
Oracle® Cloud
Using Oracle Developer Cloud Service
Traditional

E92763-07
August 2019

Oracle Cloud Using Oracle Developer Cloud Service Traditional,

E92763-07

Copyright © 2014, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Himanshu Marathe

Contributing Authors: Eric Jendrock

Contributors: Oracle Developer Cloud Service development team

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xii

Documentation Accessibility xii

Related Resources xii

Conventions xiii

1 Overview

What is Oracle Developer Cloud Service? 1-1

What is a Project? 1-2

Project Visibility 1-2

Key Concepts, Components, and Terms 1-3

Roles 1-4

Identity Domain Roles 1-4

Project Roles 1-5

2 Get Started

Know Yourself 2-1

Know Your Identity Domain Roles 2-1

Know Your Project Role 2-1

What Actions Can Each Role Perform in a Project? 2-3

Project Home Page 2-4

Git Actions 2-5

Merge Requests Actions 2-6

Maven Actions 2-7

Docker Actions 2-7

Builds Actions 2-8

Releases Actions 2-8

Deployments Actions 2-9

Environments Actions 2-9

Issues Actions 2-9

Boards Actions 2-10

iii

Wiki Actions 2-10

Snippets Actions 2-11

Access Oracle Developer Cloud Service 2-11

Sign In From a Web Browser 2-13

Access from IDEs 2-15

Set Your User Preferences 2-15

Update Your Display Name 2-15

Update Your Email Address 2-16

Add Your Avatar Picture 2-16

Configure Your Global Email Notifications 2-17

Upload Your Public SSH Key 2-18

Generate an SSH Key 2-18

Add the Public SSH Key to Your DevCS Account 2-18

See the News Banner 2-19

Set Up IDEs and Git Clients 2-19

Eclipse IDE 2-19

NetBeans IDE 2-21

JDeveloper 2-21

Git Command-Line Interface 2-21

Use Projects 2-22

Create a Project 2-22

Empty Project 2-22

With an Initial Git Repository 2-23

From an Exported Project 2-23

From IDEs 2-26

Open a Project 2-26

Review a Project’s Summary 2-28

Add and Manage Project Users 2-29

Add Users from Another Project 2-30

3 Plan Your Project

Manage Software Development Environments 3-1

Set Up an Environment 3-2

Manage an Environment 3-3

Track and Manage Tasks, Defects, and Features 3-3

Set Up Issue Products and Custom Fields 3-4

Create and Configure Issue Products 3-4

Create and Configure Issue Custom Fields 3-5

Create Issues 3-6

Create an Issue from the Issues Page 3-6

iv

Create an Issue from an IDE 3-7

Search Issues 3-7

Save a Custom Search 3-7

Share Custom Search Filters 3-8

View and Update Issues 3-8

Resolve an Issue 3-8

Mark an Issue as Duplicate 3-9

Update Time Spent on an Issue 3-9

Associate an Issue with a Sprint 3-10

Create a Relationship Between Issues 3-10

Update Multiple Issues 3-10

Update Issues from IDEs 3-11

Watch an Issue 3-11

Use Agile Boards to Manage and Update Issues 3-12

Agile Boards Concepts and Terms 3-13

Create and Configure Agile Boards 3-14

Create a Board 3-14

Add and Manage Progress States of a Board 3-15

Configure Working Days of a Board 3-17

Configure and Manage a Board 3-17

Use Scrum Boards 3-18

Create and Manage Sprints 3-18

Add and Manage Issues of a Sprint 3-20

Update Issues of an Active Sprint 3-20

Review Issue Reports of a Scrum Board 3-22

Use Kanban Boards 3-22

Add and Manage Active Issues 3-23

Update Active Issues 3-23

Review Issue Reports of a Kanban Board 3-25

Review Agile Reports and Charts 3-25

Burndown Chart 3-25

Sprint Report 3-26

Issues Report 3-27

Epic Report 3-27

Velocity Report 3-28

Cumulative Flow Chart 3-29

Control Chart 3-30

4 Use Project's Repositories

Manage Code Files Using Git Repositories 4-1

v

Git Concepts and Terms 4-1

Migrate to Git 4-3

Set Up a Git Repository 4-3

Create and Manage Git Repositories 4-3

Upload Files From Your Computer to the Project’s Git Repository 4-6

Push a Local Git Repository to the Project’s Git Repository 4-8

Access a Git Repository using SSH 4-9

Add and Manage Files of a Git Repository 4-10

Manage Files from the Git Page 4-10

Use Git Commands to Manage Files from Your Computer 4-11

Associate a DevCS Issue with a Commit 4-12

Copy the URL of a Git Repository or a File 4-13

View the History of Files and Repositories 4-14

Use Branches 4-14

Create a Branch 4-14

Protect a Branch 4-16

Manage a Branch 4-16

Use Tags 4-17

Create and Manage Tags 4-17

Compare Revisions 4-18

Add Comments to a File 4-19

Watch a Git Repository 4-20

Search in Git Repositories 4-20

Download an Archive of a Git Repository 4-21

Manage Binaries and Dependencies Using the Project’s Maven Repository 4-22

Maven Concepts and Terms 4-22

Upload an Artifact Manually 4-23

Upload Artifacts Using the Maven Command-Line Interface 4-24

Search Artifacts 4-25

Download an Artifact Manually 4-25

Copy Distribution Management Snippets 4-26

Maven Repository Administration 4-26

Configure Auto-Cleanup of Snapshots 4-27

Configure Overwrite for Artifacts 4-28

5 Collaborate with Your Team

Review Source Code with Merge Requests 5-1

Merge Requests Concepts and Terms 5-1

Merge Request States 5-3

Create and Manage Merge Requests 5-3

vi

Create a Merge Request 5-3

Add or Remove Reviewers 5-4

Link an Issue to a Merge Request 5-5

Link a Build Job to a Merge Request 5-5

Watch a Merge Request 5-6

Merge Request Email Notifications 5-6

Review a Merge Request 5-7

Open a Merge Request 5-7

View Commits and Changed Files 5-8

Add a General Comment 5-9

Add an Inline Comment to a File 5-9

Approve or Reject a Merge Request 5-10

Merge Branches and Close the Merge Request 5-11

Merge Branches 5-11

Resolve a Merge Conflict 5-12

Close a Merge Request 5-13

Merge Request and Branch Administration 5-13

Set Review and Merge Restrictions on a Repository Branch 5-13

Collaborate on Documentation Using Wikis 5-14

Create and Manage Wiki Pages 5-15

Add Comments 5-17

Watch a Wiki Page 5-18

View History and Compare Versions of a Wiki Page 5-18

Wiki Administration 5-18

Configure Edit and Delete Rights for Wiki Pages 5-19

Change a Project’s Wiki Markup Language 5-19

Set the Organization’s Default Wiki Markup Language 5-19

Share and Use Code Snippets 5-20

Create and Manage Snippets 5-20

Add and Manage Files of a Snippet 5-21

Copy Contents of a Snippet File 5-22

Add a Comment to a Snippet 5-22

Use Git with Snippets 5-23

Download an Archive of the Snippet 5-23

6 Build Applications and Deploy to Oracle Cloud

Configure and Run Project Jobs and Builds 6-1

What is a Job and a Build? 6-1

Build Concepts and Terms 6-1

Create and Manage Jobs 6-2

vii

Configure a Job 6-2

Access Project Git Repositories 6-2

Trigger a Build Automatically on a Schedule 6-8

Use Build Parameters 6-8

Access the Oracle Maven Repository 6-9

Run UNIX Shell Commands 6-10

Build Maven Applications 6-10

Build Ant Applications 6-14

Build Gradle Applications 6-15

Build Node.js Applications 6-16

Access an Oracle Database Using SQLcl 6-16

Run Oracle PaaS Service Manager Commands Using PSMcli 6-18

Publish JUnit Results 6-18

Use the Xvfb Wrapper 6-19

Publish Javadoc 6-20

Archive Artifacts 6-21

Copy Artifacts from Another Job 6-22

Configure General and Advanced Job Settings 6-22

Change a Job's JDK Version 6-23

Run a Build 6-24

View a Job’s Builds and Reports 6-24

View a Build’s Logs and Reports 6-24

View a Project’s Build History 6-25

View a Job’s Build History 6-25

View a Job’s User Action History 6-26

View a Build’s Details 6-26

Download Build Artifacts 6-27

Watch a Job 6-27

Build Executor Environment Variables 6-27

Software Installed on the Build Executor 6-31

Monitor Jobs and Builds from IDEs 6-32

Deploy Your Application to Oracle Cloud 6-32

Deployment Concepts and Terms 6-33

Deploy an Application to Oracle Java Cloud Service 6-33

Use the Oracle WebLogic RESTFul Management Interface 6-33

Use SSH 6-34

Add an Oracle Java Cloud Service Deployment Target 6-35

Deploy an Application to Oracle Application Container Cloud Service 6-36

Add an Oracle Application Container Cloud Service Deployment Target 6-37

Deploy an Application to Oracle Java Cloud Service - SaaS Extension 6-38

Add an Oracle Java Cloud Service - SaaS Extension Deployment Target 6-38

viii

Automatically Deploy a Build Artifact 6-39

Manage Deployment Configurations and Deployments 6-40

Access a Deployed Application 6-41

7 Integrate with External Software

Send Notifications to External Software Using Webhooks 7-1

Slack 7-1

Get the Slack Channel’s Incoming Webhook URL 7-1

Configure a Slack Webhook in DevCS to Send Event Notifications 7-3

Oracle Social Network 7-4

Get OSN Conversation's Incoming Webhook URL 7-5

Configure an OSN Webhook in DevCS to Send Event Notifications 7-5

PagerDuty 7-5

Set Up the PagerDuty Account 7-6

Configure a PagerDuty Webhook in DevCS to Send Event Notifications 7-8

Jenkins 7-8

Trigger a Jenkins Job on SCM Polling 7-9

Trigger a Jenkins Job on a Git Repository Update 7-13

Trigger a Jenkins Job from a Merge Request 7-19

Receive Build Notifications from a Jenkins Job 7-26

Hudson 7-28

Trigger a Hudson Job on SCM Polling 7-29

Trigger a Hudson Job on a Git Repository Update 7-33

GitHub Apps 7-35

Send Event Notifications to Any Application 7-36

Data Structure of a Generic Webhook 7-36

Access External Docker Registries 7-50

Link an External Docker Registry to Your Project 7-50

Browse a Linked Docker Registry 7-51

8 Use Releases and Export/Import Data

Manage Software Releases 8-1

Release States 8-1

Create a Release 8-2

Specify Artifacts of a Release 8-3

Change a Release’s Status 8-3

Manage Releases 8-4

Download Artifacts of a Release 8-4

Export Project Data to and Import Project Data from Oracle Cloud 8-4

ix

Exported Data 8-5

Export to and Import from an OCI Object Storage Classic Container 8-6

Set Up the OCI Object Storage Classic Container 8-6

Export Project Data 8-8

Import Project Data 8-9

View Export and Import History of the Project 8-10

9 Organization and Project Management

Manage the Organization 9-1

Update the Organization’s Display Name and Description 9-1

Manage Projects of the Organization 9-1

Manage the Project 9-3

Edit a Project’s Name, Description, or Visibility 9-3

Configure Project Templates 9-4

Visibility, Rules, and Variables 9-4

Define and Manage a Project Template 9-5

Define Project Template Rules 9-7

Use Variables 9-9

Manage Project Announcements 9-9

Manage Project Tags 9-11

View a Project’s Usage Metrics 9-11

Manage Repositories 9-11

Display RSS/ATOM Feeds 9-12

Configure Link Rules 9-13

10

Use IDEs

Eclipse IDE 10-1

Sign In to DevCS from the Eclipse IDE 10-1

Set Up the Eclipse IDE 10-1

Connect to DevCS from the Eclipse IDE 10-1

Use the Oracle Cloud View 10-4

Open a DevCS Project as an Eclipse IDE Project 10-5

Upload an Eclipse IDE Project to DevCS 10-5

Use Git in the Eclipse IDE 10-6

Manage DevCS Issues in the Eclipse IDE 10-7

Associate an Issue with a Commit 10-8

Monitor a Project’s Builds in Eclipse IDE 10-8

NetBeans IDE 10-9

Sign In to DevCS from the NetBeans IDE 10-9

x

Use the Team Server 10-10

Create a DevCS Project in NetBeans IDE 10-11

Open a DevCS Project in NetBeans IDE 10-11

Use Git in NetBeans IDE 10-12

Manage DevCS Issues in the NetBeans IDE 10-13

Associate an Issue with a Commit 10-14

Monitor a Project’s Builds in NetBeans IDE 10-14

JDeveloper 10-15

Sign In to DevCS from JDeveloper 10-15

Use the Team Server 10-16

Create a DevCS Project in JDeveloper 10-17

Open a DevCS Project in JDeveloper 10-18

Use Git in JDeveloper 10-18

Manage DevCS Issues in JDeveloper 10-19

Associate an Issue with a Commit 10-20

Monitor a Project’s Builds in JDeveloper 10-20

Build Oracle ADF Applications 10-20

Build ADF Applications with Ant 10-21

Build ADF Applications with Maven 10-22

xi

Preface

Using Oracle Developer Cloud Service describes how to use Oracle Developer Cloud
Service to commit source code files to the Git repositories, track issues, review the
source code and merge repository branches, share information through wikis, build
applications, and deploy them.

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
Using Oracle Developer Cloud Service is intended for:

• Customers developing applications that deploy to Oracle Cloud or to an on-
premise environment

• Developers using NetBeans IDE, Eclipse IDE or Oracle Enterprise Pack for
Eclipse (OEPE), or Oracle JDeveloper to access and use Oracle Developer Cloud
Service

• Project Administrators or Project Managers that support the development team

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Resources
For more information, see these Oracle resources:

• Oracle Cloud

Preface

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

http://cloud.oracle.com

• About Oracle Cloud in Getting Started with Oracle Cloud

• About Oracle Java Cloud Service - SaaS Extension in Using Oracle Java Cloud
Service - SaaS Extension

• About Oracle Java Cloud Service in Administering Oracle Java Cloud Service

• About Oracle Application Container Cloud Service in Using Oracle Application
Container Cloud Service

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xiii

http://cloud.oracle.com

1
Overview

Learn about Oracle Developer Cloud Service, its projects, components, roles, and how
to access the service.

See Oracle Cloud Terminology in Getting Started with Oracle Cloud for definitions of
terms found in this and other documents in the Oracle Cloud library.

What is Oracle Developer Cloud Service?
Oracle Developer Cloud Service (DevCS) is a cloud-based software development
Platform as a Service (PaaS) and a hosted environment for your application
development infrastructure. It provides an open source standards-based solution to
plan, develop, collaborate, build, and deploy applications in Oracle Cloud.

DevCS can make your software development experience easier by providing:

• Git repositories, so you can host your application source code files on Oracle
Cloud and track their versions

• Maven repositories, so you can host library and binary dependencies of your
Maven applications

• Build system, so you can automate builds with continuous integration and
continuous testing

• Deploy system, so you can automate deployment to Oracle Java Cloud Service,
Oracle Application Container Cloud Service, and Oracle Java Cloud Service -
SaaS Extension

• Code review, so you can peer review the code updates

• Issue tracking system, so you can track tasks, defects, and features

• Wikis, so you can collaborate with your team

• Integration with Eclipse IDE, Oracle JDeveloper, and NetBeans IDE, so you can
access and update source code files from your favorite IDEs

• Integration with external software using webhooks, so you can send DevCS event
notifications to the external software

As soon as your DevCS account is active, you can access its features immediately.

This diagram shows a basic workflow in DevCS.

1-1

The diagram shows how a team of developers work together and use DevCS to write
code, track issues, build, and deploy applications.

• The team updates code in the hosted Git source code management repositories
and uploads dependencies to the hosted Maven repository.

• As the software development progresses, the team reviews the code updates
using the built-in code review system.

• Using the built-in issue tracking system, the team tracks tasks and defects and
then, using Agile boards, they track their development progress.

• To run builds and tests of the software application, the team sets up build jobs.

• The team deploys the built artifacts to Oracle PaaS, Oracle IaaS, or on-premise
non-Oracle IaaS instances.

• Using webhooks, the team sends out DevCS event notifications to external tools
and software, such as Slack and Jenkins.

Watch a short video to learn more about DevCS.

Video

What is a Project?
A project is a collection of DevCS features.

You can use a project to host source code files, track issues, collaborate on code,
build, and deploy your applications. A project can host multiple Git repositories. Each
Git repository can have multiple branches and hundreds of code files. You can create
a merge request for each branch of the Git repository and ask reviewers to review the
code. You can create and configure multiple build jobs to generate different project
artifacts that you can deploy to Oracle Cloud or your on-premise web server.

Watch a short video to learn more about DevCS projects.

Video

Project Visibility
A project can be a private project or a shared project. There are no public projects.
You can define a project’s visibility when you create it, or from its properties page later.

Chapter 1
What is Oracle Developer Cloud Service?

1-2

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10095
http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10455

Private projects are accessible to invited users only. Shared projects are accessible to
all users of the organization. Any user can view the source code, create or update
issues, edit wiki pages, and interact with project builds. However, only invited users
can make updates to the source code in Git repositories, create and run build jobs,
and perform deployment operations.

Key Concepts, Components, and Terms
Before you use Oracle Developer Cloud Service (DevCS), make yourself familiar with
these key concepts, components, and terms.

See Oracle Cloud Terminology in Getting Started with Oracle Cloud to understand the
basic terminology used to describe the Oracle Cloud features and services.

Term Description

Organization The top-most entity in the project structure of DevCS. Think of an
organization as the umbrella for all the projects in a given identity
domain.

Git repository A Source Code Management (SCM) and distributed version control
tool to host source code files.

Maven repository A hosted repository to store build artifacts, library files, and
dependencies for Maven applications.

Issue tracker A built-in issue management system to create and track tasks, defects,
and features.

Merge Request and
Code review

A method to merge a Git repository branch with another branch.
Before merging the branches, team members can review differences
between files of both branches and provide their feedback.

Build System A built-in system to define and automate builds of your applications.

Build executor Software that runs a build.

Wiki Built-in wiki system to help your team author and manage wiki pages.

Deployment
configuration

A configuration to deploy a build artifact to an Oracle Java Cloud
Service, Oracle Application Container Cloud Service, or Oracle Java
Cloud Service - SaaS Extension instance.

Oracle Java Cloud
Service

Oracle Cloud service to deploy web applications to a public Oracle
WebLogic Server domain on Oracle Cloud.

For more information about the service, see About Oracle Java Cloud
Service in Administering Oracle Java Cloud Service.

Oracle Application
Container Cloud
Service

Oracle Cloud service to deploy Java SE, Node.js, PHP, Python, Ruby,
Go, Java EE 7 (or later), and .NET applications to Oracle Cloud.

For more information about the service, see About Oracle Application
Container Cloud Service in Using Oracle Application Container Cloud
Service and About Your Application and Oracle Application Container
Cloud Service in Developing for Oracle Application Container Cloud
Service.

Oracle Java Cloud
Service - SaaS
Extension

Oracle Cloud service to deploy Java web applications that are
extensions to existing Oracle SaaS products, such as CRM, HCM, and
so on.

For more information about the service, see About Oracle Java Cloud
Service - SaaS Extension in Using Oracle Java Cloud Service - SaaS
Extension.

Chapter 1
Key Concepts, Components, and Terms

1-3

Roles
Oracle Developer Cloud Service (DevCS) has two types of roles, Identity Domain and
Project. These roles allow their grantees to control aspects of the service or projects,
or both.

Identity Domain Roles
Those who have an Oracle Cloud identity domain role control which users can sign
into an Oracle Cloud service and what features they can access.

To find out how to grant an identity domain role to someone, see Learn About Cloud
Account Roles and Add Users and Assign Roles in Getting Started with Oracle Cloud.

There’re several types of identity domain roles, each of which has different privileges:

This role... Enables a user to:

TenantAdminGroup
(Identity Domain
Administrator)

Add and manage users and their roles in the identity domain.
By default, the role is assigned to the service subscriber who can
assign the role to other users.

DEVCS_APP_ENTITLE
MENT_ADMINISTRATO
R (Administrator Role
for Developer Cloud
Service Provisioning)

Create a DevCS instance in an identity domain.

DEVELOPER_ADMINIS
TRATOR (Developer
Service Administrator)

Update the organization details of DevCS. The user with this role is
also called as the Organization Administrator.
The role is available after a DevCS instance is created. By default, the
role is assigned to the service subscriber who can assign the role to
other users.

DEVELOPER_USER
(Developer Service
User)

Create and access DevCS projects. All users of DevCS must be
assigned this role. The role is available after a DevCS instance is
created.
Note that this role doesn't allow the user to update the organization
details.

Additional Roles

To access other Oracle Cloud services from DevCS, these roles should be assigned to
the appropriate users:

This role... Enables a user to:

JaaS_Administrato
r (Java
Administrators)

Connect to Oracle Java Cloud Service and Oracle Java Cloud Service
- SaaS Extension and deploy build artifacts.

APaaS_Administrat
or (APaaS
Administrator)

Connect to Oracle Application Container Cloud Service and deploy
build artifacts.

Storage.Storage_A
dministrator (Servi
ce Administrator)

Create and manage containers, and export to and import project data
from Oracle Cloud Infrastructure Object Storage Classic.

Chapter 1
Roles

1-4

Project Roles
To take part in a project, the user must be a project member.

This role... Enables a user to:

Organization
Administrator

Access and manage all projects of the organization. In this

documentation, the icon indicates the organization administrator.

Usually, organization heads and members of the IT department are
assigned this role. The creator of the service instance is automatically
assigned this role.

Owner Access all components of the project. An owner can perform project
management and administrative tasks such as add or remove Git
repositories, manage project users, assign default reviewers, configure
Webhooks, and manage ATOM/RSS Feeds handlers. In this

documentation, the icon indicates a project owner.

Usually, project managers and team leaders are assigned this role.
The creator of the project is automatically assigned this role.

Member Access most components of the project, but restricts project

management or administrative actions. In this documentation, the
icon indicates a project member.

Usually, developers, QA, technical writers, and other members are
assigned this role.

Non-member View components of a shared project, but can’t update source code
files, can’t create or configure build jobs and deployment
configurations, and can’t manage the project. The user can enter
comments, update issues, view wikis, and download build artifacts.

Chapter 1
Roles

1-5

2
Get Started

Where you start in Oracle Developer Cloud Service (DevCS) depends on the type of
role you are in, identity domain role or project role.

