Access OCM Using Authorization Code (Three-Legged OAuth Flow) 14-17

Access OCM Using Resource Owner 14-21

Download the Swagger File for a REST API 14-24

REST API for Activity Log 14-25

REST API for Content Capture 14-25

REST API for Content Delivery 14-26

REST API for Content Management 14-27

REST API for Content Preview 14-29

REST API for Conversations 14-30

REST API for Documents 14-30

REST API for Self-Management 14-31

REST API for Sites Management 14-31

REST API for Users and Groups 14-32

REST API for Webhooks Management 14-32

Use REST APIs for Content Search 14-32

Search Query Operators 14-32

Search Queries 14-39

Supported Date and Time Formats 14-42

ix

Search with the Querytext Parameter 14-43

Set Up Searches on Metadata Fields 14-44

Search Request Parameters 14-44

Two-Level Deep Search 14-57

Search JSON Data in JSON Fields 14-58

Search Across Types 14-59

The fields Parameter 14-60

The orderBy Parameter 14-60

Dynamic Count of Assets per Taxonomy Category 14-60

The AGGS Query Parameter 14-61

Aggregation Cache 14-63

Using Dynamic Asset Counts per Category API 14-63

An e-commerce Use Case 14-64

A General Use Case 14-78

Scroll API 14-82

Custom Ranking Policies 14-83

Built-in Ranking Policy 14-83

Custom Ranking Policies 14-84

Custom Ranking Policies Lifecycle 14-84

Supported Ranking Methods 14-85

Use REST APIs for Extended Workflow 14-94

Complete Workflow Instance API 14-94

Search In-Workflow Assets 14-95

Create and Use Applinks for File and Folder Access 14-96

Provide Access to Files and Folders with Public Links 14-97

Upload a REST API Swagger File into Mobile Cloud Service 14-99

15

Oracle Content Management APIs

Embed UI API V2 15-1

Site Compile API 15-1

Sites Component API 15-1

Sites Rendering API 15-1

16

Oracle Content Management SDKs

Content SDK for JavaScript 16-1

Content SDK for Java 16-1

Content SDK for Swift 16-2

Sites SDK 16-2

x

Translation Connector SDK 16-2

17

GraphQL Support in Oracle Content Management

Get Started with GraphQL 17-1

GraphQL Schema 17-3

GraphQL Queries 17-5

GraphQL Support for Content Preview 17-14

GraphQL Samples 17-14

18

Use Webhooks

Outgoing Webhooks 18-1

Configure Outgoing Webhooks 18-1

Monitor Webhook Events 18-3

Use Endpoints for Push Notifications 18-6

Receive Push Notifications from an Asset Lifecycle Webhook 18-7

Receive Push Notifications from an Asset Publishing Webhook 18-8

Receive Push Notifications from a Site Publishing Webhook 18-9

Receive Push Notifications from a Prerender Webhook 18-9

Receive Push Notifications from a Scheduled Jobs Webhook 18-9

Incoming Webhooks 18-9

Configure an Incoming Webhook 18-10

Use the CAL-Based Webhook Adapter 18-11

19

Set Proxies

Configure Proxy Service Settings 19-1

Add Logged User Data to a Request Through a Secure Proxy Endpoint 19-3

Debug Proxy Service Endpoints 19-4

xi

Preface

Integrating and Extending Oracle Content Management describes how to configure
Oracle Content Management and combine it with other services to create custom
integrations and to extend the capabilities of Oracle Content Management.

Audience
This publication is intended for Oracle Content Management administrators and
developers who want information about integrating Oracle Content Management with
other services to provide custom applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Resources
For more information, see these Oracle resources:

• Getting Started with Oracle Cloud

• Administering Oracle Content Management

• Building Sites with Oracle Content Management

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Collaborating on Documents with Oracle Content Management

• Developing with Oracle Content Management As a Headless CMS

• Managing Assets with Oracle Content Management

• Building Sites with Oracle Content Management

• What's New for Oracle Content Management

• Known Issues for Oracle Content Management

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xiii

Part I
Introduction

Oracle Content Management (OCM) is a cloud-based content hub to drive omni-channel
content management and accelerate experience delivery. It offers powerful collaboration,
workflow management, and development capabilities to streamline the creation and delivery
of content and improve customer and employee engagement.

As an Oracle Platform-as-a-Service (PaaS), Oracle Content Management works seamlessly
with other Oracle Cloud services and applications. The integration features are key
components in several Oracle offerings and make it easy for you to leverage the service in
your own applications.

Guided tour

These are some prerequisites if you want to integrate and extend Oracle Content
Management:

• An active Oracle Cloud account with an OCM instance. See Deploy OCM in a Region
with Identity Domains.

Note:

Oracle is merging the capabilities of Oracle Identity Cloud Service (IDCS) into
the native Oracle Cloud Infrastructure Identity and Access Management (OCI
IAM) service. All IDCS features and functionality will continue to exist as part of
OCI IAM. If your region hasn't been updated, follow the steps in Deploy OCM in
a Region without Identity Domains.

• You need to be assigned with the right access role for integrations. See Typical
Organization Roles.

Note:

To access integration features, you need to be assigned with the right role.
There are different types of roles in Oracle Content Management.
Understanding how roles work is essential for accessing integration features.

• Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements on
the OCM side, you need a subscription for the product that you intend to integrate with
OCM.

Explore this part further to get started with integrating and extending with Oracle Content
Management.

https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gt-integrations/index.html

1
Get Started

The following topics gives you an overview of Oracle Content Management integrations with
other applications and services:

• Understand Integrations

• Integration Interfaces

Understand Integrations
Oracle Content Management provides multiple ways to integrate its functionality, whether you
want to incorporate your processes or apps into Oracle Content Management, or simply use
Oracle Content Management in your enterprise application.

Oracle Content Management

Oracle Content Management provides rich content management features, from folder and file
viewing and sharing, to conversations, to websites that deliver your message and content
securely.

• Integrations with JD Edwards, Oracle Business Intelligence, and other services show that
Oracle Content Management is a key component in a number of Oracle integrations.

• An embeddable version of the web user interface and website components for interacting
with folders, files, conversations, and processes provide ready-to-use integrations.

• Oracle Content Management REST APIs and the Oracle Content Management SDKs let
you access Oracle Content Management functionality to create your own integrations
within the service or across services.

• Single Sign-On (SSO) authentication provides a seamless user experience across
services.

Available Integrations

Oracle Content Management is a key component in a number of Oracle integrations. With
some integrations, Oracle Content Management is provided “out of the box” as part of the
service. For others, you must enable or configure the integration.

Note:

A number of the integrations described in this guide require that integrated services
be in the same identity domain. For that reason, those integrations work only on
traditional cloud accounts.

1-1

Category Integrations

Middleware Oracle WebCenter Content: Use Oracle Content Management to
provide a truly comprehensive hybrid enterprise content
management (ECM) integration, with a unified ECM infrastructure
and security from a single vendor. It combines anywhere access
from the cloud with content retention and archiving from on-premise
installations.

Applications Oracle JD Edwards: Use Oracle Content Management to attach
managed documents to transactions and collaborate through
conversations.

Software as a Service
(SaaS)

Oracle Cobrowse Cloud Service: Use Oracle Content Management
to work with a site and add the Cobrowse Launcher component to a
site page.

Oracle Commerce: Use Oracle Content Management to enhance
content collaboration and streamline content creation and publication
for commerce. For example, once the integration is enabled,
marketing content such as blogs and digital assets from Oracle
Content Management repositories can be pulled into Oracle
Commerce to be rendered both statically and dynamically.

Oracle Eloqua: Use Oracle Content Management to enable Eloqua
users to insert published images from Oracle Content Management's
asset repository into Eloqua responsive emails and landing pages.
The integration also allows users to upload images to Oracle
Content Management directly from within Eloqua. This allows Eloqua
users to leverage Oracle Content Management's extensive asset
repository capabilities to store content, while using Eloqua to design
marketing assets.

Oracle Enterprise Contracts: Use Oracle Content Management to
collaborate on contract negotiations. The integration of OCM with
Oracle Enterprise Contracts allows stakeholders to share contracts
for review and revision, collaborate and edit contracts in Microsoft
Word from the OCM UI.

Oracle Intelligent Advisor: Use Oracle Content Management to add
an Intelligent Advisor component to site pages.

Oracle Logistics Cloud: Use Oracle Content Management to store
and manage documents.

Oracle Maxymiser: Use Oracle Content Management’s extensive
asset repository capabilities to store content, while using Maxymiser
to design campaigns.

Oracle Responsys: Use Oracle Content Management to enable
Responsys users to insert content assets from Oracle Content
Management's asset repository into Responsys Email and Mobile
campaigns. This allows Responsys users to leverage Oracle Content
Management's extensive asset repository capabilities to store
content, while using Responsys to design campaigns.

Chapter 1
Understand Integrations

1-2

Category Integrations

Platform as a Service
(PaaS)

Oracle Business Intelligence Publisher: Use Oracle Content
Management for managed folders as a destination for generated
reports.

Oracle Developer Cloud Service: Use project templates and tools to
create, test, and package your own site templates, themes, and
components for use in Oracle Content Management.

Note:

This integration is available with
traditional cloud accounts.

Oracle Integration, Oracle Process Cloud Service: Automate
business-driven, company-specific processes, such as employee on-
boarding or IT service requests, and incorporate those processes
into Oracle Content Management.

Oracle Visual Builder: Rapidly create web and mobile applications
with minimal to no coding using an open-source, standards-based
integration to develop, collaborate on, and deploy applications within
Oracle Content Management.

Third-party applications Oracle Content Management includes integrations for several third-
party applications, such as Microsoft Office, Kaltura Video
Management - Video Plus, Desygner, and Slack. You just need to
enable the integration in your instance. Additionally, Oracle Cloud
Marketplace lists applications created by partners using the
integration features provided with Oracle Content Management.

Custom applications Use options such as REST APIs, Java services, and the Application
Integration Framework (AIF) to create any number of applications.

Use Apps and Services in Oracle Content Management

If you want to expand the service to include your own apps or to communicate with other
services, the following text discusses what you can do:

• The open architecture for site components means you can register and deliver hosted
apps and create your own components using your preferred platform. For details about
how to create your own components, see Develop Components.

• Cross-Origin Resource Sharing (CORS) allows a web page to make requests such as
XMLLHttpRequest to another domain. If you have a browser application that integrates
with Oracle Content Management but is hosted in a different domain, add the browser
application domain to Oracle Content Management’s CORS origins list. See Understand
Cross-Origin Resource Sharing (CORS).

• If you use REST services that do not support Cross-Origin Resource Sharing (CORS) or
that require service account credentials, you can use the Oracle Content Management
proxy service. See Configure Proxy Service Settings.

• You can use Application Integration Framework (AIF) to create your own custom
applications that define the actions that are exposed in the web interface, respond to user
selections, call third-party services, and specify how the results are presented to the user.
The framework supports variables and expressions and provides multiple language
support. See Understand the Application Integration Framework (AIF).

Chapter 1
Understand Integrations

1-3

https://www.oracle.com/cloud/marketplace/
https://www.oracle.com/cloud/marketplace/

• You can modify the web interface and menus to provide access to your
applications and features. See Manage Custom Applications.

Use Oracle Content Management with Other Services

The Oracle Platform as a Service (PaaS) architecture means you can leverage the
Oracle Content Management functionality where you need it:

• Provide direct interaction with Oracle Content Management in another web
application with the embedded version of the web user interface.

• Specify a list of domains where you allow content from Oracle Content
Management to be displayed using either the embedded web user interface or
REST calls. See Embed UI API V2 for Oracle Content Management.

Integration Interfaces
From the Integrations page in the Oracle Content Management (OCM)
Administration web user interface, you can select an application for integration,
configure content connectors to third-party content repositories, and configure proxy
service settings.

Integrations are configured in various places:

• Some integrations need to be enabled in the OCM web interface on the
Integrations page before they're available. There may be configuration steps that
need to be done on the Oracle Content Management side.

• Other configurations steps may need to be performed on the "other side" (i.e.
within the service that OCM is being integrated).

Note:

Whenever one application is to be configured to integrate with another
application (i.e. the target application), the user needs to have the target
application’s server connection information such as username, user
credential, and service URL. Depending on the integration scenario, you may
have a different set of user credentials and service URL.

Chapter 1
Integration Interfaces

1-4

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2

You can also add custom actions created with the Application Integration Framework (AIF) to
change the menu options for your users, add pop-up dialogs, and evaluate data entered into
forms.

This image shows the wide view of the menu on the Integrations page. By default, this page
shows the narrow view, with abbreviated menu items. To switch between narrow and wide
views of the menu, click the arrow at the bottom left of the page.

Learn more about integrations in the video Integrations in Oracle Content Management.

Chapter 1
Integration Interfaces

1-5

https://docs.oracle.com/en/cloud/paas/content-cloud/oce-gt-integrations/

Part II
Enabling Oracle Content Management
Integrations

This part focuses on enabling Oracle Content Management (OCM) integrations so you can
begin integrating with other applications and services.

While some integrations with Oracle applications are enabled from the Oracle Content
Management web interface, some integrations are enabled from other Oracle applications
and services before integration functionalities can be utilized.

You can use Oracle Content Management’s content connectors to connect to third-party
repositories like Dropbox, Google Drive, or WordPress, and import content from the
repository into Oracle Content Management.

Explore more on the topics in the following chapters:

• Integrate with Other Oracle Applications and Services

• Integrate with Third-party Applications

• Use Content Connectors

2
Integrate with Other Oracle Applications and
Services

You can integrate Oracle Content Management (OCM) with many Oracle applications and
services, as well as third-party applications. Generally, configurations are needed on both
systems that are being integrated. Please refer to the specific product for detailed integration
instructions.

The following is a full list of applications and services that are available for OCM integration:

Oracle Business Intelligence
Publisher

An enterprise reporting solution for authoring, managing, and
delivering all your highly formatted documents, such as
operational reports, electronic funds transfer documents,
government PDF forms, shipping labels, checks, sales and
marketing letters, and much more.

Oracle Cobrowse Cloud
Service

A collaboration tool for providing online customers on any
device with real-time assisted service or guidance.

Oracle Commerce An ecommerce platform that helps B2C and B2B businesses
connect customer and sales data from their CRM to their
financial and operational data so they can offer personalized
experiences to buyers across sales channels.

Oracle Developer Cloud
Service

A cloud-based software development Platform as a Service
(PaaS) and a hosted environment for your application
development infrastructure. It provides an open-source
standards-based solution to plan, develop, collaborate, build,
and deploy applications in Oracle Cloud.

Oracle Eloqua A best-in-class B2B marketing automation solution.

Oracle Enterprise Contracts A comprehensive offering that standardizes corporate
contract policies, improves internal controls, and enforces
compliance with all contractual obligations and regulatory
requirements. It provides a complete solution for managing
sales, procurement, and other contracts.

Oracle Integration A cloud service that connects any application and data
source to automate end-to-end processes and centralize
management.

Oracle Intelligent Adviser A decision automation solution (formerly Oracle Policy
Automation) that empowers business users to configure
rules, ensuring customers, service agents, and employees
always receive enriched, personalized, and precise customer
service.

Oracle JD Edwards A resource planning software that combines business value,
standards-based technology, and deep industry experience
into a business solution with a low total cost of ownership.

2-1

Oracle Logistic Cloud An integrated solution that seamlessly manages
transportation, global trade, and warehouse management
activities via unified business processes.

Oracle Maxymiser A testing and optimization solution that provides advanced
website testing, real-time behavioral targeting, in-session
personalization, and product recommendations across
websites and mobile apps. The solution also offers real-time
personalization for B2C and B2B marketing campaigns to
increase speed to market and improve customer
experiences.

Oracle Responsys A cross-channel campaign management platform that
delivers advanced intelligence at scale so you can create
personalized messages based on the individual interests and
preferences of customers and prospects.

Oracle Visual Builder A cloud-based software development Platform as a Service
(PaaS) and a hosted environment for your application
development infrastructure.

Oracle WebCenter Content A solution that provides a unified application for several
different kinds of content management.

Third-party applications External applications that are created by partners using the
integration features provided with Oracle Content
Management.

Integrate with Oracle Business Intelligence Publisher
Why Integrate with Oracle Business Intelligence Publisher?

Oracle Business Intelligence Publisher belongs to Oracle Fusion Middleware, a
comprehensive family of software products that includes a range of application
development tools and services.

The integration of Oracle Content Management with Business Intelligence Publisher
offers managed folders as a destination for generated reports. For example, payroll
reports can be sent to individual employee folders. Manage the folders and folder
contents with the easy-to-use interface from mobile, web, or desktop devices. All of the
familiar security, sharing, viewing, and collaboration features of Oracle Content
Management are available to view and manage your reports.

The screenshot below shows you how reports can be generated in multiple output
formats and sent to different destinations. A repository is one of the destinations.

Chapter 2
Integrate with Oracle Business Intelligence Publisher

2-2

https://docs.oracle.com/middleware/bi12214/bip/index.html
https://docs.oracle.com/en/middleware/

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle Business
Intelligence Publisher. Integrations generally require configurations in both applications that
are being integrated. So check the documentation on both sides. In addition to the
requirements on the OCM side, you need a subscription for the product that you intend to
integrate with OCM. See the Oracle Business Intelligence Publisher documentation for any
specific requirement. On the Oracle Content Management side, do the following:

• Create and activate an Oracle Cloud Account before you begin.

• Review Overview of Oracle Content Management, which provides information on
interacting with OCM and concepts on access roles for performing certain tasks.

• Compare the starter vs. the premium edition of Oracle Content Management. Only the
premium edition has all the features.

• Create an Oracle Content Management instance.

• Take a guided tour of repositories in Oracle Content Management.

• Create an asset repository. To set this up, you need to have the repository administrator
(CECRepositoryAdministrator) role in Oracle Content Management.

Integration Process

See Set Output Options in Fusion Middleware User's Guide for Oracle Business Intelligence
Publisher on how to configure the application for integration.

The screenshot below shows you how Oracle Content Management in Business Intelligence
Publisher is set as an output destination.

Chapter 2
Integrate with Oracle Business Intelligence Publisher

2-3

https://docs.oracle.com/middleware/bi12214/bip/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html
https://docs.oracle.com/middleware/bi12214/bip/BIPUG/GUID-22F94743-8AB7-43E8-AEE8-3D022AB306B2.htm#BIPUG192

Integrate with Oracle Cobrowse Cloud Service
Why Integrate with Oracle Cobrowse Cloud Service?

Oracle Cobrowse is one of Oracle's Software as a Service (SaaS) applications that
lets users share screens or initiate a cobrowsing session with another person. For
example, you might want to use cobrowse on a sales site so that a sales
representative can help a customer select appropriate products or services on the site.

The integration of Oracle Cobrowse with Oracle Content Management (OCM) lets you
add the Cobrowse Launcher component to a site page in OCM.

Prerequisites

There are prerequisites before you begin the integration process. Integrations
generally require configurations in both applications that are being integrated. So
check the documentation on both sides. In addition to the requirements on the OCM
side, you need a subscription for the product that you intend to integrate with OCM.
Please also see the Oracle Cobrowse documentation. On the Oracle Content
Management side you will need an Oracle Cloud Account, an OCM instance and be
assigned with the right access roles.

Only administrators with the enterprise user role can enable integration with Oracle
Cobrowse Cloud Service. If you aren't an enterprise user, the Oracle Cobrowse
Cloud Integration option is grayed out in Oracle Content Management.

Integration Process

To integrate with Oracle Cobrowse Cloud Service:

1. After you sign in to the Oracle Content Management web application as an
administrator, open your user menu and click Administration.

2. In the Administration menu, click Integrations.

3. Under Oracle Integrations, select Oracle Cobrowse Cloud Integration to
enable the service, and then set these values:

Chapter 2
Integrate with Oracle Cobrowse Cloud Service

2-4

https://docs.oracle.com/en/cloud/saas/service/18a/fascg/cobrowse-overview.html#cobrowse-overview

• Service URL: Enter the URL for the Cobrowse service. See Log in to the Agent
Console in the Standalone Cobrowse User Guide for the link (for example,
https://www.livelook.com).

• Service User: Enter the Oracle Cobrowse Cloud Service administrator user name.

• Service Password: Enter the user’s password.

After you've configured the integration, Oracle Content Management users can enable
cobrowse to work with a site and add the Cobrowse Launcher component to a site page.

Note:

If you later decide to disable cobrowse, you must disable the option on the
Integrations page and in the site settings for any sites that use cobrowse. If you
disable only the option on the Integrations page, any sites that use cobrowse will
continue to do so, but users won't be able to add new cobrowse functionality.

Integrate with Oracle Commerce

Why Integrate with Oracle Commerce?

Oracle Commerce is an ecommerce platform that helps B2C and B2B businesses connect
customer and sales data from their CRM to their financial and operational data so they can
offer personalized experiences to buyers across sales channels.

The integration of Oracle Content Management (OCM) with Oracle Commerce lets you
enhance content collaboration and streamline content creation and publication for commerce.
Additionally, the cloud-based content hub promotes content reuse from a single source and
accelerates experience delivery.

Once the integration is enabled, for example, marketing content such as blogs and digital
assets from Oracle Content Management repositories can be pulled into Oracle Commerce to
be rendered both statically and dynamically. In the screenshot below, assets such as product
images and texts from Oracle Content Management repositories are published on commerce
storefront pages.

Chapter 2
Integrate with Oracle Commerce

2-5

https://docs.oracle.com/en/cloud/saas/service/18b/fasgu/standalone-cobrowse-user-guide.html#t_Log_in_to_the_Agent_Console_aa1191752
https://docs.oracle.com/en/cloud/saas/service/18b/fasgu/standalone-cobrowse-user-guide.html#t_Log_in_to_the_Agent_Console_aa1191752

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle
Commerce. On the Oracle Content Management side, you will need the following
before the integration process:

• An Oracle Cloud Account.

• An OCM instance.

• A subscription of Oracle Commerce.

Integration Process

On the Oracle Content Management side, do the following:

1. Create a publishing channel and an asset repository. To set this up, make sure
you have the right access role, i.e., the repository administrator role
(CECRepositoryAdministrator), in Oracle Content Management. Access
Publishing Channels and Repositories in the Content dropdown menu by
clicking on the Content option in the left navigation menu (under
ADMINISTRATION).

a. Create a publishing channel.

b. Create an asset repository and associate it with the publishing channel you
created earlier.

2. Create an integration user and assign these roles.

• Application roles in Identity Cloud Service: CECEnterpriseUser,
CECContentAdministrator, and CECServiceAdministrator define what users
can do.

• Editorial roles in Oracle Content Management: A type of role required for
performing tasks with Oracle Content Management repositories and channels
that are used in the integration configuration of Oracle Commerce.

Chapter 2
Integrate with Oracle Commerce

2-6

https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html

Note:

For more details, see Assign Roles to Groups and Assign Users to Groups.

3. Add the integration user as a member to the repository and publishing channel.

4. Publish the assets in the repository to the publishing channel.

5. Complete the integration steps on the other side, see Oracle Commerce documentation.
Note that you need a subscription for the product that you intend to integrate with OCM.

Integrate with Oracle Developer Cloud Service
Why Integrate with Oracle Developer Cloud Service?

Oracle Developer Cloud Service is a cloud-based software development platform that
provides an open source, standards-based integration to develop, test, and deploy
applications into other cloud services such as Oracle Content Management.

Note:

This integration works only on traditional cloud accounts because it requires that the
service be in the same identity domain as Oracle Content Management.

Prerequisites

There are prerequisites before you begin the integration process. Integrations generally
require configurations in both applications that are being integrated. So check the
documentation on both sides. In addition to the requirements on the OCM side, you need a
subscription for the product that you intend to integrate with OCM. On the Oracle Content
Management side, you will need an Oracle Cloud Account, an OCM instance and be
assigned with the right access roles.

Integration Process

With Oracle Developer Cloud Service , you can use Oracle Content Management Toolkit to
develop custom Oracle Content Management applications. Check documentation on both
sides to learn about integration details.

Integrate with Oracle Eloqua
Why Integrate with Oracle Eloqua?

Integration with Eloqua lets you insert published assets from an Oracle Content Management
asset repository into Eloqua responsive emails, forms, and landing pages. Using Oracle
Content Management as a single source for all images saves rework because you can find
your images easily.

Eloqua users can leverage the extensive asset repository capabilities in Oracle Content
Management to store content for use in Eloqua marketing assets. When you design emails,
forms, or landing pages, this integration gives you the option to insert published image assets
from Oracle Content Management into your Eloqua assets.

Chapter 2
Integrate with Oracle Developer Cloud Service

2-7

https://docs.oracle.com/en/cloud/saas/cx-commerce/22d/ccint/integrate-oracle-content-management1.html
https://www.oracle.com/in/application-development/cloud-services/developer-service/
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/add-users-traditional-cloud-account.html
https://docs.oracle.com/en/cloud/paas/developer-cloud/csdcs/overview.html
https://github.com/oracle/content-and-experience-toolkit
https://docs.oracle.com/en/cloud/saas/marketing/eloqua-user/Help/Integrations/ContentExperience/CXContentIntegration.htm

Video

Prerequisites

These are the prerequisites before you begin the integration process.

Note:

Integrations generally require configurations in both applications that are
being integrated. So check the documentation on both sides. In addition to
the requirements on the OCM side, you need a subscription for the product
that you intend to integrate with OCM. Please also check the Oracle Eloqua
documentation.

• Create and activate an Oracle Cloud Account before you begin.

• Review Overview of Oracle Content Management, which provides information on
interacting with OCM and concepts on access roles for performing certain tasks.

• Compare the starter vs. the premium edition of Oracle Content Management. Only
the premium edition has all the features.

• Create an Oracle Content Management instance.

• Take a guided tour of repositories in Oracle Content Management.

• Create an asset repository. To set this up, you need to have the repository
administrator (CECRepositoryAdministrator) role in Oracle Content Management.

Integration Process

The process of Eloqua integrating with Oracle Content Management consists of the
following steps:

1. Choose an Asset Repository and Create a Publishing Channel

2. Provide Oracle Content Management Information for the Eloqua Integration

3. Enable Oracle Content Management Embedded Content

4. Use an Asset in an Eloqua Landing Page

Choose an Asset Repository and Create a Publishing Channel
For integration with Eloqua, you need to choose an asset repository and create a
publishing channel in Oracle Content Management. Then Eloqua can provide access
to assets in the repository.

After you choose an asset repository in Oracle Content Management, create and
share a publishing channel. Oracle suggests creating a channel that is specifically for
Eloqua.

The assets published to the Eloqua channel will be displayed in a tab on the Eloqua
Image Chooser page, where you can choose an Oracle Content Management asset.

Chapter 2
Integrate with Oracle Eloqua

2-8

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:32401
https://docs.oracle.com/en/cloud/saas/marketing/eloqua-user/Help/Integrations/ContentExperience/CXContentIntegration.htm
https://docs.oracle.com/en/cloud/saas/marketing/eloqua-user/Help/Integrations/ContentExperience/CXContentIntegration.htm
https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html

To refresh an image in all channels, email campaigns, and landing pages in which the image
is used, you can change and republish the image in Oracle Content Management.

If the image you want to use is not available in the Eloqua Image Chooser, you can go to
Oracle Content Management and upload or publish the image.

Provide Oracle Content Management Information for the Eloqua Integration
To enable Oracle Content Management integration with Eloqua, submit a service request to
My Oracle Support (MOS).

Include the following details for your Oracle Content Management instance:

1. Domain name
For example, if you sign in to Oracle Content Management at the URL https://
eloquaoce.oraclecloud.com/documents/assets, the domain name is
eloquaoce.oraclecloud.com.

2. Repository ID
To retrieve your repository ID:

a. In Oracle Content Management, navigate to Administration > Assets.

b. Select the repository you want to use for storing your Eloqua images.

c. The repository ID is appended to the URL. For example, if the full URL is https://
eloquaoce.oraclecloud.com/documents/repository/
ABC6F858251160CC3000A497C0C07C96651BA6F0BE73, the repository ID is
ABC6F858251160CC3000A497C0C07C96651BA6F0BE73.

3. Channel ID and channel token
To retrieve your channel ID and channel token:

a. In Oracle Content Management, navigate to Administration > Assets.

b. From the Repositories drop-down menu, choose Publishing Channels.

c. Select the publishing channel you intend to use for Eloqua images.

d. The channel ID and channel Token are listed under API Information.

e. Ensure that Access is set to Public.

Chapter 2
Integrate with Oracle Eloqua

2-9

Enable Oracle Content Management Embedded Content
In Oracle Content Management administration security settings, enable embedded
content and add the Eloqua URL.

Then you can embed the Oracle Content Management web UI in Eloqua. See Embed
Content in Other Domains.

Use an Asset in an Eloqua Landing Page
After the Oracle Content Management Cloud integration with Eloqua is enabled, you
can choose a digital asset from Oracle Content Management to use in an Eloqua
responsive landing page.

1. On the Oracle Eloqua home page, choose Landing Pages from a drop-down
menu on the right.

2. On the Landing Pages page, click Create a Landing Page. Eloqua displays the
Template Chooser for a landing page.

3. Click Blank Responsive Landing Page. This opens the editor page with the
empty canvas.

Chapter 2
Integrate with Oracle Eloqua

2-10

4. Drag and drop the image symbol from under Content on the left onto the blank canvas.
You can upload the image or browse for it.

5. In the Image Chooser, you can browse for an image in the Oracle Content Management
repository that was created to use with Eloqua. You can select any image in the
repository.

6. After you choose an image from the Oracle Content Management landing page, you can
set properties for and size the image on your Eloqua landing page.

Chapter 2
Integrate with Oracle Eloqua

2-11

Note:

Using Internet Explorer to insert assets from Oracle Content Management
might cause an error. Oracle recommends that you use Google Chrome or
Mozilla Firefox to insert assets from Oracle Content Management until this
issue is resolved in a future release.

Integrate with Oracle Enterprise Contracts

Why Integrate with Oracle Enterprise Contracts?

Oracle Enterprise Contracts is a comprehensive offering that standardizes corporate
contract policies, improves internal controls, and enforces compliance with all
contractual obligations and regulatory requirements. It provides a complete solution for
managing sales, procurement, and other contracts.

The new addition to Oracle Enterprise Contracts, Collaborate on Contract
Negotiations, integrates Oracle Content Management (OCM) functionalities, so you
(e.g., internal and external stakeholders) can take advantages of the features in both
applications to smooth the contract negotiation process. For instance, you can share
contracts for review and revision, collaborate and edit contracts in Microsoft Word from
the OCM UI. Additionally, leveraging OCM as a cloud-based content management
system streamlines content creation tasks, accelerates team collaboration, promotes
content reuse from a single source (the OCM repository), and improves customer and
employee engagement.

The screenshot below shows the stakeholder commenting on a document in the
Oracle Content Management UI.

Chapter 2
Integrate with Oracle Enterprise Contracts

2-12

https://download.oracle.com/ocomdocs/global/apps_23B/sales/Contract_Collaboration/demo/Contract_Collaboration_Demo.mp4
https://download.oracle.com/ocomdocs/global/apps_23B/sales/Contract_Collaboration/demo/Contract_Collaboration_Demo.mp4
https://www.oracle.com/webfolder/technetwork/tutorials/tutorial/cloud/r13/wn/engagement/releases/23B/23B-sf-automation-wn.htm#F26852
https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html

The screenshot below shows the integration diagram between Oracle Enterprise Contracts
and Oracle Content Management.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle Enterprise
Contracts. You need the following before the integration process:

• An Oracle Cloud Account.

• A subscription that covers the use of Oracle Enterprise Contracts. The subscription
depends on the types of contracts that you want to manage. Contact your Oracle sales
team for assistance.

• An Oracle Content Management instance with the application roles assigned:
Raise a Service Request (SR) with the Oracle Fusion Applications team in Oracle
Support to configure Oracle Content Management with Oracle Fusion.

Chapter 2
Integrate with Oracle Enterprise Contracts

2-13

https://www.oracle.com/corporate/contact/
https://www.oracle.com/corporate/contact/
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/contact-my-oracle-support.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/contact-my-oracle-support.html
https://docs.oracle.com/en/cloud/saas/index.html

Note:

The Oracle Content Management instance needs to be provisioned in
the same environment as your Oracle Fusion applications. You cannot
use an existing Oracle Content Management instance that has not been
instantiated in your Oracle Fusion environment.

Integration Process

1. Enable the integration.

Once your Oracle Content Management is provisioned in the Oracle Fusion
Applications environment, enable the option by using the Opt-In UI process. The
Opt-In UI offering is Enterprise Contracts.

2. Configure the root folder path and root user.

Use the task Manage Content Management Configuration from the contracts
landing page to set up the OCM root folder path and root user before sharing
contract documents for collaboration.

For complete details, see Collaborate on Contract Negotiations using Oracle
Content Management, Steps to Enable in Oracle Sales Force Automation—
Enterprise Contracts.

Integrate with Oracle Integration
Why Integrate with Oracle Integration—Oracle Process Cloud?

Oracle Integration—Oracle Process Cloud Service automates and manage your
business work flows. Through integration with Oracle Content Management, your
users can access Oracle Integration functionality within Oracle Content Management,
letting users manage business processes in the cloud, such as content workflows to
route content for approval or review.

Note:

Oracle Content Management Starter Edition has a limited feature set. To take
advantage of the full feature set, upgrade to the Premium edition.

Integrating Oracle Content Management with Oracle Integration benefits document-
intensive processes by organizing, managing, and restricting access to documents
that must be submitted, reviewed, and approved or rejected by different roles and
organizations during the business process. Conversations enable users to easily
discuss things that come up during the process.

Oracle Content Management integrates assets, content workflows, documents, and
conversations with your process applications.

• Assets: You can enable structured multistep workflows for review and approval of
content items and digital assets that you manage in Oracle Content Management
asset repositories.

Chapter 2
Integrate with Oracle Integration

2-14

https://docs.oracle.com/cd/E15586_01/fusionapps.1111/e15525/intro.htm
https://www.oracle.com/webfolder/technetwork/tutorials/tutorial/cloud/r13/wn/engagement/releases/23B/23B-sf-automation-wn.htm#T45590
https://www.youtube.com/watch?v=q4S7Ewzs8hQ
https://www.oracle.com/webfolder/technetwork/tutorials/tutorial/cloud/r13/wn/engagement/releases/23B/23B-sf-automation-wn.htm#F26852
https://www.oracle.com/webfolder/technetwork/tutorials/tutorial/cloud/r13/wn/engagement/releases/23B/23B-sf-automation-wn.htm#F26852
https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/get-started-product.html
https://docs.oracle.com/en/cloud/paas/integration-cloud/int-get-started/quick-introduction-oracle-integration.html

• Content workflows: Oracle Content Management includes a workflow management
system that supports business process-based integration. This enables modeling,
automation, and continuous improvement of business processes and routing information
according to user-defined business rules.

• Documents: Oracle Integration provides simple file-attachment functionality, but if you
need something more robust to handle document-intensive processes, you can integrate
Oracle Content Management. This service enables you to organize files into folders,
manage access to each folder, and even start a process when you upload a document.
For example, if you’re processing a home loan, you need to manage documents such as
loan applications, employment histories, and house appraisals, making sure that the right
users see the documents they need to submit, review, or approve, but they don’t get
access to restricted information.

• Conversations: When you integrate conversations, users can easily discuss things that
come up during the process. This provides a record of what happened, enabling you to
quickly bring new stakeholders up to speed or refer back to things as necessary. Plus,
the conversation tools work like the social media tools users regularly use, but with
enterprise-wide security and controls. For example, if you’re working on a contract, you
might need to discuss some of the terms while still making sure your discussion is
confidential.

• Document- and Folder-Initiated Processes: You can automatically start a process when
someone uploads a document (or folder of documents) to a chosen document folder.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle Integration—
Oracle Process Cloud. Integrations generally require configurations in both applications that
are being integrated. So check the documentation on both sides. In addition to the
requirements on the OCM side, you need a subscription for the product that you intend to
integrate with OCM.

• Check the Oracle Integration—Oracle Process Cloud documentation for any specific
requirement.

• On the Oracle Content Management side, you will need an Oracle Cloud Account, an
OCM instance and be assigned with the right access roles.

Integration Process

Before users can take advantage of the integrated functionality, a service administrator must
configure settings in both Oracle Integration (described in Integrate Documents in Using
Processes in Oracle Integration 3) and Oracle Content Management (described in Configure
Oracle Integration Settings in Oracle Content Management).

Note:

The integration of these services requires single sign-ons (SSO), so both services
must be in the same identity domain and tenancy. For full details on the concepts of
identity domain and tenancy, see topics such as Account and Access Concepts and
more in the Oracle Cloud Infrastructure documentation.

After both services have been configured:

Chapter 2
Integrate with Oracle Integration

2-15

https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/how-do-i-integrate-oracle-content-management.html#GUID-DDBFF9DF-D59E-4904-906B-21BD24C832BD
https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/integrate-documents-and-conversations.html
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/concepts-account.htm

• Oracle Integration users can take actions (such as approvals) on the files directly
in Oracle Integration.

• Oracle Content Management content administrators can use the Oracle Content
Management web interface to manage the workflows created in Oracle Integration,
registering them, assigning them to repositories, adding members, and assigning
workflow roles.

• Oracle Content Management content contributors can use workflows to get
approval for their content.

• Oracle Content Management documents users can upload files into folders to
initiate a workflow associated with the folder.

• Oracle Content Management site designers can create web pages with ready-to-
use components that provide folder and file access, process selection and
initiation, associated conversation display and interaction, and much more.

The following sections provide more details about integrating with Oracle Integration:

• Configure Oracle Integration Settings in Oracle Content Management

• Oracle Integration with Assets

• Oracle Integration with Documents

• Oracle Integration with Sites

• Pass a CSS Style Sheet to Oracle Integration

• Start the Default Version of an Oracle Integration Process

Configure Oracle Integration Settings in Oracle Content Management
To configure Oracle Content Management to integrate with Oracle Integration and to
enable content workflows:

1. Enable the integration and enter connection information.

a. Sign in to the Oracle Content Management web interface as a service
administrator.

b. In the Settings menu, click Integrations.

c. Under Oracle Integrations, select Oracle Integration Cloud - Process
Automation Integration to enable the service.

Chapter 2
Integrate with Oracle Integration

2-16

d. In the OIC Process Configuration dialog, enter the following information.

• Service URL: The URL of the service that users can access for their
applications.

– If you have a Universal Credits subscription, your Service URL should look
something like this:

 https://{servicename}/ic/api/process/v1/processes

– If you have a non-metered subscription, your Service URL should look
something like this:

 https://{servicename}/bpm/api/4.0/processes

Note:

For asset workflows, only https://{servicename}/bpm/api/4.0/
processes is valid. If you're still using https://
{servicename}/bpm/api/3.0/processes, the recommendation is to
use 4.0 version of the service URL.

• Service User: Enter the email address of the user who owns the process to be
used in Oracle Content Management. This must be the same user you entered
when configuring Oracle Integration.

• Service Password: Enter the user password. This must be the same password
you entered when configuring Oracle Integration.

• Client ID: Enter the Client ID of the App from the (Identity Cloud Services) IDCS
Admin Console corresponding to the Oracle Integration instance.

Chapter 2
Integrate with Oracle Integration

2-17

Note:

To find the Client ID, follow the steps below. The UI of the IDCS
Admin Console can change, treat these steps as guidance.

i. Log in to IDCS Admin Console.

ii. Click on Oracle Cloud Services.

iii. Locate application corresponding to your Oracle Integration
Cloud.

iv. Go to Configuration and in the General Information
section you will find Client ID.

e. Select the Enable Workflows for Assets checkbox.

2. In Oracle Content Management, enable Oracle Integration use for the desired
folders.

a. In Oracle Content Management, open the properties for the folder.

b. Enable Oracle Integration use.

c. Select a process from the list.

If the process list is blank, it's caused by one of the following issues:

• The Oracle Integration user you specified doesn't have rights to see the
processes.

• The Oracle Integration URL you specified isn't correct.

• The Oracle Integration user/password combination you specified isn't correct.

• The Oracle Integration service doesn't have a process that uses a Documents
Start Event. To create a process with a Document Start Event, see Creating a
Document- or Folder-Initiated Process in Using Processes in Oracle
Integration 3.

Oracle Integration with Assets
After integrating Oracle Integration – Process Automation with Oracle Content
Management, you can create structured multistep workflows for review and approval
of content items and digital assets that you manage in Oracle Content Management
asset repositories.

Oracle Content Management provides a quick start application package with several
multistep processes that you can deploy to your Oracle Integration instance and start
using for asset review and approvals. Alternatively, you can use these processes as
samples to develop custom processes that meet specific requirements in your
organization. For example use cases, see Use Seeded Content Workflows in
Managing Assets with Oracle Content Management.

To download the quick start application package and set up the processes for use:

1. In the Oracle Content Management web user interface, on the Content > Content
Workflows page, click the OCE QuickStartApplication link to download a zip
file.

Chapter 2
Integrate with Oracle Integration

2-18

https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/create-document-or-folder-initiated-process.html#GUID-5A36BA12-320C-4CA8-9594-6234BEC94C86
https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/create-document-or-folder-initiated-process.html#GUID-5A36BA12-320C-4CA8-9594-6234BEC94C86

2. Unzip the file to a local computer.

After downloading and unzipping the QuickStartApplication package, you must go to Oracle
Integration to import an application for use with Oracle Content Management.

1. Sign in to Oracle Integration (OIC).

2. Click Processes > Process Applications.

3. Click Create.

4. On the Import an Application tile, click Import.

Chapter 2
Integrate with Oracle Integration

2-19

5. Click Browse.

6. Point to one of the three items that were unzipped from the zip file you
downloaded earlier; for example, OCEThreeStepApplication.exp.

7. Click Import.

Chapter 2
Integrate with Oracle Integration

2-20

The application is imported as QuickStart Master, You have the option to change the name
before you promote it to be a QuickStart application:

1. Without any changes, click Promote.

2. In the Promote to Gallery as a Quick Start App dialog, enter a snapshot name and
then click Promote.

3. After the process completes, click Close in the dialog.

4. Click Close in the main window.

Now you can create another QuickStart application and use that application to create multiple
process applications:

1. On another Process Applications page, click Create.

2. On the Start with a QuickStart tile, click Browse.
In the Gallery, you should now see the application sample you just created (for example,
OCEThreeStepApplication).

3. Click Create for that application. Enter a name, and then click Create.
An overview page for the new application displays.

4. Click Configure.

5. Click Update your OCE Connection URL here. This is mandatory.

6. In the Address field, replace OCEURL with your Oracle Content Management instance
URL (copy and paste from your instance in a web browser).
So you'll end up with something like https://instance.url.oraclecloud.example.com/
content/management/api/v1.1 .

7. Click X to close the page.

There is no need to modify anything else at this point. You can click Switch to Application
View and then click the name of an application (for example, OCEThreeStepProcess). The
application process opens in a process flow visualizer.

Chapter 2
Integrate with Oracle Integration

2-21

You could modify the roles here. Make sure to click Save if you make any changes.

To deploy an application, click the house icon in the top left to go to the OIC home
page, and then follow these steps:

1. Click My Tasks in the left navigation pane.

2. Click Administration in the left navigation pane.

3. Click Manage Credentials.

4. Click Add new credential. Enter the user name and password for your Oracle
Content Management repository administrator. You'll use this keystore when you
activate the application.

5. Go back to the home page.

6. Click Processes > Process Applications.

7. Click the name of a QuickStart application.

8. On the application overview page, click Publish.

9. In the Publish Application dialog, enter a comment, if necessary, and then click
Publish.

To activate the application, follow these steps:

1. Click Switch to Application View.

2. Click Activate.

3. On the Activation tab, click Activate new version.

4. In the Activate Application to My Server dialog, click Customize.

5. Select the keystore credential you created for the Oracle Content Management
repository administrator.
This will populate the user and password fields.

6. Click Validate.

7. If there are no errors, click Options.

8. Add the version (for example, 1.0) and then click Activate.
This will deploy the process application in Oracle Integration and make it available
in Oracle Content Management.

9. Click Finish after the application is activated successfully.

After the application is registered, have your Oracle Content Management content
administrator use the Oracle Content Management web interface to make the workflow
available for use, registering it, assigning it to a repository, adding members, and
assigning workflow roles. Then Oracle Content Management content contributors can
use the workflow to get approval for their content.

Oracle Integration with Documents
Manage workflows for business applications, such as document routing for review or
approval, with Oracle Integration enabled for documents in Oracle Content
Management.

You can allow your users to access Oracle Integration functionality, which lets users
manage business processes in the cloud, such as document routing for approval or
review.

Chapter 2
Integrate with Oracle Integration

2-22

This feature might not be available, depending on the Oracle Content Management
subscription type and start date of your service.

You must configure settings in both Oracle Integration and Oracle Content Management
before users can take advantage of the integrated functionality.

1. In Oracle Integration, sign in as an administrator and enter connection information for
Oracle Content Management. See Integrating Documents in Using Oracle Process Cloud
Service.

2. In Oracle Content Management, enable Oracle Integration and enter connection
information:

a. Sign in to Oracle Content Management as an administrator.

b. From the Administration menu, choose Integrations.

c. Under Applications, select Oracle Integration to enable the service, and then set
these values:

• Service URL: The URL of the service that users can access for their
applications.

– If you have a Universal Credits subscription, your Service URL should look
something like this:

 https://{servicename}/ic/api/process/v1/processes

– If you have a non-metered subscription, your Service URL should look
something like this:

 https://{servicename}/bpm/api/4.0/processes

Note:

For asset workflows, only https://{servicename}/bpm/api/4.0/
processes is valid. If you're still using https://
{servicename}/bpm/api/3.0/processes, the recommendation is to
use 4.0 version of the service URL.

• Service User: Enter the email address of the user who owns the process to be
used in Oracle Content Management. This must be the same user you entered
when configuring Oracle Integration.

• Service Password: Enter the user password. This must be the same password
you entered when configuring Oracle Integration.

• Client ID: Enter the Client ID of the App from the (Identity Cloud Services) IDCS
Admin Console corresponding to the Oracle Integration instance.

Chapter 2
Integrate with Oracle Integration

2-23

https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/integrate-documents-and-conversations.html

Note:

To find the Client ID, follow the steps below. The UI of the IDCS
Admin Console can change, treat these steps as guidance.

i. Log in to IDCS Admin Console.

ii. Click on Oracle Cloud Services.

iii. Locate application corresponding to your Oracle Integration
Cloud.

iv. Go to Configuration and in the General Information
section you will find Client ID.

3. To create a process with a Document Start event, see Creating a Document- or
Folder-Initiated Process in Using Oracle Process Cloud Service.

When a task step is complete, the file can be managed according to the defined
process. For an incoming document, a user can perform actions based on the
assigned role for that document: Contributor, Downloader, or Viewer.

When Oracle Content Management starts a process, the following payload is sent to
launch the process:

{

 "operation":"startEvent",

 "processDefId":"testing~LoanApplicationProcessing!
1.0~LoanApplicationProcessing"

 "params": {

 "id": "abc123",

 "name": "document name",

 "startedBy": "user id",

 "type": "d",

 "role": "role that should be used to generate
subsequent applinks",

 "version": "version"

 }

}

As a developer, you need to be aware of the following requirements for the process
you develop:

• It needs to be a process that uses an Oracle Content Management Document
Start event.

Chapter 2
Integrate with Oracle Integration

2-24

https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/create-document-or-folder-initiated-process.html#GUID-5A36BA12-320C-4CA8-9594-6234BEC94C86
https://docs.oracle.com/en/cloud/paas/integration-cloud/user-processes/create-document-or-folder-initiated-process.html#GUID-5A36BA12-320C-4CA8-9594-6234BEC94C86

• When deploying the process, you need to share it with the user specified for enabling the
integration so that user has the rights to trigger the process,

• For the user who uploaded the file to show up as the user who started the task, the
process must use the value passed in the startedby field as the display name for the
initiator.

Oracle Integration with Sites
You can integrate tasks on your sites with Oracle Integration.

Developers need to be aware of the following requirements for Oracle Integration with Sites:

• The process author needs to ensure that the sites author is added as an initiator of the
process, or the site author will not be able to see the process in the list of processes
available when configuring the start form component.

• The process author also needs to ensure that any site visitor is added as an initiator of
the process, or the visitor, upon filling in the start form, will not actually be able to initiate
the process.

Pass a CSS Style Sheet to Oracle Integration
As a developer, you can control the look of an Oracle Integration start form in a site by
passing CSS information through the design.css file in a theme.

To do this, you need to place the CSS style inside of the design.css file that is within the
theme of the site. The style sheet would most likely be related to the theme.

On a site page, you can drop an Oracle Integration form with Name and Address fields.
There is no styling for the fields.

1. Click Edit in the top right menu to go into edit mode.

2. On the Process Start Form menu, choose Settings.

3. In the Process Start Form Settings dialog, click Custom Settings.

4. In the Properties panel, you can choose a control class under Control Class Name for
each field in the Oracle Integration form. Each control class specifies a CSS style.

5. In the design.css file for the theme of a site, you can specify properties for each control
class, such as a bold label.
When developing a form, you can specify the control class name on a field-by-field basis.

On the Style tab in the Button Settings panel, contributors can choose styles that come with
a theme. You can set options for a custom style in Site Builder for editing a site.

In the text editor toolbar for both paragraphs and titles, you can choose styles for toolbar
groups. The specifications for these style options go in the components.json file for the
theme.

Start the Default Version of an Oracle Integration Process
You can start the default version of an Oracle Integration process and view a sorted list of
Oracle Integration start forms to choose from.

The Oracle Integration start form is part of a process, and the process is an application.
When you activate the application package, it has an associated version number.

Chapter 2
Integrate with Oracle Integration

2-25

1. Each time you change and publish an Oracle Integration process, click Activate in
the top menu to activate the latest version of the process, which becomes the
default version.

2. Under Select a Process in the Custom Settings panel, check Use default process
version.

3. Select a process, and choose a start form from the list.

Note:

Only one experience connection can be created on an Oracle Content
Management Starter Edition instance. For unlimited connections, upgrade to
Premium Edition.

Integrate with Oracle Intelligent Advisor
Why Integrate with Oracle Intelligent Advisor?

The integration of Intelligent Advisor with Oracle Content Management (OCM) lets you
add an Intelligent Advisor component to a site page in OCM. As a result, you give
users access to Oracle Intelligent Advisor (formerly Oracle Policy Automation)
functionality, which implements online "interview" scenarios, such as feedback for
troubleshooting or eligibility assessments for services. Intelligent Advisor delivers
advice across channels by capturing rules in Microsoft Word and Excel documents,
then building interactive customer service experiences called interviews around those
rules.

Note:

Only administrators with the enterprise user role can enable integration with
Intelligent Advisor. If you aren't an enterprise user, the Oracle Policy
Automation Cloud Integration option is grayed out in Oracle Content
Management.

Prerequisites

There are prerequisites before you begin the integration process. Integrations
generally require configurations in both applications that are being integrated. So
check the documentation on both sides. In addition to the requirements on the OCM
side, you need a subscription for the product that you intend to integrate with OCM.
Please also see the Intelligent Advisor documentation. On the Oracle Content
Management side, you will need an Oracle Cloud Account, an OCM instance and be
assigned with the right access roles.

Integration Process

On the Intelligent Advisor side, interviews must be created and stored on the host site.
In addition, the Intelligent Advisor administrator must add the Oracle Content
Management domains (*.documents.* and *.sites.*) to the list of hosts authorized to
embed interviews. See Configure security for embedded interviews in the Intelligent
Advisor documentation.

Chapter 2
Integrate with Oracle Intelligent Advisor

2-26

https://www.oracle.com/cx/service/intelligent-advisor/
http://documentation.custhelp.com/euf/assets/devdocs/unversioned/PolicyAutomation/en/Default.htm#Guides/Welcome/Welcome.htm
http://documentation.custhelp.com/euf/assets/devdocs/unversioned/PolicyAutomation/en/Default.htm#Guides/Welcome/Welcome.htm
http://documentation.custhelp.com/euf/assets/devdocs/unversioned/PolicyAutomation/en/Default.htm#Guides/Welcome/Welcome.htm

On the Oracle Content Management side, you need to configure integration with Intelligent
Advisor:

1. After you sign in to the Oracle Content Management web application as an administrator,
open your user menu and click Administration.

2. In the Administration menu, click Integrations.

3. Under Oracle Integrations, select Oracle Policy Automation Cloud Integration to
enable the service, and then set these values:

• Service URL: Enter the URL of the Intelligent Advisor Cloud Service.

• Service User: Enter the name of the Intelligent Advisor user. This user must be an
Integration user and must have the Deploy Admin role for the Intelligent Advisor
collections. See Create an account for application integration in the Intelligent
Advisor documentation.

• Service Password: Enter the user password.

After both services have been configured for integration, Oracle Content Management users
can add an Intelligent Advisor component to site pages.

Integrate with Oracle JD Edwards
Why Integrate with Oracle JD Edwards?

The integration of Oracle JD Edwards EnterpriseOne with Oracle Content Management lets
you attach managed documents to transactions and collaborate through conversations.

With content stored in Oracle Content Management, you can do the following:

• Access documents using web, desktop devices, and mobile devices.

• View, search, and manage documents directly in the web interface.

• Collaborate through conversations, and conversations about specific transactions or
documents.

• Review document usage data.

When you enable the integration, you can use the following from within JD Edwards
EnterpriseOne:

• User Conversations: Start or participate in social conversations about a topic of interest
within EnterpriseOne using the Conversation icon in the menu bar.

• Contextual Conversations: Start or participate in conversations about specific business
records within EnterpriseOne. Create conversations within the context of a transaction
using the Conversation icon in the header bar of the Attachment Manager.

• Contextual Documents: Add documents to the cloud and organize documents while still
keeping them in the context of your business record by using the Document icon in the
header bar of the Attachment Manager.

Chapter 2
Integrate with Oracle JD Edwards

2-27

http://documentation.custhelp.com/euf/assets/devdocs/unversioned/PolicyAutomation/en/Default.htm#Guides/Welcome/Welcome.htm
http://documentation.custhelp.com/euf/assets/devdocs/unversioned/PolicyAutomation/en/Default.htm#Guides/Welcome/Welcome.htm
https://docs.oracle.com/en/applications/jd-edwards/cross-product/9.2/eotfo/oracle-content-and-experience-cloud-for-jd-edwards-enterpriseone.html#u10034887

Prerequisites

To integrate Oracle Content Management with JD Edwards, there are prerequisites
from the JD Edwards side. On the Oracle Content Management side, you will need an
Oracle Cloud Account, an OCM instance and be assigned with the right access roles.

Integration Process

Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements
on the OCM side, you need a subscription for the product that you intend to integrate
with OCM.For more integration details, please also refer to the Oracle JD Edwards
documentation.

Integrate with Oracle Logistics Cloud
Why Integrate with Oracle Logistics Cloud?

You can use Oracle Content Management to store and manage documents from within
Oracle Logistics Cloud. The following example shows one of the Oracle Logistics
Cloud solutions, Oracle Transportation and Global Trade Management, being
integrated with Oracle Content Management.

Prerequisites

These are the prerequisites before you begin the integration process.

Note:

Integrations generally require configurations in both applications that are
being integrated. So check the documentation on both sides. In addition to
the requirements on the OCM side, you need a subscription for the product
that you intend to integrate with OCM. Please also see the Transportation
and Global Trade Management 22C documentation.

• Create and activate an Oracle Cloud Account before you begin.

• Review Overview of Oracle Content Management, which provides information on
interacting with OCM and concepts on access roles for performing certain tasks.

Chapter 2
Integrate with Oracle Logistics Cloud

2-28

https://docs.oracle.com/en/applications/jd-edwards/administration/9.2.x/eotra/prerequisites-1.html
https://docs.oracle.com/en/applications/jd-edwards/cross-product/9.2/eotfo/oracle-content-and-experience-cloud-for-jd-edwards-enterpriseone.html#u10034887
https://docs.oracle.com/en/applications/jd-edwards/cross-product/9.2/eotfo/oracle-content-and-experience-cloud-for-jd-edwards-enterpriseone.html#u10034887
https://docs.oracle.com/en/cloud/saas/logistics-cloud-suite/index.html
https://docs.oracle.com/en/cloud/saas/transportation/22c/otmcg/index.html
https://docs.oracle.com/en/cloud/saas/transportation/22c/otmcg/index.html

• Compare the starter vs. the premium edition of Oracle Content Management. Only the
premium edition has all the features.

• Create an Oracle Content Management instance.

• Take a guided tour of repositories in Oracle Content Management.

• Create an asset repository. To set this up, you need to have the repository administrator
(CECRepositoryAdministrator) role in Oracle Content Management.

Integration Process

You simply configure the integration with URL, user name, and password to connect to the
Oracle Content Management server. After authentication credentials are verified, you can
upload, edit, and delete documents directly from Oracle Logistics Cloud. See Transportation
and Global Trade Management documentation for more instructions on How to Configure
Storage and How to Configure Content Organization.

Integrate with Oracle Maxymiser

Why Integrate with Oracle Maxymiser?

The integration of Oracle Maxymiser with Oracle Content Management (OCM) enables you to
insert assets from OCM into Oracle Maxymiser campaigns. This allows you to leverage
Oracle Content Management’s extensive asset repository capabilities to store content, while
using Maxymiser to design campaigns.

Chapter 2
Integrate with Oracle Maxymiser

2-29

https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html
https://www.oracle.com/cx/marketing/personalization-testing/

Note:

You may see Oracle Content Management being referred to as Oracle CX
Content in the Maxymiser documentation.

Video

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle
Maxymiser. On the Oracle Content Management side, you will need an Oracle Cloud
Account, an OCM instance and be assigned with the right access roles.

Integration Process

Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements
on the OCM side, you need a subscription for the product that you intend to integrate
with OCM. For more integration details, please also refer to the Oracle Maxymiser
documentation.

Integrate with Oracle Responsys
Why Integrate with Oracle Responsys?

The integration with Oracle Responsys lets you insert published assets from an Oracle
Content Management asset repository into Responsys Email and Mobile campaigns.
Using Oracle Content Management as a single source for all images saves rework
because you can find your images easily.

Responsys users can leverage the extensive asset repositories in Oracle Content
Management to store content while using Responsys to design campaigns. When you
design Email and Mobile campaigns, this integration gives you the option to insert
published image assets from Oracle Content Management into your campaigns. You
can choose digital assets from an Oracle Content Management publishing channel
through the Responsys application.

Video

Prerequisites

These are the prerequisites before you begin the integration process.

Note:

Integrations generally require configurations in both applications that are
being integrated. So check the documentation on both sides. In addition to
the requirements on the OCM side, you need a subscription for the product
that you intend to integrate with OCM. Please also see the Oracle
Responsys documentation.

• Create and activate an Oracle Cloud Account before you begin.

Chapter 2
Integrate with Oracle Responsys

2-30

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:32400
https://docs.oracle.com/en/cloud/saas/marketing/maxymiser-user/Content/Integrations/CXContent/CXContent.htm?tocpath=Integrate%7COracle%20CX%20Content%7C_____0
https://docs.oracle.com/en/cloud/saas/marketing/maxymiser-user/Content/Integrations/CXContent/CXContent.htm?tocpath=Integrate%7COracle%20CX%20Content%7C_____0
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/CXContent_Overview.htm
http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:32399
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/CXContent_Overview.htm
https://docs.oracle.com/en/cloud/saas/marketing/responsys-user/CXContent_Overview.htm

• Review Overview of Oracle Content Management, which provides information on
interacting with OCM and concepts on access roles for performing certain tasks.

• Compare the starter vs. the premium edition of Oracle Content Management. Only the
premium edition has all the features.

• Create an Oracle Content Management instance.

• Take a guided tour of repositories in Oracle Content Management.

• Create an asset repository. To set this up, you need to have the repository administrator
(CECRepositoryAdministrator) role in Oracle Content Management.

Integration Process

The process of Responsys integrating with Oracle Content Management consists of the
following steps:

1. Choose an Asset Repository and Create Two Publishing Channels

2. Enable the Integration

Then you can create and publish assets in Oracle Content Management and view images in
the Responsys Message preview.

Choose an Asset Repository and Create Two Publishing Channels
When you design an Email or Mobile campaign, you will choose assets from the publishing
channel for the appropriate campaign type. Responsys will automatically filter content assets
in Oracle Content Management according to the campaign you are designing.

After you choose an asset repository in Oracle Content Management, create and share two
publishing channels: a mobile channel and an email channel. Oracle suggests creating
channels that are specifically for Responsys. See Create and Share Publishing Channels.

In Responsys, you can choose Oracle Content Management assets from these channels.

Enable the Integration
You can enable the integration between Oracle Responsys and the Oracle Content
Management account from Responsys.

In Oracle Responsys, choose Oracle Content Management Cloud Integration from the
Integrate menu.

This feature is available only if it is enabled for your account.

Configure an Oracle Content Management Cloud account

1. From the side navigation bar in Responsys, select Account.

2. Select Integration settings, and then choose Content Management Cloud settings.

3. Provide the following details about your Oracle Content Management instance to
configure your publishing channels:

• CEC API Version: Your Oracle Content Management version.

• CEC Domain: The service URL of the OCM instance, for example,
https://<Your OCM instance-tenancy>.cec.ocp.oraclecloud.com

Chapter 2
Integrate with Oracle Responsys

2-31

https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html

• CEC Publish Server URL Prefix: The service URL of the OCM instance, for
example,
https://<Your OCM instance-tenancy>.cec.ocp.oraclecloud.com

• Email Channel ID: The ID of the Email channel, which is automatically
generated when you create the channel.

• Email Channel Token: The Email channel token, which is automatically
generated when you create the channel.

• Mobile Channel ID: The Mobile channel ID, which is automatically generated
when you create the channel.

• Mobile Channel Token: The Mobile channel token, which is automatically
generated when you create the channel.

4. Click Save.

Enable Oracle Content Management Embedded Content

In Oracle Content Management administration security settings, enable embedded
content and add the Responsys URL. Then you can embed the Oracle Content
Management web UI in Responsys.

See Embed UI API V2 for Oracle Content Management.

Create and Publish Assets in Oracle Content Management
You can create and publish assets in Oracle Content Management to use in
Responsys.

1. Create an HTML file.

2. Edit the HTML file in your ResponSys rich text editor.

a. Open the image browser.
The browser displays the available image libraries:

Chapter 2
Integrate with Oracle Responsys

2-32

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2

b. Display the Oracle Content Management asset picker.
The asset picker opens on the Digital Assets page, which displays published assets
in the Oracle Content Management account. If you don't see an asset you want, you
can use the drop-down menu on the left to navigate different asset collections. Or
you can upload and publish an image in Oracle Content Management.

c. Pick one of the assets, and click OK.
The Image dialog opens and displays a thumbnail of the image and properties that
you can set for it:

• Title text

• Alternative text

• Height

Chapter 2
Integrate with Oracle Responsys

2-33

• Width

• Link URL, which makes the image clickable.

d. Set the properties you want.

e. Click Apply to insert the image into your content.
To view the URL to the image in Content Management, you can click Source.
In a live production environment, this would be an asset pointing directly to the
content delivery network, so that the asset is accessible.

View Images in Responsys Message Preview
To preview Oracle Content Management images in Responsys, you can use the
Responsys Message Preview.

1. On the Oracle Responsys Manage campaigns page, choose Create campaign
from the drop-down menu on the right, and create an Email or Mobile campaign.

2. Create a new HTML document.

3. Add a block in the HTML file for an image.

Chapter 2
Integrate with Oracle Responsys

2-34

4. After the image is visible, you can click Preview to preview it in an email message.

Integrate with Oracle Visual Builder
Why Integrate with Oracle Visual Builder?

You can allow your users to access Oracle Visual Builder Cloud Service functionality. Oracle
Visual Builder Cloud Service (VBCS) is a hosted environment for your application
development infrastructure. It provides an open-source standards-based integration to
develop, collaborate on, and deploy applications within Oracle Cloud. This enables users to
rapidly create web and mobile applications with minimal to no coding.

Chapter 2
Integrate with Oracle Visual Builder

2-35

Note:

• Integration between these services requires SSO, so both services must
be in the same identity domain.

• Only administrators with the enterprise user role can enable integration
with VBCS. If you aren’t an enterprise user, the Visual Builder Cloud
Service Integration option is grayed out.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle Visual
Builder. Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements
on the OCM side, you need a subscription for the product that you intend to integrate
with OCM.

• Check the Oracle Visual Builder documentation for any specific requirement.

• On the Oracle Content Management side,you will need an Oracle Cloud Account,
an OCM instance and be assigned with the right access roles.

Integration Process

On the VBCS side, the following must be done before this feature can be used with
Oracle Content Management:

• Cross-Origin Resource Sharing (CORS) must be enabled on the VBCS site.

• Apps must be created and made available for embedding.

• The apps must be configured for use with Oracle Content Management.

• Web applications must be created and made available for embedding in an iframe.

• The Sites SDK must be imported.

• The Sites SDK must be referenced in the web applications.

• A page URL parameter called “id” must be added to the web applications.

On the Oracle Content Management side, you need to configure integration with
VBCS:

1. After you sign in to the Oracle Content Management web application as an
administrator, click Integrations in the Administration area of the navigation menu.

2. Under Oracle Integrations, select Visual Builder Cloud Service Integration to
enable the service.

3. Enter the Service URL of the Oracle Visual Builder Cloud Service.

Note:

If you have Universal Credits subscription, you must include ic/
builder in your Service URL. For example, https://
vbcsserver.example.com/ic/builder.

Chapter 2
Integrate with Oracle Visual Builder

2-36

https://docs.oracle.com/en/cloud/paas/app-builder-cloud/index.html
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/visual-builder-developer/create-applications.html#GUID-D5F06B2D-6028-4A49-8054-27C42523456C
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/visual-builder-developer/configure-authentication-service-connections.html

After both services have been configured for integration, Oracle Content Management users
can create components for your VBCS apps and add them to site pages.

• Use Oracle Content Management Components in Oracle Visual Builder Applications

• Embed Oracle Visual Builder Applications in an Oracle Content Management Site Page

• Build an Oracle Content Management VBCS Form and Data Report Components

• Build an Oracle Content Management VBCS Secure Form Component

• Provide a VBCS Endpoint As a URL for Select Menus

Use Oracle Content Management Components in Oracle Visual Builder
Applications

Oracle maintains a component exchange containing components validated by Oracle that are
publicly available to all developers. A component exchange is a repository of custom
components available in VB Studio and includes several components designed to use with
Oracle Content Management. You can use these components in your visual applications.

To integrate a component exchange with a Visual Builder instance, you provide the
exchange's URL and credentials in the Tenant Settings. For detailed information about
integrating a Visual Builder component exchange, see Manage Your Component Exchange in
the Administering Oracle Visual Builder guide.

Cross Origin Resource Sharing (CORS) Requirements

The Oracle Visual Builder origin hosting the Oracle Content Management components for
Oracle Visual Builder must be granted explicit permission to make cross-origin requests.
Contact the service administrator for the Oracle Content Management instance that you want
to access to request that the Oracle Visual Builder origin be added to the Front Channel
CORS Origins list. For more information about cross-origin requests.

Secure Channel Requirements

Some components, to access a secure channel, also require configuration steps to be taken
in both Oracle Identity Cloud Service (IDCS)/IAM Identity Domain and Oracle Visual Builder:

Chapter 2
Integrate with Oracle Visual Builder

2-37

https://docs.oracle.com/en/cloud/paas/content-cloud/administer/configure-security-settings.html#GUID-E3E356AB-A245-4C11-8E35-E99286AC58B8

• Set up the configuration for authentication in Oracle Identity Cloud Service
(IDCS)/IAM Identity Domain.

• Configure the service connection in Oracle Visual Builder.

This grants the authentication token used to access secure Oracle Content
Management endpoints. Once this is completed, the component will be able to
consume the service connections created.

Detailed information about if a component needs to access a secure channel and the
configuration steps needed to do so can be found in each component Read Me file.

Connecting to Oracle Content Management

To use Oracle Content Management components for your Visual Builder application,
you need to provide the Oracle Content Management URL. This can be provided by
the Oracle Content Management service administrator, or you can navigate to the
instance and copy the URL. Don't worry about subdirectories. For example, both of
these will work:

• https://sample.cec.ocp.oraclecloud.com/documents/home

• https://sample.cec.ocp.oraclecloud.com

This property will be initialized as an application-level variable by default when you add
the component to your page. You can then go to your application-level variables and
change the default value to your actual value. Once the variable is updated in Oracle
Visual Builder, when you add another OCE component that requires this attribute, the
attribute will default to the same variable initiated by the first component that was
imported.

Provide a Channel Token

OCE components that place assets on an Oracle Visual Builder application page work
only for published content items. Content items must be published through a
publishing channel. When you publish a content item, you'll be forced to choose a
publishing channel. To get the channel token, you can do the following:

1. Log in to the Oracle Content Management web interface as an administrator.

2. Click Content in the left navigation panel (under "Administration").

3. Choose Publishing Channels from the dropdown list.

4. Select the publishing channel you'll be using, or create a new one.

5. Choose Edit from the list of available actions.

6. Refer to the Channel Token value in the API Information section.

Additional Requirements

Other OCE components for Oracle Visual Builder applications may have additional
requirements. Detailed component configuration instructions, including requirements
and options, are found in the Read Me file of each component.

Add a Component to a Visual Builder Application Page

To add a component to an Oracle Visual Builder application page, you will need to first
install the OCE component from a component exchange connected to your Oracle
Visual Builder instance. For information on how to connect a component exchange,

Chapter 2
Integrate with Oracle Visual Builder

2-38

see Add a Connection to the Component Exchange in the Administering Oracle Visual
Builder guide.

Once an OCE component has been installed from the component exchange, click-and-drag
the component from the component tab of the Oracle Visual Builder page designer into the
desired slot on the page of the application and configure the component as required. For
example, some components require an asset ID from Oracle Content Management. Some
require a content type or layout.

Note:

Detailed information about what a component requires and how to configure it can
be found in each component Read Me file once Oracle Visual Builder is installed
and you're connected to the component exchange.

The following components are designed to integrate Oracle Content Management features
into your Visual Builder applications and are available in the public component exchanges.

Component Description

Content Item Use a content item component to add a specific content item to an application
page.

Content List Use a content list component to dynamically display content items based on
various filter criteria.

Content Search Use a content search component to allow the user to dynamically control what
items are shown for a content list component, and what happens when the
results are selected. For example, insert a customized search bar to change or
refresh the content that’s displayed on an application page, or choose another
action, such as opening a search results popup.

Content Place Holder Use a content placeholder component to dynamically display a content item of
one or more types. For example, use a content item placeholder on a
designated detail page so that when a user clicks a link to get more detailed
information for a particular content item, it will automatically load the detail view
for the associated content item.

Image Use an image component to display a single approved and published Oracle
Content Management image.

Gallery Use a gallery component to present a set of approved and published Oracle
Content Management images.

Asset Uploader Use an asset uploader component to offer a simplified way to upload
documents from a local machine and add them to a chosen Oracle Content
Management asset repository.

Embed Oracle Visual Builder Applications in an Oracle Content
Management Site Page

You can embed a Visual Builder Cloud Service (VBCS) visual app or VBCS page in an
Oracle Content Management site page.

• Embed a VBCS Visual App in an Oracle Content Management Page

• Embed a VBCS Page in a Site Page

Chapter 2
Integrate with Oracle Visual Builder

2-39

Embed a VBCS Visual App in an Oracle Content Management Page
To embed a visual app in a site page, you need to create the app in VBCS and then
add the app to the page.

Create a Visual App in VBCS

1. Connect to a VBCS Server.

For example: https://vbcs-server/ic/builder (for a Universal Credits
subscription with Oracle Content Management) or https://vbcs-server (for a
non-metered subscription) .

If you have a Universal Credits subscription, you must include ic/builder in your
Service URL.

2. Allow Cross-Origin Resource Sharing (CORS):

a. From the VBCS menu, choose Settings and then Allowed Origins.

b. Click New Origin and enter the URL of your Oracle Content Management
server for Origin Address.

3. Create a new Visual App in VBCS.

4. Create a web application.

a. Click Web Applications in the navigation menu on the left.

b. Enter a name for the web app, and then click Create.

5. Allow the web app to be embedded in an iframe:

a. Select the web app in the navigator.

b. Choose Settings (the cog icon), and then click the Security tab. Choose
Allow embedding in any application domain.

6. a. Right-click the Resources node in the navigator.

b. Locate the Sites SDK (import the sites.js or sites.min.js file).

The Sites SDK is also available for download from the Oracle Content
Management server:

http://{server}/_sitesclouddelivery/renderer/app/sdk/js/
sites.min.js

c. Click Import. This imports the JS file into the resources directory.

7. Reference the Sites SDK in the page:

a. With the web app selected, choose the HTML tab in Site Builder.

Chapter 2
Integrate with Oracle Visual Builder

2-40

b. Add the following line below the <link> tag:

<script type="text/javascript" src="resources/sites.min.js"></script>

8. Add a page URL parameter called id. Oracle Content Management will use this
parameter to pass the ID of the component.

a. Select the page in the web app.

b. Click the Variables tab.

c. Add a variable called id, and click Create.

d. In the panel on the right, mark the new variable as a URL input parameter.

9. Add code to automatically set the iframe height when the web app renders:

a. Click the JS tab on the on the left of the page.

Chapter 2
Integrate with Oracle Visual Builder

2-41

b. Add the following code above the return statement. This will resize the height
of the Oracle Content Management component when the app renders.

setTimeout(function() {
 SitesSDK.setProperty("height", null);
}, 500);

10. Stage and Publish the VBCS app. The app must be live for the Oracle Content
Management site to use it.

Add the VBCS Visual App to an Oracle Content Management Site Page

1. In Oracle Content Management, configure a VBCS connection:

a. On the Administration menu, choose Integrations and then Applications.

b. Enable the Visual Builder Cloud Service Integration.

Chapter 2
Integrate with Oracle Visual Builder

2-42

c. Enter the URL of your Oracle Content Management instance, and then click Save.

2. Create a new VBCS component:

a. Choose Developer and then Components.

b. Choose Create and then Create Visual Builder Component.

c. Publish the VBCS app you created, copy the URL of the app, and then paste it into
the form. Do the same for the web application you created.

3. Add the VBCS component to a site page:

a. Edit a new or existing site.

b. In Site Builder, choose Components and then Custom.

c. Drag the VBCS component onto the site page.

Embed a VBCS Page in a Site Page
To embed a VBCS page in a site page, you need to create an app in VBCS and then add the
app to the site page.

Create an App in VBCS

1. Connect to a VBCS Server.

For example: https://vbcs-server/ic/builder (for a Universal Credits subscription
with Oracle Content Management) or https://vbcs-server (for a non-metered
subscription) .

Chapter 2
Integrate with Oracle Visual Builder

2-43

Note:

If you have a Universal Credits subscription, you must include ic/
builder in your Service URL.

2. Allow Cross-Origin Resource Sharing (CORS):

a. Choose Administer Visual Builder, then Global Settings, and then Allowed
Origins.

b. Click New Origin, and enter the URL of your Oracle Content Use Oracle
Content Management Components in Oracle Visual Builder Applications
server for Origin Address.

3. Create a new app in VBCS.

4. Allow the new app to be embedded.

a. Choose Application Settings, then Security, and then Embedding.

b. Select Allow embedding in any domain.

5. Use Data Designer and Page Designer to build your app.

6. Add a custom component to the bottom of your page.

7. Select the Custom Component. Enter the following in the Template section:

<div data-bind="html: script"></div>

8. Enter the following code in the Model section, substituting your own Oracle
Content Management server.

define([], function () {

 'use strict';

 /**
 * Inject the SitesSDK and set the Component Height.
 */
 var CustomComponentViewModel = function (params, componentInfo)
{
 this.script = ko.observable(
 '<script type="text/javascript">\n'
 + '(function(d, s, id) {\n'
 + ' var js, fjs = d.getElementsByTagName(s)[0];\n'
 + ' if (d.getElementById(id))\n'
 + ' return;\n'
 + ' js = d.createElement(s);\n'
 + ' js.id = id;\n'
 + ' js.src = "https://oracle-content-management-server

Chapter 2
Integrate with Oracle Visual Builder

2-44

 + ' fjs.parentNode.insertBefore(js, fjs);\n'
 + ' }(document, "script", "sites-sdk"));\n'
 + ' setTimeout(function() {\n'
 + ' SitesSDK.setProperty("height", null);\n'
 + ' }, 500);\n'
 + '</script>');
 };

 return CustomComponentViewModel;
});

9. Enter the following for Application Style. This will hide some of the unwanted "chrome"
around the component when embedded in an SCS page.

/* remove some side padding */
div#abcs-app-content > div {
 max-width: none;
}

/* allow SitesSDK.setProperty("height") to work */
html, body, body.abcs-layout-nonav {
 height: auto;
}

10. Stage and publish the VBCS app. The app must be live for Oracle Content Management
sites to use it.

Add the VBCS App to a CECS Site Page

1. In Oracle Content Management, configure a VBCS Connection:

a. Choose Administration, Integrations, and then Oracle Integrations.

b. Select Enable for Visual Builder Cloud Service Integration.

c. Enter the Oracle Content Management URL (from Step 1 under Create an App in
VBCS), and then click Save.

Chapter 2
Integrate with Oracle Visual Builder

2-45

2. Create a new VBCS Component:

a. Choose Developer and then Components,

b. Choose Create and then Create Visual Builder Component.

c. In the drop-down list, choose the VBCS App (created earlier in step 3 under
Create an App in VBCS).

Chapter 2
Integrate with Oracle Visual Builder

2-46

3. Add the VBCS component to a site page.

a. Edit a new or existing site .

b. In Site Builder, choose Add and then Custom.

c. Drag the VBCS component onto the page.

Chapter 2
Integrate with Oracle Visual Builder

2-47

Build an Oracle Content Management VBCS Form and Data Report
Components

You can build local Oracle Content Management components that use REST APIs
exposed by business objects in VBCS to deliver a variety of forms.

• Build an Oracle Content Management VBCS Public Form Component

• Build an Oracle Content Management VBCS Secure Form Component

• Build an Oracle Content Management VBCS Public Gated Form Component

Build an Oracle Content Management VBCS Public Form Component
You can build a local Oracle Content Management component that uses REST APIs
exposed by business objects in VBCS to deliver a simple, anonymous, public form.

VBCS Configuration

1. Allow Cross-Origin Resource Sharing (CORS):

a. Choose Visual Builder , then Settings, and then Allowed Origins.

b. Click New Origin and enter the URL of your Oracle Content Management
server for Origin Address.

c. Click the check mark to save.

2. Create a new Application:

3. Configure the app to allow anonymous access.

a. Open Application Settings.

.

Chapter 2
Integrate with Oracle Visual Builder

2-48

b. On the Settings page, choose User Roles.

c. Select Allow anonymous access.

4. Create a business object:

• Add fields.

Chapter 2
Integrate with Oracle Visual Builder

2-49

• Enable role-based security.

• Grant Anonymous User the Create permission.

Build an Oracle Content Management Local Component

Assumptions:

• The VBCS app name is "RequestForm".

Chapter 2
Integrate with Oracle Visual Builder

2-50

• The business object name is "requestform" and it contains the following custom fields:

– name (required)

– email (required)

– phone

– subject

– message

Modify assets/render.js

1. Define the component template as follows.

<!-- ko if: initialized -->
<div class="form">

 <!-- ko if: requestSuccessMsg -->
 <div class="request-msg green" data-bind="text:
requestSuccessMsg"></div>
 <!-- /ko -->
 <!-- ko if: requestFailMsg -->
 <div class="request-msg red" data-bind="text: requestFailMsg"></
div>
 <!-- /ko -->

 <label class="required-field" for="name">Name</label>
 <input type="text" id="name" name="name" required
placeholder="Your name. . ." data-bind="value: name"/>

 <label class="required-field" for="email">Email</label>
 <input type="text" id="email" name="email" required
placeholder="Your email. . ." data-bind="value: email"/>

 <label for="phone"></label>Phone</label>
 <input type="text" id="phone" name="phone" data-bind="value:
phone"/>
 <label for="subject">Subject</label>
 <input type="text" id="subject" name="subject" data-bind="value:
subject"/>

 <label for="message"></label>Message</label>
 <textarea id="message" name="message" rows="6" data-bind="value:
message"/>

 <button data-bind="click: sendRequest, , enable: canSubmit">Send
Request</button></div>

<!-- note that the component has completed rendering into the page -->
<div class="scs-hidden" data-bind="scsRenderStatus: {'id': id, 'status':
'complete'}"></div>
<!-- /ko -->

Chapter 2
Integrate with Oracle Visual Builder

2-51

2. Create the observables for the fields in the Knockout ViewModel.

self.initialized = ko.observable(false);
self.requestSuccessMsg = ko.observable();
self.requestFailMsg = ko.observable();
self.VBCSServerUrl = ko.observable();
self.name = ko.observable();
self.email = ko.observable();
self.phone = ko.observable();
self.subject = ko.observable();
self.message = ko.observable();

// Get VBCS server
var serverPromise = getVBCSServerURL();
 serverPromise.then(function (result) {
 self.VBCSServerUrl(result.url);
 self.initialized(true);
});

self.canSubmit = ko.computed(function () {
 return self.name() && self.email();
}, self);

3. Handle required fields.

Enable the Submit button only after all required fields have values.

4. Obtain the VBCS connection.

After you configure VBCS connection, there are two ways to get the connection:

• From siteinfo at site runtime

• From Integrations in Site Builder

var getVBCSServerURL = function () {
 var serverPromise = new Promise(function (resolve, reject) {
 // First try to get from siteinfo
 var siteConnections =
SCSRenderAPI.getSiteProperty('siteConnections');
 var serverUrl = siteConnections &&
siteConnections.VBCSConnection;
 if (serverUrl) {
 console.log('Get VBCS server from siteinfo: ' + serverUrl);
 resolve({'url': serverUrl});
 } else {
 // Get from integrations
 var configUrl = '/documents/web?
IdcService=AF_GET_APP_INFO_SIMPLE&dAppName=VBCS';
 $.ajax({
 type: 'GET',
 dataType: 'json',
 url: configUrl,
 success: function (data) {

Chapter 2
Integrate with Oracle Visual Builder

2-52

 var appInfo = data.ResultSets.AFApplicationInfo;
 var enabled;
 if (appInfo) {
 for (var i = 0; i < appInfo.fields.length; i +=
1) {
 if (appInfo.fields[i].name ===
'dAppEndPoint') {
 serverUrl =
appInfo.rows[appInfo.currentRow][i];
 } else if (appInfo.fields[i].name ===
'dIsAppEnabled') {
 enabled = appInfo.rows[appInfo.currentRow]
[i];
 }
 if (serverUrl && enabled) {
 break;
 }
 }
 if (enabled !== '1') {
 serverUrl = '';
 }
 }
 console.log('Get VBCS server from Idc Service: ' +
serverUrl);
 resolve({'url': serverUrl});
 },
 error: function (xhr, status, err) {
 console.log('Request failed: url:' + configUrl + '
status: ' + status + ' error: ' + err);
 resolve({'url': serverUrl});
 }
 });
 }
 });
 return serverPromise;
};

5. Submit the request

self.sendRequest = function (data, event) {
 var vbcsServer = self.VBCSServerUrl();
 var appName = 'requestform',
 appVersion = 'live',
 businessObject = ‘Requestform'
 var url = vbcsServer + '/rt/' + appName + '/' + appVersion + '/
resources/data/' + businessObject;
 var payload = {
 "name": self.name(),
 "email": self.email(),
 "phone": self.phone(),
 "subject": self.subject(),
 "message": self.message()
 };
 $.ajax({
 type: 'POST',

Chapter 2
Integrate with Oracle Visual Builder

2-53

 url: url,
 beforeSend: function(xhr) {
 xhr.setRequestHeader("Content-type", "application/
vnd.oracle.adf.resourceitem+json");
 },
 data: JSON.stringify(payload),
 dataType: 'json',
 success: function (data) {
 self.requestFailMsg('');
 self.requestSuccessMsg('Request has been submitted
successfully');
 self.name('');
 self.email('');
 self.phone('');
 self.subject('');
 self.message('');
 },
 error: function(jqXhr, textStatus, errorThrown) {
 console.log('Error:');
 console.log(jqXhr);
 self.requestSuccessMsg('');
 self.requestFailMsg('Failed to submit the request');
 }
 });
};

Modify styles/design.css

Add the following css to design.css.

.form {
 font-family: "Helvetica Neue", "Segoe UI", sans-serif-regular,
Helvetica, Arial, sans-serif;
 font-size: 14px;
}
.form input[type=text] {
 width: 100%;
 padding: 12px 20px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
}
.form textarea {
 width: 100%;
 padding: 12px 20px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
}
.form button {

Chapter 2
Integrate with Oracle Visual Builder

2-54

 width: 100%;
 background-color: #4CAF50;
 color: white;
 padding: 14px 20px;
 margin: 8px 0;
 border: none;
 border-radius: 4px;
 cursor: pointer;
}
.form button:hover {
 background-color: #45a049;
}
.form button:disabled {
 background-color: #dddddd;
}
.required-field::after {
 content: "*";
 color: red;
 margin-left:2px
}
.request-msg {
 padding: 5px;
 font-size: 18px;
 font-weight: bold;
 text-align: center;
 margin-bottom: 20px;
}
.green {
 background-color: #81BA5E;
}
.red {
 background-color: red;
}

Use the Form Component on Oracle Content Management

1. Configure the VBCS connection:

• Choose Administration, then Integrations, and then Applications.

• Click the Visual Builder Cloud Service Integration check box.

• Enter the URL, and click Save.

2. Import the component:

• Choose Developer and then Components.

• Choose Create and then Import Component.

Chapter 2
Integrate with Oracle Visual Builder

2-55

3. Add the component to a page:

a. Edit a new or existing site.

b. In Site Builder, choose Components and then Custom.

c. Drag the component onto the page.

Build an Oracle Content Management VBCS Secure Form Component
You can build a local Oracle Content Management component that uses REST APIs
exposed by business objects in VBCS to deliver a simple web form that requires user
authentication.

VBCS Configuration

1. Allow Cross-Origin Resource Sharing (CORS):

a. Choose Visual Builder , then Settings, and then Allowed Origins.

Chapter 2
Integrate with Oracle Visual Builder

2-56

b. Click New Origin and enter the URL of your Oracle Content Management server for
Origin Address.

c. Click the check mark to save.

2. Create a new Application

.

3. Configure the app to allow access for authenticated users.

a. Open Application Settings.

.

b. On the Settings page, choose User Roles.

c. Add roles to control access to the business object.

The values for Mapping are groups from Oracle Identity Cloud Service. To add
groups, see Create Groups for Your Organization.

4. Create a business object.

• Add fields.

Chapter 2
Integrate with Oracle Visual Builder

2-57

• Enable role-based security

• Grant roles to Create permission.

Build an Oracle Content Management Local Component

Assumptions:

• The VBCS app name is "RequestForm".

• The business object name is "requestform" and it contains the following custom
fields:

Chapter 2
Integrate with Oracle Visual Builder

2-58

– name (required)

– email (required)

– phone

– subject

– message

Modify assets/render.js

1. Define the component template as follows.

<!-- ko if: initialized -->
<div class="form">

 <!-- ko if: requestSuccessMsg -->
 <div class="request-msg green" data-bind="text:
requestSuccessMsg"></div>
 <!-- /ko -->
 <!-- ko if: requestFailMsg -->
 <div class="request-msg red" data-bind="text: requestFailMsg"></
div>
 <!-- /ko -->

 <label class="required-field" for="name">Name</label>
 <input type="text" id="name" name="name" required
placeholder="Your name. . ." data-bind="value: name"/>

 <label class="required-field" for="email">Email</label>
 <input type="text" id="email" name="email" required
placeholder="Your email. . ." data-bind="value: email"/>

 <label for="phone"></label>Phone</label>
 <input type="text" id="phone" name="phone" data-bind="value:
phone"/>

 <label for="subject">Subject</label>
 <input type="text" id="subject" name="subject" data-bind="value:
subject"/>

 <label for="message"></label>Message</label>
 <textarea id="message" name="message" rows="6" data-bind="value:
message"/>

 <button data-bind="click: sendRequest, , enable: canSubmit">Send
Request</button>
</div>

<!-- note that the component has completed rendering into the page -->
<div class="scs-hidden" data-bind="scsRenderStatus: {'id': id, 'status':
'complete'}"></div>
<!-- /ko -->

Chapter 2
Integrate with Oracle Visual Builder

2-59

2. Create the observables for the fields in the Knockout ViewModel.

self.initialized = ko.observable(false);
self.requestSuccessMsg = ko.observable();
self.requestFailMsg = ko.observable();
self.VBCSServerUrl = ko.observable();
self.name = ko.observable();
self.email = ko.observable();
self.phone = ko.observable();
self.subject = ko.observable();
self.message = ko.observable();

// Get VBCS server
var serverPromise = getVBCSServerURL();
 serverPromise.then(function (result) {
 self.VBCSServerUrl(result.url);
 self.initialized(true);
});

self.canSubmit = ko.computed(function () {
 return self.name() && self.email();
}, self);

3. Handle required fields.

Enable the Submit button only after all required fields have values.

4. Obtain the VBCS connection

After configure VBCS connection, there are two ways to get the connection:

• From siteinfo at site runtime

• From Integrations in Site Builder

var getVBCSServerURL = function () {
 var serverPromise = new Promise(function (resolve, reject) {
 // First try to get from siteinfo
 var siteConnections =
SCSRenderAPI.getSiteProperty('siteConnections'
 var serverUrl = siteConnections &&
siteConnections.VBCSConnection;
 if (serverUrl) {
 console.log('Get VBCS server from siteinfo: ' +
serverUrl);
 resolve({'url': serverUrl});
 } else {
 // Get from integrations
 var configUrl = '/documents/web?
IdcService=AF_GET_APP_INFO_SIMPLE&dAppName=VBCS';
 $.ajax({
 type: 'GET',
 dataType: 'json',
 url: configUrl
 success: function (data) {

Chapter 2
Integrate with Oracle Visual Builder

2-60

 var appInfo = data.ResultSets.AFApplicationInfo;
 var enabled;
 if (appInfo) {
 for (var i = 0; i < appInfo.fields.length; i
+= 1) {
 if (appInfo.fields[i].name ===
'dAppEndPoint') {
 serverUrl =
appInfo.rows[appInfo.currentRow][i];
 } else if (appInfo.fields[i].name ===
'dIsAppEnabled') {
 enabled =
appInfo.rows[appInfo.currentRow][i];
 }
 if (serverUrl && enabled) {
 break;
 }
 }
 console.log('Get VBCS server from Idc Service: '
+ serverUrl);
 resolve({'url': serverUrl});
 },
 error: function (xhr, status, err) {
 console.log('Request failed: url:' + configUrl +
' status: ' + status + ' error: ' + err);
 resolve({'url': serverUrl});
 }
 });
 }
 });
 return serverPromise;
};

5. Get an authorization token.

Requirement: Oracle Content Management and VBCS are deployed in the same identity
domain.

var getAuthToken = function (args) {
 // dummy function if callbacks not supplied
 var dummyCallback = function () {};

 // extract the args and create the server URL
 var serverURL = (args.serverURL || '/').split('/ic/')[0],
 successCallback = args.successCallback || dummyCallback,
 errorCallback = args.errorCallback || dummyCallback,
 tokenURL = serverURL + ‘/ic/builder/resources/security/token’;

 // For VBCS to get the authtoken:
 // - make a POST call to /ic/builder/resources/security/token
 // - include scope=run-time form parameter
 var getToken = function (tokenURL, successCallback, errorCallback) {
 $.ajax({
 'type': 'POST',
 'url': tokenURL,

Chapter 2
Integrate with Oracle Visual Builder

2-61

 data: {
 scope: 'run-time'
 },
 'xhrFields': {
 withCredentials: true
 },
 'success': successCallback
 }).fail(errorCallback);
 };

 // try to get the token normally
 getToken(tokenURL,
 function (resp, status, xhr) {
 var ct = xhr.getResponseHeader("content-type") || "";

 // if the response was an HTML Form. . .
 if (ct.indexOf('html') > -1) {
 // parse the form and submit it
 var parser = new DOMParser(),
 htmlDoc = parser.parseFromString(resp, "text/
html"),
 forms = htmlDoc.getElementsByTagName("form");
 if (forms.length === 1) {
 var f = forms[0];
 $.ajax({
 'type': 'POST',
 'url': f.action,
 'data': $(f).serialize(),
 'xhrFields': {
 'withCredentials': true
 'success': function () {
 // retry getting the token now the form
was auto-submitted
 getToken(tokenURL, successCallback,
errorCallback);
 }
 }).fail(function () {
 // even if the form submit failed, retry
getting the token
 getToken(tokenURL, successCallback,
errorCallback);
 });
 }
 } else {
 // already logged in return the token
 successCallback(resp);
 }
 },
 errorCallback);
};

6. Submit the request.

self.sendRequest = function (data, event) {
 var vbcsServer = self.VBCSServerUrl();

Chapter 2
Integrate with Oracle Visual Builder

2-62

 var authorization, token;
 var appName = 'securerequestform',
 mode = 'rt',
 appVersion = 'live',
 businessObject = 'Requestform';
 var url = vbcsServer + '/' + mode + '/' + appName + '/' + appVersion
+ '/resources/data/' + businessObject;
 var payload = {
 "name": self.name(),
 "email": self.email(),
 "phone": self.phone(),
 "subject": self.subject(),
 "message": self.message()
 };
 // get token first
 getAuthToken({
 'serverURL': self.VBCSServerUrl(),
 'successCallback': function (data) {
 token = data;
 authorization = (token.token_type ? token.token_type :
'Bearer') + ' ' + token.access_token;
 $.ajax({
 type: 'POST',
 url: url,
 beforeSend: function (xhr) {
 xhr.setRequestHeader('Content-type', 'application/
vnd.oracle.adf.resourceitem+json');
 xhr.setRequestHeader('Authorization', authorization);
 },
 data: JSON.stringify(payload),
 dataType: 'json',
 success: function (data) {
 self.requestFailMsg('');
 self.requestSuccessMsg('Request has been submitted
successfully’);
 self.name('');
 self.email('');
 self.phone('');
 self.subject('');
 self.message('');
 },
 error: function (jqXhr, textStatus, errorThrown) {
 console.log('Error:');
 console.log(jqXhr);
 self.requestSuccessMsg('');
 self.requestFailMsg('Failed to submit the request');
 }
 });
 },
 'errorCallback': function (xhr, status, err) {
 if (xhr && xhr.status === 200) {
 token = xhr.responseText;
 console.log('Got token');
 } else {
 console.error('getToken: xhr: ' + JSON.stringify(xhr) + '

Chapter 2
Integrate with Oracle Visual Builder

2-63

status: ' + status + ' error: ' + err);
 self.requestSuccessMsg('');
 self.requestFailMsg('Failed to get authorization
token');
 }
 }
 });
};

Modify styles/design.css

Add the following css to design.css.

.form {
 font-family: "Helvetica Neue", "Segoe UI", sans-serif-regular,
Helvetica, Arial, sans-serif;
 font-size: 14px;
}
.form input[type=text] {
 width: 100%;
 padding: 12px 20px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
}
.form textarea {
 width: 100%;
 padding: 12px 20px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
}
.form button {
 width: 100%;
 background-color: #4CAF50;
 color: white;
 padding: 14px 20px;
 margin: 8px 0;
 border: none;
 border-radius: 4px;
 cursor: pointer;
}
.form button:hover {
 background-color: #45a049;
}
.form button:disabled {
 background-color: #dddddd;
}
.required-field::after {
 content: "*";
 color: red;

Chapter 2
Integrate with Oracle Visual Builder

2-64

 margin-left:2px
}
.request-msg {
 padding: 5px;
 font-size: 18px;
 font-weight: bold;
 text-align: center;
 margin-bottom: 20px;
}
.green {
 background-color: #81BA5E;
}
.red {
 background-color: red;
}

Use the Form Component on Oracle Content Management

1. Configure the VBCS connection:

• Choose Administration, then Integrations, and then Applications.

• Click the Visual Builder Cloud Service Integration check box.

• Enter the URL, and click Save.

2. Import the component:

• Choose Developer and then Components.

• Choose Create and then Import Component.

3. Add the component to a page

a. Edit a new or existing site.

b. In Site Builder, choose Components and then Custom.

Chapter 2
Integrate with Oracle Visual Builder

2-65

c. Drag the component onto the page.

Note:

This VBCS secure form component works only on secure sites.

Build an Oracle Content Management VBCS Public Gated Form Component
You can build a local Oracle Content Management component that uses REST APIs
exposed by business objects in VBCS to deliver a simple, anonymous web form that
captures visitor details to allow the visitor to download a document.

VBCS Configuration

1. Allow Cross-Origin Resource Sharing (CORS):

a. Choose Visual Builder , then Settings, and then Allowed Origins.

b. Click New Origin and enter the URL of your Oracle Content Management
server for Origin Address.

c. Click the check mark to save.

2. Create a new Application.

3. Configure the app to allow anonymous access.

a. Open Application Settings .

.

Chapter 2
Integrate with Oracle Visual Builder

2-66

b. On the Settings page, choose User Roles.

c. Select Allow anonymous access.

4. Create a business object:

• Add fields.

Chapter 2
Integrate with Oracle Visual Builder

2-67

• Enable role-based security.

• Grant Anonymous User the Create permission.

Build an Oracle Content Management Local Component

Assumptions:

• The VBCS app name is "RequestForm".

• The business object name is "registration" and it contains the custom fields.

Chapter 2
Integrate with Oracle Visual Builder

2-68

– firstName (required)

– lastName (required)

– email (required)

– phone

– company

– jobTitle

Modify assets/render.js

1. Define the component template as follows.

<!-- ko if: initialized -->

div class="form">
 <!-- ko if: !showDownload() -->
 <h1 style="text-align: center;">Fill out the form to access the
document</h1>

 <!-- ko if: requestSuccessMsg -->
 <div class="request-msg green" data-bind="text:
requestSuccessMsg"></div>
 <!-- /ko -->
 <!-- ko if: requestFailMsg -->
<div class="request-msg red" data-bind="text: requestFailMsg"></div>
<!-- /ko -->

 <label class="required-field" for="firstname">First Name</label>
 <input type="text" id="firstname" name="firstname" required
placeholder="Your first name. . ." data-bind="value: firstName"/>
 <label class="required-field" for="lastname">Last Name</label>
 <input type="text" id="lastname" name="lastname" required
placeholder="Your last name. . ." data-bind="value: lastName"/>
 <label class="required-field" for="email">Business E-mail</label>
 <input type="text" id="email" name="email" required
placeholder="Your email. . ." data-bind="value: email"/>
 <label for="phone"></label>Phone</label>
 <input type="text" id="phone" name="phone" data-bind="value:
phone"/>
 <label for="company">Company</label>
 <input type="text" id="company" name="company" data-bind="value:
company"/>
 <label for="jobtitle"></label>Job Title</label>
 <input type="text" id="jobtitle" name="jobtitle" data-bind="value:
jobTitle"/>

 <button data-bind="click: sendRequest, enable: canSubmit">Accept
the document</button>
 <!-- /ko -->

 <!-- ko if: showDownload() -->
 <div class="download">
 <h2>Thanks for your registration. Please click the button
to download. </h2>

Chapter 2
Integrate with Oracle Visual Builder

2-69

 <button data-bind="click: startDownload">Download</
button>
 <button data-bind="click: closeDownload">Close</
button>
 </div>
 <!-- /ko -->
</div>

<!-- note that the component has completed rendering into the page
-->
<div class="scs-hidden" data-bind="scsRenderStatus: {'id': id,
'status': 'complete'}"></div>
<!-- /ko -->

2. Create the observables for the fields in the Knockout ViewModel.

self.initialized = ko.observable(false);
self.requestSuccessMsg = ko.observable();
self.requestFailMsg = ko.observable();
self.VBCSServerUrl = ko.observable();
self.showDownload = ko.observable(false);

self.firstName = ko.observable();
self.lastName = ko.observable();
self.email = ko.observable();
self.phone = ko.observable();
self.company = ko.observable();
self.jobTitle = ko.observable();

self.canSubmit = ko.computed(function () {
 return self.firstName() && self.lastName() && self.email();
}, self);

3. Handle required fields.

Enable the Submit button only after all required fields have values.

4. Obtain the VBCS connection.

After you configure a VBCS connection, there are two ways to get the connection:

• From siteinfo at site runtime
• From Integrations in Site Builder

var getVBCSServerURL = function () {
 var serverPromise = new Promise(function (resolve, reject) {
 // First try to get from siteinfo
 var siteConnections =
SCSRenderAPI.getSiteProperty('siteConnections');
 var serverUrl = siteConnections &&
siteConnections.VBCSConnection;
 if (serverUrl) {
 console.log('Get VBCS server from siteinfo: ' + serverUrl);

Chapter 2
Integrate with Oracle Visual Builder

2-70

 resolve({'url': serverUrl});
 } else {
 // Get from integrations
 var configUrl = '/documents/web?
IdcService=AF_GET_APP_INFO_SIMPLE&dAppName=VBCS';
 $.ajax({
 type: 'GET',
 dataType: 'json',
 url: configUrl,
 success: function (data) {
 var appInfo = data.ResultSets.AFApplicationInfo;
 var enabled;
 if (appInfo) {
 for (var i = 0; i < appInfo.fields.length; i +=
1) {
 if (appInfo.fields[i].name ===
'dAppEndPoint') {
 serverUrl =
appInfo.rows[appInfo.currentRow][i];
 } else if (appInfo.fields[i].name ===
'dIsAppEnabled') {
 enabled = appInfo.rows[appInfo.currentRow]
[i];
 }
 if (serverUrl && enabled) {
 break;
 }
 }
 if (enabled !== '1') {
 serverUrl = '';
 }
 }
 console.log('Get VBCS server from Idc Service: ' +
serverUrl);
 resolve({'url': serverUrl});
 },
 error: function (xhr, status, err) {
 console.log('Request failed: url:' + configUrl + '
status: ' + status + ' error: ' + err);
 resolve({'url': serverUrl});
 }
 });
 }
 });
 return serverPromise;
};

5. Submit the request.

self.sendRequest = function (data, event) {
 var vbcsServer = self.VBCSServerUrl();
 var appName = 'requestform',
 appVersion = 'live',
 businessObject = 'Registration';

Chapter 2
Integrate with Oracle Visual Builder

2-71

 var url = vbcsServer + '/rt/' + appName + '/' + appVersion + '/
resources/data/' + businessObject;
 var payload = {
 'firstName': self.firstName(),
 'lastName': self.lastName(),
 'email': self.email(),
 'phone': self.phone(),
 'company': self.company(),
 'jobTitle': self.jobTitle()
 };

 $.ajax({
 type: 'POST',
 url: url,
 beforeSend: function (xhr) {
 xhr.setRequestHeader('Content-type', 'application/
vnd.oracle.adf.resourceitem+json');
 },
 data: JSON.stringify(payload),
 dataType: 'json',
 success: function (data) {
 self.requestFailMsg('');
 self.requestSuccessMsg('Request has been submitted
successfully');
 self.firstName('');
 self.lastName('');
 self.email('');
 self.phone('');
 self.company('');
 self.jobTitle('');
 self.showDownload(true);
 },
 error: function (jqXhr, textStatus, errorThrown) {
 console.log('Error:');
 console.log(jqXhr);
 self.requestSuccessMsg('');
 self.requestFailMsg('Failed to submit the request');
 }
 });
};

6. Create a trigger to download a document.

{
 "id": "ECVBCS-Gated-Form",
 "settingsData": {
 "settingsHeight": 90,
 "settingsWidth": 300,
 "settingsRenderOption": "dialog",
 "componentLayouts": [],
 "triggers": [{
 "triggerName": "VBCSGatedFormSubmitted",
 "triggerDescription": "VBCS gated form submitted",
 "triggerPayload": [{

Chapter 2
Integrate with Oracle Visual Builder

2-72

 "name": "payloadData",
 "displayName": "Document URL"
 }]
 }],
 "actions": []
 },
}

Register the trigger in appinfo.json.

self.raiseTrigger = function (triggerName) {
 SitesSDK.publish(SitesSDK.MESSAGE_TYPES.TRIGGER_ACTIONS, {
 'triggerName': triggerName,
 'triggerPayload': {
 'payloadData': 'https://docs.oracle.com/en/cloud/paas/content-
cloud/developer/developing-oracle-content-management-cloud.pdf'
 }
 });
};

self.startDownload = function (data, event) {
 console.log('Raise trigger: VBCSGatedFormSubmitted');
 self.raiseTrigger("VBCSGatedFormSubmitted"); // matches appinfo.json
};

• Raise the trigger in render.js.

\

Modify styles/design.css

Add the following css to design.css.

.form {
 font-family: "Helvetica Neue", "Segoe UI", sans-serif-regular,
Helvetica, Arial, sans-serif;
 font-size: 14px;
}
.form input[type=text] {
 width: 100%;
 padding: 12px 20px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
}
.form textarea {
 width: 100%;
 padding: 12px 20px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;

Chapter 2
Integrate with Oracle Visual Builder

2-73

}
.form button {
 width: 100%;
 background-color: #4CAF50;
 color: white;
 padding: 14px 20px;
 margin: 8px 0;
 border: none;
 border-radius: 4px;
 cursor: pointer;
}
.form button:hover {
 background-color: #45a049;
}
.form button:disabled {
 background-color: #dddddd;
}
.required-field::after {
 content: "*";
 color: red;
 margin-left:2px
}
.request-msg {
 padding: 5px;
 font-size: 18px;
 font-weight: bold;
 text-align: center;
 margin-bottom: 20px;
}
.green {
 background-color: #81BA5E;
}
.red {
 background-color: red;
}

Use the Form Component on Oracle Content Management

1. Configure the VBCS connection:

• Choose Administration, then Integrations, and then Applications.

• Click the Visual Builder Cloud Service Integration check box.

• Enter the URL, and click Save.

2. Import the component:

• Choose Developer and then Components.

• Choose Create and then Import Component.

Chapter 2
Integrate with Oracle Visual Builder

2-74

3. Add the component to a page:

a. Edit a new or existing site.

b. In Site Builder, choose Components and then Custom.

c. Drag the component onto the page.

Chapter 2
Integrate with Oracle Visual Builder

2-75

Note:

This VBCS public form component can be used on public or secure sites.

Build an Oracle Content and Experience VBCS Data Report Component
You can build a local Oracle Content Management component that uses REST APIs
exposed by business objects in VBCS to deliver reports on data collected through
forms.

Use data from a public form component to show the number of requests per day in a
CSS bar chart. See Build an Oracle Content Management VBCS Public Form
Component.

Build an Oracle Content Management Local Component

Assumptions:

• The VBCS app name is “RequestForm”.

• The business object name is “requestform”.

Modify assets/render.js

1. Define the component template as follows.

<!-- ko if: initialized -->
<h1 style="text-align: center;">Number of requests per day</h1>
<div class="chartrow">
<div class="chartbody">

Chapter 2
Integrate with Oracle Visual Builder

2-76

 <div class="chartbody">
 <table id="q-graph">
 <tbody data-bind="foreach: requests">
 <tr class="qtr" data-bind="css: barcss">
 <td class="day bar" data-bind="style: {height:
height}">
 <p></p>
 </td>
 </tr>
 </tbody>
 </table>

 <div id="ticks" data-bind="foreach: ticks">
 <div class="tick" style="height: 59px;">
 <p></p>
 </div>
 </div>
 </div>
 <div class="chartlabel">
 <div class="labelrow">
 <div class="colorindex sunday"></div>
 Sunday
 </div>
 <div class="labelrow">
 <div class="colorindex monday"></div>
 Monday
 </div>
 <div class="labelrow">
 <div class="colorindex tuesday"></div>
 Tuesday
 </div>
 <div class="labelrow">
 <div class="colorindex wednesday"></div>
 Wednesday
 </div>
 <div class="labelrow">
 <div class="colorindex thursday"></div>
 Thursday
 </div>
 <div class="labelrow">
 <div class="colorindex friday"></div>
 Friday
 </div>
 <div class="labelrow">
 <div class="colorindex saturday"></div>
 Saturday
 </div>
 </div>
</div>
<!-- note that the component has completed rendering into the page -->
<div class="scs-hidden" data-bind="scsRenderStatus: {'id': id, 'status':
'complete'}"></div>
<!-- /ko -->

Chapter 2
Integrate with Oracle Visual Builder

2-77

2. Create the observables for the fields in the Knockout ViewModel.

self.initialized = ko.observable(false);
self.VBCSServerUrl = ko.observable();

self.requests = ko.observableArray();
self.ticks = ko.observableArray();

// Get VBCS server
var serverPromise = getVBCSServerURL();
serverPromise.then(function (result) {
 self.VBCSServerUrl(result.url);
 self.initialized(true);
 self.getRequests();
});

3. Obtain the VBCS connection.

See Build an Oracle Content Management VBCS Public Form Component.

4. Get an Authorization Token.

Requirement: Oracle Content Management and VBCS are deployed in the same
identity domain. See Build an Oracle Content Management VBCS Secure Form
Component.

5. Get requests.

Use a business object endpoint:

/Requestform

self.getRequests = function () {
 var vbcsServer = self.VBCSServerUrl();
 var authorization, token;
 var appName = 'requestform',
 mode = 'rt',
 appVersion = 'live'
 businessObject = 'Requestform';
 var url = vbcsServer + '/' + mode + '/' + appName + '/' +
appVersion + '/resources/data/' + businessObject;

 // get token first
 getAuthToken({
 'serverURL': self.VBCSServerUrl(),
 successCallback': function (data) {
 token = data;
 authorization = (token.token_type ? token.token_type :
'Bearer') + ' ' + token.access_token;
 url = url + '?limit=999&orderBy=creationDate:desc';
 $.ajax({
 type: 'GET',
 url: url,
 beforeSend: function (xhr) {
 xhr.setRequestHeader('Authorization',
authorization);

Chapter 2
Integrate with Oracle Visual Builder

2-78

 },
 success: function (data) {
 if (data && data.count > 0) {
 self.showChart(data.items);
 }
 },
 error: function (jqXhr, textStatus, errorThrown) {
 console.log('Error:');
 console.log(jqXhr);
 }
 });
 },
 'errorCallback': function (xhr, status, err) {
 if (xhr && xhr.status === 200) {
 token = xhr.responseText;
 console.log('Got token');
 } else {
 console.error('getToken: xhr: ' + JSON.stringify(xhr) + '
status: ' + status + ' error: ' + err);
 }
 }
 });
};

6. Set up chart data.

self.showChart = function (items) {
 var weekDayCounts = [0, 0, 0, 0, 0, 0, 0];
 var weekDayNames = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday'];
 for(var i = 0; i < items.length; i++) {
 var d = new Date(items[i].creationDate);
 var day = d.getDay();
 if (day >= 0 && day < 7) {
 weekDayCounts[day] = weekDayCounts[day] + 1;
 }
 }
 var max = 0;
 var results = [];
 for(var i = 0; i < weekDayCounts.length; i++) {
 if (max < weekDayCounts[i]) {
 max = weekDayCounts[i];
 }
 }
 var lines = 7,
 buckets = 5;
 var gap = Math.round(max / buckets);
 var top = gap * (lines - 1);
 if (max > top) {
 gap += 1;
 }
 var ticks = [];
 for(var i = 0; i < lines; i++) {
 ticks[i] = {
 value: i * gap

Chapter 2
Integrate with Oracle Visual Builder

2-79

 };
 }
 self.ticks(ticks.reverse());

 for(var i = 0; i < weekDayCounts.length; i++) {
 var height = (weekDayCounts[i] / gap) * 60;
 results.push({
 height: height.toString() + 'px',
 value: weekDayCounts[i],
 barcss: weekDayNames[i].toLowerCase()
 });
 }
 self.requests(results);
};

Use the Component on Oracle Content Management

For information about how to add the component on a page, see Build an Oracle
Content Management VBCS Public Form Component.

The component renders as follows.

This VBCS component works only on secure sites.

Build an Oracle Content Management VBCS Multipage Form As a Web App
Component

You can build a complex, multipage form for Oracle Content Management as a
component of a VBCS web application.

To build a VBCS multipage form as a web application component for Oracle Content
Management, you can remove the header and footer, set the IFrame height, add

Chapter 2
Integrate with Oracle Visual Builder

2-80

validation for required form fields, .Call a REST endpoint to save form data, and, for a public
web application, set security to allow anonymous access.

Remove the VBCS Web Application Header and Footer

If you don’t want the default VBCS web application’s header and footer, you can remove them
from the page.

Set the VBCS Component Iframe Height

You need to set the VBCS component iframe height for each page in the flow of the web app.
Include a validation group in the page model,

Required Form Fields Validation

When you try to navigate to another page, some of form fields on the current page are
marked as "required" and don’t have values yet. By default, there is no validation. You can
use oj-validation-group to add the validation:

1. Wrap all your form fields inside the component <oj-validation-group>.

Chapter 2
Integrate with Oracle Visual Builder

2-81

2. Include oj-validation-group in the page model.

Chapter 2
Integrate with Oracle Visual Builder

2-82

3. Create a Flow module function .

Chapter 2
Integrate with Oracle Visual Builder

2-83

4. Create an action chain for the "Go to the Next Step" button.

Chapter 2
Integrate with Oracle Visual Builder

2-84

The "If" condition checks the values for the required fields; for example:

{{ $flow.variables.enroll_values.field
&& $flow.variables.enroll_values.zip }}

If the condition evaluates to true, navigation goes to the second step. Otherwise, it stays
on the current page, and the error message is shown.

Call REST Endpoint to Save Form Data

At the last step, after the form fields validation, you can use the "Call REST Endpoint" action
to persist form data in the business object.

Chapter 2
Integrate with Oracle Visual Builder

2-85

Public Web Application

If the web application is intended for public, you can set security to allow anonymous
access.

Also allow anonymous access for the business object.

Chapter 2
Integrate with Oracle Visual Builder

2-86

Provide a VBCS Endpoint As a URL for Select Menus
A content administrator can provide a Visual Builder Cloud Service (VBCS) endpoint as a
URL to get values for select menus.

Instead of typing values for a select menu, users can enter a VBCS URL to get the values for
the select menu in the Site Builder dialog. The content administrator can configure what
attributes to use for option text and values in a REST response, using a public or secure
VBCS URL.

Users can populate VBCS select menus in content item forms based on the URL
configuration. When defining a content type and fields for the content type, the content
administrator has the option to select a single-value menu that uses a Visual Builder
endpoint.

The data for a content item is pooled by the Visual Builder URL. A business object, such as
Company, can be defined by many fields in VBCS.

To create a content type with a VBCS endpoint as a URL for select menus:

1. Sign in as a content administrator in your browser and click Assets under Administration
in the left navigation menu.

2. Choose Content Types from the drop-down menu and click Create.

3. Enter VBCS as the name of your content type.

4. Under Content Type Definition for the VBCS content type, click Edit to edit the settings.

5. In the Text Settings dialog, click Appearance.

6. Under Appearance of data field, choose Single-select menu (Visual Builder
endpoint).

Chapter 2
Integrate with Oracle Visual Builder

2-87

7. In the Visual Builder endpoint URL field, enter a valid endpoint that is defined in
VBCS.

8. For Endpoint security, select the check box if the Visual Builder endpoint requires
an authenticated user. If the check box is not selected, anonymous users can use
the VBCS endpoint.

9. Enter values for the REST field to use as label and REST Field to use as value
fields, such as companyName and email.

10. Click Test Configuration to test the settings. If the configuration is correct, a "Test
successful" message appears.

11. Save your changes and click OK.

Chapter 2
Integrate with Oracle Visual Builder

2-88

In the Create Content Item dialog, the UI for a VBCS content type looks identical to a single-
select box for static data, except the data for the content item is dynamically pooled from the
VBCS side with a run search. The value of REST field to use as a value, such as email,
gets stored in the Oracle Content Management database.

Integrate with Oracle WebCenter Content
Why Integrate with Oracle WebCenter Content?

Oracle WebCenter Content belongs to Oracle Fusion Middleware, a comprehensive family of
software products that includes a range of application development tools and services. The
integration of Oracle Content Management with Oracle WebCenter Content makes it easy to
manage content in either environment and to share content between the two.

Need to collaborate with team members in the cloud? Users can collaborate on cloud content
whether they are in the cloud, on their phone, or on-premise. This makes it possible for
enterprises with investment in on-premise applications to leverage their investment while
taking advantage of the rapidly expanding set of cloud offerings. Users can manage cloud
content and move content between the cloud and on-premise installations.

Chapter 2
Integrate with Oracle WebCenter Content

2-89

https://docs.oracle.com/en/middleware/webcenter/content/12.2.1.4/index.html
https://docs.oracle.com/en/middleware/
https://docs.oracle.com/en/middleware/webcenter/content/12.2.1.4/webcenter-content-admin/configuring-system-properties.html#GUID-1C4A6A57-E9BA-49AE-8403-99593C37D05D
https://docs.oracle.com/en/middleware/webcenter/content/12.2.1.4/webcenter-content-use/working-oracle-documents-cloud-service.html#GUID-99326BC2-5F9F-4415-BEE3-F17713E8DC43

When Oracle Content Management is enabled with Oracle WebCenter Content, you
have a truly comprehensive hybrid enterprise content management (ECM) integration,
with a unified ECM infrastructure and security from a single vendor. It combines
anywhere access from the cloud with content retention and archiving from on-premise
installations.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Oracle
WebCenter Content.

• On the Oracle Content Management side, you will need an Oracle Cloud Account,
an OCM instance and be assigned with the right access roles.

• Check Oracle WebCenter Content documentation for prerequisites on the other
side.

Integration Process

Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements
on the OCM side, you need a subscription for the product that you intend to integrate
with OCM. Setting up the integration in Oracle WebCenter Content is as easy as 1–2–
3:

1. Enable the component.

2. Configure the server connection.

3. Configure the host name verifier.

Chapter 2
Integrate with Oracle WebCenter Content

2-90

https://docs.oracle.com/en/middleware/webcenter/content/12.2.1.4/webcenter-content-admin/getting-started.html
https://docs.oracle.com/en/middleware/webcenter/content/12.2.1.4/webcenter-content-admin/configuring-system-properties.html#GUID-1C4A6A57-E9BA-49AE-8403-99593C37D05D

3
Integrate with Third-Party Applications

You can integrate Oracle Content Management (OCM) with third-party applications including
Microsoft Office for the web, Microsoft Outlook, Desygner, Kaltura video management, and
Slack. To enable these integrations, log in to the Oracle Content Management web interface
as an administrator, click Integrations in the Administration area of the navigation menu. On
the Applications page, enable the third-party application integration that you’d want to make
available in your instance. If you don’t see this option, then you don’t have the required
privileges.

When integrating OCM with Microsoft Office applications such as Microsoft Word,
PowerPoint, or Excel, the integration features become automatically available in these Office
apps when users install the Oracle Content Management desktop app.

Note:

Additionally if you are an Oracle partner, you can create applications that use the
integration features in Oracle Content Management. Oracle Cloud Marketplace is
where you can publish these apps.

Explore the following topics:

• Integrate with Desygner

• Integrate with Kaltura Video Management

• Integrate with Microsoft Office

• Integrate with Slack

Integrate with Desygner

Why Integrate with Desygner?

Desygner is a visual content creation solution for personal and business projects. It allows
designers to create templates that other teams can use to create new assets while following
template rules and layouts. As a result, organizations can efficiently create and edit print-
ready documents that respect the organization’s brand.

The integration of Desygner with Oracle Content Management (OCM) allows you (e.g.,
administrators, designers, content contributors) to take advantages of the features in both
applications. For instance, you can create, edit, and manage Desygner assets from the
Oracle Content Management web interface, leverage OCM as a cloud-based content
management system to improve team collaboration, streamline content creation and
publication, and promote content reuse from a single source (the OCM repository).

3-1

https://www.oracle.com/cloud/marketplace/
https://docs.oracle.com/en/cloud/paas/content-cloud/gt-repositories/index.html

Prerequisites

There are prerequisites to integrating Desygner with Oracle Content Management. On
the Oracle Content Management side, you will need the following before the
integration process:

• An Oracle Cloud Account.

• An Oracle Content Management instance.

• A subscription of Desygner.

Integration Process

Integrating Oracle Content Management with Desygner consists of these steps:

1. Add Desygner as SAML Application in Oracle Identity Cloud Service.

2. Create an Application User for Desygner.

3. Enable Desygner Integration in Oracle Content Management.

4. Work with Desygner Asset Types.

Add Desygner as SAML Application in Oracle Identity Cloud Service
This topic describes setting up Desygner to use Oracle Identity Cloud Service (IDCS)
for federated Single Sign-On (SSO). Although optional, federated SSO improves the
user experience when Desygner is integrated with Oracle Content Management,
allowing seamless interaction between Oracle Content Management and Desygner.

Chapter 3
Integrate with Desygner

3-2

https://desygner.com/

Note:

Independent of the federated SSO setup, Desygner needs an application user
account to pass information from Desygner to Oracle Content Management. The
user account will be created as a special application user in IDCS.

Obtain the Service Provider Entity ID from Desygner

You obtain the Service Provider Entity ID from Desygner and use it to configure the SAML
application in IDCS.

1. Log in to the Desygner application as an administrator. Click Workspace Settings in the
top right corner. Click Single Sign On and then Configure.

2. Note down the value of the Service Provider Entity ID. You will need this value, for
example, DESYGNER_F47E212AEF8C65D0_WYEP, when configuring the SAML
application in IDCS.

Chapter 3
Integrate with Desygner

3-3

Create a SAML Application in Oracle Identity Cloud Service

Create a Security Assertion Markup Language (SAML) application and grant it to users
so that they can single sign-on (SSO) into the SaaS application that supports SAML
for SSO.

1. Log in to the Oracle Identity Cloud Service (IDCS) admin console: https://
cloud.oracle.com/ui/v1/adminconsole

2. Click Applications and Services. Click Add to open the dialog. Select SAML
Application.

3. Enter a meaningful name for the application, for example, Desygner Connector to
OCM. For the Application URL, enter /connect/redirect. Click Next.

4. In the General section, do the following:

a. Enter the value of the Entity ID which you noted from the Desygner Settings
above, for example, DESYGNER_F47E212AEF8C65D0_WYEP

b. In the Assertion Consumer URL field, enter https://<desygnerHost>/
saml/acs
Leave all the other fields with their default settings.

5. In the Advanced Settings section, uncheck the Enable Single Logout option.

Chapter 3
Integrate with Desygner

3-4

6. In the Attribute Configuration section, enter the attributes as shown in the screenshot
below. The attributes map the users between IDCS and Desygner.

7. In the Authentication and Authorization section, select the checkbox for Enforce
Grants as Authorization, and click Finish.

Assign the Desygner Role to Users in Oracle Identity Cloud Service

Oracle Identity Cloud Service (IDCS) manages user access to Oracle Content Management
and Desygner. It’s recommended that you create an IDCS group with the necessary access
roles and add users to the group to inherit the role. This example shows how individual users
are assigned to Desygner.

1. Click the Users tab in IDCS.

2. Click Activate, then +Assign to add users who will work with Desygner from Oracle
Content Management.

3. Under SSO Configuration, click Download Identify Provider Metadata to download
the IDCSMetadata.xml file to your local folder.

Configure Single Sign-On in Desygner

Open the IDCSMetadata.xmlfile on your local machine to extract the information that's
needed to configure Single Sign-On in Desygner. The steps below describe how you would
find the following fields in the XML file:

• IDP/SLO URL

• EntityID

• X509 Certificate

1. In the IDCSMetadata.xml file downloaded earlier, search for the IDP/SLO URL, the
EntityID, and the X509 Certificate values, for example:

a. https://idcs-
a9e0f119e3d04eef8287b584b10354.identity.oraclecloud.com/fed/v1/idp/slo

b. <dsig:X509Certificate> MIIDXzCCAkegAwIBAgIGAWiWTp/ […] </
dsig:X509Certificate><dsig:X509IssuerSerial>

Chapter 3
Integrate with Desygner

3-5

2. Return to Desygner, click Workspace Settings, then Single Sign On, and do the
following:

a. For the SAML 2.0 Endpoint (HTTP) field, enter the IDCS IDP/SLO URL from
the IDCSMetadata.xml file, for example:
https://idcs-
a9e0f119e3d04eef8287b584b10354.identity.oraclecloud.com/fed/v1/idp/
slo

b. For the Identity Provider Issuer field, enter the same IDCS URL but change
the suffix to /fed. This will also be shown as the EntityID field in the
IDCSMetadata.xml file, for example,
https://idcs-
a9e0f119e3d04eef8287b584b10354.identity.oraclecloud.com/fed

c. Under the Public Certificate field, add the entire X509 Certificate value.

d. Finally, set the User Attribute Mappings section.

Test the SSO Configuration

Log in to Oracle Content Management as the user who was added in the SAML
application created for Desygner. In another tab, access the Desygner URL, e.g.,
https://<DesygnerHost>/login/sso.

Chapter 3
Integrate with Desygner

3-6

If the SSO configuration is successful, you will be redirected to the landing page of Desygner.

User Mappings in Desygner

Depending on the user access privileges, Desygner creates a different access level for each
user. To illustrate the scenario, this section describes an example of two hypothetical users,
John Smith and Robin Fisher.

1. John Smith is a user in Desygner and Oracle Identity Cloud Service (IDCS). The userId
links to an existing Desygner userId when he logs in to Desygner from Oracle Content
Management. The userId has enterprise privileges.

2. Robin Fisher is a user only in IDCS, but not in Desygner. When she logs in to Oracle
Content Management through IDCS and accesses Desygner, the userId for Robin Fisher
is created in Desygner. This userId has Pro+ privileges. To access Desygner for the first
time, she would need to click Forgot Password and then reset the password.

Create an Application User for Desygner
When an asset is updated in the Desygner application, the asset is sent to Oracle Content
Management (OCM) using the Oracle Content Management REST API. To invoke the API,
Desygner needs an application user in OCM and an associated secure OAuth token. For this
flow, the token is requested for the client application. Use this token to call Oracle Content
Management.

Create a Confidential Application for Desygner

You set up the OAuth grant type, client credentials, to access the resource.

1. Log in to the Oracle Identity Cloud Service Admin Console,
https://cloud.oracle.com/ui/v1/adminconsole

2. Click Confidential Application. Give the application a name, and optionally, a
description. For example, DesygnerOAuthApp. Click Next.

3. Choose to configure this client as a Client.

4. In the Allowed Grant Types section, select the checkbox for Client Credentials.

5. Scroll down to the Token Issuance Policy section. Under the Resources section, click
Add Scope to give the application access to the required Oracle Content Managment
instance.

6. Click the right arrow to select the scope. The only scope required is the one ending in
urn:opc:cec:all. Select the checkbox next to it and then click Add.

7. Click Next until the end.

8. Click Finish.

9. Note the Client ID and Client Secret values for retrieving a token later.

10. Check Activate and click Save to enable the application.

Assign the Oracle Content Management Role to the Application

You assign the Oracle Content Management repository administrator role and other
necessary roles to the Desygner application.

1. Log in to the IDCS Admin Console,
https://cloud.oracle.com/ui/v1/adminconsole

Chapter 3
Integrate with Desygner

3-7

2. Click Oracle Cloud Services.

3. Select the Oracle Content Management service instance for which you need
privileges. This instance name would have been provided by the account
administrator.

4. Click Application Roles. Navigate to the role CECRepositoryAdministrator.

Click in the right-hand corner. In the dropdown, click Assign Applications.

5. Search and find the application you created in the previous step,
DesygnerOAuthApp. Select the application user, DesygnerOAuthApp, in this
example.

6. Similarly add the application to CECServiceAdministrator and
CECSitesAdministrator roles.

7. Click Save.

Set Up the Webhook URL in Desygner

When editing is completed in Desygner, documents in Desygner and Oracle Content
Management need to be synchronized. The synchronization is achieved by setting up
the webhook URL in Desygner to generate an OAuth access token for Desygner to
invoke the Oracle Content Management (OCM) REST API, which then updates the
Desygner documents in OCM.

Note:

As a prerequisite to generating the OAuth access token, a confidential app
must be created in IDCS.

1. Log in to the Desygner UI (e.g., https://oracle.desygner.com/login) as an
administrator.

2. Click in the top right corner and select Integrations.

3. Enter the Webhook URL field.

The webhook URL is a configurable URL in the Desygner API. The URL contains
the following fragments:

Chapter 3
Integrate with Desygner

3-8

• Desygner API OCM webhook endpoint: /brand/companies/oracle/webhook
• IDCS two-legged OAuth information

• The OCM instance identifier

The final webhook URL is shown as follows:

https://api.desygner.com/brand/companies/oracle/webhook?
idcs_id=<...>&idcs_secret=<...>&idcs_scope=<...>&idcs_account=<...>&instance
=<...>
• The idcs_account can be obtained from the SSO redirection at a URL like this:

https://<your idcs_account>.identity.oraclecloud.com/ui/vi/signin
Input the value in the webhook URL without the prefix idcs-, (e.g.,
b8078481XXX….XXXXbe1af018b).

• The OCM instance (e.g., finalcXXXX……XXXXXXontrol) can be obtained from your
Oracle Content Management instance at a URL like this:

https://<your OCM instance>.cec.ocp.oraclecloud.com/documents/home
• The Client ID idcs_id (e.g., 522a37XXXXXX….XXXXX201f) , Client Secret idcs_secret

(e.g., 4d6cbf82-XXXX….XXXX393a4ff21e), and Scope idcs_scope (e.g.,XXXXXX)
can be obtained from IDCS. Note that these need to be URL encoded.

Here is an example of a configured webhook URL:

https://api.qcdesygner.xyz/brand/companies/oracle/webhook?
idcs_id=a7525f35a25344dea2baab7457d3a00e&idcs_secret=dc16ee62-1b96-4a51-
a37a-72e2ef56c77d&idcs_scope=https%3A%2F%2F2E364A57C2D741B0A72B21240A542CD0.
cec.ocp.oraclecloud.com%3A443%2Furn%3Aopc%3Acec%3Aall&idcs_account=a9e0f119e
3d04eefad8287b584b10354&instance=sandbox-oce0002

Enable Desygner Integration in Oracle Content Management
After you've done the integration steps in Oracle Identity Cloud Service and Desygner, you
continue the integration process by configuring the Desygner connectors in Oracle Content
Management to enable the connection between the two applications and associate the
Desygner asset types to your repository.

Create a Publishing Channel and an Asset Repository

To create asset repositories and publishing channels, click on the Content option in the left
navigation menu (under ADMINISTRATION). On the Content page, access Publishing
Channels and Repositories in the Content dropdown menu.

Note:

To set this up, you need to have the repository administrator role
(CECRepositoryAdministrator) in Oracle Content Management.

1. Create a publishing channel.

2. Create an asset repository and associate it with the publishing channel that you created
earlier.

Enable the Integration

Chapter 3
Integrate with Desygner

3-9

https://en.wikipedia.org/wiki/URL_encoding

1. Log in to the Oracle Content Management web interface as an administrator.

2. Click Integrations in the left navigation menu and open the Applications page.

3. Enable the Desygner option as seen here. Click to set or change the
Desygner settings at any time.

4. The Desygner Configuration dialog opens when you enable the integration.
Configure the Desygner connector settings. Input the connection information for
Desygner as needed. Some entries are pre-populated for you:

Field Name Description

Description A description of the integration.

Company Id The companyId of your organization, which will be used in
Desygner REST API. For example, oracle.

REST URL The REST URL for Desygner, e.g., https://api.desygner.com
Edit URL The Edit URL for Desygner that's used for editing the PDF

documents, https://<companyId>.desygner.com/edit
5. Once the connector configuration is completed, two connectors are enabled,

Desygner Asset and Desygner Template. Additionally, two digital asset types of
the same name are also created respectively. As an administrator, you can verify
this by selecting Content (under ADMINISTRATION) in the left navigation menu of
the OCM UI. Select Asset Types from the dropdown menu on the Content page.
For details on asset types, see Manage Asset Types to learn more.

Chapter 3
Integrate with Desygner

3-10

Enable the Integration on Asset Repositories

As a repository administrator, enable the Desygner integration on repositories of your choice
to control who and how people access and use Desygner.

1. Associate the asset types with the repository of your choice. See Associate an Asset
Type with a Repository for related details.

To create or edit the Asset Repository dialog, choose Content in the left navigation
menu. On the Content page, choose Repositories in the Content dropdown menu.
Select your repository to open Edit Asset Repository.

In the Content Connectors dropdown menu, Desygner Asset and Desygner Template
connectors are available. Choose the connector based on your need. When Desygner
Asset is selected, you can create a Desygner asset from a Desygner template. When
Desygner Template is selected, you can import a Desygner template from Desygner to
OCM. Automatically, the digital asset types are mapped to the repository.

Click Save when you're done.

2. The integration features immediately become visible in the repository, and you can
perform tasks such as the following on the Assets page:

• Import and edit the Desygner template.

• Create a Desygner asset from the Desygner template.

• Edit an asset in the Desygner UI.

• Publish assets in the repository to the publishing channel.

• Note:

For details on the Assets page, see Get to Know the Assets Page.

3. You’ve completed the integration process. Share the repository with users so they can
work with Desygner in Oracle Content Management.

To add members and manage access rights, choose Content from the left navigation
menu to open the Repository page. Select your repository and then click Members to
access the Repository Members dialog.

Add the application user that you created earlier to the repository. Search for the
application user’s name (e.g., DesygnerOAuthApp) and add the user as a manager to the
repository.

Additional users can be added at this time, and you can control their access of asset
types. In the following screenshot, the highlighted user can view, create, and update
Desygner assets in the repository, but cannot delete any.

Chapter 3
Integrate with Desygner

3-11

See Share a Repository and Manage Digital Assets for related details.

Work with Desygner Asset Types

After the integration with Desygner is enabled, you can work with Desygner asset
types on the Assets page: import a template from Desygner (under the Add dropdown
menu), create, edit, and publish your Desygner assets.

Chapter 3
Integrate with Desygner

3-12

Integrate with Kaltura Video Management

Why Integrate with Kaltura Video Management?

The integration of Oracle Content Management with Kaltura allows videos that are added as
a Video Plus asset type to use the Kaltura video service. Kaltura provides a rich video
management and delivery experience, including all the standard features, such as upload,
manage, preview, and download, plus advanced capabilities for optimized editing, streaming,
automatic transcoding and conversion, and more responsive playback options.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Kaltura Video
Management - Video Plus. On the Oracle Content Management (OCM) side, you will need an
Oracle Cloud account, an OCM instance, and be assigned with the right access
role.Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements on the
OCM side, you need a subscription for the product that you intend to integrate with OCM.

Chapter 3
Integrate with Kaltura Video Management

3-13

https://docs.oracle.com/en-us/iaas/content-management/doc/create-and-activate-oracle-cloud-account1.html
https://docs.oracle.com/en-us/iaas/content-management/doc/create-ocm-instance-region-identity-domains1.html#GUID-6E4E2D3F-DB1C-4033-A5FD-7D512550ADFA

Integration Process

To integrate OCM with Kaltura Video Management - Video Plus, log in to the Oracle
Content Management web interface as an administrator, go to Integrations in the
navigation menu on the left to open the Applications page. Enable Kaltura Video
Management - Video Plus. If you don’t see this option, then you don’t have the
required privileges.

Integrate with Microsoft Office
Why Integrate with Microsoft Office?

The integration of Oracle Content Management with Microsoft Office allows you to take
advantages of features from both applications. Oracle Content Management can
integrate with Microsoft Office in various ways:

• Add Oracle Content as a save/open location in Microsoft Office applications.

• Access Oracle Content features within Microsoft Office applications.

• Add links to cloud items directly from Microsoft Outlook.

• Create or edit Microsoft Office files from the Oracle Content Management web
interface.

Note:

The supported versions for these integrations are Microsoft Office 2016,
2019, and 2021.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Microsoft
Office. On the Oracle Content Management (OCM) side, you will need an Oracle
Cloud account, an OCM instance, and be assigned with the right access role.
Integrations generally require configurations in both applications that are being
integrated. So check the documentation on both sides. In addition to the requirements
on the OCM side, you need a subscription for the product that you intend to integrate
with OCM.

Integration Process

To integrate Oracle Content Management with Microsoft Office for the web and
Microsoft Outlook, enable these integrations from the OCM web interface as an
administrator. Click Integrations in the navigation menu on the left to display the
Applications page. When integrating OCM with Microsoft Office applications such as
Microsoft Word, PowerPoint, or Excel, the integration features become automatically
available in these Office apps when users install the Oracle Content Management
desktop app.

Chapter 3
Integrate with Microsoft Office

3-14

https://docs.oracle.com/en-us/iaas/content-management/doc/create-and-activate-oracle-cloud-account1.html
https://docs.oracle.com/en-us/iaas/content-management/doc/create-and-activate-oracle-cloud-account1.html
https://docs.oracle.com/en-us/iaas/content-management/doc/create-ocm-instance-region-identity-domains1.html#GUID-6E4E2D3F-DB1C-4033-A5FD-7D512550ADFA

Add Oracle Content as a Save/Open Location in Microsoft Office
Applications

When users install the Oracle Content Management desktop app, Oracle Content is
automatically added as a location in Microsoft Word, Excel, and PowerPoint. This allows
them to open documents directly from the cloud or save documents to the cloud. In addition,
they can access some Oracle Content features for the current document, including sharing
the document, starting or viewing a conversation about the document, or viewing its
properties.

Access Oracle Content Features Within Microsoft Office Applications
When users install the Oracle Content Management desktop app, a special radial menu is
automatically installed for Microsoft Word, PowerPoint, and Excel, which allows them to
access Oracle Content features for the current document directly within these applications.
The radial menu is displayed for all documents that are managed in Oracle Content
Management.

Chapter 3
Integrate with Microsoft Office

3-15

Users can perform these tasks in the radial menu:

• Share the current document with other people.

• Lock the current document for editing, so other users can’t inadvertently modify a
document that you’re working on.

• Start or view a conversation on the current document.

• View properties, access history, or version history of the current document.

• Go to the current document in the Oracle Content Management web interface.

Users can turn the radial menu off, either temporarily or permanently:

• Temporarily: click ‘x’ in the radial menu. The radial menu will reappear the next
time a cloud document is opened.

• Permanently: open the File menu in the Microsoft Office application, choose
Oracle Content, then Preferences, and disable the Show Oracle Content radial
menu when working with Microsoft Office documents option. The radial menu
will no longer appear when the user opens documents managed in Oracle Content
Management.

Add Links to Cloud Items Directly from Microsoft Outlook
Email administrators can install and configure Oracle Content Management for
Outlook on a Microsoft Exchange server, so users can easily embed links to their
Oracle Content files and folders into email messages or calendar appointments.

Chapter 3
Integrate with Microsoft Office

3-16

To set this up, deploy Oracle Content Management for Outlook on the Microsoft Exchange
server:

1. Log in to the Oracle Content Management web interface as an administrator.

2. Click Integrations in the left navigation menu and open the Applications page.

3. Next to Microsoft Outlook, click Download Manifest.

4. Install the add-in on your Microsoft Exchange server, following Microsoft's documentation.

5. It can take up to 72 hours for the new add-in deployment to be available in users’ Outlook
applications. After you confirm that the add-in is visible to users:

Chapter 3
Integrate with Microsoft Office

3-17

https://docs.microsoft.com/en-us/exchange/install-or-remove-outlook-add-ins-2013-help

• Inform them of the new Oracle Content Management add-in features.

• If your users previously installed the Oracle Content add-in for Outlook by
installing the Oracle Content Management desktop app, they should disable
that add-in.

Create or Edit Microsoft Office Files from the Oracle Content
Management Web Interface

Oracle Content Management can be configured to allow users to create, view, or edit
Microsoft Office files in the Oracle Content Management web interface using the
desktop Microsoft Office applications or Microsoft Office for the web (office.com).

To set this up, enable the Microsoft Office for the web integration for Oracle Content
Management:

1. Log in to the Oracle Content Management web interface as an administrator.

2. Click Integrations in the left navigation menu and open the Applications page.

3. Enable the Microsoft Office Online option.

Chapter 3
Integrate with Microsoft Office

3-18

Note:

Optionally, you can include additional notification text that will appear in the pop-up
window when a user opens an Office file from Oracle Content Management. Click

Integrate with Slack
Why Integrate with Slack?

The integration of Oracle Content Management with Slack enables you to create an app for
Slack that is associated with an Oracle Content Management instance. This allows you to
use Slack to share and collaborate on documents stored in Oracle Content Management and
still control whether a Slack user has permissions to view, download, or edit shared
documents.

Prerequisites

There are prerequisites to integrating Oracle Content Management with Slack. Integrations
generally require configurations in both applications that are being integrated. So check the
documentation on both sides.

• You must have the necessary accounts and permissions to create apps for Slack. The
app for Slack is used when integrating with Oracle Content Management, and creating
the app is done on the Slack website at https://api.slack.com/apps.

• On the Oracle Content Management (OCM) side, you will need an Oracle Cloud account,
an OCM instance, and be assigned with the right access role.

Chapter 3
Integrate with Slack

3-19

https://api.slack.com/apps
https://docs.oracle.com/en-us/iaas/content-management/doc/create-and-activate-oracle-cloud-account1.html
https://docs.oracle.com/en-us/iaas/content-management/doc/create-ocm-instance-region-identity-domains1.html#GUID-6E4E2D3F-DB1C-4033-A5FD-7D512550ADFA

Integration Process

Integrating Slack with Oracle Content Management consists of these steps:

1. Enable and Configure Integration with Slack in Oracle Content Management. You
must configure the integration for a specific Oracle Content Management instance.

2. Create an App for Slack Using the Slack Website and Install. You’ll need to create
and install the app either to a specific workspace or as an enterprise org app, and
paste in the JSON-formatted configuration copied from the manifest when
configuring the integration. Then by installing the app, the configuration is verified,
and app credentials are generated.

3. Add the App Credentials to Oracle Content Management. When the Slack app is
installed, authentication credentials and tokens are generated which must be
entered in the Oracle Content Management integration configuration dialog.

Enable and Configure Integration with Slack in Oracle Content
Management

Integration with Slack is disabled by default. You must associate a specific Oracle
Content Management instance with the app for Slack and provide app credentials so
that Oracle Content Management has access to the Slack API.

1. Log in to the Oracle Content Management web interface as a service
administrator.

2. Click Integrations in the Administration section of the navigation menu on the left.
If you don’t see this option, then you don’t have the required access privileges.

3. Ensure integration with Slack is enabled. If the integration configuration dialog
does not display, click the configuration icon.

4. In the first page of the integration with Slack configuration dialog, enter a name,
description, and command name for the app for Slack. The command name is a
slash /command shortcut you create to request access to your Oracle Content
Management instance; for example, /sharecontent. Choose the command name
carefully as it is difficult to change once it is defined.

5. Check Enable as Enterprise Org app if you are using an Enterprise Grid.

Note:

If enabled as an enterprise org app, Slack users will still need to approve
the app and select a workspace on which it will be used. This offers more
control, as your organization may have hidden workspaces or
workspaces with more stringent security requirements.

6. Click Get Manifest.

The manifest is a JSON-formatted configuration that includes the name and
description you entered and the necessary URLs for Slack to handle requests,
events, and authentication redirects associated with this specific Oracle Content
Management instance.

7. Select and copy the text displayed in the manifest, then click Save.

Chapter 3
Integrate with Slack

3-20

https://api.slack.com/enterprise/apps
https://api.slack.com/enterprise/

Note:

Don’t exit out of the integration with Slack configuration dialog until after you’ve
provided the client ID, the client secret, the signing secret, and the OAuth token.
These app credentials are not generated until you’ve created the Slack app on the
Slack website and installed the app.

Create an App for Slack Using the Slack Website and Install
Creating an app for Slack that is used when integrating with Oracle Content Management is
done on the Slack website at https://api.slack.com/apps. You must have the necessary
accounts and permissions to create Slack apps.

1. Make sure you are signed in to Slack and go to https://api.slack.com/apps.

2. Click Create New App.

3. Opt to create the app from an app manifest.

4. Select to install as an org app or select a workspace to create your app in. This is the
workspace you’ll install the app in as well. Once selected, click Next.

5. Overwrite the sample JSON-formatted manifest with the manifest you copied when
configuring Oracle Content Management integration with Slack and click Next.

6. Review the summary. If anything is incorrect, you’ll need to go back and manually edit the
manifest.

7. Add the Oracle Content Management icon:

a. Download the icon from the Oracle content delivery network at https://
static.ocecdn.oraclecloud.com/cdn/cec/ocmslack/v1.0.0/images/ocm-1024.png.

b. Scroll the summary page to the display information section and click Add app icon.

c. Browse to the Oracle Content Management icon and select it.

d. Set the background color to #564162 to match the color used in the icon.

8. When finished reviewing the summary and adding the app icon, click Create.

9. If installing the Slack app as an org app, you may need to check Enable as Enterprise
Org app.

10. Click the install button to install the app and generate the OAuth token.

Add the App Credentials to Oracle Content Management
Once all the credentials required by Oracle Content Management are generated, they must
be added to the configuration.

1. Copy the values for the client ID, the client secret, the signing secret, and the bot user
OAuth token from the app for Slack information page to the appropriate fields on the
second page of the integration with Slack configuration dialog in Oracle Content
Management.

2. When finished, click Save.

Chapter 3
Integrate with Slack

3-21

https://api.slack.com/apps
https://api.slack.com/apps
https://static.ocecdn.oraclecloud.com/cdn/cec/ocmslack/v1.0.0/images/ocm-1024.png
https://static.ocecdn.oraclecloud.com/cdn/cec/ocmslack/v1.0.0/images/ocm-1024.png

3. Optionally, enable Show content previews within Slack. This option allows links
used in Slack to show a preview image of content in Oracle Content Management,
provided the Slack user has permissions to view the content.

Note:

If installing the app for Slack to a specific workspace and the configuration is
finished, everyone who needs access to the app will have to connect it to
their Slack client using the Slack app directory in Slack.

Chapter 3
Integrate with Slack

3-22

4
Use Content Connectors

You can use content connectors to connect to third-party repositories, such as Google Drive
or Dropbox, and import content from the repository into Oracle Content Management.

The screen capture below shows you how to access the content connectors from the
Integrations page in the Oracle Content Management web UI. From the left navigation panel,
select Integrations, then from the top dropdown menu, select Content Connectors.

Note:

Content connectors aren't supported in private instances.

4-1

Read more related articles here:

• Enable a Content Connector

• Disable a Content Connector

• Configure a Google Drive Content Connector

• Configure a Microsoft OneDrive Content Connector

• Configure a Dropbox Content Connector

• Configure a WordPress.org Content Connector

• Configure a YouTube Content Connector

• Configure a Microsoft SharePoint Online Content Connector

• Configure a Contentful Content Connector

• Configure a Drupal Content Connector

• Configure Oracle WebCenter Content Server and Oracle Content Management for
the WCC Connector v2.0

• Use Custom Digital Asset Types in Content Connectors

• Create and Configure a Custom Content Connector

• Provide Configuration Parameter Values for a Content Connector

• Delete a Content Connector

Enable a Content Connector
Oracle Content Management provides preconfigured content connectors for Google
Drive, Microsoft OneDrive, Dropbox, Microsoft SharePoint, WebCenter Content, and
YouTube. A service administrator can enable any or all of these through the
Administration Integrations web interface.

To enable a preconfigured content connector:

1. Sign in to the Oracle Content Management web interface as an administrator or
developer.

2. Click Integrations in the Administration area of the navigation menu.

3. In the Integrations menu, choose Content Connectors.

4. Click Enable next to the content connector you want to enable.

5. Change the information and settings as necessary:

• Name: You can change the default content connector name to a user-friendly
name.

• Description: You can change or add the description.

• Connector service URL: This read-only field becomes editable if the URL
can’t connect to the service. Once the URL can connect, it displays as read
only again.

• Redirect URL: Make note of the redirect URL in this read-only field. You'll
need to specify the URL later for the content connector configuration.

• User name: Enter your administrator user name.

Chapter 4
Enable a Content Connector

4-2

• User password: Enter your administrator password.

• Connector tags: You can assign tags that will be applied to assets pulled from the
content connector (for example, the content connector name). This lets you search
for all items from that content connector in an asset repository.

• Enabled for end users: To enable the content connector, select this check box, or
deselect it to disable the content connector.

6. Enter custom field values on the Additional Fields tab. How to get the values for the
custom fields varies, depending on the content connector:

• Configure a Google Drive Content Connector

• Configure a Dropbox Content Connector

• Configure a Microsoft OneDrive Content Connector

• Configure a YouTube Content Connector

• Configure a Microsoft SharePoint Online Content Connector

• Configure Oracle WebCenter Content Server and Oracle Content Management for
the WCC Connector v2.0

7. Click Save.

After a content connector is configured to connect to a third-party content provider, you can
enable it by clicking Enable next to the connector on the Content Connectors page.

Disable a Content Connector
A service administrator can use the connector framework to disable a content connector in an
Oracle Content Management instance at any time.

To disable a content connector:

1. Sign in to the Oracle Content Management web interface as an administrator or
developer.

2. Click Integrations in the Administration area of the navigation menu.

3. In the Integrations menu, choose Content Connectors.

4. Click Disable next to the content connector you want to disable.

After a content connector is disabled, it's no longer available on the Add From drop-down
menu on the Assets page, until it is enabled again. You can now click the Enable button to
enable the content connector again.

Configure a Google Drive Content Connector
After you configure and enable a Google Drive content connector, you can connect to Google
Drive and pull required content from it into Oracle Content Management.