If you’re ... You can:

An organization
administrator

• Update the Organization’s Display Name and Description

A DevCS user • Access Oracle Developer Cloud Service
• Set Your User Preferences
• Set Up IDEs and Git Clients
• Create a Project or Open a Project

Know Yourself
Before you use DevCS, know your identity domain roles and project roles.

Know Your Identity Domain Roles
You can check your identity domain roles from the Oracle Cloud My Services page.

1. In a web browser, go to https://cloud.oracle.com/home, and click Sign In.

2. On the sign-in page, from the Cloud Account drop-down list, select Cloud
Account with Identity Cloud Service. In Cloud Account Name, enter your
identity domain name.

If you’re using a traditional account:

a. From the Cloud Account drop-down list, select Traditional Cloud Account.

b. From the Select Data Center drop-down list, select your data center.

3. Click My Services.

4. On the sign-in page, enter your Oracle Cloud account credentials, and click Sign
In.

5. On the My Services page, click Users.

6. Click your user name tile and check your assigned identity domain roles in the
Roles tab.

Know Your Project Role
To find out your project role in a project, sign in to DevCS and click the project’s name.

2-1

Action Do this:

Know if you’re
assigned the
Organization
Administrator role

In the branding bar, click the user avatar. If you see the Organization
option in the menu, you’re assigned the Organization Administrator
role.

For example, in this graphic, Alex Admin’s user menu shows the
Organization option, but Don Developer’s user menu doesn’t. This
indicates Alex is assigned the Organization Administrator role, but Don
isn’t.

Find projects where
you’re a project owner

On the Welcome page, click the Owner toggle button.

Find projects where
you’re a project
member

On the Welcome page, click the Member toggle button.

Chapter 2
Know Yourself

2-2

Action Do this:

Find your role in a
project you can
access

1. In the navigation bar, click Project Home .

2. To the right side of the page, click the Team tab.

If you see the Owner tag next to your name, you’re a project owner. If
you don’t see the Owner tag next to your name, you’re a project
member. If you can’t find your name, you’re a project non-member.

For example, in this graphic, Alex Admin is a project owner, and Don
Developer and Tina Testsuite are project members.

What Actions Can Each Role Perform in a Project?
Depending upon the project role assigned to you, you can perform various actions on
the pages of DevCS. Non-members can perform actions in a shared project only.

The following actions can be performed across all pages of the DevCS web interface.

Action Organization
Administrator Owner Member Non-Member

Collapse or
expand the left
navigation bar

Chapter 2
Know Yourself

2-3

Action Organization
Administrator Owner Member Non-Member

Switch to another
project

Open the help
menu

Use the user
menu

Project Home Page

Recent Activities Feed

Action Organization
Administrator Owner Member Non-Member

View the recent
activities feed

Filter the recent
activities feed

Search activities

Repositories Tab

Action Organization
Administrator Owner Member Non-Member

Create a Git
repository

View Git
repositories

Mark a Git
repository as your
favorite

Copy a Git
repository’s URL

Browse the
Maven repository

Copy the Maven
repository's URL

Browse a Docker
registry and copy
its URL

Chapter 2
Know Yourself

2-4

Graphs and Statistics Tab

Action Organization
Administrator Owner Member Non-Member

View graphs and
statistics

Team Tab

Action Organization
Administrator Owner Member Non-Member

View project
users

Export the users
list

Add or remove a
user

Change a user’s
project role

Git Actions

Action Organization
Administrator Owner Member Non-Member

Create a hosted
Git repository,
add an external
Git repository, or
import a Git
repository

Clone the Git
repository

Push commits to
the Git repository

Set the default
branch of a Git
repository

Set Git repository
branch
restrictions

View file contents
and commits

Chapter 2
Know Yourself

2-5

Action Organization
Administrator Owner Member Non-Member

Create or delete
branches and
tags

Compare files
and revisions

Lock or protect a
branch

Download archive
of a branch or a
tag

Add comments to
commits

View graphical
history of
commits

Index a Git
repository

Delete a Git
repository

Note that a non-member can clone a Git repository and make commits to it, but can't
push the commits to the remote Git repository.

Merge Requests Actions

Action Organization
Administrator Owner Member Non-Member

Create a merge
request

Add comments or
reply to a
comment

Subscribe to
merge request
email notifications

Note that all reviewers are automatically subscribed to merge request email
notifications. Non-Members can also subscribe to email notifications. Open the merge
request and click the CC Me button to subscribe.

When a merge request is created, all reviewers are assigned the REVIEWER role.
The submitter of the request is assigned the REQUESTOR role. This table lists
additional actions a REVIEWER or a REQUESTOR can perform.

Chapter 2
Know Yourself

2-6

Action REQUESTOR REVIEWER Other Users

Add or remove reviewers

Approve or Reject a merge request

Merge branches or close a merge request

A project Owner can always approve or reject a merge request, merge branches, or
close a merge request, even if he or she is not assigned the REVIEWER role.

Maven Actions

Action Organization
Administrator Owner Member Non-Member

Browse the
Maven repository

Download
artifacts from the
Maven repository

Upload artifacts
to the Maven
repository

Search artifacts
in the Maven
repository

Configure the
auto-cleanup of
the Maven
repository

Docker Actions

Action Organization
Administrator Owner Member Non-Member

Link an external
Docker registry

View external
Docker registries,
their repositories,
and images

Download an
image manifest of
an external
Docker registry
repository

Chapter 2
Know Yourself

2-7

Action Organization
Administrator Owner Member Non-Member

Delete an image
manifest of an
external Docker
registry repository

Builds Actions

Action Organization
Administrator Owner Member Non-Member

Create a job

View job details

View or edit the
job configuration

Run a build

Download
artifacts

View logs, such
as build console,
audit logs, and
Git polling log

Disable or delete
a job

Releases Actions

Action Organization
Administrator Owner Member Non-Member

Create a Release

Clone or Edit a
Release

Delete a Release

Chapter 2
Know Yourself

2-8

Deployments Actions

Action Organization
Administrator Owner Member Non-Member

Create a
deployment
configuration

Deploy or
redeploy a
configuration

View deploy logs

Environments Actions

Action Organization
Administrator Owner Member Non-Member

Create and
manage an
environment

Add and manage
an environment's
instances

Issues Actions

Action Organization
Administrator Owner Member Non-Member

Create an issue

Update an issue

Create and
configure issue
products

Create and
configure issue
tags

Create and
configure issue
custom fields

Chapter 2
Know Yourself

2-9

Boards Actions

Action Organization
Administrator Owner Member Non-Member

Create a board

Use Scrum board

Use Kanban
board

View burndown
charts and sprint
reports

When you create a board, you become the owner of the board. As the owner, you can
perform various board and sprint related actions.

Action Board
Owner

Other
Project
Members

Non-Member

Add issues to a sprint

Start a sprint

Delete a sprint

Configure the board

Wiki Actions

Action Organization
Administrator Owner Member Non-Member

Set the
organization's
default wiki
markup language

Set the project's
wiki markup
language

Create a wiki

View a wiki page

Edit a wiki page

By default By default

Delete a wiki
page

By default By default

Chapter 2
Know Yourself

2-10

The project Owner (or Member, if allowed) can grant the edit and delete rights of a wiki
page to all users; or restrict the edit access to Members or Owners only.

Snippets Actions

Action Organization
Administrator Owner Member Non-Member

Create a snippet

View snippet files

Insert a snippet
file or copy a
snippet file’s text

Clone the snippet
Git repository

Push the commits
to the snippet Git
repository

Download the
archive of the
snippet Git
repository

Like a snippet

Add comments

Note that a non-Member can clone the snippet's repository and make commits, but
can't push the commits to the Git repository.

The following table lists additional actions a snippet owner can perform.

Action Snippet
Owner

Other
Project
Members

Non-Member

Add, update, or remove snippet files

Create snippet from selection

Delete a snippet

Access Oracle Developer Cloud Service
You can access Oracle Developer Cloud Service (DevCS) from any Oracle Cloud-
supported web browser and from supported IDEs.

To access DevCS, you need the service URL, plus your identity domain name,
username, and password. If you’re a new user, you can sign in from the Oracle Cloud
home page. If you’re a returning user, you can find the service URL from the email
with the subject Welcome to Oracle Developer Cloud Service or Verify your Oracle
Developer Cloud Service.

Chapter 2
Access Oracle Developer Cloud Service

2-11

Your identity domain name and credentials are available in the email with the subject
Welcome to Oracle Cloud.

If you’re invited to Oracle Cloud, you can find those details in the email with the subject
New Account Information.

Chapter 2
Access Oracle Developer Cloud Service

2-12

Sign In From a Web Browser
You can sign in and open DevCS from the Oracle Cloud home page.

To view the list of supported browsers, see https://www.oracle.com/technetwork/
indexes/products/browser-policy-2859268.html.

1. In a web browser, go to https://cloud.oracle.com/home, and click Sign In.

2. On the Sign In page, click Sign In using Traditional Cloud Account.

3. From the Data Center drop-down list, select your data center.

4. In Traditional Cloud Account Name, enter your identity domain name and click
Go.

5. Enter your Oracle Cloud account credentials, and click Sign In.

6. On the Oracle Cloud Dashboard, in the developerNNNNN tile (where NNNNN is a

number), click Action and select Open Service Console.

Chapter 2
Access Oracle Developer Cloud Service

2-13

If the developerNNNNN tile isn’t visible, click Customize Dashboard. Under
Platform, find the Developer service, click Show, and then close the Customize
Dashboard window.

If you’re signing in to DevCS for the first time, you should have received an email with
the subject Verify your Oracle Developer Cloud Service. Open the email and click
the URL link in the email body to verify your email. This is required to receive email
notifications from the service.

After your email address is verified, you’ll receive another email with the subject
Welcome to Oracle Developer Cloud Service. This email contains the DevCS URL
that you can bookmark.

After you sign in to DevCS, you'll see the Organization page that displays all the
projects you're a member of, as well as your favorite projects, the projects you own,
and all the shared projects in your organization.
If you're assigned the DEVELOPER_ADMINISTRATOR (Developer Service Administrator)
identity domain role, you can manage all projects and the properties of the
organization. To open a project, click its name. You can't open a project if you're not its
member.

If you're assigned the DEVELOPER_USER (Developer Service User) identity domain role,
you can create a project or click its name to open it.

Chapter 2
Access Oracle Developer Cloud Service

2-14

Access from IDEs
Besides the Oracle Cloud web interface, you can also connect to DevCS from Eclipse
IDE, NetBeans IDE, and JDeveloper.

For more information, see:

• Eclipse IDE

• NetBeans IDE

• JDeveloper

Set Your User Preferences
One of the first steps in getting started with Oracle Developer Cloud Service (DevCS)
is to set up or join projects. Before doing so, however, you may want to change your
display name, email address, and enable or disable email notifications.

You can set your preferences from the User Preferences page. To get to this page,
click the user avatar, and select Preferences.

Update Your Display Name
By default, DevCS displays your Oracle Cloud account name as your display name
across all pages. If you want to change it, you can do so from the User Preference
page’s Profile tab.

Chapter 2
Set Your User Preferences

2-15

1. On the User Preferences page, click the Profile tab.

2. In First Name and Last Name, update your name.

The name is saved when the focus moves out of the field.

3. To the left of the User Preferences title, click Close to return to the last opened
page.

Update Your Email Address
By default, DevCS displays your Oracle Cloud email address across all pages and
sends email notifications, such as merge request notifications and issue notifications,
to this email address.

If you want DevCS email notifications sent to another email address, you can change it
on the User Preference page’s Profile tab. If you’re using an email address as your
Oracle Cloud login username, after changing the email address, your original Oracle
Cloud email address continues to be your login username.

After you provide another email address, you’ll receive a verification email. If you don’t
verify your email address, you won’t receive any email notifications; however, you can
continue to use DevCS.

1. On the User Preferences page, click the Profile tab.

2. In the Email Address field, enter your new email address.

The email address is saved when the focus moves out of the field.

3. Click the Re-send email button.

4. In the email that you receive, click the confirmation link to confirm the email
address.

After the verification, you’re redirected to the service page.

5. Open the Profile tab again and verify that the Email Address field displays the
Verified label.

6. To the left of the User Preferences title, click Close to return to the last opened
page.

Add Your Avatar Picture
DevCS displays your Gravatar picture as the avatar picture. If you don’t have a picture
set in Gravatar or don’t have a Gravatar account, DevCS displays your name initials
as the avatar picture.

To find out more about Gravatar, see https://gravatar.com/.

1. Open http://en.gravatar.com/ in your browser.

2. Click Create Your Own Gravatar.

3. Follow the on-screen instructions, enter the required details, and sign up.

Create your account with the same email address that you used to subscribe to
Oracle Cloud.

4. After activating your account, sign in to Gravatar.

5. Upload the avatar picture to your Gravatar account.

Chapter 2
Set Your User Preferences

2-16

The picture uploaded to your Gravatar account is automatically displayed as your
avatar picture in DevCS.

Configure Your Global Email Notifications
You can configure your preferences to receive email notifications when a component
(such as an issue or a branch of a Git repository) that you’re subscribed to is updated.
Your preferences apply to all projects where you are a member.

Note that your email address must be verified to receive email notifications.

1. On the User Preferences page, click the Notifications tab.

2. Select or deselect the Notify Me Of check boxes.

Some check boxes are selected by default. For a selected component, its
notifications from all projects of the organization where you’re a member are
enabled. You must subscribe or set up a watch on the component to get
notifications about its updates.

Select this check
box ...

To receive email notifications about:

Issue updates,
attachments and
comments

Issues you’re assigned to, or you’re watching.

Merge Request
updates and
comments

Merge requests where you’re a reviewer, or you’re watching.

New features, tips,
and events

New features, tips, and events from the DevCS team.

Service and system
maintenance
updates

Service and system maintenance updates from the DevCS team.

Build activities Jobs you’re watching.

SCM/Push
Activities

Git repository branches you’re watching.

Wiki page updates
and comments

Wiki pages you’re watching.

Project Updates User updates when you or a user is added to or removed from a
project, or the project role is changed.

Include my Own
Updates

Your own changes.

If you don’t select the check box, you won’t receive email
notifications for issues, merge requests, and Git updates that you
initiated or created even though the Issues updates, attachments
and comments, the Merge Request updates and comments, or
the SCM/Push Activities check boxes are selected.

3. To the left of the User Preferences title, click Close to return to the last opened
page.

Chapter 2
Set Your User Preferences

2-17

Upload Your Public SSH Key
If you want to connect to a Git repository using SSH, you must first generate a private-
public RSA SSH key pair and upload the public key to DevCS. If you use multiple
computers to access Git repositories, generate an SSH key pair from each computer
and upload its public key.

Generate an SSH Key
To generate an RSA SSH key pair, you can use any SSH client, including the Git CLI.

These steps assume you’re using Git CLI to generate the SSH keys.

1. Open the Git CLI.

2. On the command prompt, enter ssh-keygen -t rsa.

To generate a larger key, enter ssh-keygen -t rsa -b 4096. If you're using a
macOS version 10.13.6 (or higher), enter ssh-keygen -m PEM -t rsa.

3. When prompted, enter a file name for the key and press Enter.

If you don’t want to specify a file name, leave the name blank and press Enter. By
default, the key pair files are saved as id_rsa.pub and id_rsa in the .ssh sub-
directory under the Git HOME directory. For example, on Windows, the files are
saved in C:\Users\<USER_PROFILE>\.ssh\.

4. Enter a passphrase and press Enter. If you don’t want to specify a passphrase,
leave it blank and press Enter.

When prompted to confirm the passphrase, enter the same passphrase. If you
didn’t specify a passphrase earlier, leave it blank and press Enter.

Git CLI always looks at the C:\Users\<USER_PROFILE>\.ssh\ directory to access the
private key. If you aren’t using the Git CLI, you may need to configure your Git client or
your IDE to access the private SSH key. Check the Git client’s or IDE’s documentation
to find out how to do that.

Add the Public SSH Key to Your DevCS Account
After generating an SSH private-public key pair, add the public key to your User
Preferences page’s Authentication tab.

1. On the computer where you generated the SSH key pair, navigate to the directory
where the public key is saved.

2. Open the public key file in a text editor, select the contents, and copy them to the
clipboard.

3. In DevCS, click the user avatar, and select Preferences.

4. Click the Authentication tab.

5. Click Add Key.

6. In the New SSH Key dialog box, enter a unique name and paste the SSH key that
you copied in Step 2.

7. Click Create.

Chapter 2
Set Your User Preferences

2-18

8. To the left of the User Preferences title, click Close to return to the last opened
page.

See the News Banner
A banner displaying the latest news from the DevCS team is displayed in the page
header of the Organization and the Project Home page.

To navigate between news pages, click the navigation buttons. Click the See More link
to lean more about the open news. To expand or collapse the banner, use the Expand

 or Collapse icons. To close the banner, click Close .

If the banner isn't visible, follow these steps to enable it.

1. On the User Preferences page, click the General tab.

2. Select the Show News Banner on Organization and Project Home check box.

Set Up IDEs and Git Clients
You can use IDEs such as Eclipse IDE, NetBeans IDE, and Oracle JDeveloper to
access projects, as well as your project's Git repositories, issues, and builds. Before
using an IDE, you must install and configure the required plugins.

You can also use any Git client, such as the Git command-line interface (CLI), to
access Git repositories from your computer. You can’t access projects, issues, and
builds from a Git client.

Eclipse IDE
To access DevCS projects and Git repositories from the Eclipse IDE, install the plugins
required by Oracle Cloud and the Git from the Eclipse marketplace. After you install
the plugins, you can use the Eclipse IDE to develop applications for Oracle Cloud.

If you’re using the Oracle Enterprise Pack for Eclipse (OEPE) IDE, the Oracle Cloud
and the Git plugins are installed by default.

Eclipse IDE uses EGit to access and manage Git repositories. For more information
about EGit and the Git actions you can perform, see http://eclipse.org/egit/ and
the EGit documentation at http://wiki.eclipse.org/EGit/User_Guide.

1. Open the Eclipse IDE.

2. From the Help menu, select Eclipse Marketplace.

3. In the Search tab, search for Oracle Cloud Tools, and click Go.

4. In the search result, find the Oracle Cloud Tools plugin and click Install.

Chapter 2
Set Up IDEs and Git Clients

2-19

5. Click < Install More.

6. In the Search tab, search for EGit, and click Go.

7. In the search result, find the EGit - Git Integration for Eclipse plugin, and click
Install.

8. Click Install Now.

9. On the Confirm Selected Features page of the wizard, make sure that the check
boxes of Oracle Cloud Tools and EGit are selected, and click Confirm.

10. In the Review Licenses page, select the I accept the terms of the license
agreements option to agree to the licensing terms and click Finish.

11. Wait for the software to install.

12. If prompted, restart the IDE.

After installing the Git plugin, you should set the username and email properties.
DevCS pages display your username and email address as the committer's name and
email ID.

1. From the Window menu of the Eclipse IDE, select Preferences.

2. In the Preferences dialog box, search for Git.

3. In the Team > Git > Configuration page, set the properties.

Chapter 2
Set Up IDEs and Git Clients

2-20

NetBeans IDE
To access your projects and Git repositories from the NetBeans IDE, install the plugins
required by DevCS and Git.

1. Open the NetBeans IDE.

2. From the Tools menu, select Plugins.

3. In the Plugins dialog box, click the Available Plugins tab.

4. Search for Oracle Developer Cloud Service and Git, and select their Install
check boxes.

If a plugin is pre-installed, check the Installed tab and make sure the plugin is
active.

5. Click Install.

6. Read the license agreement and select the I accept the terms in all of the
license agreements check box.

7. Click Install.

After installing the Git plugin, you should set the username and email properties.
DevCS pages display your username and email address as the committer's name and
email ID.

1. From the Team menu, select Git > Open Global Configuration.

2. In the .gitconfig file, set the properties, and save the file.

JDeveloper
Oracle JDeveloper comes pre-installed with the plugins required by DevCS and Git.
No additional configuration is required.

Git Command-Line Interface
If you can’t use an IDE to access and update files of a Git repository, you can install
and configure a Git client on your computer. The Git command line-interface (CLI) is
the most popular Git client.

Here are the steps to download, install, and configure the Git CLI.

1. Download and install the Git CLI.

On Windows, use the Git Bash CLI to access project Git repositories. You can
download Git Bash (version 1.8.x or later) from http://git-scm.com/downloads.

On Linux and Unix, install Git using the preferred package manager. You can
download Git for Linux and Unix from http://git-scm.com/download/linux.

2. Configure variables to set up your name and email address. DevCS pages display
your username and email address as the committer's name and email ID.

• To configure your user name, set the user.name variable.

Example: On the Git CLI command prompt, enter git config --global
user.name "John Doe"

Chapter 2
Set Up IDEs and Git Clients

2-21

• To configure your email address, set the user.email variable.

Example: git config --global user.email "johndoe@example.com"

• To configure the proxy server or disable SSL, set http.sslVerify and
http.proxy variables.

Examples:

git config --global http.sslVerify false

git config --global http.proxy http://www.testproxyserver.com:80/

Tip:

To find out the value of a variable, use the git config <variable>
command.

Example:

git config user.name

Use Projects
After signing in to Oracle Developer Cloud Service (DevCS), you can create a project,
open a shared project, or open a project you are a member of.

Create a Project
From the Organization page, you can create an empty project, a project with a Git
repository, import a project from an OCI Object Storage or an OCI Object Storage
Classic container, or create a project from a template.

Empty Project
If you haven’t decided which applications you want to upload, or want to start afresh,
create an empty project. An empty project is a project with no pre-configured Git
repository or any other artifact.

1. On the Organization page, click + Create Project.

2. On the Project Details page of the New Project wizard, in Name and Description,
enter a unique project name and a project description.

3. In Security, select the project's privacy.

4. Click Next.

5. On the Template page, select Empty Project, and click Next.

6. On the Project Properties page, from Wiki Markup, select the project’s wiki
markup language.

Project team members use the markup language to format wiki pages and
comments.

7. Click Finish.

Chapter 2
Use Projects

2-22

With an Initial Git Repository
To upload application files soon after creating a project, create a project with an initial
Git repository. You can choose the Git repository to be empty, populated with a
readme file, or populated with data imported from another Git repository.

1. On the Organization page, click + Create Project.

2. On the Project Details page of the New Project wizard, in Name and Description,
enter a unique project name and a project description.