To configure a Google Drive content connector:

1. Get the Oracle Content Management host name and authorization URL details.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the left.

c. In the Integrations menu, choose Content Connectors.

Chapter 4
Disable a Content Connector

4-3

d. Click the check box next to the Google Drive content connector.

e. Click Create.

f. On the General tab, note the Redirect URL, which will be in this format:

https://<hostname>.<domainname>.com:<port>/documents/web/
AR_COMPLETE_AUTHORIZATION

The Redirect URL field is truncated. Double-click the field to copy the value to
your clipboard.

2. Create a Google Drive app:

a. Go to https://console.developers.google.com/project in a browser
window.

b. Sign in with a Google user name and password.
If you've already created projects in the Google Developers Console, you will
see the list of created projects. If not, the Manage resources screen will
appear.

c. Click Create Project.
You’ll be redirected to a page where you can enter Project Name and Project
ID values to help you recognize your project in the console.

d. Click Create.
Your project will be created, and you'll be redirected to your projects list in the
console.

e. Go to the dashboard through menu navigation, APIs & Services >
Dashboard, from the left corner icon.

f. Click the name of the project you recently created to go to your project
dashboard.

g. Select a library. Go to Library page through menu navigation, APIs &
Services > Library, from the left corner icon.

h. Search for the "Google Drive API" library, then select and enable it.

i. Search for the "Google Picker API" library, then select and enable it.

j. From the left corner icon, navigate to APIs & Services > Credentials >
OAuth Consent Screen tab. Check your email address and enter your
product name, GDrivePickerApp, and save it.

k. Publish the application.

l. Click the Credentials tab to open a popup in which you can select an OAuth
client ID option under the Create credentials select box.

m. Select your application type, Web application.

n. Name the client and add the Authorized redirect URIs.

i. In Authorized redirect URI, paste the redirect URL you copied from
Oracle Content Management.
The redirect URI must be the same as your application installation URL.

ii. In Authorized Javascript Origins, paste the redirect URL, but remove
everything after the port.
If you get the message "Invalid Origin", click the authorized domains list
and add your domain.

Chapter 4
Configure a Google Drive Content Connector

4-4

iii. Press ENTER, and then click Save.

Once you have added to the authorized domains, you should be able to create an
OAuth ID. Note the values of Client ID and Client Secret.

3. Create credentials to get the API key (Developer Key). Click Create Credentials and
then API key in the drop-down menu. Note the value of API Key. This is the Developer
Key you'll enter in the Oracle Content Management when you configure the Google Drive
connector.

4. Get the App ID.

a. From the left corner icon, navigate to IAM & admin > Settings.

b. From that page note the value of Project Number. This is the App ID you'll enter in
the Oracle Content Management when you configure the Google Drive connector.

5. Configure the connector in Oracle Content Management.

a. Go back to configuring the Google Drive content connector in Oracle Content
Management.

b. On the General tab:

• In the Connector tags field, you can assign tags that will be applied to assets
pulled from the content connector (for example, the content connector name).
This lets you search for all items from that content connector in an asset
repository.

• Make sure Enabled for end users is selected.
You can review the Terms of use and Privacy Policy below the Enable for end
users button.

c. Click the Additional Fields tab, and enter the following information:

• Client ID

• Client Secret

• Developer Key (API Key)

• App Id (Project Number)

d. When you're done, click Save.

6. Associate the connector with one or more asset repositories.

a. Click Assets in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing channels,
languages, and other options.

d. Under Connectors, select one or more connectors to associate with the repository.
This menu lists all the content connectors that have been configured and enabled in
your Oracle Content Management instance.

If any of the connectors you select have content types associated with them, the
types appear under Content Types.

After a Google Drive content connector is enabled, configured, and associated with a
repository, it's available in the asset repository for Oracle Content Management users to
import content, through the Add drop-down menu, Import from Google Drive option on the
Assets page.

Chapter 4
Configure a Google Drive Content Connector

4-5

Configure a Microsoft OneDrive Content Connector
After you configure and enable a Microsoft OneDrive content connector, you can
connect to OneDrive and pull required content from it into Oracle Content
Management.

A Microsoft OneDrive content connector enables you to import assets from the
OneDrive repository into Oracle Content Management. As an Administrator or
Developer, you can configure a Microsoft OneDrive content connector from the
Integrations menu in an Oracle Content Management instance.

To configure a OneDrive content connector:

1. Get the Oracle Content Management host name and authorization URL details.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the
left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the OneDrive content connector.

e. Click Create.

f. On the General tab, note the Redirect URL, which will be in this format:

https://<hostname>.<domainname>.com:<port>/documents/web/
AR_COMPLETE_AUTHORIZATION

The Redirect URL field is truncated. Double-click the field to copy the value to
your clipboard. You'll need to provide this value later in the OneDrive URL
field on the Additional Fields tab.

2. Create a OneDrive app.

a. Sign in to Microsoft Azure at https://portal.azure.com/:

i. Pick an account that has your Microsoft user name.

ii. Enter your Microsoft password.

iii. Choose Office365.

iv. Click Sign in.

v. Click Yes to stay signed in and reduce multiple sign-ins.

b. On the Azure services page, click App registrations.

c. On the App registrations page, click New registration.

d. On the Register an application page, enter a name and choose the account
types that can use the application. At the bottom, paste a redirect URL and
then click Register.

e. On your application's page, click Certificates & secrets in the left menu, and
then click the New client secret button on the page.

f. Under Add a client secret, enter a description for your client secret, select
Never under Expires, and then click Add.

Chapter 4
Configure a Microsoft OneDrive Content Connector

4-6

https://portal.azure.com/

g. Click the Copy to clipboard icon on the bottom right to record the secret. You'll need
to enter it later in the Client Secret field on the Additional Fields page for the
content connector. Also click Copy to clipboard to record other details.

h. On the API permissions page, click Add a permission to add a OneDrive
permission, such as User.Read, a Delegated permission for OneDrive to sign in as
the user and access an API. Another permission you might want to add is off-line
access, which enables the refresh token.
In addition to User permissions, you can grant AllSites, Myfiles, Sites, and
TermStore permissions.

i. Click Add an app.

j. Enter an application name, and click Create. The sampleApp Registration screen is
displayed.

k. Under Properties, type the name of your application.

l. Note the Application id value.

3. Add the OneDrive connector to a repository..

a. In Oracle Content Management, select Integrations on the left navigation menu.

b. On the Integrations page, choose Content Connectors from the drop-down menu.

c. In the list of content connectors, click the name of the OneDrive content connector.

4. Configure the Microsoft OneDrive content connector in Oracle Content Management.

a. On the General tab:

• The Name, Description, Connector service URL, and Redirect URL fields are
prepopulated.

• In the Connector tags field, you can assign tags that will be applied to assets
pulled from the content connector (for example, the content connector name).
This lets you search for all items from that content connector in an asset
repository.

• Make sure Enabled for end users is selected.
You can review the Terms of use and Privacy Policy below the Enable for end
users button.

b. Click the Additional Fields tab, and enter the following information:

• Client ID (the value of Application id that you noted down earlier)

• Client Secret (the value of the generated password)

• OneDrive URL

• Tenant ID

• Access Scope

c. When you're done, click Save.

5. Add the connector to a repository.

a. Click Content in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing channels,
languages, and other options.

Chapter 4
Configure a Microsoft OneDrive Content Connector

4-7

d. Under Content Connectors, select one or more connectors to associate with
the repository.
This menu lists all the content connectors that have been configured and
enabled in your Oracle Content Management instance.

If any of the connectors you select have content types associated with them,
the types appear under Content Types.

After a Microsoft OneDrive content connector is configured, enabled, and associated
with a repository, it's available in the asset repository for Oracle Content Management
users to download content, through the Add drop-down menu Import from Microsoft
OneDrive option on the Assets page.

Note:

An authorized application for a OneDrive content connector must provide a
link to https://account.live.com/consent/Manage, or to another location
specified for a OneDrive content connector, with a clear indication that end
users can go to that Microsoft site to revoke permissions at any time. If end
users must take additional steps to disable the authorized application's
access to end-user information, then the application must clearly indicate to
end users the additional steps required to disable access. These
requirements do not apply where Microsoft provides the end-user web
interface.

Configure a Dropbox Content Connector
After you configure and enable a Dropbox content connector, you can connect to
Dropbox and pull required content from it into Oracle Content Management.

To configure a Dropbox content connector:

1. Get the Oracle Content Management host name and authorization URL details.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the
left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the Dropbox content connector.

e. Click Edit.

f. On the General tab, note the Redirect URL, which will be in this format:

https://<hostname>.<domainname>.com:<port>/documents/web/
AR_COMPLETE_AUTHORIZATION

The Redirect URL field is truncated. Double-click the field to copy the value to
your clipboard.

2. Create a Dropbox app:

a. Go to https://www.dropbox.com/developers/apps in a Browser window

b. Sign in with a Dropbox user name and password.

Chapter 4
Configure a Dropbox Content Connector

4-8

c. Go to My apps.

d. Click Create App, and on next screen, in Step 1, choose a Dropbox API.

e. Choose an access type and name for your application, and click Create App.
For production deployment of the Dropbox app, refer to Dropbox documentation for
the approval required: https://www.dropbox.com/developers/reference/
developer-guide#production-approval.

f. After the app is created, you can add or configure additional values on the next
screen.

g. Note the values of App key and App secret.

3. In the OAuth 2 - Redirect URIs section, paste the Redirect URL you copied from Oracle
Content Management.

4. On the Dropbox App page, navigate to the lower section, Chooser/Saver domains, and
add the host name used to access Oracle Content Management to this section.

5. Configure the connector in Oracle Content Management.

a. Go back to configuring the Dropbox content connector in Oracle Content
Management.

b. On the General tab:

• In the Connector tags field, you can assign tags that will be applied to assets
pulled from the content connector (for example, the content connector name).
This lets you search for all items from that content connector in an asset
repository.

• Make sure Enabled for end users is selected.
You can review the Terms of use and Privacy Policy below the Enable for end
users button.

c. Click the Additional Fields tab, and enter the following information:

• App key

• App secret

d. When you're done, click Save.

6. Associate the connector with one or more asset repositories.

a. Click Assets in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing channels,
languages, and other options.

d. Under Connectors, select one or more connectors to associate with the repository.
This menu lists all the content connectors that have been configured and enabled in
your Oracle Content Management instance.

If any of the connectors you select have content types associated with them, the
types appear under Content Types.

After a Dropbox content connector is configured, enabled, and associated with a repository,
it's available in the asset repository for Oracle Content Management users to download
content, through the Add drop-down menu, Import from Dropbox option on the Assets
page.

Chapter 4
Configure a Dropbox Content Connector

4-9

Enable Jax-WS
JAX-WS should be enabled on Oracle Content Server for the connector to work. This
is the basic prerequisite.

JAX-WS should be enabled on Oracle Content Server for the connector to work. This
is the basic prerequisite. To verify this, access the content server instance using the
following URL. This will render the WSDL in the browser.

https://<host_name>:<port>/idcnativews/IdcWebLoginPort?WSDL

Configure a WordPress.org Content Connector
After you configure and enable a WordPress.org content connector, you can connect
to WordPress.org and pull required content from it into Oracle Content Management.

To create and configure a custom content connector:

1. Locate the base URL for your WordPress.org instance. For example, https://
wordpress.mycompany.com/.

2. Create the connector in Oracle Content Management.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the
left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the WordPres.org content connector and then click
Create.

e. On the Connector Settings page, provide information for registration of your
WordPress.org content connector. If you want to accept a certificate signed by
the third-party provider, select Accept self-signed certificate.

f. Click Next. Once the details are verified, select the Custom Fields tab.

g. Click the Custom Fields tab, and fill the WordPress URL field.

3. When you are done, click Save.

4. On the Content Connectors page, click the Enable button next to the
WordPress.org content connector you created.

5. Associate the connector with one or more asset repositories:

a. Click Content in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing
channels, languages, and other options.

d. Under Content Connectors, select one or more connectors to associate with
the repository.
This menu lists all the content connectors that have been configured and
enabled in your Oracle Content and Experience instance. If any of the

Chapter 4
Configure a WordPress.org Content Connector

4-10

connectors have content types associated with them, the types appear under
Content Types.

After a WordPress.org content connector is enabled, configured, and associated with a
repository, it's available in the asset repository for Oracle Content and Experience users to
import content. To import content, click the Add drop-down menu and select Import from
WordPress.org option on the Assets page.

Configure a YouTube Content Connector
After you configure and enable a YouTube content connector, you can connect to YouTube
and pull required content from it into Oracle Content Management.

To configure a YouTube content connector:

1. Get the Oracle Content Management host name and authorization URL details.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the Youtube content connector.

e. Click Create.

f. You can override the default content connector settings, as described in Enable a
Content Connector.

2. Enter any name and give the Connector Service URL.

3. Click Verify Settings.
This lists the custom fields of the YouTube content connector.

In the Connector Tags field, you can assign tags for assets that the content connector
pulls into Oracle Content Management.

4. Sign in to https://console.developers.google.com/ and create a new project.
Give your project a name, and click CREATE.

5. Go to the project and the Library page from the left corner icon in the navigation menu,
and click ENABLE APIS AND SERVICES.

6. Search for the Youtube Data API v3 library, select it, and enable it.

7. Click Create Credentials and then API key in the drop-down menu. Note the value of
API Key. This is the Developer Key you'll enter in Oracle Content Management when
you configure the YouTube connector.

8. Specify a value for Application Name, which can be anything.

9. Click Save.

10. Make sure Enabled for end users is selected.
You can review the Terms of use and Privacy Policy below the Enable for end users
button.

11. Map source metadata to content types for the connector.
When you configure a content connector, you can do field mapping from source metadata
to content type fields. A repository administrator or system administrator can allow
creation of content types for a connector. You can create content types on the Mappings
tab of the Connector Settings page. To map source metadata to a content type:

Chapter 4
Configure a YouTube Content Connector

4-11

https://console.developers.google.com/project

a. Sign in to Oracle Content Management as a system administrator and click
Integrations under Administration in the left navigation menu.

b. On the Assets page, click Create.

c. On the Create Repository page, define your repository.

i. Specify the connector name, publishing channels, languages, and other
options.

ii. Under the Connectors option, select Youtube from the drop-down menu
to associate the YouTube content connector with the repository. On the
Create/Edit Repository page, if you add the connector 'Youtube', the
content type 'YoutubeVideos' will automatically be assigned.
If the YouTube connector has content types associated with it, the types
appear under the Content Types option. If you want the content
connector to have additional fields, you can add them on the Mappings
tab of the Connector Settings page.

If the Allow Content Type Creation check box on the General tab is
selected, the mapping of source metadata to Oracle Content Management
content types will be automatically populated. You can change the
automatic mapping on the Connector Settings page.

d. If the Allow Content Type Creation check box on the General tab is not
selected, you need to map the source metadata to Oracle Content
Management content types on the Connector Settings page:

i. On the Mappings tab, choose a source type from the Source Content
Type drop-down menu and an Oracle Content Management type from the
OCE Content Type drop-down menu, such as YoutubeVideos, to map
the Source Data Field to the Target Data Field.

ii. Repeat for each source content type.

iii. Click Save.

iv. Enable a Content Connector.
This type mapping must be done for all source types before the content
connector is enabled. If you want to change the mapping, you need to
disable the connector, make your changes, and then enable the connector
again. Whenever an administrator saves the connector after modifying a
content type, the connector framework will attempt to seed the content
type again. If you remove any associated content type that is required for
the selected connector, the save will fail.

12. Associate the connector with one or more asset repositories.

a. Click Assets in the Administration area of the navigation menu on the left.

b. Open an existing repository, or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing
channels, languages, and other options. You need to configure the languages
that are expected from the connector. For example, some of the languages
that YouTube supports are en, en-CB, and en-AU. If these are not configured,
content item creation may fail.

d. Under Connectors, select Youtube to associate the YouTube content
connector with the repository.
This menu lists all the content connectors that have been configured and
enabled in your Oracle Content Management instance.

Chapter 4
Configure a YouTube Content Connector

4-12

If any of the connectors you select have content types associated with them, the
types appear under Content Types. On the Create/Edit Repository page, if you add
the connector 'Youtube', the content type 'YoutubeVideos' will be automatically
assigned.

Configure a Microsoft SharePoint Online Content Connector
Microsoft SharePoint Online is a web-based document management and storage system.
After you configure and enable a Microsoft SharePoint Online content connector, you can
connect to it and pull content from Microsoft SharePoint Online into Oracle Content
Management.

A Microsoft SharePoint Online content connector enables you to import assets from the
Microsoft SharePoint Online repository into Oracle Content Management. As an
Administrator or Developer, you can configure a Microsoft SharePoint Online Content
Connector from the Integrations menu in an Oracle Content Management instance.

To configure a Microsoft SharePoint Online content connector:

1. Get the Oracle Content Management host name and authorization URL details.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the Microsoft SharePoint Online content connector.

e. Click Edit, or you can click the link to get to the Edit page.

f. On the General tab, note the Redirect URL, which will be in this format:

https://<hostname>.<domainname>.com:<port>/documents/web/
AR_COMPLETE_AUTHORIZATION

The Redirect URL field is truncated. Double-click the field to copy the value to your
clipboard. You'll need to provide this value later on the Azure app registration page.

2. Create a SharePoint Online app:

a. Sign in to Microsoft Azure at https://portal.azure.com/:

i. Pick an account that has your Microsoft user name.

ii. Enter your Microsoft password.

iii. Choose Office365.

iv. Click Sign in.

v. Click Yes to stay signed in and reduce multiple sign-ins.

b. On the Azure services page, click App registrations.

c. On the App registrations page, click New registration.

d. On the Register an application page, enter a name and choose the account types
that can use the application. At the bottom, paste a redirect URL and then click
Register.

e. On your application's page, click Certificates & secrets in the left menu, and then
click the New client secret button on the page.

Chapter 4
Configure a Microsoft SharePoint Online Content Connector

4-13

https://portal.azure.com/

f. Under Add a client secret, enter a description for your client secret, select
Never under Expires, and then click Add.

g. Click the Copy to clipboard icon on the bottom right to record the secret.
You'll need to enter it later in the Client Secret field on the Additional Fields
page for the content connector. Also click Copy to clipboard to record other
details.

h. On the API permissions page, click Add a permission to add a SharePoint
Online permission, such as User.Read, a Delegated permission for
SharePoint Online to sign in as the user and access an API. Another
permission you might want to add is off-line access, which enables the
refresh token.
In addition to User permissions, you can grant AllSites, Myfiles, Sites, and
TermStore permissions.

3. Add the SharePoint Online connector to a repository.

a. In Oracle Content Management, select Integrations on the left navigation
menu.

b. On the Integrations page, choose Content Connectors from the drop-down
menu.

c. In the list of content connectors, click the name of the SharePoint Online
content connector.

4. Configure the Microsoft SharePoint Online content connector in Oracle Content
Management.

a. On the General tab:

• The Name, Description, Connector service URL, and Redirect URL
fields are prepopulated.

• In the Connector tags field, you can assign tags that will be applied to
assets pulled from the content connector (for example, the content
connector name). This lets you search for all items from that content
connector in an asset repository.

• Make sure Enabled for end users is selected.
You can review the Terms of use and Privacy Policy below the Enable
for end users button.

b. Click the Additional Fields tab.

Enter the values for the following fields, some of which you recorded earlier:

Chapter 4
Configure a Microsoft SharePoint Online Content Connector

4-14

• Client ID: the value of the Application ID from the Azure app registration.

• Client Secret: the value of the client secret generated in the Azure app
registration.

• SharePoint URL: https://<company name>.sharepoint.com, this is the
SharePoint URL, URL of your tenant, and URL of site collection.

• Tenant ID: the Directory (tenant) ID from the Azure app registration.

• Access Scope: offline_access https://<company name>.sharepoint.com/
AllSites.Read

c. When you're done, click Save.

5. Add the connector to a repository.

a. Click Content in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing channels,
languages, and other options.

d. Under Content Connectors, select one or more connectors to associate with the
repository.
This menu lists all the content connectors that have been configured and enabled in
your Oracle Content Management instance.

If any of the connectors you select have content types associated with them, the
types appear under Content Types.

After a Microsoft SharePoint Online content connector is configured, enabled, and associated
with a repository, it's available in the asset repository for Oracle Content Management users
to download content, through the Add drop-down menu Import from Microsoft SharePoint
option on the Assets page.

Note:

An authorized application for a Microsoft SharePoint Online content connector must
provide a link to https://account.live.com/consent/Manage, or to another
location specified for a SharePoint Online content connector, with a clear indication
that end users can go to that Microsoft site to revoke permissions at any time. If end
users must take additional steps to disable the authorized application's access to
end-user information, then the application must clearly indicate to end users the
additional steps required to disable access. These requirements do not apply where
Microsoft provides the end-user web interface.

Configure a Contentful Content Connector
After you configure and enable a Contentful content connector, you can connect to Contentful
and pull required content from it into Oracle Content Management.

To configure a Contentful content connector:

1. Get the Contentful API key:

a. Locate the base URL for your Contentful instance. For example, https://
contentful.company.example.com /.

Chapter 4
Configure a Contentful Content Connector

4-15

b. Click Settings in the top menu. Click API keys. Click Add API key.

c. Add a name to the Name field.

d. Note the Space ID, Content Delivery API Access Token, Content Preview API
Access Token, and Environment. You will need them later.

e. Click Save.

2. Configure the Contentful connector in Oracle Content Management.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the
left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the Contentful content connector, and then click
Edit.

e. On the Connector Settings page, on the General tab, in the Connector tags
field, you can assign tags that will be applied to assets pulled from the content
connector (for example, the content connector name).
This lets you search for all items from that content connector in an asset
repository.

Make sure Enabled for end users is selected. You can review the Terms of
use and Privacy Policy below the Enabled for end users button.

f. Click the Additional Fields tab, and enter the following information:
If you want to import Draft content, select the Draft Content check box and
set Authentication Key to the Content Preview API Access Token. Otherwise,
enter the Content Delivery API Access Token.

Enter your Space ID and your Environment.

After a Contentful content connector is enabled, configured, and associated with a
repository, it's available in the asset repository for Oracle Content Management users
to import content. To import content, click the Add drop-down menu and select the
Import from Contentful option on the Assets page.

Configure a Drupal Content Connector
After you configure and enable a Drupal content connector, you can connect to Drupal
and pull required content from it into Oracle Content Management.

To configure a Drupal content connector:

1. Sign in to the Drupal site.

a. Click Extend on the menu.

b. On the Extend page, search for JSON and then select JSON:API and
Serialization checkboxes.

c. Select HTTP Basic Authentication.

i. You must have the HTTP Basic Authentication module enabled.

ii. Click People.

iii. Click Permissions.

Chapter 4
Configure a Drupal Content Connector

4-16

iv. Dselect checkboxes under Anonymous to protect resources with Basic
Authenticaiton.

d. Click Install.

2. Locate the base URL for your Drupal instance. For example, https://
drupal.mycompany.com/.

3. Get the Oracle Content Management host name and authorization URL details.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the left.

c. In the Integrations menu, choose Content Connectors.

d. Click the check box next to the Drupal content connector and then click Create.

e. On the Connector Settings page, provide information for registration of your Drupal
content connector.

f. Click Next. Once the details are verified, select the Custom Fields tab.

g. On the Custom Fields page, enter the base URL of Drupal instance and click Save.

4. On the Content Connectors page, click the Enable button next to the Drupal content
connector you created.

5. Associate the connector with one or more asset repositories:

a. Click Content in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing channels,
languages, and other options.

d. Under Content Connectors, select one or more connectors to associate with the
repository.
This menu lists all the content connectors that have been configured and enabled in
your Oracle Content Management instance. If any of the connectors have content
types associated with them, the types appear under Content Types.

After a Drupal content connector is enabled, configured, and associated with a repository, it's
available in the asset repository for Oracle Content Management users to import content. To
import content, click the Add drop-down menu and then select Import from Drupal option on
the Assets page.

Configure Oracle WebCenter Content Server and Oracle
Content Management for the WCC Connector v2.0

An Administrator can register and configure Oracle WebCenter Content (WCC) and Oracle
Content Management for the WCC connector v2.0 so site users can pull content from the
WebCenter Content server into their sites.

The following topics describe the WebCenter Content connector v2.0 and how to use it:

• Verify Network Accessibility for a WCC Connector v2.0

• Check WebCenter Content Server Readiness

• Check Oracle Content Management Readiness

• Configure the Oracle WebCenter Content Connector v2.0

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-17

• Specify WebCenter Content Connector v2.0 Mappings

• Enable Oracle WebCenter Content Connector v2.0 for an Asset Repository

• Use Oracle WebCenter Content Connector v2.0

• Map to a Custom Asset Type

• Revoke Authorized Users

Verify Network Accessibility for a WCC Connector v2.0
The communication between Oracle Content Management and WebCenter Content
Server takes place over JAX-WS protocol, so the Oracle Content Management
instance and WebCenter Content Server need to be on the same network for them to
work together.

• For the Oracle Content Management public cloud, the WebCenter Content Server
should be accessible from the Public networks.

• For the Oracle Content Management private cloud, the WebCenter Content Server
should be accessible from that private network.

Check WebCenter Content Server Readiness
• Enable SSL

• Enable Jax-WS

• Set Up a Security Policy

• Run the Indexer and File Formats Wizard

Enable SSL
The Oracle Content Server should be accessible over HTTPS protocol.

Access the content server sign-in page using the following URL, which will render the
sign-in page in the browser:

Login Page: https://<host_name>:<port>/cs/login/login.htm

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-18

Enable Jax-WS
JAX-WS should be enabled on Oracle Content Server for the connector to work. This is the
basic prerequisite.

JAX-WS should be enabled on Oracle Content Server for the connector to work. This is the
basic prerequisite. To verify this, access the content server instance using the following URL.
This will render the WSDL in the browser.

https://<host_name>:<port>/idcnativews/IdcWebLoginPort?WSDL

Set Up a Security Policy
We will communicate with the WebCenter Content Server using the JAX-WS communication
channel. The JAX-WS endpoints must be secured using the OWSM policies.

We will use the oracle/wss_username_token_over_ssl_service_policy server-side policy.
Any client that communicates with the WebCenter Content Server must enter both a user
name and a password. If these values are incorrect, then the handshake with the WebCenter
Content Server will not be established.

Take the following steps to configure the server-side policy:

1. Check the OWSM policy attached to JAX-WS.
To check the policy attached, access https://<host_name>:<port>/idcnativews/
IdcWebLoginPort?WSDL. You should see the policy name in the URI attribute of the
<wsp:PolicyReference> field in the WSDL.

<binding name="IdcWebLoginSoapHttp" type="tns:IdcWebLogin">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsp:PolicyReference xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
URI="#wss_username_token_over_ssl_service_policy" wsdl:required="false"/>

2. If the attached policy is oracle/wss_username_token_over_ssl_service_policy, then
ignore the steps that follow.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-19

http://schemas.xmlsoap.org/soap/http
http://schemas.xmlsoap.org/ws/2004/09/policy

3. If the attached policy is a different one, then first detach that policy, and then
attach the policy oracle/wss_username_token_over_ssl_service_policy. The
steps to attach or detach a policy follow. If no policy is attached, then follow the
steps.

Take the following steps to Attach an OWSM Policy:

1. Go to the WebCenter Content Server Enterprise Manager:

http://<host_name>:<port>/em

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-20

Sign in with your administrator credentials (weblogic/<password>)

2. On the Target Navigation page, choose Application Deployments -> Oracle UCM
Native Web Services -> oracle UCM Native Web Service(UCM_Server1).

3. Choose Application Deployment -> Web Services.

4. On the IdcWebLoginPort (Web Services Endpoint) page, click Attach/Detach
Policies.

5. In the directly attached policies section, if there is any policy other than oracle/
wss_username_token_over_ssl_service_policy attached, first detach it. Then attach
the oracle/wss_username_token_over_ssl_service_policy policy:

a. Click the policy whose category is Security, select it, and then click Detach.
Notice that this policy will go away from the Directly Attached Policies list.

b. Attach the oracle/wss_username_token_over_ssl_service_policy.
Under Available Policies, search for oracle/
wss_username_token_over_ssl_service_policy. In the result section, select
oracle/wss_username_token_over_ssl_service_policy, and then click the Attach
button.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-21

6. Verify that oracle/wss_username_token_over_ssl_service_policy is under
Directly Attached Policies, click Validate, and then click OK. After the popup
closes, click the Return button. No restart is required.

7. Access https://<host_name>:<port>/idcnativews/IdcWebLoginPort?WSDL.
You should see the policy oracle/
wss_username_token_over_ssl_service_policy being attached to the
IdcWebLoginPort in the wsu:Id attribute of the <wsp:Policy> field. This confirms
that the policy is attached correctly.

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:mime="http://
schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:soap12="http://
schemas.xmlsoap.org/wsdl/soap12/"
xmlns:tns="http://idcnativews.webservices.idcservlet/" xmlns:wsdl="http://
schemas.xmlsoap.org/wsdl/"

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-22

http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/mime/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap12/
http://schemas.xmlsoap.org/wsdl/soap12/
http://idcnativews.webservices.idcservlet/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="IdcWebLoginService"
targetNamespace="http://idcnativews.webservices.idcservlet/">
 <wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns="http://
schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
wsu:Id="wss_username_token_over_ssl_service_policy">

8. Also, verify that the https://<host_name>:<port>/idcws/GenericSoapPort?WSDL wsdl
loads successfully.

Run the Indexer and File Formats Wizard
To complete the configuration of an Oracle WebCenter Content server, you need to run the
Indexer for search results and the File Formats Wizard for IBR configuration.

It is mandatory to run the Indexer for a search to return results. Choose Administration →
Admin Applets → Repository Manager → Indexer.

To show thumbnail for documents in the Oracle WebCenter Content v2.0 file picker window in
Oracle Content Management, IBR must be configured for Oracle WebCenter Content Server.
Choose Administration -> Refinery Administration -> File Formats Wizard.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-23

http://www.w3.org/2001/XMLSchema
http://idcnativews.webservices.idcservlet/
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://www.w3.org/2001/XMLSchema-instance

Check Oracle Content Management Readiness
The WebCenter Content connector v 2.0 is deployed on an Oracle Content
Management (OCM) managed server and can be accessed using the context root: /
cec-connector/wccontent

Note:

The basic access authentication does not work for federated users. If that's
the case, use token authentication to access the connector.

Basic authentication
To verify the deployment, go to the following link in the browser:

http://<host>:<port>/cec-connector/wccontent/rest/api

This gives the following response, which indicates the connector is deployed properly:

["v1"]

Token authentication

1. Log into the OCM service: https://<host>:<port>/documents in your web
browser.

2. Once you're logged in, open another tab and go to this endpoint to get the token
value from the response as shown in your browser.

https://<host>:<port>/documents/web?IdcService=GET_OAUTH_TOKEN

3. Use the Bearer token value retrieved in step 2 to make a request to the connector
endpoint:

GET https://<host>:<port>/cec-connector/wccontent/rest/api

Make sure to include the authorization field in your header as shown below:

Authorization: Bearer <tokenValue>

Configure the Oracle WebCenter Content Connector v2.0
Before you start using the Oracle WebCenter Content Connector v2.0 in an Oracle
Content Management instance, the connector needs to be registered, configured, and
enabled on the Oracle Content Management side.

To configure Oracle WebCenter Content Connector v2.0 for Oracle Content
Management:

1. Sign in to Oracle Content Management as an administrator.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-24

2. Go to Administration > Integrations > Content Connectors, locate the out-of-the-box
connector Oracle WebCenter Content v2.0, and click Enable next to it.

3. Enter a description and select the Allow asset type creation and Enable for end-users
checkboxes.

4. Enter details for Additional Fields:

• WebCenter Content JAX-WS Connection URI: http://<host_name>:<port>/
idcnativews

• WebCenter Content Server JAX-WS Client Policy: oracle/
wss_username_token_over_ssl_client_policy

• WebCenter Content Server Web Context Root: /cs (This depends on Content Server
setup.)

5. Click Save.

Specify WebCenter Content Connector v2.0 Mappings
Selection of the Allow asset type creation option for Oracle WebCenter Content Connector
v2.0 creates a WebCenter-Content-DigitalAsset asset asset type in Oracle Content
Management by the administration user who is configuring the connector.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-25

You can view the asset type on the Administration > Content > Asset Types page.

As an administrator for the asset repository, you can specify mappings for the
connector type.

Enable Oracle WebCenter Content Connector v2.0 for an Asset
Repository

Once the connector is configured and enabled, we need to enable it for the asset
repository.

Selecting the connector automatically adds the associated asset type to the repository.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-26

Use Oracle WebCenter Content Connector v2.0
To use Oracle WebCenter Content Connector v2.0, follow these steps:

1. Go to the asset repository for which you have configured the connector, and click Add >
Import from Oracle WebCenter Content v2.0
This launches a WebCenter Content Sign In dialog.

2. Enter your WebCenter Content Server credentials.
These credentials will be securely stored on Oracle Content Management and can be
reused for subsequent access. To clear the credentials, go to Add > Manage Sources >
Connector > Revoke.

After your credentials are authenticated, you will see a connector-picker dialog that lists
content from the content server.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-27

3. Browse through the files and folders. You can also use search for specific items.
Additionally, you can choose to view the listing in various layouts, like card,
compact, and list.

The dialog also supports pagination for a large number of files and folders. Select
the file or files you are interested in, and click Ok.

4. You can add to the asset repository. An intermediate dialog lists the files to be
added and lets you choose the collection and channels. You can also specify tags
for the content you are adding. Click Add.
Once Add is successful, assets are added in the asset repository.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-28

The following image shows the assets and its attributes imported into Oracle Content
Management.

Map to a Custom Asset Type
To map a custom asset type, you can reuse an existing asset type or create a new one and
do the necessary mapping in the connector configuration screen.

For example, suppose we were to register a new Oracle WebCenter Content v2 connector for
another WebCenter Content instance we want to wire to. We deselect Allow Content type
creation and choose to use other asset type in the Oracle Content Management and perform
the necessary mappings of the listed attributes.

Chapter 4
Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0

4-29

Revoke Authorized Users
Once you provide the user credentials, they are stored in Oracle Content Management
and passed to the connector during subsequent usage, which means the login
challenge will not be given all the time.

If you need to sign in as a different user, then the signed-in authorized user needs to
be revoked. To revoke an authorized user:

1. Click Assets → Add → Manage Sources.

2. Click Revoke next to a user name.

3. Click OK to revoke the user.

Use Custom Digital Asset Types in Content Connectors
You can import into a repository assets that are mapped to digital asset types defined
by a content connector.

Import Assets Mapped to Digital Asset Types
Content connectors in Oracle Content Management typically bring assets from a third-
party content management system into Oracle Content Management. The assets that
are created in Oracle Content Management can be digital assets or content items. You
can import assets mapped to asset types defined by a connector into Oracle Content
Management.

A digital file as well as the values for custom attributes can come from the external
store, such as Google Drive. Now you can import assets into a new repository with
seeded types as Image, Video, Video Plus, File, and custom types. You can use a
seeded type, a custom digital asset type, or a content item type.

Chapter 4
Use Custom Digital Asset Types in Content Connectors

4-30

Create and Configure a Custom Content Connector
After you create and configure a custom content connector, you'll be able to connect it to a
third-party content repository and import content from the repository into Oracle Content
Management.

To create and configure a custom content connector:

1. Create an app for the custom content connector. See Develop Content Connectors.

2. Create the connector in Oracle Content Management.

a. Sign in to Oracle Content Management as an Administrator or Developer.

b. Click Integrations in the Administration area of the navigation menu on the left.

c. In the Integrations menu, choose Content Connectors.

d. Click Create.

e. On the Connector Settings page, provide information for registration of your custom
content connector.

f. Click Next. Once the details are verified, the Additional Fields tab will appear.

g. Click the Additional Fields tab, and configure the custom fields that were defined for
your content connector.
Custom properties are connector-specific. Every connector has its own requirement
to connect to a remote store; for example, one connector might need just ClientID
and ClientSecret, while another might require ClientID, ClientSecret, AppID, and
so on.

h. If the connector's picker type is CUSTOM, the following fields are displayed under the
Connector Tags field:

• Custom Picker URL: Provide the name of the custom picker packaged in your
content connector, if any. This setting is not applicable when you use the
common web user interface.

• Hide OK/Cancel: This setting indicates whether or not you want Oracle Content
Management to embed your picker in their dialog. Leave this setting unchecked if
you use the common web user interface.

3. When you're done, click Save.

4. If your custom content connector is of type METADATA and you want to map source
metadata to content type fields, either manually or to edit the automatic mappings, click
the Mappings tab. You must, map content types and metadata before enabling the
connector.

5. On the Content Connectors page, click Enable next to the custom content connector
you created.

6. Associate the connector with one or more asset repositories.

a. Click Assets in the Administration area of the navigation menu on the left.

b. Open an existing repository or click Create to create a new one.

c. If you're creating a new repository, specify the repository name, publishing channels,
languages, and other options.

d. Under Connectors, select one or more connectors to associate with the repository.

Chapter 4
Create and Configure a Custom Content Connector

4-31

This menu lists all the content connectors that have been configured and
enabled in your Oracle Content Management instance.

If any of the connectors you select have content types associated with them,
the types appear under Content Types.

Create Content Types for a Connector
A repository administrator or system administrator can allow creation of content types
for a content connector.

You can create content types for a connector on the Mappings tab of the Connector
Settings page.

Map Source Metadata to Fields in a Content Type
The WebCenter Content v2.0 connector and some custom content connectors
(connectors with type METADATA) allow you to map source metadata to Oracle
Content Management content type fields.

Typically a source system has metadata associated with each content file. When you
import a content file to an asset repository, you can use that source metadata to
populate the fields in a content item, such as an employee record.

You can have the connector automatically create a content type for the content
imported through a connector, with each piece of source metadata automatically
mapped to a field in the content type. You can also customize the automatic mappings
or map your own content type to the source content type. If you want to use your own
content type, you must create it before creating mappings in the connector.

If your source content repository has multiple content types, you can select a different
Oracle Content Management v2.0 content type to map to each source type.

Content type and field mapping must be done for all source types before the content
connector is enabled. If you want to change the mappings, you need to disable the
connector, make your changes, and then enable the connector again. Whenever an
administrator saves the connector after modifying a mapping, the connector framework
will attempt to seed the content type again. If you remove any associated content type
that is required for the selected connector, the save will fail.

To map source metadata to fields in a content type:

1. Sign in to Oracle Content Management as an Administrator or Developer.

2. Click Integrations in the Administration area of the navigation menu on the left.

3. In the Integrations menu, choose Content Connectors.

4. Click Configure next to the connector you want to add mappings to.

5. If you want to automatically create a content type for imported content, with
content type fields that are automatically mapped to the source metadata, select
Allow content type creation. You can change the automatic mappings on the
Mappings tab.

6. To create manual mappings or to edit the automatic mappings, click the Mappings
tab:

a. Select a Source Content Type, then select the Oracle Content Management
v2.0 content type you want to map to it.

Chapter 4
Create and Configure a Custom Content Connector

4-32

b. Map each Source Data Field to a Target Data Field.

c. Repeat for each source content type.

7. When you're done, click Save.

Provide Configuration Parameter Values for a Content
Connector

A service administrator can register a content connector on the cloud storage provider’s
website to get configuration parameter values to enter for the content connector in Oracle
Content Management.

Only one set of user credentials is stored for a signed-in Oracle Content Management user. If
you need to use a separate user to fetch data, use Manage Sources and revoke the
authorization for the existing user. Then you can use credentials for a second user.

Before you configure the content connector in Oracle Content Management, you need to get
custom field information from the third-party content repository's website (such as Google
Developers) by registering the content connector as an application that you want to integrate.

Here's the information you'll need for the various content connectors:

• Google Drive: Client ID, Client Secret, Developer Key, and App Id

• Microsoft OneDrive: Client ID and Client Secret

• Dropbox: App Key and App Secret

• Microsoft SharePoint Online: Client ID, Client Secret, Sharepoint URL, Tenant ID, and
Access Scope

• WebCenter Content: WebCenter Content Server JAX-WS Connection URI, WebCenter
Content Server JAX-WS Client Policy, and WebCenter Content Server Web Context Root

1. Click Integrations in the Administration area of the navigation menu.

2. In the Integrations menu, choose Content Connectors.

3. Click the Configure button next to a content connector.

4. Click the Additional Fields tab, and enter the information you collected from the third-
party content repository's website.

5. Click Save to save the configuration parameter values.

After a content connector is configured and enabled, it's available in the asset repository for
Oracle Content Management users to download content, through the Add From drop-down
menu on the Assets page.

Delete a Content Connector
A service administrator can delete a disabled custom content connector in an Oracle Content
Management instance at any time.

You cannot delete a preconfigured content connector. You can delete only newly added
content connectors (custom content connectors).

To delete a content connector:

1. Click Integrations in the Administration area of the navigation menu.

Chapter 4
Provide Configuration Parameter Values for a Content Connector

4-33

2. In the Integrations menu, choose Content Connectors.

3. If the content connector is enabled, click Disable next to it.

4. Click Delete next to the custom content connector.

Chapter 4
Delete a Content Connector

4-34

Part III
Developing Oracle Content Management
Extensions

This part provides information on developing Oracle Content Management extensions. It
includes the following chapters:

• Develop Custom Actions with Application Integration Framework (AIF)

• Develop Content Connectors

• Develop Custom Field Editors

• Develop Custom Content Forms

• Develop Translation Connectors for Language Service Providers

• Develop External Processors

• Compile Content Layouts as HTML

5
Develop Custom Actions with Application
Integration Framework (AIF)

You can use Application Integration Framework (AIF) to define actions that are exposed in
the web interface, respond to user selections, call third-party services, and specify how the
results are presented to the user.

• Understand the Application Integration Framework (AIF)

• Manage Custom Applications

• Configuration File Format

• Application Properties

• Action Command

• Invoke Command

• Presentation Command

• Expressions

• Variables

• Localization

Understand the Application Integration Framework (AIF)
Application Integration Framework (AIF) provides a simple and effective way to integrate
third-party services and applications into the Oracle Content Management web interface.

Using AIF, you can quickly define the actions that are exposed in the web interface, respond
to user selections, call third-party services, and specify how the results are presented to the
user. The framework supports variables and expressions and provides multiple language
support.

Custom AIF applications are not applied when you access them through an applink or public
link.

The definition for one or more integrations is stored in a single file in JSON format. As a
developer, you can upload the configuration file and add it to a list of available applications.
You can also edit and validate the configuration file directly in the web interface, enable or
disable the app for general use, set preferences such as providing tenant and account
information, download the configuration file, or delete the app.

Note:

When using a private instance or any network environment with limited access,
you'll need to provide users access to any third-party locations so they can use any
custom actions.

5-1

The configuration file defines and manages the interactions between the app, native
objects and web interface elements. The configuration file includes:

• App properties including tenant and user preferences

• Actions that are exposed in the web interface and the service calls they make

• How the results are presented to the user

• Interface strings with support for multiple languages

To manage apps created with Application Integration Framework, sign in as a
developer, open your user menu, choose Administration, and then choose
Integrations. Under Custom Actions, click Add.

Chapter 5
Understand the Application Integration Framework (AIF)

5-2

From the Applications page, you can use the following options.

Setting Description

Enable or disable the application for users. When you enable the application,
you can specify preferences for the application from the user menu, by
choosing Preferences and then Applications Settings. You specify the
user preferences resource in the userPrefs element in the configuration
file.

Browse local folders and files to locate and upload an application
configuration file.

Display the information defined for the application and specified in the info
element of the configuration file.

Display the preferences resource defined in the tenantPrefs element of
the configuration file.

Open the configuration file in the integrated JSON editor. The editor
validates the syntax of the file to ensure that the file contains valid JSON
code. Changes you make to the configuration file are immediately available
in the enabled application.

Changes you make to the configuration file are stored only in the server copy
of the file. To back up your changes, use the Download icon to save the file
locally.

Download the file from the server to a local destination.

Delete the configuration permanently.

When you delete a configuration file, the deletion is permanent. The file can’t
be restored from the trash.

Manage Custom Applications
You can create custom applications using the Application Integration Framework (AIF).

With custom applications, you can change the menu options your users will see, add pop-up
dialogs as needed, call third-party services, and specify how the results are presented to the
user.

For details about creating applications using AIF, see Understand the Application Integration
Framework (AIF) .

After creating an application, you can add it to Oracle Content Management and manage it
from the Administration web interface.

1. After you sign in to the Oracle Content Management web application as a service
administrator, click System in the Administration area of the navigation menu.

2. In the Settings menu, click Integrations.

3. To add an application, under Custom Actions, click Add and navigate to the location
where the configuration file that contains the application information is stored and select
it.

4. After adding the application, you can enable or disable it by selecting or clearing the
check box.

After you add your application and enable it, you can manage it by clicking the appropriate
icon for any of the following actions:

Chapter 5
Manage Custom Applications

5-3

• View information about the application. What is shown is set by the application’s
info application property (for example, a popup window).

• Set the preferences for the application. What is shown is set by the application’s
tenantPrefs property.

• Edit the application. You can alter the application’s code and click Load to test the
application, save the application, or cancel your edit. If an action isn’t allowed in
the code, an error message is displayed, describing the error.

• Download the application. You can save the application or open it using an editor
of your choice.

• Remove the application. When you delete an application, it is not moved to your
trash. You will need to add the application file again if you want to use it.

When an application is disabled, you can only edit the application, download it, or
delete it.

To view all enabled applications, open your user menu, click Preferences, and then, in
the Preferences menu, select Applications. You can view the information for the
application and the preferences. The Applications option is not shown in the
Preferences menu unless at least one application is enabled.

Configuration File Format
The definition for one or more integrations is stored in a single configuration file in
JSON format.

The extension of an AIF configuration file must be .conf.

As an developer, you can upload the configuration file and make it available to users.
See Understand the Application Integration Framework (AIF).

Note:

When using a private instance or any network environment with limited
access, you'll need to provide users access to any third-party locations so
they can use any custom actions.

A sample configuration file for one application follows. All keys and values in the
configuration are case-sensitive.

{
 "id": "ExampleCoPublishing",
 "name": "APP_SUBMIT_TO_PUBLISH_DOCS_NAME",
 "description": "APP_SUBMIT_TO_PUBLISH_DOCS_DESC",
 "category": "CUSTOM",
 "supportEmail": "support@example.com",
 "baseUrl": "http://www.example.com/",
 "info": {
 "documentation": "Opens a URL with a description of the app in a popup window",
 },
 "info": {
 "presentation": {
 "view": "POPUP"
 },

Chapter 5
Configuration File Format

5-4

 "invoke": {
 "method": "GET",
 "url": "http://www.example.com/ExampleCoDescr.jsp",
 "data": ""
 }
 },
 "tenantPrefs": {
 "presentation": {
 "view": "POPUP"
 },
 "invoke": {
 "method": "GET",
 "url": "http://www.example.com/ExampleCoAdmin.jsp",
 "data": ""
 }
 },
 "userPrefs": {
 "presentation": {
 "view": "POPUP"
 },
 "invoke": {
 "method": "GET",
 "url": "http://www.example.com/ExampleCoUser.jsp?user={user.id}",
 "data": ""
 }
 },
 "actions": [
 {
 "id": "submitToPublish",
 "name": "ACTION_SUBMIT_TO_PUBLISH_NAME",
 "description": "ACTION_SUBMIT_TO_PUBLISH_DESC",
 "type": "UI",
 "trigger": "MENU",
 "presentation": {
 "view": "POPUP",
 "popupWidth": 700,
 "popupHeight": 400
 },
 "evaluate": "type=='folder' && user.isMember && user.role=='owner' && !
isReservedByAnotherUser",
 "invoke": {
 "method": "GET",
 "url": "http://www.example.com/ExampleCoSubmit.jsp?
user={user.id}&ids=[{id},]&names=[{name},]"
 },
 "multi": false
 },
 {
 "id": "showPublishStatus",
 "name": "ACTION_SHOW_PUBLISH_STATUS_NAME",
 "description": "ACTION_SHOW_PUBLISH_STATUS_DESC",
 "type": "UI",
 "trigger": "SELECT",
 "presentation": {
 "view": "POPUP",
 "popupWidth": 300,
 "popupHeight": 200
 },
 "evaluate": "type=='file' && user.isMember && user.role=='owner' &&
_.contains(['doc','','docx','xls','xlsx','ppt','pptx','tif','png'], extension) &&
(_.isEmpty(reservedById) || reservedById === user.id)",

Chapter 5
Configuration File Format

5-5

 "invoke": {
 "method": "GET",
 "url": "http://www.example.com/ExampleCoSubmit.jsp?
user={user.id}&ids=[{id},]&names=[{name},]"
 },
 "multi": false
 },
 {
 "id": "publishDirect",
 "name": "ACTION_PUBLISH_DIRECT_NAME",
 "description": "ACTION_PUBLISH_DIRECT_DESC",
 "type": "DIRECT",
 "trigger": "MENU",
 "presentation": {
 "view": "CLIENT",
 "popupWidth": 500,
 "popupHeight": 100
 },
 "evaluate": "type=='folder' && user.isMember && user.hasPrivilegesAs(item, 'owner')",
 "invoke": {
 "method": "GET",
 "url": "http://www.example.com/ExampleCoMenuAction.jsp"
 },
 "multi": false
 }
],
 "stringsMap": {
 "en": {
 "APP_SUBMIT_TO_PUBLISH_DOCS_NAME": "ExampleCo Publishing Technical Articles",
 "APP_SUBMIT_TO_PUBLISH_DOCS_DESC": "Submit an article for the ExampleCo technical
knowledge base.",
 "ACTION_SUBMIT_TO_PUBLISH_NAME": "Publish",
 "ACTION_SUBMIT_TO_PUBLISH_DESC": "Submits the selected document for review and
approval to ExampleCo publishing.",
 "ACTION_SHOW_PUBLISH_STATUS_NAME": "Select ExampleCo",
 "ACTION_SHOW_PUBLISH_STATUS_DESC": "Shows currently selected row info in ExampleCo
Publishing",
 "ACTION_PUBLISH_DIRECT_NAME": "Audit",
 "ACTION_PUBLISH_DIRECT_DESC": "Sends an audit event to ExampleCo when document is
selected"
 }
 }
}

The Application Integration Framework supports simple use of the JavaScript
underscore library (http://underscorejs.org); however, AIF does not allow defining
functions as parameters of underscore functions.

The sections that follow describe the functional areas of the Application Integration
Framework.

Functional Area Description

Application Properties Describes the application properties.

Action Command Describes the general elements of the action command. Use the
action command to specify how to trigger and start a task. The
invoke and presentation components of the action
command are presented in their own sections.

Chapter 5
Configuration File Format

5-6

http://underscorejs.org

Functional Area Description

Invoke Command Describes the elements of the invoke command. Use the
invoke command to call a third-party service, page, or script.

Presentation Command Describes the elements of the presentation command. Use the
presentation command to specify how the third-party content
retrieved by the invoke command is presented to the user.

Expressions Provides examples and general information about expressions
used with the invoke and evaluate commands.

Variables Provides descriptions of the available item and user variables, the
permissions and status objects, and AIF functions.

Localization Provides an example and general information about how to
localize an app with translated labels and descriptions.

Application Properties
The following table shows the properties of an Application Integration Framework application.

Property Required Description

id Yes A non-empty string that uniquely identifies the application
across Oracle Content Management.

name Yes A non-empty string that is displayed for the application’s web
user interface. It can also be a key that can be translated
using translation maps defined in stringsMap.

description No A string that is displayed with the application name in the
web user interface. It can also be a key that can be
translated using translation maps defined in stringsMap.

category No Category of the application. CUSTOM is the only allowed
value. If you do not explicitly include category in the
configuration file, it is dynamically added during application
configuration and is given the default value of CUSTOM.

supportEmail No Email address of application support owner.

baseURL No Base URL used as a prefix to any relative URLs specified in
the application.

stringsMap No Used to map languages to translation objects, so that keys in
the application definition can be translated to the
corresponding language.

info No Allows an integrator to show a dialog to display information
about the application. It contains presentation and
invoke properties.

documentation No Lets you add comments in the file, such as a comment to
identify the purpose of an action. You might add a
documentation property at the start of the code sample to
describe the application itself.

tenantPrefs No Allows an integrator to expose application-level options in the
preference settings. It contains presentation and invoke
properties.

Chapter 5
Application Properties

5-7

Property Required Description

userPrefs No Allows an integrator to expose application-level options in the
preference settings for users. It contains presentation and
invoke properties.

actions Yes A collection of actions contained in the application. It must
contain at least one action.

Action Command
Use the action command to specify how to trigger and start a specified task and how
to present the results.

The following table shows the properties of an action command.

Property Required Description

id Yes A non-empty string that uniquely identifies the action in
the application.

name Yes A non-empty string that is displayed for the action in the
web user interface. It can also be a key that can be
translated using translation maps defined in
stringsMap.

description No A string that is displayed for the action in a web user
interface tooltip. It can also be a key that can be
translated using translation maps defined in
stringsMap.

trigger No Specifies if the action is triggered through a context
menu taskbar (MENU), or when the item is opened
(SELECT). If you do not explicitly include trigger in the
configuration file, it is dynamically added during
application configuration and is given the default value of
MENU.

In the Application Integration Framework, the SELECT
trigger occurs when an item is opened, not when simply
checked in a folder listing.

type No Specifies how action results are displayed to the end
user. Possible values are UI and DIRECT. If the value is
DIRECT, a call is made to the URL specified with
invoke, and the response displays as a notification in
the Oracle Content Management web interface, if
possible. If the value is UI, the presentation property
specifies the type of web interface to use.

presentation No Specifies the presentation to use if type is set to UI.
Possible values are CLIENT to embed the action results
in the integrations side panel on the right of the display,
POPUP to display action results in a separate browser
dialog, and WINDOW to display action results in a new
browser window or tab. If type is set to UI and
presentation is omitted, it is added to the action with
the default value of CLIENT. See Presentation
Command.

Chapter 5
Action Command

5-8

Property Required Description

multi No Specifies if the action applies when multiple items are
selected (true) or not (false). If you do not explicitly
include multi in the configuration file, it is dynamically
added during application configuration and is given the
default value of false.

evaluate Yes Must be valid JavaScript Boolean value that evaluates to
true or false for the selected item. For more
information about expression evaluation, see
Expressions.

invoke Yes Specifies the external service in an invoke command to
use when action is triggered. See Invoke Command.

Invoke Command
Use the invoke command to call an external service, page, or script.

The following table shows the properties of the invoke command.

Property Required Description

method Yes Specifies the HTTP method to use for invocation. Valid
values are GET, POST, PUT, DELETE, and HEAD.

url Yes A URL expression to specify the URL for the third-party
service. It can be an absolute or relative URL. If a relative
URL is specified, it will be added to the baseUrl of the
application, if specified.

data No An expression that specifies data to be sent with the URL.
See Expressions.

A JSON payload can added to the request body as a string
object.

appLinkRole No If the action is a request to create an application link
(applink), use appLinkRole to specify the role to use for the
applink. Valid values are contributor, downloader, and
viewer.

header No A custom header to include when making POST calls.

token No Specifies if any special security token needs to be passed.
Valid values are PCS (PCS OAUTH token) and NONE.

Presentation Command
Use the presentation command to specify how the third-party content retrieved by the
invoke command is presented to the user.

The following table shows the properties of the presentation command.

Chapter 5
Invoke Command

5-9

Property Required Description

view No Specifies how action response content is displayed to
the user. Use CLIENT to embed results in the
application, POPUP to display results in a separate
browser dialog, or WINDOW to display results in a new
browser window or tab.

If you use CLIENT with the SELECT trigger, action results
are displayed in the integrations side panel on the right
of the display. The integrations panel must be open for
the results to display. The SELECT trigger occurs when
an item is opened, not when simply checked in a folder
listing. If you use CLIENT with the MENU trigger, action
results are displayed in a pop-up dialog. If you do not
explicitly include view in the configuration file, it is
dynamically added during application configuration and
is given the default value of CLIENT.

popupWidth No A number specifying the width of the container. If none
is specified, a default value is used, depending on the
context.

popupHeight No A number specifying the height of the container. If none
is specified, a default value is used, depending on the
context.

Expressions
The invoke and evaluate commands accept expressions, which can include variables
and operators that are evaluated at runtime.

Invoke Expressions

An invoke expression is a template used to generate URL and data values at runtime
by replacing the variables specified in the template with their runtime values. Variables
can reference one or more selected items, information about the current user, and
other system information.

• Anything enclosed in a brace { } is considered to be a key value that is mapped to
the corresponding attribute of a file, folder, or the currently signed-in user. User
attributes are prefixed by user.

For example, if John Smith is the current user, userid={user.name} resolves to
this:

userid=John Smith
• For multiselection, use the [repeated template separator] syntax. The repeated

template is resolved for each selected item, and resolved strings for items are
separated by the specified delimiter.

For example, for items with GUIDs x189 and y234, item=[{id},] resolves to this:

item=x189,y234

Evaluate Expressions

An evaluate expression determines if the item or items selected by the user qualify for
a particular action. The expression can contain zero or more variables that are

Chapter 5
Expressions

5-10

replaced with their runtime values before the expression is evaluated. This expression must
be a valid JavaScript expression after all the values of the variables are replaced with their
values at runtime.

The expression must evaluate to true or false. If the result is true, the action is made
available as specified by the trigger property. If the result is false, the action is not made
available to the user.

For example, the following expression returns a true value only if all three conditions
evaluate to true: the item selected in the interface is a file, the user is signed in (not
accessing the file using a public link or applink), and the user is the owner of the file.

"evaluate": "type=='file' && user.isMember && user.role=='owner'
Antother example is item.meta.<custom property group name>.<custom property group
field name>.

Some commonly used JavaScript comparison and logical operators follow.

Operator Description

== equal to

!= not equal to

> greater than

< less than

= greater than or equal to

<= less than or equal to

&& logical and

|| logical or

! logical not

Variables
You can use variables in applications to dynamically provide information about the current
user, the currently selected item or items, and other types of information. Variables are
evaluated at runtime when the application is used.

You can use a category prefix (item or user) with variable names to make the relationship
explicit, especially in cases where variable names are the same, such as name. If a variable is
not prefixed by any category, item is used as the category.

For example, to specify the folder or file name, use item.name. To specify the user name, use
user.name. If you specify name without the category, then item.name (the folder or file name)
is assumed.

Folder and File Item Variables

The following variables are specific to a folder or file item that is currently selected by the
user. Folder and file variables belong to the item category. The following table lists variables
that apply to both folder and file items.

Chapter 5
Variables

5-11

Folder or File
Variable

Description

id Item GUID

name Item name

description Item description

type Item type

parentid Item parent ID

ownerId Item owner GUID

ownername Item owner name

creatorname Item creator name

createdat Date and time item was created

lastmodifierid GUID of the user who most recently modified the item

lastmodifiername Name of the user who most recently modified the item

modifiedat Date and time the item was last modified

size Size of the item

permissions Actions the user is allowed to perform on the item

state State of the item

applink Applink created by AIF for this user to access the item, if
appLinkRole was specified in the invoke command

The appLink object has id, url, and accessToken properties that
can be passed in the URL or data as {appLink.id},
{appLink.url}, and {appLink.accessToken}, respectively.

favorite Whether the item is a favorite of the user or not

File-Item Specific Variables

The following variables are specific to a file item that is currently selected by the user.
File variables belong to the item category. The table lists variables that apply to file
items only.

File Variable Description

originalname Original name of the item

extension Extension of the item

revision Item’s revision

mimetype Mime type of the item

reservedbyid GUID of the user who reserved the item

reservedbyname Name of the user who reserved the item

reservedat Date and time when the item was reserved

isreservedbyanotheruser Whether the item is reserved by a user other than the current user

Item Permissions

Permissions is a JSON object that you can query to determine the permissions
associated with an item. The properties return a Boolean value.

Chapter 5
Variables

5-12

Permission Properties Description

annotationDelete User has delete permission for annotations on the item.

annotationRead User has read permission for annotations on the item.

annotationUpdate User has update permission for annotations on the item.

annotationWrite User has write permission for annotations on the item.

directShareDelete User has delete permission for the item shared with the user.

directShareRead User has read permission for the item shared with the user.

directShareUpdate User has update permission for the item shared with the user.

directShareWrite User has write permission for the item shared with user.

fileDelete User has delete permission for the file.

filePreview User has preview permission for the file.

fileRead User has read permission for the file.

fileUpdate User has update permission for the file.

fileWrite User has write permission for the file.

folderDelete User has delete permission for the folder.

folderPreview User has preview permission for the folder.

folderRead User has read permission for the folder.

folderUpdate User has update permission for the folder.

folderWrite User has write permission for the folder.

linkShareDelete User has delete permission for the item shared with the user through a link.

linkShareRead User has read permission for the item shared with the user through a link.

linkShareUpdate User has update permission for the item shared with the user through a link.

linkShareWrite User has write permission for the item shared with the user through a link.

Item State

State is a JSON object that you can query to determine certain states of an item. The
properties return a Boolean value.

State Property Description

isAnnotated The item has annotations.

isAnnotatedLatest The item has the most recent annotations.

isLinked The item has named sharing links defined for it.

isShared The item is directly shared with specified users.

isSyncd The item is included in the content synced through the desktop client.

isInTrash The item is currently in the trash.

User Variables

The following variables are relative to the current user or session, or both.

Chapter 5
Variables

5-13

Variable Description

id User’s GUID

name User’s name

loginname User’s sign in name

email User’s email address

timezone User’s time zone

ismember Returns true if the user is not accessing an item through public link or
app link and false otherwise

ispubliclink Returns true if the user is accessing the item through a public link and
false otherwise

isapplink Returns true if the user is accessing the item through an applink and
false otherwise

role Current user's role for an item

hasprivilegesas Specified with a user role as a string argument to determine if the user
has the specified role

API Functions

Use the following utility functions with evaluate or invoke expressions to return
information about a specified item.

Variable Description

isReservedByAnotherUser(item) Returns true if the item is reserved by another user, or
returns false otherwise

hasPrivilegesAs(item, role) Returns true if the user has role privileges for the item, or
returns false otherwise

getUserRole(item) Returns the user’s role for the item

Localization
Use the stringsMap element to provide localized versions of labels and descriptions
used in the integration.

The following example shows sample application and action names and descriptions
in English and German.

 "stringsMap": {
 "en": {
 "APPLICATION_NAME": "Localization Test",
 "APPLICATION_DESCRIPTION": "This example provides translated
content.",
 "ACTION1": "Action1",
 "ACTION2": "Action2",
 "ACTION1DESC": "Action1 description",
 "ACTION2DESC": "Action2 description"
 },
 "de": {
 "APPLICATION_NAME": "Lokalisierung Beispiel",
 "APPLICATION_DESCRIPTION": "Dieses Beispiel liefert übersetzten

Chapter 5
Localization

5-14

Inhalte.",
 "ACTION1": "Aktion1",
 "ACTION2": "Aktion2",
 "ACTION1DESC": "Aktion1 Beschreibung",
 "ACTION2DESC": "Aktion2 Beschreibung"
 }

Chapter 5
Localization

5-15

6
Develop Content Connectors

You can use the Oracle Content Management connector framework to develop your own
content connectors to bring content you have already created elsewhere into Oracle Content
Management, manage it centrally, and use it in new experiences across multiple channels.

Part of Oracle Content Management, the connector framework integrates with remote content
stores to let you bring content into Oracle Content Management as easily as uploading files
from your desktop. You can plug in any type of content store to Oracle Content Management,
making it a content hub.

The connector framework abstracts the functionality that is provided and implemented by end
connectors. It does so by providing the REST API interface to configure a content connector
as well as to call content-related APIs on the end store, like browsing the remote file system
and copying the files from a remote store to Oracle Content Management.

The following sections describe how to develop custom content connectors:

• Connector REST API Interface

• Connector SDK

• Build a New Content Connector

• Content Connector Configuration and Registration

• Content Connector Execution Flow

• Pexels Content Connector Sample Implementation

• Download the CEC Content Connector Sample and SDK

Connector REST API Interface
You can deploy and run content connectors anywhere and implement them with any
technology stack, as long as they can be called from Oracle Content Management through
REST APIs.

Content connectors are deployable binaries that use RESTful services for the remote stores
implementing the REST interfaces (SPIs/SDK) defined by Oracle Content Management. They
internally use cloud store native SDKs to connect to remote systems.

Connector SDK
To help you build a new content connector, Oracle Content Management provides the
Connector SDK

This SDK contains:

• A javadoc

• A JAR file containing DTO and REST interfaces

• The connector.yaml file, which documents the REST APIs and the payloads

6-1

The Connector SDK is in the cec-connector-sdk.zip file.

Build a New Content Connector
To build a new content connector as a RESTful service, a developer needs to
implement the RESTful interfaces provided by the connector framework.

The Oracle Content Management connector framework has the following interfaces.

• APIResource Interface: This interface is the starting point of the content
connector. You simply return the version that's supported.

• ServerResource Interface: When a developer or administrator registers a
content connector in the Oracle Content Management server, Oracle Content
Management calls this service to get the basic details about the connector server,
such as these:

– Authorization type:

* OAUTH: If the remote cloud store supports three-legged OAuth
authentication

* BASIC_AUTH: If the remote cloud store supports Basic authentication

Note:

Oracle no longer supports Basic authentication for general
consumption.

* NO_AUTH: If the remote store doesn’t require any authentication

– Picker type: Oracle Content Management supports the Oracle Content
Management generic picker to list the file system. If the content connector
supports the native picker, then the content connector implementer can
implement JavaScript APIs to integrate that picker with the Oracle Content
Management UI. The picker type can be one of three values:

1. COMMON, using the common UI

2. CUSTOM, using a custom UI

3. NATIVE, using a native UI like Google Drive or Microsoft OneDrive

– Also use this Interface to define custom fields for the content connector.
Custom properties are connector specific, so the connector framework can’t
provide such a properties list by itself. Every content connector has its own
requirement to connect to a remote store; for example, one content connector
might need just ClientID and ClientSecret, while another might require
ClientID, ClientSecret, AppID, and so on. Each content connector can
provide a custom properties list to the Oracle Content Management server by
ServerResource. If any of these properties need to be filled in by a developer
or administrator during configuration, the connector framework will surface
them in the administration UI.

This service will be called only once, at the time of registration.

• AuthorizationResource Interface: Used to complete the authorization before
content from the remote store can be copied to the Oracle Content Management

Chapter 6
Build a New Content Connector

6-2

repository. This interface has support for both OAuth and Basic authentication protocols.

– Three-legged OAuth authentication

* In the OAuth flow, the Oracle Content Management UI, based on the custom
property value provided by the content connector, supports OAuth authentication.
It triggers an OAuth flow by calling the connector framework, which in turn calls
the /authorization/authorization URLs service on the content connector to
get the authorization URL.

* The Oracle Content Management UI renders the authorization URL in a browser,
where the user authorizes the application and gives Oracle Content Management
permission to access the token for further communication. To complete the
authorization and get the OAuth token, the Oracle Content Management server
will call the /authorization/completedAuthorizations service on the content
connector. To complete the three-legged OAuth, the Oracle Content
Management server also provides the redirect callback servlet, which the remote
store will call to complete the authorization process.

– Basic authentication: In case the content connector supports Basic authentication,
the Oracle Content Management UI will prompt the user to enter a user name and
password, which it will pass to the Oracle Content Management (connector
framework). The connector framework will call the /authorization/
basicAuthorization service to pass the credentials and will expect the content
connector to validate with the remote store if the credentials are correct.

• FileSystemResource Interface: The connector framework supports the generic file
picker, which can be used by content connectors to render the file-system information for
a user to browse the files. But the content connector needs to implement the /
filesystem service to use this functionality. Highlights of this service are the following:

– The user can browse the file system like any other file picker; for example, the
Google Drive or Microsoft OneDrive picker.

– This supports pagination.

– The user can also specify the search criteria to get the filtered result.

• ContentResource Interface: The connector framework uses the service /content to get
the actual content (the bytes of the files) stored in the cloud store.

This service returns javax.ws.rs.core.Response as a response, and the response entity
is the content of the file. The response should include the following headers:

– Content-Length: Set to the entity length, or -1 if unknown.

– Content-Type: Set to the content type, or application/octet-stream if a more
accurate type is not possible.

– Content-Disposition: Set to the disposition type of attachment, and includes a
filename parameter (for example, Content-Disposition: attachment;
filename="meeting agenda.doc"). Note that file names with spaces must be in
quotation marks. See RFC 6266 for details about the format and encoding of the
header.

Each of these interfaces is described in more detail, with examples of REST payloads, in the
following sections:

• REST Interfaces for Configuration, Authorization, and Fetching Content

• REST Interfaces for File System Browsing and Searching

Chapter 6
Build a New Content Connector

6-3

• Content Picker

• Authorization

REST Interfaces for Configuration, Authorization, and Fetching
Content

A content connector needs to implement the following REST APIs for defining the
connector configuration, setting up authorization, and fetching content.

/rest/api

Implements intradoc.connectorcommon.server.APIResource
Here you return the latest version supported by the content connector.

GET http://host:port/connector/rest/api

["v1"]

/rest/api/v1/server

Implements intradoc.connectorcommon.server.ServerResource
This returns information about the content connector configuration, like the
authentication type, picker type, and custom fields it exposes.

GET http://host:port/connector/rest/api/v1/server

{
 "name": "Pexels Connector",
 "nameLocalizations": [
 {
 "locale": "en",
 "localizedString": "Pexels Connector"
 }
],
 "version": " (, ,)",
 "about": "Pexels Connector.
Copyright (c) 2019, Oracle and/or
its affiliates. All rights reserved.",
 "aboutLocalizations": [
 {
 "locale": "en",
 "localizedString": "Pexels Connector.
Copyright (c)
2019, Oracle and/or its affiliates. All rights reserved."
 }
],
 "authenticationType": "NO_AUTH",
 "pickerType": "CUSTOM",
 "enableMultiUserCopyBack": false,
 "maxUploadSize": 1073741824,
 "fields": [
 {
 "ID": "ProxyHost",
 "datatype": "STRING",

Chapter 6
Build a New Content Connector

6-4

 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "HTTP Proxy Hostname",
 "labelLocalizations": [
 {
 "locale": "en",
 "localizedString": "HTTP Proxy Hostname"
 }
],
 "description": "The HTTP proxy hostname, leave blank to
disable.",
 "descriptionLocalizations": [
 {
 "locale": "en",
 "localizedString": "The HTTP proxy hostname, leave blank
to disable."
 }
],
 "required": false
 },
 {
 "ID": "ProxyPort",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "HTTP Proxy Port",
 "labelLocalizations": [
 {
 "locale": "en",
 "localizedString": "HTTP Proxy Port"
 }
],
 "description": "The HTTP proxy port number, leave blank to
default to port 80.",
 "descriptionLocalizations": [
 {
 "locale": "en",
 "localizedString": "The HTTP proxy port number, leave
blank to default to port 80."
 }
],
 "required": false
 },
 {
 "ID": "ProxyScheme",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "HTTP Proxy Scheme",

Chapter 6
Build a New Content Connector

6-5

 "labelLocalizations": [
 {
 "locale": "en",
 "localizedString": "HTTP Proxy Scheme"
 }
],
 "description": "The HTTP proxy scheme, leave blank to
default to http.",
 "descriptionLocalizations": [
 {
 "locale": "en",
 "localizedString": "The HTTP proxy scheme, leave
blank to default to http."
 }
],
 "required": false
 },
 {
 "ID": "ClientID",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Client ID",
 "labelLocalizations": [
 {
 "locale": "en",
 "localizedString": "Client ID"
 }
],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
 }
],
 "supportedConnectorTypes": [
 "COPY"
],
 "proprietorName": "",
 "serviceProviderName": "Pexels",
 "nativeAppInfos": null
}

/rest/api/v1/authorization/authorizationURLs

Implements intradoc.connectorcommon.server.AuthorizationResource
This is required only if the content connector supports OAuth.

It returns the authorization URL to which the browser will redirect to invoke the OAuth
flow where the user provides credentials and authorizes the access. The redirect URL

Chapter 6
Build a New Content Connector

6-6

passed in the payload is what the OAuth provider will redirect to with the temporary code.

POST http://host:port/connector/rest/api/v1/authorization/authorizationURLs

Headers
Content-Type:application/json
X-CEC-ClientID:client-id
X-CEC-ClientSecret:client-secret
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http

Payload
{"redirectURL":"http://host:port/documents/web/AR_COMPLETE_AUTHORIZATION"}

Response
{
 "authorizationURL": "https://domain/oauth/authorize?
response_type=code&client_id=id://host:port/documents/web/
AR_COMPLETE_AUTHORIZATION",
 "fieldValueMap": null
}

/rest/api/v1/authorization/completedAuthorizations

Implements intradoc.connectorcommon.server.AuthorizationResource
This is required only if the content connector supports OAuth.

This is called to complete the second part of the OAuth flow, where the code obtained from
the OAuth provider in the previous step is passed along with the client ID and secret to obtain
the access token and refresh token along with expiry times. This information is then returned
to Oracle Content Management, which stores it securely against the signed-in user.

POST http://host:port/connector/rest/api/v1/authorization/
completedAuthorizations

Headers
Content-Type:application/json
X-CEC-ClientID:client-id
X-CEC-ClientSecret:client-secret
X-CEC-code:code
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http
Content-Type:application/json

Payload
{"redirectURL":"http://host:port/documents/web/AR_COMPLETE_AUTHORIZATION"}

Response
{
 "authorized": true,
 "authorizedUserDisplayName": null,
 "authorizedUserEmailAddress": null,

Chapter 6
Build a New Content Connector

6-7

 "authorizedUserPictureURL": null,
 "fieldValueMap": {
 "RefreshToken": "refresh-token",
 "AccessToken": "access-token"
 }
}

/rest/api/v1/authorization/basicAuthorization

Implements intradoc.connectorcommon.server.AuthorizationResource
This is required only if the content connector supports basic authorization. Here the
sign in credentials are passed in the headers where the password field is base64
encoded. It is always recommended that a content connector be deployed on an SSL
endpoint.

POST http://host:port/connector/rest/api/v1/authorization/
basicAuthorization

POST http://host:port/connector/rest/api/v1/authorization/
basicAuthorization

Headers
Content-Type:application/json
X-CEC-UserName:user
X-CEC-UserPwd:password
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http

Response
true

/rest/api/v1/content

Implements intradoc.connectorcommon.server.ContentResource
Given a file ID, this return the input stream for a file.

GET http://host:port/connector/rest/api/v1/content?uri=fFileGUID:xxxx

Request Headers
X-CEC-ClientID:client-id
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http

Response Headers
content-disposition attachment; filename=pexels-photo-xxxx.jpeg
content-type image/jpeg

Response Body
File Content

Chapter 6
Build a New Content Connector

6-8

REST Interfaces for File System Browsing and Searching
If a content connector uses the common picker available out of the box with Oracle Content
Management, then the content connector needs to implement the following REST API.