3. In Security, select the project's privacy.

4. Click Next.

5. On the Template page, select Initial Repository, and click Next.

6. On the Project Properties page, from Wiki Markup, select the project’s wiki
markup language.

Project team members use the markup language to format wiki pages and
comments.

7. In Initial Repository, specify how to initialize the Git repository.

• If you prefer a blank repository or want to push a local Git repository to the
project, select Empty Repository.

• Some Git clients and IDEs can’t clone an empty Git repository. Select
Initialize repository with README file if you’re using such a client or an IDE.
DevCS creates a readme.md file in the Git repository.

You can edit the contents of the readme.md file after creating the project, or
delete the file if you don’t want to use it.

• To import a Git repository from another platform such as GitHub or Bitbucket,
or from another project, select Import existing repository.

In the text box, enter the URL of the external Git repository. If the repository is
password protected, enter the credentials in Username and Password. Note
that DevCS doesn’t store your credentials.

8. Click Finish.

From an Exported Project
If you’ve created a project before and backed up its data to an OCI Object Storage
Classic container, you can create a project and import the data from the backed up
project.

To import project data from an OCI Object Storage Classic container, you need the
these details:

• Name of the target bucket

• Name of the exported archive file

• Private key and fingerprint of a user who has the BUCKET_INSPECT (or
BUCKET_READ) and OBJECT_READ permissions of the bucket

• Details of the compartment that hosts the bucket

After you have the required input values, import the project.

Chapter 2
Use Projects

2-23

1. On the Organization page, click + Create Project.

2. On the Project Details page of the New Project wizard, in Name and Description,
enter a unique project name and a project description.

3. In Security, select the project's privacy.

4. Click Next.

5. On the Template page, select Import Project, and click Next.

6. To import the project from OCI Object Storage Classic container, in Account
Type, select OCI Classic. Then, enter the required details

a. In Service ID, enter the value copied from the last part of the REST Endpoint
URL field of the Service Details page.

For example, if the value of REST Endpoint URL is https://
demo12345678.storage.oraclecloud.com/v1/Storage-demo12345678, then
enter Storage-demo12345678.

b. In Username and Password, enter the credentials of the user who can
access the archive file.

c. In Authorization URL, enter the URL copied from the Auth V1 Endpoint field
of the Service Details page.

Example: http://storagetria01234-
usoracletria12345.storage.oraclecloud.com/auth/v1.0.

7. Click Next.

8. On the Project Properties page, from Wiki Markup, select the project’s wiki
markup language.

Project team members use the markup language to format wiki pages and
comments.

9. In Container, select the container where the data was exported.

10. In File, select the exported file.

11. Click Finish.

If the import fails, an empty project is created. You can try to import the data again
without creating a project. To check the import log, see the History tab of the Data
Export/Import page under Project Settings.

From a Project Template
Using a project template, you can quickly create a project with predefined and
populated artifacts such as Git repositories and build jobs. When you create a project
from a project template, the defined artifacts of the project template are copied to the
new project. If you don’t want to use a copied artifact, you can delete it. Note that after
you create a project from a template, any updates made to the project template aren’t
reflected in the created project.

These types of project templates are available.

Project Template Description

Public templates The DevCS team creates and manages the public templates. They are
available to all users across all identity domains and are marked by a
Public Template label.

Chapter 2
Use Projects

2-24

Project Template Description

Shared templates Your organization users create and manage shared templates. They
are listed by name and are available to all users of the organization.

Private templates Not listed by name to general users, but accessible only through their
private keys. To create a project from a private project template, you
must’ve its private key.

The templates are visible by name only to the members of the project
template.

1. On the Organization page, click + Create Project.

2. On the Project Details page of the New Project wizard, in Name and Description,
enter a unique project name and a project description.

3. In Security, select the project's privacy.

4. Click Next.

5. On the Template page, select the project template, and click Next.

To create a project from a private template, select Private Template, and click
Next. On the Private Template Selection page, enter the private key in Private
Key, and click Next.

6. On the Project Properties page, from Wiki Markup, select the project’s wiki
markup language.

The markup language is used to format wiki pages, and comments on Issues and
Merge Request pages.

7. Click Finish.

In the new project, these artifacts are copied from the project template:

Artifacts Description

Git repositories Defined Git repositories of the project template are copied to the new
project. You can use the copied Git repositories and change their files
for your use, or delete them.

In the navigation bar, click Git to view the copied Git repositories.

Build jobs All build jobs of the project template are copied to the new project. You
can change these jobs, create their copies, or delete them.

In the navigation bar, click Builds to view the copied jobs.

Deployment
configurations

All deployment configurations of the project template are copied to the
new project. You can change the deployment configurations or delete
them.

In the navigation bar, click Deployments to see the copied
deployment configurations.

Wiki pages All wiki pages of the project template are copied to the new project.
You can change the wiki pages or delete them.

In the navigation bar, click Wiki to see the copied wiki pages.

Chapter 2
Use Projects

2-25

Artifacts Description

Announcements All active project announcements of the project template are copied to
the new project. You can’t edit the copied announcements as they are
read-only, but you can activate or deactivate them.

In the navigation bar, click Project Administration , and then click
Announcements to activate or deactivate them.

Links All link rules of the project template are copied to the new project. Link
rules enable you to convert plain text to links when the text is entered
in the commit and merge request comments.

In the navigation bar, click Project Administration and then click
Links to see the copied link rules.

From IDEs
You can create a DevCS project from JDeveloper and NetBeans IDE.

See Create a DevCS Project in JDeveloper and Create a DevCS Project in NetBeans
IDE.

Open a Project
You can open a project only if you're a member or an owner, or if the project is shared.
To open a project, on the Organization page, click its name. To search for a project,
use the filter toggle buttons or the search box.

To quickly access a project, click Favorite and add it to your favorites list. To see
your favorite projects, click the Favorites toggle button.

If you’re invited to join a project, you’ll find the project link in the email you received
when you were added to the project.

Chapter 2
Use Projects

2-26

To switch to another project from an open project, click next to the project name.
From the menu, click the project name to open.

After opening the project, you land on the Project Home page.

Chapter 2
Use Projects

2-27

Review a Project’s Summary
From the Project Home page, you can view a summary of the project's actions,
repositories, team members, and statistics.

Action How To

Navigate between
different pages of
DevCS

Use the project navigation bar on the left side of the page

See your project’s
software development
environments

Expand Environments. Click an environment to view its service
instances.

Check the latest
activities of the project

Use the recent activities feed. To filter the feed, click Select activity
categories .

See the Git, Maven,
and linked Docker
repositories of the
project

Click the Repositories tab.

See issues and merge
requests that require
your attention

Click the Graphs and Statistics tab.

Know your team
members

Click the Team tab.

Chapter 2
Use Projects

2-28

The Project Home page remembers the last opened tab (Repository, Graphs, or
Team) in the current browser session and opens it automatically next time you open
the Project Home page. If you sign out or close the browser and then sign in and
open the Project Home page, the Repositories tab opens by default.

Add and Manage Project Users
After creating a project, you’d want to add team members to collaborate on the project.
You’d also want to allow or limit their access to project data or actions they can
perform on the project.

In a project, you can add and manage team members from the Team tab of the
Project Home page. Before you add a user, make sure that the user is a member of
the identity domain and is assigned the DEVELOPER_ADMINISTRATOR (Developer Service
Administrator) or the DEVELOPER_USER (Developer Service User) identity domain role.

 You must be assigned the project Owner role to add and manage project users.

Action How To

Add a user to the
project 1. In the navigation bar, click Project Home .

2. Click the Team tab.

3. Click + Create Member.

4. In the Create Member dialog box, in Role, specify the new
member’s role.

5. In Username, enter or select the user from the list.

6. Click Add.

Add multiple users to
the project 1. In the navigation bar, click Project Home .

2. Click the Team tab.

3. Click + Create Member.

4. In the Create Member dialog box, select the Multiple Users check
box.

5. In Username, enter or select the user from the list, and click Add

User .
The selected user adds to the Username List text box. If you
know the usernames of users to add, enter the usernames
manually separated by a space, a comma, a semicolon, or a new
line.

6. Click Add.

Change a user’s
project role

To change a user’s role to Owner, mouse over the user name and

click Promote to Owner .

To change a user’s role to Member, mouse over the user name and

click Demote to Member .

Remove a user from
the project

Before removing a user, change the user's ownership of assigned
issues and merge requests.

Select the user and click Remove .

Chapter 2
Add and Manage Project Users

2-29

Add Users from Another Project
If the users that you want to add to your project are members of another project that
you can access, you can copy that project’s user list and add the users to your project.

1. Open the project that has users already added.

2. In the navigation bar, click Project Home .

3. Click the Team tab.

4. Click Export .

5. In the Members List Export dialog box, copy the names of project members.

6. Click OK or Close to close the dialog box.

7. Open the project where you want to add the copied users.

8. In the navigation bar, click Project Home .

9. Click the Team tab.

10. Click + Create Member.

11. In the New Member dialog box, select the Multiple Users check box.

12. In Username List text box, paste the copied names of project members.

13. Click Add.

Chapter 2
Add and Manage Project Users

2-30

3
Plan Your Project

After creating a project and adding team members, the next step would be plan your
project. Project planning includes tasks such as defining goals and objectives, creating
a schedule, identifying stakeholders, and setting up various software development
environments.

This table describes the Oracle Developer Cloud Service pages you’d use to plan your
project.

Use this page ... To:

Environments Add and manage project’s environments and their service instances.

Issues Create and track issues.

Boards Manage issues using Agile boards.

Manage Software Development Environments
An environment lets you define and manage Oracle Cloud PaaS and Oracle Cloud
Infrastructure service instances as a single entity.

You might create an environment for your QA team with an Oracle Database Cloud
Service instance to host data, say, and maybe an Oracle Java Cloud Service instance
to deploy the application to and run Selenium tests. You could then create a Stage
environment that uses the same Oracle Database Cloud Service instance as the QA
environment, but a different Oracle Java Cloud Service instance to deploy the
application to. You can also instantly see the health of all service instances comprising
each environment right on the Project Home page or on the Environments page,
without having to stop what you’re working on to go out to Oracle Cloud My Services
page.

You can access and manage the project’s environments from the Environments page.
You can create and delete environments, and add or remove service instances from
existing environments. You can also update the details of the environment and view
the details of its service instances. For each environment, the Service Instance tab
lets you capture information in a single place so you won’t have to hunt for it later,
such as the health status of service instances, their account names, tags, and service
IDs. The Details tab displays its details such as name, description, and tags of the
selected environment.

Tags associate a service instance to an environment. When you add a service
instance to an environment, a new tag is created, but you may remove it and add your
own tag or use the service instance’s tag. Open the service console to see the tags (if
any) of its instances.

If a tag is used in multiple environments of the same project or other projects, all
service instances associated with the tag are automatically available in those

3-1

environments. Removing a tag from an environment removes service instances using
the same tag from other environments too.

Set Up an Environment
You can create an environment and add service instances to it from different identity
domains. For example, you can add an Oracle Database Cloud Service instance from
one identity domain and an Oracle Java Cloud Service instance from another identity
domain.

To add or remove a service instance, you need credentials of a user who is assigned
the administrator role for the service type. To assign or modify roles, see Modifying
Identity Cloud Service User Roles in Managing and Monitoring Oracle Cloud.

1. In the navigation bar, click Environments .

2. Click Create (or Create Environment if the page is empty).

3. In Environment Name, enter a unique name. In Description, enter a description.

4. Click Create.

5. In the Service Instances tab, click Add.

6. In the Add Service Instances dialog box, select the check boxes of service
instances and click Add.

By default, the dialog box shows the service instances that you can access from
the current identity domain. To search for services from another identity domain or
account, click Edit and enter the details in the popup that opens.
To search for services in a traditional account, enter the identity domain name. To
search for a service in an IDCS account, enter the Identity Service ID in the idcs-
<hexadecimalID> format. You can find the identity domain name or the Identity
Service ID from the service details page that you open from My Services
Dashboard.

7. In the Add Environment Tags dialog box, specify tags to associate the selected
service instances to the environment, and click Add.

By default, a tag is provided, but you may remove it and add your own tags.
Spaces aren’t allowed. Press Enter after adding each new tag.

Chapter 3
Manage Software Development Environments

3-2

8. If necessary, repeat steps 4-6 to find and add service instances from different
identity domains and data centers.

Manage an Environment
After creating an environment, you can add and manage its instances.

This table lists actions you can perform to manage an environment and its instances.

Action How To

Edit the name and
description of an
environment

In the Details tab, click Edit. Edit the details and click Save.

Manage environment
definition queries

An environment may contain service instances from multiple identity
domains and a definition query defines the instances of an identity
domain. To see the details of those identity domains or edit them, click

Manage Environment Definition .

From the Manage Definition Environment dialog box, click New to add

a new identity domain query, or click Action to edit or delete an
existing query.

Start, stop, or restart
an instance

In the Service Instances tab, mouse-over the service instance, click

Action , and select Start, Stop, or Restart.
To check the status of the service, select Refresh Status from the

Action menu.

Remove a service
instance from an
environment

To remove a service instance from an environment, remove its tags.

In the Service Instances tab, mouse-over the service instance, click

Action , and select Remove. In the Remove Service Instance
dialog box, select the check boxes of tags to remove. In Password,
enter the password of the user whose username is displayed in the
dialog box, and click Remove.

Delete an environment In the environments list, mouse-over the environment, click Action

, and select Delete.

Remember that service instances of the environment aren’t deleted.

Track and Manage Tasks, Defects, and Features
Issues help you track new feature requests or enhancements, assign tasks to team
members, or file bugs.

You can create, update, and search issues from the Issues page, Agile boards, and
from IDEs. You can also use REST APIs to create, retrieve, and update issues (see
REST API for Managing Issues in Oracle Developer Cloud Service).

In a project, you can create an issue as a Task, Defect, or a Feature. If your team uses
an Agile Scrum board to update issues, Epic and Story types of issues are also
available. An Epic is a larger issue typically comprised of multiple smaller sub-issues
or Story issues. An Epic can span multiple sprints and must have sub-issues.

Here's a summary of the key steps you’d perform to create and track issues.

Chapter 3
Track and Manage Tasks, Defects, and Features

3-3

1. If you’re a project owner, set up products, components, and releases of your
project. These would be useful when you and your team members create and
assign issues to identify tasks, defects, and features.

If the default fields of issues don’t meet your requirement, create custom fields.

2. Create issues and assign them to your team members.

3. Update issues.

You can update issues from the Issues page or from an Agile board.

Set Up Issue Products and Custom Fields
Before creating and assigning issues to project members, you can define products,
components, default owners of components, and releases of your project. You can
create multiple product categories, components, and sub-components; customize the
releases; and add custom fields for your project.

 You must be assigned the project Owner role to add and manage issue products,
components, and custom issues.

Create and Configure Issue Products
When you define a product, you also define its releases and components. A product is
a category that represents an entity. A component is a subsection of a product. A
release is a release name or number of the product.

You can create multiple products for a project and select them from the Products
drop-down list on the create or edit issue page. Each product must have at least one
component and one release. For example, you can create a Report product with 1.0,
2.0, 3.0, and PS1 as its releases, and Sales, Marketing, and Demographics as its
components.

You can define products, components, and releases from the Products tab of the
Administration: Issue Tracking page.

To open the Products tab of the Issue Tracking page:

1. In the navigation bar, click Project Administration .

2. Click Issue Tracking.

3. Click the Products tab.

This table describes the product management actions you can perform.

Chapter 3
Track and Manage Tasks, Defects, and Features

3-4

Action How To

Create a product 1. Click + New Product.

2. On the Create Product page, in Name, specify a unique product
name.

3. To create a release, click + New Release, and enter a release
name.

To make a release the default release of the product, click Mark

as Default .

4. To create a component, click + New Component, enter a
component name, and select its default owner (optional).

To make a component the default component of the product, click

Mark as Default .

5. To create a Found In tag, click + New Found In Tag, and enter a
tag name.

6. Click Done.

To reorder a release or a component, mouse over the name and use
the drag-and-drop action to move it up or down.

View or edit a product From the products list, select the product. On the right side of the
page, view or edit its details.

Delete a product You can’t delete a product until issues or merge requests refer to it.
First, remove all issues and merge requests that refer to the product,
and then remove the product.

1. In the products list, click Delete to the right of the product
name.

2. In the Delete Product dialog box, click Yes to confirm.

Create and Configure Issue Custom Fields
If the default fields of issues don’t meet your requirement, you can custom fields for
the issues of your project. You can create and manage the fields from the Custom
Fields tab of the Issue Tracking page. While creating or updating an issue, the custom
fields are available in the Details section of the New or Edit Issue page.

1. In the navigation bar, click Project Administration .

2. Click Issue Tracking.

3. Click the Custom Fields tab.

You can create these types of custom fields:

• Single line input text

• Single selection

• Multi selection

• Long text input

• Time and Date

• Check box

Chapter 3
Track and Manage Tasks, Defects, and Features

3-5

This table describes the custom field management actions you can perform.

Action How To

Create a custom field 1. Click + New Custom Field.

2. On the Create Custom Field page, in Name, specify a unique
name.

3. In Label, enter the field's display label.

4. If you don’t want the custom field to appear as a parameter when
new issues are created, deselect the available for New Issues
check box.

5. From the Type drop-down list, select the field type.

If you select Single Selection or Multi Selection, click + New
Value to specify the field’s options.

6. Click Done.

View or edit a custom
field

From the custom fields list, select the field. On the right side of the
page, view or edit its details.

You can’t change a custom field's Name or Type. To edit the value of
Name or Type, remove the custom field and create the custom field
again.

Hide a custom field From the custom fields list, select the field. On the right side of the
page, select the Obsolete (hidden) check box.

Delete a custom field
1. In the custom fields list, click Delete to the right of the field

name.

2. In the Delete Custom Field dialog box, click Yes to confirm.

All existing issues are automatically updated to remove the custom
field.

Create Issues
You can create an issue from the Issues page, Agile boards, IDEs, and from REST
API. When you create an issue, it’s assigned a unique ID and is added to the issues
list on the Issues page.

When you create an issue, you specify its summary, type, severity and priority, due
date, tags, and release. You can assign the issue to a team member or to yourself, or
leave the field blank to assign the issue later to a team member.

Create an Issue from the Issues Page

1. In the navigation bar, click Issues .

2. Click New Issue.

3. On the New Issue page, in Summary and Description, enter the issue’s title and
description.

4. In Details, specify the issue type, its severity and priority, product details, release,
ownership, and project tags.

5. In Time, specify the due date and estimate (in days).

Chapter 3
Track and Manage Tasks, Defects, and Features

3-6

One day is estimated of 8 hours. To specify 3 hours, enter 0.375. To specify 2
days and 2 hours, enter 2.250.

6. In Agile, specify the effort estimate in Agile story points.

7. If there are any custom fields defined in your project, fill in the details, as required.

8. Click Create Issue.

Create an Issue from an IDE
You can create and manage issues from Eclipse IDE, NetBeans IDE, and JDeveloper.

• Manage DevCS Issues in the Eclipse IDE

• Manage DevCS Issues in the NetBeans IDE

• Manage DevCS Issues in JDeveloper

Search Issues
You can search for issues using the pre-defined filters under Standard Searches, My
Searches, Shared Searches, or Global Searches. If you can’t find the issue, you can
run a basic search or an advanced search.

To run a basic search, use the Search Issues box in the upper-right corner of the
Issues page. You can search for a term in the summary, description, or comments of

issues. To clear the search term, click Clear Filter .

To run an advanced search, use the Advanced Searches link. You can search for
issues using various parameters such as sprints, product, version, date, owner, type,
and priority.

To save the search query as a filter, click Save this search. To see the search query
expression, click Show Search String. Later, if you want to edit the search query,
click Edit this search.

Save a Custom Search
You can save your basic or the advanced search query as a custom search filter for
future use.

1. On the Issues page, run a basic or an advanced search.

2. On the search results page, click Save this search.

3. In the Save Search dialog box, enter the search name.

The custom search filter is available to you only. To share the search filter with
project members, in the Save Search dialog box, select the Shared check box. In
Share with the following users, select the users with whom you want to share
the search query.

To share the search filter with all project members, select the Share with
everyone check box.

4. Click OK.

If you didn’t select the Shared check box, the search query appears as a filter under
My Searches. If you selected the Shared check box, the search query appears as a

Chapter 3
Track and Manage Tasks, Defects, and Features

3-7

filter under Shared Searches. If you selected the Share with everyone check box,
the search query appears as a filter under Global Searches.
To edit a custom search query, mouse over the query under My Searches and click

Edit . To delete a custom search query, mouse over the query under My Searches
and click Delete .

Share Custom Search Filters
You can share your existing custom search filters with other project members, which
they can use to view the issues as you want.

Element Description

Share a search filter
with specific project
members

1. In My Searches, mouse over the filter link, and click Share .

2. In the Start Sharing Search dialog box, select the project member
names in Share with following users.

3. Click OK.

The filter link moves from My Searches to Shared Searches.

Share a search filter
with all project
members

1. In My Searches, mouse over the filter link, and click Share .

2. In the Start Sharing Search dialog box, select the Share with
Everyone check box.

3. Click OK.

The filter link moves from My Searches to Global Searches.

Stop sharing a search
filter

1. In Global Searches or Shared Searches, mouse over the filter

link and click Stop Share .

2. In the Stop Sharing Search dialog box, click OK.

If the search query is being used by other project members, the
dialog box shows their list.

When you stop sharing a search query, it’s removed from the Shared
Searches or Global Searches list of all project users.

View and Update Issues
To view or update an issue, click the issue’s summary or the ID link on the Issues
page. An issue link could also be found in the recent activities feed, wikis, Agile
boards, and merge requests.

While updating an issue, you can change its status, properties, reassign it to another
member, and change its priority or severity. You can also add comments in the
Comments tab, upload attachments in the Attachments tab, and check the update
history of an issue in the History tab. Updates made to issues can also be tracked in
the recent activities feed of the Project Home page.

Resolve an Issue
You can resolve an issue as Fixed, Invalid, Duplicate, Will not fix, Works for me, or
Need info.

Chapter 3
Track and Manage Tasks, Defects, and Features

3-8

1. Click the issue link to open it in the Issues page.

2. From the Status drop-down list, select Resolved.

3. From the Resolution drop-down list, select the resolution.

Sub-status Description

Fixed Indicates the issue has been fixed and is awaiting feedback from
the QA team.

After verifying the fix, the QA team sets the issue’s status to
Verified or Closed.

Invalid Indicates the issue isn’t a valid issue.

Will not fix Indicates the issue won’t be fixed.

Duplicate Indicates the issue is a duplicate of an existing issue.

Enter the issue ID of the existing issue in Duplicate Of.

Works for me Indicates the issue can’t be reproduced.

Need info Indicates the current issue description is insufficient to reproduce
the issue and more information is required.

Mark an Issue as Duplicate
If find a duplicate issue, mark it as a duplicate and specify the original issue.

1. Click the issue link to open it in the Issues page.

2. From the Status drop-down list, select Resolved.

3. From the Resolution drop-down list, select Duplicate.

4. In Duplicate Of, enter the original issue ID or the summary text, and select the
original issue.

5. Click Save.

Update Time Spent on an Issue
When you work on an issue, create a time spent entry each time you update the issue.

1. Click the issue link to open it in the Issues page.

2. In the Time section, click Add Time Spent.

3. In the Add Time Spent dialog box, in Time Spent, specify the number of days
you’ve spent on the issue.

4. To subtract the value specified in Time Spent from the existing value of
Remaining (if set), use the default Reduce remaining ... days by entered Time
Spent option.

If Remaining isn’t set, then the value specified in Time Spent is subtracted from
Estimate. The option is disabled if the Estimated field isn’t set.

To specify the remaining days manually, select the Set to option and specify the
remaining estimate.

5. In Comment, add a comment.

6. Click OK.

Chapter 3
Track and Manage Tasks, Defects, and Features

3-9

The Time Spent Log section shows the time spent entry of the time spent and

updates the graph. To edit the time spent entry, click Edit and update the fields in

the Edit Time Spent dialog. To remove a time spent entry, click Remove and
update the fields in the Update Time Spent dialog box. The remaining time is adjusted
automatically.

Associate an Issue with a Sprint
You can associate an issue with a sprint from the Edit Issue page. You can associate
only one sprint with an issue.

1. Click the issue link to open it in the Issues page.

2. In the Agile section, from the Sprint drop-down list, click the search box, and
select the sprint from the list.

3. Click Save.

Create a Relationship Between Issues
You can create a parent-child relationship between issues.

Action How To

Create a child issue to
an issue

You can create multiple child issues to an issue.

1. Click the issue link to open it in the Issues page.

2. Click + New Sub-issue.

3. Enter details for the new issue and click Create Issue.

4. In the header, click the parent issue ID to open the parent issue.
In the Associations section, verify the child issue ID.

Add a parent issue to
an issue

You can add only one issue as a parent to an issue.

1. Click the issue link to open it in the Issues page.

2. In the Associations section, in Parent Issue, enter the issue ID
or summary text of the parent issue, and select it.

3. Click Save.

Update Multiple Issues
On the Issues page, you can update multiple issues in a batch to apply the same
update.

1. In the issues list, press the Ctrl key or the Shift key and click the rows of issues.

You can also use the Space bar and Up-Down arrow keys to select the issues. To
select all issues, click Select All.

2. Click Update Selected.

3. On the Mass update page, select the check boxes of fields to update and specify
their values.

Note that the Component check box is enabled when its Product is selected.

Chapter 3
Track and Manage Tasks, Defects, and Features

3-10

The contents of Found In and Release are determined by Product. If Product
isn’t specified, the intersection of all known products is used. For example, if
product P1 has Found In set to 1.0, 2.0 and product P2 has Found In set to 1.0,
1.5, then with no product specified, the Found In is set to 1.0. The same logic is
applied for Release too.

4. Click Next.

5. On the Issues will be Updated page, verify the summary, and click Save.

Issues that fail the update are listed with a description of the error. To resolve the error
of multiple issues, select the error issues and click Update Selected. You’re navigated
to the Issues Selected page where the previous changes you made are shown.

If all issues are successfully updated, you’re navigated back to the Issues page.

Update Issues from IDEs
You can also update the issues from IDEs such as Eclipse IDE, NetBeans IDE, and
JDeveloper.

See these for more information:

• Manage DevCS Issues in the Eclipse IDE

• Manage DevCS Issues in the NetBeans IDE

• Manage DevCS Issues in JDeveloper

Watch an Issue
You can set up a watch on an issue and get email notifications when a project user
updates an issue, adds a comment, or adds or removes an attachment.

Action How To

Issues assigned to
you

By default, you get email notifications of issues assigned to you. If you
aren’t getting the email notifications, select the Issue updates,
attachments and comments check box in your user preferences
page.

1. In the branding bar, click the user avatar, and select Preferences.

2. Click the Notifications tab.

3. Select the Issue updates, attachments and comments check
box, if not selected.

4. To the left of the User Preferences title, click Close to return
to the last opened page.

Chapter 3
Track and Manage Tasks, Defects, and Features

3-11

Action How To

Issue created by
another user

1. In the branding bar, click the user avatar, and select Preferences.

2. Click the Notifications tab.

3. Select the Issue updates, attachments and comments check
box, if not selected.

4. To the left of the User Preferences title, click Close to return
to the last opened page.

5. Open the issue in the Issues page.

6. In the Details section, in CC, enter and select your name.

You may also enter other names of other users if you want to
notify them too.

7. Click Save.

To stop watching, remove your name from the CC field.

Issues you created but
are assigned to
another user

By default, you get email notifications of issues created by you. When
you create an issue and assign it to another user, your name is set in
the CC field of the issue. Open the issue in the Issues page and verify
your name in the CC field of the Details section.

To stop watching, remove your name from the CC field.

Use Agile Boards to Manage and Update Issues
The Agile methodology of software development is a type of incremental model that
focuses on process adaptability and customer satisfaction. In Oracle Developer Cloud
Service (DevCS), you use the Agile methodology to manage issues in Scrum and
Kanban boards.

If you are new to Agile, see http://agilemethodology.org/ for more information.

Before creating a board, appoint a team member as the Agile board’s leader. The
leader would be responsible to manage and update issues of the board. The leader
could set up team meetings to discuss the progress of issues and then update them in
the board.

Here's a summary of the key steps you’d perform as the board’s leader to create and
manage issues:

1. If required, create an issue query that returns issues you’d want to add to the Agile
board.

2. Create an Agile board (Scrum or Kanban).

3. Configure the working days, progress states, and other properties of the board.

4. Manage sprints or active issues.

5. Update progress states of issues.

6. Review reports and adjust the sprints, issues, or the board accordingly.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-12

Agile Boards Concepts and Terms
Before you start using the Agile boards, it's important that you know about key
components and concepts of the Boards page.

Component Description

Board A Board is used to display and update issues of the project using the
Agile methodology. There are two types of boards available: Scrum
and Kanban. When you create a board, you associate it with an issue
query and the issues returned by the query are added to the board.
You can create your own board or use a board created by a team
member.

In a board, you update issues by moving them to different progress
states of the board. Each progress state has some pre-defined
conditions that specify which issues can be assigned to a progress
state.

Scrum In a Scrum board, tasks are broken small actions to be completed in
fixed duration cycles, called as Sprints.

Kanban In a Kanban board, tasks are managed with a focus on continuous
delivery.

Sprint A Sprint is a short duration (usually, a week or two) during which your
team members try to implement a product component.

You add the product component related issues to a sprint. When you
start working on a product component, you start (or activate) its related
sprints. To update issues of a sprint, you must first activate the sprint
and add the sprint to the Active Sprints view.

Story Points A Story Point is a metric that defines the relative effort of work and
helps to understand how complex the issue is.

Backlog view In a Scrum board, the Backlog view displays issues of the board,
active and inactive sprints of the board, and the sprints from other
boards that contain issues matching the board’s query.

Each sprint lists issues added to it. The Backlog section (the last
section of the Backlog page) lists all open issues that aren’t part of any
sprint yet. The Backlog view doesn’t show the resolved and closed
issues.

In a Kanban board, the Backlog view displays active issues (issues
being actively worked on) in the Active Issues section and a backlog
list of issues (issues aren’t being actively worked on) in the Backlog
section. The Epic issues don’t appear in the Backlog view.

Active Sprints view Available in a Scrum board, the Active Sprints view lists all active
sprints of the board and enables you to update an issue status by
dragging and dropping it to the respective status columns.

Active Issues view Available in a Kanban board, the Active Issues view enables you to
manage the progress of active issues.

Reports view Displays various reports and charts that summarize the progress of
issues.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-13

Create and Configure Agile Boards
An Agile board contains issues returned by an issue filter. If none of the pre-defined or
shared issue filters meet your requirement, create a custom search query and save it
as a filter.

Create a Board
You can create a board from the Boards page. When you create a board, you specify
the board type, an issue search query, and the estimation criteria.

 You must be a project member to create a board.

1. In the navigation bar, click Boards .

2. Click + Create Board.

3. In the Create Board dialog box, enter a name and select the board type.

4. In Search, select the standard or custom issue search query. By default, All
Issues is selected.

5. In Estimation, select the estimation type as Story Points or Estimated Days.

6. Click Create.

A board is created and issues matching the search query are added to the board, and
you’re navigated to the Backlog view. The board’s owner role is also granted to you.

Note that Resolved, Verified, and Closed issues aren’t added to the board. To add
new issues to a board, edit the issue search query to reflect the issues in its search
result. The issues are automatically reflected in the Backlog list of the board.

You can also create a board from the Switch Board menu. From the board name
menu, click + New Board.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-14

After creating a board, you can configure its working days, progress states, and
conditions.

Add and Manage Progress States of a Board
A progress state defines the progress of issues in a board. By default, each board has
three progress states (To Do, In Progress, and Completed), but you can add more.
Each progress state has some pre-defined conditions. A condition defines an issue’s
state. You cannot add, edit, or delete a condition.

You can add and manage progress states from the Configure Board page of the
board.

1. Open the board.

2. From the Board drop-down list, select Configure.

3. Click the Progress States tab.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-15

Action How To

Edit a progress state 1. From the progress states list, select the progress state.

2. To edit the name and description, in Name and Description,
enter a new name and description.

3. To update the capacity (number of issues in the progress state),
update the value in Suggested Issue Capacity.

If the number of issues exceeds the suggested capacity, a
warning icon and a message appears in the Active Sprints or the
Active Issues view.

4. To remove a condition, select the condition from the Conditions
list, click > and move it to the Unassigned Conditions list.

To add a condition, select the condition from the Unassigned
Conditions list, click < and move it to the Conditions list.

For example, if you remove the Resolved - WorksForMe from the
Completed progress state, issues in the Resolved -
WorksForMe state don’t appear in the board.

Add a progress state A condition can be associated with one progress state only. Before you
add a progress state, remove the conditions that you want to apply to
the new progress state from their existing progress states.

1. Click + Add Progress State.

2. In Name and Description, enter a name and description.

3. In Suggested Issue Capacity, specify the number of issues to be
allowed.

If the number of issues exceeds the suggested capacity, a
warning icon and a message appears in the Active Sprints or the
Active Issues view.

4. To mark the state as the Completed state, select the Completed
State check box.
The check box is disabled if a Completed state exists or the
current state isn't the last state in the list.

5. To add a condition, select the condition from the Unassigned

Conditions list, click Move to Conditions and move it to the
Conditions list.

6. To remove a condition, select the condition from the Conditions

list, click Move to Unassigned Conditions and move it to the
Unassigned Conditions list.

Reorder progress
states

In the progress states list, use the Up and Down order buttons to
change the orders of the states. The buttons appear when you mouse
over the state name. The order of states in the list is reflected in the
Swimlanes and Columns views.

The Completed state must be the last state in the list. If Completed
isn’t the last state in the list, a Warning icon appear next to the
state name. Any changes made to the page aren’t saved until the
Completed state is the last state in the list.

Delete a progress
state

In the progress states list, mouse over the progress state, and click

Delete . All conditions of the deleted progress state move to the
Unassigned Conditions list and are available to new progress states.

You can’t delete the Completed state, but you can delete other states.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-16

Click Save when you’re finished.

Configure Working Days of a Board
You can configure the working days and non-working of a week by modifying the
board’s calendar.

The working and non-working days that you specify affect the output of the Sprint
Report, Issues Report, and the Burndown Chart.

1. Open the board.

2. From the Board drop-down list, select Configure.

3. Click the Working Days tab.

4. On the Configure board page, specify standard working and non-working days.

• In Standard Working Days, select or deselect the check boxes of the working
weekdays.

• In Non-Working Days, click + Add to add a non-working date (such as a
holiday). From the calendar, select the date.

To edit a non-working day, select it from the list, and select the new date in the
calendar.

• Select (or deselect) the Show Non-Working Days in Sprint Report Chart
check box to show (or hide) the non-working days in the sprint reports.

If selected, the non-working days appear in gray at the top in the burndown
charts.

5. Click Save.

Configure and Manage a Board
From the Board menu, you can select options to configure, duplicate, and delete the
board. From the Configure Board page, you can edit and update the name,
description, associated issue search query, and estimation criterion of a board.

Action How To

Edit a board’s name
and description

1. From the Board drop-down list, select Configure.

2. In the General tab, in Name and Description, update the values.

3. Click Save.

Edit the board’s
search query and
estimation

1. From the Board drop-down list, select Configure.

2. In the General tab, in Search select the search query. In
Estimation, enter the new estimation value.

3. Click Save.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-17

Action How To

Enable or disable time
tracking

If the time tracking is enabled, then the Active Sprints page shows
the estimation in Remaining Days only. The Backlog page shows the
estimation in Remaining Days if estimation metric is Estimated Days.

If the time tracking is disabled, then the Backlog, Active Sprints and
Reports pages show the chosen metric for Estimation (estimated
days or story points) instead of Remaining Days and Time Spent.

1. From the Board drop-down list, select Configure.

2. In the General tab, in Time Tracking, select On or Off to enable
or disable time tracking.

3. Click Save.

Create a copy of a
board

To create another board with similar properties of an existing board
that you can access, instead of creating a new board and manually
copying properties, you can create a copy of the board. The copied
board has properties include time tracking, progress states, and
working days.

1. From the Board drop-down list, select Copy Board.

2. In the Copy Board dialog box, click Copy.

Delete a board You can’t delete a Scrum board with active sprints. You must complete
the active sprints before you delete the board. You can delete a
Kanban board with active issues or archives. All issues of the deleted
board are returned to the backlog.

1. From the Board drop-down list, select Delete Board.

2. In the Delete Agile Board dialog box, select the I understand that
my agile board will be permanently deleted check box and click
Delete.

Use Scrum Boards
Using a Scrum board, you manage and update issues using sprints.

A Scrum board has three views: Backlog, Active Sprints, and Reports. The Backlog
view lists all active and inactive sprints of the board, and a backlog list of issues. The
Active Sprints view enables you to manage the progress of issues of an active sprint.
The Reports view displays various issue reports.

Create and Manage Sprints
You can create and manage sprints from the Backlog view of a Scrum board. You
must be a project owner or the board owner to create, edit, update, or delete a sprint.

When an issue is assigned to a sprint, the sprint is displayed in all boards whose issue
query returns any issue of the sprint in its result. You might find such sprints in your
board. Note that you can’t edit or start sprints that you didn’t create, or sprints that
weren’t created in the current board.

If there are no issues assigned to a sprint, the sprint is available only in the board in
which it was created.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-18

Action How To

Create a sprint 1. From the toggle buttons, click Backlog.

2. In the Backlog view, click + Add Sprint.

3. In the Add Sprint dialog box, enter the sprint name. If the Scrum
board uses story points, then specify the sprint’s capacity.

4. Click OK.

Edit a sprint 1. From the toggle buttons, click Backlog.

2. In the Backlog view, for an inactive sprint, click ... and select Edit
sprint.
If the sprint is active (or started), click Edit Sprint.

3. In the Edit Sprint dialog box, you can update the sprint’s name,
board, start and end dates, and its capacity in story points.

The Story Points field is available if story points were selected as
the estimation for the board.

4. Click OK.

Start a sprint When you or your team begin work on a sprint and want to update the
issues of the sprint, you must first start (or activate) it.

1. From the toggle buttons, click Backlog.

2. In the Backlog view, for the sprint that you want to start, click Start
Sprint.

3. In the Start Sprint dialog box, specify the start and end dates of
the sprint.

If necessary, update the sprint’s name and its estimate.

4. Click Start.

The started sprint is now available in the Active Sprints view.

Reorder a sprint In the Backlog view, by default, the inactive sprints (also called as
future sprints) in the order they were created. You can change their
display order manually.

For the inactive sprint that you want to move up or down, click ... and
select Move sprint up or Move sprint down.

You cannot change the order of active sprints. The active sprints are
ordered by Start Date in the Backlog view. If two sprints have the same
Start Date, then they are ordered by name.

Move a sprint to
another board

1. From the toggle buttons, click Backlog.

2. In the Backlog view, for an inactive sprint, click ... and select Edit
sprint.
If the sprint is active (or started), click Edit Sprint.

3. In the Edit Sprint dialog box, from the Board drop-down list, select
the target board.

4. Click OK.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-19

Action How To

Delete a sprint You can delete an inactive sprint from the Backlog view of the board.
You can’t delete an active sprint.

For the inactive sprint that you want to delete, click the ... and select
Delete Sprint. The sprint is deleted and all issues of the sprint are
moved to the Backlog list.

Add and Manage Issues of a Sprint
From the Backlog view, you can add issues to or remove issues from a sprint using
drag-and-drop actions.

When you add or remove issues from a sprint, keep a watch on the capacity of the
sprint. If the total story points of the sprint’s issues are more than the story points
capacity of the sprint, a warning message appears. In such a case, you can either
increase the capacity of the sprint or move some issues to another sprint.

Action How To

Add an issue to a
sprint

1. From the Backlog list or from the sprint that contains the issue,
drag the issue to the target sprint.

2. In the blue dotted rectangle that appears when you drag the issue
to the target sprint, drop the issue in the blue rectangle.

You can also right-click the issue and select Send to > target sprint
name to move the issue to the target sprint. A Sprint field is also added
to the issue indicating the sprint it’s associated with.

If you’re unable to use the drag-and-drop action, click the issue link to
open it in the Issues page. Navigate to the Agile section. From the
Added To drop-down list, select the sprint.

Create an issue from
the sprint

In the sprint, below the issues table, click New Issue. On the New
Issue page, enter the issue’s details, and click Create Issue.

The new issue is automatically associated with the current sprint.

Remove an issue from
a sprint

1. From the sprint that contains the issue, drag the issue to the
Backlog list.

2. In the blue dotted rectangle that appears when you drag the issue
to the Backlog list, drop the issue in the blue rectangle.

You can also right-click the issue and select Send to > Backlog to
remove the issue from the sprint.

If you’re unable to use the drag-and-drop action, click the issue link to
open it in the Issues page. Navigate to the Agile section. In the Added

To field, click .

Update Issues of an Active Sprint
The Active Sprints view enables you to manage the progress of issues of an active
sprint.

You can use either the Swimlanes sub-view or the Columns sub-view to view the
issues of the active sprint. The Swimlanes sub-view displays issues categorized into

Chapter 3
Use Agile Boards to Manage and Update Issues

3-20

issue owners (member whom the issue is assigned to). For each issue owner, the
issues are categorized into vertical progress (or status) columns.

The Columns sub-view displays the issues categorized into vertical progress columns.

By default, each board contains three columns: To Do, In Progress, and Completed. If
required, you can add more progress columns to the board from the Configure Board
page.

Update an Issue’s Progress in an Active Sprint
You can update an issue’s progress in the Active Sprints view by dragging it from one
progress column to another.

If you’re unable to use the drag-and-drop action, click the issue ID to update its
progress from the Edit Issue page.

1. Open the board that owns the active sprint.

2. Click Active Sprints.

3. Select the issue list view: Swimlanes or Columns.

4. To update an issue’s progress, drag and drop it from one column to another.

For example, when a team member starts work on an issue, drop the issue to the
In Progress column (if exists).

5. In the Change Progress wizard, from the To drop-down list, select the new status
of the issue. If necessary, enter a comment in the Comment field.

If you want to update the time spent on the issue, click Next.

6. Click OK.

If the board uses story points, the number to the right of the column name is updated.
An activity is also added to the History tab of the issue’s Activity section.

Update Time Spent on an Issue

When you move an issue from one state to another, you can also update the time
spent on the issue in the Change Progress wizard.

In the Add Time Spent page, in Time Spent, specify the number of days you’ve spent
on the issue. In Remaining, use the default Reduce remaining ... days by entered
Time Spent option to automatically subtract the value specified in Time Spent from
the existing value of Remaining, if Remaining was set previously.

If Remaining was not set, then the value specified in Time Spent is subtracted from
Estimate. The option is disabled if the Estimated field isn’t set.

To specify the remaining days manually, select the Set to option and specify the
remaining days.

Reschedule a Sprint
While updating issues of a sprint, you can change the start or end date of the sprint, or
update its capacity from the Edit Sprint dialog box.

1. In the Backlog view, for the sprint you want to reschedule, click Edit sprint.

2. In the Edit Sprint dialog box, change the start and end dates.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-21

To update the sprint’s capacity, update Story Points . The field is available if story
points were selected as the estimation of the board.

3. Click OK.

Complete a Sprint
You can complete a sprint from the Active Sprints view of the board.

You must be a project owner or the board owner to mark the sprint as completed.

1. Open the board the sprint belongs to.

2. Click Active Sprints.

3. In the sprint drop-down list on the left, select the sprint.

4. Click Complete Sprint.

5. In the Complete Sprint dialog box, select the I understand that it will be
removed from the Active Sprint view check box, and click Complete Sprint.

After a sprint is complete, it’s removed from the Active Sprints view. A warning
displays if there are any incomplete issues in the sprint. All incomplete issues go back
to the next inactive sprint, or to the Backlog section if there are no inactive sprints. The
Sprint Report page opens showing the day-by-day progress of the sprint issues.

Review Issue Reports of a Scrum Board
Various reports are available in the Reports view of a Scrum board.

Report Description

Burndown Chart Displays the remaining amount of work to be finished in a sprint or an
epic.

Cumulative Flow
Chart

Displays the total number of issues in each of the board's progress
states over time.

Control Chart Displays information about issue’s progress state change event on the
timeline.

Sprint Report Displays complete, incomplete and open issues of a sprint.

Epic Report Displays complete, incomplete and open stories of an epic.

Velocity Report Displays the velocity chart of completed sprints.

See Review Agile Reports and Charts.

Use Kanban Boards
Using a Kanban board, you manage issues using Active issues.