This REST API is required for the common UI.

/api/v1/filesystem

Implements intradoc.connectorcommon.server.FilesystemResource
This interface supports search as well as where queryText is passed.

POST http://host:port/connector/rest/api/v1/filesystem

Request Headers
X-CEC-ClientID:client-id
X-CEC-ProxyHost:proxy
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http
Content-Type:application/json

Request Body
{
 "itemCount": "50",
 "itemStartRow": "0",
 "itemsSortField": "ASC",
 "queryText": "animals"
}

Response
{
 "numItems": 50,
 "hasMoreItems": true,
 "totalItemsCount": 7190,
 "fileSystemInfo": {
 "uri": "fFolderGUID:null",
 "parentUri": "fFolderGUID:null",
 "name": "/",
 "description": null,
 "isDirectory": true,
 "size": null,
 "mimeType": null,
 "extension": null,
 "creator": null,
 "createdTimeStamp": null,
 "lastModifiedBy": null,
 "lastModifiedTimeStamp": null,
 "browseURL": null,
 "thumbnailURL": null,
 "directoryContents": [
 {
 "uri": "45170",
 "parentUri": "fFolderGUID:null",

Chapter 6
Build a New Content Connector

6-9

 "name": "kittens-cat-cat-puppy-rush-45170.jpeg",
 "description": "kitten cat rush lucky cat",
 "isDirectory": false,
 "size": null,
 "mimeType": "image/jpeg",
 "extension": "jpeg",
 "creator": "Pixabay",
 "createdTimeStamp": null,
 "lastModifiedBy": null,
 "lastModifiedTimeStamp": null,
 "browseURL": "https://images.pexels.com/photos/45170/
kittens-cat-cat-puppy-rush-45170.jpeg",
 "thumbnailURL": "https://images.pexels.com/photos/
45170/kittens-cat-cat-puppy-rush-45170.jpeg?
auto=compress&cs=tinysrgb&fit=crop&h=200&w=280",
 "directoryContents": null,
 "version": null,
 "additionalInformation": {
 "photographer": "Pixabay",
 "photographer_url": "http://api-server.pexels.com/
@pixabay"
 }
 },
 {
 "uri": "66898",
 "parentUri": "fFolderGUID:null",
 "name": "elephant-cub-tsavo-kenya-66898.jpeg",
 "description": "elephant cub kenya savanna",
 "isDirectory": false,
 "size": null,
 "mimeType": "image/jpeg",
 "extension": "jpeg",
 "creator": "Pixabay",
 "createdTimeStamp": null,
 "lastModifiedBy": null,
 "lastModifiedTimeStamp": null,
 "browseURL": "https://images.pexels.com/photos/66898/
elephant-cub-tsavo-kenya-66898.jpeg",
 "thumbnailURL": "https://images.pexels.com/photos/
66898/elephant-cub-tsavo-kenya-66898.jpeg?
auto=compress&cs=tinysrgb&fit=crop&h=200&w=280",
 "directoryContents": null,
 "version": null,
 "additionalInformation": {
 "photographer": "Pixabay",
 "photographer_url": "http://api-server.pexels.com/
@pixabay"
 }
 },
. . .more entries. . .
],
 "version": null,
 "additionalInformation": null
 }

Chapter 6
Build a New Content Connector

6-10

The itemCount value represents the page size, and the itemStartRow value indicates the
starting index of the current page requested. You can use these values to determine the page
number to retrieve and the number of records to fetch from your backend.

Content Picker
Oracle Content Management supports two mechanisms for integration so users can browse
and select content and assets to bring into Oracle Content Management.

The content picker for a content connector can be either the common content picker or a
custom one:

• The common content picker is provided by Oracle Content Management.

With the generic common picker, Oracle Content Management provides a basic
framework and capabilities to build content browsing and selection. This works
seamlessly in conjunction with the Connector Framework SDK and the APIs defined.

• The custom picker needs to be built by the content connector and can be built using any
JS technology.

The custom picker is typically used in cases where the content connector builds its own
experience for accessing content in the remote store. Some stores have their own native
pickers, which the content connector could reuse for integrating with the asset repository;
for example, Google Drive, Microsoft OneDrive, and Dropbox. Additionally, the content
connector can develop its own picker UI following the predefined interfaces and callback
mechanisms prescribed by Oracle Content Management.

If the content connector uses the common picker, then the connector needs to define
pickerType in the server implementation:

intradoc.connectorcommon.server.ServerResource implementation

serverInfo.pickerType = PickerType.COMMON;

The content connector also needs to implement the
intradoc.connectorcommon.server.FilesystemResource interface. The implementation
needs to adhere to following guidelines in its filesystem REST implementation:

1. The content connector must append "fFolderGUID:" in uri, parentUri for each folder
in the response of fileSystem.

2. A few fields are mandatory for every folder and file to be set in FileSystemResource for
the common UI to work without any issues: uri, parentUri, and name. If parentUri is not
applicable, then it can be set to fFolderGUID:null.

3. You must know the size of the result set being returned up front; that is, totalItemsCount
needs to be set.

Use the Common UI

If the content connector uses the common picker, then it needs to define pickerType in the
eserver implementation:

intradoc.connectorcommon.server.ServerResource implementation

serverInfo.pickerType = PickerType.COMMON;

Chapter 6
Build a New Content Connector

6-11

The content connector also needs to implement the
intradoc.connectorcommon.server.FilesystemResource interface. The
implementation needs to adhere to following guidelines in its filesystem REST
implementation:

1. The content connector must append "fFolderGUID:" in uri, parentUri for each
folder in the response of fileSystem.

2. A few fields are mandatory for every folder and file to be set in
FileSystemResource for the common UI to work without any issues: uri,
parentUri, and name. If parentUri is not applicable, then it can be set to
fFolderGUID:null.

3. You must know the size of the result set being returned up front; that is,
totalItemsCount needs to be set.

The common UI supports customizations, which can be defined in the connector
configuration. The following table describes the additional settings that can be passed
in a connector's ServerResource implementation.

Property Values Description

hide_breadcrumbs true
false (default)

To show or hide breadcrumbs

nextPrevPaginationEnabl
ed

true
false (default)

To show page with next and
prev buttons for pagination

For numbered pagination,
don't set this property to true.

CommonPickerShowVideoVi
ew

true
false (default)

Card layout will be displayed,
with each card having the
following items:
• Iframe with video link
• Description of video
• Channel name

CommonPickerShowImageVi
ew

true
false (default)

Card layout will be displayed,
with each card having the
following items:
• Image thumbnail with link

to open full image in next
tab

• Photographer URL
• Name of image
• mimeType

show_termsOfUse true
false (default)

To show the terms and
condition link

termsOfUse_link String If the show_termsOfUse
property is true, then the link
for terms and conditions is
specified using this property.

show_privacyPolicy true
false (default)

To show the privacy policy link

Chapter 6
Build a New Content Connector

6-12

Property Values Description

privacyPolicy_link String If the show_privacyPolicy
property is true, then the link
for the privacy policy is
specified using this property.

show_view_action true
false (default)

To show the view action on
select of item

page_size String

50 (default)

The size of one page. If results
are more than the given page
size, then the results will be
paginated.

The settings are in the form of a map that needs to be set on ServerInfo. An example
follows:

 //Add UI Settings for the connector that will be read by the common
picker
 Map<String,Object> additionalSettingsMap = new HashMap<String,Object>();
 Map<String,String> uiSettingsMap = new HashMap<String,String>();
 uiSettingsMap.put("CommonPickerShowImageView", "true");
 uiSettingsMap.put("hide_breadcrumbs", "true");
 uiSettingsMap.put("show_termsOfUse","true");
 uiSettingsMap.put("show_privacyPolicy","true");
 uiSettingsMap.put("termsOfUse_link","https://unsplash.com/terms");
 uiSettingsMap.put("privacyPolicy_link","https://unsplash.com/privacy");
 uiSettingsMap.put("show_view_action","true");
 additionalSettingsMap.put("UISettings", uiSettingsMap);
 serverInfo.addtionalSettings = additionalSettingsMap;

The resulting JSON structure follows:

 "addtionalSettings": {
 "UISettings": {
 "hide_breadcrumbs": "true",
 "show_view_action": "true",
 "CommonPickerShowImageView": "true",
 "termsOfUse_link": "https://unsplash.com/terms",
 "privacyPolicy_link": "https://unsplash.com/privacy",
 "show_privacyPolicy": "true",
 "show_termsOfUse": "true",
 "page_size": "30"
 }
 }

Use a Custom UI

A content connector can implement a custom UI for its picker. This can be built using any JS
technology. However, it needs to invoke some predefined methods in Oracle Content
Management to obtain connector configuration and to pass back selections. The custom
picker can be built to expose its own OK and Cancel buttons, in which case it needs to

Chapter 6
Build a New Content Connector

6-13

invoke the appropriate handlers. If the picker doesn't expose its own OK and Cancel
buttons, Oracle Content Management will provide this.

The pickerType needs to be defined as CUSTOM in the server implementation:

intradoc.connectorcommon.server.ServerResource implementation

serverInfo.pickerType = PickerType.CUSTOM;

The custom implementation needs to include the following JS file in its library:

oracle-oce-custompicker.js

/*global window:true*/
(function() {
 'use strict';

 var name = window.name; // name set on iframe element to uniquely
identify the instance
 var receiver = window.opener || window.parent;
 var origin = "*";
 function _postMessage(msg) {
 msg.name = name;
 receiver.postMessage(msg, origin);
 }

 var namespace = "OCE"; //todo: allow passing in data attribute
 if (!window[namespace]) {
 window[namespace] = {};
 }
 var OCE = window[namespace];

 if (!OCE.CustomPicker) {

 OCE.CustomPicker = {

 selection: [],

 addItem: function(id, name, type, size) {
 var item = {id: id, name: name, type: type, size: size};
 this.selection.push(item);
 this.onChange();
 },

 removeItem: function(id) {
 this.selection = this.selection.filter(function(item) {
 return item.id !== id;
 });
 this.onChange();
 },

 onInit: function(cbInit) {
 var msg = {
 message: 'init',

Chapter 6
Build a New Content Connector

6-14

 needAuthToken: true
 };
 _postMessage(msg);
 this.messageListener = this.onPostMessage.bind(this);
 window.addEventListener('message', this.messageListener, false);
 this.cbInit = cbInit;
 },

 onClose: function() {
 window.removeEventListener('message', this.messageListener, false);
 },

 onPostMessage: function(event) {
 if (event.data && event.data.message === "init") {
 if (this.cbInit) {
 this.cbInit(event.data);
 }
 }
 },

 onChange: function() {
 var msg = {
 message: 'change',
 selection: this.selection
 };
 _postMessage(msg);
 },

 onOk: function(selection) {
 selection = selection || this.selection;
 var msg = {
 message: 'ok',
 selection: this.selection
 };
 _postMessage(msg);
 },

 onCancel: function() {
 var msg = {
 message: 'cancel'
 };
 _postMessage(msg);
 }
 };
 }

})();

This JS file needs to be packaged in a content connector.

This library follows the JS postMessaging paradigm to pass information. The following
methods are of interest.

onInit

Chapter 6
Build a New Content Connector

6-15

The custom picker needs to invoke this method during its initialization. This is where
the custom picker can get connector configuration information, like client ID and
access token. The attributes defined in the connector configuration (/rest/api/v1/
server) are passed via this method.

OCE.CustomPicker.onInit(function(data) {
 {
 if (data != null) {
 self.clientId = data.ClientID;

 //If connector uses OAuth
 self.AccessToken = data.AccessToken;

 //If connector uses BASIC auth
 self.user = data.UserName;
 self.password = Base64.decode(data.UserPwd);
 }

 //Use client id and access token to fetch data from back end.
 }
})

onOk

If the custom picker exposes its own OK button, then it needs to invoke this method to
pass back the event to Oracle Content Management.

function pickerCallback(data) {
 if (data[google.picker.Response.ACTION] ===
google.picker.Action.PICKED) {
 data[google.picker.Response.DOCUMENTS].forEach(function(doc) {
 OCE.CustomPicker.addItem(doc.id, doc.name, "file",
doc.sizeBytes);
 });
 OCE.CustomPicker.onOk();
 }
 else if (data[google.picker.Response.ACTION] ===
google.picker.Action.CANCEL) {
 OCE.CustomPicker.onCancel();
 }
}

onCancel

If the custom picker exposes its own Cancel button, then it needs to invoke this
method to pass back the event to Oracle Content Management, like the onOk method
does for the OK button in the preceding snippet.

addItem

This method needs to be invoked to pass back selections from the custom picker to
Oracle Content Management so that it displays the list of selected items in the Add to

Chapter 6
Build a New Content Connector

6-16

repository dialog. The IDs passed here are then used to fetch content with /rest/api/v1/
content while adding an item to the asset repository.

addImage(selectedImages: Image[]) {
 selectedImages.forEach(o => {
 var name = "PexelsImages_" + o.uri;
 OCE.CustomPicker.addItem(o.uri, name, o.thumbnail, o.size);
 });
}

removeItem

This method needs to be invoked when an item is unselected from a custom picker so that
the list maintained by Oracle Content Management is up to date. The final list is shown in the
Add to repository dialog. The ID passed here is the same as the ID passed in the addItem
call.

removeImage(image: Image) {
 OCE.CustomPicker.removeItem(image);
}

Package the custom picker in the connector. While registering the content connector, specify
the following values:

1. Custom Picker URL: Such as http://host:port/pexels-picker/web (This is the
custom picker packaged in the content connector.)

2. Custom Picker uses its own OK/Cancel buttons: Leave it unchecked. (This indicates
that you want Oracle Content Management to embed your picker in their dialog.)

If the custom picker implements its own OK and Cancel buttons, then check this.

Authorization
A content connector can support one of the following authorization models.

• No Auth

• OAuth

• Basic

No Auth

This is used when the content connector does not require any authorization. In this case, the
connector picker is launched directly without invoking any authorization screen.

ServerResource Implementation

serverInfo.authenticationType = AuthenticationType.NO_AUTH

Chapter 6
Build a New Content Connector

6-17

OAuth

This is used when a content connector supports OAuth. In this case, OCM ensures
that the OAuth flow is invoked to fetch the access token. For subsequent access, the
already fetched token is used until it expires.

serverResource Implementation

serverInfo.authenticationType = AuthenticationType.OAUTH

The content connector also needs to define the required custom fields used in the
OAuth flow.

ServerResource Implementation

{
 FieldInfo field = new FieldInfo();

 field.ID = UnsplashAdapter.FIELD_ID_REFRESH_TOKEN;
 field.label =
ResourceBundleUtil.getDefaultLocalizedString("cds.unsplash.adapter.fiel
d.refreshtoken.label");
 field.labelLocalizations =

ResourceBundleUtil.getLocalizedData("cds.unsplash.adapter.field.refresh
token.label");
 field.datatype = FieldDatatype.STRING;
 field.userSettable = false;
 field.siteSettable = false;
 field.connectorSettable = true;
 field.authorizationURLParameter = false;

 serverInfo.fields.add(field);
}

{
 FieldInfo field = new FieldInfo();

 field.ID = UnsplashAdapter.FIELD_ID_ACCESS_TOKEN;
 field.label =
ResourceBundleUtil.getDefaultLocalizedString("cds.unsplash.adapter.fiel
d.accesstoken.label");
 field.labelLocalizations =

ResourceBundleUtil.getLocalizedData("cds.unsplash.adapter.field.accesst
oken.label");
 field.datatype = FieldDatatype.STRING;
 field.userSettable = false;
 field.siteSettable = false;
 field.connectorSettable = true;
 field.authorizationURLParameter = false;

 serverInfo.fields.add(field);
}

Chapter 6
Build a New Content Connector

6-18

{
 FieldInfo field = new FieldInfo();

 field.ID = UnsplashAdapter.FIELD_ID_AUTHORIZATION_URL_PARAMETER_CODE;
 field.label =
ResourceBundleUtil.getDefaultLocalizedString("cds.unsplash.adapter.field.auth
url.code.label");
 field.labelLocalizations =

ResourceBundleUtil.getLocalizedData("cds.unsplash.adapter.field.authurl.code.
label");
 field.datatype = FieldDatatype.STRING;
 field.userSettable = false;
 field.siteSettable = false;
 field.connectorSettable = false;
 field.authorizationURLParameter = true;

 serverInfo.fields.add(field);
}

{
 FieldInfo field = new FieldInfo();

 field.ID = UnsplashAdapter.FIELD_ID_AUTHORIZATION_URL_PARAMETER_ERROR;
 field.label =

ResourceBundleUtil.getDefaultLocalizedString("cds.unsplash.adapter.field.auth
url.error.label");
 field.labelLocalizations =

ResourceBundleUtil.getLocalizedData("cds.unsplash.adapter.field.authurl.error
.label");
 field.datatype = FieldDatatype.STRING;
 field.userSettable = false;
 field.siteSettable = false;
 field.connectorSettable = false;
 field.authorizationURLParameter = true;

 serverInfo.fields.add(field);

And also implement the following interfaces documented in the preceding text:

1. /rest/api/v1/authorization/authorizationURLs
2. /rest/api/v1/authorization/completedAuthorizations

Basic

This is used when content connector requires login credentials to connect to the back end.
Here OCM will prompt you to enter sign-in details before launching the picker for the first
time. If the credentials are available, then they will be used.

Chapter 6
Build a New Content Connector

6-19

Note:

Oracle no longer supports Basic authorization for external consumption.

ServerResource Implementation

serverInfo.authenticationType = AuthenticationType.BASIC

You also need to define all the login fields in the server implementation. These fields
will display in the login screen.

// custom field for User Name
{
FieldInfo field = new FieldInfo();
field.ID = "UserName";
field.label =
ResourceBundleUtil.getDefaultLocalizedString("cds.unsplash.
adapter.field.username.label");
field.labelLocalizations = ResourceBundleUtil.getLocalizedData("
cds.unsplash.adapter.field.username.label");
field.description = ResourceBundleUtil.getDefaultLocalized-
String("cds.unsplash.adapter.field.username.desc");
field.descriptionLocalizations = ResourceBundleUtil.getLocalizedData("
cds.unsplash.adapter.field.username.desc");
field.datatype = FieldDatatype.STRING;
field.userSettable = true;
field.siteSettable = false;
field.connectorSettable = false;
field.authorizationURLParameter = false;
field.required = true;
serverInfo.fields.add(field);
}
// custom field for password
{
FieldInfo field = new FieldInfo();
field.ID = "UserPwd";
field.label =
ResourceBundleUtil.getDefaultLocalizedString("cds.unsplash.
adapter.field.password.label");
field.labelLocalizations = ResourceBundleUtil.getLocalizedData("
cds.unsplash.adapter.field.password.label");
field.description = ResourceBundleUtil.getDefaultLocalized-
String("cds.unsplash.adapter.field.password.desc");
field.descriptionLocalizations = ResourceBundleUtil.getLocalizedData("
cds.unsplash.adapter.field.password.desc");
field.datatype = FieldDatatype.PASSWORD;
field.userSettable = true;
field.siteSettable = false;
field.connectorSettable = false;
field.authorizationURLParameter = false;
field.required = true;

Chapter 6
Build a New Content Connector

6-20

serverInfo.fields.add(field);
}

Besides this, the content connector needs to implement the following interface, as described
in the preceding text.

/rest/api/v1/authorization/basicAuthorization

Subsequently the user credentials (password base64 encoded) will be passed via headers
for other calls, like filesystem and get content.

Content Connector Configuration and Registration
Once you have built your content connector, you need to register it in Oracle Content
Management. You can register a content connector through the Oracle Content Management
administration web interface.

The minimum properties you are required to add to a content connector are the following:

• Content connector name

• Content connector service URL

• User name and password, if the preceding URL access requires it

Once a content connector gets registered successfully and the content connector service
URL is reachable, the Oracle Content Management server will call a server service on the
content connector to get the custom properties and show those in the administration UI. An
administrator or developer can add values for those properties (for example, clientid and
clientsecret for OAuth flows or the user name and password for a Basic authorization
central account). Clicking Save saves all these properties with the connector framework.
After you enable it, the content connector becomes available in the Add menu item of the
Oracle Content Management UI Assets page.

See Create and Configure a Custom Content Connector in Administering Oracle Content
Management and Register the Content Connector, which describes how to register and
configure a Pexel content connector.

Content Connector Execution Flow
From the Oracle Content Management UI Assets page, the user can click Add and choose a
content connector from the menu.

Based on the authorization type defined, the OAuth flow is triggered or the user is prompted
to add a user name and password for the Basic Auth flow (if a central account has not been
configured in the administration UI). For No Auth, the content connector picker is launched
directly without invoking any authorization screen.

After successful authorization, the configured file picker (either common or custom) is
launched. It lists the files available to the user from the remote store.

The user can select one or more files. The selected files list is passed to the connector
framework. The connector framework then makes REST API calls to the remote content
connector to fetch the content of the assets being added and copies them into the asset
repository. This happens as a background process; however, the status of the add is

Chapter 6
Content Connector Configuration and Registration

6-21

displayed in the UI where success and failure can be tracked for each asset added.
Refer to the diagnostic logs for any failures.

Pexels Content Connector Sample Implementation
You can use this sample implementation of a Pexels content connector to help build
your own custom content connectors. The Pexels content connector lets content
creators bring rich, high-quality images from the Pexels library into an Oracle Content
Management asset repository.

Pexels is a stock photography site where designers, bloggers, and others find photos
to use for free. The Pexels content connector is built using the Connector Framework
SDK provided by Oracle Content Management. Two versions of this content connector
are available:

1. A content connector that uses a custom picker built using Angular JS. This version
is built by default.

2. A content connector that uses the common picker provided by Oracle Content
Management.

The following sections describe how to develop a Pexels content connector.

• Install the Content Connector

• Register the Content Connector

• Test the Content Connector

• Understand the Content Connector Source Code

• Custom Picker UI

• Pexels REST APIs

• Change and Test the Content Connector Code

Install the Content Connector
To install the Pexels content connector, you need to meet the installation prerequisites
and then build the content connector WAR file.

The following sections describe the prerequisites and how to build the WAR file.

Check Prerequisites for Installation
Your system needs to be set up with node, npm, JDK, and Apache Maven before you
install the Pexels content connector.

1. Ensure you have node and npm installed on your machine and set in PATH.
Configure proxy if required.

See Configure Proxy Service Settings.

2. Ensure you have latest JDK installed and set in PATH.

3. Ensure you have Apache Maven installed and set in PATH, with proxy configured if
required.

Chapter 6
Pexels Content Connector Sample Implementation

6-22

Build the Content Connector WAR File
Download the content connector source bundle, unzip the bundle into a location on your
machine, and follow the instructions in the Readme file to generate the WAR file.

You can download the Oracle Content Management content connector sample and SDK from
here:

https://<your-cec-service>/_sitesclouddelivery/renderer/app/sdk/connector/
cec-connector-sample.zip

https://<your-cec-service>/_sitesclouddelivery/renderer/app/sdk/connector/
cec-connector-sdk.zip

Briefly, the instructions are as follows:

1. In a command-line interface, go to pexelsPickerWeb\src\main\webapp.

2. Run pexels_setup.bat or pexels_setup.sh (based on your environment).

3. If the run is successful, pexels-picker.war file will be available in the
pexelsPickerWeb\target folder.

The WAR file generated is the one that uses the custom picker UI, which was built using
Angular JS.

Deploy this WAR file to your server. Run the following URLs to test that it works well:

1. GET http://<host:port>/pexels-picker/rest/api

2. GET http://<host:port>/pexels-picker/rest/api/v1/server

For expected output, see Understand the Content Connector Source Code.

Register the Content Connector
To use a Pexels content connector, you first need to access to the Pexels API. For this you
need to register with Pexels and request access.

Follow the instructions in the Pexels API documentation to register the content connector and
request access. After you make the request, you will be provided with an API key that you
need to capture. The Pexels API is rate-limited to 200 requests per hour and 20,000 requests
per month. If you need higher limits, contact Pexels.

1. Sign in to your Oracle Content Management instance as a developer or administrator.

2. Go to Administration > Integration > Content Connectors and click Create.

3. Enter the details to register your Pexels content connector.

a. Name: Pexels
b. Description: Connector to bring Pexels images into Oracle Content

Management asset repository
c. Connector Service URL: http://<host:port>/pexels-picker/rest/api (a URL

tested previously)

4. Click Verify Settings and then Save.

Chapter 6
Pexels Content Connector Sample Implementation

6-23

5. On the Content Connectors tab, click Configure to go back to the content
connector configuration and provide the following values.

a. Custom Picker URL: http://<host:port>/pexels-picker/web/index.html
This is the custom picker packaged in a content connector. This setting is not
applicable when you use the common UI.

b. Hide OK/Cancel:
Leave this setting unchecked. It indicates whether or not you want Oracle
Content Management to embed your picker in their dialog, which is not
applicable when you use the common UI.

6. Also provide the Client ID in the Custom Fields section.

7. Check Enable for End Users.

The default timeout values for the content connector are set in the following two
properties:

• ConnectorConnectionTimeout=20000
• ConnectorReadTimeout=30000
If you want to change the values of these properties, you can add the properties to
your config.cfg and then modify either or both values.

Test the Content Connector
Verify the functionality of your Pexels content connector.

To test the content connector, go to the Assets tab and click Add. You should see
Import from Pexels in the drop-down menu. Ensure that you have created an asset
repository and selected it before you click Add. This will launch the Pexels picker
showing curated images up front.

This picker is either the custom UI packaged in the content connector or the common
picker, depending on which you installed.

You can search for required images, select the ones you are interested in, and click
OK. This will open up the Add to Repository dialog, which lists the selected images
you can add. After you add them, the images should appear in the asset repository.

Chapter 6
Pexels Content Connector Sample Implementation

6-24

Understand the Content Connector Source Code
The source code of the Pexels content connector contains REST APIs and a custom picker.

The Pexels content connector contains a set of REST APIs implemented using the Oracle
Content Management content connector interfaces. This is implemented as per the JAX-RS
specification.

The Connector SDK and sample implementation are in the following files:

• cec-connector-sdk.zip
This file contains the SDK interface JAR, Javadoc, and connector.yaml file, which
describes the REST APIs and their payloads.

• oracle-oce-custompicker.js
This is the JS file that the content connector custom UI must package to interact with
Oracle Content Management.

• pexelsPickerWeb.zip
This file contains the Pexels content connector reference implementation.

Custom Picker UI
The Pexels picker packaged in the content connector is built using Angular JS. It provides the
Custom Picker UI.

The Pexels picker files are in pexelsPickerWeb\src\main\webapp\src.

Chapter 6
Pexels Content Connector Sample Implementation

6-25

Pexels REST APIs
The Pexels content connector contains a set of REST APIs.

Change and Test the Content Connector Code
If you make changes to the content connector code, you can run commands from
pexelsPickerWeb\src\main\webapp to test the changes and rebuild the WAR file.

1. If you modify package.json to include additional libraries, run the following
command from pexelsPickerWeb\src\main\webapp:

npm install

2. If you make UI code changes, run the following command from
pexelsPickerWeb\src\main\webapp:

ng build

3. Finally, run mvn from pexelsPickerWeb to rebuild the WAR file:

mvn clean install

Download the CEC Content Connector Sample and SDK
A sample content connector and SDK are available for downlooad

You can download the following ZIP files, which contain the CEC content connector
sample and SDK:

• https://<your-cec-service>/_sitesclouddelivery/renderer/app/sdk/
connector/cec-connector-sample.zip

• https://<your-cec-service>/_sitesclouddelivery/renderer/app/sdk/
connector/cec-connector-sdk.zip

Chapter 6
Download the CEC Content Connector Sample and SDK

6-26

7
Develop Custom Field Editors

Oracle Content Management provides a large selection of field editors out of the box for data
fields that you can use to enable contributors to assign values to the field. Oracle Content
Management also allows you to extend beyond out of the box editors with the help of the field
editor SDK.

With the Oracle Content Management field editor SDK, you can develop and use your own
custom field editors for any field. The main purpose of the SDK is to facilitate communication
between the custom editor component and the content item form. To develop a custom field
editor, you first need to create the custom field editor. Once created, you must promote it so
that it can be used when creating content types. Once promoted, the field editor is available
for use when a data type named when creating the editor is used to define a content type.
Lastly, you can open and edit the files associated with the custom field editor to fit your
purpose.

You can make custom field editors and forms available to everyone:

1. Update existing content forms and field editors to public during server upgrade in the
background.

2. Add the service SCS_SET_CONTENT_FORMS_FIELD_EDITORS_PUBLIC to set all form
and editor folders to public.

3. In SCS_CREATE_COMPONENT, mark content form/field editor as public on
creation.

4. Mark content form/field editor as public on import.

The following sections provide more information about custom field editors.

• Create a Custom Field Editor

• Configure Content Type to Use Custom Field Editor

• Edit a Custom Field Editor

• Sample Content Field Editors

• Content Field Editor SDK Reference

Create a Custom Field Editor
To create a custom field editor:

1. Log in to your instance of Oracle Content Management using the web interface and click
Developer in the side navigation.

2. Click View All Components.

3. Click Create and select Create Content Field Editor.

4. Enter a name and optional description for the field editor.

5. If your field editor can hande multiple values, such as multi-valued select boxes or tag
cloud editors, enable Handles multiple values.

7-1

6. Select the data fields to be used with the field editor. The following data types are
supported:

• Text

• Large Text

• Date

• Number

• Decimal

• Boolean

• Embedded Content

7. Click Create. A new plain text field editor is created and listed on the Components
page.

8. To make the field editor available for use, select it and click Promote.

9. Confirm you want to proceed and click OK.

The custom field editor is now available for use with supported data fields when
defining content types.

Configure Content Type to Use Custom Field Editor
Once a custom field editor has been created and promoted, it is available for use when
supported data types are used to define a content type.

1. In Oracle Content Management, click Content in the side navigation.

2. Select Asset Types from the page menu and click Create.

3. Enter a name and optional description and click OK.

4. Select a data field that the custom editor can use and add it to the definition.

5. Enter the desired information and click Next.

6. Select the custom field editor from the Appearance of data field and click OK.

Any content items created using this content type will make use of the custom field
editor.

Edit a Custom Field Editor
Once you've created a custom field editor, the files needed to adapt it to your needs
are available when you select and open the component.

1. Click Developer in the side navigation.

2. Click View All Components.

3. Select the custom field editor component and click Open.

By default, a custom field editor comes with the following content:

• appinfo.json - contains the metadata of the editor

• assets folder that includes two files which implement the custom field editor:

– edit.html

Chapter 7
Configure Content Type to Use Custom Field Editor

7-2

– view.html

• folder_icon.png - this icon the editor uses when displayed on the components page.

appinfo.json for Custom Field Editors
This file is a required and includes the configuration metadata needed for the editor. Some
properties are necessary for the editor to function, some are optional. The following is a
sample appinfo.json:

{
 "type":"fieldeditor",
 "name":"Sample Text field",
 "single":true,
 "multiple":true,
 "handlesMultiple":false,
 "supportedDatatypes":["text"],
 "autoresize":true,
 "validation":true,
 "useDefaultFormView":false
}

Table 7-1 appinfo.json Configuration Properties

Property Value Required Type

type The component type. For custom field
editors, the type is fieldeditor and is the
same for all editors. It should not be
changed.

required string

name The name displayed in the Content Type
field settings editor list. By default the name
entered when the custom field editor is
created.

required string

single Specifies if this editor will be listed in the
editor list when the field is a single valued
field.

Either single or
multiple is
required and
set to true

Boolean

multiple Specifies if this editor will be listed in the
editor list when the field is multivalued field.

Either single or
multiple is
required and
set to true

Boolean

handlesMultiple Specifies if this editor can handle more than
one value.

required Boolean

supportedDataTypes List of data types for which this editor can be
used.

required Array of data
types

autoresize Specifies whether or not to send resize
notification to the content item form when
this editor is resized. Custom editors are
rendered inside an iframe in the content item
form. When this property is set to true, the
field editor SDK will notify the form to adjust
the iframe size when the editor's size
changes.

optional Boolean

Chapter 7
Edit a Custom Field Editor

7-3

Table 7-1 (Cont.) appinfo.json Configuration Properties

Property Value Required Type

validation Specifies whether or not the value entered in
this editor needs to be validated in the
content item editor form. When set to true,
the editor needs to register and provide a
call back function to be called by the content
item form for validation.

optional Boolean

useDefaultFormView Specifies whether or not to use the system
default form view when viewing the content
item that has this editor. If this property is not
present or is set to false, the view.html
implementation will be used to render the
view mode of the field.

optional Boolean

In addition to the above properties, you can also define settings that can be used to
render the editor configuration view when this editor is selected while defining a
content type. For example, if you are writing an editor to handle a phone number in
your field and want to set up a few formats to pick during field definition time:

{
 "type": "fieldeditor",
 "name": "Phone Number",
 "single": true,
 "multiple": true,
 "handlesMultiple": false,
 "supportedDatatypes": ["text"],
 "autoresize": true,
 "useDefaultFormView": false,
 "settings":[
 {
 "id": "mask",
 "type": "list",
 "name": "Phone number format",
 "options": [
 {
 "label": "+1(999)-999-9999",
 "value": "+1(999)-999-9999"
 },
 {
 "label": "+44(999)-9999-9999",
 "value": "+44(999)-9999-9999"
 },
 {
 "label": "+49 999 99999999",
 "value": "+49 999 99999999"
 }
]
 }
]
}

Chapter 7
Edit a Custom Field Editor

7-4

Note that settings in an array can have more than one type. Currently two types of settings
are supported:

• text

• list

Text

The text type settings have three properties:

• id: the field ID

• name: the field name

• type: the field type

For example:

{
 "id":"min",
 "name":"Minimum",
 "type":"text"
}

would render an editor configuration view with a text field named Minimum in the settings
dialog with an ID of min
If a you want to use a default value for the field as part of the settings, you can modify the
settings:

{
 "id":"oracle.cloud.content.defaultValue",
 "type":"text"
}

where now the default value field is displayed.

List

For a list, in addition to id, type, and name, a list of options for display in the list also needs to
be provided. For example, if you are writing an editor to handle a phone number in your field
and want to set up a few formats to pick during field definition:

{
 "type": "fieldeditor",
 "name": "Phone Number",
 "single": true,
 "multiple": true,
 "handlesMultiple": false,
 "supportedDatatypes": ["text"],
 "autoresize": true,
 "useDefaultFormView": false,
 "settings":[
 {
 "id": "mask",
 "type": "list",

Chapter 7
Edit a Custom Field Editor

7-5

 "name": "Phone number format",
 "options": [
 {
 "label": "+1(999)-999-9999",
 "value": "+1(999)-999-9999"
 },
 {
 "label": "+44(999)-9999-9999",
 "value": "+44(999)-9999-9999"
 },
 {
 "label": "+49 999 99999999",
 "value": "+49 999 99999999"
 }
]
 }
]
}

edit.html for Custom Field Editor
The edit.html file is where the custom field editor implementation goes. It is a
mandatory file. In general it deals with html markup, styles and JavaScript code
needed for the editor. This file loads the field-editor-sdk-1.0.js JavaScript library in
order to communicate with the content item form. The edit.html file loads in an iframe
inside the content item form for the field for which the custom field editor is configured.
When you create a custom field editor, the default custom editor is a simple text field
that demonstrates how the field editor can render within the form and get and set field
values. If the custom field editor is configured for a multi-valued field, then the editor is
implemented within the iframe for each entry.

To adapt a custom field editor you need to:

1. Edit the HTML markup

2. Import the SDK library

3. Get and set field values

4. Validate field values

5. Enable and Disable field editor

Edit the HTML Markup

Open edit.html in a text editor and make the required changes. For example:

<html>
 <head>
 <style>
 body {
 margin: 0;
 padding: 0;
 font: normal 100% "Helvetica Neue", 'Segoe UI', sans-serif-
regular, Helvetica, Arial, sans-serif;
 }
 input {

Chapter 7
Edit a Custom Field Editor

7-6

 width: 100%;
 height: 32px;
 font-size: 14px;
 }
 </style>
 </head>
 <body>
 <!-- In this case the editor is a text field -->
 <input id="textInput" type="text">
 </body>

</html>

Import the SDK Library

Import the field-editor-sdk-1.0.js library either using the <script> tag or requireJS. This SDK
has a global object called editorSDK.

<!-- load the field editor SDK -->
<script src="/documents/static/gemini/api/field-editor-sdk-1.0.js"></script>

Get and Set Field Values

Initialize the editorSDK and pass a callback function and optional container DOM element.
This callback function is called by the editorSDK's initSDK() method with an instance of the
SDK. With the SDK instance, the field being edited can be accessed. With the field instance
in place, the value of the field being edited can be obtained and a new value can be set.

Below is the sample callback function initEditor that gets the field object corresponding to
this custom editor from the SDK instance, then gets the value of the field and sets in the text
field editor. It then listens to field value change, and updates field's value.

<script>
 /* globals editorSDK */
 (function() {

 function initEditor(sdk) {
 // retrieve the field object rendered by this custom editor
 var field = sdk.getField();

 // retrieve the current field value
 var value = field.getValue();

 var inputField = document.getElementById('textInput');

 // set the current field value in this editor
 inputField.value = value;

 // when the editor value changes, set the changed value
 // to the field
 inputField.addEventListener('change', function(e) {
 field.setValue(inputField.value);
 });

Chapter 7
Edit a Custom Field Editor

7-7

 // if the field is updated externally, keep the editor in
sync
 field.on('update', function(value) {
 inputField.value = value ? value : '';
 });
 }

 // this is the entry point to initialize the editor sdk.
 editorSDK.initSDK(initEditor);

 })();
</script>

Validate Field Values

In addition to getting and setting field values, if the custom field editor needs to
validate the values entered, then it can use the sdk.setValidation() function and
pass a callback function that handles the editor validation. In the example below,
setValidation passes the callback function validateValue. This works when the
validation property is set to true in the appinfo.json file.

 // sample validation function that
 // validates whether entered length of the string is more than
10
 function validateValue(value) {
 var isValid = true;

 if (value && value.length > 100) {
 isValid = false;

 return {
 isValid: false,
 title: getTranslatedString('validation.title',
currentLocale),
 message: getTranslatedString('validation.message',
currentLocale)
 };
 }
 return isValid;
 }

 function initEditor(sdk) {
 // retrieve the field object rendered by this custom editor
 var field = sdk.getField();

 // register a custom validation function for this editor
 sdk.setValidation(validateValue);

 }

Chapter 7
Edit a Custom Field Editor

7-8

 // this is the entry point to initialize the editor sdk.
 editorSDK.initSDK(initEditor);

Enable and Disable Field Editor

Content item form field editors get enabled and disabled. For example, each field editor goes
into the disabled mode when annotation starts, and when the user comes out of annotation
mode the form field editors get enabled again. Custom field editors also need to follow this
rule, so the custom field editor implementation should handle the enabling and disabling of
the editors when the form broadcasts to do so. This is handled by calling the
registerDisable method of the SDK and passing a callback function that handles enabling
the editor.

 //
 // disable/enable call back that gets called if the content form
 // needs to enable/disable this editor
 function renderDisabled(value) {
 if (value) {
 document.getElementById('textInput').disabled = true;
 } else {
 document.getElementById('textInput').disabled = false;
 }
 }

 function initEditor(sdk) {
 // retrieve the field object rendered by this custom editor
 var field = sdk.getField();

 //register render disabled function for this editor
 sdk.registerDisable(renderDisabled);

 }

 // this is the entry point to initialize the editor sdk.
 editorSDK.initSDK(initEditor);

view.html for Custom Field Editor
The view.html contains html markup, styles and JavaScript code for the custom viewer
implementation. This file is executed for the field using the custom field editor when the user
switches the content form to view mode. The view.html file gets called only when
useDefaultFormView is not present or set to false in the appinfo.json file, otherwise the
system default viewer is used for the custom field editor. Unlike the edit.html file, the
view.html file is invoked only once whether or not the field is single valued or multi-valued.

Below is a sample view.html file that displays the field value within an inner HTML of a div
element.

<!DOCTYPE html>
<html>
 <head>

Chapter 7
Edit a Custom Field Editor

7-9

 <meta charset="utf-8">
 <style type="text/css">
 body {
 margin: 0;
 padding: 0;
 font: normal 100% "Helvetica Neue", 'Segoe UI', sans-serif-
regular, Helvetica, Arial, sans-serif;
 color: #666;
 }
 div {
 font-size: .875rem;
 }
 span {
 font-style: italic;
 }
 </style>
 </head>
<body>
 <div id="inputValue"></div>
</body>

<!-- load the attribute editor SDK -->
<script src="/documents/static/gemini/api/field-editor-sdk-1.0.js"></
script>
<script>
/* globals editorSDK */
(function() {
var textElement = document.getElementById('inputValue');

function initEditor(sdk) {
 // retrieve the field object rendered by this custom editor
 var field = sdk.getField();

 // retrieve the current field value
 var value = field.getValue();

 if (value) {
 textElement.innerText = value;
 } else {
 textElement.innerHTML = 'No value specified';
 }
}
editorSDK.initSDK(initEditor);
})();
</script>

Sample Content Field Editors
Oracle Content Management provides 2 sample content field editors available from
Content Toolkit.

• Slider

• Location Selector

Chapter 7
Sample Content Field Editors

7-10

These sample field editors can be exported from Content Toolkit and imported to your
instance of Oracle Content Management like any other component.

Slider
The slider sample is built using the Oracle Jet Slider widget. It can be used to pick a number
in a give range. This is useful for the 'NUMBER' data type. Minimum and maximum values of
the range can be configured. This sample also demonstrates how the field-editor-sdk library
can be used by using requireJS. The slider sample is compatible for single valued and multi-
valued fields.

Location Selector
The location selector sample content field editor is built using Oracle's e-location JavaScript
library. It can be used to pick a location on a map. It is used with the 'TEXT' data type. Default
longitude, latitude and zoom level for the map can be configured for this editor. This location
selector sample sets the selected location's longitude and latitude as comma- separated
values in the custom field. It also displays the selected location on the map with a pointer.

Content Field Editor SDK Reference
The Oracle Content Management content field editor SDK API enables communication
between a custom field editor and a content item defined with a content type that uses the
custom field.

The content field editor SDK has a global object called editorSDK that initializes the field
editor. The entry point is to call the editorSDK.initSDK and passes a callback function like
editorSDK.initSDK(initEditor).

There are two objects:

Chapter 7
Content Field Editor SDK Reference

7-11

https://elocation.oracle.com/elocation/home.html
https://elocation.oracle.com/elocation/home.html

• SDK Object

• Field Object

Content Field Editor SDK Object
The initEditor is the callback function that gets an instance of the SDK object that
provides the following methods:

getField() Gets a field object rendered by the custom editor.

getFields() Gets a list of all fields in the content item in which the custom
editor is being used. Returns an array of field objects.

getLocale() Gets the current language of the user interface.

getSetting(setting) Gets the editor setting value for the given setting.

getSettings() Gets the editor settings.

registerDisable(callback
)

Registers a callback function for disabling and enabling the
custom field editor.

setValidation(callback) Registers a validation callback function for validating the
custom field editor.

resize(size) Resizes the iframe where the custom editor resides to the
given size object containing width and height in pixels.

openContentPicker() Opens the content picker dialog.

getDirection() Gets the current direction of the user interface.

getField()
Parameters:

None

Usage:

 // retrieve the field object rendered by this custom editor
 var field = sdk.getField();

Returns:

Field object

getFields()
Parameters:

None

Chapter 7
Content Field Editor SDK Reference

7-12

Usage:

 // retrieve all fields
 var fields = sdk.getFields();

Returns:

An array of Field objects

getLocale()
Parameters:

None

Usage:

 // get the locale the ui is currently in
 currentLocale = sdk.getLocale();

Returns:

The language code of the user that is logged in

getSetting(setting)

Name Type Description

setting string Name of the setting

Usage:

 // get the initial latitude from settings
 var latitude = sdk.getSetting('init-lat');

Returns:

Value of the setting. For example if the settings property for custom editor in appinfo.json is:

"settings":[
 {
 "id": "foo",
 "type": "text",
 "name": "Foo",
 },
 ...
 ...
]

Then this 'foo' setting will appear in the field definition for content administrator to configure.
Suppose if the content admin configured this setting to have a value 'bar', then
sdk.getSetting('foo') will return 'bar'.

Chapter 7
Content Field Editor SDK Reference

7-13

getSettings()
Parameters:

None

Usage:

 //get editor settings
 var settings = sdk.getSettings();

Returns:

Editor settings configured by content admin for the custom field editor. For example, in
the case of the sample location selection editor, if the setting is:

"settings": [{
 "id": "init-long",
 "name": "Initial longitude",
 "type": "text"
 }, {
 "id": "init-lat",
 "name": "Initial latitude",
 "type": "text"
 }, {
 "id": "zoom-level",
 "name": "Zoom level",
 "type": "text"
 }]

and if the content admin entered an initial longitude of -73.96 and an initial latitude of
40.78, with a zoom level of 18, then sdk.getSettings() will return:

{zoom-level: "18", init-long: "-73.96", init-lat: "40.78"}

registerDisable(callback)

Name Type Description

callback function Function that handles the
enabling and disabling of the
editor

Usage:

 //register render disabled function for this editor
 sdk.registerDisable(function renderDisabled(value){
 if(value){
 document.getElementById("phoneNumber").disabled = true;
 }else {
 document.getElementById('phoneNumber').disabled = false;

Chapter 7
Content Field Editor SDK Reference

7-14

 }
 });

setValidation(callback)

Name Type Description

callback function Function that handles field value
validation

Usage:

 // register a custom validation function for this editor
 sdk.setValidation(function validateValue(value) {
 // sample validation function that
 // validates whether entered number of characters is more than 100
 var isValid = true;

 if (value && value.length > 100) {
 isValid = false;

 return {
 isValid: false,
 title: 'Invalid value',
 message: 'You have entered more than 100 characters'
 };
 }
 return isValid;
 });

resize(size)

Name Type Description

size Object with height and width Object with height and width in
pixels. For example:

{
 height:'20px',
 width:'60px'
}

If no size is given then the size of
the editor will be used.

Usage:

 sdk.resize({width: ‘100px’, height: ‘20px’});

openContentPicker()
Opens the content picker dialog.

Chapter 7
Content Field Editor SDK Reference

7-15

Usage:

 sdk.openContentPicker().then(function(data) {
 // use data returned from content picker
 // sample data {id: 'assetId', type: 'assetType', name:
'assetName'}
 console.log(data)

 }).catch(function(error){
 // handle error
 console.log("Error:", error);
 });

Returns:

A Promise object.

getDirection()
Parameters:

None

Usage:

// when the editor wants to handle and support
// directionality
let dir = sdk.getDirection();
if(dir){
document.querySelector("html").setAttribute("dir", dir);
}

Returns:

The current direction of the user interface.

Custom Content Field Object
The Field object is the representation of the content field that is returned by
getField() and getFields() methods. The object has the following methods:

getName() Gets the name of the field.

getDefaultValue() Gets the default value of the field.

getDataType() Gets the data type of the field.

setValue(value) Sets the value of the field.

getValue() Gets the value of the field.

on(event, callback) Attaches an event handler function to the field for the event.
Currently update is the only event supported.

Chapter 7
Content Field Editor SDK Reference

7-16

getName()
Parameters:

None

Usage:

 // retrieve the field object rendered by this custom editor and get its
name
 var field = sdk.getField();
 var fieldName = field.getName();

Returns:

Name of field

getDefaultValue()
Parameters:

None

Usage:

 // retrieve the field object rendered by this custom editor and get its
default value
 var field = sdk.getField();
 var fieldDefaultValue = field.geDefaultValue();

Returns:

Default value if one is set for the field.

getDataType()
Parameters:

None

Usage:

 // retrieve the field’s data type
 var field = sdk.getField();
 var dataType = field.getDataType ();

Returns:

Data type of the field, for example, text or number

Chapter 7
Content Field Editor SDK Reference

7-17

setValue(value)

Name Type Description

value string, number, or object, depending on
the data type of the field

Varies depending on the data
type of the field

Usage:

 // when the editor value changes, set the changed value
 // to the field
 inputField.addEventListener('change', function(e) {
 field.setValue(inputField.value);
 });

getValue()
Parameters:

None

Usage:

 // retrieve the field object rendered by this custom editor and
get its value
 var field = sdk.getField();

 var fieldValue = field.getValue();

Returns:

Value of the field

on(event, callback)

Name Type Description

event Event string Event string. Currently only the event update is
supported.

callback Function Event handler function to be attached to the event

Usage:

 // if the field is updated externally, keep the editor in sync
 field.on('update', function(value) {
 inputField.value = value ? value : '';
 });

Chapter 7
Content Field Editor SDK Reference

7-18

8
Develop Custom Content Forms

Oracle Content Management allows you to extend beyond out of the box forms with the help
of the content form SDK.

With the Oracle Content Management content form SDK, you can develop and use your own
custom form. The main purpose of the SDK is to facilitate communication between the
custom form component and the content item form. To develop a custom form, you first need
to create the custom form then promote it so that it can be used when creating content types.
Once promoted, the form is available for use. Lastly, you can open and edit the files
associated with the custom form to fit your purpose.

• Create a Custom Content Form

• Configure a Content Type to Use a Custom Content Form

• Edit a Custom Content Form

• Content Form SDK Reference

• Sample Custom Form

Create a Custom Content Form
To create a custom content form:

1. Log in to your instance of Oracle Content Management using the web interface, and click
Developer in the side navigation.

2. Click View All Components.

3. Click Create, and select Create Content Form.

4. Enter a name and optional description for the form.

5. Pick a size of the drawer for the content form.

6. Click Create. A new starter form component is created and listed on the Components
page.

7. To make the form available for use, select it and click Promote.

8. Confirm you want to proceed, and click OK.

The custom form is now available for use for the selected content type(s).

Configure a Content Type to Use a Custom Content Form
Once a content form has been created and promoted, it is available for use when defining a
content type.

1. In Oracle Content Management, click Content in the side navigation.

2. Select Asset Types from the page menu, click one of the content types, and click Edit.

8-1

• To edit an existing type, select the content type to use the content form and
click Edit.

• To create a new content type, enter a name and optional description and click
OK. Then define the content type.

3. On the Content Layout tab, select the content form from the Content Form field.

4. Make any additional changes to the content type and when finished, click Save.

Any content items created or edited of this content type will make use of the content
form.

Edit a Custom Content Form
Once you've created a custom content form, the files needed to implement the form
are available when you select and open the component.

1. Click Developer in the side navigation.

2. Click View All Components.

3. Select the custom content form component and click Open.

By default, a custom content form comes with the following content:

• appinfo.json contains the metadata of the content form.

• assets folder includes files that implement the custom content form—edit.html.

• folder_icon.png is the icon that the content form uses when displayed on the
components page.

appinfo.json
This file is a required file and includes the configuration metadata needed for the
content form.

{
 "type":"contentform",
 "name":"Sample form",
}

Property Value Required Type

type The component type. For custom content
forms, the type is contentform and is
the same for all forms. It should not be
changed.

required string

name Name of the custom content form required string

Chapter 8
Edit a Custom Content Form

8-2

Property Value Required Type

drawerSize Size of the drawer in which the custom
form will appear. It can be one of the
following Oracle Content Management
UI's predefined drawer sizes:
Default - Responsive at 90% of window

Full - Responsive at 100% of window

Half - Responsive at 50% of window

Small - Fixed width of 840px, expands/
collapses when sidebar opens/closes.

Medium - Fixed width of 1140px,
expands/collapses when sidebar opens/
closes.

Large - Fixed width of 1296px, expands/
collapses when sidebar opens/closes.

When the drawerSize property is not
present or when no value is specified,
'Default' will be used.

optional
Default value
is

'Default'

string

create The optional create property can be used
to control the behavior of the sidebars
while creating content items. The only
valid property of the create object is a
sidebar object. The valid properties for
sidebar are the same as the
contentItemCreate sidebar object from
the Embed UI API V2 Reference.
A shortcut to disable all the sidebars
during create is to provide an empty
sidebar object.

create: {
 sidebar: {}
}

As all values are initialized, only the
sidebar properties that are changed from
the default value of the property need to
be supplied in the sidebar object.

optional object

Chapter 8
Edit a Custom Content Form

8-3

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#embed-ui-api-reference

Property Value Required Type

edit The optional edit property can be used to
control the behavior of the sidebars while
editing content items. The only valid
property of the edit object is a sidebar
object. The valid properties for sidebar
are the same as the contentItemEditor
sidebar object from the Embed UI API V2
Reference.
A shortcut to disable all the sidebars
during edit is to provide an empty sidebar
object.

edit: {
 sidebar: {}
}

As all values are initialized, only the
sidebar properties that are changed from
the default value of the property need to
be supplied in the sidebar object.

optional object

usesCustomEditors Whether the form uses custom field
editors. Default is false

optional boolean

edit.html for Custom Content Forms
The edit.html file is where the custom content form implementation begins. It is a
mandatory file. This file is called to load the custom content form within the iframe
when creating or editing a content item. In general it deals with HTML markup, styles,
and code implementation needed for rendering the content item fields and metadata.
This file loads the content-form-sdk-1.0.js JavaScript library to communicate with
the content item page in the user interface. This file also handles notifying field value
changes to the user interface and listening to the updates from the interface. The
default implementation of this file in starter form renders system metadata field editors
of the item. This can be edited to include type-specific field editors or to alter system
field editors as needed.

Import the SDK Library

Oracle provides a JavaScript API for the custom form residing in an iframe element to
communicate with the content item edit page in the user interface. So this library
should be included in edit.html. Load the content-form-sdk-1.0.js library using either
the <script> tag or requireJS. This SDK has a global object called contentFormSDK.

Using the <script> Tag

<!-- load the content form SDK -->
<script src="/documents/static/gemini/api/content-form-sdk-1.0.js"></
script>

Chapter 8
Edit a Custom Content Form

8-4

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#embed-ui-api-reference
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#embed-ui-api-reference

Using requireJS

<!-- using requireJS -->
<script>
 requirejs.config({
 paths: {
 contentFormSDK: '/documents/static/gemini/api/content-form-
sdk-1.0'
 }
 });
 require(['contentFormSDK'],
 function (contentFormSDK) {
 });
</script>

Initialize the Form

Invoke contentFormSDK.init() and pass a callback function to initialize the form and start
communicating with the interface. This callback function will be called with an instance of the
SDK when the user interface is ready to render the form. With the SDK instance, the item
being created or edited can be accessed, and the custom form code can communicate with
the interface.

Below is the sample callback function initForm.

<script>
 /* globals contentFormSDK */
 (function() {

 function initForm(sdk) {

 // type
 var type = sdk.getType();

 // item being rendered in the form
 var item = sdk.getItem();

 // current locale of the UI
 var locale = sdk.getLocale();

 // fields of the item
 var fields = item.getFields();

 // item properties
 var itemProps = item.get();
 }

 // this is the entry point to initialize the form sdk.
 contentFormSDK.init(initForm);

 })();
</script>

Chapter 8
Edit a Custom Content Form

8-5

Get and Set Item Name and Description

The item name and description can be obtained from the item.get() method . When
they are set in their respective editors, the change event listeners of the editors can
set their updated value in the item by calling item.setName() and
item.setDescription() as shown in the following sample.

 // item properties
 var itemProps = item.get();

 // name field
 var nameField = itemProps.name ? itemProps.name :'';
 nameField.addEventListener('change', function(e) {
 item.setName(nameField.value);
 });

 //description field
 var descField = document.getElementById('description-input');
 descField.value = itemProps.description ?
itemProps.description : '';
 descField.addEventListener('change', function(e) {
 item.setDescription(descField.value);
 });

Get and Set Field Values

Custom fields can be obtained from the item.getFields() method. It returns an array
of field objects. These field objects help access field values and modify them.

// fields of the item
 var fields = item.getFields();

 fields.forEach(function(field){
 var fieldDefn = field.getDefinition(),
 fieldName = fieldDefn.name,
 dataType = fieldDefn.datatype;

 // handle updating a field of datatype 'text'
 if(dataType === sdk.dataTypes.TEXT){
 var titleInput = document.getElementById('title');
 titleInput.value = field.getValue() ? field.getValue() :
'';
 titleInput.addEventListener('change', function(e) {
 field.setValue(titleInput.value);
 });
 }
 });

Validating System and Custom Field Values

Validating field values is optional. If you would like to validate values before setting
values in the item or field, you can invoke their respective validate methods to check if

Chapter 8
Edit a Custom Content Form

8-6

the value is valid. These validate methods work similar to the validation in out-of-the box
content forms.

// validating name of the item
var nameField = document.getElementById('name-input');
nameField.value = itemProps.name ? itemProps.name : '';
nameField.addEventListener('change', function (e) {
 item.validateName(nameField.value).then(function (validation) {
 if(validation && validation.isValid) {
 // set name of the item
 item.setName(nameField.value);
 } else {
 // display name validation error
 }
 }).catch(function (error) {
 // handle error
 });
});

// validating a field value
var titleInput = document.getElementById('title');
titleInput.value = field.getValue() ? field.getValue() : '';
titleInput.addEventListener('change', function (e) {
 field.validate(titleInput.value).then(function (validation) {
 if(validation && validation.isValid) {
 field.setValue(titleInput.value);
 } else{
 //display field validation error
 }
 }).catch(function (error) {
 // handle error
 });
});

For multi-valued fields, when you want to validate values for a specific index, you can pass
an additional parameter {index: <index>}.

field.validate(value, {index:2}).then(function (validation) {
// handle validation result
});

Validating Form

Content form SDK provides a mechanism to implement custom validation of the form by
registering a validation callback function. This can be done via
sdk.registerFormValidation(callback). If such registration and callback function is
present, then the callback function will be invoked from the interface when the form is saved.
This callback function should handle form validation and return whether or not the form is
valid.

var item;

function initForm(sdk) {
 item = sdk.getItem();

Chapter 8
Edit a Custom Content Form

8-7

 // validation callback registration
 sdk.registerFormValidation(validateForm);

 // ... rest of the form init code
}

function validateForm() {
 var isValid = true,
 message = '';
 if (!item.get().name) {
 isValid = false;
 message = 'Name is required'
 }
 return {
 isValid: isValid,
 message: message
 }
}

Previewing Assets from the Form

Content form SDK provides an option to preview other assets that the item references.
This can be done by invoking sdk.previewAsset({id: <assetId>}) and passing an id
of the asset you want to preview. This opens up the asset in preview drawer.

sdk.previewAsset({id: <asset_id>});

Content Form SDK Reference
The Oracle Content Management content form SDK API content-form-sdk-1.0.js is
the library that handles the communication between the custom form component and
the interface. This has a global variable called contentFormSDK. Custom form
implementation should invoke contentFormSDK.init() method and pass a callback
function to begin the communication between the interface and the custom form.

• Custom Content Form SDK Object

• Custom Content Form Type Object

• Custom Content Form Item Object

• Custom Content Form Field Object

• CustomEditor Object

Custom Content Form SDK Object
The callback function passed to contentFormSDK.init() gets an instance of the SDK
object that provides following methods:

Chapter 8
Content Form SDK Reference

8-8

Method Parameter Requir
ed

Returns Usage

sdk.getLocale() None n/a Returns the current
locale of the interface. var locale =

sdk.getLocale();

sdk.getItem() None n/a Returns the Item object.
var item = sdk.getItem();

sdk.getType() None n/a Returns Type object of
the content item's
content type.

var type = sdk.getType();

sdk.resize(size) Object with
height and width.

no Resizes the frame to
specified size. When no
size is specified, it will
resize the iframe to the
size of its body.

sdk.resize({
 width: '80%',
 height: '80%'
});

sdk.registerFormValidati
on(callback)

Function that
handles the
validation of the
form.

yes This callback will be
invoked to validate the
form when saving.

sdk.registerFormValidatio
n(function(){
 //handle form
validation
});

sdk.previewAsset(optio
ns)

options- Object
with id.
{id:<asset_id
>}

yes Opens up asset preview
drawer sdk.previewAsset({

 id: '<asset_id>'
});

sdk.getRepositoryDefau
ltLanguage()

None n/a Returns the default
language of the current
repository.

var lang =
sdk.getRepositoryDefaultLa
nguage();

Chapter 8
Content Form SDK Reference

8-9

Method Parameter Requir
ed

Returns Usage

sdk.createAsset(options
)

options- Object
with type

{

type:<type_
name>,
 header:
{

<header-
button>:
true|false
 },

callBack:
function()
{}
}

type -
optional
;

header
-
optional
;

callBac
k -
optional
, the
function
is to be
invoked
when
newly
created
asset is
saved.

When the type is given,
it opens up the create
item drawer. When the
type is not given, it
opens up the dialog to
choose a type. And
after the type is chosen,
it opens the create item
drawer.

When invoking
sdk.createAsset(),
if its response needs to
be handled once, then
pass resolve and reject
callbacks to the
Promise. When the
Promise is fullfilled, it
returns a newly created
asset response, but
returns error object
containing the error
response when
rejected.

sdk.createAsset({
 type: '<type-
name>' }).then(fu
nction
(response) {
 // handle
response
}).catch(function
 (error) {
 // handle error
});

When invoking
sdk.createAsset(),
if its response needs to
be handled every time
when save happens in
the drawer that creates
new asset, then a
callBack parameter
should be passed.

sdk.createAsset({

 type:
'<type_name>',
 header:
{ save: true },

sdk.createAsset({ type:
'<type-
name>' }).then(function
(response) {
 // handle response
}).catch(function (error)
{
 // handle error
});

sdk.createAsset({
 type: '<type_name>',
 header: { save: true },
 callBack:
function(response){
 // handle response
 }
});

Chapter 8
Content Form SDK Reference

8-10

Method Parameter Requir
ed

Returns Usage

 callBack:
function(response
){
 // this
function will
be
 // invoked
every time save
occurs
 }
});

callBack option may be
passed if the save
option in the header is
set to true and the form
invoking
sdk.createAsset()
needs to listen to save.

Chapter 8
Content Form SDK Reference

8-11

Method Parameter Requir
ed

Returns Usage

sdk.editAsset(options) options- Object
with id

{
 id:
<asset_id>
 header:
{

<header-
button>:
true|
false
 },

callBack:
function()
{}
}

id -
require
d;

header
-
optional
;

callBac
k -
optional
, the
function
is to be
invoked
when
asset
being
edited
is
saved.

When the given asset is
a content item, it opens
up edit item drawer.
When the given asset is
a digital asset, it opens
edit attributes drawer.

When invoking
sdk.editAsset(), if
its response needs to
be handled once, then
pass resolve and reject
callbacks to the
Promise. When the
Promise is fullfilled, it
returns the edited
asset's response; but
returns error object
containing the error
response when
rejected.

sdk.editAsset({ i
d:
'<asset_id>' }).t
hen(function
(response) {
 // handle
response
}).catch(function
 (error) {
 // handle error
});

When invoking
sdk.editAsset(), if
its response needs to
be handled every time
when save happens in
the drawer that edits the
asset, then a callBack
parameter should be
passed.

sdk.editAsset({
 id:
'<asset_id>',
 header:
{ save: true },
 callBack:
function(response
){

sdk.editAsset({ id:
'<asset_id>' }).then(funct
ion (response) {
 // handle response
}).catch(function (error)
{
 // handle error
});

sdk.editAsset({
 id: '<asset_id>',
 header: { save: true },
 callBack:
function(response){
 // handle response
 }
});

Chapter 8
Content Form SDK Reference

8-12

Method Parameter Requir
ed

Returns Usage

 // handle
response
 }
});

callBack option may be
passed if the save
option in the header is
set to true and the form
invoking
sdk.editAsset()
needs to listen to save.

sdk.getRepositoryId() None n/a Returns Id of the
current repository. var currentRepo =

 sdk.getRepositoryId();

sdk.isMediaEditble(opti
ons)

options- Object
with id
{id:
<asset_id>}

id -
require
d

Whether or not the
media of the given
digital asset is editable.
{ isEditable:
true|false,
reason: '' |
<reason text when
not editable> }

sdk.isMediaEditble({ id:
'<asset_id>' }).then(funct
ion (response) {
 if(response &&
response.isEditable){
 // try editing
 }
}).catch(function (error)
{
 //handle error
});

sdk.editMedia(options) options- Object
with id

id -
require
d

Opens edit media
drawer. When the digital
asset's media is an
image, opens image
editor drawer. When
digital asset's media is
an advanced video,
opens video editor
drawer.

sdk.editMedia({ id:
<asset_id> }).then(functio
n (response) {
 // handle response
}).catch(function (error)
{
 // handle error
});

Chapter 8
Content Form SDK Reference

8-13

Method Parameter Requir
ed

Returns Usage

sdk.isAssetEditble(optio
ns)

options- Object
with id

id -
require
d

Whether or not the
asset is editable.
{ isEditable:
true|false,
reason: '' |
<reason text when
not editable> }

sdk.isAssetEditble({ id:
'<asset_id>' }).then(funct
ion (response) {
 if(response &&
response.isEditable){
 // try editing
 }
}).catch(function (error)
{
 //handle error
});

sdk.getDirection() None n/a Returns the current
direction of the UI.

Either ltr or rtl
// when the form wants to
handle and support
// directionality
let dir =
sdk.getDirection();
if(dir){
document.querySelector("ht
ml").setAttribute("dir",
dir);
}

sdk.canCreateAsset(opt
ions)

options - object
with type

type -
require
d

Whether or not the
asset of a given type
can be created.

{
 canCreate:
true|false,
 reason: '' |
<reason text
when not able to
create>
}

sdk.canCreateAsset({ type:

'<asset_type>' }).then(fun
ction (response) {
 if(response &&
response.canCreate){
 // try creating
 }
}).catch(function (error)
{
 //handle error
});

SDK Constants

The custom content form SDK has the following field data type constants:

sdk.dataTypes.TEXT
sdk.dataTypes.LARGETEXT
sdk.dataTypes.REFERENCE
sdk.dataTypes.NUMBER

Chapter 8
Content Form SDK Reference

8-14

sdk.dataTypes.DECIMAL
sdk.dataTypes.BOOLEAN
sdk.dataTypes.DATETIME
sdk.dataTypes.JSON

Custom Content Form Type Object
sdk.getType() holds the data of the content type of the item .

Method Parameter Returns U
s
a
g
e

type.getSlug() None Slug property of type definition properties node.

"slug": {
 "enabled": false,
 "pattern": "-{name}"
 }

v
a
r

s
l
u
g

=

t
y
p
e
.
g
e
t
S
l
u
g(
)
;

Chapter 8
Content Form SDK Reference

8-15

Method Parameter Returns U
s
a
g
e

type.getGroups() None Groups property of type definition properties node.

"groups": [
 {
 "title": "Content Item Data
Fields",
 "collapse": false
 },
 {
 "title": "Blog Fields",
 "collapse": true
 }
]

v
a
r

g
r
o
u
p
s

=

t
y
p
e
.
g
e
t
G
r
o
u
p
s(
)
;

Custom Content Form Item Object
sdk.getItem() returns an Item object which holds item data.

Chapter 8
Content Form SDK Reference

8-16

Method Parameter Req
uire
d

Returns Usage

item.get() None n/a Basic item properties.

{
 id: <id>,
 type:
<type>,
 name:
<name>,

description:
<description>,
 createdBy:
<createdBy>,

createdDate:
<createdDate>,
 updatedBy:
<updatedBy>,

updatedDate:
<updatedDate>,
 slug:
<slug>,

repositoryId:
<repositoryId>,
 language:
<language>,

translatable:
<translatable>,
 status:
<status>,

isPublished:
<isPublished>,

languageIsMaster
:
<languageIsMaste
r>,
 version:
<version>,

currentVersion:
<currentVersion>
,

latestVersion:

var itemProperties =
item.get();

Chapter 8
Content Form SDK Reference

8-17

Method Parameter Req
uire
d

Returns Usage

<latestVersion>,
 mimeType:
<mimeType>,
 fileGroup:
<fileGroup>,
 varSetId:
<varSetId>
}

item.getLanguageOption
s()

None n/a Method to return a list
of language options
applicable for creating
new item. This method
works for a new item
only.

//when item is new build
language dropdown
if(item.isNew()){
 var langOptions =
item.getLanguageOptions();
}

item.isNew() None n/a Method to specify
whether or not the item
is new.

var isNewItem =
item.isNew();

item.getFields() Object with
height and width.

n/a Method to return an
array of Field objects. var fields =

item.getFields();

item.getFieldById(fieldId) field ID

string

yes Method to return a
Field object by field ID. var field =

item.getFieldById(<fieldId
>);

item.getFieldByName(fiel
dName)

field name

string

yes Method to return a
Field object by field
name.

var field =
item.getFieldByName(<field
Name>);

Chapter 8
Content Form SDK Reference

8-18

Method Parameter Req
uire
d

Returns Usage

item.validateName(name) name

string

yes Validates a given name
and returns a Promise.
When fullfilled returns
validation object.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

item.validateName(nameFiel
d.value).then(function
(validation) {
 if (validation &&
validation.isValid) {
 // handle valid name
 } else {
 // display
invalidation errors
 }
}).catch(function (error)
{
 // handle error
});

item.validateDescription(d
escription)

description

string

yes Validates given
description and returns
a Promise. When
fullfilled returns
validation object.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

item.validateDescription(d
escField.value).then(funct
ion (validation) {
 if (validation &&
validation.isValid) {
 // handle valid
description
 } else {
 //display
invalidation errors
 }
}).catch(function (error)
{
 // handle error
});

Chapter 8
Content Form SDK Reference

8-19

Method Parameter Req
uire
d

Returns Usage

item.validateSlug(slug) slug

string

yes Validates given slug
and returns a Promise.
When fullfilled returns
validation object.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

item.validateSlug(slugFiel
d.value).then(function
(validation) {
 if (validation &&
validation.isValid) {
 // handle valid slug
 } else {
 // display
invalidation errors
 }
}).catch(function (error)
{
 // handle error
});

item.validateLanguage(la
nguage)

language

String

yes Validates given
language and returns a
Promise. When fullfilled
returns validation
object.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

item.validateLanguage(lang
uage).then(function
(validation) {
 if (validation &&
validation.isValid) {
 // handle valid
 } else {
 // display
invalidation errors
 }
}).catch(function (error)
{
 // handle error
});

Chapter 8
Content Form SDK Reference

8-20

Method Parameter Req
uire
d

Returns Usage

item.setName(name,optio
ns)

name - string

options - object
with {silent:
true|false}

nam
e -
yes

optio
ns -
optio
nal

Sets item name. When
options with
silent:true property
is passed, form doesn't
become dirty.

// sets name and form
becomes dirty
item.setName(name);

// sets name and form
doesn't become dirty
item.setName(name,
{silent: true});

item.setDescription(descri
ption,options)

description -
string

options - object
with {silent:
true|false}

descr
iption
- yes

optio
ns -
optio
nal

Sets item description.
When options with
silent: true property is
passed, form doesn't
become dirty.

item.setDescription(descri
ption);
item.setDescription(descri
ption, {silent: true});

item.setSlug(slug,options) description -
string

options - object
with {silent:
true|false}

slug -
yes

optio
ns -
optio
nal

Sets slug value. When
options with silent: true
property is passed,
form doesn't become
dirty.

item.setSlug(slug);
item.setSlug(slug,
{silent: true});

item.setLanguage(langua
ge,options)

languageCode -
string

options - object
with {silent:
true|false}

langu
age -
yes

optio
ns -
optio
nal

Sets language. Works
for new items only.
When options with
silent: true property is
passed, form doesn't
become dirty.

item.setLanguage('en-US');
item.setLanguage('en-US',
{silent: true});

item.setTranslatable(isTra
nslatable,options)

isTranslatable -
boolean

options - object
with {silent:
true|false}

setTr
ansla
table
- yes

optio
ns -
optio
nal

Sets whether or not the
item is translatable. Will
work only if the item is
a new master. When
options with silent: true
property is passed,
form doesn't become
dirty.

item.setTranslatable(isTra
nslatable);
item.setTranslatable(isTra
nslatable, {silent:
true});

item.on(event, handler) event - string

handler - function
that handles the
event

yes Currently only 'update'
event is supported. item.on('update',

function(value){
 // called if the item
values change in the UI
 // update item
properties with latest
value
 itemProps = value;
});

Chapter 8
Content Form SDK Reference

8-21

Method Parameter Req
uire
d

Returns Usage

item.getChannels() None n/a Returns a Promise.
When fullfilled the
channels of the item
are returned.

item.getChannels().then(fu
nction (data) {

console.log('Channels:',
data);
});

item.getCollections() None n/a Returns a Promise.
When fullfilled the
collections of the item
are returned.

item.getCollections().the
n(function (data) {

console.log('Collections :
', data);
});

item.getTags() None n/a Returns a Promise.
When fullfilled the tags
of the item are
returned.

item.getTags().then(functi
on (data) {
 console.log('Tags :',
data);
});

item.getTaxonomies() None n/a Returns a Promise.
When fullfilled the
taxonomies of the item
are returned.

item.getTaxonomies().then(
function (data) {

console.log('Taxonomies :'
, data);
});

item.getVersionInfo() None n/a Returns a Promise.
When fullfilled the
version information of
the item is returned.

item.getVersionInfo().the
n(function (data) {
 console.log('Version
info :', data);
});

item.getPublishInfo() None n/a Returns a Promise.
When fullfilled the
publish information of
the item is returned.

item.getPublishInfo().the
n(function (data) {
 console.log('Publish
info :', data);
});

Chapter 8
Content Form SDK Reference

8-22

Method Parameter Req
uire
d

Returns Usage

item.getPublishedChannel
s()

None n/a Returns a Promise.
When fullfilled the
published channels of
the item are returned.

item.getPublishedChannels(
).then(function (data) {

console.log('PublishedChan
nels :', data);
});

item.addChannels(chann
els, options)

channels - Array
of channel
objects
options - Object
with {silent:
true|false}

chan
nels -
yes

optio
ns -
optio
nal

Adds given channels to
the item. item.addChannels([{id:

'<channel1>', ...}, {id:
'<channel2>', ...}]);
item.addChannels([{id:
'<channel1>', ...}, {id:
'<channel2>', ...}],
{silent: true});

item.removeChannels(cha
nnels, options)

channels - Array
of channel
objects
options - Object
with {silent:
true|false}

chan
nels -
yes

optio
ns -
optio
nal

Removes given
channels from the item item.removeChannels([{id:

'<channel1>', ...}, {id:
'<channel2>', ...}]);
item.removeChannels([{id:
'<channel1>', ...}, {id:
'<channel2>', ...}],
{silent: true});

item.addTags(tags,
options)

tags - Array of
tag objects
options - Object
with {silent:
true|false}

tags
- yes

optio
ns -
optio
nal

Adds given tags to the
item item.addTags([{name:

'tag1'}, {id: 'tag2'}]);
item.addTags([{name:
'tag1'}, {id: 'tag2'}],
{silent: true});

item.removeTags(tags,
options)

tags - Array of
tag objects
options - Object
with {silent:
true|false}

tags
- yes

optio
ns -
optio
nal

Removes given tags
from the item item.removeTags([{name:

'tag1'}, {id: 'tag2'}]);
item.removeTags([{name:
'tag1'}, {id: 'tag2'}],
{silent: true});

Chapter 8
Content Form SDK Reference

8-23

Method Parameter Req
uire
d

Returns Usage

item.addCollections(collec
tions, options)

collections -
Array of
collection objects
options - Object
with {silent:
true|false}

colle
ction
s -
yes

optio
ns -
optio
nal

Adds given collections
to the item item.addCollections([{id:

'<collection1>', ...},
{id:
'<collection2>', ...}]);
item.addCollections([{id:
'<collection1>', ...},
{id:
'<collection2>', ...}],
{silent: true});

item.removeCollections(c
ollections, options)

collections -
Array of
collection objects
options - Object
with {silent:
true|false}

colle
ction
s -
yes

optio
ns -
optio
nal

Removes given
collections from the
item

item.removeCollections([{i
d: '<collection1>', ...},
{id:
'<collection2>', ...}]);
item.removeCollections([{i
d: '<collection1>', ...},
{id:
'<collection2>', ...}],
{silent: true});

item.addCategories(taxon
omy, categories, options)

taxonomy -
taxonomy under
which categories
fall
categories -
Array of category
objects

options - Object
with {silent:
true|false}

taxon
omy -
yes
categ
ories
- yes

optio
ns -
optio
nal

Adds given categories
under given taxonomy
to the item

item.addCategories(<taxono
my>, [{id:
'<category1>', ...}, {id:
'<category2>', ...}]);
item.addCategories(<taxono
my>, [{id:
'<category1>', ...}, {id:
'<category2>', ...}],
{silent: true});

item.removeCategories(ta
xonomy, categories,
options)

taxonomy -
taxonomy under
which categories
fall
categories -
Array of category
objects

options - Object
with {silent:
true|false}

taxon
omy -
yes

categ
ories
- yes

optio
ns -
optio
nal

Removes given
categories under given
taxonomy from the item

item.removeCategories(<tax
onomy>, [{id:
'<category1>', ...}, {id:
'<category2>', ...}]);
item.removeCategories(<tax
onomy>, [{id:
'<category1>', ...}, {id:
'<category2>', ...}],
{silent: true});

Chapter 8
Content Form SDK Reference

8-24

Method Parameter Req
uire
d

Returns Usage

item.getFormOptions() None n/a Returns form options

{

supportsSetName:
true|false,

supportsSetDescripti
on: true|false,

supportsSetLanguage:
 true|false,

supportsSetTranslata
ble: true|false,

supportsSetSlug:
true|false,

supportsSetMetaData:
 true|false,

supportsSetNativeFil
e: true|false,

supportsRequiredVali
dation: true|false,
 placement:
sidebar|drawer,

mixedValueFields:
[<field_name1>,
<field_name2>..]