A Kanban board has three views: Backlog, Active Issues, and Reports. The Backlog
view lists active issues (issues that’re being actively worked on) and a backlog list of
issues (issues aren’t being actively worked on). The Active Issues view enables you to
manage the progress of active issues. The Reports view displays various issue
reports.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-22

Add and Manage Active Issues
From the Backlog view, you can add issues to or remove issues from the Active Issues
list using drag-and-drop actions.

When you add or remove issues from the Active Issues list, keep a watch on its
capacity. If the total story points of active issues are more than the story points
capacity of the board, a warning message appears. In such a case, you can either
increase the capacity of the board or remove some issues from the Active Issues list.

Action How To

Activate an issue 1. From the Backlog list, drag the issue to the Active Issues section.

2. In the blue dotted rectangle that appears when you drag the issue
to the Active Issues section, drop the issue in the blue rectangle.

In the Backlog list, you can also right-click the issue and select Send
to >Active Issues to move the issue to the Active Issues list. Issues
already added to sprints of Scrum boards aren’t available in the
Kanban board Backlog list.

If you’re unable to use the drag-and-drop action, click the issue link to
open it in the Issues page. Navigate to the Agile section. From the
Added To drop-down list, select the Active Issues option under the
board name.

Create an issue from
the Active Issues
section

In the Active Issues section, below the issues table, click New Issue.
In the New Issue page, enter the issue’s details, and click Create
Issue.

The new issue is automatically activated and associated with the
Kanban board.

Remove an issue from
the Active Issues list

1. From the Active Issues section, drag the issue to the Backlog list.

2. In the blue dotted rectangle that appears when you drag the issue
to the Backlog list, drop the issue in the blue rectangle.

You can also right-click the issue and select Send to > Backlog to
remove the issue.

If you’re unable to use the drag-and-drop action, click the issue link to
open it in the Issues page. Navigate to the Agile section. In the Added

To field, click Remove .

Update Active Issues
The Active Issues view enables you to manage the progress of active issues.

You can use either the Swimlanes sub-view or the Columns sub-view to view the
active issues. The Swimlanes sub-view displays issues categorized into issue owners
(member whom the issue is assigned to). For each issue owner, the issues are
categorized into vertical progress (or status) columns. The Columns sub-view displays
the issues categorized into vertical progress columns.

By default, each board contains three columns: To Do, In Progress, and Completed. If
required, you can add more progress columns to the board from the Configure Board
page.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-23

From the Active Issues view, you can update an active issue’s progress state and
archive the completed issues.

Update an Active Issue’s Progress State
You can update an active issue’s progress in the Active Issues view by dragging it
from one progress column to another.

If you’re unable to use the drag-and-drop action, click the issue ID and update its
progress from the Edit Issue page.

1. Open the board that owns the active issues.

2. Click Active Issues.

3. Select the desired issue list view: Swimlanes or Columns.

If necessary, use the sort list boxes to sort the active issues.

4. To update an issue’s progress, move it from one column to another.

For example, when a team member starts work on an issue, move the issue to the
In Progress column (if exists).

5. In the Change Progress wizard, from the To drop-down list, select the new status
of the issue. If necessary, enter a comment in the Comment field.

If you want to update the time spent on the issue, click Next.

6. Click OK.

An activity is added to the History tab of the issue’s Activity section.
Update Time Spent on an Issue

When you move an issue from one state to another, you can update the time spent on
the issue in the Change Progress wizard.

In the Add Time Spent page, in Time Spent, specify the number of days you’ve spent
on the issue. In Remaining, use the default Reduce remaining ... days by entered
Time Spent option to automatically subtract the value specified in Time Spent from
the existing value of Remaining, if Remaining was set previously.

If Remaining was not set, then the value specified in Time Spent is subtracted from
Estimate. The option is disabled if the Estimated field isn’t set.

To specify the remaining days manually, select the Set to option and specify the
remaining days estimate.

Archive Completed Issues
You can create an archive of all issues listed in the Completed progress state from the
Active Issues view of the board. The archived issues are then removed from the Active
Issues view.

Before you archive completed issues, make sure that all parent and child issues are
moved to the Completed progress state before you create an archive. An error is
reported if the Completed progress state contains a completed parent issue with an
open child issue, or a completed child issue with an open parent issue.

1. Open the board.

2. Click Active Issues.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-24

3. Verify the issues list in the Completed progress state.

Note that the list may include some issues that’re filtered out of the display of the
current Active Issues view by the board’s query.

4. Click Archive Completed Issues.

5. In the Archive Completed Issues dialog box, in Archive Name edit the archive
name (by default it is Archive <date-time stamp>) if required, verify the list of
issues in the Completed progress state, select the I understand that the
archived issues will be removed from the Active Issue view check box, and
click Archive Issues.

If you edited the default archive name, make sure that it’s unique across all
Kanban boards and Scrum sprint names. The name must not be longer than 255
characters.

The completed issues are archived in the specified archive name and the Issues
Report of the archive opens in the Reports view.

Review Issue Reports of a Kanban Board
Various reports are available in the Reports view of a Kanban board.

Report Description

Burndown Chart Displays the remaining amount of work to be finished in issues or epic.

Cumulative Flow
Chart

Displays the total number of issues in each of the board's progress
states over time.

Control Chart Displays information about issue’s progress state change event on the
timeline.

Issues Report Displays active and archived issues.

Epic Report Displays complete, incomplete and open stories of an epic.

Velocity Report Displays the velocity chart of completed issues.

See Review Agile Reports and Charts.

Review Agile Reports and Charts
Various types of reports and charts are available for your Scrum and Kanban boards.

Burndown Chart
Use the Burndown Chart to view the remaining amount of work to be finished in issues
or epics.

The Burndown Chart is available in Scrum boards and Kanban boards for issues and
epics.

1. Open the board.

2. Click Reports.

3. Click Issues or Epic .

4. Click the Burndown Chart tab.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-25

Scrum Boards

For a Scrum board, the chart for your active sprint is displayed.

• To use a different sprint, click the Sprint drop-down.

• To use a different estimate criterion, click the Burndown drop-down and select
from Estimated Days, Story Points, or Number of Issues. The Y-axis in the
chart reflects this setting.

The Burndown Chart displays the configured Tracking Statistic for the active sprint,
start and end dates, capacity for the sprint, and a guideline for completing the statistic
you’re tracking in the sprint. The horizontal axis in a Burndown Chart tracks time, and
the vertical axis represents your configured Tracking Statistic: story points, estimation
days, or number of issues. Use a Burndown Chart to see the total work remaining and
to increase the accuracy of predicting the likelihood of achieving the sprint goal. By
tracking the remaining work throughout the iteration, your team can manage its
progress and respond appropriately if things don’t go as planned. If Time Tracking is
enabled for the board, the Burndown Chart always shows Remaining Days and Time
Spent.

The Burndown Chart includes all issues in the sprint, those that’ve been completed
and those that are pending. The mapping of statuses to your board determines when
an issue is considered Not Completed or Completed.

At the bottom of the page there’s a historical table of events associated with the sprint,
including issues that’re incomplete at the end of the sprint.

Kanban Boards

For a Kanban board, the chart for your active issues is displayed. To choose an
archived issue version, click the Issues list and select the desired option.

The Burndown Chart displays the configured Tracking Statistic for the active issues.
The horizontal axis in a Burndown Chart tracks time, and the vertical axis represents
your configured Tracking Statistic: story points, estimation days, or number of issues.
Use a Burndown Chart to see the total work remaining and to increase the accuracy of
predicting the likelihood of achieving the goal. By tracking the remaining work
throughout the iteration, your team can manage its progress and respond
appropriately if things don’t go as planned. If Time Tracking is enabled for the board,
the Burndown Chart always shows Remaining Days and Time Spent.

The Burndown Chart includes all issues, completed and pending. The mapping of
statuses to your board determines when an issue is considered Not Completed or
Completed.

At the bottom of the page there’s a historical table of events associated with the
issues, including issues that’re incomplete.

Sprint Report
Use the Sprint Report to view completed and not completed, or open, issues of a
sprint.

The Sprint Report is available for sprints in Scrum boards only.

1. Open the board.

2. Click Reports.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-26

3. If necessary, click .

4. Click the Sprint Report tab. The Sprint Report Chart for your active sprint is
displayed.

• To select a different sprint, from the Sprint drop-down list, select the sprint.

• To select a different estimate criterion, from the Burndown drop-down list,
select Estimated Days, Story Points, or Number of Issues. The Y-axis in
the chart reflects this setting.

The Sprint Report provides a day-by-day progress report with much of the same
information that’s in the Burndown Chart, albeit in a slightly different format. The Sprint
Report shows the list of issues in each sprint. It can provide useful information for your
Sprint Retrospective meeting and for mid-sprint progress checks. The mapping of
statuses to your board determines when an issue is considered "Completed" or "Not
Completed”. If Time Tracking is enabled for the board, the Sprint Report chart will
always show Remaining Days and Time Spent.

At the bottom of the page, the Sprint Report displays tables of completed, open, and
removed issues.

Issues Report
Use the Issues Report to view active issues and archived issues.

The Sprint Report is available for issues in Kanban boards only.

1. Open the board.

2. Click Reports.

3. If necessary, click Issues .

4. Click the Issue Report tab. The Issue Report Chart of active issues is displayed.

To select an archived issue version, click the Issues drop-down list and select the
desired option.

The Issues Report provides a day-by-day progress report with much of the same
information that is in the Burndown Chart, albeit in a slightly different format. The
Issues Report shows the list of active issues and completed issues. If Time Tracking is
enabled for the board, the Issue Report chart will always show Remaining Days and
Time Spent.

At the bottom of the page, the Issues Report displays a table of issues. If Active
Issues (default) is selected in the Issues drop-down list, the table lists completed and
non-completed issues. If an archive is selected in the Issues drop-down list, the table
lists only completed issues.

For each issue, the report shows the original estimate value and modified values in
Estimated Days (or Story Points).

Epic Report
Use the Epic Report to view completed and not completed, or open, stories of an epic.

The Epic Report is available in Scrum boards and Kanban boards for epics.

1. Open the board.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-27

2. Click Reports.

3. Click Epic .

4. Click the Epic Report tab.

For Scrum Boards

The Epic Report Chart for your active sprint is displayed.

• To select a different epic, from the Epic drop-down list, select the epic.

• To select a different estimate criterion, from the Burndown drop-down list, select
Estimated Days, Story Points, or Number of Issues. The Y-axis in the chart
reflects this setting.

The Epic Report provides a day-by-day progress report with much of the same
information that’s in the Burndown Chart, albeit in a slightly different format. The Epic
Report shows the list of stories (or sub-issues) in each epic. It can provide useful
information for your Epic Retrospective meeting and for mid-sprint progress checks.
The mapping of statuses to your board determines when a story is considered
"Completed" or "Not Completed”. If Time Tracking is enabled for the board, the Epic
Report chart will always show Remaining Days and Time Spent.

At the bottom of the page, the Epic Report displays tables of completed, open, and
removed stories.

For Kanban Boards

The Epic Report Chart for your active issues is displayed. To select an archived issue
version, click the Issues list and select the desired option.

The Epic Report provides a day-by-day progress report with much of the same
information that’s in the Burndown Chart, albeit in a slightly different format. The Epic
Report shows the list of stories (or sub-issues) in each epic. It can provide useful
information for your Epic Retrospective meeting and for progress checks. The
mapping of statuses to your board determines when a story is considered "Completed"
or "Not Completed”. If Time Tracking is enabled for the board, the Epic Report chart
will always show Remaining Days and Time Spent.

At the bottom of the page, the Epic Report displays tables of completed, open, and
removed stories.

Velocity Report
Use the Velocity Report to view the velocity chart of completed sprints.

The Velocity Report is available for Scrum boards only.

1. Open the board.

2. Click Reports.

3. Click Velocity .

4. From the Estimation drop-down list, select Estimated Days, Story Points, or
Number of Issues.

5. Depending on the value selected in Estimation, Velocity Chart is displayed for
Committed and Completed values.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-28

If Story Points is selected in Estimation, then the chart also shows the
Suggested Capacity for each sprint as a dashed horizontal line.

The Velocity Report shows a Velocity chart, which shows a graph of the last seven
completed sprints for the selected estimation. It also shows a table listing the
completed sprints, the number of issues in each sprint, estimated values committed,
and estimated values completed. Active sprints aren’t shown or listed.

Using the Velocity Report, you can plan the amount of work that can be committed to
future sprints. Managers can see whether the team met the original estimation and can
plan the effort required for new or future sprints.

At the bottom of the page, the Velocity Report displays the sprint table. The columns
change depending on the value selected in Estimation.

Cumulative Flow Chart
Use the Cumulative Flow Chart to view the total number of issues in each of the
board's progress states over time.

The Cumulative Flow Chart is available in Scrum boards and Kanban boards for
issues only.

1. Open the board.

2. Click Reports.

3. If you are using a Scrum board, click Sprint . If you’re using a Kanban board,

click Issues .

4. Click the Cumulative Flow Chart tab.

Scrum Boards

The Cumulative Flow Chart displays the total number of issues in each of the board's
progress states over time for the active sprint. The issues listed in the chart are the
same issues displayed in the Sprint Report.

These events can change the number of issues in a progress state:

• An issue is added to the sprint

• An issue is removed from the sprint

• An issue’s progress state in the sprint changes because its status or resolution
was changed

The progress states correspond to the board's current list shown in the Configure
Board page. The chart is a stacked area chart enabling the user to view the number of
issues in each progress state and also the total number of issues in the sprint at any
given point on the timeline. The color for each progress state is randomly assigned.
The user can also show or hide any of the progress states on the chart by clicking on
their names in the chart legend. The events table has a column for each progress
state and shows the number of issues for each progress state that’s affected by the
event.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-29

Kanban Boards

The Cumulative Flow Chart displays the total number of issues in each of the board's
progress states over time for the Active Issues or an archive. The issues listed in the
chart are the same issues displayed in the Issues Report.

These events can change the number of issues in a progress state:

• An issue is added to active issues or an archive

• An issue is removed from active issues or an archive

• An issue’s progress state in active issues or an archive changes because its
status or resolution was changed

The progress states correspond to the board's current list shown in the Configure
Board page. The chart is a stacked area chart enabling the user to view the number of
issues in each progress state and also the total number of issues in active issues or
archive at any given point on the timeline. The color for each progress state is
randomly assigned. The user can also show or hide any of the progress states on the
chart by clicking on their names in the chart legend. The events table has a column for
each progress state and shows the number of issues for each progress state that’s
affected by the event.

Control Chart
Use the Control Chart to view information for issues about their progress state
changed event on the timeline.

The Control Chart is available in Scrum boards and Kanban boards for Sprint Report
and Issues Report. The Control chart is a scatter chart and each point on the chart
represents a progress state changed event on the timeline. The progress state
changed event occurs when an issue is moved from one progress state to another
progress state.

1. Open the board.

2. Click Reports.

3. If you are using a Scrum board, click Sprint . If you are using a Kanban board,

click Issues .

4. Click the Control Chart tab.

The Y-axis of the chart shows the number of days that an issue spent in its previous
progress state (the progress state from which the issue was moved). For example, if
the status of an issue was changed on Jan 10 from To Do to In Progress, the chart
displays a point on Jan 10 and the Y-axis shows the number of days the issue was in
the To Do progress state.

The colors for the progress states are randomly assigned and the user can hide or
show the points for each progress state by clicking on the names of the progress
states in the chart legend. Click the chart legend to display a line on the chart that
shows the average number of days spent in a progress state.

The events table has a column for each progress state in the board, where the values
are the number of days spent in the progress state at the time of each event. Note that
the average number of days isn’t displayed in the table as it’s displayed in the chart.

Chapter 3
Use Agile Boards to Manage and Update Issues

3-30

4
Use Project's Repositories

In a project, you can use Git repositories to access and upload your source code files.
Use the Maven repository to upload library files and dependencies.

This table describes the Oracle Developer Cloud Service pages you’d use to access
repositories of a project.

Use this page ... To:

Git Add and manage project’s Git source code repositories. You can view
files and commits, manage branches and tags, and compare the
source code of files.

Maven View, upload, and search artifacts in the project's Maven repository.

Manage Code Files Using Git Repositories
A project uses Git repositories hosted on Oracle Cloud to store and version control
your application's source code files.

Git Concepts and Terms
Git is a distributed version control in which you clone the entire remote (or central)
repository, including its history to your computer. You add and commit the files on your
computer and, when you’re done, push the commits to the remote repository.

If you are new to Git, read the Git documentation at https://git-scm.com/book/
and http://git-scm.com/doc to learn more about Git repositories and Git basics,
such as remote repositories, cloning, commits, pushes, SHA-1 checksum hashes,
branches, and tags.

Here are the terms that this documentation uses to describe the Git terms and
components of a project.

4-1

Term Description

Project Git repository A remote or hosted Git repository of your project.

A project can host multiple Git repositories. You can view all Git
repositories from the Repositories drop-down list on the Git page.

Local Git repository A cloned Git repository on your computer.

External Git repository A Git repository that’s hosted outside the project. It could be a Git
repository of another project, or a Git repository available on another
platform, such as GitHub or Bitbucket.

Revision A snapshot of the Git repository at a given time. The revision could be
a branch, tag, or a commit. The Revisions menu displays the
revisions (branches, tags, and commits) of the selected Git repository.

When entering a search criteria, add a space at the end of the search
term to search for an exact match.

To search for a commit, in the search box at the top of the menu, enter
the first three characters of the SHA-1 checksum hash of the commit.
The commit that matches the search term appears next to Commit

at the bottom of the menu.

To copy the revision name to the clipboard, click Copy . For
example, while viewing files of a particular commit, you can copy the
SHA-1 checksum hash of the commit.

Chapter 4
Manage Code Files Using Git Repositories

4-2

Term Description

Files view Display the Git repository’s files and allows you to manage them.

Logs view Displays the Git repository’s commit history in a list and graphical
format.

Refs view Displays the Git repository’s branches and tags and allows you to
manage them.

Compare view Compares and displays the differences between two revisions of a Git
repository.

Migrate to Git
If you’ve been using a version control system, such as CVS or Subversion and want to
migrate to Git, you can use the Git commands in the Git command-line interface to
migrate.

To migrate from ... Use this command:

CVS git-cvsimport

For more information, see http://git-scm.com/docs/git-
cvsimport.

Subversion (SVN) git svn

For more information, see http://git-scm.com/docs/git-svn.

Other version control
system

See the Git Book at http://git-scm.com/book/es/v2/Git-and-
Other-Systems-Migrating-to-Git.

Set Up a Git Repository
To set up a Git repository for your project, create a repository in the project, and then
upload application files to it. After you've set up the repository, all project users can
access its files.

Create and Manage Git Repositories
You can add multiple Git repositories to a project. You can create an empty Git
repository, a Git repository with a readme file, or import files from another Git
repository.

You may want to create an empty repository if you plan to upload your application files
to it from your computer or import files from another Git repository. Some IDEs and Git
clients can’t clone an empty Git repository. If this is the case with the IDE or Git client
you use, you may want to create a Git repository initialized with a file.

 You must be assigned the project Owner role to create and manage Git
repositories.

You can create a Git repository from these pages:

• Repositories tab of the Project Home page

• Git page

Chapter 4
Manage Code Files Using Git Repositories

4-3

• Project Administration : Repositories page

Create an Empty Git Repository
1. Click + Create Repository.

2. In the New Repository dialog box, in Name and Description, enter a unique name
and a description.

After you create a repository, you can’t change its name.

3. In Initial Content, select the Empty Repository option.

To initialize the repository with a file, select the Initialize repository with
README file option.
You can add to and format the contents of the readme file using the Markdown
markup language. If you don’t want to keep the file after DevCS creates the
repository, you can delete it.

4. Click Create.

Import an External Git Repository
If you’ve been using a Git repository on another platform such as GitHub or Bitbucket,
you can import files from the external Git repository to your project’s Git repository.

When you import an external Git repository, DevCS creates a Git repository in the
project and copies the branches, tags, and commit history to it from the external Git
repository. No changes made to the external Git repository after the import succeeds
are reflected in the imported Git repository.

1. Click + Create Repository.

2. In the New Repository dialog box, in Initial content, select Import existing
repository.

3. In the text box, enter the URL of in the external Git repository.

If the imported Git repository is password protected, enter the repository
credentials in Username and Password. Note that DevCS doesn’t store the
credentials.

4. Click Create.

You can also import an existing Git repository to an empty project Git repository from
the Git page. If the added hosted Git repository is empty, enter the Git repository’s
URL in the Import existing repository section of the Git page. Enter repository
credentials, if required, and click Import.

Mirror an External Git Repository
If you’ve been using a Git repository on another platform, such as GitHub or Bitbucket,
and don’t want to import it to a project’s Git repository, you can mirror it in DevCS.
Mirroring copies the repository to DevCS and then DevCS automatically synchronizes
its files time to time. In an active DevCS project, the repositories are synchronized
approximately every five minutes, but the duration may vary as it depends on the
number of external Git repositories in all projects of the DevCS organization.

Note that you can’t add or update files or manage branches of a mirrored Git
repository from the Git page of the project.

Chapter 4
Manage Code Files Using Git Repositories

4-4

If the external Git repository is a private repository (or password protected), you must
create an authentication token, such as GitHub's personal access token or BitBucket's
App Password, and use it to provide access to the external Git repository. Don’t
provide your account’s password.

1. In the navigation bar, click Project Administration .

2. Click Repositories.

3. Under External Repositories, click + Link External Repository.

4. In the New Repository dialog box, enter the URL of the external Git repository in
URL and the repository description in Description.

5. Expand the Credentials for non-public repos section and provide the credentials
to access the external Git repository.

In Username, enter the username of the external repository account. In Token,
enter the authentication token.

6. Click Create.

The external repository is now available on the Git page and the Repositories tab of
the Project Home page.
When you add an external Git repository, DevCS shows two URLs in the Clone drop-
down menu of the repository.

Example:

Use the external address URL (the first URL in the menu) to access the repository
directly. You may want to use it to access the repository's updates immediately, but
would need to enter credentials to access a private repository. Use the internal
address URL (the second URL in the menu) to access the mirrored repository. You
may want to use it to access a private repository as it doesn't require credentials.

Manage a Git Repository
After you’ve created a Git repository, you can edit its description, set its default branch,
index it, and delete it. However, you can’t change its name.

Chapter 4
Manage Code Files Using Git Repositories

4-5

Action How To

Edit a Git repository’s
description

On the Git page, from the Repositories drop-down list, select the Git
repository. In the Files or Logs view, click the repository description to
edit it.

Alternatively, on the Project Settings: Repositories page, mouse

over the Git repository name, click Options , and select Edit. In the
Description field of the Edit Repository dialog box, enter or edit the
repository description, and click Update.

Set the default branch When you open a Git repository on the Git page, the contents of the
default branch are displayed. By default, the master branch of a Git
repository is set as the default branch. However, you can set any
branch as the default branch of a Git repository.

On the Project Settings: Repositories page, mouse over the Git

repository name, click Options , and select Edit. From the Default
Branch drop-down list of the Edit Repository dialog box, select the
branch, and click Update.

Index a Git repository Indexing a Git repository creates or updates the Git repository index
file with the latest changes. A Git index file is a binary file that serves
as a virtual staging area for the next commit and contains a sorted list
of object path names, along with permissions and the SHA-1 of a blob
object.

To index a repository, on the Project Settings: Repositories page,

mouse over the Git repository name, click Options , and select
Index.

Delete a Git repository On the Project Settings: Repositories page, mouse over the Git

repository name, click Options , and select Delete. In the Remove
Repository dialog box, click Yes.

Upload Files From Your Computer to the Project’s Git Repository
To upload your application source code files from your computer to the project’s Git
repository, you can start by using a Git client to clone the project’s Git repository to
your computer. After cloning, you can add files, commit the changes to the cloned Git
repository, and then push the commit to the project’s Git repository.

1. Copy the project Git repository’s URL.

On the Git page, from the Repositories drop-down list, select the Git repository.

From the Clone drop-down list, click Copy to clipboard to copy the HTTPS or
the SSH URL.

Chapter 4
Manage Code Files Using Git Repositories

4-6

2. Open the Git client. For example, the Git CLI.

3. Navigate to the directory where you want to clone the remote Git repository.

4. Using the Git client, clone the project’s Git repository.

For example, if you’re using the Git CLI, use the git clone <repository-url>
command. Use the Git repository’s URL copied from step 1.

HTTPS example:

git clone https://john.doe%40oracle.com@developer.us.oraclecloud.com/
developer1111-usoracle22222/s/developer1111-
usoracle22222_myproject/scm/developer1111-usoracle22222_myproject.git

SSH example:

git clone ssh://usoracle22222.john.doe
%40oracle.com@developer.us.oraclecloud.com/developer1111-
usoracle22222_myproject/developer1111-usoracle22222_myproject.git

5. Open the directory to access files.

You’d notice a .git subdirectory in the repository directory. Don’t add, delete, or
modify the files of the .git subdirectory.

6. Copy your application files to the cloned Git repository directory.

7. To add new files to the repository, use the Git client to add them to the repository
index.

For example, if you’re using the Git CLI, use the git add command.

git add readme.txt

To add a directory and its files, navigate to the directory and use git add .

8. Commit the updated files to the cloned Git repository.

For example, if you are using the Git CLI, use the git commit command to save
the changes.

git commit -am "Sample comment"

9. Push the commit from the cloned Git repository to the hosted Git repository.

For example, if you are using the Git CLI, use the git push command.

Chapter 4
Manage Code Files Using Git Repositories

4-7

git push origin master

See this Tutorial to set up a Git repository and add files to it using the Git CLI.

Push a Local Git Repository to the Project’s Git Repository
If your application source code files are available in a local Git repository, you can
push them to a project’s empty Git repository.

You can use any Git client to push the local Git repository to the remote Git repository.

1. Copy the URL of the project’s Git repository.

On the Git page, from the Repositories drop-down list, select the Git repository.

From the Clone drop-down list, click Copy to clipboard to copy the HTTPS or
the SSH URL.

2. Open the Git client. For example, the Git CLI.

3. Navigate to the local Git repository directory.

4. Add the project’s Git repository as the remote repository of the local repository.
Use the Git repository’s URL copied from step 1.

For example, if you’re using the Git CLI, use the git remote add <remote-
repository-name> <repository-url> command.

HTTPS example: git remote add origin https://john.doe
%40oracle.com@developer.us.oraclecloud.com/developer1111-
usoracle22222/s/developer1111-usoracle22222_myproject/scm/
developer1111-usoracle22222_myproject.git

SSH example:

git remote add origin ssh://usoracle22222.john.doe
%40oracle.com@developer.us.oraclecloud.com/developer1111-
usoracle22222_myproject/developer1111-usoracle22222_myproject.git

The above example adds a remote named origin for the repository at
developer.us.oraclecloud.com/developer1111-usoracle22222_myproject/
developer1111-usoracle22222_myproject.git.

Chapter 4
Manage Code Files Using Git Repositories

4-8

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:16823

5. Push the local Git repository to the project’s Git repository.

For example, if you’re using the Git CLI, use the git push command.

git push —u origin master

6. In your project, open the Git page and check the files in the project’s Git
repository.

Access a Git Repository using SSH
1. On the computer that you'll use to access the Git repository, generate a SSH key

pair and upload its private key to DevCS. See Upload Your Public SSH Key. Make
sure that the private key on your computer is accessible to the Git client.

Ignore this step if you've already uploaded the SSH public key.

2. Copy the Git repository’s SSH URL.

On the Git page, from the Repositories drop-down list, select the Git repository.

From the Clone drop-down list, click Copy to clipboard to copy the SSH URL.

3. Open the Git client. For example, the Git CLI.

4. Navigate to the directory where you want to clone the remote Git repository.

5. Using the Git client, clone the project’s Git repository.

For example, if you’re using the Git CLI, use the git clone <repository-ssh-
url> command.

Example:

git clone ssh://usoracle22222.john.doe
%40oracle.com@developer.us.oraclecloud.com/developer1111-
usoracle22222_myproject/developer1111-usoracle22222_myproject.git

If you've already cloned the Git repository to your computer using HTTPS, use the
git add remote command to add the SSH URL of the Git repository.

Example:

git remote add ssh-origin ssh://usoracle22222.john.doe
%40oracle.com@developer.us.oraclecloud.com/developer1111-
usoracle22222_myproject/developer1111-usoracle22222_myproject.git

Chapter 4
Manage Code Files Using Git Repositories

4-9

6. Commit the updated files to the cloned Git repository.

7. Push the commit from the cloned Git repository to the hosted Git repository.

Example:

git push ssh-origin master

Add and Manage Files of a Git Repository
You can add and update files of a Git repository online from the Git page or clone the
Git repository to your computer and update the files locally.

Manage Files from the Git Page
You can browse, add, edit, view commit history, rename, and delete files of a Git
repository. You can’t add or update files of a linked external Git repository.

 You must be a project member to add or updates files of a Git repository.

1. In the navigation bar, click Git .

2. From the Repositories drop-down list, select the Git repository. From the

Revisions drop-down list, select the branch.

3. On the right side of the page, click Files, if necessary.

4. Browse and click a directory name to open it.
To go back to a file or a sub-directory of a parent directory, click / and select the

file or directory from the menu. To go to the root directory, click . To copy the

path of a file or a directory, click Copy to clipboard .

Action How To

Add a file 1. Click + File.

2. In File Name, enter the name of the file along with its extension.

3. In the code editor, enter file contents.

4. Click Commit.

5. In the Commit Changes dialog box, enter the commit summary in
the first text box and details in the Details text box, and click
Commit.

To save the file in a new directory or a directory structure, in File
Name, enter the file path. You can enter a relative path or an absolute
path. To specify an absolute path, add a / in the beginning.

Example:

• Enter test/text_file.txt to save the text_file.txt file in
the test directory on the current path. If the test directory
doesn’t exist, it’s created.

• Enter /test/text_file.txt to save the text_file.txt file in
the test directory on the root. If the test directory doesn’t exist,
it’s created.

Chapter 4
Manage Code Files Using Git Repositories

4-10

Action How To

View a file To view contents of a file, in the Files view, browse, and click the file
name link. The file opens in the File view of the Git page. If you open a
text file or an image file, its contents are displayed in a read-only
editor. Contents of a binary file aren’t displayed.
If the text content exceeds the width of the editor, use the arrow keys
to scroll left, right, up, and down. You can also use the scroll buttons to
scroll horizontally. Move the cursor to the left or the right edge of the

editor and click Right Scroll or Left Scroll to scroll one character
at a time.

To view the file in raw (unformatted) format in the web browser, click

Edit , and select Raw. The contents of the opened file are
displayed in a new tab or a window of the web browser. If the file is a
text file or an image (such as .png, .jpg, .bmp, and .gif), it’s
displayed in the browser. The contents of a binary file such as .zip
and .rar aren’t displayed, but you can use the browser URL to
download it.

View annotations and
commits of a file

Open the file and click Blame.
The Blame view displays annotations of the open file for each updated
code line (or group of code lines) with commit information. The
annotation includes commits that affected code lines, author, the date-
time stamp of the commit, and the commit message.

Edit, rename, or move
a file

Open the file and click Edit . Edit the file’s contents in the code
editor. To rename the file or move it to another directory, in the file
name text box, enter the new name or path. Click Commit to save.

Delete a file To delete a file, click Actions next to Edit , and select Delete. In
the Commit Changes dialog box, enter the commit summary in the first
text box and details in the Details text box, and click Commit.

Use Git Commands to Manage Files from Your Computer
To access and manage your project’s Git repository files from your computer, use a
Git client, such as the Git CLI.

This table lists common Git commands that you can run in the Git CLI to work on files
in your local Git repository.

Run this
command ...

To:

git clone
<repository-url>

Clone a project's Git repository to your computer.
Example: git clone https://john.doe
%40example.com@developer.us.oraclecloud.com/
developer1111-usoracle22222/s/developer1111-
usoracle22222_myproject/scm/developer1111-
usoracle22222_myproject.git

Chapter 4
Manage Code Files Using Git Repositories

4-11

Run this
command ...

To:

git add
<filename>

Add a file that you've added to the repository's directory to the
repository's index.

Example: git add readme.txt

To add all new files to the index, use git add --all

To add a directory and its contents to the index, navigate to the
directory and use git add .

git rm <filename> Remove a file from the repository.

Example: git rm readme.txt

git status Check the status of added and edited files.

Example: git status

git branch Create a branch.

Example: git branch new_branch

To list all existing branches of the repository, use git branch.

git checkout Switch to (or checkout) a branch.

Example: git checkout new_branch

You can use the git checkout -b command to create a branch and
switch to it immediately. Example: git branch -b new_branch

git merge Merge a branch with the checked out branch.

Example: git merge new_branch

git commit Commit changes to the local Git repository.
Example: git commit -m "Initial commit"

git push Push commits to the project's Git repository.
Example: git push -u origin master

git pull Incorporate changes from the project's Git repository to the local Git
repository.

Example: git pull origin master

To display the Git help index, run the git help command. Run the git help git
command to open the help index in a web browser. To display help for a particular
command, run git help <command>.

Associate a DevCS Issue with a Commit
When you save changes to a Git repository, you may want to link a DevCS issue that’s
assigned to you with the commit.

To associate an issue with a commit, add Task-URL: <issue-url> in the commit
message.

Example:

Update for Defect 4 Task-URL:https://john.doe
%40oracle.com@developer.us.oraclecloud.com/developer1111-usoracle22222/s/
developer1111-usoracle22222_myproject/task/4

Chapter 4
Manage Code Files Using Git Repositories

4-12

If the commit is successful, the SHA-1 checksum hash of the commit is added to the
issue. Open the issue in Issues page and verify the SHA-1 checksum hash in
Commits under Associations.

Copy the URL of a Git Repository or a File
From the Git page, you can copy and share the URL of a Git repository, the URL of a
file in the Git repository, and the URL of a line in a file of the Git repository.

Before you share the URL, remember that only members of the project can use the
URL to access the file or clone the repository. If the project is a shared project,
organization members can access files in the project’s repository or clone the
repository, but they can’t update them.

Action How To

Copy the URL of a Git
repository

To clone a Git repository or to access it using a Git client, you use the
URL of the repository. You can copy the URL from the Repositories
tab of the Project Home page, the Git page, and from the Project
Settings: Repositories page.

In the Repositories tab of the Project Home page or the Project
Settings: Repositories page, search for the Git repository, and click
the Clone drop-down list to see the HTTPS and SSH URLs of the

repository. To the right of the URL, click Copy to copy the URL to
clipboard. You may also select the URL and press Ctrl + C or use
the mouse context menu to copy the URL to the clipboard.

The SSH URL of an external Git repository isn’t available.

Copy the URL of a file In the Files view of the Git page, open the file. From the address bar
of the browser, copy the URL.

Copy the URL of a line
in a file

In the Files view of the Git page, open the file. On the left side of the
line, in the number column, click the line number. The entire line is
selected. From the address bar of the browser, copy the URL.

Example: To copy the URL of line number 2 of myfile.txt, click the
line number 2. Clicking the line number updates the URL in the
browser’s address bar to http://
developer.us2.oraclecloud.com/my-org/#projects/
demo/scm/demo.git/blob/myfile.txt?revision=master&sl=2.
You can copy and use this URL to open myfile.txt in the demo.git
repository – master branch with line number 2 selected.

Copy the URL of a
group of lines in a file

In the Files view of the Git page, open the file. On the left side of the
line, in the number column, click the line numbers with the Shift key
pressed to select them. From the address bar of the browser, copy the
URL.

Example: With the Shift key pressed, clicking line numbers 2 through
5 of myfile.txt selects those lines. The URL in the browser’s
address bar changes to http://
developer.us2.oraclecloud.com/my-org/#projects/
demo/scm/demo.git/blob/myfile.txt?
revision=master&sl=2–5. Copy the URL and share it with project
members. When the URL is entered, the myfile.txt file of the
demo.git repository – master branch opens with line numbers 2
through 5 selected.

Chapter 4
Manage Code Files Using Git Repositories

4-13

View the History of Files and Repositories
You can use the Logs view of the Git page to view the commits, branching, and
merging history of a file or Git repository and its revisions.

1. From the Repositories drop-down list, select the Git repository. From the

Revisions menu, select the branch.

2. To view the commit history of a file, browse, and open the file.

Skip this step to view the commit history of the selected Git repository.

3. On the right side of the page, click Logs.

Action How To

View the commit
history in a list format In the Logs view, click the History List toggle button.

To view the history of another branch or tag, in the text box to the right

of the History toggle button, enter branch or tag names. You
may also click the text box and select the revisions from the drop-down
list. You can add multiple branches or tags. To view the history of all
revisions of the selected Git repository, remove all revision names from
the text box.

View the commit
history as a graph In the Logs view, click the History Graph toggle button.

In the graph:

• Each dot represents a commit.

To see the details of the commit, click the dot.
• A splitting line represents a branch.
• Joining lines represent a merge.
• Latest commits appear at the top of the graph.

Use Branches
Branching lets you work on different features and updates at any time without affecting
the original source code.

Before you start working on a new feature or update major portions of the source
code, it’s considered a good practice to create a branch and commit your changes to
the new branch. This way your changes don’t affect the original source code and are
safe to test and review. To learn more about the Git branch workflow, read the Git
Branching - Branching Workflows topic in the Git book at https://git-scm.com/
book/en/v2/.

By default, all Git repositories have one default master branch. However, you can add
more branches to the repository. You can also subscribe to email notifications for
commits made to the repository’s branches, and you can compare, rename, and
delete branches.

Create a Branch
From the Refs view of the Git page, you can create a branch from the base branch,
from the head (tip) of an existing branch, or from a tag.

Chapter 4
Manage Code Files Using Git Repositories

4-14

You can’t create a branch in an empty Git repository. You must first clone the
repository to your computer, add and commit files to the default master branch that’s
automatically created, and then push the branch to the project Git repository. After the
default master branch is pushed to the project Git repository, you can create more
branches.

You can also mark a branch as a private branch. Only branch owners can push
commits to a private branch.

 You must be a project member to to create a branch.

Action How To

Create a branch from
a base branch 1. In the Refs view of the Git page, click Branches .

2. From the Repositories drop-down list, select the repository.

3. Click + Create Branch.

4. In the New Branch dialog box, in Name, enter the branch name.
From the Base drop-down list, select the base revision name.

5. To mark the branch as a private branch, select the Private
Branch check box.

6. Click Create.

Create a branch from
the head (tip) of
another branch

1. In the Refs view of the Git page, click Branches .

2. From the Repositories drop-down list, select the repository.

3. Click + New Branch.

4. In the branch list, to the right of source branch name, click

Actions , and select Branch.

5. In the New Branch dialog box, enter the name of the new branch.

6. To mark the branch as a private branch, select the Private
Branch check box.

7. Click Create.

Create a branch from
a tag 1. In the Refs view of the Git page, click Tags .

2. From the Repositories drop-down list, select the repository.

3. Click + New Branch.

4. In the tags list, to the right of the tag name, click Actions and
select Branch.

5. In the New Branch dialog box, enter the name of the new branch.

6. To mark the branch as a private branch, select the Private
Branch check box.

7. Click Create.

Chapter 4
Manage Code Files Using Git Repositories

4-15

Protect a Branch
By default, any project member can rename or delete a repository branch, and push or
merge another branch into it. To protect a branch from these actions, set restrictions
on the branch.

 You must be assigned the project Owner role to set restrictions on a branch.

1. In the navigation bar, click Project Administration .

2. Click Branches.

3. In Repository and Branches, select the Git repository and the branch.

4. On the Branches page, set the restrictions.

Tip:

On the Refs page, you can also click the Open, Private, Requires Review,
or the Frozen label of a branch to edit its protection settings.

This table describes the various branch protection actions you can perform from the
Branches page.

Action How To

Requires review and
restrict merge actions

Select the Requires Review option and configure the review options.
See Set Review and Merge Restrictions on a Repository Branch.

Restrict push actions
to project owners and
branch owners

Select the Private option.
To define branch owners, click Owners and select the user. You can
select multiple users.

Note that to push commits to a private branch from your computer,
always use SSH. Also, to run a build of job that uses a private branch,
configure the job to use SSH.

Lock a branch Select the Frozen option. No changes are allowed to a locked branch
by any user.

Prevent forced pushes
to the branch

Select the Do not allow forced pushes check box. The check box
isn't available when the Requires Review or the Frozen option is
selected as force push aren't allowed on a review or a frozen branch.

Prevent the rename
and delete actions on
the branch

Select the Do not allow renaming and deleting branch check box.
The branch can be renamed or deleted after you deselect the check
box. The check box isn't available when the Requires Review or the
Frozen option is selected.

Manage a Branch
After you create a branch, you can rename it, compare it with another branch of the Git
repository, or delete it.

You must be a project owner or member to edit and update a branch. You can perform
the branch management actions from the Refs view of the Git page.

Chapter 4
Manage Code Files Using Git Repositories

4-16

Action How To

Rename a branch You can’t rename a restricted branch or the master branch.

After renaming a branch, update all related merge requests, build jobs,
and deployment configurations to use the new branch name. When
you rename a branch, Git creates a branch with the new name and
transfers all content from the old branch to the new branch. After the
transfer is complete, the old branch is removed.

1. In the branch list, to the right of branch name, click Actions ,
and select Rename.

2. In the Rename Branch dialog box, in Name, enter the new branch
name.

3. Select the I want to rename the branch check box and click
Rename.

Compare a branch In the branch list, to the right of branch name, click Actions , and
select Compare. By default, the branch is compared with the master
branch.

Protect or set
restrictions on a
branch

In the branch list, to the right of branch name, click Actions , and
select Protection Settings.

Delete a branch You can’t delete a restricted branch or the master branch.

After you delete a branch, you must update, close, or remove all
related merge requests, build jobs, and deployment configurations.

1. In the branch list, to the right of branch name, click Actions ,
and select Delete.

2. In the Delete Branch dialog box, select the I want to delete the
branch check box, and Delete.

Use Tags
Tagging lets you mark a specific point of time in the history of the repository. For
example, you can create a tag to mark the Git repository state of an application’s
stable state, before a release.

Create and Manage Tags
From the Refs view of the Git page, you can create and manage a Git repository’s
tags.

You must be a project owner or member to create and manage a tag.

Chapter 4
Manage Code Files Using Git Repositories

4-17

Action How To

Create a tag
1. In the Refs view of the Git page, click Tags .

2. From the Repositories drop-down list, select the repository.

3. Click + New Tag.

4. In the New Tag dialog box, in Name, enter the tag name. In Base,
enter the base revision name. Click Create.

Rename a tag
1. In the tags list of the Tags view, to the right of the tag name,

click and select Rename.

2. In the Rename Tag dialog box, in New Name, enter the new tag
name, select the I want to rename the tag check box, and click
Rename.

Compare a tag
In the tags list of the Tags view, to the right of the tag name, click

 and select Compare.

On the Compare page that opens, by default, the tag is compared with
the default branch.

Delete a tag
In the tags list of the Tags view, to the right of the tag name, click

 and select Delete. In the Delete Tag dialog box, select the I want
to delete the tag check box and click Delete.

Compare Revisions
You can compare any two revisions of a Git repository. The base revision indicates the
starting point of the comparison and the compare revision indicates the end point of
the comparison. The revision could be a branch, a tag, or a commit SHA-1 checksum
hash.

1. On the right side of the Git page, click Compare.

2. From the Base Revision drop-down list on the left, select the base revision.

By default, the Git page selects the last commit of the repository as the base
revision and the selected revision as the compare revision.

3. From the Compare Revision drop-down list on the right, select the compare
revision.

You can compare these revisions:

• Branch versus branch

• Tag versus tag

• Commit versus commit

• Branch versus tag

• Commit versus branch

• Tag versus commit

Chapter 4
Manage Code Files Using Git Repositories

4-18

On the Compare Result page, the Changed Files tab and the Commits tab. The
Changed Files tab lists files that have changed between the base revision and the
compare revision. The Commits tab lists all commits that have happened between the
base revision and the compare revision since their common commit. The Commits tab
is enabled if From Merge Base is selected in From Merge Base or Revisions .

Action How To

Compare with a
parent of the base
revision

From the Base Revision drop-down list, click the Parents tab, and
then click the SHA-1 checksum hash of the parent commit.

View differences
between the base
revision and the
compare revision
since the last common
commit to both
revisions

From the From Merge Base or Revisions drop-down list, select
From Merge Base (...) . Select Revisions (..) to show the differences
between the heads (or tips) of the base revision and the compare
revision.

Switch the base
revision and the
compare revision

Click Switch Base .

Create or open a
merge request

If a merge request exists with the Compare Revision as the review
branch, click the merge request button to open the merge request
review page.

If a merge request doesn’t exist, click + Merge Request to create a
merge request with Base Revision as the target branch and the
Compare Revision as the review branch.