}

var formOptions =
item.getFormOptions();

Chapter 8
Content Form SDK Reference

8-25

Method Parameter Req
uire
d

Returns Usage

item.getNativeFileOption
s()

None n/a Returns native file
options. This is an
array of possible
options to upload native
file. First item in the
array allows to upload
the file from computer,
followed by options that
allow to use the file
from existing
translations.

[{
action: "add-from-
computer",
label: "Add from
this computer"
value: "add-from-
computer"
},
{
action: "add-from-
documents",
label: "Add from
Documents",
value: "add-from-
documents"
},
{
action: "add-from-
translation"
label: "Use
<Language Name>
Master"
languageIsMaster:
true
value: <id of
master>
},
{
action: "add-from-
translation"
label: "Use
<Language Name>"
languageIsMaster:
false
value: <id of the
translation>
}...]

var nativeFileOptions =
item.getNativeFileOptions(
);

Chapter 8
Content Form SDK Reference

8-26

Method Parameter Req
uire
d

Returns Usage

item.validateNativeFile() file - instance of
File object

yes Validates given file
object and returns a
Promise. When fullfills
returns validation
object. Validation is
done to validate the file
type.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid: false,

errorMessageSummary:
 <error message>

errorMessageDetail:
<detail error
message>
};

This method should be used to
validate the chosen file when the
'add-from-computer' option is
selected to pick a native file.

item.validateNativeFile(fi
le).then(function
(validation) {
 if (validation &&
validation.isValid) {
 // handle valid
 } else {
 // display
invalidation errors
 }
}).catch(function (error)
{
 // handle error
});

item.setNativeFile(file,
options)

file - File
objectoptions -
Object with
{silent:
true|false}

no Sets the given file This method should be used to set
the chosen file when the 'add-from-
computer' option is selected to pick
a native file.

item.setNativeFile(file);
item.setNativeFile(file,
{silent: true});

item.setSourceId(sourceI
d, options)

sourceId - id of
the existing
translation
options - Object
with {silent:
true|false}

sourc
eId -
yes
optio
ns -
optio
nal

Sets the given sourceId This method should be used to set
the sourceId when the 'add-from-
translation' option is chosen.
Selected translation's id should be
passed as souceId.

item.setSourceId(<id>);
item.setSourceId(<id>,
{silent: true});

Chapter 8
Content Form SDK Reference

8-27

Method Parameter Req
uire
d

Returns Usage

item.openDocumentPicke
r()

None n/a Opens the document
picker drawer and
returns a Promise.
When fullfills returns an
object containing id and
name of the selected
document.

{
 id: <docId>,
 name:
<docName>
}

item.openDocumentPicker().
then(function (doc) {
 console.log('Selected
document:', doc);
 }).catch(function
(error) {
 // handle error
});

item.validateDocument(do
c)

doc - document
object
{ id: <docId>
name:
<docName> }

yes Validates given
document object and
returns a Promise.
When fullfills returns
validation object.
Validation is done to
validate the extension
of the document name.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

This method typically used to
validate the chosen document when
the 'add-from-documents' option is
selected and when the document is
chosen from the document picker.

item.validateDocument(doc)
.then(function
(validation) {
 if (validation &&
validation.isValid) {
 // handle valid
 } else {
 // display
invalidation errors
 }
}).catch(function (error)
{
 // handle error
});

Chapter 8
Content Form SDK Reference

8-28

Method Parameter Req
uire
d

Returns Usage

item.setDocument(doc,
options)

doc - document
object
{ id: <docId>
name:
<docName> }
options - Object
with

{silent:
true|false}

yes

doc -
yes

optio
ns -
optio
nal

Sets the given
document.

This method typically used to set
the document when the given
document needs to be used for
separate native file.

item.setDocument(file);
item.setDocument(file,
{silent: true});

Form Options
The following form options are available for the custom content form item object.

Table 8-1 Form Options

Property Description

supporstSetsName Whether or not the form supports setting name.
Typically this value is false when adding or editing
digital asset attributes.

When this value is false, calling

 item.setName()

will throw an error.

supportsSetDescription Whether or not the form supports setting
description. Typically this value is false when
adding or editing digital asset attributes.

When this value is false, calling

item.setDescription()

will throw an error.

supportsSetLanguage Whether or not the form supports setting
language. Typically this value is false when adding
or editing digital asset attributes

supportsSetTranslatable Whether or not the form supports setting
translatable. Typically this value is false when
adding or editing digital asset attributes, and
adding or editing content items in a business
repository. When this value is false, calling

item.setTranslatable()

will throw an error.

Chapter 8
Content Form SDK Reference

8-29

Table 8-1 (Cont.) Form Options

Property Description

supportsSetSlug Whether or not the form supports setting slug.
Typically this value is false in following scenarios:

• While adding multiple digital assets together
to the repository

• While adding/editing digital assets and
content items in the business repository

• While converting digital assets of seeded type
to a custom type

When this value is false, calling

item.setSlug()

will throw an error.

supportsSetMetaData Whether or not the form supports setting
metadata. Typically this value is false while adding
digital assets to the repository.

When this value is false, calling following methods
of item will throw an error.

• addCollections()
• removeCollections()
• addChannels()
• removeChannels()
• addTags()
• removeTags()
• addCategories()
• removeCategories()

supportsRequiredValidation Whether or not the form supports required
validation. Typically this value is false while adding
digital assets to the repository.

placement Whether the form is displayed in the

sidebar

or

drawer

.

Chapter 8
Content Form SDK Reference

8-30

Table 8-1 (Cont.) Form Options

Property Description

mixedValueFields An array of field names that has mixed values
while editing attributes across multiple selected
assets when adding assets to repository.

supportsSetNativeFile Whether or not the form supports adding a native
file from the form for custom digital asset
translations. Typically this value is true for new
translations of custom digital assets whose Asset
Type's file field is not inherit from master. In all
other cases it is false.

Custom Content Form Field Object
item.getFields() returns the array of Field object. The Field object holds field data.

Chapter 8
Content Form SDK Reference

8-31

Method Parameter Requir
ed

Returns Usage

field.getDefinition() None n/a Returns field definition.

{
 "id":
"<id>",
 "name":
"<name>",

"description":
"<description>",
 "datatype":
"<datatype>",
 "required":
true|false,

"valuecount":
"single|list",

"properties": {
 "caas-
translation": {
"inheritFromMast
er": false,
"note": "",
"translate":
true
}
 },
 "settings":
{
 //
field settings
 }
....
}

Settings property holds
the field setting set for
the field. Refer to Field
Settings for more detail.

var fieldDefn =
field.getDefinition();

field.getValue() None n/a Returns field value.
Refer to Field Types
and Values for details.

var fieldValue =
field.getValue();

field.getValueAt(index) index

Non-negative
number

yes Returns field value at
specified index. Works
for multi-valued fields
only.

var value =
field.getValueAt(2);

Chapter 8
Content Form SDK Reference

8-32

Method Parameter Requir
ed

Returns Usage

field.validate(value,
options)

value - value of
the field

options - optional

yes Validates given field
value and returns a
Promise. When fulfills
returns validation
object.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

field.validate(fieldValue)
.then(function
(validation) {
 if (validation &&
validation.isValid) {
 // handle valid field
value
 } else {
 //display field
validation error
 }
}).catch(function (error)
{
 // handle error
});

field.setValue(value,
options)

value - see
section on field
types and values

options - object
with {silent:
true|false}

no

options
-
optional

Sets given value for the
field. When options
with silent: true
property is passed,
form doesn't become
dirty.

field.setValue(fieldValue)
;

field.setValue(fieldValue,
 {silent: true});

field.setValueAt(index,
value, options)

index - Non-
negative number

options - object
with {silent:
true|false}

index -
yes

options
-
optional

Sets given value at the
specified index for the
field. Works only for
multi-valued fields.
When options with
silent: true property is
passed, form doesn't
become dirty.

field.setValueAt(1,
fieldValue);

field.setValueAt(1,
fieldValue, {silent:
true});

field.removeValueAt(ind
ex, options)

index - Non-
negative number

options - object
with {silent:
true|false}

index -
yes

options
-
optional

Removes value at the
specified index. Works
only for multi-valued
fields. When options
with silent: true
property is passed,
form doesn't become
dirty.

field.removeValueAt(1);

field.removeValueAt(1,
{silent: true});

Chapter 8
Content Form SDK Reference

8-33

Method Parameter Requir
ed

Returns Usage

field.openAssetPicker(o
ptions)

options -
parameters to be
sent to asset
picker. Refer to
options of
mediaPicker and
referencePicker
sections in
Embed UI API
V2 for Oracle
Content
Management, a
JavaScript API

options - Object

yes Opens the asset picker
and returns a Promise.
When fulfilled returns
an object containing id,
name and type of the
selected asset.

{
 id:
<asset_id>,
 type:
<asset_type>,
 name:
<asset_name>
}

field.openAssetPicker().th
en(function (data) {
 var newValue = { id:
data.id, type: data.type,
name: data.name };

field.setValue(newValue);
 }).catch(function
(error) {
 // handle error
 });

field.on(event, handler) event - string

handler - function
that handles the
event

yes Currently only 'update'
event is supported. field.on('update',

function(value){
 // called if the field
changes in the UI
});

Chapter 8
Content Form SDK Reference

8-34

https://docs.oracle.com/en/cloud/paas/content-cloud/embed-ui-api/#mediapicker
https://docs.oracle.com/en/cloud/paas/content-cloud/embed-ui-api/#referencepicker
https://docs.oracle.com/en/cloud/paas/content-cloud/embed-ui-api/
https://docs.oracle.com/en/cloud/paas/content-cloud/embed-ui-api/
https://docs.oracle.com/en/cloud/paas/content-cloud/embed-ui-api/
https://docs.oracle.com/en/cloud/paas/content-cloud/embed-ui-api/

Method Parameter Requir
ed

Returns Usage

field.createCustomEdit
or(editorName, options)

editorName -
name of the
custom field
editor

options - Object

Can have index,
width and height.

index: If the field
is multi-valued
and the editor is
needed to
display field
value for a
specific index,
then index can
be passed.

width and
height: This
method returns a
CustomEditor
object with the
given custom
field editor
rendered in an
iframe. If the
iframe containing
the field editor
needs to be in a
certain initial
size, then the
width and height
parameters can
be passed. Note:
custom field
editors can have
their own fixed
sizes. They might
also trigger to
adjust the
containing
frame's size.

{
 index:
<index>,
 width:
<width>,
 height:
<height>
}

editorN
ame -
yes

options
-
optional

Returns CustomEditor
object var fieldDefn =

field.getDefinition(),
 isCustomEditor =
fieldDefn.settings.caas.ed
itor.hasOwnProperty('isCus
tom') ?
fieldDefn.settings.caas.ed
itor.hasOwnProperty('isCus
tom') : false;
if(isCustomEditor){
 var customFieldEditor =
fieldDefn.settings.caas.ed
itor.options.name;
 if(customFieldEditor){
 // create a dom
element
 var container =
document.createElement('di
v');

document.body.appendChild(
container);
 //create a custom
editor for the field
 var customEditor =
field.createCustomEditor(c
ustomFieldEditor);
 //add the custom
editor's frame to the dom
element

container.appendChild(cust
omEditor.getFrame());
 //listen to custom
editor's change event

customEditor.on('change',
function (value) {
 //set the updated
value to the field

field.setValue(value);
 });
 }
}

Chapter 8
Content Form SDK Reference

8-35

Field Types and Values

Value parameter passed to field.setValue() or the value obtained from
field.getValue() varies depending on the field data type and value count.

Dataty
pe

Value
count

Value Sample value

text single

list

String

Array of strings "my text"

["foo", "bar"]

largetex
t

single

list

String

Array of strings "this is large text"

[
 "this is large text1",
 "this is large text2"
]

referenc
e

single

list

Object with type, ID and name

Array of objects with type, ID and
name

{
 "id":
"CONTCB9A907A21E14B73A678CF
39CF14A0FC",
 "type": "DigitalAsset",
 "name": "bird.jpg"
}

[
 {
 "id":
"CONT58729B8B480F45E891D584
736AC44CBA",
 "type": "DigitalAsset",
 "name": "cheetah.jpg"
 },
 {
 "id":
"CONT393EBEDA72C84822A4C66D
08CF2E4DBC",
 "type": "DigitalAsset",
 "name": "tiger.jpg"
 }
]

Chapter 8
Content Form SDK Reference

8-36

Dataty
pe

Value
count

Value Sample value

number single integer
200

decimal single decimal
245.25

boolean single true|false
true

datetim
e

single Object with value and timezone
where value is the date string with
format

yyyy-MM-dd'T'HH:mm:ss.SSS+/-
HH:mm
and time zone is the timezone string

{
 "value":
"2020-08-21T03:20:00.000-04
:00",
 "timezone": "America/
New_York"
}

json single json string
{
 "name": "John",
 "age": 20,
 "gender": "Male"
}

Field Settings

Settings property holds the information about the settings of the field including editor name
and any field specific validators. Following is a sample settings property for a multi-valued
text data type with multi-select SelectBox editor. Editor name set in the field definition can be
obtained from settings.caas.editor.name. Available editors associated with field types are
listed under Field Types and Available Editors.

"settings": {
 "groupIndex": 3,
 "caas": {
 "description": "Fruits list",
 "valuecountRange": {
 "min": 1,
 "max": 3
 },
 "customValidators": [],
 "editor": {
 "name": "multi-selectbox",
 "options": {
 "multiple": true,
 "valueOptions": [

Chapter 8
Content Form SDK Reference

8-37

 {
 "value": "apple",
 "label": "apple"
 },
 {
 "value": "banana",
 "label": "banana"
 },
 {
 "value": "orange",
 "label": "orange"
 }
]
 }
 }
 }
}

Field Types and Available Editors

Data Type Single List

text textbox

textarea

radiobuttonset

single-selectbox

single-selectbox-rest

textbox

textarea

checkboxset

multi-selectbox

multi-selectbox-rest

tagcloud

largetext textarea

rich-text-editor

markdown-editor

textarea

rich-text-editor

markdown-editor

number number-inc-dec

radiobuttonset

single-selectbox

n/a

decimal number-inc-dec

radiobuttonset

single-selectbox

n/a

boolean boolean-switch

boolean-checkbox

n/a

datetime datepicker

datetimepicker

datetimepickerz

n/a

reference mediapicker (in case of media)

itempicker

mediapicker (in case of media)

itempicker

json json-form

json-textarea

n/a

Chapter 8
Content Form SDK Reference

8-38

CustomEditor Object
field.createCustomEditor() returns the CustomEditor object. The Field object holds field
data.

Method Parameter Req
uire
d

Returns Usage

getFrame() None n/a The iframe element
with src set to the
custom field editor url.

var customEditor =
field.createCustomEditor(c
ustomFieldEditor);
//get custom editor's
frame
var editorFrame =
customEditor.getFrame();

setDisabled(disable)
Note: this function should
be invoked after the
custom editor is ready.

ture | false yes Invokes the custom
field editor's disable
callback function
registered via
registerDisable()
function if such exists
for the custom field
editor.

customEditor.on('editorRea
dy', function () {
 //to disable the custom
field editor

customEditor.setDisabled(t
rue);
});

getValue() None n/a Returns the value in
the custom field editor. customEditor.getValue();

Chapter 8
Content Form SDK Reference

8-39

Method Parameter Req
uire
d

Returns Usage

validate() None n/a Invokes the custom
field editor's validate
callback function
registered via
setValidation()
function if such exists
for the custom field
editor. Returns a
Promise. When fullfilled
returns validation
object.

// when valid
{
 isValid: true,
}

// when invalid
{
 isValid:
false,

errorMessageSumm
ary: <error
message>

errorMessageDeta
il: <detail
error message>
};

customEditor.validate().th
en(function (validation) {
 if (validation &&
validation.isValid) {
 // handle valid field
value
 } else {
 //display validation
error
 }
}).catch(function (error)
{
 // handle error
});

resizeEditorFrame(size) Object with
height and width

yes Resizes the frame
containing the custom
editor to specified size.

customEditor.resizeEditorF
rame({
 width: '600px',
 height: '250px'
});

Chapter 8
Content Form SDK Reference

8-40

Method Parameter Req
uire
d

Returns Usage

on(event, handler) event - string

handler - function
that handles the
event

yes Supported events:
• editorReady
• change
• editorResized

customEditor.on('editorRea
dy', function () {
 // if the editor needs
any disabling, it can
happen here
});

customEditor.on('editorRes
ized', function (data) {
 // if any dom elements
needs to be adjusted
});

// look for change even
to grab the editor's
changed value
customEditor.on('change',
function (value) {
 // validate field value
if necessary

field.validate(value).the
n(function (validation) {
 if (validation &&
validation.isValid) {
 // handle valid
field value
 } else {
 //display field
validation error
 }
 }).catch(function
(error) {
 // handle error
 });
});

Sample Custom Form
Oracle Content Management provides a sample custom form called Starter-Blog-Post-
Form for use with the Starter-Blog-Post content type. This sample demonstrates the use of
the content form SDK API to render, validate and set values for fields of item type Starter-
Blog-Post.

The Starter-Blog-Post-Form sample is available in the Content Toolkit, which is available from
GitHub.

Chapter 8
Sample Custom Form

8-41

https://github.com/oracle/content-and-experience-toolkit

Get Custom Form Sample
To get the custom form sample, you must install and configure Content Toolkit if it is
not yet installed.

https://github.com/oracle/content-and-experience-toolkit/blob/master/sites/
README.MD

Once Content Toolkit is installed, you must use it to create a site template and upload
the template to the Oracle Content Management server.

1. Create a site template.

cec create-template BlogTemplate -f BlogTemplate

This template includes content type Starter-Blog-Post and content form
Starter-Blog-Post-Form.

2. Upload the template to an Oracle Content Management server.

cec upload-template BlogTemplate -s <registered server name>

Now when you use this template to create a site and create or edit an item of type
Starter-Blog-Post, the custom content form sample Starter-Blog-Post-Form will be
used.

Add OCM Image Picker and Link Dialog Plug-ins for Rich Text Editor
Oracle Content Management (OCM) provides image picker and link dialog features in
the form of plug-ins for rich text editor, TinyMCE.

Note:

You may see OCM being referred to as Oracle Content Experience (OCE),
the legacy name, in the code snippets.

To use TinyMCE for displaying large text field in a custom content form and have
image and link functionality similar to a standard form, add these external plugins with
some additional configuration. The plug-ins are compatible with TinyMCE version
6.3.1.

To add and configure the plug-ins:

1. Load tinymce from CDN.
Create a TinyMCE account and register with tinymce to obtain the api-key and
replace the <no-api-key> with your api-key in the URL.

<!-- load TINYMCE from CDN-->
<!-- obtain your own api-key for tinymce and replace the 'no-api-
key'part of the url with your api-key-->
<!-- Without actual api-key, tinymce editor will load with message

Chapter 8
Sample Custom Form

8-42

prompting to register-->
<script src="https://cdn.tiny.cloud/1/no-api-key/tinymce/6.3.1/
tinymce.min.js" referrerpolicy="origin"></script>

Note:

Loading tinymce with the no-api-key option will load the TinyMCE editor with
a prompt asking to register the domain.

2. Initialize the tinymce instance for the Field that is of type largetext and set the Field
object as value in editor.oceItemField

tinymce.init({
 selector: '<dom-element-selector>',
 // list of plugins needed
 plugins: ['<plugin1>', '<plugin2>'],
 //load oce link and image plugins as external plugins
 external_plugins: {
 assetimage: '/documents/static/gemini/api/tinymce-plugins/
assetimage.js',
 assetlink: '/documents/static/gemini/api/tinymce-plugins/
assetlink.js',
 },
 // this property is important for the oce link plugin to work properly
 extended_valid_elements: 'a[*]',
 // other tinymce options
 //
 setup: function (editor) {
 editor = editor;
 // Note: set the current field in the editor
 // this must be set for the oce link and image plugins to work
 // this must be set for every tinymce editor instance.
 editor.oceItemField = field;
 }
});

Chapter 8
Sample Custom Form

8-43

9
Develop Translation Connectors for Language
Service Providers

Oracle Content Management provides a connector framework for developers to develop their
custom translation connectors. The connector framework is extensible, and a developer or
partner can build a translation connector to work against any Language Service Provider
(LSP).

Note:

Translation connectors aren't supported in private instances.

For translation by an LSP, Oracle Content Management converts a translation zip file into the
format expected by the vendor and then packages up the response from the vendor into a zip
file that Oracle Content Management can consume.

A custom translation connector needs to implement the following artifacts:

• REST interfaces for defining configuration, providing authorization, and translating
content.

• Logic to create and manage a translation job, accept a translation job zip file, and return
a translated version of the translation zip file

Oracle Content Management provides a sample translation connector implementation that
runs against an included mock server to get you started.

Oracle Content Management provides the following tools for site and asset translations:

• A translation connector framework, a translation SDK, and command-line interface (CLI)
utilities in Content Toolkit

• An administration web interface for creating a custom translation connector

• A translation job web interface that lets contributors submit assets or sites for translation
by an LSP and import translations into Oracle Content Management

Note:

This chapter does not provide details on how to deploy or manage your connector.
The model you choose for deployment will depend on the technology you use to
implement the connector and the server you choose to deploy the connector.

The following topics describe how to develop custom translation connectors for Oracle
Content Management and to translate Oracle Content Management sites and assets using
LSPs:

• Overview of the Translation Connector Framework

9-1

• Request a Lingotek Trial Connector for Content Translation

• Enable a Lingotek LSP Translation Connector

• Delete a Lingotek LSP Translation Connector

• Register Multiple Lingotek Connectors

• Add Custom Locales to a Lingotek Translation Connector

• Translate Native Files in Assets

• Build a New Translation Connector

• Configure and Register a Translation Connector

• Translation Connector Execution Flow

• Sample Translation Connector Implementation

• Understand the Sample Translation Connector Source Code

Overview of the Translation Connector Framework
The Oracle Content Management translation framework enables you to translate sites
and assets using external Language Service Providers.

To help you build a new translation connector, Oracle Content Management provides
the Translation Connector SDK.

The connector framework abstracts the functionality that is provided and implemented
by end connectors. It does so by providing the REST API interface for configuring a
translation connector and for calling translation connector functionality to download
translation jobs from sites and upload the resulting translations back into Oracle
Content Management.

Translation Connector SDK
The Translation Connector SDK for Oracle Content Management is a sample NodeJS
implementation of the Translation Connector REST APIs. The sample accepts a
translation job zip file, translates all the resources in the file, which includes metadata
file of site pages and both metadata file and native file of assets, and then returns a
new zip file containing all the translations.

The Translation Connector SDK is part of Content Toolkit, which is available from
GitHub. To help you build a new translation connector, this SDK contains a sample
translation connector:

• JSDoc for the sample translation connector

• A NodeJS sample translation connector implementation of the REST interfaces

• A NodeJS mock Language Server Provider that the sample runs against

Chapter 9
Overview of the Translation Connector Framework

9-2

https://github.com/oracle/content-and-experience-toolkit

Note:

The Translation Connector SDK requires the user to have access to a language
service provider (LSP) to do the actual string translations. A mock LSP server is
included in the SDK to mimic the responses from the LSP by simply prepending the
targeted locales onto the strings.

This SDK consists of three main modules:

• SampleConnector: A sample translation connector that implements the required Oracle
Content Management Translation Connector API.

• SampleJobManager: A file-system based sample job manager that maintains the state
of the connector jobs while they are translated.

• TranslationProviderInterface: A set of APIs used to call the Language Service Provider
to submit documents for translation and retrieve the translated documents.

The Sample Translation Connector code is split up into three areas:

• /translation-connector:

– /connector: Implements the required Oracle Content Management Cloud Translation
Connector APIs.

– /job-manager: This sample implementation of a file-based persistence store unzips
the translation job, translates it, and then zips up the translations.

– /provider: Implements the Language Service Provider APIs to upload, translate, and
download documents.

In addition, you can use the mock LSP for testing:

• /mockserver: A mock LSP, which simply adds the requested translation locale to all the
strings.

Translation connectors are deployable packages that use Restful services for the remote
stores implementing the REST interfaces (SPIs/SDK) defined by Oracle Content
Management. They internally use cloud store native SDKs to connect to remote systems.

Translation Connector REST APIs
You can deploy and run translation connectors anywhere and implement them with any
technology stack, as long as they can be called from Oracle Content Management through
REST APIs.

The Translation Connector SDK includes the following API classes:

• ConnectorApi

• MockTranslationProvider

• PersistenceStoreInterface

• SampleBasicAuth

• SampleConnector

• SampleConnectorRouter

• SampleFileDownloader

Chapter 9
Overview of the Translation Connector Framework

9-3

• SampleFileImporter

• SampleFilePersistenceStore

• SampleFileTranslator

• SampleJobManager

• TranslationFilter

• TranslationProviderInterface

Your translation connector needs to support the translation connector REST APIs.

The following table describes the REST APIs for Oracle Content Management
translation connectors.

API Description

GET http://host:port/connector/rest/api Returns the versions of the
Translation Connector REST API
that the connector supports; for
example: ["v1"]

GET http://host:port/connector/rest/api/v1/
server

Returns the connector configuration
information; for example, required
parameters that the user needs to
pass to the connector.

POST http://host:port/connector/
rest/api/v1/job

Creates a new job in the connector
and returns a unique translated job.

GET http://host:port/connector/
rest/api/v1/job/{id}

Returns status information about the
specified job.

POST http://host:port/connector/
rest/api/v1/job/{id}/translate

Sends an Oracle Content
Management translation zip file for
the job to be translated.

GET http://host:port/connector/
rest/api/v1/job/{id}/translation

Returns the translated job in the
Oracle Content Management
translated zip file format

DELETE http://host:port/connector/
rest/api/v1/job/{id}

Deletes the job from the connector
(and from the LSP if required)

Request a Lingotek Trial Connector for Content Translation
You can open a trial account with the Lingotek language service provider from the
Oracle Content Management administration web interface.

To request a Lingotek trial account for content translation:

1. Sign in to the Oracle Content Management web interface as an administrator.

2. Click Integrations in the Administration area of the navigation menu.

3. In the Integrations drop-down menu, choose Translation Connectors.

4. On the Translation Connectors page, click Lingotek to open the connector
configuration.

5. Click Additional Fields.
On the Lingotek Additional Fields page, you will input some data to configure
your Lingotek trial account: the bearer token provided by Oracle, the default value

Chapter 9
Request a Lingotek Trial Connector for Content Translation

9-4

Oracle for Community, the default value Machine Translation for Workflow. See steps
below for details.

6. Under the Bearer Token field, click request a trial Lingotek account.
The Lingotek Request Account page opens.

Chapter 9
Request a Lingotek Trial Connector for Content Translation

9-5

7. Replace the values on this page with your data:

• Replace Company with the name of your company.

• Replace First Name, Last name, and Email with yours. The Email address will
be used as your Lingotek user name.

• Choose your country, such as United States, from the drop-down field.

• Enter a new password and confirm it.

8. Click Conditions of Use to view the policy, and then select the check box to agree
with it.

9. Click the Request Account button.
You will be redirected to the Lingotek sign-in page. Enter your Lingotek user name
(email address) and password, and then click SIGN IN.

10. Select your organization (Oracle), and then click ALLOW to authorize the
account.

11. The Lingotek Credentials page opens, with credentials for you to copy and paste
into custom fields for your trial account.

Chapter 9
Request a Lingotek Trial Connector for Content Translation

9-6

Use the credentials on this page to configure a Lingotek translation connector in Oracle
Content Management. The credentials include Bearer Token and Workflow Id values for
Oracle Content Management translation connectors as well as your Oracle Community
Id.

Copy the Bearer Token value from the Lingotek Credentials page and paste it in the
Bearer Token field on the Lingotek Additional Fields page. This populates the rest of
the custom fields on the page.

12. After you click Save, you can use your Lingotek trial account.

Enable a Lingotek LSP Translation Connector
The Lingotek language service provider (LSP) translation connector is pregistered. After you
authorize Oracle on your Lingotek LSP account and enable the Lingotek LSP connector in
the Oracle Content Management web interface, you can use the connector for translations.

To enable the Lingotek LSP translation connector:

1. Sign in to the Oracle Content Managemen web interface as an administrator or
developer.

2. Click Integrations in the Administration area of the navigation menu.

3. In the Integrations menu, choose Translation Connectors.

4. Click Enable next to the Lingotek connector.

After you enable the Lingotek LSP connector, it becomes available in the Language Service
Provider menu item of the Oracle Content Management Create Translation Job web
interface.

Delete a Lingotek LSP Translation Connector
Before you delete the connector, you need to disable the connector and remove the
translation jobs referencing that connector.

To delete the Lingotek LSP translation connector:

Chapter 9
Enable a Lingotek LSP Translation Connector

9-7

1. Sign in to the Oracle Content Management web interface as an administrator or
developer.

2. Click Integrations in the Administration area of the navigation menu.

3. In the Integrations menu, choose Translation Connectors.

4. Click Disable next to the already created translation connector.

5. Select the translation connector and click Delete in the action bar.
If there are translation jobs referencing the connector, then an error message will
be displayed and the connector will not be deleted.

Register Multiple Lingotek Connectors
You can register and enable multiple Lingotek language service provider (LSP)
translation connectors in an Oracle Content Management instance.

Configuration of a Lingotek translation connector requires values for three additional
fields:

• Bearer Token: The sign-in for your Lingotek account. You can use the same
bearer token for all of your Lingotek connectors or specify a different one for a
connector.

• Community: The community to use for your translation projects. The default is
Oracle.

• Workflow: The workflow profile to use for your Lingotek translation projects. The
default is Machine Translation.

You can change any of these values. Use the Additional Data fields to define optional
attributes of the connector.

To create a translation job for an asset, you can select the asset in a repository and
then choose Translate from the drop-down menu to open the Create Translation Job
dialog.

Chapter 9
Register Multiple Lingotek Connectors

9-8

The Workflow field shows workflows that you can use for your translation jobs. You can
specify a workflow for a connector on the Additional Fields page when you create the
connector.

The Translation Jobs page, under Assets, shows the status of jobs you have running on
your Lingotek translation connectors.

Chapter 9
Register Multiple Lingotek Connectors

9-9

If the workflow is different than Machine Translation, a translator edits or finishes the
job, and you will need to approve each of the translator's changes before the job is
100% complete.

Add Custom Locales to a Lingotek Translation Connector
You can add custom languages to the list of languages known to Oracle Content
Management and use them for managing asset translation and content delivery,
including language fallback.

This image shows the fields to create a translation job, including Name, Source
Language, Target Languages, and Translation Project.

Chapter 9
Add Custom Locales to a Lingotek Translation Connector

9-10

Oracle Content Management supports custom locales in the <base or seeded language
code>-<x>-<custom string> format, where <custom string> is a dash-separated string of sub-
strings up to 8 characters long.

A predefined list of languages (BCP-47), language codes (ISO-639-2), territory sub-tags
(ISO-3166), and script sub-tags (ISO-15924) follows the BCP-47 standard (https://
tools.ietf.org/html/bcp47). The names are restricted to the characters a-z, A-Z and 0-9 as
stated in the BCP47 doc:

singleton = DIGIT ; 0-9
 / %x41-57 ; A - W
 / %x59-5A ; Y - Z
 / %x61-77 ; a - w
 / %x79-7A ; y - z

A content architect can add a custom locale to the list of languages available in Oracle
Content Management as a Description and Code pair.

Description will be a locale name, such as English – APAC or Global French. Code will be
a custom locale code, such as en-x-region-apac or fr-x-global. For example:

• en-x-custom-string OR ar-x-middle-east
• en-GB-x-custom-string-custom OR ar-SA-x-custom-string-custom-string.

With custom locales, you can manage content localization and language fallback in delivery.

You can create L10N policies with a default language. If the default language is set, an asset
request will return translation to the default language if the language in the request is not
found. If your company has a global presence, you can support asset request fallback based
on a language hierarchy that is defined for each region where the content is consumed.

Oracle Content Management can support a URL path segment mapped to a standard or
custom language for delivery to multilingual sites. The path segment can be a country code,
language code, language name, or custom name.

Chapter 9
Add Custom Locales to a Lingotek Translation Connector

9-11

https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/bcp47

Translate Native Files in Assets
For an asset with a native file, both the attributes and the native file can be translated
by Lingotek. However, not all native file types are supported by Lingotek. For the list of
supported file types, see Supported File Types.

Build a New Translation Connector
To build a new translation connector as a RESTful service, a developer needs to
implement the RESTful interfaces provided by the connector framework.

The Oracle Content Management Cloud connector framework has the following
interfaces:

• APIResource Interface: This interface is the starting point of the translation
connector. You simply return the version that's supported.

• ServerResource Interface: When an administrator or developer registers a
translation connector in the Oracle Content Management (OCM) server, OCM calls
this service to get the basic details about the connector server, such as the
authorization type, custom fields, and properties for the translation connector:

– Authorization types:

* OAUTH_CLIENT_CREDENTIALS: The translation connector supports
Client Credentials (two-Legged OAuth).

To access Language Service Provider using Client Credentials in Identity
Cloud Store (IDCS), (two-Legged OAuth), a token is requested for the
client application and calls to the Language Service Provider APIs are
made using this client application's token. The connector declares the
custom fields required to obtain the token; for example, Client ID, Client
Secret, and Scope. In addition, a custom field with fields ID accessToken
must be declared. Every request made to the connector includes these
custom fields in the request headers. In a new connector instance, the
value of the accessToken field is empty. The connector should obtain an
access token with the values of the other custom fields such as Client
ID, Client Secret, and Scope. Once an access token is obtained, then
the value should be set in the response header. The OCM connector
framework saves the accessToken value in the response header.
Subsequent requests for the connector will receive the accessToken.

To revoke the access token generated in the two-legged OAuth flow,
select Integrations from the left navigation panel, select Translation
Connectors in the dropdown menu. Select the checkbox corresponding to
the translation connector, click the Revoke Access Token button.

Note:

The Revoke Access Token button appears only when you’ve
selected the checkbox corresponding to the connector, and the
connector must be of type OAUTH_CLIENT_CREDENTIALS.
Otherwise, the Revoke Access Token button will not appear.

Chapter 9
Translate Native Files in Assets

9-12

https://lingotek.atlassian.net/wiki/spaces/PDOC/pages/29403785/Supported+File+Types

* NO_AUTH: The translation connector uses custom fields to specify fields such as
Bearer token for authentication.

– Custom fields and properties: You can also use this interface to define custom
fields for the translation connector. Custom properties are specific to a connector, so
the connector framework can’t provide such a properties list by itself. Every
translation connector has its own requirements to connect to a remote store; for
example, one translation connector might need just Client ID and Client Secret,
while another might require Client ID, Client Secret, App ID, and so on. Each
translation connector can provide a custom properties list to the Oracle Content
Management server by ServerResource. If any of these properties need to be filled
in by an administrator during configuration, the connector framework can surface
them in the Administration web interface and pass them through as header
parameters on each request to the translation connector.

This service will be called only once, at the time of registration.

• TranslationResource Interface: The connector framework uses this service to submit
an Oracle Content Management translation job to the translation connector. The
translation connector then calls the Language Service Provider to translate ,the zip file
provided for the job and returns the translated zip.

Each of these interfaces is described in more detail, with examples of REST payloads, in the
following sections:

• REST Interfaces for Configuration and Authorization

• REST Interfaces for Creating Translation Jobs and Returning Translated Content

REST Interfaces for Configuration and Authorization
A translation connector needs to implement the following REST APIs for defining the
connector configuration and setting up authorization.

/rest/api
Implements intradoc.connectorcommon.server.APIResource
Here you return the latest version supported by the content connector.

GET http://host:port/connector/rest/api

["v1"]

/rest/api/v1/server
Implements intradoc.connectorcommon.server.ServerResource

This returns information about the translation connector configuration, like the authentication
type and custom fields it exposes.

GET http://host:port/connector/rest/api/v1/server

{
 "name": "",
 "nameLocalizations": [{
 "locale": "en_US",
 "localizedString": "Sample Connector"

Chapter 9
Build a New Translation Connector

9-13

 }],
 "version": "(1,0,0)",
 "about": "This is a sample connector.Copyright (c) 2019, Oracle
and/or its affiliates. All rights reserved.",
 "aboutLocalizations": [{
 "locale": "en_US",
 "localizedString": "This is a sample connector.Copyright (c)
2019, Oracle and/or its affiliates. All rights reserved."
 }],
 "authenticationType": "NO_AUTH",
 "pickerType": "",
 "enableMultiUserCopyBack": false,
 "maxUploadSize": 1073741824,
 "fields": [{
 "ID": "ProxyHost",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "HTTP Proxy Hostname",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "HTTP Proxy Hostname"
 }],
 "description": "The HTTP proxy hostname, leave blank to
disable.",
 "descriptionLocalizations": [{
 "locale": "en",
 "localizedString": "The HTTP proxy hostname, leave blank
to disable."
 }],
 "required": false
 }, {
 "ID": "ProxyPort",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "HTTP Proxy Port",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "HTTP Proxy Port"
 }],
 "description": "The HTTP proxy port number, leave blank to
default to port 80.",
 "descriptionLocalizations": [{
 "locale": "en",
 "localizedString": "The HTTP proxy port number, leave
blank to default to port 80."
 }],
 "required": false
 }, {
 "ID": "ProxyScheme",

Chapter 9
Build a New Translation Connector

9-14

 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "HTTP Proxy Scheme",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "HTTP Proxy Scheme"
 }],
 "description": "The HTTP proxy scheme, leave blank to default to
http.",
 "descriptionLocalizations": [{
 "locale": "en",
 "localizedString": "The HTTP proxy scheme, leave blank to
default to http."
 }],
 "required": false
 }, {
 "ID": "BearerToken",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Bearer Token",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "Bearer Token"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
 }, {
 "ID": "WorkflowId",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Workflow Id",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "Bearer Token"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
 }],
 "supportedConnectorTypes": [],
 "proprietorName": "",
 "serviceProviderName": "Sample APIs INC.",
 "nativeAppInfos": null
},

Chapter 9
Build a New Translation Connector

9-15

/rest/api/v1/authorization/authorizationURLs
Implements intradoc.connectorcommon.server.AuthorizationResource

This is required only if the custom translation UI is to be configured. It adds a new field
"Translation Job Editor" in the fields of the custom translation connector in Oracle
Content Management.

{
 "ID": "CustomTranslationUI_name",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Custom Translation UI",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "Custom Translation UI"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": false
},
{
 "ID": "CustomTranslationUI_id",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Translation Job Editor",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "Custom Translation UI Id"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": false
 },

The SDK exposes the following global object and properties that can be used in
custom translation editor UI to find out the details about the translation job:

window.translationEditorSDK: {
 properties = {
 "connector": {
 "jobId": "string returned by the connector for the ID of the
job",
 "title": "string for the name of the job"
 },
 "translationJob": {
 "type": ['assets' | 'sites']
 "data": "object providing additional information about the

Chapter 9
Build a New Translation Connector

9-16

selected items based on job type"
 },
 "componentName": "string for the name of the translation editor
component",
 "locale": "string for the locale of the page"
 }
}

This is required only if the translation connector supports OAUTH_CLIENT_CREDENTIALS.
It adds custom fields to obtain an access token and the required accessToken field.

{
 "ID": "ClientID",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "ClientID",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "ClientID"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
},
{
 "ID": "ClientSecret",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "ClientSecret",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "ClientSecret"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
},
{
 "ID": "Scope",
 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Scope",
 "labelLocalizations": [{
 "locale": "en",

Chapter 9
Build a New Translation Connector

9-17

 "localizedString": "Scope"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
},
{
 "ID": "accessToken",
 "datatype": "STRING",
 "siteSettable": false,
 "userSettable": false,
 "connectorSettable": true,
 "authorizationURLParameter": false,
 "label": "null",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": null
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": false
}

This is required if the translation connector supports Additional Data fields.

"addtionalSettings": {
 "AdditionalDataFields": [
 {
 "id": "business_division",
 "name": "Business Division",
 "type": "String"
 },
 {
 "id": "email",
 "name": "Email",
 "type": "String"
 },
 {
 "id": "purchase_order",
 "name": "Purchase Order",
 "type": "String"
 },
 {
 "id": "finish_by",
 "name": "Finish By",
 "type": "Date"
 }
]
}
"fields": [{
 <<Other data>>
 {
 "ID": "AdditionalData",

Chapter 9
Build a New Translation Connector

9-18

 "datatype": "STRING",
 "siteSettable": true,
 "userSettable": false,
 "connectorSettable": false,
 "authorizationURLParameter": false,
 "label": "Additional Data",
 "labelLocalizations": [{
 "locale": "en",
 "localizedString": "Additional Data"
 }],
 "description": null,
 "descriptionLocalizations": [],
 "required": true
 },
 }
 <<Other fields>>
]

REST Interfaces for Creating Translation Jobs and Returning Translated
Content

A translation connector needs to implement he following REST APIs for creating translation
jobs, providing status about the connector translation jobs, and returning the translation
results for each job.

/rest/api/v1/job
Implements intradoc.connectorcommon.server.TranslationJobResource
Given an OCE Translation Job ID, create and return a connector project ID
for the translation job.
POST http://host:port/connector/rest/api/v1/job

Request Headers
X-CEC-ClientID:client-id
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http
X-CEC-TranslationJob:translation-job-name

Request Body
{Zipfilecontent}

Response Headers
content-type application/zip
content-length {zip file size}

Response Body
 {
 "properties": {
 "status": "IMPORTING",
 "id": "{{connectorJobId}}"
 }
 }

Chapter 9
Build a New Translation Connector

9-19

/rest/api/v1/job/{id}/translation
Implements intradoc.connectorcommon.server.TranslationJobResource
Given a connector job id, return the translated zip file.
GET http://host:port/connector/rest/api/v1/job/{id}/translation

Request Headers
X-CEC-ClientID:client-id
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http
X-CEC-TranslationConnectorJobId:connector-job-id

Request Body

Response Headers
content-type application/zip
content-size {zip file size}

Response Body
 {streamed zip file}

/rest/api/v1/job/{id}
Implements intradoc.connectorcommon.server.TranslationJobResource
Given a connector job id, delete the connector job from the connector.
DELETE http://host:port/connector/rest/api/v1/job/{id}

Request Headers
X-CEC-ClientID:client-id
X-CEC-ProxyHost:proxy-host
X-CEC-ProxyPort:80
X-CEC-ProxyScheme:http
X-CEC-TranslationConnectorJobId:connector-job-id

Request Body

Response Headers
content-type application/json

Response Body
 {Message noting successful deletion}

Configure and Register a Translation Connector
Once you have built your translation connector, you need to register it through the
Oracle Content Management administration interface.

The minimum properties you are required to add to a translation connector follow:

• Translation connector name

Chapter 9
Configure and Register a Translation Connector

9-20

• Translation connector service URL

• User name and password, if the preceding URL access requires it

Once a translation connector gets registered successfully and the translation connector
service URL is reachable, the Oracle Content Management server will call a server service
on the translation connector to get the custom properties and show those in the
Administration web interface. An administrator or developer can add values for those
properties (for example, clientid and clientsecret for OAuth flows or the user name and
password for a Basic authorization central account).

Clicking Save saves all these properties with the connector framework.

You need to select the registered connector in the repository before you can use it in the rest
of the UI. Once you select the connector in the repository, then any asset in that repository
can use this connector to translate.

After you enable it, the translation connector becomes available in the Language Service
Provider menu item of the Oracle Content Management Create Translation Job web
interface.

Translation Connector Execution Flow
From the Oracle Content Management web interface Assets page of the Sites page, you
can click translate and choose a translation connector as an option from the Create
Translation Job web interface.

During creation of the translation job, the connector framework makes REST API calls to the
remote translation connector to create a corresponding job in the connector. The zip file for
the translation job is then submitted to the connector. Once the connector successfully
receives the translation zip file, the job creation process is complete.

The user can now see the status of the job within the connector when viewing the list of
translation jobs, or on the job detail page. Once the status moves to 100%, the user can ask
Oracle Content Management to ingest the translated zip. Oracle Content Management will
call the connector to retrieve the translated zip and ingest it.

Whenever a translation job is deleted that is using a translation connector, the translation
connector is also told to delete the associated job in the connector.

Since a lot of the calls to the translation connector occur as a background process, the web
interface will indicate only the percent complete or failure of the connector job. Refer to the
diagnostic logs for any failures.

Translation Job Editor
A Translation Job Editor is a UI component that lets you edit translation jobs, manage and
monitor the status of your translation job assets. The editor is where you communicate your
translation job requirements to the translation connector.

Chapter 9
Translation Connector Execution Flow

9-21

Note:

The editor is an optional component of a translation connector. On the
Connector Settings’ page, the option to add the Translation Job Editor is
shown to you if you configured custom translation UI. Without the editor, the
status of the job within the connector is available to you after the connector
successfully completes the job creation process.

Oracle Content Management (OCM) comes with an out-of-box Translation Job Editor
in the OCM web UI. The underlying code implementation is in
window.translationEditorSDK, which can be downloaded through the command-line
interface (CLI) utilities in Content Toolkit. You can modify the JavaScript code to
customize the Translation Job Editor.

Note:

Customizing the editor in the provided code through the Content Toolkit will
be available in the spring of 2023.

The following section covers the steps on how to create a Translation Job Editor in the
OCM web UI. The high-level workflow is as follows:

• Create the UI component called Translation Job Editor

• Configure the Component for the Custom Connector

• Create a Translation Job and Render the Editor

• Customize the Translation Job Editor

Create the UI component called Translation Job Editor

1. In the OCM web UI, access the Developer tab > Components > Create >
Translation Job Editor. Give it a name, for example: Demo-Translation-Job-
Editor.

2. Promote the Translation Job Editor on the Components page. It’s now available to
be configured for a custom translation connector.

Chapter 9
Translation Job Editor

9-22

Configure the Component for the Custom Connector

1. • Download the Translation Connector SDK, available in OCM Toolkit

Create a translation connector. See below for the toolkit command.

cec create-translation-connector
<name>

Creates translation connector <name>.
[alias: ctc]

2. • Modify the sampleConnectorResponses.js

After creating the translation connector, locate the connector source code. Find the
source code of the connector in src/connectors/<name>
Within that directory, look for the sampleConnectorResponses.js file and modify it
according to the documentation.

With the “CustomTranslationUI_name” and “CustomTranslationUI_id” fields defined in the
custom connector implementation, the Connector Settings page will display the
Translation Job Editor field.

• Start the translation connector. See below for the toolkit command. Then use the
OCM web UI to configure the custom translation connector.

cec start-translation-connector
<name>

Starts translation connector <name>. [alias:
stc] src/connectors/<name>

Note:

The translation connector must be started before you can configure the custom
translation connector in the OCM web UI.

3. To configure a custom translation connector, access the Integration page and select
Translation Connectors in the top dropdown menu. Select Create > Custom
Connector to configure the connector. Enter the required fields: name, and connector
service URL.

Chapter 9
Translation Job Editor

9-23

https://github.com/oracle/content-and-experience-toolkit

Go to the next page to fill in the required fields, plus the Translation Job Editor field
that is now available. Select the Translation Job Editor component you’ve created
and promoted. Save your data.

4. Access the Content page, select a repository and add the translation connector
you’ve created.

Create a Translation Job and Render the Editor

1. On the Assets page, select an Asset Type. Under Languages > Translate,
create a translation job. Enter a Name. Select a Target Language and
Translation Project. Finish with Create.

2. The out-of-box Translation Job Editor user interface shows the basic information
about your translation job. You can customize the editor in the JavaScript code.

Chapter 9
Translation Job Editor

9-24

Customize the Translation Job Editor

You can add more functionalities to the Translation Job Editor, customize it by using the
Custom Translation UI SDK. Select your Translation Job Editor and find the out-of-the-box
code in the assets/js folder. The provided default main.js is where
window.translationEditorSDK is called. The file util.js is where a few helper functions are
located.

Translation Jobs Validation
The custom translation connector, which is part of the Oracle Content Management (OCM)
Toolkit, can return validation data of a translation job. The validation data indicates whether
the documents in the translation job are translatable. The validation data is returned after the
connector processes and uploads the documents to the Language Service Provider. The
documents can include page content, fields or attributes of content items and digital assets,
and native files of digital assets.

Behind the scenes, the custom connector implementation returns the validation data in the
form of a JSON object through the notificationData property of the TranslationJobInfo. The
same validation data is also presented in the OCM web UI on the translation jobs details
page through the GET_CONNECTOR_JOB_INFO server API. Note that the Lingotek translation
connector now also has the same feature.

The steps to enable this feature consists of the following:

• Create and Start the Custom Translation Connector

• Configure the Custom Translation Connector

• Create a Translation Job to See the Validation Data

Create and Start the Custom Translation Connector

1. Install the OCM toolkit

Note:

The custom translation connector toolkit commands.

cec | grep translation-connector

cec create-translation-connector
<name>

Creates translation connector <name>.
[alias: ctc]

cec start-translation-connector
<name>

Starts translation connector <name>. [alias:
stc]

2. Create a translation connector
cec create-translation-connector <name>

3. Start a translation connector
cec start-translation-connector <name>

Chapter 9
Translation Jobs Validation

9-25

https://github.com/oracle/content-and-experience-toolkit/blob/master/sites/README.MD

Note:

Take note of your IP address of the desktop or Linux box running the
toolkit. You will need it for later.

Configure the Custom Translation Connector

1. Configure the custom translation connector in the OCM web UI.

Note:

The translation connector must be started before you can configure the
custom translation connector in the OCM web UI.

To configure a custom translation connector, access the Integration page and
select Translation Connectors in the top dropdown menu. Select Create >
Custom Connector. Enter the required fields: Name {name of your
translation connector}, and Connector service URL http://{IP
address:port}/connector/rest/api.

Click Next to fill in the Additional Fields section as shown below.

• Bear Token: Bearer token1
• WorkflowId: machine-workflow-id
• Additional Date: []
Once finished, Save and Enable.

2. Use the custom translation connector by associating it with a repository.

Access the Content page, select a repository. Click Edit to add the translation
connector you’ve created and configured.

Create a Translation Job to See the Validation Data

1. On the Assets page, select an Asset Type. Under Languages > Translate,
create a translation job. Enter a Name. Select a Target Language and
Translation Project, which is the connector that’s created in the previous steps.
Finish with Create.

2. Go to the Translation Jobs page and select your translation job, expand the
Details section to see the validation data.

This screen capture shows the page that lists the information about your particular
translation job. In the Details section, you're able to see the validation data which
indicates whether your documents are translatable.

Chapter 9
Translation Jobs Validation

9-26

This screen capture below shows the validation data retrieved by the translation
connector.

Chapter 9
Translation Jobs Validation

9-27

Sample Translation Connector Implementation
You can use Content Toolkit to create the Sample Translation Connector, which
provides a working connector that runs against a mock server.

You can use this sample implementation of a translation connector to help build your
own custom translation connectors. The sample translation connector works with a
mock Language Service Provider to simply add "##{locale}##" to each string to
represent the "translation" of the string that an actual Language Service Provider
would do.

The sample translation connector is built using the Connector Framework JS SDK
provided by Oracle Content Management as part of Content Toolkit.

To install Content Toolkit, follow the directions listed on GitHub.

The following sections describe how to develop a sample translation connector:

1. Create the Sample Translation Connector with Content Toolkit

2. Register the Sample Translation Connector

3. Test the Sample Translation Connector

Create the Sample Translation Connector with Content Toolkit
The create-translation-connector and start-translation-connector commands
will create a named connector and install the required file to run the connector.

The connector contains a NodeJS server.js that you can use to run the Sample
Translation Connector.

Register the Sample Translation Connector
Now that you've created the Sample Translation Connector, you can register it.

The registration of the connector can point to any Oracle Content Management server,
such as the sample server:

> cec register-translation-connector connector1-auto -c connector1 -s
http://localhost:8084/connector/rest/api -u admin -p <password> -f
"BearerToken:Bearertoken1,WorkflowId:machine-workflow-
id,AdditionalData:{}"

To register the translation connector through the Oracle Content Management
Administration web interface:

1. Sign in to your Oracle Content Management instance as an administrator or
developer.

2. Go to Administration > Integration > Translation Connectors and click Create.

3. Enter the details to register your sample translation content connector.

a. Name: Sample Connector – Machine Translation

b. Description: Connector to translate OCE assets and sites

Chapter 9
Sample Translation Connector Implementation

9-28

https://github.com/oracle/content-and-experience-toolkit/blob/master/sites/README.MD

c. Connector Service URL: http://host:port/sample-connector/rest/api (a URL tested
previously)

4. Click Next.

5. Click the Additional Fields tab. Fill in the fields and Save before exiting the page.

a. BearerToken: Bearer token1
b. WorkflowId: machine-workflow-id
c. Translation Job Editor: In the dropdown menu, find the name of Translation

Job Editor that you've created and promoted.

Note:

This field is optional and will appear only if you have configured custom
translation UI. For details, see REST Interfaces for Configuration and
Authorization.

6. Check Enable for end users on the General page. On the Integration page >
Translation Connectors, the Enable buttom is also available to enable your sample
connector.

The default timeout values for the translation connector are set in the following two
properties:

ConnectorConnectionTimeout=20000
ConnectorReadTimeout=30000

If you want to change the values of these properties, you can add the properties to your
config.cfg file and then modify either or both values.

Test the Sample Translation Connector
After you create and test a translation connector in Content Toolkit, you can register, enable,
and test it in the Administration web interface.

Note:

Before you can test the translation connector in the Oracle Content Management
UI, associate the connector with a repository. In the left panel, go to Content >
Repositories, and select your repository. In the dropdown of Translation
Connectors, select the connector that you’ve created. Save

To test the translation connector in the OCM UI:

1. Sign in to Oracle Content Management as an Administrator or Developer.

2. In the navigation menu for the Administration web interface, click Assets on the top left,
and then click an asset to select it.

3. Click Translate in the context menu.

Chapter 9
Sample Translation Connector Implementation

9-29

4. In the create dialog, choose < Sample Connector – Machine Translation > in the
dropdown menu.

5. Complete the create dialog.

6. Navigate to the Translation Jobs page.
When you view the translation job, it will now show you the % complete for the job.

7. Refresh the page until it shows 100% complete.

8. Import the translations from the connector.
Upon successful import, your asset will be translated into your selected language
or languages.

Content Toolkit also provides a framework to test your Sample Translation Connector.
The Sample Translation Connector itself comes with a sample Oracle Content
Management translation job file under data/translationBundle.zip, which you can
use for testing.

To run your Sample Translation Connector, bring up the Content Toolkit develop
pages, select the connector, and then click through each of the steps:

> cec develop &
> open http://localhost:8085/public/translationconnections.html

Select the Sample Translation Connector you registered, and it will lead you to a page
that lists the following steps to test the connector:

1. Get Server Config returns information about your connector that will be used to
register the connector with Oracle Content Management.

2. Create a job creates a unique ID for the job. The sample connector creates an
out folder with the same name as the job ID in the connector.

3. Send zipfile to job submits data/translationBundle.zip to the job for
translation. The sample connector saves this file in the out/{jobid} folder,
extracts the files, and then submits them for translation.

4. Get the details of the job asks for the status of the job.

5. Get the translated zip returns the created OCE Translation Job Translated
Zip File, with the translation, once the job has moved to TRANSLATED.

6. Delete the job removes the out/{jobid} folder.

Understand the Sample Translation Connector Source Code
The source code of the sample translation connector contains REST APIs and a job
manager to handle creation and persistence of the connector jobs.

The sample translation connector contains a set of REST APIs implemented using the
Oracle Content Management connector interfaces. This is implemented as per the
JAX-RS specification.

The job manager uses persistenceApi to store the following resources:

• Metadata about the job in the connector and the project created in the Language
Service Provider

• Contents of the translation zip file from Oracle Content Management

Chapter 9
Understand the Sample Translation Connector Source Code

9-30

• Metadata about each file and the corresponding document in the Language Service
Provider

• Combination of the translations with the original files

• Creation of the translated zip file for the connector

The persistenceApi included in the sample simply uses the files system to manage these
resources. A full translation connector implementation will need to make sure that the
persistence layer will continue to work during failover and upgrade as well as provide secure
access to the resources stored.

The job manager also maintains information in the connector job metadata file about the
status of a translation job in the Language Service Provider by querying the information back
either via polling or via a callback.

Code Structure:

connector:

• SampleConnectorRouter.js

– Authenticates the request

– Extracts parameters from the request URL

– Maps the request URL to the corresponding SampleConnector function:

 GET: /api/connector/v1/server => getServer() – metadata about
the connector
 POST: /api/connector/v1/job => createJob()
 GET: /api/connector/v1/job/:id => getJob()
 POST: /api/connector/v1/job/:id/translate => translateJob() –
accepts a zipfile
 GET: /api/connector/v1/job/:id/translation => getTranslation –
get translated zip
 DELETE: /api/connector/v1/job/:id => deleteJob()

• SampleConnector.js

– Validates the request parameters

– Calls the appropriate connector code

– Formats the response

• SampleBasicAuth.js

connector/job-manager:

• sampleJobManager.js

– Expand the zip file and then, for each file:

* Filter the file to include only translatable fields

* Submit the translatable fields to the LSP

* Wait for the translations to come back (either by polling or by callbacks)

* Recombine the translatable fields with the original files

* Create a zip file of all the translations

– Also restarts any running jobs on startup to support failover

Chapter 9
Understand the Sample Translation Connector Source Code

9-31

• sampleFileImporter.js

– Imports the filtered document into the LSP specifying the source language

• sampleFileTranslator.js

– Asks the LSP to translate the documents into the target languages

• sampleFileDownloader.js

– Downloads translations for a document

connector/apis:

• persistenceApi.js

– Basic implementation using the filesystem to:

* Unpack the zip file and maintaining the source

* Accept translated files and creates the expected zip structure

* Zip up and return the translated files

• filterApi.js

– Extracts translatable strings from the source files based on file type

– Recombines the translated strings with the source file

• connectorApi.js

– Constructs the requests to the LSP

• httpApi.js

– Makes the actual GET/POST requests to the LSP

MockServer:

• mockLSPServer.js

• mockBearerAuth.js

– A mock LSP server

– It expects the following headers:

* BearerToken – can be any Bearer #### value

* WorkflowId – supports only machine-workflow-id

Translation Job Original Zip File Format
The connector is responsible for extracting the files to be translated from the
translation zip file, filtering them, and sending them to the LSP. To do this, the
connnector needs to understand the format of the zip file.

There are two types of translation jobs in Oracle Content Management, so there are
two file structures possible in the zip file:

• Asset Translation

– Zip file format

* "job.json" - Contains details on the source & target languages.

* "root"

Chapter 9
Understand the Sample Translation Connector Source Code

9-32

* <asset files to be translated>

• Site Translation

– Zip file format

* "site"

* "job.json" - Contains details on the source and target languages.

* "root"

* <site files to be translated>

* "assets"

* "job.json" - Contains details on the source and target languages.

* "root"

* <asset files in the site to be translated>

Translation Job Translated Zip File Format
On successful translation, the connector must recombine the translations with the original
files and create a zip file in the following format, which is based on the original format.

• Asset Translation

– Zip file format:

* "job.json"

* "de-DE"

* <asset files>

* "fr-FR"

* <asset files>

* "it-IT"

* <asset files>

* "root" (Original files can optionally be included. The directories also need to be
included, and not just the files.)

* <asset files>

• Site Translation

– Zip file format:

* "site"

* "job.json"

* "de-DE"

* <site files>

* "fr-FR"

* <site files>

* "it-IT"

* <site files>

Chapter 9
Understand the Sample Translation Connector Source Code

9-33

* "root" (Original files can optionally be included. The directories also
need to be included, and not just the files.)

* <site files>

* "assets"

* "job.json"

* "de-DE"

* <asset files>

* "fr-FR"

* <asset files>

* "it-IT"

* <asset files>

* "root" (Original files can optionally be included. The directories also
need to be included, and not just the files.)

* <asset files>

Chapter 9
Understand the Sample Translation Connector Source Code

9-34

10
Develop External Processors

The Content Capture feature of Oracle Content Management provides the ability to integrate
custom functionality. This custom functionality is referred to as an external processor and is
hosted separately from Content Capture.

To connect an external processor to Content Capture, one adds an External Processor Job
step in a procedure flow. For details, see Configure External Processor Jobs in the Capturing
Content with Oracle Content Management guide. When a batch of documents reaches this
step, it is locked to that specific step in the flow. The external processor is then responsible
for processing those documents. After the processing of documents is completed, the
external processor must inform Content Capture of the processing results for each document,
regardless of whether it was completed successfully or failed. If the external processor fails to
notify Content Capture it has finished processing a document, Content Capture will eventually
time out the processing and fail the batch.

An external processor could do various processing on documents. Perhaps there is an
existing application that scans a document for signature blocks to parse out company
information. An external processor could wrap that capability enabling it to be called from a
procedure flow. Metadata values extracted by the application could then be set into the
corresponding Content Capture document’s metadata fields. Or maybe there is an onsite
database that contains discount codes for various vendors. An external processor could look
up codes by a Content Capture metadata field of the document and set the value in a
different metadata field. An external processor could be developed to perform virtually any
type of desired processing on a Content Capture document.

The following sections describe how to develop an external processor:

• External Processor Execution Flow

• REST API for Content Capture

• External Processor SDK

• External Processor Examples

External Processor Execution Flow
An external processor can operate in two modes of execution: push versus pull.

In the push mode, Content Capture pushes documents to the external processor. In this
mode, the external processor responds to API events that come to it. Conversely, in pull
mode, the external processor pulls Content Capture to find new work.

The push model of operation requires the external processor to implement a REST endpoint
service definition that Content Capture expects. The push model introduces additional
networking complexities since the receiving external processor must be publicly accessible
over the Internet. Content Capture is restricted to only sending outbound requests via HTTPS
thus requiring external processors implementing the push model to receive requests over
HTTPS.

An external processor implemented in the pull model does not have these additional
networking challenges. It can easily be placed behind a corporate firewall while making its

10-1

calls outbound to the publicly accessible Content Capture APIs. The pull model
imposes the additional work on the external processor of polling for new work.

The push and pull models are explained in the following sections:

• Push Model

Note:

The push model is deprecated and under maintenance. The
documentation will be available when the push model is updated and re-
released.

• Pull Model

Pull Model
In the pull model, the external processor has the responsibility of polling for documents
to process which it does by using the standard Content Capture API.

Since the processing is controlled by the external processor, the pull model is always
considered asynchronous processing. Similarly, the external processor can make
multiple Content Capture REST API calls to manipulate the state of the document in
Content Capture. Once all the changes are finished, the external processor releases
the lock on the document with the complete API call.

The figure below shows the general flow of processing:

REST API for Content Capture
You can use the Oracle Cloud REST API for Content Capture for the manipulation of
documents when they are locked to an external processor job step. This includes
changing a document’s metadata field values, adding or removing attachments to
documents, and even deleting documents.

The REST API for Content Capture has several categories of endpoints, which are
described in the following table.

Chapter 10
REST API for Content Capture

10-2

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-capture/index.html

Category Description

Attachments Manages document attachments in Capture

Auditing Queries and analyzes batch and document
processing

Batches Manages batches in Content Capture

Documents Manages documents in Capture

Steps Queries and updates processing task queues

System Provides system-level operations

External Processor SDK
To help build a new external processor, Oracle Content Management provides a Content
Capture SDK. The SDK contains:

• The Javadoc of the SDK.

• A JAR file containing the SDK.

• A JAR file containing the Javadoc, useful with Java IDEs.

• A JAR file containing the SDK source, useful with Java IDEs.

• The capture-rest-api-v1.yaml file, which documents the REST API for Content
Capture.

• The external-processor-rest-api-v1.yaml file, which documents the REST API for
external processors.

The Content Capture SDK is in the file capture-sdk.zip or capture-sdk.tgz. You can
download the file from here: https://your-ocm-service/capture/api/sdk/capture-
sdk.tgz or https://your-ocm-service/capture/api/sdk/capture-sdk.zip.

For more details, see REST API for Content Capture.

The SDK is only provided in Java. It requires JAX-RS 2.1 for the RESTful services, Eclipse
Jersey 2.31 for the implementation, and the JSON library Jackson 2.12.3 for mapping
between JSON and Java classes.

External Processor Examples
Three examples of the external processors can be downloaded. The examples file contains:

• The Java source code of the external processors.

• The External-Processor-Examples.xml file, which provides an exported sample Content
Capture Procedure.

The examples are in the file capture-examples.zip or capture-examples.tgz. You can
download the file from here: https://your-ocm-service/capture/api/sdk/capture-
examples.tgz or https://your-ocm-service/capture/api/sdk/capture-examples.zip.

The examples illustrate three different models of interaction between Content Capture and an
external processor. The first two examples are of the push model and illustrate both the
synchronous and asynchronous response types. The third is an example of the pull model.

Chapter 10
External Processor SDK

10-3

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-capture/index.html
https://eclipse-ee4j.github.io/jersey/
https://eclipse-ee4j.github.io/jersey/
https://github.com/FasterXML/jackson

Note:

Only Example 3 is described in this section as seen below. The first two
examples use the push model, which is deprecated and under maintenance.
The documentation for Examples 1 and 2 will become available when the
push model is updated and re-released.

The included Content Capture Procedure provides sample configurations for calling
the examples. It contains the necessary metadata fields, document profiles, and job
definitions. It also provides a Capture client profile to create and release documents
into the Procedure flow.

After the Content Capture Procedure is imported:

• In the Example 3 code, the unique Processor Step identifier will be updated by the
import and its new value will need to specify on the command line as a standard
Java property (i.e. -Doracle.ocm.capture.examples.externalprocessor.step-
id=54cd7e16-5440-46a7-a5d4-6878b38c8b97).

Example 3: Resize Image (Pull Model)

This example shows how to develop an external processor using the pull model. This
external processor will accept an image document which it will scale by a given
percentage and then return the scaled document to replace the original document in
Content Capture. The following elements are illustrated:

• The external processor periodically polling Content Capture for documents that
need processing.

• When the documents are available, the Content Capture responds with a
document JSON object containing the metadata fields associated with each waiting
document, including a scale value.

• For each waiting document, the external processor:

– retrieves the image file using the Capture get document content API method

– resizes the image document by the scale value

– sends the resized image file back to Content Capture to replace the original
file using the document update API method

– indicates the processing of the document is completed using the Capture
complete document task API method

There is one metadata field used for the example is Scale. It needs to contain a value
between 1 to 100 that represents the percentage to scale or resize the image from its
present size.

Chapter 10
External Processor Examples

10-4

11
Compile Content Layouts as HTML

In some cases, you may want to use an asset as its HTML rendition in associated content
layout in web applications or other discrete ways, without precompiling an entire site. To
publish a layout as HTML:

• Enable Publish HTML when creating a content or asset type in the Oracle Content
Management web interface. For information on how to create a content or asset type, see
Create a Content Type in Managing Assets with Oracle Content Management.

• Select a component layout that can compile the layout as HTML, meaning it must have a
compile.js script in the assets directory. For information on content layout compilers,
including sample code of a content layout compiler, see Content Layout Compilers in
Building Sites with Oracle Content Management.

• Publish the asset to trigger compilation of the layout. When an asset of that type is
created and published, the HTML renditions are generated and made available in the
REST API at:

<Instance_URL>/content/published/api/v1.1/items/<item_guid>/renditions?
channelToken=<token>

• You can access the HTML rendition log. The log is generated after assets that are
configured to generate HTML renditions are submitted for publishing. The rendition log
can be downloaded from Assets in the Oracle Content Management web interface, then
go to Publishing Events Logs. Logs are JSON files that contain either detailed
information on the generated renditions and the layout used for the renditions, or error
messages that can help you troubleshoot issues if compilation failed for some reason.

Note:

You can compile content layouts only if your Oracle Content Management instance
is running natively on Gen 2 Oracle Cloud Infrastructure (OCI).

11-1

Part IV
Developing Oracle Content Management
Integrations

This part provides information on developing Oracle Content Management integrations. It
includes the following chapters:

• Understand Cross-Origin Resource Sharing (CORS)

• Embed the Web User Interface in Other Applications

• Oracle Content Management REST APIs

• Oracle Content Management SDKs

• GraphQL Support in Oracle Content Management

• Use Webhooks

• Set Proxies

12
Understand Cross-Origin Resource Sharing
(CORS)

Cross-Origin Resource Sharing (CORS) allows a web page to make requests such as
XMLLHttpRequest to another domain. If you have a browser application that integrates with
Oracle Content Management Cloud but is hosted in a different domain, add the browser
application domain to Oracle Content Management Cloud’s CORS origins list.

The REST APIs use CORS because they're called from JavaScript code that runs in a
browser and the REST APIs and Oracle Content Management are hosted in different
domains.

If your browser application needs to use a REST endpoint that doesn't support CORS or that
needs service account credentials, you can instead register and use the endpoint via Oracle
Content Management’s integrated proxy service. See Configure Proxy Service Settings.

In general, inline frames can host content if the protocol, domain, and port of the inline frame
are identical to those for the content it displays. For example, by default, an inline frame on
the page http://www.example.com:12345/home.html can host content only if the content's
protocol is also http, the domain is www.example.com and the port is 12345.

However, if the application is in a different domain than Oracle Content Management, you
need to add the application’s host machine information to the list of front-channel CORS
origins, back-channel CORS origins, or both.

• If the request is a cross-domain request (not originating from Oracle Content
Management's domain) that will be served by Oracle Content Management, you need to
add a front-channel CORS origin. Front-channel CORS is typically useful for custom
application integration. For example, the REST APIs interact with the front channel.

• If the request is directly from Oracle Content Management to a connected client in
another domain, you need to add a back-channel CORS origin. For example, Oracle
Content Management can send back-channel messages (real-time updates) to an
application.

• If an application gets both front-channel and back-channel communication from Oracle
Content Management, you need to add the domain to both the front and back channel
CORS origins lists.

The CORS settings apply to all Oracle Content Management calls (documents, social, and
content as a service).

12-1

See Enable Cross-Origin Resource Sharing (CORS) in Administering Oracle Content
Management.

Chapter 12

12-2

13
Embed the Web User Interface in Other
Applications

The Embed UI API V2 for Oracle Content Management is a JavaScript API that enables you
to embed the Oracle Content Management web user interface into your own web applications
using an HTML inline frame (iframe tag). The JavaScript API simplifies the creation of the
iframe element and manages communication with the code running in the frame. The
embedded web interface can include asset and document lists, conversations, site content,
search results, and other Oracle Content Management features.

Here’s an example of what the embedded UI could look like (an Oracle Content Management
asset selection list inside the Oracle Eloqua web application):

You configure the web user interface by passing a JavaScript options object into the API. In
addition, you can provide callback functions to handle various events that occur when a user
interacts with the embedded web user interface.

Note:

The current Embed UI API version is V2, which you should use for all new
implementations. V1 has been deprecated, but it will remain available until further
notice. Sometime in the future, V1 will no longer be supported.

Browser settings that affect third-party cookies can impact embedding of the Oracle Content
Management user interface, including single sign-on (SSO). Users may need to adjust their
web browser preferences to enable cross-site tracking for the embedded UI to work correctly.

The Embed UI API V2 supports embeddable components to control these user interface
elements:

13-1

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v1%20

• Assets view

• Asset viewer

• Content item editor

• Content item create

• Documents view

• Document viewer

• Conversations list

• Conversation view

In addition, you can set a number of general options and also customize dialogs in the
embedded web user interface.

See Embed UI API V2 for Oracle Content Management to learn more including
tutorials and reference materials.

Chapter 13

13-2

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#assetsview
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#assetviewer
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#contentitemeditor
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#contentitemcreate
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#documentsview
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#documentviewer
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#conversationslist
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#conversationview
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#general-options
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2#dialogs
https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2

14
Oracle Content Management REST APIs

REST APIs are available in Oracle Content Management for content delivery and for
management of content, conversations, documents, and users and groups.

Oracle Content Management has several REST APIs, listed in the following table.

API Name Description

REST API for Activity Log Provides the ability to search activities in Oracle
Content Management.

REST API for Content Delivery Provides access to published assets in Oracle
Content Management. Published assets include
content items and digital assets, as well as their
renditions.

REST API for Content Capture Provides several operations for the manipulation of
documents when they are locked to an external
processor job step. This includes changing a
document’s metadata field values, adding or
removing attachments to documents, and even
deleting documents.

REST API for Content Management Provides access to manage assets in Oracle
Content Management. Assets include content
items and digital assets and their renditions.

REST API for Content Preview Provides the ability to preview items, item
variations, items by slug, renditions, and renditions
by slug.

REST API for Conversations Enables interaction with your cloud resources for
real-time collaboration between individuals and
teams to connect your business processes,
enterprise applications, and content.

REST API for Documents Enables you to interact with folders and files
stored in Oracle Content Management and to
create sites from templates and other sites.

REST API for Self-Management Provides the ability to view the authenticated user
details.

14-1

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-capture/index.html

API Name Description

REST API for Sites Management Provides the ability to create sites from templates
and then manage the life cycles of those sites in
Oracle Content Management. This REST API has
several categories of endpoints:

• Components
Import, export, list, read, copy, update,
publish, share, and delete components.

• Themes
Import, list, read, copy, publish, update, share,
and delete themes.

• Templates
Create policies and associate them with a
template to be used when creating a site.
Policies can be used to enforce site creation
approval, who can use a template, and what
security the site will have.

• Policies
Manage policies, and manage the
membership of policies with access lists.

• Requests
Requests are made when creating a site. A
site request is rejected or approved through a
review.

• Sites
Create, copy, delete, publish, and activate
sites. Get site information and associated
resources. List sites, and manage
membership.

REST API for Users and Groups Enables you to manage users and groups of
users.

REST API for Webhooks Management Provides the ability to manage webhooks in Oracle
Content Management.

The following topics provide descriptions of how to perform some tasks with REST
APIs:

• Integrate with Oracle Content Management Using OAuth

• Download the Swagger File for a REST API

• Upload a REST API Swagger File into Mobile Cloud Service

• Search with the Querytext Parameter

• Set Up Searches on Metadata Fields

• Create and Use Applinks for File and Folder Access

• Provide Access to Files and Folders with Public Links

Integrate with Oracle Content Management Using OAuth
Developer access to Oracle Content Management (OCM) REST APIs for
administering system or managing assets, files, or other resources is supported only
via token-based authorization. To access the OCM REST APIs, you need an OAuth 2
access token to use for authorization.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-2

You need to create an OAuth client application to be able to request the access token. OAuth
client is simply an HTTP client that must be registered as an OAuth 2 client using the Oracle
Identity Cloud Service (IDCS) or Identity and Access Management (IAM) with Identity
Domains administration console.

If single sign-on (SSO) is already established with IDCS (the same that OCM points to), then
we do not need OAuth. The SSO should be sufficient since OCM REST APIs support SSO as
well. If the UI will not have an active SSO session, then OAuth should be used.

Applications can request an access token to access OCM REST APIs in different ways
depending on the grant type specified in the client application. A grant is a credential
representing the resource owner's authorization to access a protected resource. The OCM
REST APIs have been certified to work with the following three grant types:

• Client Credentials: When using the Client Credentials grant type, the client
authenticates with the OAuth service and then requests an access token. With this grant
type, the OAuth client application presents its own credentials to obtain an access token
for the client-initiated requests to access a protected resource. This access token is
either associated with the client’s own resources, and not a particular resource owner, or
is associated with a resource owner for whom the client is otherwise authorized to act.
Trusted applications (such as back-end services) may request access tokens directly on
behalf of users. This is an OAuth two-legged authorization flow. Another use case of this
flow or grant type is when integrating application users are not users of OCM, (i.e. they
reside in a different identity store other than OCM service’s identity store and hence
OAuth application client credentials are used to make API calls to OCM).

To know more about Client Credentials grant type, see Client Credentials Grant Type.

• Authorization Code: The OAuth web applications typically need to first validate the
user's identity and optionally obtain the user's consent. This is an OAuth three-legged
authorization flow and in this case, the Authorization Code grant type is used.
In this case, you want to obtain an authorization code first by using an authorization
server as an intermediary between the client application and the resource owner. An
authorization code is returned to the client through a browser redirect after the resource
owner gives consent to the authorization server. The client then exchanges the
authorization code for an access (and often a refresh) token. The resource owner
credentials are never exposed to the client. To know more about Authorization Code
grant type, see Authorization Code Grant Type.

• Resource Owner: When using the Resource Owner grant type, the resource owner's
password credentials (user name and password) can be used directly as an authorization
grant to obtain an access token. Therefore, this grant type is used when the resource
owner has a trust relationship with the client, such as a computer operating system or a
highly privileged application, because the client must discard the password after
obtaining the access token.
To know more about Resource Owner grant type, see Resource Owner Password
Credentials Grant Type.

There are four steps that you must perform to use an OAuth client to access OCM REST
APIs:

1. Log in to the Oracle Identity Cloud Service (IDCS) or IAM with Identity Domains
administration console.

2. Create an OAuth client application and make note of the client ID and client secret.

3. Use the client ID and client secret to request an access token from the Oracle Identity
Cloud Service OAuth Service.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-3

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/CCGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/AuthCodeGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ROPCGT.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ROPCGT.html

4. Include the access token in the appropriate HTTP header when you make REST
API calls.

For content management and sites management REST APIs, you acquire the client ID
and secret required to get the access token from Oracle Identity Cloud Service (IDCS)
or IAM with Identity Domains. For the two-legged OAuth, you use client credentials to
acquire the client ID and secret. For the three-legged OAuth, you use an authorization
code to acquire the client ID and secret.

Note:

The Oracle Cloud Console is merging IDCS into Identity and Access
Management (IAM) with Identity Domains. You can check if your cloud
account is using identity domain or not.
Sign in to the Oracle Cloud Console. In the navigation menu, click Identity &
Security. Under Identity, check for Domains. If you see Domains, then your
cloud account has been updated. For details, see Oracle Cloud Infrastructure
Documentation.

The following topics describe how to use your account:

• Cloud Account Using IAM Identity Domain

• Cloud Account Using Oracle Identity Cloud Service

Cloud Account Using IAM Identity Domain

The following sections describe how to use your cloud account:

• Access OCM Using Client Credentials (Two-Legged OAuth in Identity Domain)

• Access OCM Using Authorization Code (Three-Legged OAuth Flow in Identity
Domain)

• Access OCM Using Resource Owner (Identity Domain)

Access OCM Using Client Credentials (Two-Legged OAuth in Identity Domain)
For this OAuth flow, the token is requested for the client application and calls to Oracle
Content Management (OCM) APIs are made using this client application’s token. This
OAuth client application needs to be added to the OCM roles to have appropriate
OCM access.

The Identity Domain Administrator or Application Administrator of the tenant
creates an OAuth client for the developer with the required privileges.

The Identity Domain Administrator performs the following steps to get an access
token:

1. Create an OAuth Client and Acquire a Client ID and Secret

2. Grant the Required Oracle Content Management Roles to the Client

3. Acquire an Access Token from Identity Domain for the Required Resource

4. Use the Access Token to Access the Oracle Content Management Resource

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-4

https://docs.oracle.com/en-us/iaas/Content/Identity/getstarted/identity-domains.htm#identity_documentation
https://docs.oracle.com/en-us/iaas/Content/Identity/getstarted/identity-domains.htm#identity_documentation

Create an OAuth Client and Acquire a Client ID and Secret
The Identity Domain Administrator or an Application Administrator of the tenant creates an
OAuth client for the developer with the required privileges. To do this, perform the following
steps:

1. Sign in to the Oracle Cloud Console.

https://cloud.oracle.com

Navigate to Identity & Security. Under Identity, check for Domains. Select the domain
(default or newly created) while creating an application, you will see the Applications
option in the left menu as shown in the figure below.

2. Click to add a new application in the Applications section.

3. Select Confidential Application. The Confidential Applications use OAuth 2.0 and can
protect their OAuth client ID and client secret. To know more about Confidential
Applications, see Add a Confidential Application.

4. Give the application a name and, optionally, a description, and click Next.

5. Choose to configure this application as a client.

6. Select the client credentials grant type on the Authorization screen.

7. Scroll down to the Token Issuance Policy section and, under Resources, click add
scope to give the application access to the required Oracle Content Management
instance.

8. Click the right arrow to select the scope.
The only scope required is the one ending in urn:opc:cec:all.

Select the checkbox next to it and then click Add.

9. Click Next until the end of the train.
The Resources, Web Tier Policy, and Authorization stops are related to applications
that have some resource authenticated or authorized by Identity Domain; for example, a
web application. This isn’t relevant in the case of a simple server-server client, which is
discussed here.

10. Click Finish.

11. Note the Client ID and Client Secret values because you’ll need those to get a token
later.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-5

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html

12. Check Activate and then click Save to enable the application.

You can decide how to handle the client ID and secret.

Note:

Just as a regular user, an OAuth client with the client credentials requires
relevant permission on objects in your Oracle Content Management instance
to be able to perform actions using REST API for Content Management. For
example, it needs to be a repository member with Contributor permission to
create assets in it, or a Manager on the repository to modify its settings. In
the Oracle Content Management web UI, you can use the Members dialog to
find your OAuth client by name and add it to the required object. A newly
created OAuth client will appear in search only after the next hourly Identity
Domain sync is complete.

Grant the Required Oracle Content Management Roles to the Client
You can grant the required roles through the Oracle Cloud administration console.

1. Sign in to the Oracle Cloud administration console.

2. Click Oracle Cloud Services.

3. Select the Oracle Content Management service instance for which you need
privileges. This instance name would have been provided by your account
administrator.

4. Click Application Roles and then right-click the burger menu on the right.

5. Choose Assign Applications.

6. Assign the client application to the roles based on the access that is required to
OCM objects. For OCM application roles, see Application Roles.

7. Save the changes.

Acquire an Access Token from Identity Domain for the Required Resource
Use the client ID and secret obtained earlier from the OAuth client to get an
AccessToken for the resource.

A sample curl command to acquire an access token follows:

AccessToken Request

curl -X POST \
https://<idcs tenantname that is protecting this service>/oauth2/v1/
token \
-H 'Authorization: Basic <Base64 encoded clientID:clientSecret>' \
-d 'grant_type=client_credentials&scope=<scope string>'

For scope string, see Step 7 of Create an OAuth Client and Acquire a Client ID and
Secret. For Example:

curl -X POST 'https://
idcs-99463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-6

https://docs.oracle.com/en/cloud/paas/content-cloud/administer/application-roles.html

oauth2/v1/token' \
 -H 'Authorization: Basic
Y2RlNGQyMDZjYTE1NGM2Yjg2NGMyMTJiMjVmMTY3MmE6MWM0ZTAyNGQtZDU4MC00MzEzLWJkZjMtZ
TQyMGQzMzgzZTY2' \
 -d'grant_type=client_credentials&scope=https://
50B904E53A6F4EA1B45F30E225EA99B.cec.ocp.oc-test.com:443/urn:opc:cec:all'

Identity Domain returns the key and value for an access token:

{"access_token":"<access-token-value>}"

You can copy the access token value.

Note:

The refresh token is not included in the Client Credentials grant type flow.

Use the Access Token to Access the Oracle Content Management Resource
Once the access token is acquired, call the Oracle Content Management endpoint to access
the resource.

A sample curl command follows.

curl -X GET <Oracle-Content-Management-URL>/sites/management/api/v1/sites \
-H 'Authorization: Bearer <Access Token acquired from previous step>'\
-H 'Content-Type: application/json'

Access OCM Using Authorization Code (Three-Legged OAuth Flow in Identity
Domain)

In this flow, a client application is created to acquire the client ID and secret, which are used
by the client browser. The client browser then redirects the user to Identity Domain to log in
with the username and password. Upon successful authentication, an authorization code is
sent with the redirect URL. An access token is requested from Identity Domain using this
authorization code. Thus, the resource owner credentials are never exposed to the client in
this flow.

Because this is a user token, the user requesting the token needs to have relevant Oracle
Content Management roles as the user’s access to the OCM objects will be checked against
assigned roles.

The Identity Domain Administrator performs the following steps to get an access token:

1. Create an OAuth Client and Acquire a Client ID and Secret

2. Grant the Required Oracle Content Management Roles to the Client

3. Acquire an Access Token from Identity Domain for the Required Resource

4. Use the Access Token to Access the Oracle Content Management Resource

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-7

Create an OAuth Client and Acquire a Client ID and Secret
The Identity Domain Administrator or an Application Administrator of the tenant
creates an OAuth client for the developer with the required privileges. To do this,
perform the following steps:

1. Sign in to the Oracle Cloud Console.

https://cloud.oracle.com

Navigate to Identity & Security. Under Identity, check for Domains. Select the
domain (default or newly created) while creating an application, you will see the
Applications option in the left menu as shown in the figure below.

2. Click to add a new application in the Applications section.

3. Select Confidential Application. The Confidential Applications use OAuth 2.0
and can protect their OAuth client ID and client secret. To know more about
Confidential Applications, see Add a Confidential Application.

4. Give the application a name and, optionally, a description, and click Next.

5. Choose to configure this application as a client.

6. Select the Authorization code grant type on the Authorization screen.

7. Enter a redirect URL value to point to the URL where the user needs to be
redirected after authorization.

8. Enter a Post logout URL value to point to the Oracle Content Management
service administration console.

Note:

It is not a mandatory field while creating a client application with the
Authorization Code grant type. As mentioned in the IDCS documentation
(see Using OpenID Connect for Log Out), this could be again any client-
specific URL to where the redirection happens after logout.

9. Scroll down to the Token Issuance Policy section and, under Resources, click
add scope to give the application access to the required Oracle Content
Management instance.

10. Click the right arrow to select the scope.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-8

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/logoutopenidconnect.html

The only scope required is the one ending in urn:opc:cec:all.

Select the checkbox next to it and then click Add (note down the scope string as it will be
used later on while requesting the access token).

11. Click Next until the end of the train.
The Resources, Web Tier Policy, and Authorization stops are related to applications
that have some resource authenticated or authorized by Identity Domain; for example, a
web application. This isn’t relevant in the case of a simple server-server client, which is
discussed here.

12. Click Finish.

13. Note the Client ID and Client Secret values because you’ll need those to get a token
later.

14. Check Activate and then click Save to enable the application.

The client can store the Client ID and Client Secret values securely in a credential store.

Grant the Required Oracle Content Management Roles to the Client
You can grant the required OCM roles to the user through the Oracle Cloud administration
console.

1. Sign in to the Oracle Cloud administration console.

2. Click Oracle Cloud Services.

3. Select the Oracle Content Management service instance for which you need privileges.
This instance name would have been provided by your account administrator.

4. Click Application Roles.

5. Right-click the burger menu on the right. Choose Assign Users.

6. Assign the user to the roles based on the access that is required to OCM objects. For
information about OCM application roles, see Application Roles.

7. Save the changes.

Acquire an Access Token from Identity Domain for the Required Resource
Acquisition of the access token consists of multiple steps:

1. The UI of the customer’s application makes authorization code requests for the user to
Identity Domain.

a. The UI makes a GET call to Identity Domain with the URL given below. No
authorization is required (this needs to be accessed via browser as this will open
login UI, Postman will not work in this case).

https://<IDCS-service-instance>/oauth2/v1/authorize?
client_id=<clientid>&response_type=code&redirect_uri=<client-redirect-
uri>&scope=<scope string from Step 9 of Create oauth
 client>&nonce=<nonce-value>&state=1234

Where nonce-value and state are optional.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-9

https://docs.oracle.com/en/cloud/paas/content-cloud/administer/application-roles.html

Example:

https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/
oauth2/v1/authorize?
client_id=51d06799e2aa4c749a79276cf7d24ca7&response_type=code&red
irect_uri=https://p2qaextradp1srvc1-qucm2019927ac99.cec.ocp.oc-
test.com/documents&scope=https://
50B904E53A6F4EA1B45F30E225E6C99B.cec.ocp.oc-test.com:443/
urn:opc:cec:all&nonce=12345&state=12345

b. Identity Domain shows the login UI.

c. The user logs in to the login UI. The Identity Domain redirects to redirect URL
with the Authorization code as shown below:

<redirection_url>?code=<auth_code>&state=12345

Example:

https://p2qaextradp1srvc1-qucm2019927ac99.cec.ocp.oc-test.com/
documents?
code=AgAgZTM5MGMzODVjNzY3NGZhNzgzMmExMTI0YmU1ZDBiOTYIABC_fyt25KEc
HP9-Hmjkh9y1AAAAMPia8fMCbuzkdk10_CzsrqZ-
EtGwsI_MCPFr1Y3gt25EhrhYH65mb7vkJmPvUeKdTg&state=12345

2. The UI makes a call to Identity Domain to get the user token, passing auth_code
obtained in the previous step with the following payload:

Authorization: Basic <Base64 encoded clientID:clientSecret>
Method: Post
URL: https://<IDCS-service-instance>/oauth2/v1/token
BODY (as form data): grant_type=authorization_code&code=<auth_code>

Example:

curl -X POST 'https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/
oauth2/v1/token' \
 -H 'Authorization: Basic
NTFkMDY3OTllMmFhNGM3NDlhNzkyNzZjZjdkMjRjYTY6YjZhMzc4ZmQtZjk2Mi00MTg3
LWE2NzctYTBmMGI3NmEzODhj' \
 -d
'grant_type=authorization_code&code=AgAgZTM5MGMzODVjNzY3NGZhNzgzMmEx
MTI0YmU1ZDBiOTYIABC_fyt25KEcHP9-Hmjkh9y1AAAAMPia8fMCbuzkdk10_CzsrqZ-
EtGwsI_MCPFr1Y3gt25EhrhYH65mb7vkJmPvUeKdTg'

Identity Domain returns the key and value for an access token:

{"access_token":"<access-token-value>"}

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-10

You can copy the access token value (the expiry of the access token is set to 7 days and
refresh token’s to 14 days).

Note:

If one desires to create a refresh token along with access token, two additional
tasks need to be performed:

• While creating OAuth client, in addition to selecting grant type Authorization
Code (see step 5 in Create an OAuth Client and Acquire a Client ID and
Secret), you will also have to choose Refresh.

• While requesting for authorization code, you will have to specify the
additional scope offline_access along with urn:opc:cec:all (scopes are
space separated) as shown below:

https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.c
om/oauth2/v1/authorize?
client_id=51d06799e2aa4c749a79276cf7d24ca7&response_type=code&
redirect_uri=https://p2qaextradp1srvc1-
qucm2019927ac99.cec.ocp.oc-test.com/documents&scope=https://
50B904E53A6F4EA1B45F30E225E6C99B.cec.ocp.oc-test.com:443/
urn:opc:cec:all offline_access&nonce=12345&state=12345

Then using this authorization code in /oauth2/v1/token will return refresh
token along with access token.

Use the Access Token to Access the Oracle Content Management Resource
Once the access token is acquired, call the Oracle Content Management endpoint to access
the resource.

A sample curl command follows.

curl -X GET <Oracle-Content-Management-URL>/content/management/api/v1.1/
channels \
-H 'Authorization: Bearer <Access Token acquired from previous step>'\
-H 'Content-Type: application/json'

Access OCM Using Resource Owner (Identity Domain)
In this flow, the resource owner credentials are exposed to the client. The credentials are
passed in /oauth2/v1/token API to get the token so it is important that the resource owner
has a trust relationship with the client making this API call as the client must discard the
password after obtaining the access token.

As this is a user token, the user requesting the token needs to have relevant OCM roles as
the user’s access to the OCM objects will be checked against assigned roles.

To configure a confidential application to authorize a Resource Owner grant:

1. Sign in to the Oracle Cloud admin console: https://cloud.oracle.com

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-11

2. Click to add a new application in the Applications section.

3. Select Confidential Application. Confidential Applications use OAuth 2.0 and can
protect their OAuth client ID and client secret. To know more about Confidential
Applications, see Add a Confidential Application.

4. Give the application a name and, optionally, a description, and click Next.

5. Choose to configure this application as a client.

6. Select the Resource Owner grant type on the Authorization screen.

7. Scroll down to the Token Issuance Policy section and, under Resources, click
Add Scope to give the application access to the Oracle Content Management
instance required.

8. Select the correct instance.

9. Click the right arrow to select the scope. The one ending in urn:opc:cec:all is
the only scope required. Select the checkbox next to it and then click Add (note
down the scope string as it will be used later on while requesting the access
token).

10. Click Next until the end of the train. The Resources, Web Tier Policy, and
Authorization stops are related to applications that have some resource
authenticated or authorized by Identity Domain; for example, a web application. In
the case of a simple server-server client, which is discussed here, this isn’t
relevant.

11. Click Finish.

12. Note the Client ID and Client Secret values because you’ll need those to get a
token later.

13. Check Activate and then click Save to enable the application.

To request a token:

1. Make a form post to <domain URL>. For Domain URL, see the figure given below.

2. The following table describes the fields.

Field Value

grant_type password

scope A scope you added previously, in step 9; for
example: https://
1DF8AB52D0FF48F6992EEA3A5715B66F.c
ec.dev.ocp.octest. com:443/
urn:opc:cec:all

username The user name to generate the token for.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-12

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html

Field Value

password The password for the user name in the
preceding field.

POST /oauth2/v1/token HTTP/1.1
Host: <iam-domain-host>
Authorization: Basic
NTZkZWJjY2EzYjc0NDRlMWFhNjg4OGQ0ZTYzY2Y1M2Y6NDYxYzM5YjctMzJiZC00NGE0LTk4NT
c
tN
WM1NzAyMWMzNDg4
Accept: */*
Content-Type: application/x-www-form-urlencoded
Content-Length: 162
grant_type=password&scope=https%3A%2F
%2F1DF8AB52D0FF48F6992EEA3A5715B66F.cec.
dev.ocp.octest.
com%3A443%2Furn%3Aopc%3Acec%3Aall&username=<user-name>&password=<password>

This results in JSON text where the token is the value of the access_token field:

{
 "access_token":

"eyJ4NXQjUzI1NiI6IkhoRktIMFFGeHR1UDkxLWg3QlJKSUFDMU50V2R...HUQmto_oELyjRaB
p

qhI75hQJYLWRKm6ozPS57tR1EYHmWABgYw_XALMT1kMuIuRxpGB2ozngpajzNNBBu2qtKg10-
 RzBTulKaxD25vKK1rznQ3p_XAOLK4CUUM-uG_PUOk49-
 JDgJjuSI74hLC1kagIlM93A2jUG3g3gdUpUCZPg",
 "token_type": "Bearer",
 "expires_in": 604800
}

The token expiration time is given in seconds and is typically 7 days.

To use the token and access REST API endpoints, use the Bearer Authorization header
as before.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-13

Note:

If one desires to create a refresh token along with access token, two
additional tasks need to be performed:

1. While creating OAuth client, in addition to selecting grant type Resource
Owner (See step 6 in Create an OAuth Client and Acquire a Client ID
and Secret), you will also have to choose Refresh Token.

2. While requesting for token, you will have to specify additional scope
offline_access along with urn:opc:cec:all (scopes are space
separated) as shown below:

curl -X POST 'https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev
.com/oauth2/v1/token' \
 -H 'Authorization: Basic
NTFkMDY3OTllMmFhNGM3NDlhNzkyNzZjZjdkMjRjYTY6YjZhMzc4ZmQtZjk2
Mi00MTg3LWE2NzctYTBmMGI3NmEzODhj' \
 -d 'grant_type=password&scope=https://
50B904E53A6F4EA1B45F30E225EA99B.cec.ocp.oc-test.com:443/
urn:opc:cec:all
offline_access&username=John.Doe@test.com&password=johndoepa
ssword#3’

This will return a refresh token along with access token.

Cloud Account Using Oracle Identity Cloud Service
The following sections describe how to use your cloud account:

• Access OCM Using Client Credentials (Two-Legged OAuth Flow)

• Access OCM Using Authorization Code (Three-Legged OAuth Flow)

• Access OCM Using Resource Owner

Access OCM Using Client Credentials (Two-Legged OAuth Flow)
For this OAuth flow, the token is requested for the client application and calls to Oracle
Content Management (OCM) APIs are made using this client application’s token. This
OAuth client application needs to be added to OCM roles in Oracle Identity Cloud
Service (IDCS) to have appropriate OCM access.

The Identity Domain Administrator or Application Administrator of the tenant
creates an OAuth client for the developer with the required privileges and performs the
following steps to get an access token:

1. Create an OAuth Client and Acquire a Client ID and Secret

2. Grant the Required Oracle Content Management Roles to the Client

3. Acquire an Access Token from Oracle Identity Cloud Service (IDCS) for the
Required Resource

4. Use the Access Token to Access the Oracle Content Management Resource

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-14

Create an OAuth Client and Acquire a Client ID and Secret
The Identity Domain Administrator or an Application Administrator of the tenant creates an
OAuth client for the developer with the required privileges. To do this, perform the following
steps:

1. Go to the IDCS administration console:

https://<IDCS BaseURL>/ui/v1/adminconsole

2. Click to add a new application in the Applications section.

3. Select Confidential Application. The Confidential Applications use OAuth 2.0 and can
protect their OAuth client ID and client secret. To know more about Confidential
Applications, see Add a Confidential Application.

4. Give the application a name and, optionally, a description, and click Next.

5. Choose to configure this application as a client.

6. Select the client credentials grant type on the Authorization screen.

7. Scroll down to the Token Issuance Policy section and, under Resources, click add
scope to give the application access to the required Oracle Content Management
instance.

8. Click the right arrow to select the scope.
The only scope required is the one ending in urn:opc:cec:all.

Select the checkbox next to it and then click Add.

9. Click Next until the end of the train.
The Resources, Web Tier Policy, and Authorization stops are related to applications
that have some resource authenticated or authorized by IDCS; for example, a web
application. This isn’t relevant in the case of a simple server-server client, which is
discussed here.

10. Click Finish.

11. Note the Client ID and Client Secret values because you’ll need those to get a token
later.

12. Check Activate and then click Save to enable the application.

Note:

Just as a regular user, an OAuth client with the client credentials requires relevant
permission on objects in your Oracle Content Management instance to be able to
perform actions using REST API for Content Management. For example, it needs to
be a repository member with Contributor permission to create assets in it, or a
Manager on the repository to modify its settings. In the Oracle Content
Management web UI, you can use the Members dialog to find your OAuth client by
name and add it to the required object. A newly created OAuth client will appear in
search only after the next hourly IDCS sync is complete.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-15

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html

Grant the Required Oracle Content Management Roles to the Client
You can grant the required roles through the Oracle Identity Cloud Service (IDCS)
administration console.

1. Log in to the IDCS administration console.

2. Click Oracle Cloud Services.

3. Select the Oracle Content Management service instance for which you need
privileges. This instance name would have been provided by your account
administrator.

4. Click Application Roles and then right-click the burger menu on the right.

5. Choose Assign Applications.

6. Assign the client application to the roles based on the access privilege that is
required for OCM objects. For OCM application roles, see Application Roles.

7. Save the changes.

Acquire an Access Token from Oracle Identity Cloud Service (IDCS) for the Required
Resource

Use the client ID and secret obtained earlier from the OAuth client to get an
AccessToken for the resource.

A sample curl command to acquire an access token follows:

AccessToken Request

curl -X POST \
https://<idcs tenantname that is protecting this service>/oauth2/v1/
token \
-H 'Authorization: Basic <Base64 encoded clientID:clientSecret>' \
-d 'grant_type=client_credentials&scope=<scope string>'

For scope string, see Step 7 of Create an OAuth Client and Acquire a Client ID and
Secret. For Example:

curl -X POST 'https://
idcs-99463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/
oauth2/v1/token' \
 -H 'Authorization: Basic
Y2RlNGQyMDZjYTE1NGM2Yjg2NGMyMTJiMjVmMTY3MmE6MWM0ZTAyNGQtZDU4MC00MzEzLWJ

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-16

https://docs.oracle.com/en/cloud/paas/content-cloud/administer/application-roles.html

kZjMtZTQyMGQzMzgzZTY2' \
 -d'grant_type=client_credentials&scope=https://
50B904E53A6F4EA1B45F30E225EA99B.cec.ocp.oc-test.com:443/urn:opc:cec:all'

IDCS returns the key and value for an access token (access token expiry is set to 7 days):

{"access_token":"<access-token-value>}"

You can copy the access token value.

Note:

The refresh token is not included in the Client Credentials grant type flow.

Use the Access Token to Access the Oracle Content Management Resource
Once the access token is acquired, call the Oracle Content Management endpoint to access
the resource.

A sample curl command follows.

curl -X GET <Oracle-Content-Management-URL>/sites/management/api/v1/sites \
-H 'Authorization: Bearer <Access Token acquired from previous step>'\
-H 'Content-Type: application/json'

Access OCM Using Authorization Code (Three-Legged OAuth Flow)
In this flow, a client application is created to acquire the client ID and secret, a client browser
uses these and redirects the user to IDCS to login with their username and password and on
successful authentication, an authorization code is sent on the redirect URL. An access token
is requested from IDCS using this authorization code. Thus, the Resource owner credentials
are never exposed to the client in this flow.

As this is a user token, the user requesting the token needs to have relevant OCM roles as
the user’s access to the OCM objects will be checked against assigned roles.

The Identity Domain Administrator performs the following steps to get an access token:

1. Create an OAuth Client and Acquire a Client ID and Secret

2. Grant the Required Oracle Content Management Roles to the Client

3. Acquire an Access Token from Oracle Identity Cloud Service (IDCS) for the Required
Resource

4. Use the Access Token to Access the Oracle Content Management Resource

Create an OAuth Client and Acquire a Client ID and Secret
The Identity Domain Administrator or an Application Administrator of the tenant creates an
OAuth client for the developer with the required privileges. To do this, perform the following
steps:

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-17

1. Go to the IDCS administration console:

https://<IDCS BaseURL>/ui/v1/adminconsole

2. Click to add a new application in the Applications section.

3. Select Confidential Application. The Confidential Applications use OAuth 2.0
and can protect their OAuth client ID and client secret. To know more about
Confidential Applications, see Add a Confidential Application.

4. Give the application a name and, optionally, a description, and click Next.

5. Choose to configure this application as a client.

6. Select the Authorization code grant type on the Authorization screen.

7. Enter a redirect URL value to point to the URL where the user needs to be
redirected after authorization. It can be any URL pointing to customer’s
application.

8. Enter a Post logout URL value to point to the Oracle Content Management
service administration console.

Note:

It is not a mandatory field while creating a client application with the
Authorization Code grant type. As mentioned in the IDCS documentation
(see Using OpenID Connect for Log Out), this could be again any client-
specific URL to where the redirection happens after logout.

9. Scroll down to the Token Issuance Policy section and, under Resources, click
add scope to give the application access to the required Oracle Content
Management instance.

10. Click the right arrow to select the scope.
The only scope required is the one ending in urn:opc:cec:all.

Select the checkbox next to it and then click Add (note down the scope string as it
will be used later on while requesting the access token).

11. Click Next until the end of the train.
The Resources, Web Tier Policy, and Authorization stops are related to
applications that have some resource authenticated or authorized by IDCS; for
example, a web application. This isn’t relevant in the case of a simple server-
server client, which is discussed here.

12. Click Finish.

13. Note the Client ID and Client Secret values because you’ll need those to get a
token later.

14. Check Activate and then click Save to enable the application.

The client can store the Client ID and Client Secret values securely in a credential
store.

Grant the Required Oracle Content Management Roles to the Client
You can grant the required OCM roles to the user through the Oracle Identity Cloud
Service (IDCS) administration console.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-18

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html
https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/logoutopenidconnect.html

1. Log in to the IDCS administration console.

2. Click Oracle Cloud Services.

3. Select the Oracle Content Management service instance for which you need privileges.
This instance name would have been provided by your account administrator.

4. Click Application Roles.

5. Right-click the burger menu on the right.

6. Choose Assign Users.

7. Assign the user to the roles based on the access level that is required for OCM objects.
For information about OCM application roles, see Application Roles.

8. Save the changes.

Acquire an Access Token from Oracle Identity Cloud Service (IDCS) for the Required Resource
Acquisition of the access token consists of multiple steps:

1. The UI of the customer’s application makes authorization code requests for the user to
IDCS.

a. The UI makes a GET call to IDCS with the URL given below. No authorization is
required (this needs to be accessed via browser as this will open IDCS login UI,
Postman will not work in this case).

https://<IDCS-service-instance>/oauth2/v1/authorize?
client_id=<clientid>&response_type=code&redirect_uri=<client-redirect-
uri>&scope=<scope string from Step 9 of Create oauth
 client>&nonce=<nonce-value>&state=1234

Where nonce-value and state are optional.
Example:

https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/
oauth2/v1/authorize?
client_id=51d06799e2aa4c749a79276cf7d24ca7&response_type=code&redirect
_uri=https://p2qaextradp1srvc1-qucm2019927ac99.cec.ocp.oc-test.com/
documents&scope=https://50B904E53A6F4EA1B45F30E225E6C99B.cec.ocp.oc-
test.com:443/urn:opc:cec:all&nonce=12345&state=12345

b. IDCS shows the login UI.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-19

https://docs.oracle.com/en/cloud/paas/content-cloud/administer/application-roles.html

c. The user logs in to the login UI. IDCS redirects to redirect URL with the
Authorization code as shown below:

<redirection_url>?code=<auth_code>&state=12345

Example:

https://p2qaextradp1srvc1-qucm2019927ac99.cec.ocp.oc-test.com/
documents?
code=AgAgZTM5MGMzODVjNzY3NGZhNzgzMmExMTI0YmU1ZDBiOTYIABC_fyt25KEc
HP9-Hmjkh9y1AAAAMPia8fMCbuzkdk10_CzsrqZ-
EtGwsI_MCPFr1Y3gt25EhrhYH65mb7vkJmPvUeKdTg&state=12345

2. The UI makes a call to IDCS to get the user token, passing auth_code obtained in
the previous step with the following payload:

Authorization: Basic <Base64 encoded clientID:clientSecret>
Method: Post
URL: https://<IDCS-service-instance>/oauth2/v1/token
BODY (as form data): grant_type=authorization_code&code=<auth_code>

Example:

curl -X POST 'https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/
oauth2/v1/token' \
 -H 'Authorization: Basic
NTFkMDY3OTllMmFhNGM3NDlhNzkyNzZjZjdkMjRjYTY6YjZhMzc4ZmQtZjk2Mi00MTg3
LWE2NzctYTBmMGI3NmEzODhj' \
 -d
'grant_type=authorization_code&code=AgAgZTM5MGMzODVjNzY3NGZhNzgzMmEx
MTI0YmU1ZDBiOTYIABC_fyt25KEcHP9-Hmjkh9y1AAAAMPia8fMCbuzkdk10_CzsrqZ-
EtGwsI_MCPFr1Y3gt25EhrhYH65mb7vkJmPvUeKdTg'

IDCS returns the key and value for an access token:

{"access_token":"<access-token-value>"}

You can copy the access token value (the expiry of the access token is set to 7
days and refresh token is set to 14 days).

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-20

Note:

If one desires to create a refresh token along with an access token, two
additional tasks need to be performed:

• While creating an OAuth client, in addition to selecting grant type
Authorization Code (see step 5 in Create an OAuth Client and Acquire a
Client ID and Secret), you will also have to choose Refresh.

• While requesting for authorization code, you will have to specify the
additional scope offline_access along with urn:opc:cec:all (scopes are
space separated) as shown below:

https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.c
om/oauth2/v1/authorize?
client_id=51d06799e2aa4c749a79276cf7d24ca7&response_type=code&
redirect_uri=https://p2qaextradp1srvc1-
qucm2019927ac99.cec.ocp.oc-test.com/documents&scope=https://
50B904E53A6F4EA1B45F30E225E6C99B.cec.ocp.oc-test.com:443/
urn:opc:cec:all offline_access&nonce=12345&state=12345

Then using this authorization code in /oauth2/v1/token will return refresh
token along with access token.

Use the Access Token to Access the Oracle Content Management Resource
Once the access token is acquired, call the Oracle Content Management endpoint to access
the resource.

A sample curl command follows.

curl -X GET <Oracle-Content-Management-URL>/content/management/api/v1.1/
channels \
-H 'Authorization: Bearer <Access Token acquired from previous step>'\
-H 'Content-Type: application/json'

Access OCM Using Resource Owner
In this flow, the resource owner credentials are exposed to the client. The credentials are
passed in /oauth2/v1/token API to get the token. So it is important that the resource owner
has a trust relationship with the client making this API call, since the client must discard the
password after obtaining the access token.

Because this is a user token, the user requesting the token needs to have relevant OCM
roles as the user’s access to the OCM objects will be checked against assigned roles.

To configure a confidential application to authorize a Resource Owner grant:

1. Go to the IDCS admin console: https://<IDCS BaseURL>/ui/v1/adminconsole
2. Click to add a new application in the Applications section.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-21

3. Select Confidential Application. Confidential Applications use OAuth 2.0 and can
protect their OAuth client ID and client secret. To know more about Confidential
Applications, see Add a Confidential Application.

4. Give the application a name and, optionally, a description, and click Next.

5. Choose to configure this application as a client.

6. Select the Resource Owner grant type on the Authorization screen.

7. Scroll down to the Token Issuance Policy section and, under Resources, click
Add Scope to give the application access to the Oracle Content Management
instance required.

8. Select the correct instance.

9. Click the right arrow to select the scope. The one ending in urn:opc:cec:all is
the only scope required. Select the checkbox next to it and then click Add (note
down the scope string as it will be used later on while requesting the access
token).

10. Click Next until the end of the train. The Resources, Web Tier Policy, and
Authorization stops are related to applications that have some resource
authenticated or authorized by IDCS; for example, a web application. In the case
of a simple server-server client, which is discussed here, this isn’t relevant.

11. Click Finish.

12. Note the Client ID and Client Secret values because you’ll need those to get a
token later.

13. Check Activate and then click Save to enable the application.

To request a token:

1. Get the token by making POST to <idcs-base-url>/oauth2/v1/token using client
application's client ID and secret with basic auth. Following is the payload:

Authorization: Basic <Base64 encoded clientID:clientSecret>
 Method: Post
 URL: <idcs-base-url>/oauth2/v1/token
 BODY (as form data): grant_type=password&scope==<scope string from
Step 7 above>&username=<user name>&password=<password>

2. The following table describes the fields.

Field Value

grant_type password

scope A scope you added previously, in step 7; for
example: https://
1DF8AB52D0FF48F6992EEA3A5715B66F.c
ec.dev.ocp.octest. com:443/
urn:opc:cec:all

username The user name to generate the token for.

password The password for the user name in the
preceding field.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-22

https://docs.oracle.com/en/cloud/paas/identity-cloud/uaids/add-confidential-application.html

Example:

curl -X POST 'https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev.com/
oauth2/v1/token' \
 -H 'Authorization: Basic
NTFkMDY3OTllMmFhNGM3NDlhNzkyNzZjZjdkMjRjYTY6YjZhMzc4ZmQtZjk2Mi00MTg3LWE2Nz
ctYTBmMGI3NmEzODhj' \
 -d 'grant_type=password&scope=https://
50B904E53A6F4EA1B45F30E225EA99B.cec.ocp.oc-test.com:443/
urn:opc:cec:all&username=John.Doe@test.com&password=johndoepassword#3’

This results in JSON text where the token is the value of the access_token field:

{
 "access_token":

"eyJ4NXQjUzI1NiI6IkhoRktIMFFGeHR1UDkxLWg3QlJKSUFDMU50V2R...HUQmto_oELyjRaB
p
 qh
 I75hQJYLWRKm6ozPS57tR1EYHmWABgYw_XALMT1kMuIuRxpGB2ozngpajzNNBBu2qtKg10-
 RzBTulKaxD25vKK1rznQ3p_XAOLK4CUUM-uG_PUOk49-
 JDgJjuSI74hLC1kagIlM93A2jUG3g3gdUpUCZPg",
 "token_type": "Bearer",
 "expires_in": 604800
}

The token expiration time is given in seconds and is typically 7 days.

To use the token and access REST API endpoints, use the Bearer Authorization as
before.

Chapter 14
Integrate with Oracle Content Management Using OAuth

14-23

Note:

If one desires to create a refresh token along with access token, two
additional tasks need to be performed:

1. While creating OAuth client, in addition to selecting grant type Resource
Owner (See step 6 in Create an OAuth Client and Acquire a Client ID
and Secret), you will also have to choose Refresh Token.

2. While requesting for token, you will have to specify additional scope
offline_access along with urn:opc:cec:all (scopes are space
separated) as shown below:

curl -X POST 'https://
idcs-4c463010b1bb495d8db89fd05ebe1d99.identity.dev99.testdev
.com/oauth2/v1/token' \
 -H 'Authorization: Basic
NTFkMDY3OTllMmFhNGM3NDlhNzkyNzZjZjdkMjRjYTY6YjZhMzc4ZmQtZjk2
Mi00MTg3LWE2NzctYTBmMGI3NmEzODhj' \
 -d 'grant_type=password&scope=https://
50B904E53A6F4EA1B45F30E225EA99B.cec.ocp.oc-test.com:443/
urn:opc:cec:all
offline_access&username=John.Doe@test.com&password=johndoepa
ssword#3’

This will return a refresh token along with access token.

Download the Swagger File for a REST API
Download a REST API Swagger file for use in your development project.

The Swagger file for each REST API is part of the published REST API document. You
can download it from the left navigation tree.

For example, to download and copy the Swagger file for the REST API for Documents:

1. On docs.oracle.com, open the REST API document at REST API for Documents.

2. On the left, click the download symbol:

3. Click the Swagger button:

Chapter 14
Download the Swagger File for a REST API

14-24

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html

The text from the Swagger file for the REST API is displayed.

4. From the Edit menu, choose Select All, and then choose Copy.

5. Paste the copied text into a text file.

REST API for Activity Log
You can use Oracle Cloud REST API for Activity Log to search activities in Oracle Content
Management.

The REST API for Activity Log has several categories of endpoints, which are described in
the following table.

Category Description

Audit Log Provides the details of activities and its related data.

Events Provides the details of types and categories.

REST API for Content Capture
You can use the Oracle Cloud REST API for Content Capture for the manipulation of
documents when they are locked to an external processor job step. This includes changing a
document’s metadata field values, adding or removing attachments to documents, and even
deleting documents.

Chapter 14
REST API for Activity Log

14-25

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-activity-log/index.html

The REST API for Content Capture has several categories of endpoints, which are
described in the following table.

Category Description

Attachments Manages document attachments in Capture

Auditing Queries and analyzes batch and document
processing

Batches Manages batches in Content Capture

Documents Manages documents in Capture

Steps Queries and updates processing task queues

System Provides system-level operations

REST API for Content Delivery
You can use the Oracle Cloud REST API for Content Delivery to fetch things from
channels in an asset repository.

The REST API for Content Delivery has several categories of endpoints, which are
described in the following table.

Category Description

AutoSuggestions Use the AutoSuggestions resource to suggest item keywords for auto-
completion of a default search.

Item Use the Item resource to get published items, previews of items, item
metadata, or taxonomies of items. Use the Published Item resource to
get the metadata catalog preview of an item.

Item Variations Use the Item Variations resource to get item variations, a content item
for item variations, and item variations by variation type.

Items Use the Items resource to search published items or get the metadata
catalog of published items.

Items by slug Use the Items by slug resource to manage items by slug and to
provide details about the metadata catalog, preview, taxonomies,
published information, and variations of an item.

Provider Tokens Use the Provider Tokens resource to generate a provider token.

Published Item Use the operations from the Published Item category.

Recommendations Use the Recommendations resource to access published
recommendation results.

Renditions Use the Renditions resource to get a digital assets file and metadata
catalog, to get metadata for digital assets or renditions, or to get
information about published assets or renditions.

Renditions by slug Use the Renditions by slug resource to get the published digital assets
native file by slug, to get the published native resource by slug using a
file name, to get a published rendition by slug, or to get a published
rendition by slug using a file name.

Taxonomies Use the Taxonomies resource to get the metadata of a category,
published taxonomies, or published categories, to list all taxonomies, to
read a published category or taxonomy, or to search published
categories.

Version Catalog Use the Version Catalog resource to get information about APIs, API
versions, or API metadata.

Chapter 14
REST API for Content Delivery

14-26

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-capture/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-delivery/index.html

REST API for Content Management
You can use the Oracle Cloud REST API for Content Management to manage assets in
Oracle Content Management. Assets include content items as well as digital assets and their
renditions.

The REST API for Content Management has several categories of endpoints, which are
described in the following table.

Category Description

Archive Use the Archive resource to cancel, schedule, delete, list, and read the
archived assets.

Archive Bulk
Operations

Use the Archive Bulk Operations resource to manage bulk operations on
archived assets.

Archive Items Search Use the Archive Items Search resource to manage archived items search.

Asset Refresh Bulk
Operations

Use the Asset Refresh Bulk Operations resource to manage bulk operations
for asset refresh.

Assign Primary
Channel to Asset Bulk
Operations

Use the resource to manage bulk operations for assigning primary channel.

AutoSuggestions Use the AutoSuggestions resource to suggest item keywords for auto-
completion of a default search.

Channel Secret Use the Channel Secret resource to generate, refresh, or delete a channel
secret.

Channels Use the Channels resource to create, delete, read, or update a channel, to
list all channels, or to list all permissions on a channel.

Collections Use the Collections resource to create, delete, read, or update a collection,
to list all collections in a repository, or to list all permissions on a collection.

Connectors Use the Connectors resource to list all connectors.

Digital Item Renditions Use the Digital Item Renditions resource to get a rendition of a digital item or
a digital item native file with or without a file name.

Digital Item Renditions
by Slug

Use the Digital Item Renditions resource to get a rendition of a digital item by
slug.

Editorial Roles Use the editorial roles resource to create, copy, delete, read, update, list all
permissions, list editorial roles, and list editorial role referenced by
repositories.

File Extensions Use the File Extensions resource to list file extensions or to read a file
extension.

Item Revisions Use the Item Revisions resource to list item revisions, list item revisions by
slug, read an item revision, or read an item revision by slug.

Item Variations Use the Item Variations resource to list all item variations of a variation type,
read an item or items by variation type, or update the master item of an item
variations set.

Chapter 14
REST API for Content Management

14-27

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/index.html

Category Description

Items • Create or delete a content item or digital item
• Generate taxonomy suggestions for content items on demand
• List all suggested taxonomies and categories or all taxonomies and

categories of an item
• Get the workflow instance details for an item
• List the time zones, channels, collections, published channels,

relationships, tags, or variations of an item,
• Read the lock, publish, or version information of an item
• Read the on-demand taxonomy suggestion and operations status or the

workflows of an item
• Submit an item to workflow, take action on a workflow task, update a

digital item with a new file, update an item, or update the lock status of
an item.

Items Bulk Downloads Use the Items Bulk Operations resource to perform bulk items downloads.

Items Bulk Operations Use the Items Bulk Operations resource to perform bulk items operations,
read item operations or status, or publish item IDs.

Items by Slug Use the Items by Slug resource to manage items by slug:
• List all item variations of a variation type
• List an item's channels, collections, lock information, permissions,

publish information, published channels, relationships, tags,
taxonomies, variations, version information, or workflow information.

• Read an item or an item variation of a variation type value by slug,
• Read the master of an item variation set by slug

Items Search Use the Items Search resource to manage items search queries, get the job
status for similar items, query items, or query similar items.

Language Codes Use the Language Codes resource to create a custom language code,
delete a language code, list all valid language codes, read a language code,
or update a language code.

Languages Use the Languages resource to list the names of all known language codes.

Localization Policies Use the Localization Policies resource to create, delete, read, or update a
localization policy or to list all localization policies.

Taxonomies Use the Taxonomies resource to manage your content:

• Create, update, or delete a taxonomy
• Get, create, update, copy, or delete a category in a taxonomy
• Create, copy, update, promote, read, publish, unpublish, or delete a

taxonomy
• List all taxonomies or list all categories in a taxonomy
• Copy, create, or delete a category
• Read a taxonomy, a category, or the copy category, draft creation, the

promote status
• Create a new draft version
• Read the promote, publish, or unpublish job status
• Search categories
• Update a category's properties, including moving it in the tree
After taxonomies are promoted, they can be assigned to repositories. After
taxonomies are assigned to repositories, users can apply categories to
assets.

OAuth Tokens Use the OAuth Tokens resource to generate an OAuth token.

Permission Operations Use the Permission Operations resource to perform permission operations
on a resource or to read permission operations status.

Chapter 14
REST API for Content Management

14-28

Category Description

Permission Sets Use the Permission Operations resource to create, read, convert, delete, list,
and update a permission set.

Provider Tokens Generate a provider token for an asset for a specific version.

Recommendations Use the Recommendations resource to manage recommendations:
• Create, delete, list, update, read, and publish recommendations
• Read a recommendation's published and unpublished item IDs
• Approve or reject a Recommendation
• Create, delete, list, read, and update audience attributes

Repositories Use the Repositories resource to create, delete, read, or update a repository,
to list all permissions on a repository, or to list all repositories.

Scheduled Jobs Use the Scheduled Jobs resource to create, list, read, and update a
scheduled publish job.

Tokens Use the Tokens resource to read a Cross-Site Request Forgery (CSRF) valid
token.

Types Use the Types resource to create, delete, read, or update a type or to list all
types, all data types, or all permissions on a type.

Workflow Roles Use the Workflow Roles resource to add or remove members of a process
role, get members or details of a process role, or list the roles of all
registered workflows.

Workflow Tasks Use the Workflow Tasks resource to list workflow tasks assigned to the
current user, or to read a workflow task.

Workflows Use the Workflows resource to reregister or deregister a workflow, list all
workflows, list all permissions on a workflow, read a workflow, or update a
workflow.

REST API for Content Preview
You can use the Oracle Cloud REST API for Content Preview to preview items, item
variations, items by slug, renditions, and renditions by slug.

The REST API for Content Preview has several categories of endpoints, which are described
in the following table.

Category Description

Item Use the Item resource to preview the latest
management version of items. An item is uniquely
identified by an ID.

Item Variations Use the Item Variations resource to preview the
list of item variations, item variations by variation
type, and a specific variation.

Items Use the Items resource to search across the
preview of items.

Items by Slug Use the Items by Slug resource to manage items
by slug and to preview the items, their variations,
and renditions by slug. An item is uniquely
identified by its slug.

Recommendations The resources used to preview the
recommendation results.

Renditions Use the Renditions resource to preview the latest
version of digital assets native file and renditions.

Chapter 14
REST API for Content Preview

14-29

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-preview/

Category Description

Renditions by Slug Use the Renditions by Slug resource to preview
the latest version of the digital assets native file
and its renditions by slug.

Taxonomies The resources used to preview taxonomies and
their respective categories.

Version Catalog The Version Catalog resource returns information
about the available versions of the API.

REST API for Conversations
You can use the Oracle Cloud REST API for Conversations to create and manage
conversations in your cloud resources that enable real-time collaboration between
individuals and teams, and connect your business processes, enterprise applications,
and content.

The REST API for Conversations has several categories of endpoints, which are
described in the following table.

Category Description

Collaboration Enables collaboration among users through
conversations.

Configuration Configures resources and services.

Security Manages connections and access.

Social Marks favorite conversations and documents,
and collaborate with people.

REST API for Documents
You can use the Oracle Cloud REST API for Documents to create client applications
that interact with folders and files stored on an Oracle Content Management server.

The REST API for Documents has several categories of endpoints, which are
described in the following table.

Category Description

Applinks Provides basic applink operations.

Catalog Provides the information about what resources
are available for a particular version.

Client Applications Provides the operations from the Client
Applications category.

Configuration Provides basic configuration operations.

Files Provides basic file operations.

Folders Provides basic folder operations.

Metadata Collection Provides the operations from the Metadata
Collection category.

Publiclinks Provides the basic public links operations

Shares Provides basic sharing operations.

Chapter 14
REST API for Conversations

14-30

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-conversations
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html

Category Description

Sites Provides basic site operations.

Templates Provides basic template operations.

Users Provides the basic information about users to
identify them for folder and file sharing
purposes.

REST API for Self-Management
You can use the Oracle Cloud REST API for Self-Management to view authenticated user
details.

The REST API for Self-Management has one category of endpoints for you to view user
details, which is described in the following table.

Category Description

Self-Management Provides the ability to view the authenticated user details in Oracle Content
Management.

REST API for Sites Management
You can use the Oracle Cloud REST API for Sites Management provides to create sites from
templates and then manage the life cycle of those sites in Oracle Content Management.

The REST API for Sites Management has several categories of endpoints, which are
described in the following table.

Category Description

Components Import, export, list, read, copy, update, publish, share, delete, restore, and
share components.

Policies Manage policies and manage the membership of policies with access lists.
You can read and edit policies associated with site management operations
and control who can perform site management operations using access lists.

Requests Requests are made when creating a site. A site request is rejected or
approved through a review. You can list requests relating to sites edit
requests that have been rejected, and retry failed requests. Also, you can
view reviews for site requests. Approve or reject requests for new sites or
requests to copy sites.

Settings Get and update site management settings.

Sites Create, list, read, copy, share, delete, restore, publish, activate, and
deactivate sites. Get the progress of site-related jobs and information such
as the associated repository and the user that created or last modified a
resource. List sites and requests of a site.

Templates Import, export, list, read, copy, share, delete, and restore templates. List site
templates and images. Get the progress of template-related jobs.

You can also create policies and associate them with a template to be used
when creating a site, or delete policies associated with templates. You can
use policies to enforce site-creation approval, who can use a template, and
what security the site will have.

Themes Import, list, read, copy, publish, update, share, delete, and restore themes.

Chapter 14
REST API for Self-Management

14-31

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-self-management/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-sites-management/index.html

REST API for Users and Groups
You can use the Oracle Cloud REST API for Users and Groups to manage users,
groups, one-on-one conversations, and pictures.

The REST API for Users and Groups has one category of endpoints for you to
manage users and groups of users, which is described in the following table.

Category Description

People and Groups Enables you to manage users and groups of users.

REST API for Webhooks Management
You can use the Oracle Cloud REST API for Webhooks Management to manage
webhooks in Oracle Content Management.

The REST API for Webhooks Management has several categories of endpoints, which
are described in the following table.

Category Description

CSRF Token Returns a CSRF token.

Webhooks Create, delete, read, update, list logs, and list all webhooks.

Use REST APIs for Content Search
Oracle Content Management REST APIs allow you to search published or managed
content (content items and digital assets) by fetching items matching a search query
submitted to the /items resource.

Search Query Operators
Search Query Scopes

• /content/published/api/v1.1/items
The search query scope in the REST API for Content Delivery is a publishing
target which is specified by its channel token. A channel token must be provided
as either a query parameter or a request header.

• /content/management/api/v1.1/items
The search query scope is controlled by editorial permissions granted to the API
client users. A search query will fetch only items that users can see based on the
repository membership and granular editorial permissions on assets in it.

If the publishing target that you selected for a request to the REST API for Content
Delivery is secure (i.e., assets are published to a secure publishing channel), the
search request that you send requires using OAuth for authorization. Any search
request that you send to the REST API for Content Management requires using OAuth
for authorization.

Search Query Expressions

Chapter 14
REST API for Users and Groups

14-32

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-users-groups
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-webhooks-management/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/index.html

Item searches in the REST API for Content Management and the REST API for Content
Delivery share query parameters and use the same syntax for building a search query
expression. Therefore, a single term, the Search API is used below to refer to item searches
in either REST API.

The Search API allows you to specify a search query expression as a value of the q
parameter in requests submitted to the /items resource. The Search query expression
syntax supports various operators to define match conditions (e.g., eq, ne, co, or sw) plus AND,
OR, and () operators to combine match conditions into a complex query expression that
match the field values within a single asset type or across multiple types. Extra search query
request parameters allow you to control the number of matching items to be fetched, how
matching items are paginated and sorted, or what data fields are returned for matching items.
Keep in mind that regardless of the search scope and expression, the maximum page size
that the API can return matching items is limited to 500.

Two generic forms of search queries are supported in the Search API

• Query within an asset type: Query expression requires you to specify an asset type and
allows references to both standard and user-defined data fields of this type in query
conditions.
For example: /api/v1.1/items?q=(type eq "Employee" AND fields.role eq "Senior
Developer"). Here, the role is a field of type Employee.

• Query across asset types: Depending on how a query expression is formulated, the
Search API supports two types of cross-type queries:

– Global query on standard fields: Query expression allows you to specify more than
one asset type using parentheses () or no type at all. Such query is treated as a
global (untyped) query with the ability to reference standard fields only in query
conditions.
For example: /api/v1.1/items?q=(name eq "John" or description co "John"
and (type eq "t1" or type eq "t2"))

– Query across specific types: Query expression allows you to specify more than one
asset type using curly brackets {}. Such query is treated as a generic query across
specified asset types with the ability to reference both standard and user-defined
fields in query conditions. For more information, see Search Across Types.
For example: /api/v1.1/items?q=(name eq "John" and {type eq "t1" and
fields.ud1 eq "ud1val"} or {type eq "t2" and fields.ud2 eq "ud2val"}

The standard data fields that are supported in asset types

• In Management API:
id, type, name, description, typeCategory, slug, translatable, language,
createdBy, createdDate, updatedBy, updatedDate, repositoryId, channels,
collections, status, tags, isPublished, languageIsMaster, taxonomies

• In Delivery API:
id, type, name, description, typeCategory, slug, translatable, language,
createdDate, updatedDate, taxonomies

While querying using standard fields in either search query form, the various data fields are
treated differently:

Data Fields Data Type

name, description, type, typeCategory,
slug, language, status

text data type (single valued)

Chapter 14
Use REST APIs for Content Search

14-33

Data Fields Data Type

id, repositoryId reference (single valued)

createdDate, updatedDate datetime (single valued)

translatable,isPublished,
languageIsMaster

boolean (single valued)

collections, channels, tags, taxonomies,
suggestedTaxonomies

reference data type (multi valued)

In either search query form, it is possible to search by matching items anywhere (i.e.,
matching any standard or user-defined data field) by specifying a match criteria via the
query parameter default on request. Such a criterion is treated as a generic query
that matches values of the items across all fields that are indexed as an aggregate text
data. For example:

• /api/v1.1/items?default="coffee"
• /api/v1.1/items?q=(type eq "Employee")&default="senior"
Find more details about the following:

• Search operators and query parameters that are supported in the Search API.

• Two-level deep search and related options that are supported for order matching
items by a reference field.

• Search for custom fields across type and related to that order by parameter.

• Getting dynamic asset counts on a taxonomy category and using this API to
support faceted search.

Stop words (words to be filtered out in your search)

The following English stop words will be filtered out for default search and typed
anyField search:

a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not,
of, on, or,such, that, the, their, then, there, these, they, this, to,
was, will, with.
Search Operators

Searches in the REST API for Content Management or REST API for Content Delivery
allow you to create search query expressions using a rich set of operators to define
field match conditions plus, AND, OR, and () operators to combine them into a complex
query expression that can match the field values within a single asset type or across
multiple types. The table below lists search query operators that are currently
supported in the Search API.

Chapter 14
Use REST APIs for Content Search

14-34

Operator Example Supported Data
Types

Description

eq
?q=(name eq "John")
?q=(type eq
"DigitalAsset")
?q=(type eq "Employee"
and fields.DOB eq
"1994/09/26T16:23:45.208"
)
?q=(type eq "File" and
fileextension eq "docx")
?
q=(taxonomies.categories.
id eq
"B9F568DC43C54803AC760127
83FA5101")
?
q=(taxonomies.categories.
name eq "cars")?
q=(taxonomies.categories.
apiName eq "cars-unique")
?
q=(taxonomies.categories.
nodes.id eq
"B9F568DC43C54803AC760127
83FA5101")
?
q=(taxonomies.categories.
nodes.name eq "cars")?
q=(taxonomies.categories.
nodes.apiName eq "cars")
?
q=(suggestedTaxonomies.ca
tegories.id eq
"B9F568DC43C54803AC760127
83FA5101")

text, reference,
number, decimal,
boolean, datetime.

The equals operator eq
matches the exact value
supplied in the query. This
operator is not applicable to
multivalued data types. The
value provided with this
operator is not case-sensitive
except for standard fields.
This operator considers even
special characters in the
value.

Chapter 14
Use REST APIs for Content Search

14-35

Operator Example Supported Data
Types

Description

ne
?q=(name ne "John")

text, reference,
number, decimal,
boolean, datetime.

The not equals operator ne
matches items that do not
match the exact value
supplied in the query. This
operator is not applicable to
multivalued data types. The
value provided with this
operator is not case-sensitive
except for standard fields.
This operator considers even
special characters in the
value. The ne operator can
be used with queries on user-
defined fields within an asset
type. But a cross-type query
cannot include search terms
on user-defined fields.

co
?q=(type eq "Employee"
AND name co "john alex")
?q=(type eq "Car" AND
fields.features co
"manual")
?
q=(taxonomies.categories.
name co "red")
?
q=(taxonomies.categories.
nodes.name co "car")

text, reference,
number, decimal,
datetime, largetext

The contains operator co
matches every word given in
the criteria. The words are
formed by splitting the value
by special characters. It gives
the results that have at least
one of the words (in this
example, john or alex or
both). This operator does not
consider special characters in
the value while searching.
This operator does not
search for stop words. This
operator is applicable to text,
largetext in case of single-
valued attributes, whereas for
multivalued attributes, it is
applicable to text, reference,
number, decimal, datetime,
largetext. To understand the
possible datetime formats,
refer to Supported Date and
Time Formats. The value
provided with this operator is
not case-sensitive.

nc
?q=(name nc "john alex")

text, reference,
number, decimal,
datetime, largetext

The not contains operator
nc matches items that would
not match a co operator with
the same criteria.

Chapter 14
Use REST APIs for Content Search

14-36

Operator Example Supported Data
Types

Description

sw
?q=(type eq "Employee"
AND name sw "Joh")
?q=(type eq "Employee"
AND fields.city sw "Los")
?
q=(taxonomies.categories.
name sw "cat")
?
q=(taxonomies.categories.
nodes.name sw "red")

text The starts with operator
sw matches only the initial
character values given in the
field condition. This operator
is not applicable to
multivalued data types. The
value provided with this
operator is not case-sensitive.

ge
?q=(type eq "Employee"
AND fields.age ge "40")
?q=(type eq
"DigitalAsset" AND
updatedDate ge
"20171026")

number, decimal,
datetime

The greater than or
equal to operator ge
matches only numeric and
datetime values. To
understand the possible
datetime formats, refer to
Supported Date and Time
Formats. This operator is not
applicable to multivalued data
types.

le
?q=(type eq "Employee"
AND fields.weight le
"60.6")

number, decimal,
datetime

The less than or equal
to operator le matches only
numeric and datetime values.
To understand the possible
datetime formats, refer to
Supported Date and Time
Formats. This operator is not
applicable to multivalued data
types.

gt
?q=(type eq "Employee"
AND fields.age gt "20")

number, decimal,
datetime

The greater than operator
gt matches only numeric
and datetime values. To
understand the possible
datetime formats, refer to
Supported Date and Time
Formats. This operator is not
applicable to multivalued data
types.

It
?q=(type eq "Employee"
AND fields.age lt "20")
?q=(type eq "Employee"
AND createdDate lt
"1994/09/26T16:23:45.208"
)

number, decimal,
datetime

The less than operator lt
matches only numeric and
datetime values. To
understand the possible
datetime formats, please refer
to Supported Date and Time
Formats. This operator is not
applicable to multivalued data
types.

Chapter 14
Use REST APIs for Content Search

14-37

Operator Example Supported Data
Types

Description

mt
?q=(type eq "Car" AND
fields.review mt "petrol
20KMPL")
?q=(type eq "Employee"
AND name mt "Jo?n")
?q=(type eq "Employee"
AND name mt "Jo*")
?q=(type eq "Employee"
AND fields.role mt
"senior*")

text, largetext The phrase query or
proximity search matches
operator mt enables you to
find words that are within a
specific distance to one
another. Results are sorted
by the best match. It is useful
for searching content items
when values provided in the
criteria "petrol 20kmpl" of the
query need to match content
that may contain "petrol fuel
mileage runs 20KMPL in the
speed way".
The matches operator can
use a wildcard (? or *) to
match multiple characters
within the given value. This
operator is applicable to both
single-valued and multivalued
data types. This operator
does not search for stop
words. The value provided
with this operator is not case-
sensitive. To match exact
phrases, enclose search
terms in double quotes.
Enclosing double quotes will
be treated as part of the
search term in all other
contexts.

sm
?q=(type eq "Employee"
And fields.city sm
"Rome")

text, largetext This operator sm allows
searching for values that
sound like specified criteria -
also called fuzzy search,
which uses, by default, a
maximum of two edits to
match the result. "Rome" is
similar to "Dome". This
operator is applicable to both
single-valued and multivalued
data types. The value
provided with this operator is
not case-sensitive.

AND
?q=(type eq "Employee"
AND name eq "John" AND
fields.age ge
 "40")

-NA- The AND operator, can be
used to put an AND condition
between multiple query
conditions. This takes
precedence over OR.

Chapter 14
Use REST APIs for Content Search

14-38

Operator Example Supported Data
Types

Description

OR
type eq "Employee" AND
name eq "John" OR
fields.age ge "40"

-NA- The OR operator can be used
to put an OR condition
between multiple query
conditions.

()
?q=(type eq "Employee"
AND (name eq "John" AND
fields.age ge "40"))
?q=(type eq "Employee"
AND ((name eq "John"
AND fields.age ge "40")
OR fields.weight
 ge 60))

-NA- The parenthesis, enclosing
operator ()can be used to
group the conditions in the
criteria. This takes highest
precedence, followed by AND
and then by OR.

Search Queries
When you are creating a search query expression, take into account the following extra
details about using operators in a specific search query or with a specific data type that are
provided in the table below.

Query Description

Type specific query This query always uses only the eq operator; eq works with case-
sensitive type names. Multitype query is supported, such as ?q=(type
eq "Employee" OR type eq "Address"), however, it will be a
query across types.
Example: ?q=(type eq "Employee" OR type eq
"DigitalAsset") is supported because of a single type search.

Date query The date query is a special type of query because of various date
formats associated with it. All the datetime values in the query are
assumed to be in the UTC time zone only, unless the offset is added in
the ISO 8901 format. The query results will always be in the UTC
timezone format for all datetime fields. Fields with the data type
datetime should use the operators ge, gt, le, lt for a range
query and use eq for an equals match. Supported Date and Time
Formats describes date / datetime formats that are accepted in a date
query.
Example:Query Products by the manufactureDate (datetime) field
using the ge operator. https://{cecsdomain}/content/
management/api/v1.1/items?q=(type eq "Product" AND
fields.manufactureDate ge "1989-03-26"). The given date
format is YYYY-MM-DD
.

Decimal values query The decimal number query is supported up to three digits after decimal
points, and the rest of the digits are ignored. https://
{cecsdomain}/content/management/api/v1.1/items?q=(type
eq "Product" AND fields.price ge 425.3214), will return all
the products where the price is greater than or equal to 425.321.

Chapter 14
Use REST APIs for Content Search

14-39

Query Description

Large text data type query Fields with the data type largetext are not stored. So the query
result cannot return its value. But the field value can be used in a query
condition.

Generic query The generic query is a default search query, which can be used when
the user can search by value only without using any field name or
operators. Internally, a generic search uses the co operator. This query
does not support wildcard characters. This query does not search for
stop words.
Example: ?q=(type eq
"Employee")&fields=all&default=John. This will return the
search results for the Employee type where the value John matches
the field name, description, or any user-defined fields.

Example: ?q=(type eq "Article")&default=skating. This will
return the search results for the Article type where the value skating
matches the field name, description, or any user-defined fields.

Id query This is a search query that uses the Id attribute.

Example: ?q=(type eq "Employee" AND id eq
"COREAF29AC6ACA9644F9836E36C7B558F316"). The value of Id
belongs to the item being queried, here it is the Id of type Employee. It
is possible to include multiple item Ids in the query expression.

Example: ?q=(type eq "Employee" AND (id eq
"COREAF29AC6ACA9644F9836E36C7B558F316" OR id eq
"COREAF29AC6ACA9644F9836E36C7B558F987")).

Category query This query searches items categorized with given category Id, category
name, category apiName, category node Id, category node name, or
category node apiName attributes.

Example: ?q=(taxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489") The value of
taxonomies.categories.id belongs to the category assigned to
items being queried. It is possible to include multiple category Ids or
names in the query expression.

Example: ?q=(taxonomies.categories.name co "cars" OR
taxonomies.categories.name sw "red")
Example: ?q=(taxonomies.categories.apiName eq "All-
furnitures") The value of taxonomies.categories.apiName
belongs to the category assigned to items being queried. It is possible
to include multiple category apiName values in the query expression.

Example: ?q=(taxonomies.categories.nodes.id eq
"9E1A79EE600C4C4BB727FE3E39E95489") The value of
taxonomies.categories.nodes.id belongs to any node of
categories assigned to items being queried. It is possible to include
multiple category node Ids or node names in the query expression.

Example: ?q=(taxonomies.categories.nodes.name co "cars"
OR taxonomies.categories.nodes.name sw "red")
Example: ?q=(taxonomies.categories.nodes.apiName eq
"All-furnitures" OR taxonomies.categories.nodes.apiName
eq "all-accessories") The value of
taxonomies.categories.nodes.apiName belongs to any node of
categories assigned to items being queried. It is possible to include
multiple category node apiName values in the query expression.

Chapter 14
Use REST APIs for Content Search

14-40

Query Description

Suggested category query This query searches items that could be categorized into a given
category with category Id, rejected status, and language. Only one
category Id can be used for filtering at a time; repositoryId is mandatory
when filtering on suggestedTaxonomy. The default status is not
rejected. When no language is specified, items from all languages are
returned.
Example: ?q=(repositoryId eq
"86E125F3D78B409EBF61737636599FE1" AND
suggestedTaxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489") Lists all the items from all
languages that are suggested for the given category Id for the given
repository and not rejected.

Example: ?q=(repositoryId eq
"86E125F3D78B409EBF61737636599FE1" AND
suggestedTaxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" AND
suggestedTaxonomies.categories.isRejected eq "false")
Lists all the items from all languages that are suggested for the given
category Id for the given repository and not rejected.

Example: ?q=(repositoryId eq
"86E125F3D78B409EBF61737636599FE1" AND
suggestedTaxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" AND
suggestedTaxonomies.categories.isRejected eq "false"
AND language co "en-US") Lists all the items from the given
language that are suggested for the given category Id for the given
repository.

Example: ?q=(repositoryId eq
"86E125F3D78B409EBF61737636599FE1" AND
suggestedTaxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" AND
suggestedTaxonomies.categories.isRejected eq "true" AND
language co "en-US") Lists all the items from the given language
that are previously rejected for the given category Id for the given
repository.

Lock status query This query searches items by locked status.

Example:?q=lockInfo.status eq "locked" Lists all the items that
are in locked status.

Example: ?q=lockInfo.status eq "unlocked" Lists all the items
that are in unlocked status.

Example: ?q=lockInfo.lockedBy eq
"userName"&fields=lockInfo Lists all the items that are locked by
the user specified and displays the lock information in results.

Reference field query This search query uses reference attribute.

Example:?q=(type eq "Employee" AND fields.department eq
"COREAF29AC6ACA9644F9836E36C7B558F412"). The value of
department belongs to the Id of an item of type department.

Chapter 14
Use REST APIs for Content Search

14-41

Query Description

Match text in any field query The query searches for assets within a type or across specific types.
The search in any field and binary file’s text is supported by using
query syntax that matches an asset anywhere. This query does not
search for stop words.

Example: ?q=(type eq "Employee" AND (anyField co "John
Smith" and fields.address.state eq "CA"))
Example: ?q=(type eq "cdt1" AND (anyField co "John
Smith" and fields.address.state eq "CA"))
Example: ?q=(type eq "DigitalAsset" AND anyField co
"John Smith")
Use query operators that are supported by the query syntax: CO
(contains), MT (phrase match), NC (not contains).

Note:

The MT operator cannot be used in an
anyField query to search for values in a
number or decimal field.

Match text in a binary file
query

The query does typed search to match the text in the binary file of the
digital asset. The search in the binary file’s text in the digital assets is
supported by using metadata.extractedText parameter in the
search query within a type or across specific types.

Example: ?q=(type eq "File" AND metadata.extractedText
co "Employee")
Example:?q=({type eq "cdt1" AND metadata.extractedText
mt "installed"} or {type eq "cdt2" AND
metadata.extractedText mt "installed"})
Use query operators that are supported by the query syntax for Text
data type: CO (contains), MT (phrase match), NC (not contains).

Supported Date and Time Formats
The table below describes DATE and DATETIME formats that are accepted for use in
a query condition that uses the date data field:

Format Example

YYYY-MM-DD 1989-03-26

YYYY/MM/DD 1989/03/26

DD-MM-YYYY 26-03-1989

DD/MM/YYYY 26/03/1989

YYYY-MM-DD''T''hh:mm:ss 1989-03-26T18:32:38

YYYY/MM/DD''T''hh:mm:ss 1989/03/26T18:32:38

DD-MM-YYYY''T''hh:mm:ss 26-03-1989T18:32:38

DD/MM/YYYY''T''hh:mm:ss 26/03/1989T18:32:38

YYYY-MM-DD''T''hh:mm:ss.SSS 1989-03-26T18:32:38.840

Chapter 14
Use REST APIs for Content Search

14-42

Format Example

YYYY/MM/DD''T''hh:mm:ss.SSS 1989/03/26T18:32:38.840

DD-MM-YYYY''T''hh:mm:ss.SSS 26-03-1989T18:32:38.840

DD/MM/YYYY''T''hh:mm:ss.SSS 26/03/1989T18:32:38.840

YYYYMMDD 19890326

YYYYMMDDhhmmss 19890326183238

YYYYMMDDhhmmssSSS 19880326183238840

YYYY-MM-DD''T''hh:mm:ss.SSS+/-HH:mm 1989-03-26T18:32:38.840+05:30

YYYY-MM-DD''T''hh:mm:ss+/-HH:mm 1989-03-26T18:32:38+05:30

Search with the Querytext Parameter
You can use the querytext parameter of the Search Folders or Files APIs in the REST API
for Documents to take advantage of string search, tag search, and custom metadata field
search at the same time.

The querytext search string is available in the Search Folders or Files and the Search
Folders or Files Under Specific Folder ID endpoints, to match folder or file names and allow
for tag search or custom metadata field search as well. You can use querytext to search an
entire directory tree in your home (self) directory as well as shared folders.

To set up querytext searches with the REST APIs:

1. Create files and folders, and add tags to them for string searches.

Tags currently support only CONTAINS.

a. Plan where you will place each tag because tags are inherited from parent folders.

b. Set tags, add tags, or remove tags with the following APIs: Set Folder Tags, Edit
Folder Tags, Set File Tags, and Edit File Tags

2. Add metadata collections.

a. As an administrator, create global collections (personal collections are not supported
as indexed collections).

b. Determine which fields you will need to support the search, and call APIs in the
metadata resource to index those fields.