View the compare
options

Click Diff Preferences to view various compare options.

Add Comments to a File
While comparing files, you can add inline comments to the source code changes made
to a file. The comments are visible to all users of the project.

1. Browse and open the file.

2. On the right side of the page, click Logs.

3. For the commit that changed the file and added the changes you want to comment
on, click the button with the first seven characters of the commit’s SHA-1
checksum hash as the label.

4. In the Changed Files tab of the Compare view, mouse-over the line number of the

file and click Add Comment

If you selected the Unified view, click the line number in the second column. If you
selected the Side by Side view, click the line number of the file on the right.

5. In the Leave a comment box, enter the comment, and click Comment.

The comment is added as an inline comment to the file and is visible to all project

members. To reply to a comment, click Reply , enter the comment in the Leave a
reply box, and click Comment.

Chapter 4
Manage Code Files Using Git Repositories

4-19

Watch a Git Repository
You can watch a Git repository branch and receive email notifications when any file of
the branch is updated in the project’s Git repository.

To get email notifications, enable them in your user preferences, and then set up a
watch on the branch from the Refs view of the Git page.

Action How To

Enable email
notifications

In your user preferences page, select the SCM/Push Activities check
box.

Watch a branch 1. Open the project.

2. In the navigation bar, click Git .

3. On the right side of the page, click Refs.

4. If necessary, click Branches .

5. In the branch list, to the right of the branch name, click cc.

Alternatively, click Actions , and select Subscribe.

A Subscribed icon appears indicating that you are subscribed to
email notifications of the branch updates. To unsubscribe, click cc
again.

Search in Git Repositories
You can search for a file name, directory name, or a term in the source code files, file
paths, and file revisions of the project’s Git repositories.

The search field supports common programming languages, such as HTML,
JavaScript, CSS, and Java. You can use these features while searching terms:

• Language-aware

• Auto-suggest

• Symbols (class and function names) and file names

• CamelCase

Action How To

Search for a term in a
Git repository and a
revision

1. From the Repositories drop-down list, select the Git repository.

From the Revisions drop-down list, select the revision.

2. In the top-right corner of the page, in the Search Code box, enter
the search term or select it from the suggestion list.

3. Click Search .

Chapter 4
Manage Code Files Using Git Repositories

4-20

Action How To

Search for a term in all
revisions of a Git
repository

1. From the Repositories drop-down list, select the Git repository.

From the Revisions drop-down list, select the revision.

2. In the top-right corner of the page, in the Search Code box, enter
the search term or select it from the suggestion list.

3. Click Search .

4. In the Revisions drop-down list, click Reset .

The Revisions drop-down list now shows All Revisions.

Search for a term in all
Git repositories

1. From the Repositories drop-down list, select the Git repository.

From the Revisions drop-down list, select the revision.

2. In the top-right corner of the page, in the Search Code box, enter
the search term or select it from the suggestion list.

3. Click Search .

4. From the Repositories drop-down list, select the All

Repositories option, or click Reset .

The search result page displays all files, file paths, and file revisions that contain or
match the search term (or symbol). To reset the search, to the left of the Search Code
box, click Back .

Download an Archive of a Git Repository
If a branch or a tag of a Git repository isn’t required and you plan to delete it, it’s
considered a good practice to create an archive of it and back it up before you delete
it. From the Refs view of the Git page, you can download the archive file (zip or tgz) of
a Git repository branch or a tag.

Action How To

Download the archive
of a branch

1. In the Files view of the Git page, from the Repositories drop-

down list, select the repository. From the Revisions menu,
select the branch.

2. From the Clone drop-down list, click Download ZIP or Download
TGZ.

Alternate method:

1. In the Refs view of the Git page, click Branches .

2. From the Repositories drop-down list, select the repository.

3. In the branches list, to the right of the branch name, click ,
select Download, and then select zip or tgz.

Chapter 4
Manage Code Files Using Git Repositories

4-21

Action How To

Download the archive
of a tag 1. In the Refs view of the Git page, click Tags .

2. From the Repositories drop-down list, select the repository.

3. In the tags list, to the right of the tag name, click , select
Download, and then select zip or tgz.

Manage Binaries and Dependencies Using the Project’s
Maven Repository

When a project is created, Oracle Developer Cloud Service (DevCS) creates a hosted
Maven repository in the project, which is also called as the project Maven repository.
You can use the repository to store binary files and dependencies. If you’re developing
Maven applications, you can use the Maven repository to store and access build
artifacts.

Maven Concepts and Terms
Apache Maven is a software project management tool that uses the Project Object
Model (POM) concept to manage a project's build.

If you’re new to Maven, see https://maven.apache.org to learn about Maven basics
such as POM files and Maven repositories.

In DevCS, you use the project’s Maven repository to store build artifacts and
dependencies for your project’s applications. Usually, you store the dependencies on
the project’s Maven repository that aren’t available on a public Maven repository, such
as Maven Central Repository or Oracle Maven Repository.

Here are the terms that this documentation uses to describe the Maven terms and
components of a project.

Term Description

POM file An XML file that contains configuration about how to build the
application. Usually, the file is saved as pom.xml. For more
information, see https://maven.apache.org/guides/
introduction/introduction-to-the-pom.html.

Browse view Displays and allows you to browse artifacts of the project’s Maven
repository.

Upload view Allows you to upload artifacts manually to the project’s Maven
repository.

Artifact Search view Enables you to search artifacts in the project’s Maven repository.

To upload and access the files of the repository programmatically, configure the POM
file of your application. You can use the project Maven repository among other projects
of the organization for local builds as well as project builds.

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-22

Upload an Artifact Manually
From the Upload view, you can upload artifacts manually to the project’s Maven
repository without installing Maven on your computer. You must be a project owner or
member to upload an artifact to the project Maven repository.

1. In the navigation bar, click Maven .

2. On the right side of the page, click Upload.

3. In the Upload Artifacts section, use the drag-and-drop operation to drop files to
the drop area, or click the select artifact files link, browse, and select the files.

4. In the table below the Upload Artifacts section, if necessary, update the Classifier
field of the selected artifact.

If you’re uploading only one artifact, you can leave the classifier field empty. If
you’re uploading multiple artifacts, provide the classifier value for each artifact.
The classifier helps to distinguish artifacts that were built from the same POM file
but differ in their content. The classifier string is appended to the artifact name,
after the version number.

For example, if you’re uploading artifacts with identical names but different
extensions (such as fileX-1.0.jar and fileX-1.0.pdf), you may provide
classifiers, such as main and documentation for these files. After the files are
uploaded, they are renamed to fileX-1.0-main.jar and fileX-1.0-
documentation.pdf.

5. After you add the artifacts, you must specify their Maven coordinates manually or
from a POM file. These coordinates are used when uploading artifacts to the
project’s Maven repository.

If you want to specify the artifacts’ Maven coordinates manually, note the
following:

• The auto-suggest list of GroupId, Version, and ArtifactId are based on
Maven indexes. If no index data is available, the auto-suggest list isn’t
displayed.

• By default, the Generate POM check box is selected. The upload process
deploys the artifact and generates the default POM file, maven-metadata.xml,
and associated sha1/md5 checksum files. If maven-metadata.xml already
exists, it’s updated.

If you deselect the check box, the upload process deploys the artifact to the
target deployment path based on Maven attributes. The POM file and the
maven-metadata.xml file aren’t generated.

6. Click Start Upload.

You can track the transfer status and its progress in the drop area of the Upload
Artifacts section. To cancel the upload process, click Cancel Upload. The upload
process will also be cancelled if the page is refreshed or closed.

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-23

Upload Artifacts Using the Maven Command-Line Interface
You can also use the Maven command-line interface to upload artifacts to the project’s
Maven repository.

The Maven repository URL is available on the Project Home page of your project.
Use the dav: URL to upload files and the http:// URL to view them in the browser.

Note that the credentials in settings.xml aren’t required to access the project Maven
repository when running a build. The build job has full access to the project Maven
repository for uploads and downloads.

1. Download and install Maven on your local computer.

You can download Maven from http://maven.apache.org/download.cgi.

2. Open MVN_HOME/conf/settings.xml in a text editor and make the following
changes.

a. Specify the proxy server, if necessary.

Example:

<proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>PROXY_URL</host>
 <port>80</port>
 <nonProxyHosts>www.anything.com|*.somewhere.com</
nonProxyHosts>
 </proxy>
</proxies>

b. Specify a unique ID and your DevCS user name and password to access the
project Maven repository.

Example:

<servers>
 <server>
 <id>remoteRepository</id>
 <username>USERNAME</username>
 <password>PASSWORD_IN_PLAINTEXT</password>
 </server>
</servers>

c. Specify a unique ID, name, and URL for the project Maven repository. You can
copy the Maven repository URL from the Repositories tab of the Project
Home page.

Example:

<profiles>
 <profile>
 <id>default</id>
 <repositories>

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-24

 <repository>
 <id>remoteRepository</id>
 <name>My Remote Repository</name>
 <url>dav:https://developer.us2.oraclecloud.com/……/
maven/</url>
 <layout>default</layout>
 </repository>
 </repositories>
 </profile>
</profiles>

3. Open the command-line and follow these commands to upload files to the hosted
Maven repository. Ensure that the MVN_HOME/bin path is available in the PATH
variable.

a. Navigate to the directory that contains the files that you want to upload.

b. Create the pom.xml file, if it hasn’t been created already.

For more information about pom.xml, see http://maven.apache.org/guides/
introduction/introduction-to-the-pom.html.

c. Run the mvn deploy command to upload files.

Example: mvn deploy:deploy-file -DpomFile=c:\myproject\pom.xml -
Dfile=c:\myproject\myfile.jar -DrepositoryId=remoteRepository -X -
Durl=dav:https://developer.us2.oraclecloud.com/……/maven/

Search Artifacts
To search for artifacts, use the Artifact Search view.

You can specify the following search criterion:

• GroupID

• ArtifactID

• Version

• Classifier

• Size and updated date (available in Show Advanced Options)

The search result is grouped by Maven coordinates in the Artifacts (default) tab and
by files in the Files tab.

Download an Artifact Manually
You can download an artifact manually from the Browse view of the Maven page.

1. In the navigation bar, click Maven .

2. If necessary, on the right side of the page, click Browse.

3. Browse and select the artifact that you want to download.

You can also click Artifact Search to search for the artifact and then click its
name to open it in the Browse view.

4. With the artifact selected, in Artifact Details on the right, click Download .

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-25

The browser downloads the artifact and saves it to your computer.

Copy Distribution Management Snippets
To upload or download dependencies while running a build, add the dependency
management snippet or the dependency declaration snippet to the POM file.

Action How To

Copy the Dependency
Management snippet

1. In the Browse view, navigate to the root directory.

2. In the Artifact Details section, expand Distribution
Management.

3. In the Maven tab, click Copy to copy the
<distributionManagement> code snippet to the clipboard.

4. Open the pom.xml file of your project in a code editor (or a text
editor) and paste the contents of the clipboard under the
<project> element.

Copy the Dependency
Declaration snippet

1. Browse the Maven repository and select the artifact.

You may also click Artifact Search to search for the artifact and
then click its name to open it in the Browse view.

2. In the Artifact Details section, expand Dependency Declaration.

3. In the Maven tab, click Copy to copy the <dependency> code
snippet to the clipboard.

4. Open the pom.xml file of your project in a code editor (or a text
editor) and paste the contents of the clipboard under the
<dependencies> element.

Tip:

You can copy the Maven repository’s URL from the distribution snippet. You
can also copy the URL from the Project Home page.
On the Project Home page, click the Repositories tab. In the Maven
section, from the Clone menu of Project Repository, select HTTP or

Webdav, and click Copy to copy the URL to clipboard.

Use the HTTP URL to connect to the Maven repository using the HTTP
protocol. Use the Webdav URL to connect to the repository using the
Webdav protocol.

Maven Repository Administration
You can configure the Maven repository to limit the number of snapshots and
overwrite an artifact if another with same groupID, artifactID, and version value is
uploaded.

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-26

Configure Auto-Cleanup of Snapshots
By default, when you upload a new snapshot of an artifact to the project’s Maven
repository manually or through job builds, the repository retains the old versions of the
snapshots. You can configure the project to remove the old versions when a new
version is uploaded.

 You must be assigned the project Owner role to configure the auto-cleanup.

1. In the navigation bar, click Project Administration .

2. Click Repositories.

3. In Maven Repository, if necessary, expand Configure auto cleanup for
Snapshot versions.

4. Select the Purge check box.

5. In Default Max Snapshots, enter a number between 2 and 500 to specify the
maximum versions to retain. By default, 2 versions of the snapshots are retained.

All changes are saved automatically when you navigate to another field. After the rule
is enabled, any new upload of a snapshot will remove its older versions if the number
of snapshots exceed the value in Default Max Snapshots.

You can also add exceptions to the auto-cleanup and Default Max Snapshots rule
and customize the snapshot counts. The project Maven repository retains the
snapshot counts of group IDs and artifacts defined in the Customized Snapshot
Counts section and uses the default value specified in Default Max Snapshots for
artifacts that don’t have exceptions defined.

To define exceptions and customize snapshot count:

1. In the Maven Repository section of the Repositories page, select the Purge
check box and configure the default auto-cleanup as described above.

2. To add an artifact group or an artifact name as an exception, click + Add in the
Customized Snapshot Counts section.

3. Specify these details:

• Group Id (Required): Enter or select the Group ID of the artifact. You can
select the ID from the list or start typing and then select the ID from the list of
suggestions. The auto-suggest list is based on the Maven indexes. If no index
data is available, the auto-suggest list doesn’t display.

• Artifact Id (Optional): Enter or select the Artifact ID of the artifact. You can
select the ID from the list or start typing and then select the ID from the list of
suggestions. The auto-suggest list is based on the Maven indexes. If no index
data is available, the auto-suggest list doesn’t display.

• Snapshot Count: Select the number of snapshots to retain in the project
Maven repository. By default, 2 snapshots are retained.

To remove an exception, on the right, click Remove . For a long list of exceptions,
you can use the Filter field and enter a search coordinates criteria to see the
exceptions matching the criteria. If you enter an exception with duplicate coordinates,
an error message Unable to save. Coordinates already exists. Enter unique
coordinates appears.

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-27

Configure Overwrite for Artifacts
By default, when a user tries to upload a Maven release artifact with the same
groupID, artifactID, and version values of an existing artifact to the project’s Maven
repository, the upload fails. If a build tries to upload an artifact with duplicate groupID,
artifactID, and version values, it fails too. To allow the duplicate artifact to be uploaded,
you can configure the project’s Maven repository to allow the build to upload artifacts
with duplicate groupID, artifactID, and version values.

 You must be assigned the project Owner role to configure the overwrite property.

1. In the navigation bar, click Project Administration .

2. Click Repositories.

3. In Maven Repository, if necessary, expand Configure Overwrite Property for
Release Artifacts.

4. Select the Allow check box.

Chapter 4
Manage Binaries and Dependencies Using the Project’s Maven Repository

4-28

5
Collaborate with Your Team

After adding team members and setting up your project, you can use merge requests
for peer review of code files, wikis to share documentation, and snippets to share
common code files.

This table describes the Oracle Developer Cloud Service pages you’d use to
collaborate your project with team members.

Use this page ... To:

Merge Requests Merge branches and peer review the source code.

Wiki Create and view wiki pages of the project.

Snippets Create and share common code files and snippets.

Review Source Code with Merge Requests
The review of the source code helps in avoiding bugs, identifying design issues, and
catching design and implementation problems that might affect the application
performance. To get the source code reviewed, you must create a merge request.

Merge Requests Concepts and Terms
As the name suggests, a merge request is a request to merge a branch into another.
Before merging the branch, you may want your team members to review updates
made to the branch and share their feedback. A merge request combines the review
and merge processes into one easy collaborative process.

You can also link related issues and builds to the merge request that are automatically
updated or triggered when you merge branches.

Here are the terms that this documentation uses to describe the merge request
features and components.

Term Description

Review branch Branch to be reviewed and merged.

Target branch Branch that the review branch will merge into.

Reviewer Project user invited to review the changed files of the review branch.

Requester Project user who created the merge request.

Subscriber Project user who isn’t a reviewer, but is watching the merge request.

Default reviewer Project user who’s automatically added as a reviewer if a branch is
selected as the review branch. Only a project owner can create default
reviewers of a branch.

5-1

Term Description

Approved Reviewer's feedback with no objection to the changes made to the
source code in the review branch.

Rejected Reviewer's feedback with objections to changes made to the source
code in the review branch and a recommendation not to merge the
review branch into the target branch.

General comment A comment in the Conversations tab of the merge request.

Inline comment A comment added to a line of a file under review.

Pending (or
unpublished)
comment

An inline comment that you didn’t publish when you added it.

To understand the workflow of a merge request, let's consider you're a software
developer assigned a new feature to implement. These steps summarize the action
you’d perform to set up a merge request and merge branches.

1. Create a branch from a stable branch (say master) of the source code Git
repository. You'd add or update the files of the new branch to implement the new
feature.

You can do this in the cloned Git repository on your computer or on the DevCS Git
page.

2. On your computer, pull the latest content from the project’s Git repository,
checkout the new branch, update the required files, and commit and push the
checked out branch to the project’s Git repository.

3. If required, create a build job to generate artifacts from the new branch to verify
the stability of the application.

4. Create a merge request with the new branch as the review branch and the stable
branch as the target branch.

5. Add your manager and other team members as reviewers.

6. To resolve the feature related issues when you close the merge request, link the
issues to the merge request.

7. Depending on the review feedback, you may need to update some files and check
the stability of the branch. To trigger a build of the job automatically when you
update the files of the review branch, link the job to the merge request.

8. Again, based on the feedback and build status of the linked jobs, you may want to
merge the branch with the stable branch or abandon it. If you merge the branches,
the linked issues are automatically resolved.

If you're invited to a merge request, you can add comments to the updated files, and
share your feedback whether you’ve any objection to merge branches.

1. Open the merge request.

2. Check the commits made to the review branch and compare the changed files.

3. Add general or inline comments, if necessary.

4. Submit your feedback as Approved if you find the code updates acceptable, or
Rejected if you have objections.

Chapter 5
Review Source Code with Merge Requests

5-2

If you're a project member but aren’t invited to a merge request, you can add
comments but you can't share your feedback.

It isn’t necessary to add reviewers to a merge request. If you're sure that the changes
made to the review branch don’t require a review, you can merge both branches
without a review. If you're comfortable using Git, you can merge branches from a Git
client or from an IDE without creating a merge request.

Merge Request States
A merge request can be in one of various states such as Open, Merged, or Closed.

State Description

Open Code review is in progress.

A merge request’s status remains Open until the branches are merged
or the request is closed.

Merged Code review is complete and the review branch has been merged with
the target branch.

The review is closed for inline comments, but can accept general
comments.

Closed Code review is closed without merging the review branch with the
target branch.

The review is closed for inline comments, but can accept general
comments.

Create and Manage Merge Requests
After you create a merge request, you add reviewers and link related issues and jobs
to it.

Create a Merge Request
You can create a merge request from the Merge Request page. You can't create a
merge request if the branch that you want to be reviewed has any merge restrictions
set or is already under review in another merge request.

 You must be a project member to create a merge request.

1. In the navigation bar, click Merge Requests .

2. Click + Create Merge Request.

3. On the Branch page of the New Merge Request wizard, in Repository, specify the
Git repository.

4. In Target Branch, select the branch that the review branch would merge into.

5. In Review Branch, select or enter the name of the branch to be reviewed. If the
branch doesn’t exist, it’s created.

If the review branch is already under review in another merge request, the branch
name won’t appear in the Review Branch list.

6. Click Next.

Chapter 5
Review Source Code with Merge Requests

5-3

7. On the Details page of the New Merge Request wizard, in Linked Issues, add
issues related to the merge request.

When merging branches or closing the merge request, you can choose to mark
the linked issues as resolved.

8. In Linked Builds, add jobs related to the merge request.

Builds of the linked jobs run automatically when the review branch is updated.

9. In Tags, add project tags to associate them with the merge request.

You can use these tags to search merge requests.

10. In Summary, enter a summary (or title) of the merge request. If not specified, the
default summary Merge Request for branch <review_branch_name> is set.

11. In Reviewers, select team members who’ll review the updates.

Names of default reviewers are added automatically, however, you may choose to
remove them.

To add all reviewers of the last merge request you created, select Reviewers

.

12. Click Next.

13. On the Description page of the New Merge Request wizard, enter a description,
and click + Create.

You can use the project’s wiki markup to format the description.

After the merge request is created, all reviewers are assigned the Reviewer role and
you're assigned the Requester role. Email notifications are also sent to reviewers
informing them that they are added as reviewers.

Add or Remove Reviewers
You can add reviewers when you create a merge request or while the review is open.
You must be the requester or a reviewer to add or remove reviewers.

1. In the navigation bar, click Merge Requests .

2. Click the merge request summary to open it.

You can manage the reviewers from the Review Status section available on the right
side of the page.

Action How To

Add a reviewer 1. In the Review Status section, click Click to add a reviewer.

2. In the Add Reviewer list, enter the project member name or select
the member from the list.

3. Click Save .

Chapter 5
Review Source Code with Merge Requests

5-4

Action How To

Add yourself as a
reviewer

If you're a project member but not a reviewer, you can submit a
request to add yourself as a reviewer to a merge request.

Above the Review Status section, click Add me . If you’re a project
owner, you are added immediately to the merge request. If you’re a
project member, then enter a justification in the Request to be added
as a reviewer dialog box, and click OK.

Approve a reviewer
request

If you’re the requester or a reviewer, you can approve requests of
project users to join the merge request as reviewers. In the

Conversation tab, click Add User in the requested to be a
reviewer request.

Remove a reviewer In the Review Status section, click Remove next to the reviewer
you want to remove.

Link an Issue to a Merge Request
Linking issues to a merge request enables you to resolve them automatically when
you merge or close a merge request.

1. Open the merge request.

2. Click the Linked Issues tab.

The tab displays issues linked to the merge request.

3. To link an issue to the merge request, enter the issue summary text or the issue ID
in the Search and Link Issues search box, select the issue from the drop-down

list, and click Save .

Link a Build Job to a Merge Request
Linking build jobs to a merge request enables you to monitor them from the merge
request and trigger them when a commit is pushed to the review branch. Depending
on the build’s status, reviewers can determine whether the merge request is ready to
be merged with the target branch.

1. Configure the job to accept merge request parameters.

See Use Build Parameters.