There is a limit of 100 fields to be indexed. You cannot remove fields from the index.
The search is done on Favorite shared folders first and then other shared folders, up
to 100. You may want to designate some folders as Favorites before searching, to
ensure better search results.

c. Metadata fields of an integer type cannot be searched as a number.

d. You can search metadata fields of a Date type in a search API from the REST API for
Documents. This enables you to search for exact date matches or for a range of
dates (that is, files where the date falls between a specific start date and a specific
end date).

3. Build your query.

a. Use a search strings in the querytext parameter of the Search Folders or Files and
the Search Folders or Files Under Specific Folder ID endpoints to search your folder
and file names, tags, and indexed metadata fields.

Chapter 14
Use REST APIs for Content Search

14-43

For examples of tags and custom metadata searches, see the descriptions of
the endpoints in the REST API for Documents.

b. Search queries require URL encoding of the single-quotation-mark character
(') into %60. For example, Collection1.field1<CONTAINS>'myValue' turns
into Collection1.field1<CONTAINS>%60myValue%60.

c. Start with simple queries to validate that your conditions do indeed find results.

d. You can build more complex queries by combining parentheses, <AND>
clauses, and <OR> clauses.

Set Up Searches on Metadata Fields
Set up searchable metadata fields with the Metadata Collection resource of the REST
API for Documents. Then you can run text searches with custom fields.

To search metadata fields:

1. Sign in to Oracle Content Management as an administrator and create a metadata
collection.

See Metadata Collection Resource.

2. As an administrator, check which metadata fields are already searchable with the
Get Searchable Metadata Fields endpoint, so you can determine how many fields
you can add to the search index.

This REST API call retrieves all metadata fields currently available for searching
content, The result list includes all metadata fields prefixed with their respective
global metadata collection for the tenant. Each tenant is limited to 200 searchable
fields.

3. Use the Set Searchable Metadata Fields endpoint of the REST API for Documents
to specify metadata fields that are searchable.

After you reach 200 fields, you cannot index new fields to become searchable.
Currently, fields cannot be removed from the search index unless the metadata
collection and/or field are deleted from the system. When a collection and/or field
are deleted, all the existing metadata information previously set will be lost (not
recoverable). After this, new fields will be allowed to become searchable up to the
200 fields limit.

For custom metadata searches, the REST API for Documents supports only text
searches using CONTAINS. It does not support numeric or date searches. For example,
custom metadata fields created through the web user interface are not searchable
because they are numeric or date type fields.

For more information about these endpoints and examples of using them, see "Set
Searchable Metadata Fields" and "Get Searchable Metadata Fields" under "Metadata
Collection" in REST API for Documents.

Search Request Parameters
In addition to q or default parameters, a search request submitted to the /items
resource allows you to use other request parameters to control number of items or
item fields returned in response. The tables below provide details about requests
accepted by the REST API for Content Delivery and REST API for Content
Management.

Chapter 14
Use REST APIs for Content Search

14-44

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/api-metadata-collection.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html

REST API for Content Delivery

Query
Parameter

Type Description

channelToken string Channel token of the publish target. A channel token must be provided
as either a query parameter or a request header.

default string Default search query expression that matches the values of items
across all fields.

fields string The fields parameter is used to control the returned fields and values in
the queried item. This parameter accepts a comma-separated list of
field names or all. All the user-defined field names should be provided
with the fields prefix and followed by a period (.). These fields will be
returned for each queried item. As all the field names are case-
sensitive, users must provide the correct field names in the search
query. When fields is specified as all (case-insensitive), in case of a
type-specific query, all the standard fields, and user-defined fields
except largetext, json, location datatype are returned for each queried
item, whereas in case of a query across all types, only all standard
fields are returned. The standard field Id and type are always returned
in the response and cannot be filtered out. This parameter is optional in
the query and by default query result shows only Id, name, description,
and type in the response. Any incorrect or invalid field name given in
the query will be ignored.

In the context of a brace style cross-type query, type-specific fields may
be specified using the syntax name,
{typename1:fields.userdefinedfieldname1,fields.userdefi
nedfieldname2},
{typename2:fields.userdefinedfieldname1}. In the preceding
example, all items of the type typename1 will have fields - name,
userdefinedfieldname1, and userdefinedfieldname2, while all items of
the type typename2 will have fields - name, userdefinedfieldname1. If
the cross-type query does not resolve to types referenced in the typed
fields clause(s), an error will be thrown.

Example: ?q=(type eq
"LocationType")&fields=fields.state,fields.country,upda
tedDate
This returns Id, type, state, country, updatedDate in the search results
for a LocationType with state and country fields.

Example: ?q=(type eq "LocationType")&fields=all
This will return all standard fields and all user-defined fields except
largetext, json, location data types

Example: ?fields=all
This will return only standard fields (Id, type, typeCategory, name,
description, slug, language, createdDate, updatedDate, taxonomies,
renditions) since the type field is not used in the search query (acts as
a global query)

Example: ?fields=name,createdDate
This will return only standard fields (such as Id, name, createdDate,
and type) since the type field is not used in the search query (acts as a
Global query)

Default Value:
name,description,slug,language,translatable,createdDate
,updatedDate

limit integer(int32) Number of rows to return. The default value is 100.

Chapter 14
Use REST APIs for Content Search

14-45

Query
Parameter

Type Description

links string Accepts a comma-separated list of rel (relation) links, which the client
requires in the results. By default, all the applicable links in a resource
are included in the response. Possible values are: self, canonical,
describedby, first, last, prev, next. Example: links=self,canonical will
only return the links with the rel property, self, or canonical.

offset integer(int32) Start index of response rows. The default value is 100.

Chapter 14
Use REST APIs for Content Search

14-46

Query
Parameter

Type Description

orderBy string The orderBy parameter is used to control the order (ascending or
descending) of queried items. This parameter is optional in the query
and by default the results are sorted in the descending order of
updatedDate. This parameter accepts featured() or field names
separated by a colon (:), which the user wants to sort the results and
sort order. Multiple sort orders are separated by semicolon (;).

Format: orderBy={fieldName1}:{asc/desc};{fieldName2}:
{asc/desc}

Note:

asc stands for ascending and des for
descending. asc and des are always in
lower case.

In a type specific query, field names can be: name, createdDate,
updatedDate (standard fields), or user-defined fields (single-valued
data types: number, decimal, datetime, text). All the user-
defined field names should be provided with prefix fields and followed
by a period (.). In the context of a cross-type search, this parameter can
also have a typed section and takes the form
{typename1:fields.userdefinedfieldname1:asc|desc};
{typename2:fields.userdefinedfieldname1:asc|desc}.

The orderBy parameter only supports one order by field per set of
matching braces. The sort order is optional and by default it is
ascending. Any incorrect or invalid field name given in the query will be
ignored. When featured() is given, the results are sorted by the
relevance of the items to the applied filter.

The orderBy parameter also supports the following:

• Sorting by a two-level field. If there is a two-level sort field, then it
can be the only sort field in the orderBy parameter.

Sorting assets using user-defined text field or an attribute in JSON
data stored in JSON field (embedded content) on assets in a two-
level search.

Note:

The two-level sorting does not work on multiple value
fields, so this does not work on multiple text fields. The
two-level sorting works on any array attributes on JSON
fields because JSON fields can only be a single value
field.

• Sorting by taxonomy root categories and sub-categories of a root
category. The additional sorting parameters are as follows:
taxonomies.shortName["short name of taxonomy"]:
{asc/desc}; taxonomies.categories.nodes.name["short
name of taxonomy"|"taxonomy
name","category1","category2","category3"]

Chapter 14
Use REST APIs for Content Search

14-47

Query
Parameter

Type Description

where category1, category2, category3, etc. are sub-categories of
a given taxonomy "taxonomy name".

• Sorting by an attribute in JSON data stored in JSON field on
assets.

Example: orderBy=name:asc
Returns all the items in the ascending order of name.

Example: orderBy=updateDate:asc
Returns all the items in the ascending order of updateDate.

Example : orderBy=fields.age:des
Returns all the items in the descending order of age.

Example: orderBy=fields.age
Returns all the items in the ascending order of age.

Example : default=apples&orderBy=featured()
Returns all the items sorted by the relevance of the items to the apples.

Example : orderBy=fields.blogauthor.authorage
Returns all the items in the ascending order of age of the author
referred by referenced field "blogauthor".

Example:
orderBy=fields.blogauthor.fields.authorage&twolvl_v1_1=
true
Returns all the items in the ascending order of age of the author
referred by referenced field "blogauthor".

Example:
orderBy=taxonomies.shortName["loc"];taxonomies.categori
es.nodes.name["loc"|"Location","emea","china","industry
"];taxonomies.categories.nodes.name["loc"|"Location","a
mericas","brazil","industry"]
Returns all the items sorted in the ascending order of root category of
"loc", sub-categories of category whose path is /Location/emea/
china/industry, sub-categories of category whose path is /
Location/americas/brazil/industry.

Example: orderBy=fields.<text_field_name>:asc
Returns all the items sorted in the ascending order using the user-
defined text field.

Example:
orderBy=fields.<json_field_name>.value.<attribute_name>
:asc
Returns all the items sorted in the ascending order using an attribute in
JSON data stored in JSON field (embedded content) on assets.

Example:
orderBy=fields.<ref_field_name><text_field_name>:asc
Returns all the items sorted in the ascending order using two-level
reference to the user-defined text field. The example uses the
compatibility mode of the two-level search.

Example:
orderBy=fields.<ref_field_name>.fields.<text_field_name
>:asc&twolvl_v1_1=true

Chapter 14
Use REST APIs for Content Search

14-48

Query
Parameter

Type Description

Returns all the items sorted in the ascending order using two-level
reference to the user-defined text field. The example uses the two-level
mode of the two-level search.

q string This parameter accepts a query expression condition that matches the
field values. Many such query conditions can be joined using AND/OR
operators and grouped with parentheses. The value of query condition
follows the format of {fieldName} {operator} "{fieldValue}".
In the case of a query across type, the field names are limited to
standard fields (Id, type, name, description, typeCategory, slug,
language, createdDate, updatedDate, taxonomies). However in the
case of a type-specific query, the field names are limited to standard
fields and user-defined fields (except fields of largeText data type). The
only values allowed in the operator are eq (Equals), co (Contains), sw
(Startswith), ge (greater than or equals to), le (less than or equals to),
gt (Greater than), lt (less than), mt (Matches), sm (Similar).

Example: https://{cecsdomain}/content/published/api/
v1.1/items?q=(name eq "John")
Example: https://{cecsdomain}/content/published/api/
v1.1/items?q=(type eq "Employee" AND name eq "John")
Example: https://{cecsdomain}/content/published/api/
v1.1/items?q=(type eq "Employee" AND ((name eq "John"
AND field.age ge "40") OR fields.weight gt "70"))
Example: https://{cecsdomain}/content/published/api/
v1.1/items?q=(taxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" OR
(taxonomies.categories.name co "cat" AND
taxonomies.categories.name co "red"))
Example: https://{cecsdomain}/content/published/api/
v1.1/items?q=(taxonomies.categories.nodes.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" OR
taxonomies.categories.nodes.name co "cars")

scroll boolean Specifying this parameter indicates that the scroll behavior is expected
from the Search API. Scrolling is the recommended method for
retrieving large result sets. Scrolling is not available when
returnMaster is enabled. hasMore will always return false when
scrolling is enabled. The offset parameter value, if specified, will be
ignored on scroll requests. The limit parameter value will be interpreted
in the context of scroll and be fixed for a scroll session. Subsequent
changes to limit will be ignored for the scroll session. A limit that results
in too large a response will result in a 413 (Payload Too Large)
response status.

Default Value: false

scrollId string This parameter is used to specify the scroll Id. scrollTTL and the
original value of the q parameter are always required with requests that
use a scrollId to get consistent results. Note that the requirement to
always include the q parameter in subsequent scroll requests is
currently not validated against previous requests and changes to the
parameter within the same scroll session are ignored.

Chapter 14
Use REST APIs for Content Search

14-49

Query
Parameter

Type Description

scrollTTL integer(int32) scrollTTL (in milliseconds - default and maximum value 30000 ms)
specifies the period of inactivity allowed between the current and the
next scroll request. All responses to search with scroll include a
scrollId. Subsequent scroll requests must include the scrollId returned
from the previous response since the scrollId returned could change
across requests. Since all scroll requests are stateless, scrollTTL is
always expected. The value of scrollTTL does not have to be the same
across requests. The original search query (q) is also expected with
each subsequent scroll request. An invalid or expired scrollId will result
in a 400 (Bad Request) response status.

Default Value: 30000

totalResults boolean Accepts a boolean value. Setting it to true displays the total results field
in the response.

The default value is false

twolvl_v1_1 string This parameter does not need a value and when used it indicates the
two level the Search API uses (i) fields.refname.fieldname to
search on system fields such as name, description, etc of the referred
type; and (ii) fields.refname.fields.userfieldname to search on
user-defined fields of the referred type. When this parameter is not
used, the two-level search behaves in compatibility mode and only
supports searches like fields.reftype.fieldname. Furthermore,
when fieldname is the same as a system-defined field name, the two-
level search behaves the same as
fields.reftype.fields.fieldname.

REST API for Content Management

The following table lists extra search request parameters accepted by the REST API
for Content Management:

Query
Parameter

Type Description

channelToke
n

string This parameter accepts channelToken of a channel and is used to
control the returned results. The result will contain only items
targeted to the channel that the specified channelToken belongs
to. This can also be achieved by specifying the channels
(standard field of an item) contains query condition (channels
co "{channelId}") as one of the query conditions in the q
query parameter. This is an optional parameter and by default
returns all the results.

default string Default search query expression which matches the values of the
items across all fields.

expand string This parameter is used to allow users to get permissions on each
matching item. Accepts permissions only.

Chapter 14
Use REST APIs for Content Search

14-50

Query
Parameter

Type Description

fields string This parameter is used to control the returned fields in each item
in the result. This parameter accepts a comma-separated list of
field names or all. These fields will be returned for each items in
the result. All the field names are case-sensitive, and users must
provide the correct field name in the query. All the user-defined
field names should be provided with prefix fields and followed by
period (.). When fields is specified as all (case-insensitive), all
the standard fields are returned in the case of a query across
types and in the case of a type-specific query, all standard and
user fields are returned. This parameter is optional in the query,
and by default the result shows only standard field name and
description. The standard fields, Id and type, are always returned
irrespective of any field asked. Any incorrect or invalid field name
given in the query will throw an error. In the context of a brace
style cross-type query, type-specific fields may be specified using
the syntax name,
{typename1:fields.userdefinedfieldname1,fields.user
definedfieldname2},
{typename2:fields.userdefinedfieldname1}. In the
preceding example, all items of the type, typename1, will have
fields - name, userdefinedfieldname1, and userdefinedfieldname2,
while all items of the type, typename2, will have fields - name,
userdefinedfieldname1. If the cross-type query does not resolve to
types referenced in the typed fields clause(s), an error will be
thrown.

Example: This returns standard fields (name), user fields (state),
and country of the type address in the search results.

https://{cecsdomain}/content/management/api/v1.1/
items?q=type eq
"Address"&fields=fields.state,fields.country
Example: This returns all the attributes for a specific type used in
the search results.

https://{cecsdomain}/content/management/api/v1.1/
items?q=type eq "Address"&fields=all
Example: This returns standard fields, name and createdBy in the
search results for all items across all the types.

https://{cecsdomain}/content/management/api/v1.1/
items?fields=name,createdBy
Example: This returns all the standard fields in the search results
for all items across all the types.

https://{cecsdomain}/content/management/api/v1.1/
items?fields=all
Default value: name, description, repositoryId, slug, language,
translatable, createdDate, updatedDate

limit integer(int32
)

This parameter accepts a non negative integer and is used to
control the size of the result. If offset+limit > 10000, then the limit
is treated as 10000-offset and gives results. The default value is
100.

links string This parameter accepts a comma-separated list of link names. By
default, this parameter gives all the links applicable. Possible
values are: self, canonical, describedby, first, last, prev, next

Chapter 14
Use REST APIs for Content Search

14-51

Query
Parameter

Type Description

offset integer(int32
)

This parameter accepts a non negative integer less than 10000
and is used to control the start index of the result. The default
value is 0.

Chapter 14
Use REST APIs for Content Search

14-52

Query
Parameter

Type Description

orderBy string The orderBy parameter is used to control the order (ascending/
descending) of queried items.

This parameter is optional in the query and by default the results
are sorted in the descending order of updatedDate when the
default parameter is empty. When the default parameter has
value(s), the results are sorted by the relevance of tags of the
items to the default values.

This parameter accepts featured() or field name separated by
a colon (:) for which the user wants to sort the results and sort
order. Multiple sort orders are separated by semicolon (;).

Format: orderBy={fieldName1}:{asc/desc};
{fieldName2}:{asc/desc}

Note:

asc stands for ascending and desc
for descending. asc and desc are
always in lower case.

In a type-specific query, field names can be either standard fields
(name, createdDate, updatedDate) or user-defined fields
(single-valued data types (number, decimal, datetime,
text). All the user-defined field names should be provided with
prefix fields and followed by a period (.).

In the context of a cross-type search, this parameter can also
have a typed section and takes the form
{typename1:fields.userdefinedfieldname1:asc|desc};
{typename2:fields.userdefinedfieldname1:asc|desc}.
The orderBy parameter only supports one order by field per set
of matching braces. While filtering on suggestedTaxonomies,
the default sort order will be by relevance of the suggestion to the
item.

The orderBy parameter also supports the following:

• Sorting by a two-level field. If there is a two-level sort field,
then it can be the only sort field in the orderBy parameter.

Sorting assets using user-defined text field or an attribute in
JSON data stored in JSON field (embedded content) on
assets in a two-level search.

Note:

The two-level sorting does not work on multiple
value fields, so this does not work on multiple text
fields. The two-level sorting works on any array
attributes on JSON fields because JSON fields can
only be a single value field.

• Sorting by taxonomy root categories and sub-categories of a
root category. The additional sorting parameters are as
follows:

Chapter 14
Use REST APIs for Content Search

14-53

Query
Parameter

Type Description

taxonomies.shortName["short name of taxonomy"]:
{asc/desc};
taxonomies.categories.nodes.name["short name of
taxonomy"|"taxonomy
name","category1","category2","category3"]
where category1, category2,category3, etc. are sub-
categories of a given taxonomy, "taxonomy name".

The sort order is optional, and by default it is descending.
Any incorrect or invalid field name given in the query will be
ignored. When featured() is given and the default
parameter has value(s), the results are sorted by the
relevance of tags of the items to the default values.

• Sorting by an attribute in JSON data stored in JSON field on
assets.

Example: orderBy=name:asc
Returns all the items in the ascending order of name.

Example: orderBy=updateDate:asc
Returns all the items in the ascending order of updateDate.

Example: orderBy=fields.age:desc
Returns all the items in the descending order of age.

Example: orderBy=fields.age
Returns all the items in the ascending order of age.

Example: default=apples&orderBy=featured()
Returns all the items sorted by the relevance of tags of the items
to the apples

Example: orderBy=fields.blogauthor.authorage
Returns all the items in the ascending order of age of the author
referred by referenced field, "blogauthor".

Example:
orderBy=fields.blogauthor.fields.authorage&twolvl_v
1_1=true
Returns all the items in the ascending order of age of the author
referred by the referenced field, "blogauthor".

Example:
orderBy=taxonomies.shortName["loc"];taxonomies.cate
gories.nodes.name["loc"|"Location","emea","china","
industry"];taxonomies.categories.nodes.name["loc"|"
Location","americas","brazil","industry"]
Returns all the items in the ascending order of the root category
of "loc", sub-categories of category whose path is /Location/
emea/china/industry, sub-categories of category whose path
is /Location/americas/brazil/industry.

Example: orderBy=fields.<text_field_name>:asc
Returns all the items sorted in the ascending order using the user-
defined text field.

Example:
orderBy=fields.<json_field_name>.value.<attribute_n
ame>:asc

Chapter 14
Use REST APIs for Content Search

14-54

Query
Parameter

Type Description

Returns all the items sorted in the ascending order using an
attribute in JSON data stored in JSON field (embedded content)
on assets.

Example:
orderBy=fields.<ref_field_name><text_field_name>:as
c
Returns all the items sorted in the ascending order using two-level
reference to the user-defined text field. The example uses the
compatibility mode of the two-level search.

Example:
orderBy=fields.<ref_field_name>.fields.<text_field_
name>:asc&twolvl_v1_1=true
Returns all the items sorted in the ascending order using two-level
reference to the user-defined text field. The example uses the two-
level mode of the two-level search.

q string This parameter accepts a query expression condition that
matches the field values. Many such query conditions can be
joined using AND/OR operators and grouped with parentheses.
The value of the query condition follows the format, {fieldName}
{operator} "{fieldValue}". In case of a type-specific query,
the field names are limited to standard fields and user-defined
fields (except fields of the largeText data type). The only values
allowed in the operator are eq (Equals), co (Contains), sw
(Startswith), ge (Greater than or equals to), le (Less than or
equals to), gt (Greater than), lt (Less than), mt (Matches), sm
(Similar).
Example: https://{cecsdomain}/content/
management/api/v1.1/items?q=(name eq "John")
Example: https://{cecsdomain}/content/
management/api/v1.1/items?q=(type eq "Employee" AND
name eq "John")
Example: https://{cecsdomain}/content/
management/api/v1.1/items?q=(type eq "Employee" AND
((name eq "John" AND field.age ge "40") OR
fields.weight gt "70"))
Example: https://{cecsdomain}/content/
management/api/v1.1/items?
q=(taxonomies.categories.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" OR
(taxonomies.categories.name co "cat" AND
taxonomies.categories.name co "red"))
Example: https://{cecsdomain}/content/
management/api/v1.1/items?
q=(taxonomies.categories.nodes.id eq
"9E1A79EE600C4C4BB727FE3E39E95489" OR
taxonomies.categories.nodes.name co "cars")

Chapter 14
Use REST APIs for Content Search

14-55

Query
Parameter

Type Description

repositoryId string This parameter accepts the Id of a repository and is used to
control the returned results. The result will contain only items
belonging to the specified repository. This can also be achieved
by specifying the repositoryId (standard field of an item) equals
query condition (repositoryId eq "{repositoryId}") as
one of the query conditions in the q query parameter. This is an
optional parameter and by default returns results from all the
repositories.

scroll boolean Specifying this parameter indicates that the scroll behavior is
expected from the Search API. Scrolling is the recommended
method for retrieving large result sets. Scrolling is not available
when returnMaster is enabled. The hasMore parameter will
always return false when scrolling is enabled. The offset
parameter value, if specified, will be ignored on scroll requests.
The limit parameter value will be interpreted in the context of
scroll and be fixed for a scroll session. Subsequent changes to
limit will be ignored for the scroll session. A limit that results in too
large a response will result in a 413 (Payload Too Large) response
status.

The default value is false.

scrollId string This parameter is used to specify the scroll Id. scrollTTL and the
original value of the q parameter are always required with
requests that use a scrollId to get consistent results. Note that the
requirement to always include the q parameter in subsequent
scroll requests is currently not validated against previous requests
and changes to the parameter within the same scroll session are
ignored.

scrollTTL scrollTTL (in milliseconds - default and maximum value 30000 ms)
specifies the period of inactivity allowed between the current and
the next scroll request. All responses to search with scroll include
a scrollId. Subsequent scroll requests must include the scrollId
returned from the previous response since the scrollId returned
could change across requests. Since all scroll requests are
stateless, scrollTTL is always expected. The value of scrollTTL
does not have to be the same across requests. The original
search query (q) is also expected with each subsequent scroll
request. An invalid or expired scrollId will result in a 400 (Bad
Request) response status.

The default value is 30000.

totalResults boolean This parameter accepts a boolean flag. If specified as true, then
the returned result must include the total result count.

The default value is false.

twolvl_v1_1 string This parameter does not need a value. When it is used, it
indicates the two levels that the Search API uses (i)
fields.refname.fieldname to search on system fields such
as name, description, etc of the referred type; and (ii)
fields.refname.fields.userfieldname to search on user-
defined fields of the referred type. When this parameter is not
used, the two-level search behaves in compatibility mode and only
supports searches like fields.reftype.fieldname.
Furthermore, when fieldname is the same as a system-defined
field name, the two-level search behaves the same as
fields.reftype.fields.fieldname.

Chapter 14
Use REST APIs for Content Search

14-56

Two-Level Deep Search
By default a search query matches standard or user-defined data fields on the item itself.
Data fields on a referenced item may also be searched so long as it is a direct reference. This
effectively provides you a way to configure search query that delves two level deep into the
data field hierarchy for an item, and therefore, to perform a two-level deep search matching
asset standard or user-defined data fields. The two-level search provides the same query
expression semantics as those provided while searching the fields of an item. For example:

A search query matching the user-defined field on a reference: /.../api/v1.1/items?
q=(type eq "Employee" AND fields.address.street eq "Main St") Here, the address is
the name of a reference type field on the type, Employee, which in turn has a field with the
name, street.

Note:

Searching recursively down an item's reference hierarchy past the first level
reference is not supported. Sorting by second level fields is not supported either.

Two-level deep search supports two ways to configure a search query on standard and user-
defined fields on a referenced item:

• Compatibility mode

This is a default mode. In the compatibility mode, a query expression supports field
notations like fields.ref-field.field-name, where ref-field is the name of a
reference or a media field and field-name is the name of a field on the referred asset
type. Furthermore, when field-name is the same as the name of a standard field (For
example, Id, name, or description), the two-level deep search behaves the same as
fields.ref-field.fields.field-name, that is, it treats field-name as the name of a
user-defined field. For example:

– Query (type eq "parent-type" AND fields.ref-field.field-name eq "blah")
will match items of the type parent-type(parent item) that have the value blah
assigned to the user-defined field field-name on the child item, which is set as a
reference on the field ref-field.

– Query (type eq "parent-type" AND fields.ref-field.name eq "blah") will match
items of type parent-type (parent item) that have the value blah assigned to the
standard field, name on the child item, which is set as reference on the field, ref-
field.

• Two-level mode

This mode is activated by setting the query parameter, twolvl_v1_1 mode to true. In this
mode the two-level search query expression uses fields.ref-field.field-name to
search on standard fields, such as Id, name, or description and fields.ref-
field.fields.field-name to search on user-defined fields of the referenced asset type.
For example:

– Query (type eq "parent-type" AND fields.ref-field.field-name eq "blah")
will match items of the type parent-type (parent item) that have the value blah

Chapter 14
Use REST APIs for Content Search

14-57

assigned to a standard field, field-name on the child item, which is set as a
reference on the field, ref-field.

– Query (type eq "parent-type" AND fields.ref-field.fields.field-name
eq "blah") will match items of the type, parent-type (parent item) that have
the value blah assigned to a user-defined field, field-name on the child item,
which is set as a reference on the field, ref-field.

Search JSON Data in JSON Fields
Search API allows you to return content items, or digital assets of custom digital asset
types, based on search terms matching values assigned to attributes in JSON data
that is stored in JSON fields on the item. In the Oracle Content Mangement web
interface, the data field for storing JSON formatted data on an asset type is called
Embedded Content. The API supports search terms that match base attributes, array
elements, or attributes in a JSON object, including an array of objects. JSON data
indexing currently imposes the following limitations on the total size of the indexed
JSON field (< 2.5MB), JSON field key length (< 512B), and depth to match field in
JSON object (10 levels).

Query syntax uses dot notation for field names to reference any key in the arbitrary
JSON content, i.e. you can use fields.<json_field_name>.value to query custom
text field or you can have
fields.<json_field_name>.value.key1.subkey1.subsubkey3, etc. In a search
condition, you can use all existing operators that are supported by Search API for
regular custom fields, for example:

q=(type eq "Employee" AND fields.<json_field_name>.value.street eq
"Main St¿)
q=(type eq "Employee" AND fields.<json_field_name>.value.age gt ¿20")
q=(type eq "Employee" AND fields.<json_field_name>.value.proper`es eq
¿office=HQ¿ AND fields.<json_field_name>.value.proper`es eq
¿building=100¿)

Similarly, for two-level deep search:

q=(type eq "Employee" AND
fields.<ref_field_name>.fields.<json_field_name>.value.street eq "Main
St¿)
q=(type eq "Employee" AND
fields.<ref_field_name>.fields.<json_field_name>.value.age gt ¿20")
q=(type eq "Employee" AND
fields.<ref_field_name>.fields.<json_field_name>.value.proper`es eq
¿office=HQ¿ AND
fields.<ref_field_name>.fields.<json_field_name>.value.proper`es eq
¿building=100¿)

Use of wildcards in search conditions, such as
fields.<json_field_name>.value.*.subsubkey3 and such are not supported for
performance reasons.

Chapter 14
Use REST APIs for Content Search

14-58

The Search API also allows you to sort returned search results by JSON Keyes/subkeys, for
example:

orderBy= fields.<json_field_name>.value.name:asc
orderBy= fields.<json_field_name>.value.name:desc
orderBy= fields.<ref_field_name>.fields.<json_field_name>.value.name:asc
orderBy= fields.<ref_field_name>.fields.<json_field_name>.value.name:desc

Search Across Types
Prior to the 21.6.1 release of Oracle Content Management (June 2021), specifying multiple
asset types in a search query made it a global (untyped) query that only allows you to
reference standard fields on an asset type in query conditions and in orderBy specifications.
An asset type specific predicates like fields.custom-filed-name, which could not be used in
the untyped query conditions, fields specification, or orderBy specification. The new cross-
type search API and search query syntax associated with it removes these restrictions.

A search query on custom data fields across multiple asset types requires you to use a new
syntax for building a search query expression. A query across multiple types is formulated by
enclosing asset type predicates with curly brackets {}. The Search query is validated to
comply with the following restrictions:

• Only one asset type may be specified within a matching pair of curly brackets. The {} pair
defines a type scope.

• Nested asset type scope delimiters are not allowed, for example, {...{...}..}
expression would fail validation.

• Curly brackets {} can be combined with square brackets [] when defining a typed
expression for the fields or orderBy parameters.

• Predicates specified outside a type scope behave like they were specified using square
brackets, that is, like a non-multi-type search query parameter.

• Queries do not support the not equal (ne) operator across different user-defined types.

Examples of search query on custom data fields across multiple asset types:

• {type eq "t1" AND fields.ud1 eq "ud1"}
ud1 has to be a field on the type, t1. Query will fail validation if that is not the case.

• {type eq "t1" AND fields.ud1 eq "ud1"} AND name eq "John"
Same as above with a standard field outside the type delimiter.

• {type eq "t1" AND fields.ud1 eq "ud1"} OR {type eq "t2" AND fields.ud2 eq
"ud2"}
ud1 has to be a field on the type, t1 and ud2 has to be a field on the type, t2.

• {type eq "t1" AND and fields.ud1 eq "ud1"} AND {type eq "t2" AND fields.ud2
eq "ud2"}
Similar to the previous query and valid, but it will return zero results due to the AND
operator.

• {type eq "t1" OR type eq "t2"}
Invalid query, since two types are specified within a type delimiter.

• type eq “t1” OR type eq “t2”
Un-scoped style search that resolves to an untyped query.

• type eq “t1” OR type eq “t2” AND fields.ud1 eq “ud1”

Chapter 14
Use REST APIs for Content Search

14-59

Un-scoped style search that resolves to untyped and will throw a validation error.

• type eq “t1” AND fields.ud1 eq “ud1”
Un-scoped style search that resolves to the type, t1. It is valid as long as ud1 is a
field on t1.

• {type eq “t2” AND fields.ud2 eq “ud2”} OR type eq “t1” AND fields.ud1
eq “ud1”
Un-scoped style search that resolves to the type, t1, and scoped search that
resolves to t2. Query is valid if ud1 is a field on t1 and ud2 is a field on t2.

The fields Parameter
The untyped way of configuring the fields parameter on request to return standard
and user-defined data fields for a single type uses the form Id, name, type,
updatedDate, fields.ud1,fields.ud2. The fields parameter can be typed as well
and takes the form {<typename1>:fields.<userdefinedfieldname>,
[fields.<userdefinedfieldname>]},
{<typename2>:fields.<userdefinedfieldname>,
[fields.<userdefinedfieldname>]}.

If an untyped expression is used as the fields parameter value in a combination with
a typed query, the q parameter has to resolve to a single un-scoped asset type (a type
predicate specified outside {} delimiters), otherwise an exception will be thrown.

Some examples of the typed expression set as the fields parameter value:

• fields=id,name,type,updatedDate,{t1:fields.ud1},
{t2:fields.ud2,fields.ud3}
The typed way to request system-defined fields (Id, name, type, updatedDate) and
user defined fields ud1 for type t1 and ud2 and ud3 for type t2. An exception will
be thrown during validation if types and user defined fields don’t match.

• fields=id,name,type,updatedDate,{t1:fields.ud1},
{t2:fields.ud2},fields.ud3
The typed way to request system-defined fields (id, name, type, updatedDate) and
user defined fields ud1 for type t1 and ud2 for type t2. The user-defined field, ud3,
must resolve to an unscoped type, otherwise an exception will be thrown during
validation.

The orderBy Parameter
The orderBy parameter can also have a typed section, and it takes the form
{<typename1>:fields.<userdefinedfieldname>[:asc|desc]};
{<typename2>:fields.<userdefinedfieldname>[:asc|desc]}. The orderBy
parameter only supports one order by field per type scope.

Dynamic Count of Assets per Taxonomy Category
The dynamic assets per category category count is a named aggregation, where items
matching a search query are further analyzed to answer the question: “How many
items in the result set are assigned to a specific category?”. It should be noted that the
analyzer needs to reflect direct and indirect category assignments. For example, if an
item is assigned to a leaf level category, the item count should propagate to all parent
level categories. If the same item is assigned to multiple leaf level categories, it should
be counted as one item on the common parent category (and all its parent categories).

Chapter 14
Use REST APIs for Content Search

14-60

In other words, duplicate assignments should not be counted. Consider the following
example:

Given the following category tree in your
taxonomy:

Item count per category should account for a
product item D500 assigned to both DSLR and
Nikon as follows:

Cameras
 Type
 DSLR
 Brand
 Nikon

Cameras (1)
 Type (1)
 DSLR (1)
 Brand (1)
 Nikon (1)

The same result is expected if the item, D500, is also directly assigned to the Cameras
category.

If you use taxonomy to allow end-users of a website or application to browse categorized
items (for example, in a product catalog on your website), you can use the item count per
category to dynamically filter out and hide categories which have no items assigned, while
leaving categories that do have assigned items plus, you can display the actual count of
assets on each category. Here is how your API client can do that by going through the
following repeating cycle to narrow down category listing:

• Start with an initial filter query

• End-user adds a filter term or selects a category

• Run modified filter query plus, an aggregation query(s) as required

• Narrow down the category listing based on the returned aggregated counts

• Cycle repeats from #2 as end-user continues with filtering items

The AGGS Query Parameter
To execute a search query that returns an aggregated item count per category, you need to
use the aggs query parameters that takes JSON array as a value. Each element in this array
represents an aggregation which is defined by required and optional attributes described in
the table below. The /items resource supports the aggs parameter in both the REST API for
Content Delivery and REST API for Content Management.

Query
Parameter

Type Aggregation Attributes

aggs JSON array • name (required): item_count_per_category
• field (optional): Takes either Id, or apiname to specify if Id or

apiName is returned for a category. By default, the category Id is
returned.

• size (optional): Takes a number in the [1...1000] range. By default
1000 is used.

Some examples of search queries with aggregations:

• A query with a single aggregation

Chapter 14
Use REST APIs for Content Search

14-61

.../api/v1.1/items?
fields=name&aggs={"name":"item_count_per_category"}&q=(type eq
"ContentType1" AND fields.simple_text_value mt “brown")

• A query with a single aggregation and with the query parameter, limit=0 will
return no search results. Aggregated counts will be returned from the
Elasticsearch aggregation cache
.../api/v1.1/items?
fields=name&aggs={"name":"item_count_per_category"}&q=(type eq
"ContentType1" AND fields.simple_text_value mt “brown")&limit=0

• A query with two aggregations
.../api/v1.1/items?
fields=name&aggs=[{"name":"item_count_per_category"},
{"name":"item_count_per_category","field":"apiname"}]&q=(type eq
"ContentType1" AND fields.simple_text_value mt "brown")

The aggregation section in the response to the search request for the above sample
query with two aggregations is shown below:

"aggregationResults": [
{
 "itemCountPerCategory": [
 {
 "categoryId": "65EAC164681C47D68851583237381001",
 "itemCount": 3
 },
 {
 "categoryId": "C1E24A8BA3754F5AB17AEED3F020A898",
 "itemCount": 3
 },
 {
 "categoryId": "AF8D57438E3645ABBB137812FE830C34",
 "itemCount": 2
 }
],
 "name": "item_count_per_category"
},
{
 "itemCountPerCategory": [
 {
 "categoryApiName": "tax-cat1",
 "itemCount": 3
 },
 {
 "categoryApiName": "tax-cat2",
 "itemCount": 3
 },
 {
 "categoryApiName": "tax-cat3",
 "itemCount": 2
 }
],
 "name": "item_count_per_category"
}
]

Chapter 14
Use REST APIs for Content Search

14-62

Aggregation Cache
The aggregated asset count per category API relies on the underlying Elasticsearch requests
cache, which is enabled by default on the Oracle Content Management search. By default,
the request cache will only cache the results of search requests when the query parameter
limit=0, so that it does not cache matching items, but it will cache the hits.total,
aggregations and suggestions. This allows frequently used (and potentially heavy) search
requests to return results almost instantly. The requests cache keeps the same near real-time
promise as uncached search. Elasticsearch invalidates cached results automatically
whenever the shard refreshes, but only if the data in the shard has actually changed. In other
words, Elasticsearch always get the same results from the cache as it would for an uncached
search request.

Using Dynamic Asset Counts per Category API
The dynamic item per category aggregation API can be utilized to display counts as required
by the common e-commerce product selectors / product catalogs. This section describes the
approach for a typical e-commerce use case as well as more general use cases. The
following terms are used to describe the rules for computing the aggregate asset count per
category:

• User query: A user-specified search query expression of arbitrary complexity conforming
to Oracle Content Management Search API query syntax requirements. This is a free
form search query on whatever an end-user entered in the input, such as (name eq
"car").

• Category node query: A form of Oracle Content Management Search API query
expressed as ‘(taxonomies.categories.nodes.id eq “<id_1>" OR
taxonomies.categories.nodes.id eq “<id_2>” OR ... OR
taxonomies.categories.nodes.id eq “<id_N>”)’, where id_X is the Id of one of the
user-selected categories under a particular taxonomy.

• Search query: One or more search queries intended to fetch results for display to end-
users. It can be a user query, one or more category node queries, or a combination of
those.

• Aggregation query: A variant of user query, generated to compute the aggregated item
count for a specific search facet.

Computing Aggregate Asset Counts
No user-selected categories: With no user-selected categories you can use a user query to
get matching items and compute aggregated counts:

• Search query: q=<user_query>
• Aggregation query (all taxonomies): q=<user_query>
User selects one or more categories from one taxonomy - taxonomy-1:

• Search query: q=<user_query> AND <category_node_query_1>
• Aggregation query(taxonomy-1): q=<user_query>
• Aggregation query (all other taxonomies): q=<search_query>
User selects categories from two taxonomy - taxonomy-1 and taxonomy-2:

Chapter 14
Use REST APIs for Content Search

14-63

• Search query: q=<user_query> AND <category_node_query_1> AND
<category_node_query_2>

• Aggregation query (taxonomy-1): q=<user_query> AND <category_node_query_2>
• Aggregation query (taxonomy-2): q=<user_query> AND <category_node_query_1>
• Aggregation query (all other taxonomies): q=<search_query>
User selects categories from three taxonomy - taxonomy-1, taxonomy-2 and
taxonomy-3:

• Search query: q=<user_query> AND <category_node_query_1> AND
<category_node_query_2> AND <category_node_query_3>

• Aggregation query(taxonomy-1): q=<user_query> AND <category_node_query_2>
AND <category_node_query_3>

• Aggregation query (taxonomy-2): q=<user_query> AND <category_node_query_1>
AND <category_node_query_3>

• Aggregation query (taxonomy-3): q=<user_query> AND <category_node_query_1>
AND <category_node_query_2>

A general rule, where user selects categories from N taxonomies:

• Search query: q=<user_query> AND <category_node_query_1> AND
<category_node_query_2> ... AND <category_node_query_N>

• Aggregation query (taxonomy-1): q=<user_query> AND
<category_node_query_2> ... AND <category_node_query_N>

• Aggregation query (taxonomy-2): q=<user_query> AND <category_node_query_1>
AND <category_node_query_3> ... AND <category_node_query_N>

• Aggregation query (taxonomy-N): q=<user_query> AND
<category_node_query_1> AND <category_node_query_2> ... AND
<category_node_query_N-1>

• Aggregation query (all other taxonomies): q=<search_query>

Total Search Cost
One scored/ranked query to get search results plus aggregate counts for categories
under taxonomies with no user-selected categories. N filter queries to compute
aggregate counts for N taxonomies with selected categories.

An e-commerce Use Case
The table below lists three taxonomies that are used in this example. It also includes a
list of items in repository and item categorization with taxonomies that you can refer to
for this example:

Chapter 14
Use REST APIs for Content Search

14-64

Taxonomies Items and Item Categorization Item Count per
Category

Electronics (ELE)
 ELE-laptops
 ELE-keyboards

Manufacturer
(MAN)
 MAN-hp
 MAN-razer

Location (LOC)
 LOC-sheraton-
mall
 LOC-stoneridge-
mall

All items below have the same content type
ContentType2:
• HP Elite Dragonfly (added to: ELE-laptops,

MAN-hp, LOC-sheraton-mall, LOC-
stoneridge-mall)

• HP Elite Folio (added to: ELE-laptops, MAN-
hp, LOC-sheraton-mall, LOC-stoneridge-mall)

• HP Elite X2 (added to: ELE-laptops, MAN-hp,
LOC-sheraton-mall, LOC-stoneridge-mall)

• HP Pavillion Keyboard (added to: ELE-
keyboards, MAN-hp, LOC-sheraton-mall,
LOC-stoneridge-mall)

• HP Omen Keyboard (added to: ELE-
keyboards, MAN-hp, LOC-sheraton-mall,
LOC-stoneridge-mall)

• Razer Blade Stealth(added to: ELE-laptops,
MAN-razer, LOC-sheraton-mall)

• Razer Blade Pro(added to: ELE-laptops,
MAN-razer, LOC-sheraton-mall)

• Razer BlackWidow Keyboard (added to: ELE-
laptops, MAN-razer, LOC-sheraton-mall)

• Razer Huntsman Keyboard (added to: ELE-
laptops, MAN-razer, LOC-sheraton-mall)

Electronics (ELE)
 ELE-laptops (5)
 ELE-keyboards
(4)

Manufacturer
(MAN)
 MAN-hp (5)
 MAN-razer (4)

Location (LOC)
 LOC-sheraton-
mall (9)
 LOC-stoneridge-
mall (5)

Let's use a simple search query to match all assets for No Categories is Selected to match all
assets of the type, Content Type2, in a given repository. To make queries and API response
to a search query request easier to read, all categories in the sample taxonomy have the
same API name (apiName) as the category name. Therefore, all search query expressions
and aggregations below use the apiName. You can use category Id instead.

No Categories is Selected

If end-users didn't select any category yet, you can obtain aggregated asset counts per
category using the search query alone.

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq
"ContentType2")&fields=name&links=none&aggs=[{"name":"item_count_per_categor
y","field":"apiname"}]¿

• Aggregation query (all taxonomies):
q=<search_query>

Search query response:

{
 "hasMore": false,
 "offset": 0,
 "count": 9
 "limit": 9,
 "items": [
 {
 "name": "HP Omen Keyboard",
 "links": [],

Chapter 14
Use REST APIs for Content Search

14-65

 "id": "COREFE86EA24BAE84D4E87B8A1F992163D6B",
 "type": "ContentType2"
 },
 {
 "name": "Razer BlackWidow Keyboard",
 "links": [],
 "id": "COREF8CEBA1264C04A1A87954C2A4A33D2DB",
 "type": "ContentType2"
 },
 {
 "name": "Razer Huntsman Keyboard",
 "links": [],
 "id": "CORE07C7E1108BFB4A5EAF1761F46251FECD",
 "type": "ContentType2"
 },
 {
 "name": "HP Pavillion Keyboard",
 "links": [],
 "id": "COREAB4987C5FB664007B3B6B4D93CFAC90F",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREF911737800FE406C92183E182C7228CC",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "CORE18B3AFABE2814E75AB54CBBF80B3A509",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "COREAED2F7C50B404D6FB6547CCE69DD3492",
 "type": "ContentType2"
 },
 {
 "name": "Razer Blade Pro",
 "links": [],
 "id": "CORE66D9CFFF1C2945A7857C6C0B5E4B21BB",
 "type": "ContentType2"
 },
 {
 "name": "Razer Blade Stealth",
 "links": [],
 "id": "CORED009A429B9D04080AE19FF42CE8CC758",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {

Chapter 14
Use REST APIs for Content Search

14-66

 "itemCountPerCategory": [
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 9
 }, {
 "categoryApiName": "ele-laptops",
 "itemCount": 5 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 5
 }, {
 "categoryApiName": "man-hp",
 "itemCount": 5 },
 {
 "categoryApiName": "ele-keyboards",
 "itemCount": 4
 }, {
 "categoryApiName": "man-razer",
 "itemCount": 4 }
],
 "name": "item_count_per_category"
 }
]
}

End-user selected "ELE-laptops"

With one category selected, let's use a search query to get results and obtain aggregated
counts for taxonomies with no selected categories. Then we will use a separate aggregate
query to compute aggregated counts for the taxonomy, Electronics. The aggregate query can
use the parameter limit=0 to return no items, as we are only interested in aggregated counts.

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq “ele-
laptops”))&fields=name&links=none&aggs=[{"name":"item_count_per_category","f
ield":"apiname"}]
Search query response:

{
 "hasMore": false,
 "offset": 0,
 "count": 5,
 "limit": 5,
 "items": [
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREF911737800FE406C92183E182C7228CC",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "CORE18B3AFABE2814E75AB54CBBF80B3A509",

Chapter 14
Use REST APIs for Content Search

14-67

 "type": "ContentType2"
 },
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "COREAED2F7C50B404D6FB6547CCE69DD3492",
 "type": "ContentType2"
 },
 {
 "name": "Razer Blade Pro",
 "links": [],
 "id": "CORE66D9CFFF1C2945A7857C6C0B5E4B21BB",
 "type": "ContentType2"
 },
 {
 "name": "Razer Blade Stealth",
 "links": [],
 "id": "CORED009A429B9D04080AE19FF42CE8CC758",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-razer",
 "itemCount": 2
 }
],
 "name": "item_count_per_category"
 }
]
}

• Aggregation query (for electronics):
q=(repositoryId eq "<repo_ID>" AND type eq
"ContentType2")&fields=name&limit=0&links=none
&aggs[{"name":"item_count_per_category","field":"apiname"}]

Chapter 14
Use REST APIs for Content Search

14-68

Aggregation query response:

{
 "hasMore": false,
 "offset": 0,
 "count": 0,
 "limit": 0,
 "items": [],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 9
 },
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 5
 },
 {
 "categoryApiName": "ele-keyboards",
 "itemCount": 4
 },
 {
 "categoryApiName": "man-razer",
 "itemCount": 4
 }
],
 "name": "item_count_per_category"
 }
]
}

End-user selected "ELE-laptops" plus "MAN-hp"

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "ele-laptops") AND
(taxonomies.categories.nodes.apiName eq "man-
hp"))&fields=name&links=none&aggs=[{"name":"item_count_per_category","field"
:"apiname"}]
Search query response

{
 "hasMore": false,
 "offset": 0,

Chapter 14
Use REST APIs for Content Search

14-69

 "count": 3,
 "limit": 3,
 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 3
 }
],
 "name": "item_count_per_category"
 }
]
}

• Aggregation query (for electronics):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "man-
hp"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_cat
egory","field":"apiname"}]

Chapter 14
Use REST APIs for Content Search

14-70

Aggregation query response

{
 "hasMore": false,
 "offset": 0,
 "count": 5,
 "limit": 5,
 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 },
 {
 "name": "HP Pavillion Keyboard",
 "links": [],
 "id": "COREF0AED9516AED4DC6A0692A696170FD57",
 "type": "ContentType2"
 },
 {
 "name": "HP Omen Keyboard",
 "links": [],
 "id": "CORE816259C0386D4704AB006B9F40D9F457",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 5
 },

Chapter 14
Use REST APIs for Content Search

14-71

 {
 "categoryApiName": "ele-laptops",
 "itemCount": 3
 },
 {
 "categoryApiName": "ele-keyboards",
 "itemCount": 2
 }
],
 "name": "item_count_per_category"
 }
]
}

• Aggregation query (for manufacturer):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "ele-
laptops"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_pe
r_category","field":"apiname"}]
Aggregation query response

{
 "hasMore": false,
 "offset": 0,
 "count": 5,
 "limit": 5,
 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 },
 {
 "name": "Razer Blade Stealth",
 "links": [],
 "id": "COREF49CB87945574CC59B2ACAE38A46D529",
 "type": "ContentType2"
 },
 {
 "name": "Razer Blade Pro",
 "links": [],

Chapter 14
Use REST APIs for Content Search

14-72

 "id": "CORE51A676D1B2FF4DB5B975806AFAF69284",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-razer",
 "itemCount": 2
 }
],
 "name": "item_count_per_category"
 }
]
}

End-user selected "ELE-laptops" plus "MAN-hp" and "LOC-stonebrifge-mall"

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "ele-laptops") AND
(taxonomies.categories.nodes.apiName eq "man-hp") AND
(taxonomies.categories.nodes.apiName eq "loc-stoneridge-
mall"))&fields=name&links=none&aggs=[{"name":"item_count_per_category","fiel
d":"apiname"}]
Search query response

{
 "hasMore": false,
 "offset": 0,
 "count": 3,
 "limit": 3,
 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",

Chapter 14
Use REST APIs for Content Search

14-73

 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 3
 }
],
 "name": "item_count_per_category"
 }
]
}

• Aggregation query (for electronics):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "man-hp") AND
(taxonomies.categories.nodes.apiName eq "loc-stoneridge-
mall"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_c
ategory","field":"apiname"}]
Aggregation query response

{
 "hasMore": false,
 "offset": 0,
 "count": 5,
 "limit": 5,

Chapter 14
Use REST APIs for Content Search

14-74

 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 },
 {
 "name": "HP Pavillion Keyboard",
 "links": [],
 "id": "COREF0AED9516AED4DC6A0692A696170FD57",
 "type": "ContentType2"
 },
 {
 "name": "HP Omen Keyboard",
 "links": [],
 "id": "CORE816259C0386D4704AB006B9F40D9F457",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 5
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 5
 },
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 3
 },
 {
 "categoryApiName": "ele-keyboards",
 "itemCount": 2

Chapter 14
Use REST APIs for Content Search

14-75

 }
],
 "name": "item_count_per_category"
 }
]
}

• Aggregation query (for manufacturer):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "ele-laptops") AND
(taxonomies.categories.nodes.apiName eq "loc-stoneridge-
mall"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_c
ategory","field":"apiname"}]
Aggregation query response

{
 "hasMore": false,
 "offset": 0,
 "count": 3,
 "limit": 3,
 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-stoneridge-mall",

Chapter 14
Use REST APIs for Content Search

14-76

 "itemCount": 3
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 3
 }
],
 "name": "item_count_per_category"
 }
]
}

• Aggregation query (for location):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType2" AND
(taxonomies.categories.nodes.apiName eq "ele-laptops") AND
(taxonomies.categories.nodes.apiName eq "man-
hp"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_category"
,"field":"apiname"}]
Aggregation query response

{
 "hasMore": false,
 "offset": 0,
 "count": 3,
 "limit": 3,
 "items": [
 {
 "name": "HP Elite Dragonfly",
 "links": [],
 "id": "CORE02B5199C0C154F9AB29C42F829A47F21",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite Folio",
 "links": [],
 "id": "COREAAC11256104F4D73AAF599230621A789",
 "type": "ContentType2"
 },
 {
 "name": "HP Elite X2",
 "links": [],
 "id": "COREDCF70DB8B3CA4479876D759A3B7A39AC",
 "type": "ContentType2"
 }
],
 "links": [],
 "aggregationResults": [
 {
 "itemCountPerCategory": [
 {
 "categoryApiName": "ele-laptops",
 "itemCount": 3
 },
 {

Chapter 14
Use REST APIs for Content Search

14-77

 "categoryApiName": "loc-sheraton-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "loc-stoneridge-mall",
 "itemCount": 3
 },
 {
 "categoryApiName": "man-hp",
 "itemCount": 3
 }
],
 "name": "item_count_per_category"
 }
]
}

A General Use Case
The table below includes the three taxonomies that are used in the example. It also
includes a list of items in the repository and the item categorization with taxonomies
that you can refer to:

Chapter 14
Use REST APIs for Content Search

14-78

Taxonomies Items and Item Categorization Item Count per
Category

TA1
 TA1-cat_0
 TA1-cat_0_1
 TA1-
cat_0_1_1
 TA1-
cat_0_1_1_1
 TA1-cat_0_2
 TA1-
cat_0_2_1
 TA1-
cat_0_2_1_1

TA2
 TA2-cat_0
 TA2-cat_0_1
 TA2-
cat_0_1_1
 TA2-
cat_0_1_1_1

TA3
 TA3-cat_0
 TA3-cat_0_1
 TA3-
cat_0_1_1
 TA3-
cat_0_1_1_1

All items below have the same content type,
ContentType1:

• Item1 (added to: TA1-cat_0_1_1_1)
• Item2 (added to: TA1-cat_0_1_1, TA1-

cat_0_2_1, TA2-cat_0_1_1, TA3-cat_0_1_1)
• Item3 (added to: TA3-cat_0_1_1_1)
• Item4 (added to: TA2-cat_0_1, TA3-cat_0_1)
• Item5 (added to: TA3-cat_0_1)

TA1
 TA1-cat_0 (2)
 TA1-cat_0_1
(2)
 TA1-
cat_0_1_1 (2)
 TA1-
cat_0_1_1_1 (1)
 TA1-cat_0_2
(1)
 TA1-
cat_0_2_1 (1)
 TA1-
cat_0_2_1_1 (0)

TA2
 TA2-cat_0 (2)
 TA2-cat_0_1
(2)
 TA2-
cat_0_1_1 (1)
 TA2-
cat_0_1_1_1 (0)

TA3
 TA3-cat_0 (4)
 TA3-cat_0_1
(4)
 TA3-
cat_0_1_1 (2)
 TA3-
cat_0_1_1_1 (1)

Just like in the e-commerce use case, we will use a simple search query to match all assets
for No Categories is Selected to match all assets of the type, Content Type1 in a given
repository. To make queries and API response to a search query request easier to read, all
categories in the sample taxonomy have the same API name (apiName) as the category
name. Therefore, all search query expressions and aggregations below use the apiName.
You can use the category Id instead.

No Categories is Selected

With no end-user selection made, we can obtain aggregate asset counts per category using a
search query alone.

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq
“ContentType1”)&fields=name&links=none&aggs=[{"name":"item_count_per_categor
y","field":"apiname"}

Chapter 14
Use REST APIs for Content Search

14-79

• Aggergate query:
q=<search_query>

End-user delected TA1-cat_0_1_1 plus TA1-cat_0_2_1

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta1-cat_0_1_1" OR
taxonomies.categories.nodes.apiName eq “ta1-
cat_0_2_1"))&fields=name&links=none&aggs=[{"name":"item_count_per_cate
gory","field":"apiname"}]

• Aggregation query (for TA1):
q=(repositoryId eq "<repo_ID>" AND type eq
"ContentType1"&fields=name&links=none&limit=0&aggs=[{"name":"item_coun
t_per_category","field":"apiname"}

• Aggregation query (taxonomies with no category selected):
q=<search_query>

End-user selected TA2-cat_0_1_1

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta2-
cat_0_1_1"))&fields=name&links=none&aggs=[{"name":"item_count_per_cate
gory","field":"apiname"}]

• Aggregation query (for TA2):
q=(repositoryId eq "<repo_ID>" AND type eq
"ContentType1"&fields=name&links=none&limit=0&aggs=[{"name":"item_coun
t_per_category","field":"apiname"}

• Aggregation query (taxonomies with no category selected):
q=<search_query>

End-user selected TA3-cat_0_1_1

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta3-
cat_0_1_1"))&fields=name&links=none&aggs=[{"name":"item_count_per_cate
gory","field":"apiname"}]

• Aggregation query (for TA3):
q=(repositoryId eq "<repo_ID>" AND type eq
"ContentType1"&fields=name&links=none&limit=0&aggs=[{"name":"item_coun
t_per_category","field":"apiname"}

• Aggregation query (taxonomies with no category selected):
q=<search_query>

End-user selected TA1-cat_0_1_1, TA1-cat_0_2_1 plus TA2-cat_0_1_1

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta1-cat_0_1_1" OR
taxonomies.categories.nodes.apiName eq "ta1-cat_0_2_1") AND
(taxonomies.categories.nodes.apiName eq “ta2-
cat_0_1_1”))&fields=name&links=none&aggs=[{"name":"item_count_per_cate
gory","field":"apiname"}]

Chapter 14
Use REST APIs for Content Search

14-80

• Aggregation query (for TA1):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1"
AND(taxonomies.categories.nodes.apiName eq "ta2-
cat_0_1_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_ca
tegory","field":"apiname"}]

• Aggregation query (for TA2):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1"
AND(taxonomies.categories.nodes.apiName eq "ta1-cat_0_1_1" OR
taxonomies.categories.nodes.apiName eq "ta1-
cat_0_2_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_ca
tegory","field":"apiname"}]

• Aggregation query (taxonomies with no category selected):
q=<search_query>

End-user selected TA2-cat_0_1 plus TA3-cat_0_1

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta2-cat_0_1") AND
(taxonomies.categories.nodes.apiName eq “ta3-
cat_0_1”))&fields=name&links=none&aggs=[{"name":"item_count_per_category","f
ield":"apiname"}]

• Aggregation query (for TA2):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta3-
cat_0_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_cate
gory","field":"apiname"}]

• Aggregation query (for TA3):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta2-
cat_0_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_cate
gory","field":"apiname"}]

• Aggregation query (taxonomies with no selected categories):
q=<search_query>

End-user selected TA1-cat_0_1_1, TA1-cat_0_2_1, TA2-cat_0_1_1 plus TA3-cat_0_1_1

• Search query:
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta1-cat_0_1_1" OR
taxonomies.categories.nodes.apiName eq "ta1-cat_0_2_1") AND
(taxonomies.categories.nodes.apiName eq "ta2-cat_0_1_1") AND
(taxonomies.categories.nodes.apiName eq “ta3-
cat_0_1_1”))&fields=name&links=none&aggs=[{"name":"item_count_per_category",
"field":"apiname"}]

• Aggregation query(for TA1):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta2-cat_0_1_1") AND
(taxonomies.categories.nodes.apiName eq "ta3-
cat_0_1_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_per_ca
tegory","field":"apiname"}]

• Aggregation query(for TA2):

Chapter 14
Use REST APIs for Content Search

14-81

q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta1-cat_0_1_1" OR
taxonomies.categories.nodes.apiName eq "ta1-cat_0_2_1") AND
(taxonomies.categories.nodes.apiName eq "ta3-
cat_0_1_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_
per_category","field":"apiname"}]

• Aggregation query(for TA3):
q=(repositoryId eq "<repo_ID>" AND type eq "ContentType1" AND
(taxonomies.categories.nodes.apiName eq "ta1-cat_0_1_1" OR
taxonomies.categories.nodes.apiName eq "ta1-cat_0_2_1") AND
(taxonomies.categories.nodes.apiName eq "ta2-
cat_0_1_1"))&fields=name&links=none&limit=0&aggs=[{"name":"item_count_
per_category","field":"apiname"}]

• Aggregation query (taxonomies with no selected categories):
q=<search_query>

Scroll API
Scrolling or a scroll request is the recommended way of retrieving enormous search
result sets. It is invoked by adding the boolean parameter, scroll=true, to a search
request. The result of the first scroll search request, if successful, returns a scrollId in
the response. All subsequent scroll requests of a first scroll request must supply the
returned scrollId as a parameter, scrollId=<scrollId value>. The scrollId may
change across subsequent scroll requests, so clients should always send the scrollId
returned by the previous scroll response in a session. The q parameter specified with
the first scroll request must also be specified with each subsequent scroll request. All
results matched by a scroll search will have been retrieved when a scroll request
returns 0 results or no scrollId is set on the response.

The number of results returned per page of a scroll search request is determined by
the limit parameter. The limit parameter specified for the first scroll request will stay
in effect for the life of the scroll session. As in other cases, a limit value that results in
too large of a search response will result in a HTTP status code 413.

Scrolling is an expensive operation for the search server, so scroll sessions are
aggressively cleaned up. If more than scrollTTL milliseconds elapse between
subsequent scroll requests, the scroll session is cleaned up and any further usage of
the session scrollId will result in an error. The maximum (and default) value for
scrollTTL is 30000 ms (30s). It is recommended to have shorter scrollTTL values if
feasible.

Note:

The hasMore parameter will always return false for scroll searches. Scroll
cannot be used when the returnMaster parameter is set to true.

Example of a Scroll API Session
First scroll request: /api/v1.1/items?q=(type eq "Employee" AND fields.role eq
"Senior Developer")&scroll=true&scrollTTL=5000
• Truncated first scroll response with scrollId: scrollId=abcdefghij

Chapter 14
Use REST APIs for Content Search

14-82

Subsequent scroll request: /api/v1.1/items?q=(type eq "Employee" AND fields.role eq
"Senior Developer")&scrollId=abcdefghij&scrollTTL=3000 (note scrollTTL can
change)
• Truncated subsequent scroll response with scrollId: scrollId=pqrstuvw
Subsequent scroll request: /api/v1.1/items?q=(type eq "Employee" AND fields.role eq
"Senior Developer")&scrollId=pqrstuvw&scrollTTL=3000
• Truncated final scroll response: count=0

Custom Ranking Policies
The REST API for Content Delivery, by default, applies a built-in ranking policy described
below to calculate the relevance score for items matching a search query. Oracle Content
Management allows you to override a built-in policy and control the relevance score of items
matching a search query in the REST API for Content Delivery by defining a custom ranking
policy, which contains a collection of ranking methods with configurable properties that relate
to:

• Searchable standard and custom fields on content items or attributes on digital assets

• Indexed items to ranking method matching condition

• Impact on the item relevance score impact: Score increase or decay.

• Decay function

The search in the REST API for Content Management, by default, applies a built-in ranking
policy to calculate the relevance score for items matching a search query. The use of custom
ranking policies in the management search is not supported.

The search in the REST API for Content Delivery allows you to use a custom ranking policy
as:

• Global Default: A ranking policy set as the global default overrides a built-in ranking
policy and is applied by default to calculate the relevance score for items matching a
search query.

• Channel Default : A ranking policy set as the channel default overrides a built-in ranking
policy or the global default and is applied by default to calculate the relevance score for
items matching a search query for this channel.

• rankBy parameter value: A ranking policy set as the value of the rankBy parameter on a
search query request overrides any default policy and is applied to calculate the
relevance score for items returned in the response.

Built-in Ranking Policy
The built-in ranking policy uses the following similarity ranking to calculate the relevance
score for matched items:

• Elasticsearch Relevance Score: By default items matching a search query are ranked
by the Elasticsearch similarity relevance score (the Okapi BM25 algorithm).

• Term Frequency in a Multi-Term Query: For a multi-term search query, the
Elasticsearch relevance score algorithm will take into account the term frequency (tf)
when calculating the score for items matching either type-specific searches, or default
(no type specified) searches.

Chapter 14
Use REST APIs for Content Search

14-83

https://en.wikipedia.org/wiki/Okapi_BM25

• Stemmed Matches: The scoring algorithm will apply the same rank to non-
stemmed and stemmed matches (for example, OCI compute topology and OCI
compute topologies are equivalent). Within the group of matches with the same
stem, the rank of non-stemmed matches is higher than the rank of stemmed
matches.

Custom Ranking Policies
Custom ranking policies in Oracle Content Management allow you to change
relevance scores of items matching a search query using the settings specified in the
policy, independently from the structure of the submitted search query. That is
achieved by giving you ability to define methods on a ranking policy to control:

• Matching Rule: What standard or user-defined fields on an asset type require
matching (exact term - EQ or phrase match - MT) to given values for the ranking
method to apply.

• Score Change: The impact a matching data field will have on the relevance score
of an item (boost its original score or decrease it over time).

The two types of ranking methods available are boost and pin methods. These
methods allow you to increase an item's relevance score, while decay methods
decrease the score over a period of time.

To understand how ranking policy works, consider a simple example which uses items
of the content type, automotive:

• Item 1: (name: Ferrari, description: Ferrari)

• Item 2: (name: Bugatti, description: Bugatti)

The following search queries will match and return both items, but the relevance
scores calculated by the built-in ranking policy will be different. Thus, items will be
returned in a different order with neither item potentially returned at the top by query 2.

• Query 1: q=type eq “Automotive” and (description eq “Ferrari” or name
eq “Bugatti”)

• Query 2: q=type eq “Automotive”
If you want search queries to always return items about Bugatti cars at the top
(pinned) and items about Ferrari cars among the top matching items, you can define a
custom ranking policy with two rules: boost - description (weight: 10, value: Ferrari)
and pin - name (value: Bugatti). If this policy is used, either query will consistently
return item 2 at the top and boost the relevance score of item 1 from the structure of
the query:

• Query 1 result: Item 1 (Ferrari) boosted to 10 and Item 2 (Bugatti) is pinned

• Query 2 result: Item 1 (Ferrari) boosted to 10 and Item 2 (Bugatti) is pinned

Custom Ranking Policies Lifecycle
A new ranking policy is created as a draft version, which you can promote. Promoting
a draft version of a ranking policy creates a promoted version. Users with the Content
Administrator role can set a promoted ranking policy as the global default. A manager
on a publishing channel can assign the promoted version as a channel default policy
to it. Just as the localization policy, only one ranking policy can be assigned to a
channel at a time.

Chapter 14
Use REST APIs for Content Search

14-84

To make a ranking policy available in the REST API for Content Delivery, it needs to be
published to create a published version. Content administrators can publish a ranking policy
on the ranking policies page.

The following table summarizes actions that are allowed on a ranking policy and the policy
status in Content Preview or Delivery Search API depending on the available versions of the
policy:

Available Version Promot
e

Set as Channel
Default

Set as Global
Default

Publish Unpubli
sh

Delivery
API

Draft yes no no no n/a no

Promoted n/a yes yes yes n/a no

Published n/a yes yes n/a yes active

Note:

• Draft, promoted, and published versions have the same policy descriptor which
uniquely identifies a ranking policy.

• The active status means that results matching a search query in the REST API
for Content Delivery will be ranked by relevance based on the rules defined in
the ranking policy if it is set as a global default, assigned as a channel default,
or specified in the rankBy parameter on the request URL.

Supported Ranking Methods
A custom ranking policy in Oracle Content Managementis a collection of ranking methods,
each defined to match a standard or user-defined data field on asset types and then boost or
decrease the relevance score of matching items. When a ranking policy is applied, an item
matching a search query that you submitted can meet matching rules in one method, several
methods, or none. If the item didn't match any method, its relevance score remains the same
as calculated by the built-in ranking policy (Elasticsearch), original score. If an item matches
one method, its original score is multiplied by the parameter weight value set on this method.
If the item matches more than one ranking method, its relevance score = original score *
weight1 * weight2 * ...

The following ranking methods are currently supported in Oracle Content Management for
defining custom ranking policies:

Ranking Method Method
Parameters

Data Field Type
Compatibility

Comment

Boost - Equals asset type - field
{1-n}

value {1-m}

weight

Text, Date,
Numeric

If more than one value is set for a
selected data field, OR is used in the
expression to match items for boosting.

The value of the date type is matched
within a given time interval.

Chapter 14
Use REST APIs for Content Search

14-85

Ranking Method Method
Parameters

Data Field Type
Compatibility

Comment

Boost - Phrase
Match

asset type - field
{1-n}

value {1-m}

weight

Text If more than one value is set for a
selected data field, OR is used in the
expression to match items for boosting.

A phrase value is matched anywhere in
the field data.

For example, if the value set on the
method is Italy, it will match both "Italy is
a European country" or "Rome is the
capital of Italy" phrases.

Pin - Equals asset type - field
{1-n}

value {1-m}

Text, Date,
Numeric

Weight is a server-controlled value that
is large enough to ensure pinned items
bubble up on the top.

If more than one value is set for a
selected field, OR is used in the
expression to match items for pinning.

Pin - Phrase Match asset type - field
{1-n}

value {1-m}

Text Weight is a server-controlled value that
is large enough to ensure pinned items
bubble up on the top.

If more than one value is set for a
selected field, OR is used in the
expression to match items for pinning.

Decay - Date asset type - field
{1-n}

origin

offset

scale

Date Standard fields: Only publishedDate
field or user-defined fields: Any field of
the date type.

Method decreases the existing
relevance score of an item.

Decay - Numeric asset type - field
(1-n}

origin

offset

scale

Numeric User-defined fields: Any field of the
numeric type.

Method decreases existing relevance
score of an item.

Chapter 14
Use REST APIs for Content Search

14-86

Note:

• In Typed searches, that is, for search requests that explicitly specify asset
types in the search query expression, Boost, Pin or Decay ranking methods will
use both standard and user-defined data fields on asset types to match
items for boosting, pinning, or decreasing their relevance score.

• In Untyped or Default searches, that is, for search requests that do not
specify asset types in the search query expression, Boost, Pin or Decay ranking
methods will use only standard data fields on asset types to match items for
boosting, pinning, or decreasing their relevance score.

• Multiple matching fields : If a ranking method is configured to match several
fields on an asset type, then the relevance score of the items that match
several or all fields will be a multiple of weights set on the method. For
example, if two fields in ranking method with weight 20 are matched, then the
item score will be 20 x 20 = 400.

The Boost - Equals Method

The Boost - Equals method allows you to increase the relevance score of an item that
matches the submitted search request so long as the item has the asset types set in the
method and its fields match the exact value set in the method (the EQ operator is applied for
matching the field value). The original relevance score of an item is multiplied by the weight
defined in the method.

If the item matches more than one field defined on the Boost - Equals or Boost - Phrase
Match method, its relevance score is calculated as follows:

• Item matches single field: Item score = original score * weight

• Item matches several fields: Item score = original score * weight * weight * ...

Note:

The field value of the date type on an asset matches the value set in the Boost -
Equals method within time interval from Value to Value + Offset.

Sample request

PUT /content/management/api/v1.1/search/rankingPolicies/
5A487437500042849B54FE3BA4EC80C2?q=(status%20eq%20%22draft%22)&fields=all

{
 "name": "rp1",
 "description": "",
 "apiName": "rp1",
 "entries": [
 {
 "key": {
 "name": "myBoostEquals",
 "methodType": "equal",
 "weight": 10,

Chapter 14
Use REST APIs for Content Search

14-87

 "values": [
 {
 "type": "text",
 "entries": [
 "cat"
]
 },
 {
 "type": "numeric",
 "entries": []
 },
 {
 "type": "datetime",
 "entries": [
 {
 "origin": "2022-05-10T00:00:00.000-07:00",
 "originTimeZone": "America/Los_Angeles",
 "offset": "10d"
 }
]
 }
],
 "type": "boostMethod"
 },
 "value": [
 {
 "name": "name",
 "contentType": "myType1",
 "weightMultiplier": 2,
 "type": "standardAssetField"
 },
 {
 "name": "published date",
 "contentType": "myType1",
 "weightMultiplier": 1,
 "type": "standardAssetField"
 }
]
 }
],
 "policyId": "B025517B9D47454A9311EDD3D4D92BD6"
}

The Boost - Phrase Match Method

The Boost - Phrase Match method allows you to increase the relevance score of an
item that matches the submitted search request so long as the item has the asset
types set in the method and its fields match the phrase value set in the method (the
MT operator is applied for matching the field value). The original relevance score of
the item is multiplied by the weight defined in the method.

Sample request

PUT /content/management/api/v1.1/search/rankingPolicies/
5A487437500042849B54FE3BA4EC80C2?

Chapter 14
Use REST APIs for Content Search

14-88

q=(status%20eq%20%22draft%22)&fields=all

{
 "name": "rp1",
 "description": "",
 "apiName": "rp1",
 "entries": [
 {
 "key": {
 "name": "myBoostMethod1",
 "methodType": "phraseMatch",
 "weight": 10,
 "values": [
 {
 "type": "text",
 "entries": [
 "cat"
]
 }
],
 "type": "boostMethod"
 },
 "value": [
 {
 "name": "name",
 "contentType": "myType1",
 "weightMultiplier": 2,
 "type": "standardAssetField"
 },
 {
 "weightMultiplier": 10,
 "contentType": "myType1",
 "name": "myField1",
 "type": "customAssetField",
 "id": "2332EA112CD140F7A4D6847451B1355F"
 }
]
 }
],
 "policyId": "B025517B9D47454A9311EDD3D4D92BD6"
}

The Pin - Equals Method

The Pin - Equals method allows you to set the topmost relevance to an item that matches the
submitted search request so long as the item has the asset types set in the method and its
fields match the exact value set in the method (the EQ operator is applied for matching the
field value).

If the item matches more than one field defined on the Pin - Equals or Pin - Phrase Match
method, its relevance score is calculated as follows:

• Item matches single field: Item score = original score * 5000

• Item matches several fields: Item score = original score * 5000 * 5000 * ...

Chapter 14
Use REST APIs for Content Search

14-89

Note:

The field value of the date type on an asset is matched to the value set in the
Pin - Equals method within the time interval from Value to Value + Offset.

Sample request

PUT /content/management/api/v1.1/search/rankingPolicies/
5A487437500042849B54FE3BA4EC80C2?
q=(status%20eq%20%22draft%22)&fields=all

{
 "name": "rp1",
 "description": "",
 "apiName": "rp1",
 "entries": [
 {
 "key": {
 "values": [
 {
 "type": "text"
 },
 {
 "type": "numeric"
 },
 {
 "type": "datetime",
 "entries": [
 {
 "origin": "2022-05-10T00:00:00.000-07:00",
 "originTimeZone": "America/Los_Angeles",
 "offset": "12h"
 }
]
 }
],
 "name": "myPinEquals1",
 "type": "pinMethod",
 "methodType": "equal"
 },
 "value": [
 {
 "contentType": "myType1",
 "name": "name",
 "type": "standardAssetField"
 },
 {
 "contentType": "myType1",
 "name": "published date",
 "type": "standardAssetField"
 }
]

Chapter 14
Use REST APIs for Content Search

14-90

 }
],
 "policyId": "B025517B9D47454A9311EDD3D4D92BD6"
}

The Pin - Phrase Match Method

The Pin - Phrase Match method allows you to set the topmost relevance to the item that
matches the submitted search request so long as the item has the asset types set in the
method and its fields match the phrase value set in the method (the MT operator is applied
for matching the field value).

Sample request

PUT /content/management/api/v1.1/search/rankingPolicies/
5A487437500042849B54FE3BA4EC80C2?q=(status%20eq%20%22draft%22)&fields=all

{
 "name": "rp1",
 "description": "",
 "apiName": "rp1",
 "entries": [
 {
 "key": {
 "values": [
 {
 "type": "text",
 "entries": [
 "cat",
 "black"
]
 }
],
 "name": "myPinPhraseMatch1",
 "type": "pinMethod",
 "methodType": "phraseMatch"
 },
 "value": [
 {
 "contentType": "myType1",
 "name": "description",
 "type": "standardAssetField"
 },
 {
 "contentType": "myType1",
 "name": "name",
 "type": "standardAssetField"
 },
 {
 "contentType": "myType1",
 "name": "myfield1",
 "type": "customAssetField",
 "id": "8921A6FDFD1C4C2AB966DE0BA1FDFF3D"
 }
]

Chapter 14
Use REST APIs for Content Search

14-91

 }
],
 "policyId": "B025517B9D47454A9311EDD3D4D92BD6"
}

The Decay - Date Method

The Decay - Date method allows you to decrease the relevance of an item that
matches the submitted search request so long as the item has the asset types set in
the method. The relevance score that this item has at the origin date will decrease the
further value of the date field selected on the asset type gets away from the origin.

Currently the Decay - Date or Decay - Numeric method in Oracle Content
Management does not support Gaussian, exponential, or linear decay functions that
are supported in Elasticsearch. Instead Oracle Content Management allows you to
define a step-down decay function to achieve a similar effect:

The calculated relevance score of an item with the field value matching origin +/- offset
is multiplied by the weight which is calculated by the Decay method. The relevance
score of the matching item may be boosted by a Boost ranking method. If scale = 0,
the weight drops to 0 whenever the field value is above origin + offset or below origin -
offset values. Otherwise, the weight drops to half of the decay value for the duration of
the scale value and then drops to 0.

Sample request

PUT /content/management/api/v1.1/search/rankingPolicies/
5A487437500042849B54FE3BA4EC80C2?
q=(status%20eq%20%22draft%22)&fields=all

{
 "name": "rp1",
 "description": "",
 "apiName": "rp1",
 "entries": [
 {
 "key": {
 "name": "myDecayDate",

Chapter 14
Use REST APIs for Content Search

14-92

 "type": "decayMethod",
 "origin": "2022-05-10T00:00:00.000-07:00",
 "originTimeZone": "America/Los_Angeles",
 "offset": "6h",
 "scale": "12h",
 "decay": "0.1",
 "methodType": "date"
 },
 "value": [
 {
 "contentType": "myType1",
 "name": "published date",
 "type": "standardAssetField"
 }
]
 }
],
 "policyId": "B025517B9D47454A9311EDD3D4D92BD6"
}

The Decay - Numeric Method

The Decay - Numeric method allows you to decrease the relevance of the item that matches
the submitted search request so long as this item has the asset type set in the method. The
relevance score that this item has initially will decrease the further value of the numeric field
selected on the asset type gets away from the origin value.

The Decay - Numeric method uses the same step-down decay function as the Decay - Date
method.

Sample request

PUT /content/management/api/v1.1/search/rankingPolicies/
5A487437500042849B54FE3BA4EC80C2?q=(status%20eq%20%22draft%22)&fields=all

{
 "name": "rp1",
 "description": "",
 "apiName": "rp1",
 "entries": [
 {
 "key": {
 "name": "myDecayNumeric",
 "type": "decayMethod",
 "origin": "10",
 "offset": "2",
 "scale": "5",
 "decay": "0.1",
 "methodType": "numeric"
 },
 "value": [
 {
 "contentType": "myType1",
 "name": "mynumberfield1",
 "type": "customAssetField",

Chapter 14
Use REST APIs for Content Search

14-93

 "id": "F0C4FA257D5B4C6C81656837D867B29E"
 }
]
 }
],
 "policyId": "B025517B9D47454A9311EDD3D4D92BD6"
}

Use REST APIs for Extended Workflow
The integration of Oracle Content Management (OCM) with Oracle Integration Cloud
(OIC) – Process Automation Integration lets users manage business processes, such
as content workflows to route content for approval or review. Oracle Content
Management provides a quick start application package with several multistep
processes that you can deploy to your OIC instance. You can use the processes for
review and approvals of assets that you manage in the OCM asset repositories.

One of the processes, one-step content approval and publish with extended workflow,
now includes an upgrade that allows users to track the asset publishing status after an
asset is approved or rejected. When the asset is successfully published to its target
channel, the workflow instance is complete when the process notifies OCM that the
workflow is finished. Otherwise, the asset remains in the workflow, and users will be
notified of any publishing errors and asked to take actions to complete the workflow.

Note:

If an asset has dependencies, the parent asset must first complete the
workflow before the child asset can be submitted to complete the workflow.

Complete Workflow Instance API

The image below shows that the new API CompleteWorkflowInstance provides users
the ability to complete the workflow instance. To review the API details, see Performs
Bulk Items Operations in the API reference guide.

Chapter 14
Use REST APIs for Extended Workflow

14-94

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/op-management-api-v1.1-bulkitemsoperations-post.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-manage-content/op-management-api-v1.1-bulkitemsoperations-post.html

Search In-Workflow Assets

Filtering assets that are In Workflow is enabled by the search API: GET /content/
management/api/v1.1/items, which has introduced the new workflowInstances node in the
search API response, stored as nested objects.

To filter the assets with the search API, use the workflow name or workflow id. For example,
you can list all the assets that are In Workflow with the process name OCEOneStepProcess.
Currently the search API returns only the latest workflow to which the asset is submitted.

Chapter 14
Use REST APIs for Extended Workflow

14-95

Create and Use Applinks for File and Folder Access
You can control access to files and folders in Oracle Content Management with applink
endpoints of the REST API for Documents.

The following endpoints let you control user access to files and folders:

• Create File Applink

• Create Folder Applink

• Refresh Applink Token

To create an applink for a user to access a file or folder, you must be the owner or
have the manager role. Either of these roles gives you admin privileges for the file or
folder.

When you create a file or folder applink for a user, you can grant the user any of these
roles:

• Viewer: Viewers can look at files and folders, but can't change things.

• Downloader: Downloaders can also download files and save them to their own
computers.

Chapter 14
Create and Use Applinks for File and Folder Access

14-96

• Contributor: Contributors can also modify files, update files, upload new files, and delete
files.

The response from the Create File Applink or Create Folder Applink REST API includes an
applink ID, access token, and refresh token. For example:

{

"appLinkID":"LDhsn4VPTsnDnKpKLFZTCkjaPkYbMC6-3taYSdJAazckhezJ2HlSjs2THOou6cCA
vxcRnw5gpXcU7pIRkCmWN8kEToJHFwwZ-ptWvPGhJaiirl9baL9mka14WnwpL6auOO40-
gFMPvkPv23OtMnj2W3A==",
 "accessToken":"GYrSN5zuj0kOTE4k_60bKvdkxx2-
ARA546A2T77GtEOgoPZPGgKk126OeCn1w-Ij",
 "appLinkUrl":"http://www.example.com/documents/embed/link/app/
LDhsn4VPTsnDnKpKLFZTCkjaPkYbMC6-3taYSdJAazckhezJ2HlSjs2THOou6cCAvxcRnw5gpXcU7
pIRkCmWN8kEToJHFwwZ-ptWvPGhJaiirl9baL9mka14WnwpL6auOO40-
gFMPvkPv23OtMnj2W3A==/fileview/DFD11F62E911327CB1F160F6T0000000000100000001",

"refreshToken":"Yc_b_dE8V03eDTCmcmC1gi_y3LVJTPiZOSQDhuS_VWim9E_FRpLQGtEhgxCNb
KTG",
 "role":"manager",
 "id":"DFD11F62E911327CB1F160F6T0000000000100000001",
 "type":"applink",
 "errorCode":"0"
}

The user needs to pass the applink ID and access token parameters in the request header
for each REST API operating on the folder or file or on any child folder or file. The response
does not provide a link to the file or folder because headers cannot be represented in a link.

The access token expires after 15 minutes. You can refresh the access token any number of
times within the time period defined by a refreshed token (24 hours). Use the refresh token to
request a new access token when the current access token expires. The refreshed token
expires after 24 hours.

For more information about the applink REST APIs, see "Applinks" in REST API for
Documents.

Provide Access to Files and Folders with Public Links
To give users access to files and folders, you can use public links to share the files and
folders with assigned users.

Note:

Public links aren't supported in private instances.

You can create multiple, named links for the same file or folder resource with different access
roles, expiration dates, and so on. You can also edit some of the information for an existing
public link.

To provide access to a files and folders with a public links:

Chapter 14
Provide Access to Files and Folders with Public Links

14-97

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html

1. Use the Create File Public Link and Create Folder Public link REST APIs to create
the public links you need.

2. If you want to edit the available public link parameters, use Edit Public Link REST
API.

3. Use the Get File Public Link or Get Folder Public Link REST API to get information
about the pubic links available for a file or folder.

For example, the follow Get Folder Public Link request specifies the folder ID
F4E111D0D0645CD368453C2BT0000000000100000001:

GET . . ./publiclinks/folder/
F4E111D0D0645CD368453C2BT0000000000100000001

If the HTTP Status Code is 200 and one or more public links are available for the
specified folder, the response returns information about public links defined for the
folder:

{
 "count": "2",
 "errorCode": "0",
 "id": "F4E111D0D0645CD368453C2BT0000000000100000001",
 "type": "folder",
 "items": [
 {
 "type": "publiclink",
 "linkID":
"LF31C09DE51854DBBDA37A90T0000000000100000001",
 "linkName": "hasSecondLink",
 "ownedBy": {
 "displayName": "User AA",
 "loginName": "userAALoginName",
 "id": "U0EAA20910FAF3052ACB79E4T00000000001",
 "type": "user"
 },
 "role": "viewer",
 "assignedUsers": "@everybody",
 "createdTime": "2015-06-02T19:30:37Z",
 "lastModifiedTime": "2015-06-02T19:30:37Z"
 },
 {
 "type": "publiclink",
 "linkID":
"LF5E5F73A444FFB8924EF8ACT0000000000100000001",
 "linkName": "hasFirstLink",
 "ownedBy": {
 "displayName": "User AA",
 "loginName": "userAALoginName",
 "id": "U0EAA20910FAF3052ACB79E4T00000000001",
 "type": "user"
 },
 "role": "contributor",
 "assignedUsers": "@serviceinstance",
 "createdTime": "2015-06-10T16:15:37Z",
 "lastModifiedTime": "2015-06-10T16:15:37Z"

Chapter 14
Provide Access to Files and Folders with Public Links

14-98

 }
]
}

This response shows that two public links are available, one for users who are assigned
the viewer role for the folder and one for users who are assigned the contributor role. You
use information from the response in API headers to share the folder with the assigned
users (assignedUsers value) specified in the public link.

In the example, the second link grants contributor-level access to all account holders for
the Content Management instance that hosts the specified folder.

For example:

@serviceinstance/documents/link/
LF5E5F73A444FFB8924EF8ACT0000000000100000001/folder/
F4E111D0D0645CD368453C2BT0000000000100000001

4. To share a file or folder, use the information from the response in the headers of other
APIs, like Share Folder or Collection.

A web client can use a URL in one of the following formats to allow file or folder visualization
through a public link:

domain URL/documents/link/linkID/fileview/file ID

domain URL/documents/link/linkID/folder/folder ID

For more information about public links, see Publiclinks Resource or "Publiclinks" in REST
API for Documents.

Upload a REST API Swagger File into Mobile Cloud Service
In Oracle Mobile Cloud Service (MCS), you can create a REST connector API to connect to
the REST API for Documents.

If you provide a Swagger descriptor URL, the REST Connector API wizard can examine the
descriptive metadata and obtain resources and fields from it.

Only Swagger metadata in JSON format is currently supported.

A REST connector API is a configuration for communicating with a specific external service to
send and receive data. REST connector APIs give you a standard way to connect a mobile
app to existing REST services and at the same time benefit from the Oracle Mobile Cloud
Service's built-in security, diagnostics, and analytics features.

The connector API communicates and passes information between the client and the server
using the HTTPS protocol. The information passed can be in the form of XML or JSON
(JavaScript Object Notation). REST doesn’t contain a messaging layer. It uses a set of rules
to create a stateless service.

The REST Connector API wizard walks you through creating REST connector APIs, from
specifying a remote service and setting security policies to testing your endpoints.
Additionally, the wizard supports Swagger. When you provide a Swagger descriptor URL, the
wizard introspects the endpoints available from that file. The available resources are
identified and displayed. You simply select the resources of the external service.

Chapter 14
Upload a REST API Swagger File into Mobile Cloud Service

14-99

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-documents/index.html

Only standard internet access ports 80 and 443 are supported. Connection to a
service can't be made using a custom port.

Use the REST Connector API wizard to quickly configure your connector API by
providing a name and description, specifying timeout settings, adding rules, setting a
security policy, and testing it.

Creating a connection to an existing REST service can be a simple two-step operation:

1. Name your REST connector API.

2. Provide the URL to the external service.

In the REST Connector API wizard, on the page where the you would provide the
URL to the Swagger file, there’s a link to the internal Oracle API catalog. You can
get the Swagger URL from there and paste it in the field provided for the
descriptor.

You have the option of applying rules to form specific requests or responses for the
data that you want to access. In addition, you have the ability to configure client-side
security policies for the service that you’re accessing and test and check the results of
your connection.

As soon as it’s created, your REST connector API is listed on the Connectors page.
When at least one REST connector API exists, you’ll be taken directly to the
Connectors page when you click Connectors from the side menu. From the catalog,
you can select the REST connector API and edit it, publish it, create a new version or
update an existing version, deploy it if it has a Published state, or move it to the trash.

For more information, see "REST Connector APIs" in Developing Applications with
Oracle Mobile Cloud, Enterprise.

Chapter 14
Upload a REST API Swagger File into Mobile Cloud Service

14-100

https://docs.oracle.com/javacomponents/jp/advanced-management-console/paas/mobile-suite/develop/rest-connector-apis.html

15
Oracle Content Management APIs

The Oracle Content Management APIs allow you to work with functionalities in site building
and embed user interface features of Oracle Content Management.

• Embed UI API V2

• Site Compile API

• Sites Component API

• Sites Rendering API

Embed UI API V2
The Embed UI API V2 for Oracle Content Management is a JavaScript API that enables you
to embed the Oracle Content Management web user interface into your own web applications
using an HTML inline frame (iframe tag). The JavaScript API simplifies the creation of the
iframe element and manages communication with the code running in the frame. The
embedded web interface can include asset and document lists, conversations, site content,
search results, and other Oracle Content Management features.

Site Compile API
The Site Compile API for Oracle Content Management allows you to compile sites, which
creates static, server-side rendered HTML files for all pages in a site.

Sites Component API
The Sites Component API (SCSComponentAPI) is an environment agnostic object present
on all Oracle Content Management web pages and during Site Compilation. It is primarily
responsible for providing information about the site to allow developers to create HTML for
components that can be inserted into the page.

Sites Rendering API
The Sites Rendering API (SCSRenderAPI) is a window-global object present on all Oracle
Content Management web pages. It is primarily responsible for rendering the slots and
components of the page, and it provides an interface for JavaScript code present on theme
layouts. The runtime SCSRenderAPI renders the view and preview display modes. The
design time SCSRenderAPI renders navigate, edit, and annotation display modes.

15-1

https://docs.oracle.com/pls/topic/lookup?ctx=cloud&id=embed-ui-api-v2
https://docs.oracle.com/en/cloud/paas/content-cloud/site-compile-api/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/sites-component-api/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/sites-rendering-api/index.html

16
Oracle Content Management SDKs

Oracle Content Management provides software development kits (SDKs) that help you
integrate Oracle Content Management functionality and simplify your application
development:

• Content SDK for JavaScript

• Content SDK for Java

• Content SDK for Swift

• Sites SDK

• Translation Connector SDK

Content SDK for JavaScript
The Content SDK for Oracle Content Management is a light-weight JavaScript wrapper that
interacts with the Content REST APIs.

This read-only SDK retrieves structured content, digital assets, and content layouts that are
managed in Oracle Content Management. The SDK can be used in web browsers or NodeJS
projects.

The Content SDK for JavaScript consists of three main modules:

• ContentSDK: The main entry-point object. The ContentSDK object lets you create client
objects to access content based on your requirements.

• ContentDeliveryClient : A client object that is set up to access published content items
and digital assets.

• ContentPreviewClient : A client object that is set up to access content types, draft
content items, and draft digital assets.

The Content SDK for JavaScript is available as an Oracle open-source project on GitHub.

The reference guide can be found here, Content SDK for JavaScript.

Content SDK for Java
Oracle Content Management provides a Content SDK for Java/Android. The read-only SDK
is a package of libraries for retrieving published content items, digital assets, and content
layouts that are managed in Oracle Content Management.

The SDK is a light-weight Android binding that interacts with the REST API for Content
Delivery. The SDK can easily be integrated with any third-party Android mobile application.
The SDK lets you fetch content from the server on the fly, without the need for rebuilding the
app to modify content. The SDK also provides a wide range of advanced utilities and features
such as response caching, a search request builder, and request/response modeling.

The Content SDK for Java is available as an Oracle open-source project on GitHub.

16-1

https://github.com/oracle/content-management-sdk
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-sdk-content-delivery
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
https://github.com/oracle-samples/content-management-java

The reference guide can be found here, Content SDK for Java/Android.

Note:

The SDK will work in stand-alone Java applications as it does not contain
any direct dependencies on the Android SDK; however, most examples are
shown as they would be coded in an Android application as it is assumed
that is the primary target platform. This SDK will also work for Android apps
written in Kotlin.

Content SDK for Swift
Oracle Content Management provides a Content SDK for Swift, which is a powerful
and intuitive programming language for iOS, iPadOS, macOS, tvOS, and watchOS.
The read-only SDK is a package of libraries for retrieving published content items,
digital assets, and content layouts that are managed in Oracle Content Management.

The SDK is a light-weight iOS binding that interacts with the REST API for Content
Delivery, and can be easily integrated with any third-party iOS mobile application. The
SDK lets you fetch content from the server on the fly, without the need for rebuilding
the app to modify content. The SDK also provides a wide range of advanced utilities
and features such as response caching, a search request builder, and request/
response modeling. There are two main libraries:

• OracleContentCore, which provides base functionality, including network
transport capabilities, that’s shared and required by multiple Oracle Content
libraries.

• OracleContentDelivery, which provides data models and APIs for consuming
content from Oracle Content Management.

The Content SDK for Swift is available as an Oracle open-source project on GitHub.

The reference guides can be found here:

• Content SDK for Swift/iOS (Core)

• Content SDK for Swift/iOS (Delivery)

Sites SDK
The Sites SDK for Oracle Content Management is a JavaScript library that provides a
set of functions which enable components to have a more integrated experience with
Oracle Content Management.

The Sites SDK is available for download from the Oracle Content Management server:

http://{server}/_sitesclouddelivery/renderer/app/sdk/js/sites.min.js

Translation Connector SDK
The Translation Connector SDK for Oracle Content Management is a sample NodeJS
implementation of the Translation Connector REST API. The sample accepts an

Chapter 16
Content SDK for Swift

16-2

https://docs.oracle.com/en/cloud/paas/content-cloud/content-sdk-java/index.html
https://developer.apple.com/swift/
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=cec-rest-api-content-delivery
https://github.com/oracle-samples/content-management-swift
https://docs.oracle.com/en/cloud/paas/content-cloud/content-sdk-swift/core/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/content-sdk-swift/delivery/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/sites-sdk/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/solutions/overview-translation-connector-framework.html#GUID-D01EE067-5EE3-454F-ABA1-FB1E76B824B7

Oracle Content Management translation job zip file, translates all the resources in the file,
and returns a new zip file containing all the translations.

The Translation Connector SDK is part of Content Toolkit, which is available on GitHub.

The reference guide can be found here, Translation Connector SDK.

Chapter 16
Translation Connector SDK

16-3

https://github.com/oracle/content-and-experience-toolkit
https://docs.oracle.com/en/cloud/paas/content-cloud/translation-connector-sdk/

17
GraphQL Support in Oracle Content
Management

Oracle Content Management includes support for GraphQL for all published content and all
asset types. Developers can inspect the schema, build queries, and invoke them from clients
alongside other delivery APIs.

GraphQL is a well-known query language for accessing content that is focused on fetching
only the content that clients request and nothing more. GraphQL is designed to make APIs
flexible and developer-friendly. To support this flexibility and power, GraphQL includes
complete and inspectable schema that developers can build queries against in an intuitive
way. For more information, visit https://graphql.org/ and https://spec.graphql.org/
October2021/

The following sections describe how to work with GraphQL in Oracle Content Management:

• Get Started with GraphQL

• GraphQL Schema

• GraphQL Queries

• GraphQL Support for Content Preview

• GraphQL Samples

Get Started with GraphQL
The quickest way to get started is by exploring schema and trying a few queries. Oracle
Content Management includes a GraphQL IDE that helps you explore schema and run
queries.

Explore Schema

The GraphQL IDE is available at http://your_instance/content/published/api/v1.1/graphql/
explorer.

In the Documentation Explorer (top right), search for an asset type by name to view the
schema for that type. The image below shows an asset type named PressRelease. Every
asset type in Oracle Content Management is represented by a GraphQL type of the same
name (applying some helpful naming convention conversions). Every field in the asset type is
represented by a GraphQL field with an equivalent data type.

17-1

https://graphql.org/
https://spec.graphql.org/October2021/
https://spec.graphql.org/October2021/

View the details of related types by clicking on the type's name. For example, all user
defined fields of PressRelease are in the pressReleaseFields type (the last entry in the
schema shown above). The image below shows the details you see after clicking
pressReleaseFields.

Try Some Queries

GraphQL provides access to content through queries. Use the queries in this section,
in GraphQL Queries, and in GraphQL Samples as examples.

To perform a content query, you need the IDs (or slugs) of a few published content
items and the channelToken of the publishing channel. You type your query in the left

panel, then click .

In the following example, we run a query with these parameters:

• Asset type: PressRelease

• Content item ID: CORE1FADA80EEACE4B4A84B76C07A931B317

• Publishing channel token: 573ae0bcb95347d283cdbea8a4d29641

{
 getPressRelease(id: "CORE1FADA80EEACE4B4A84B76C07A931B317",
 channelToken: "573ae0bcb95347d283cdbea8a4d29641") {
 id
 name
 description
 }
}

After running the query, you see the following.

Chapter 17
Get Started with GraphQL

17-2

You can include additional fields in your query, such as user defined fields, references to
other assets, and so on. The IDE helps you along in your query by automatically filling in field
names.

GraphQL Schema
GraphQL queries work against a schema or data model of the content. With Oracle Content
Management, you don't need to create GraphQL schemas; every asset type in Oracle
Content Management is automatically represented in the schema. The GraphQL type names
are based on the API names of the asset types in Oracle Content Management, with prefixes
where needed to avoid conflicts and collisions with reserved words in GraphQL.

Let's examine the schema for our PressRelease asset type in detail.

Types, Unions, and Interfaces

As we saw previously, the PressRelease asset type is represented by two GraphQL types—
pressRelease and pressReleaseFields. The pressRelease type represents the core structure
of the PressRelease asset type, including standard fields such as id, name, and description.
The pressReleaseFields type, referenced in the pressRelease fields field, includes all user-
defined fields. This structure mirrors how REST APIs express the field data.

In addition to the user-defined fields (such as title and abstract), the pressReleaseFields type
includes the associated data types (see the mapping below). If the fields are set as required
in the asset type, the GraphQL schema shows these fields as required (for example title:

Chapter 17
GraphQL Schema

17-3

String!). If the fields are reference fields (Reference or Media), the GraphQL schema
references the target's core asset type. For example, the author field references the
pressReleaseAuthor asset type.

Reference fields in Oracle Content Management can accept more than one type. In
such a scenario, a GraphQL union type is defined to represent such references. For
example, the masthead field is declared with unionAllMediaTypes.

Notice that the pressRelease type implements an item; this is an interface item. The
interface item (shown below) is the base for all core asset types in GraphQL. It
includes access to taxonomies (taxonomies field) and translations (variation and
variations fields). We'll discuss this more later.

The table below shows the item interface fields.

Chapter 17
GraphQL Schema

17-4

Schema item

id: ID!

name: String!

type: String!

typeCategory: String

slug: String

language: String

translatable: Boolean!

description: String

createdDate: DateTime!

updatedDate: DateTime!

variation(variationType: String!, variationName: String): item

variations(variationType: String!): [item]

taxonomies: [taxonomy]

Data Types

Oracle Content Management data types are mapped to equivalent GraphQL types, native
types where appropriate and scalars when needed. DateTime and JSON are scalars included
automatically in the schema.

Oracle Content Management Data Type GraphQL Field Type

Boolean Boolean

Date DateTime

Decimal Float

JSON JSON

Large Text String

Media target asset type or union

Number Int

Reference target asset type or union

Text String

In addition to these data types, the Oracle Content Management ID for each asset is mapped
to the ID field type in GraphQL.

GraphQL Queries
Oracle Content Management automatically generates queries for accessing assets. There is
a generic item query (getItem(..)), and each core asset type gets a corresponding query (for
example, getPressRelease(..)).

As previously mentioned, you type your query in the left panel, then click The IDE will
help you write your query, but here is the basic format you'll use to get an item, replacing the
text in italics with the appropriate values. You must include a channelToken, either as an

Chapter 17
GraphQL Queries

17-5

argument in the query or as a header in the HTTP request. You must include either the
ID or slug of the asset.

{
 getItem(channelToken: channel_token, id: ID, slug: slug): item
}

or

{
 getPressRelease(channelToken: channel_token, id: ID, slug: slug):
pressRelease
}

In addition to queries that fetch a single asset, GraphQL also supports fetching many
assets together, optionally based on a filtering criteria and sort order. In order to do
that an out of the box query is included in the schema.

{
 getItems(channelToken: String,
filter: standardFilter,
query: queryFilter,
sort: [standardSort],
limit: int, offset: int) : itemCollection
}

A few standard types are introduced to support this functionality:

• standardFilter offers support for building filtering criteria for assets.

• queryFilter supports searching across many fields.

• standardSort specifies the sort order results based on field values.

• limit and offset provides means for client to paginate results.

The results of this query is itself a type that is a collection of other items,
itemCollection, which in turn has an items array, along with pagination details.

The standardFilter type is defined in the schema as an input type.

Chapter 17
GraphQL Queries

17-6

The table below shows the standardFilter fields.

item standardFilter

id: idFilter

name: stringFilter

description: stringFilter

type: stringFilter

typeCategory: stringFilter

categories: assetCategoryFilter

slug: stringFilter

language: stringFilter

translatable: booleanFilter

createdDate: dateTimeFilter

updatedDate: dateTimeFilter

AND: [standardFilter]

OR: [standardFilter]

Chapter 17
GraphQL Queries

17-7

item standardFilter

NOT: standardFilter

Field names in this type are the same the names of the standard fields in Oracle
Content Management for the item. Values accepted for these fields are themselves an
input type, such as stringFilter, idFilter and others. These input types are specific to the
underlying data type of the field, which represents a tuple of operation and value. The
stringFilter type is expanded below to show the shape of this tuple.

With these data-type-specific input fields, a query can include only valid criteria for the
data type. Please see GraphQL data types and available operations table for details.

In addition to the generic item query (getItems(..)) which uses the standardFilter
type, GraphQL also supports type-specific queries with the ability to specify type-
specific fields. To do this, for every asset type defined in Oracle Content Management,
an accompanying type-specific filter is included. Continuing with the example of a
PressRelease asset type, the filter for that is expressed as follows:

Chapter 17
GraphQL Queries

17-8

Note that all fields present in the standardFilter type are available in the
pressReleaseFilter type as well. This means, any query that is possible with the
standardFilter type can also be built with the type-specific filter, but you can specify user-
defined, field-specific filters as well. As with the standardFilter type, type-specific filters can
be combined using AND, OR, and NOT.

Also note that type-specific fields include a field called fields that references another input
type listing all user defined fields.

In addition to retrieving item content, the GraphQL schema also supports retrieving published
taxonomy information using the following queries.

{
 getTaxonomy(channelToken: String, id: ID): taxonomy
}

and

{
 getTaxonomies(channelToken: String, sort: [taxonomySort]) :

Chapter 17
GraphQL Queries

17-9

taxonomyCollection
}

Categories can be fetched either from a taxonomy or directly, using the following
queries.

{
 getCategory(id: ID, taxonomyId: ID, channelToken: String, apiName:
String): category
}

{
 getCategories(id: ID, taxonomyId: ID, channelToken: String, limit:
int, offset: int): categoryCollection
}

Examples

Retrieve Assets: Filter and Sort Assets by Standard Fields

Retrieving assets by filtering using standard fields (name, id, description, type, and
so on) is accomplished by the use of standardFilter. For example, retrieving assets
of a specific type is accomplished by standardFilter using criteria based on the type
field’s value.

{ getItems(channelToken: "573ae0bcb95347d283cdbea8a4d29641", filter: {type: {op:
EQUALS, value: "MyType"}}) { totalResults items { id name description } }}

You could just as easily retrieve assets of more than one type by creating an OR
condition in the standardFilter.

{
 getItems(channelToken: "573ae0bcb95347d283cdbea8a4d29641",
 filter: {
 OR: [
 {type: {op: EQUALS, value: "myType1"}},
 {type: {op: EQUALS, value: "myType2"}}
] }
)

 {
 totalResults
 items {
 id
 name
 description
 }

Note that filtering is possible on any standard fields present in the Item interface. Each
field offers various operations (such as EQUALS and NOT_EQUALS) depending on
the data type. See the following table for available operations for each data type.

Chapter 17
GraphQL Queries

17-10

In addition to filtering, clients can specify sorting criteria for the query. The following example
sorts the results by the name field’s value.

{
 getItems(channelToken: "573ae0bcb95347d283cdbea8a4d29641",
 filter: {type: {op: EQUALS, value: "MyType"}}
 sort: {name :DESC}
) {
 totalResults
 items {
 id
 name
 description
 }
 }
}

In addition to the filtering and sorting, clients can specify pagination instructions by using
limit and offset. The following example shows how a client can fetch up to 10 results (limit)
after the first 20 (offset).

{
 getItems(channelToken: "573ae0bcb95347d283cdbea8a4d29641",
 filter: {type: {op: EQUALS, value: "myType"}}
 sort: {name :DESC}
 limit: 10
 offset: 20
) {
 totalResults
 count
 items {
 id
 name
 description
 }
 }
}

Retrieving Assets of a Specific Type by Specifying a Type-Specific Filter

The filtering criteria in the following example includes a user-defined field title and queries for
all PressRelease assets that have Oracle in the title field.

{
 getPressReleaseCollection(channelToken:
"573ae0bcb95347d283cdbea8a4d29641",
 filter: {fields: {title: {op: CONTAINS, value: "Oracle"}}}) {
 items {
 name
 id
 }
 }
}

Chapter 17
GraphQL Queries

17-11

As with any filters, type-specific filters can be nested.

{
 getPressReleaseCollection(channelToken:
"573ae0bcb95347d283cdbea8a4d29641",
 filter: {fields: {title: {op: CONTAINS, value: "Oracle"}}, AND:
{language: {op: EQUALS, value: "en-US"}}}) {
 items {
 name
 id
 language
 fields {
 title
 }
 }
 }
}

Retrieve Taxonomy and Category Information

Just as in a single asset retrieval, taxonomy can be retrieved using getTaxonomy. The
following example shows how a published taxonomy, along with the first 3 levels of
category information, can retrieved.

{
 getTaxonomy(channelToken: "573ae0bcb95347d283cdbea8a4d29641", id:
"F95CD0EB0E02427C9A3B7F1B8F33645C") {
 id
 name
 categories {
 id
 name
 children {
 id
 name
 children {
 id
 name
 }
 }
 }
 }
}

Likewise, it is possible to retrieve every published taxonomy by using getTaxonomies.
The following example shows how to get every published taxonomy with first 3 levels
of categories under each of them.

{
 getTaxonomies(channelToken: "573ae0bcb95347d283cdbea8a4d29641") {
 taxonomies {
 id
 name
 categories {

Chapter 17
GraphQL Queries

17-12

 id
 name
 children {
 id
 name
 children {
 id
 name
 }
 }
 }
 }
 }
}

Categories can themselves be listed as well as fetched by their id/apiName. The following
example shows how to fetch a category by apiName and its children two levels down.

{
getCategory(channelToken:"573ae0bcb95347d283cdbea8a4d29641", taxonomyId:
"F95CD0EB0E02427C9A3B7F1B8F33645C" apiName:"hk-p")
 {
 name
 id
 apiName
 children {
 name
 id
 apiName
 }
 }
}

GraphQL Data Types and Available
Operations

Values

String EQUALS

NOT_EQUALS

CONTAINS

NOT_CONTAINS

STARTS_WITH

MATCH

SIMILAR

ID IS

DateTime EQUALS

NOT_EQUALS

Chapter 17
GraphQL Queries

17-13

GraphQL Data Types and Available
Operations

Values

BEFORE

AFTER

BEFORE_OR_EQUAL

AFTER_OR_EQUAL

Boolean (no operation, just true/false)

Int and Float EQUALS, NOT_EQUALS,

GREATER_THAN

GraphQL Support for Content Preview
GraphQL supports querying unpublished content similar to Content Preview REST
APIs. See REST API for Content Preview.

Content that is published to a channel or targeted to a channel is available through
Content Preview API in GraphQL. GraphQL preview provides access to the latest
version of the asset.

In order to access assets in the preview context, the GraphQL endpoint is at http://
user_instance/content/preview/api/v1.1/graphql and the GraphQL IDE is
available at http://user_instance/content/preview/api/v1.1/graphql/explorer.

Previewing assets in GraphQL requires user authentication. See Authorization in
REST API for Content Preview.

All the GraphQL capabilities (queries and schema) available for published assets are
also available in preview.

GraphQL Samples
Retrieving An Asset's Data Using ID or Slug

The following query retrieves an asset's data using the asset's ID.

{
 getPressRelease(channelToken: "573ae0bcb95347d283cdbea8a4d29641",
id: "CORE1FADA80EEACE4B4A84B76C07A931B317")
 {
 id
 fields {
 title
 abstract
 body
 }

Chapter 17
GraphQL Support for Content Preview

17-14

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-preview/index.html
https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-content-preview/Authorization.html

 }
}

The following query produces identical results to the one above, using the slug instead of the
ID.

{
 getPressRelease(channelToken: "573ae0bcb95347d283cdbea8a4d29641", slug:
"bed-bath-beyond-selects-oracle-to-modernize-enterprise")
 {
 id
 fields {
 title
 abstract
 body
 }
 }
}

Retrieving a Referenced Asset's Data

The following query retrieves the referenced author type's fields along with the pressRelease
fields.

{
 getPressRelease(channelToken: "573ae0bcb95347d283cdbea8a4d29641", slug:
"bed-bath-beyond-selects-oracle-to-modernize-enterprise") {
 id
 fields {
 title
 abstract
 body
 author {
 fields {
 firstname
 lastname
 bio
 }
 }
 }
 }
}

Retrieving Renditions of Digital Assets

An out-of-the-box type called rendition is included in the schema to represent various media
renditions. It provides easy access to URLs of the renditions so you can easily include them
in your code. For example, the following query returns a large rendition of an image.

{
 getPressRelease(channelToken: "573ae0bcb95347d283cdbea8a4d29641", slug:
"bed-bath-beyond-selects-oracle-to-modernize-enterprise") {
 id
 fields {

Chapter 17
GraphQL Samples

17-15

 title
 abstract
 body
 masthead {
 ...headerImage
 }
 }
 }
}
 fragment headerImage on image {
 id
 fields {
 rendition(name: "Large", format: "jpg") {
 file {
 url
 }
 }
 }
}

Instead of retrieving a specific rendition, you can retrieve a list of renditions (with both
jpg and webp formats) with the renditions parameter.

{
 getPressRelease(channelToken: "573ae0bcb95347d283cdbea8a4d29641",
slug: "bed-bath-beyond-selects-oracle-to-modernize-enterprise") {
 id
 fields {
 title
 abstract
 body
 masthead {
 ...headerImages
 }
 }
 }
}
 fragment headerImages on image {
 id
 fields {
 renditions {
 file {
 url
 }
 }
 }
}

Chapter 17
GraphQL Samples

17-16

18
Use Webhooks

Oracle Content Management provides incoming webhooks you can use to receive event
notifications from external applications.

You can also use outgoing webhooks to automatically push notifications of asset publishing,
asset lifecycle, site publishing, prerendering, and scheduled jobs events to other applications.

The following topics describe how to use webhooks:

• Outgoing Webhooks

• Incoming Webhooks

Outgoing Webhooks
You can use outgoing webhook endpoints for push notifications of asset publishing, asset
lifecycle, site publishing, prerendering, and scheduled jobs events.

Configure Outgoing Webhooks
You can use outgoing webhooks to have Oracle Content Management automatically post
notifications based on asset and site events.

For example, you might want to post a notification to an application when new content is
published, so that the application can consume the new content.

To create an outgoing webhook:

1. After you sign in to the Oracle Content Management web application as an administrator,
click Integrations in the Administration area of the navigation menu on the left.

2. In the Integrations menu, click Webhooks.

3. Click Create.

4. Select the type of webhook you want to create:

• Asset Lifecycle Webhook: Receive push notifications about asset lifecycle changes
in a repository.

• Asset Publishing Webhook: Receive push notifications about assets published to a
channel or unpublished from a channel.

• Site Publishing Webhook: Receive push notifications about site publishing.

• Prerender Page Refresh Webhook: Receive push notifications about the need to
render and cache a site detail page.

• Scheduled Jobs Webhook: Receive push notifications about publishing jobs
scheduled in a repository.

5. Enter a name and description for the webhook. This name appears as a heading for the
posted conversation message.

6. Enable the webhook.

18-1

7. Provide information for webhook monitoring:

• If you're creating an asset lifecycle webhook, select the repository you want to
monitor for asset events. You can filter the notifications by Asset Types, which
applies only to events published for content items or digital assets of chosen
types.

• If you're creating an asset publishing webhook, select the publishing channels
you want to monitor for asset publishing events.

• If you're creating a site publishing webhook, specify the name of the site you
want to monitor for site events.

• If you're creating a prerender webhook, notify Prerender about the need to
render and cache a Detail page.

• If you're creating a scheduled jobs webhook, select the repository you want to
monitor for scheduled jobs events.

8. Select the events you want to generate notifications.

9. Select whether you want brief or detailed information about each event.

• For asset lifecycle webhooks, brief notifications include who triggered event,
what was the event, what item was involved with the event, in which repository
the event occurred, and when the event occurred. Detailed notifications
include the same information listed in brief plus a list of all the fields in each
content item or digital asset.

• For asset publishing webhooks, brief notifications include the ID of each
published asset. Detailed notifications include the same information listed in
brief notifications plus a list of all the fields in each published asset.

10. Enter the target URL (endpoint) to which you want to post notifications.

11. If the endpoint requires authentication, select the type of authentication, and click
Details to enter the authentication information.
Oracle Content Management (OCM) webhooks support the following options to
configure authentication for the webhook notification receiver:

• None: The receiver does not require authentication.

• Basic: The receiver requires Basic Auth.

• Header: The receiver requires a Secure Header.

12. To allow endpoints to use Self-Signed SSL certificates, which is recommended
only in testing or development, select the corresponding checkbox:

• Self-signed SSL certificate: The receiver accepts a self-signed SSL
certificate.

13. To authenticate the call between your service and Oracle Content Management
when event notifications are sent to your webhook endpoints, OCM signs the
event with a signature. The signature is a security token in hash-based message
authentication (HMAC) code, using the standard SHA-256 HMAC cryptography.
You can use the HMAC token to verify that the notifications are sent by Oracle
Content Management.
Enable the signature-based security option on the configuration page for outgoing
webhooks by selecting the corresponding checkbox. Enter a secret key consisting
of alphanumeric characters (lowercase letters a-z, digits 0-9) and is 32 characters.

• Signature-based security: The receiver requires the server and client
authentication tokens to be equal.

Chapter 18
Outgoing Webhooks

18-2

When an event of interest is triggered, a webhook payload is sent to your application with
the X-OCM-Webhook-Signature header in the signed event. The X-OCM-Webhook-
Signature header includes an epoch timestamp and a signature, for example:

{
 X-OCM-Webhook-Signature:
 t=1660807672,

v=d1b1ea85b53f8dd435a96f59d778d9cdb09be1905d1cecc7acdf4e03ecf60a1b
}

The value of t is an epoch timestamp, computed at the time of sending the request and is
used in computing the signature v when sending the request.

The value of v is a signature, computed from t and the payload, i.e. hash(t + ”.” +
payload)
Upon receiving the webhook request, verify the signature:

a. Obtain the values of the epoch timestamp t and the signature v by parsing the
request header X-OCM-Webhook-Signature.

b. Compute the current epoch timestamp t1 and ensure that the difference between t1
and t (epoch timestamp obtained from step a) is not more than the threshold, such
as 30 or 60 seconds. Go to the next steps only if the difference between the epoch
timestamps is less than the threshold.

c. Use the value of timestamp t from step a and the payload from the request to create
a string by concatenating as follows:
t + “.” + payload

d. Using the secret key from the webhook configuration page when you opted for the
signature-based security, compute the HMAC signature of the string created in step c
with SHA-256 algorithm. Ensure that the signature is encoded in hex before
proceeding to the next step. The javax.crypto.Mac (part of jdk-1.8 library) can be
used to generate the HMAC signature. Additionally, a third-party library such as
Bouncy Castle can also be used to generate the signature for the payload.

e. Compare the signature generated in step d with the signature from the request
header. Continue with further processing of the request only if the signature values
match.

14. Click Save.

To delete a webhook, click Delete next to the webhook.

To edit a webhook, click Edit next to the webhook.

Monitor Webhook Events
As an administrator or developer, you can access a log of events posted to a Webhook. The
Events Log displays the Object IDs, Event IDs, and Published dates and times for webhook
activities in an Oracle Content Management instance.

To monitor Webhook events:

1. After you sign in to the Oracle Content Management web application as an administrator
or developer, click Integrations in the Administration area of the navigation menu on
the left.

Chapter 18
Outgoing Webhooks

18-3

https://www.bouncycastle.org/

2. Click Webhooks in the Integrations dropdown menu.

3. On the settings page for a webhook instance, choose the option to open the
Events log page.
The Events log page displays a list of all the events published to this webhook.
Recent posts are shown at the top.

For each event, the log also shows its response status (Success or Failure). You can
expand a posted event to see details about notifications sent to a webhooks client.

The following table shows the details of the events that are triggered:

Chapter 18
Outgoing Webhooks

18-4

Event Details

SCHEDULEDPUBLISHING_PARENTCREATED -
create a recurring scheduled publishing job

Key:
cec.event.scheduledpublishing.parentcreated.nam
e

Display Name: Scheduled publishing job created

Message Detail: Scheduled publishing recurring
job '{job-name}' '{job-id}' created at '{datetime}'

SCHEDULEDPUBLISHING_PARENTUPDATED -
properties of the whole recurring job is updated
(for example, the series name or description is
updated, job manager is added or removed)

Key:
cec.event.scheduledpublishing.parentupdated.na
me

Display Name: Scheduled publishing job updated

Message Detail: Scheduled publishing recurring
job '{job-name}' '{job-id}' updated at '{datetime}'

SCHEDULEDPUBLISHING_CREATED - create a
scheduled publishing job

Key: cec.event.scheduledpublishing.created.name

Display Name: Scheduled publishing job created

Message Detail: Scheduled publishing job '{job-
name}' '{job-id}' with assets '{the-first-10-asset-
guids}' created at '{datetime}'

SCHEDULEDPUBLISHING_UPDATED - update a
scheduled publishing job

Key: cec.event.scheduledpublishing.updated.name

Display Name: Scheduled publishing job updated

Message Detail: Scheduled publishing job '{job-
name}' '{job-id}' with assets '{the-first-10-asset-
guids}' updated at '{datetime}'

SCHEDULEDPUBLISHING_CANCELLED - cancel a
scheduled publishing job

Key:
cec.event.scheduledpublishing.cancelled.name

Display Name: Scheduled publishing job cancelled

Message Detail: Scheduled publishing job '{job-
name}' '{job-id}' with assets '{the-first-10-asset-
guids}' cancelled at '{datetime}'

SCHEDULEDPUBLISHING_STARTED - scheduled
publishing job is started

Key: cec.event.scheduledpublishing.started.name

Display Name: Scheduled publishing job started

Message Detail: Scheduled publishing job '{job-
name}' '{job-id}' with assets '{the-first-10-asset-
guids}' started at '{datetime}'

SCHEDULEDPUBLISHING_COMPLETED - scheduled
publishing job is completed

Key:
cec.event.scheduledpublishing.completed.name

Display Name: Scheduled publishing job
completed

Message Detail: Scheduled publishing job '{job-
name}' '{job-id}' with assets '{the-first-10-asset-
guids}' completed at '{datetime}'

A failed reason will be appended if the job is failed.

Message Detail: Scheduled publishing job '{job-
name}' '{job-id}' with assets '{the-first-10-asset-
guids}' completed at '{datetime}'. {if-failed-failed-
reason}

The Oracle Cloud REST API for Activity Log provides the ability to search activities in Oracle
Content Management. This API has the following endpoints:

• Audit Log, which provides the details of activities and related data.

Chapter 18
Outgoing Webhooks

18-5

https://docs.oracle.com/en/cloud/paas/content-cloud/rest-api-activity-log/index.html

• Events, which provides the details of types and categories.

Use Endpoints for Push Notifications
Oracle Content Management automatically delivers notifications to webhook endpoints
about asset publishing, asset lifecycle, site publishing, prerendering, and scheduled
jobs events.

You subscribe to events for your webhooks to receive notification when the events
happen in the payloads for the endpoints. For example, if your endpoint subscribes to
an event called DIGITALASSET_CREATED, when a digital asset is created in a repository
you specified, the webhook payload can tell you the name of the webhook, what time
the event happened, and who did the event.

You can use an endpoint to be notified when some action happens. Then Oracle
Content Management calls that endpoint. You can create webhooks using REST
endpoints, similar to other REST APIs. You need to specify a server URL for each
webhook endpoint. The GET, POST, PUT, and DELETE endpoints are hosted on the
Oracle Content Management server, so the same host name, port, and system is the
context for all the webhook endpoints.

You can create all the content items with the REST API headless endpoints. You can
also create webhooks using the REST API, and listen to the events.

The webhook endpoints are as follows:

GET /webhooks Lists all webhooks.
POST /webhooks Creates a webhook with the given information in
the payload.
GET /webhooks/{id} Reads a webhook with the given ID.
PUT /webhooks/{id} Updates a webhook with the given information in
the payload.
DELETE /webhooks/{id} Deletes a webhook with the given ID.

Or you can create, configure, enable, or disable webhooks in the Oracle Content
Management web UI at Administration > Integrations > Webhooks. See Configure
Webhooks.

You can view event payloads, with Brief or Detailed output. Webhook payloads
contain the following data:

• Which webhook got invoked

• What event got triggered (maybe CONTENTITEM_UPDATED or
CHANNEL_ASSETPUBLISHED)

• When the event was registered, and which user triggered it

• What entity is the subject of the event:

– For asset lifecycle webhooks, it can be a content item or digital asset.

– For asset publishing events, it will be a list of the identifiers of all published
content.

Webhooks have three different formats, as the following table describes.

Chapter 18
Outgoing Webhooks

18-6

Format Output

Brief Output includes only basic information in the
payload. The output gives you details like what the
action is, when it happened, in what repository,
and who did the action.

Detailed Output includes all content information in the
payload. The output gives you the whole content
item data, in a URL that you specify.

Empty Available only for asset publishing webhooks. If
you specify Empty for the output, the payload
contains only an identifier representing the publish
session ID.

If the endpoint requires authentication, you can select what type of authentication and then
enter the authentication information.

Receive Push Notifications from an Asset Lifecycle Webhook
An asset lifecycle webhook can send you push notifications about asset lifecycle events in an
Oracle Content Management repository for content items and taxonomies.

You can receive information notifications about the following events for your webhooks:

A repository manager can create an asset lifecycle webhook with a REST API endpoint or on
the Administration > Integrations > Webhooks page in the Oracle Content Management
web interface. On the page for a webhook, users can configure the following settings:

• Name: A webhook name.

Chapter 18
Outgoing Webhooks

18-7

• Description: A webhook description.

• Type: A webhook type.

• Enable Webhook: An enabled or disabled status for the webhook. The default is
disabled.

• Repository: A repository for setting the event scope for the webhook notifications.

• Asset Types: A list of asset types for setting the event scope of the webhook
notifications. The filtering feature applies only to events published for content items
or digital assets of chosen types.

– Use the All asset types option to receive notifications about lifecycle events
for assets of any type that is assigned or will be assigned to the repository(s).

– Use the Select individual asset types option to receive notifications about
lifecycle events for assets of chosen types only. As an administrator, you can
select both content and digital asset types. Note that only asset types that are
assigned to the selected repository(s) are displayed in the asset type picker.

• Events: A list of events for the webhook to receive notifications. Use the All
current and future events option for the webhook to receive notifications for all
events. Use the Select individual events option for the webhook to receive
notifications for specific events.

• Payload: The type of payload to send to the endpoint. (Brief or Detailed)

• Target URL: The URL of the endpoint to which notifications should be posted.

• Authentication: A callback receiver security (None, Basic, Header)

• Self-signed SSL certificate: The receiver accepts a self-signed SSL certificate.

• Signature-based security: The receiver requires the server and client
authentication tokens to be equal.

Name, Description, Enable Webhook, Target URL, and Authentication are
standard settings for a webhook. For the repository setting, pick a repository for which
you have Manager permission.

Receive Push Notifications from an Asset Publishing Webhook
An asset publishing webhook can send you push notifications for asset and taxonomy
publishing events in Oracle Content Management.

You can receive information about the following events from an asset publishing
webhook:

A channel manager can create a new asset publishing webhook with a REST API
endpoint or on the Administration > Integrations > Webhooks settings page in the
Oracle Content Management web interface. This enables notifications about assets
published to the following channels:

Chapter 18
Outgoing Webhooks

18-8

• Public or secure custom publishing channels

• Publishing channels that Oracle Content Management creates for public or secure
enterprise sites

You can receive notifications about the following activities in the scope of a channel:

• Published: A new content item, digital asset, or taxonomy is published.

• Unpublished: A content item, digital asset, or taxonomy is unpublished.

Receive Push Notifications from a Site Publishing Webhook
A site publishing webhook can send you push notifications for site publishing events in Oracle
Content Management.

A site manager can create a new site publishing webhook with a REST API endpoint or on
the Administration > Integrations > Webhooks settings page in the Oracle Content
Management web interface. This enables notifications for site events with types including
published, status, and unpublished.

Receive Push Notifications from a Prerender Webhook
A prerender webhook can send you push notifications for prerender events in Oracle Content
Management.

A site manager can create a new prerender webhook with a REST API endpoint or on the
Administration > Integrations > Webhooks settings page in the Oracle Content
Management web interface.

This outgoing webhook for the prerenderer enables you to set up a notification about a
prerender event, which enhances the prerender server to allow prerendering and caching of a
Detail page after an asset is published to the site's channel.

As an administrator, you can create a Site Detail Page Refresh Webhook to notify Prerender
about the need to render and cache a Detail page.

Receive Push Notifications from a Scheduled Jobs Webhook
A scheduled jobs webhook can send you push notifications for publishing jobs scheduled in a
repository in Oracle Content Management.

A site manager can create a new scheduled jobs webhook with a REST API endpoint or on
the Administration > Integrations > Webhooks settings page in the Oracle Content
Management web interface. This enables notifications for scheduled publishing jobs in a
repository.

You can receive notifications for scheduled job events with types including created, updated,
canceled, started, and completed.

Incoming Webhooks
You can use webhooks to have Oracle Content Management automatically receive a
notification based on various events happening in the external services.

The incoming webhooks framework provides a way with which external applications or
services can call and notify Oracle Content Management about various events that are

Chapter 18
Incoming Webhooks

18-9

required by Oracle Content Management. The webhook framework provides a means
for validating the incoming request with token-based authentication.

Note:

Incoming webhooks aren't supported in private instances.

1. After you sign in to the Oracle Content Management web application as an
administrator or developer, click Integrations in the Administration area of the
navigation menu on the left.

2. The Oracle Content Management components that need webhook support will
create an incoming webhook instance. For example, when you create a Lingotek
translation connector, as Request a Lingotek Trial Connector for Content
Translation describes, the connector framework in the background creates an
instance of the incoming webhook that gets associated with that connector. In the
Integrations menu, click Webhooks to see the list of webhook instances of
Lingotek translation connectors.

3. On creating a webhook instance, the framework generates a security token with a
configurable duration of validity. Every incoming request should have this token.
The framework validates the incoming request by verifying the token and its expiry.
The component submits a callback URL and token to the external application.
When any event in which the component has subscribed to the external
application occurs, the component makes a call back to Oracle Content
Management over the same URL.

Click the checkbox next to your incoming webhook instance, and then select Edit
from the action toolbar. Or, you can click on the clickable name of the incoming
webhook to get to the Edit page. On the General page, you can specify the values
for Service Valid For and Security. Name and Description are populated at the
time the incoming webhook is created, but you can change these values if you
want to.The Target URL field is read-only. The server generates the URL when
the webhook instance is created.

After clicking the checkbox you'll need to select Edit from the action toolbar. Or,
you can click on the clickable name of the incoming webhook to get to the Edit
page.

4. The Event Log page displays a list of all the events. The list displays the login ID,
date and time when the event occurred, status (success or failure), and download
icon (to download the event log).

Configure an Incoming Webhook
Use the Oracle Content Management web interface to configure adapter fields and the
CAL adapter for an incoming Webhook.

To configure a Lingotek Incoming Webhook:

1. After you sign in to the Oracle Content Management web application as an
administrator, click Integrations in the Administration area of the navigation
menu on the left.

2. In the Integrations menu, click Webhooks.

3. Fill in the following fields for the Lingotek-Incoming Webhook.

Chapter 18
Incoming Webhooks

18-10

The Name and Description fields are populated at the time the Incoming Webhook is
created. You can edit and change these values if you want to.

Use the CAL-Based Webhook Adapter
The CAL-based webhook adapter publishes the details of an incoming request on the CAL
network.

Any interested component can consume the event and further process it. A component that
needs to consume the webhook can implement the processor.

Chapter 18
Incoming Webhooks

18-11

19
Set Proxies

To set proxies, you can configure a proxy server that provides a URL to which web browsers
can connect.

• Configure Proxy Service Settings

• Add Logged User Data to a Request Through a Secure Proxy Endpoint

• Debug Proxy Service Endpoints

Configure Proxy Service Settings
Oracle Content Management includes a proxy service, so that you can use REST services
that have Cross-Origin Resource Sharing (CORS) limitations or require service account
credentials.

The proxy service is a reverse proxy server. It provides a URL to which web browsers
connect. The proxy service then acts as an intermediary between the web browser and a
remote REST service (or endpoint). The proxy service explicitly adds CORS support to all
endpoints and can optionally insert service account credentials to requests coming from web
browsers.

If you are using a REST server (or endpoint) that already supports CORS and doesn't require
the use of service account credentials, you don't need to register it with the proxy service.
You can instead register it directly with the Oracle Cloud REST API for Content Management.

1. After you sign in to the Oracle Content Management web application as an administrator,
click Integrations in the Administration area of the navigation menu.

2. Under Proxy Service, select Enable.

3. Using the following steps, define any credentials needed by your endpoints, and define
the endpoints you want to use the proxy service.

Credentials

When an endpoint uses a credential, the proxy service adds basic access authentication (via
the HTTP Authorization header) to requests made by web browsers. If the browser request
already includes the Authorization header, the browser request Authorization header will be
used instead of the one in the credential.

This gives you the flexibility to provide a read-only credential for most requests, but allow
individual requests to provide their own write-capable authentication as needed.

Providing a credential to an endpoint gives all users of the endpoint the same effective
permissions granted to the user defined in that credential. To ensure you don’t inadvertently
create a security risk, take the following precautions:

• Don’t provide a credential for an endpoint unless absolutely necessary. If possible, let the
browser requests provide their own Authorization header instead.

• If you must provide a credential, try to use one which has read-only access on the target
endpoint.

19-1

• Limit the allowed methods on the endpoint to what is actually required. Unless
absolutely necessary, always disable the PUT, POST, and DELETE methods on
an endpoint.

• When possible, limit the Target URI for the endpoint to a specific area of
functionality. For example, rather than providing the base URI to the full API such
as http://example.api/, you might be able to limit it to a specific area such as
http://example.api/weather/ (for weather-related requests) or http://
example.api/date/ (for date-related requests).

If an endpoint requires credentials, define a credential and select it in the endpoint
definition:

1. Click Create new Credential, and complete the following information.

2. In the Credential Name box, enter a name for the credential that will make clear
to other users what the credential is for (for example, DocsAPIUser).

3. In the Username box, enter the user that should be used to authenticate all
requests with the endpoint.

4. In the Password box, enter the password for the user you entered.

5. In the Keywords box, optionally provide space-delimited keywords for the
credential. Keywords are purely informational for your own needs and do not alter
the functionality of the credential. Keywords can include alphanumeric characters,
periods, hyphens, and underscores.

The Keywords field is exposed by the proxy service API and can be viewed by
non-administrator users. Never include user names, passwords, API keys, or other
sensitive information in the Keywords field.

6. Click Save.

The new credential is available to use with one or more endpoints. It appears in the
Credential drop-down list when you create or edit an endpoint.

Endpoints

1. Define the remote API endpoint you want to use the proxy service. Click Create
new Endpoint, and complete the following information:

a. In the Endpoint Name box, enter a name for the endpoint that will make clear
to other users what this endpoint is (for example, Content Management API
1.1).

b. Under Enable Endpoint, select Enabled.

You can disable individual endpoints as necessary, rather than disabling the
whole proxy service.

c. Under Secure Endpoint, select Secure Endpoint. You can secure an
endpoint by allowing only authenticated user to access the endpoint. If you
select this check box, anonymous users are required to authenticate
themselves via a sign-in page.

d. In the Path Name box, enter a path name for the endpoint (for example,
docs). This will become part of the URL path to access the endpoint (for
example, /pxysvc/proxy/docs).

The name must be unique, URL-safe, and lowercase, and it must start with a
letter. It can include alphanumeric characters, hyphens, and underscores.

Chapter 19
Configure Proxy Service Settings

19-2

e. In the Target URI box, enter the URI for the endpoint (for example, http://
service.example.com/documents/api/1.1).

f. Under Credential, if necessary, select the credentials to use for this endpoint. This
list is populated by the credentials you created using the steps above.

g. Under HTTP Methods, select the HTTP methods you want to enable for this
endpoint.

GET and OPTIONS methods are always enabled.

h. In the Keywords box, optionally provide space-delimited keywords for the endpoint.
Keywords are purely informational for your own needs and do not alter the
functionality of the endpoint. Keywords can include alphanumeric characters, periods,
hyphens, and underscores.

The Keywords field is exposed by the proxy service API and can be viewed by non-
administrator users. Never include user names, passwords, API keys, or other
sensitive information in the Keywords field.

i. Under Additional Headers, you can define multiple custom headers to be sent to the
target endpoint. For example:

CustomHeader1: Value1
CustomHeader2: Value2

The following example from a debug interface shows all the headers sent to a target:

idcs_cloudgate_id: internal_APPID
idcs_client_id: internal_APPID
CustomHeader1: Value1
CustomHeader2: Value2
Authorization: ********

The proxy service will add these headers for each request sent to target URI. They
will be part of every request header sent to target URI when a proxy URL is
requested.

j. In the Connection Timeout box, enter the maximum number of seconds to wait
when trying to make a connection with the target URI.

k. In the Socket Timeout box, enter the maximum number of seconds to wait for a
pooled connection in the proxy service.

l. In the Connection Request Timeout box, enter the maximum number of seconds to
wait when trying to make a connection with the proxy service.

m. Test your endpoint, by clicking Save and Debug. See Debug Proxy Service
Endpoints.

n. When you’re satisfied with the result, click Save and Close.

Add Logged User Data to a Request Through a Secure Proxy
Endpoint

You can add user data to an external service call with the Oracle Content Management
Proxy.

Chapter 19
Add Logged User Data to a Request Through a Secure Proxy Endpoint

19-3

As a system administrator, you can add user profile information including user ID, full
name, and email to an external service call with the Oracle Content Management
Proxy. You can secure an endpoint only for authenticated users and proxy
automatically passes their profile information to the external system. The external
system can then assume that the users are authenticated, and it accesses other
systems on their behalf.

An anonymous user is navigated to the sign-in page for authentication if a secured
endpoint is configured.

Debug Proxy Service Endpoints
You can quickly test a proxy service endpoint without writing any test code. This can
be a valuable tool to see how requests and responses are handled between your web
browser, the proxy service, and the target URI of the endpoint.

1. After defining the endpoint, test it by clicking Save and Debug.

Alternatively, in the list of endpoints, click next to the endpoint you want to
debug.

At the top of the Debug Endpoint section, you see the URI mapping, which
shows how the endpoint’s local path name is mapped to the target URI of the
endpoint. Both the local path and the target URI are links so you can make sure
they are pointing to the correct locations.

2. Optionally, enter a user name and password and additional headers to use for the
test request. These credentials will be used in lieu of any credential already set on
the endpoint. This enables you to test or verify the use of credentials without
making them available to all users of the endpoint.

3. Optionally, enter additional headers to use for the test request. Enter one header
per line, using the standard format Name: Value. For example: Content-Type:
application/json.

4. Select an HTTP method, then provide a complete path for the request.

If you select POST or PUT, in the Data box, enter the content which should be
sent in the POST or PUT request body.

5. Click Submit Request.

6. In the Debug Result section, expand the panels to see the detailed results:

• Browser Request to Proxy: Displays the HTTP request headers and body
sent by the web browser to the proxy service.

• Proxy Request to Endpoint: Displays the HTTP request headers and body
sent by the proxy service to the target URI of the endpoint. If the endpoint
uses a credential, an authorization header is inserted in the request, but the
header value isn’t shown in the debug results.

• Endpoint Response to Proxy: Displays the HTTP response headers and
body sent by the target URI of the endpoint back to the proxy service.

• Proxy Response to the Browser: Displays the HTTP response headers sent
by the proxy service back to the web browser. If the target URI of the endpoint
doesn’t return CORS headers, the proxy service inserts them in its response
to the browser.

7. If necessary, change the debug request and submit the request again.

Chapter 19
Debug Proxy Service Endpoints

19-4

Note:

The old debug results are overwritten with the new results.

8. When you’re satisfied with the result, click Close.

Chapter 19
Debug Proxy Service Endpoints

19-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	Part I Introduction
	1 Get Started
	Understand Integrations
	Integration Interfaces

	Part II Enabling Oracle Content Management Integrations
	2 Integrate with Other Oracle Applications and Services
	Integrate with Oracle Business Intelligence Publisher
	Integrate with Oracle Cobrowse Cloud Service
	Integrate with Oracle Commerce
	Integrate with Oracle Developer Cloud Service
	Integrate with Oracle Eloqua
	Choose an Asset Repository and Create a Publishing Channel
	Provide Oracle Content Management Information for the Eloqua Integration
	Enable Oracle Content Management Embedded Content
	Use an Asset in an Eloqua Landing Page

	Integrate with Oracle Enterprise Contracts
	Integrate with Oracle Integration
	Configure Oracle Integration Settings in Oracle Content Management
	Oracle Integration with Assets
	Oracle Integration with Documents
	Oracle Integration with Sites
	Pass a CSS Style Sheet to Oracle Integration
	Start the Default Version of an Oracle Integration Process

	Integrate with Oracle Intelligent Advisor
	Integrate with Oracle JD Edwards
	Integrate with Oracle Logistics Cloud
	Integrate with Oracle Maxymiser
	Integrate with Oracle Responsys
	Choose an Asset Repository and Create Two Publishing Channels
	Enable the Integration
	Create and Publish Assets in Oracle Content Management
	View Images in Responsys Message Preview

	Integrate with Oracle Visual Builder
	Use Oracle Content Management Components in Oracle Visual Builder Applications
	Embed Oracle Visual Builder Applications in an Oracle Content Management Site Page
	Embed a VBCS Visual App in an Oracle Content Management Page
	Embed a VBCS Page in a Site Page

	Build an Oracle Content Management VBCS Form and Data Report Components
	Build an Oracle Content Management VBCS Public Form Component
	Build an Oracle Content Management VBCS Secure Form Component
	Build an Oracle Content Management VBCS Public Gated Form Component
	Build an Oracle Content and Experience VBCS Data Report Component
	Build an Oracle Content Management VBCS Multipage Form As a Web App Component

	Provide a VBCS Endpoint As a URL for Select Menus

	Integrate with Oracle WebCenter Content

	3 Integrate with Third-Party Applications
	Integrate with Desygner
	Add Desygner as SAML Application in Oracle Identity Cloud Service
	Create an Application User for Desygner
	Enable Desygner Integration in Oracle Content Management
	Work with Desygner Asset Types

	Integrate with Kaltura Video Management
	Integrate with Microsoft Office
	Add Oracle Content as a Save/Open Location in Microsoft Office Applications
	Access Oracle Content Features Within Microsoft Office Applications
	Add Links to Cloud Items Directly from Microsoft Outlook
	Create or Edit Microsoft Office Files from the Oracle Content Management Web Interface

	Integrate with Slack
	Enable and Configure Integration with Slack in Oracle Content Management
	Create an App for Slack Using the Slack Website and Install
	Add the App Credentials to Oracle Content Management

	4 Use Content Connectors
	Enable a Content Connector
	Disable a Content Connector
	Configure a Google Drive Content Connector
	Configure a Microsoft OneDrive Content Connector
	Configure a Dropbox Content Connector
	Enable Jax-WS

	Configure a WordPress.org Content Connector
	Configure a YouTube Content Connector
	Configure a Microsoft SharePoint Online Content Connector
	Configure a Contentful Content Connector
	Configure a Drupal Content Connector
	Configure Oracle WebCenter Content Server and Oracle Content Management for the WCC Connector v2.0
	Verify Network Accessibility for a WCC Connector v2.0
	Check WebCenter Content Server Readiness
	Enable SSL
	Enable Jax-WS
	Set Up a Security Policy
	Run the Indexer and File Formats Wizard

	Check Oracle Content Management Readiness
	Configure the Oracle WebCenter Content Connector v2.0
	Specify WebCenter Content Connector v2.0 Mappings
	Enable Oracle WebCenter Content Connector v2.0 for an Asset Repository
	Use Oracle WebCenter Content Connector v2.0
	Map to a Custom Asset Type
	Revoke Authorized Users

	Use Custom Digital Asset Types in Content Connectors
	Import Assets Mapped to Digital Asset Types

	Create and Configure a Custom Content Connector
	Create Content Types for a Connector
	Map Source Metadata to Fields in a Content Type

	Provide Configuration Parameter Values for a Content Connector
	Delete a Content Connector

	Part III Developing Oracle Content Management Extensions
	5 Develop Custom Actions with Application Integration Framework (AIF)
	Understand the Application Integration Framework (AIF)
	Manage Custom Applications
	Configuration File Format
	Application Properties
	Action Command
	Invoke Command
	Presentation Command
	Expressions
	Variables
	Localization

	6 Develop Content Connectors
	Connector REST API Interface
	Connector SDK
	Build a New Content Connector
	REST Interfaces for Configuration, Authorization, and Fetching Content
	REST Interfaces for File System Browsing and Searching
	Content Picker
	Authorization

	Content Connector Configuration and Registration
	Content Connector Execution Flow
	Pexels Content Connector Sample Implementation
	Install the Content Connector
	Check Prerequisites for Installation
	Build the Content Connector WAR File

	Register the Content Connector
	Test the Content Connector
	Understand the Content Connector Source Code
	Custom Picker UI
	Pexels REST APIs

	Change and Test the Content Connector Code

	Download the CEC Content Connector Sample and SDK

	7 Develop Custom Field Editors
	Create a Custom Field Editor
	Configure Content Type to Use Custom Field Editor
	Edit a Custom Field Editor
	appinfo.json for Custom Field Editors
	edit.html for Custom Field Editor
	view.html for Custom Field Editor

	Sample Content Field Editors
	Slider
	Location Selector

	Content Field Editor SDK Reference
	Content Field Editor SDK Object
	getField()
	getFields()
	getLocale()
	getSetting(setting)
	getSettings()
	registerDisable(callback)
	setValidation(callback)
	resize(size)
	openContentPicker()
	getDirection()

	Custom Content Field Object
	getName()
	getDefaultValue()
	getDataType()
	setValue(value)
	getValue()
	on(event, callback)

	8 Develop Custom Content Forms
	Create a Custom Content Form
	Configure a Content Type to Use a Custom Content Form
	Edit a Custom Content Form
	appinfo.json
	edit.html for Custom Content Forms

	Content Form SDK Reference
	Custom Content Form SDK Object
	Custom Content Form Type Object
	Custom Content Form Item Object
	Form Options

	Custom Content Form Field Object
	CustomEditor Object

	Sample Custom Form
	Get Custom Form Sample
	Add OCM Image Picker and Link Dialog Plug-ins for Rich Text Editor

	9 Develop Translation Connectors for Language Service Providers
	Overview of the Translation Connector Framework
	Translation Connector SDK
	Translation Connector REST APIs

	Request a Lingotek Trial Connector for Content Translation
	Enable a Lingotek LSP Translation Connector
	Delete a Lingotek LSP Translation Connector
	Register Multiple Lingotek Connectors
	Add Custom Locales to a Lingotek Translation Connector
	Translate Native Files in Assets
	Build a New Translation Connector
	REST Interfaces for Configuration and Authorization
	REST Interfaces for Creating Translation Jobs and Returning Translated Content

	Configure and Register a Translation Connector
	Translation Connector Execution Flow
	Translation Job Editor
	Translation Jobs Validation
	Sample Translation Connector Implementation
	Create the Sample Translation Connector with Content Toolkit
	Register the Sample Translation Connector
	Test the Sample Translation Connector

	Understand the Sample Translation Connector Source Code
	Translation Job Original Zip File Format
	Translation Job Translated Zip File Format

	10 Develop External Processors
	External Processor Execution Flow
	Pull Model

	REST API for Content Capture
	External Processor SDK
	External Processor Examples

	11 Compile Content Layouts as HTML

	Part IV Developing Oracle Content Management Integrations
	12 Understand Cross-Origin Resource Sharing (CORS)
	13 Embed the Web User Interface in Other Applications
	14 Oracle Content Management REST APIs
	Integrate with Oracle Content Management Using OAuth
	Cloud Account Using IAM Identity Domain
	Access OCM Using Client Credentials (Two-Legged OAuth in Identity Domain)
	Create an OAuth Client and Acquire a Client ID and Secret
	Grant the Required Oracle Content Management Roles to the Client
	Acquire an Access Token from Identity Domain for the Required Resource
	Use the Access Token to Access the Oracle Content Management Resource

	Access OCM Using Authorization Code (Three-Legged OAuth Flow in Identity Domain)
	Create an OAuth Client and Acquire a Client ID and Secret
	Grant the Required Oracle Content Management Roles to the Client
	Acquire an Access Token from Identity Domain for the Required Resource
	Use the Access Token to Access the Oracle Content Management Resource

	Access OCM Using Resource Owner (Identity Domain)

	Cloud Account Using Oracle Identity Cloud Service
	Access OCM Using Client Credentials (Two-Legged OAuth Flow)
	Create an OAuth Client and Acquire a Client ID and Secret
	Grant the Required Oracle Content Management Roles to the Client
	Acquire an Access Token from Oracle Identity Cloud Service (IDCS) for the Required Resource
	Use the Access Token to Access the Oracle Content Management Resource

	Access OCM Using Authorization Code (Three-Legged OAuth Flow)
	Create an OAuth Client and Acquire a Client ID and Secret
	Grant the Required Oracle Content Management Roles to the Client
	Acquire an Access Token from Oracle Identity Cloud Service (IDCS) for the Required Resource
	Use the Access Token to Access the Oracle Content Management Resource

	Access OCM Using Resource Owner

	Download the Swagger File for a REST API
	REST API for Activity Log
	REST API for Content Capture
	REST API for Content Delivery
	REST API for Content Management
	REST API for Content Preview
	REST API for Conversations
	REST API for Documents
	REST API for Self-Management
	REST API for Sites Management
	REST API for Users and Groups
	REST API for Webhooks Management
	Use REST APIs for Content Search
	Search Query Operators
	Search Queries
	Supported Date and Time Formats

	Search with the Querytext Parameter
	Set Up Searches on Metadata Fields
	Search Request Parameters
	Two-Level Deep Search
	Search JSON Data in JSON Fields
	Search Across Types
	The fields Parameter
	The orderBy Parameter

	Dynamic Count of Assets per Taxonomy Category
	The AGGS Query Parameter
	Aggregation Cache
	Using Dynamic Asset Counts per Category API
	Computing Aggregate Asset Counts
	Total Search Cost

	An e-commerce Use Case
	A General Use Case

	Scroll API
	Custom Ranking Policies
	Built-in Ranking Policy
	Custom Ranking Policies
	Custom Ranking Policies Lifecycle
	Supported Ranking Methods

	Use REST APIs for Extended Workflow
	Complete Workflow Instance API
	Search In-Workflow Assets

	Create and Use Applinks for File and Folder Access
	Provide Access to Files and Folders with Public Links
	Upload a REST API Swagger File into Mobile Cloud Service

	15 Oracle Content Management APIs
	Embed UI API V2
	Site Compile API
	Sites Component API
	Sites Rendering API

	16 Oracle Content Management SDKs
	Content SDK for JavaScript
	Content SDK for Java
	Content SDK for Swift
	Sites SDK
	Translation Connector SDK

	17 GraphQL Support in Oracle Content Management
	Get Started with GraphQL
	GraphQL Schema
	GraphQL Queries
	GraphQL Support for Content Preview
	GraphQL Samples

	18 Use Webhooks
	Outgoing Webhooks
	Configure Outgoing Webhooks
	Monitor Webhook Events
	Use Endpoints for Push Notifications
	Receive Push Notifications from an Asset Lifecycle Webhook
	Receive Push Notifications from an Asset Publishing Webhook
	Receive Push Notifications from a Site Publishing Webhook
	Receive Push Notifications from a Prerender Webhook
	Receive Push Notifications from a Scheduled Jobs Webhook

	Incoming Webhooks
	Configure an Incoming Webhook
	Use the CAL-Based Webhook Adapter

	19 Set Proxies
	Configure Proxy Service Settings
	Add Logged User Data to a Request Through a Secure Proxy Endpoint
	Debug Proxy Service Endpoints