2. Open the merge request.

3. Click the Linked Builds tab.

The tab displays linked jobs, if any.

4. In Search and Link Build Jobs, enter the job name and select it from the list.

5. Click Save .

After a job is linked to a merge request, a build automatically runs when the review
branch is updated with a commit.

When a build of a linked job runs, a comment is automatically added to the
Conversation tab. If the build succeeds, it auto-approves the merge request and adds

Chapter 5
Review Source Code with Merge Requests

5-5

itself to the Approve section of the Review Status list. If the build fails, it auto-rejects
the merge request and adds itself to the Reject section of the Review Status list.

Watch a Merge Request
You can set up a watch on a merge request and get email notifications when a
reviewer adds a comment, a user updates files of the review branch, or a reviewer
shares a feedback.

Action How To

Merge requests where
you’re a reviewer

By default, you get email notifications of merge requests where you’re
a reviewer. If you aren’t getting the email notifications, select the
Merge Request updates and comments check box in your user
preferences page.

1. In the branding bar, click the user avatar, and select Preferences.

2. Click the Notifications tab.

3. Select the Merge Request updates and comments check box, if
not selected.

4. To the left of the User Preferences title, click Close to return
to the last opened page.

Merge requests where
you’re not a reviewer

1. Open the merge request.

2. Click CC me.

To stop watching, remove your name from the Watchers list.

Merge Request Email Notifications
As the reviewer, the requester, or the subscriber (watcher) you receive email
notifications when the merge request is created or updated. A notification of the event
also appears in the Recent Activity feed on the Project Home page.

Some events that send notifications are:

• Merge request is created

• Additional source code changes are committed to the review branch and pushed
to the upstream

• A general comment is added

• An inline comment is published

• Reviewers are added or removed

• Merge request is approved or rejected

• Merge request is closed or merged

Batch emails are sent when:

• A user submits multiple inline comments

• A user submits several private inline comments and publishes them later

• A user submits several general comments in a short duration

Chapter 5
Review Source Code with Merge Requests

5-6

• Multiple users carry on multiple conversations at the same time in different inline
comments

• Multiple users carry on multiple conversations in general comments

Batch emails are also sent for review events that occurred before the inactivity period,
which is usually five minutes after users stop entering comments. Review activities,
other than comments related activities, don’t send email notifications in the inactivity
period. A batch email is sent after the inactivity period listing all review activities that
happened prior to the period of inactivity expires.

Review a Merge Request
To review a merge request, on the Merge Request page, click its summary. On the
Review page, you can view the commits of the review branch, review changed files,
add inline and general comments, and submit your feedback.

Open a Merge Request
To open a merge request, on the Merge Requests page, click its name.

Use the filter tabs to search for the merge request. By default Related To Me, Waiting
for Approval, Created By Me, Open, and Merged filters are available. More filters
are available in the More drop-down list.

If you’re invited to a merge request, you can also click the request ID from the email
notification.

Chapter 5
Review Source Code with Merge Requests

5-7

If you still can’t find the merge request through the available filters, use the search box

at the top of the page or click New Search to run an advanced search.

You can also save the advanced search for future use. In Search Name, enter a name
and click Save. The saved searches are listed in the More drop-down list.

View Commits and Changed Files
You can view commits and changed files from the Commits and the Changed Files
tabs.

The Commits tab shows all commits made to the review branch. This table lists the
common actions you can perform from the Commits tab.

Action How To

Compare the files of
one commit with
another

Click the button with the first seven characters of the commit’s SHA-1
checksum hash. By default, the page compares the commit with the
previous commit.

Chapter 5
Review Source Code with Merge Requests

5-8

Action How To

View all files of the
repository when the
commit was pushed to
the branch

Click Code.

View files that were
updated in the commit

Click Show Details. To compare a file with its parent commit, Click the
file name to compare the file changes with its previous commit.

The Changed Files tab shows the files in the compare mode. This table lists the
common actions you can perform from the Changed Files tab.

Action How To

Open a tree view of
changed files

Click Changed Files Tree .

View the compare
options

Click Diff Preferences .

Add a comment to a
code line or reply to
one

Mouse-over the line number of the file and click Add Comment .

Add a General Comment
In the Conversation tab, you can view the ongoing conversation and add comments.
The comment could be a generic comment, a question you want to ask reviewers, or a
comment about an event such as a commit.

1. Open the merge request.

2. In the Write tab of the Conversation tab, enter your comment.

You can use the project’s wiki markup to format the comment. Click the Preview
tab to preview the format.

3. Click Submit.

The comment adds in the Conversation tab along with icons to reply, edit, and delete
your comment. Note that you can’t edit or delete comments entered by other users.

Add an Inline Comment to a File
When a code review is in progress, you can add inline comments directly to a file’s
code lines. You can’t add an inline comment after a merge request has been merged
or closed.

1. Open the merge request.

2. Click the Changed Files tab.

3. Mouse-over the line number of the file and click Add Comment .

Chapter 5
Review Source Code with Merge Requests

5-9

4. Add your comment in the comment box.

• Use the project’s wiki markup language to format the comment.

• Click Comment to publish it and make it visible to all reviewers.

You can’t edit or delete a published comment.

• Click Save to save the comment and publish it later. The comment isn’t
published and isn’t visible to reviewers.

• Click Cancel to cancel the comment.

To view your pending or unpublished comments, click the Pending Comments tab.

To reply to a published comment, click Reply , enter your comment, and click
Comment. Comment replies to a published comment are published immediately and
can’t be edited or deleted.

Manage Unpublished Comments
The Pending Comments tab displays all pending comments with the code where these
comments were added. The comments appear inline in the code.

• To edit a comment, click Edit .

• To publish a pending comment, click Publish to the right side of the comment
header.

• To publish all pending comments, click Publish All.

• To discard all pending comments, click Discard All.

• To delete a comment, click Delete .

Approve or Reject a Merge Request
As a reviewer, after you review the source code, you can add a special comment that
indicates whether you approve the code changes or reject them. Approving a merge
request implies that you don’t have any objections to changes made to the source

Chapter 5
Review Source Code with Merge Requests

5-10

code. Similarly, rejecting a merge request implies that you’ve an objection and don’t
recommend merging branches.

Note that if you created the merge request, but didn’t add yourself as a reviewer, you
can’t approve or reject the merge request. However, you can still close it or merge it
with the target branch.

1. Open the merge request.

2. Click the Approve or Reject button at the right side of the page.

3. In the dialog box that appears, add your comment, and click OK.

Use the project’s wiki markup to format the comment.

You can see your feedback (approval or rejection) in the Reviewers list.

Merge Branches and Close the Merge Request
After addressing reviewers’ comments, you can decide whether to merge the branches
or cancel the request.

Before doing that, go to the Review Status section and check the review status for the
reviewers and the status for linked build jobs. Depending on the number of Approves,
Rejects, and No Response, you can decide whether you want to merge the review
branch, wait for more approvals, or cancel the request.

Merge Branches
There are various ways to merge the review branch into the target branch. You can
merge commits, squash and merge, rebase and merge, or merge the branches
manually. To merge branches, you must be assigned either the reviewer role or the
requester role of the merge request.

It isn’t mandatory to get approval from all reviewers before you merge the review
branch. Note that you can’t merge the review branch if the target branch is locked and
must contact the project owner to unlock the target branch.

1. Open the merge request.

2. On the right side of the page, click Merge.

3. In the Merge dialog box, click Merge Options, and select the merge type.

Use this merge
type ...

To:

Create a merge
commit

Merge all commits of the review branch to the target branch. The
merge commits continue to show two parents.

Squash and Merge Add the commit history of the review branch to the target branch as
a single commit.

Rebase and Merge Reapply the commits of the review branch and add them to the top
of the target branch.

Manual Merge Follow the on-screen commands to merge the branches using the
Git CLI.

At the top of the dialog box, select the Remember My Choice check box to pre-
select the current option next time you open the Merge dialog box.

Chapter 5
Review Source Code with Merge Requests

5-11

4. If necessary, update the Merge Summary and Merge Description.

The fields aren’t available if you select Rebase and Merge or Manual Merge.

5. To delete the review branch after the commits are merged with the target branch,
select the Delete Branch.

6. If there are any linked issues, deselect the check boxes of the issues that you
don’t want to mark as resolved after the commits are merged with the target
branch. By default, check boxes of all linked issues are selected.

7. Submit the dialog box.

After the review branch has been merged, the merge request is automatically closed
and no other action is allowed.
If you didn’t select the Delete branch check box when you merged the review branch,
note that the review branch wasn’t removed from the Git repository. You can continue
to make commits to the branch and create another merge request to review the new
source code.

Resolve a Merge Conflict
Git can automatically resolve code conflicts when the review branch is merged with the
target branch. In some cases, however, the conflicts must be resolved manually.

On the Merge Request page, if the Merge button is replaced by the Show Merge
Conflicts button, it indicates a merge conflict.

Git automatically resolves conflicts if different files of the target and review branches
are updated before both branches are merged. Merge conflicts are reported when the
same lines of the same files are updated in the review branch and the target branch
before both branches are merged. In such cases, you have to manually review each
conflicting file in the review branch with the code of the same file in the target branch
and resolve the conflicting code lines. To find and resolve the conflicting files, run the
Git commands that the merge request page shows.

1. Open the merge request.

2. Click Show Merge Conflicts.

A Merge Conflicts dialog box opens with the commands you need to run to resolve
the conflict. It also lists the conflicting files.

3. On your computer, open the Git CLI.

4. If you’ve already cloned the project Git repository, navigate to its directory.

If you haven’t cloned the Git repository, clone it.

5. Run the commands shown on the Merge Conflicts dialog box.

The commands help you resolve the conflict and mark the conflicting code lines in
files.

6. Open each file with conflicts in a text editor or an IDE.

The conflict content are marked with <<<<<<<, =======, and >>>>>>>. The lines
between <<<<<<< and ======= show the code from the target branch. The lines
between ======= and >>>>>>> show the code from the review branch.

7. Review the content and update it. Remember to remove the <<<<<<<, =======,
and >>>>>>> from each conflicting file before saving it.

8. Save all files and commit them.

Chapter 5
Review Source Code with Merge Requests

5-12

Run the git status command to view the status of conflicting files.

9. Push the commit to the target branch.

Conflicting files of the review branch are now merged with the target branch. No
additional action is required on the Merge Request page.
If you want to delete the review branch, open or refresh the merge request page, and
click Delete Branch.

Close a Merge Request
You must close a merge request after the review branch has been merged. To close a
merge request, it isn’t necessary to merge the review branch to the target branch. You
can close a merge request if it was created by mistake or if you don’t want to merge
the review branch to the target branch.

Make sure that you perform any needed merge action before you close the request.
Once a merge request is closed, you can’t merge the review branch, add comments,
or review the source code.

1. Open the merge request.

2. Click Close.

3. Complete the elements of the Close Merge Request dialog box.

To change the review status to Merged and close the review, select the Close as
Merged check box. You may choose the Close as Merged option if the review
branch was merged through some other means (such as the Git CLI, IDE, or
though the git cherry-pick command).

If you don’t select the Close as Merged check box, the Merge Request is closed
without changing the review status to Merged. You may want to do this if the
merge request was created on the wrong branch or created by mistake.

4. Click OK.

Merge Request and Branch Administration
On a Git repository branch, you can set some restrictions and assign some project
users as default reviewers of the branch

For a branch, you can set rename, delete, push, and merge restrictions; or lock a
branch if you don’t want anyone to push commits to it or merge another branch with it.
When a merge request is created with the branch as the target branch, the default
reviewers of the branch are automatically added to the Reviewers list.

 You must be assigned the project Owner role to assign default reviewers to a
branch, or set push and merge restrictions on it. For a Private branch, a branch owner
can also change its restrictions.

Set Review and Merge Restrictions on a Repository Branch
You can configure a branch to allow another branch to merge into it only through a
merge request after the merge request has specified number of approvals.

The number of approvals ensures that specified reviewers of the merge request have
reviewed the changes of the review branch. You can't merge a branch outside DevCS,
such as using a Git client, without meeting the number of approvals requirement of the

Chapter 5
Review Source Code with Merge Requests

5-13

merge request. You can set other review restrictions on a branch, such as whether the
last build of the branch must be successful to merge it.

 You must be assigned the project Owner role to set review restrictions on a
branch.

1. In the navigation bar, click Project Administration .

2. Click Branches.

3. In Repository and Branches, select the Git repository and the branch.

4. Select the Requires Review option.

When you select the Requires Review option for branch, you can merge a branch
after the branch's approvals requirement is met.

This table describes the other review restrictions you can set from the Branches page.

Action How To

Assign default
reviewers to a branch

A default reviewer is a project member who is automatically added as
a reviewer when a merge request is created on a branch.

In Reviewers, enter and select the users.

Set minimum number
of approvals before a
branch is merged to
the selected branch

From the Approvals drop-down list, select the minimum number of
reviewers who must approve the review branch of a merge request
where the selected branch is the target branch.

Allow a review branch
to be merged to the
selected branch only if
the last build of the
linked job in Merge
Request is successful

Select the Require successful build check box.

If a change is pushed
to a branch after some
reviewers have
approved the merge
request, merge only
when they reapprove
the merge request

Select the Reapproval needed when branch is updated check box.

Ensure changes
pushed to the target
branch match the
contents of the review
branch

Select the Changes pushed to target branch must match review
content check box

Specify users who can
bypass the branch
restrictions and merge
the review branch of a
merge request outside
DevCS or without
required approvals

In Merge Request Exempt Users, specify the users.
This is useful if you want to allow some users to merge the review
branch irrespective of review conditions being met.

Collaborate on Documentation Using Wikis
You can use Wikis to collaborate on your projects’ documentation.

Chapter 5
Collaborate on Documentation Using Wikis

5-14

Oracle Developer Cloud Service (DevCS) supports these Wiki markup languages:

• Confluence

See http://www.atlassian.com/software/confluence/.

• Textile

See http://textilewiki.com.

• Markdown

See http://daringfireball.net/projects/markdown/.

Project users can use the project's Wiki markup language to format content in wiki
pages, and in issue and merge request comments.

Create and Manage Wiki Pages
From the Wiki page, you can create and open wiki pages, add child wiki pages, add
attachments, and delete or restore deleted wiki pages. From the Wiki Drafts page, you
can open and edit saved drafts, publish drafts, and delete any drafts that are no longer
needed.

In the navigation bar, click Wiki to create and manage wiki pages. Any project user
can create a wiki page. For a page that you didn't create, depending on the edit and
delete access set by the creator of the wiki page, you may or may not be able to edit
or delete it. If you’re a project owner, you can always do that.

Action How To

Create a wiki page 1. On the Wiki page, click + Create Page.

2. In the Page Text tab, enter the content.

Use the project’s wiki markup language to format the contents. To
open the markup language’s cheat sheet, click the reference link
above the text area.

3. Click Save to publish the new page.

Click Close and you'll be allowed to retain a draft of the page you
were working on or delete the draft and discard your work.

Open a wiki page To open a wiki page, click the wiki page title.

If a wiki page has child wiki pages, click next to the wiki page title
and select the child wiki page name to open it.

Edit a wiki page To edit a page, click Edit. If a saved draft for the page exists, select
Resume editing to display the draft with the last saved changes or
select New Edit to start editing the published page. Use the wiki’s
markup language to format the contents. To open the markup
language’s cheat sheet, click the reference link above the text area.

If the project is using the Markdown markup language:
• Use # followed by the issue ID to add a reference to the issue.

Example: #12 creates a link the issue ID 12.
• Use ! followed by the merge request ID to add a reference to the

merge request. Example: !34 creates a link to the merge request
ID 34.

• See http://www.emoji-cheat-sheet.com/ for the complete
list of supported emoticons and text patterns.

Chapter 5
Collaborate on Documentation Using Wikis

5-15

Action How To

Edit a draft of a wiki
page

1. On the Wiki page, click My drafts.

2. Locate the draft of the wiki page you want to edit and click Edit
under Actions.

Create a child wiki
page

1. Open the parent wiki page.

2. Click New Child.

You can also create a child wiki page without opening or creating its
parent wiki. On the Wiki page, click New Page. In Page Title, enter
the path of the child wiki page. For example, to create a HelloWorld
child page of the Welcome page, enter Welcome/HelloWorld in the
title. If the Welcome page doesn't exist, DevCS creates both Welcome
and HelloWorld pages. Open the empty Welcome wiki page and click
Create to create the wiki page and add contents to it.

Add an attachment You can attach files of any type to a wiki page, including images,
videos, docs, spreadsheets, and archived files.

1. Open the wiki page or the draft in the edit mode.

2. Click the Attachments tab.

3. In the Files to Attach or Update section, click Select. Browse
and select files to attach.

You can also drag and drop files to the drop area.

4. Click Attach.

5. Click Save.

Publish a draft of a
wiki page

1. On the Wiki Drafts page, locate the draft of the wiki page you want
to publish.

2. Click Publish under Actions.

A draft of a new page can only be published if it contains a path. A
draft of an existing page can only be published if the draft contains
changes from the underlying page.

Delete a wiki page 1. Open the wiki page

2. Click Delete.

3. In the Delete Wiki Page dialog box, select the I understand that
my wiki page will be permanently deleted check box and click
Delete.

The wiki page along with its comments is deleted. An activity with a
link to restore the wiki page (if necessary) is added to the recent
activities feed of the Project Home page.

If you delete a parent wiki page, its child wiki pages aren’t deleted. The
parent wiki page name continues to appear in the breadcrumb path.

To delete a draft of a wiki page, from the Wiki Drafts page, click Delete

 under Actions. In the Delete Wiki Page dialog box, select the I
understand that my wiki draft will be permanently deleted check
box, and click Delete draft.

Chapter 5
Collaborate on Documentation Using Wikis

5-16

Action How To

Restore a wiki page 1. Click the deleted wiki name in the recent activity feed or any other
wiki page where it was referenced.

2. Click Restore.

The wiki page along with comments and attachments restores to its
original path.

To restore a parent wiki page, open it and click Restore.

Add Comments
You can add general or block comments to a wiki page. You must be a project
member to add comments. In a shared project, any organization user can add
comments.

Action How To

Add a generic
comment

1. Open the wiki page.

2. Scroll down to the Comments section. In the Write tab, enter your
comment, and click Comment.
You can use the project’s wiki markup language to format your
comment.

The comment appears in a conversation box along with icons to Reply

, Edit , and Delete .

You can’t edit comments entered by other users. You can’t delete a
parent comment if there are any child comments, or delete comments
entered by other users.

Add a block comment A block comment is a comment that you add to a content block, such
as a paragraph or a table.

1. Open the wiki page.

2. Move the mouse pointer to the right edge of the block, and click

Add Comment .

If you see a number on the right edge of the block, it indicates the
number of existing comments of the block. Click the number to
view the comments and then click Leave a comment.

3. In the popup, add your comment, and click Post.

When you add a block comment, a watch is set on the wiki page and
you automatically get email notifications of future comments and
updates.

To hide the comment, click the comment number or Hide . To edit
or delete the comment, click the number and then click Edit or Delete.

If you edit, format, or move a content block, its comments move
automatically. If you remove a content block, its comments are deleted
too and can’t be restored. If you merge a block with another, the
comments of the source block will be hidden, but the comments of the
target block remain visible. When you the split the source block from
the target block and move it back its original position, the hidden
comments reappear.

Chapter 5
Collaborate on Documentation Using Wikis

5-17

Watch a Wiki Page
You can set a watch on a wiki page and receive email notifications whenever someone
updates the page or adds a comment.

To receive email notifications, in the User Preferences page, click the Notifications
tab, and then select Wiki page updates and comments.

Action How To

Watch a wiki page 1. Open the wiki page.

2. Click Watch Wiki.

3. In the menu, select the Watch Page check box.

The button’s label changes to Watching. To stop watching the page,
click Watching, and deselect the Watch Page check box.

Watch all pages of the
project

On the Wiki page, click Watch Wiki.
The button label changes to Watching. To stop watching all pages,
click Watching.

View History and Compare Versions of a Wiki Page
Each time you save a wiki page, Oracle Developer Cloud Service creates a version of
it. You can view the contents of the wiki page of a previous version, compare any two
versions, restore the wiki page to a particular version, or delete a particular version.

Action How To

View the history of a
wiki page and its
versions

1. Open the wiki page.

2. Click the Page History tab.

View the contents of
an old version

In the Page History tab, in the version number row, click View.

Compare two versions In the Page History tab, select the check boxes of versions, and click
Compare selected versions.

Restore the wiki to a
version

In the Page History tab, in the version number row, click Restore this
version. In the Revert Wiki Page dialog box, select the I understand
that my wiki page will be updated to this revisions' content check
box and click Yes.

Restoring a page creates a new version of the page with the contents
from the version you want to restore. You can’t restore a wiki page if
you don’t have its edit access.

Wiki Administration
Wiki page creators, project owners, or Organization Administrators can make some
administrative updates for wikis. These updates include changing edit and delete
access rights for a wiki page, changing a project’s wiki markup language, or changing
an organization’s default wiki markup language.

Chapter 5
Collaborate on Documentation Using Wikis

5-18

Configure Edit and Delete Rights for Wiki Pages
Edit access enables users to edit the wiki content, create child pages, or restore a
deleted version. Delete access enables users to delete a wiki page, or delete a version
from the Page History tab.

You can assign the access to a project role, not to a particular user. Project owners
can always edit or delete a wiki page and assign access to other roles. If you created a
wiki page, you can also assign its edit and delete access to other roles.

If you're a project member, note that for a wiki page that you create and allow other
users to edit its access rights, you could lose your edit or delete rights for the page if
another user changes the edit or delete rights to Owners only.

1. Open the wiki page.

2. Click Edit.

3. Click the Access Rights tab.

4. From the Edit Access list or the Delete Access list, select the project role. By
default, it’s set to Members and Owners.

Select this option ... To assign the access to ...

All All organization users. Use this option to enable all users to edit or
delete the page.

Members and
Owners

All project users. In a shared project, organization users can view
the wiki page, but can’t edit or delete it.

Owners Project owners only. Project members can view the page, but can’t
edit or delete it. In a shared project, organization users can also
view the wiki page, but can’t edit or delete it.

5. Click Save.

Change a Project’s Wiki Markup Language
The wiki markup language of a project is defined when the project is created. You can
change the markup language for the new pages and comments, but note that the
existing wiki pages and comments continue to use their original wiki markup language.

 You must be assigned the project Owner role to change a project’s wiki markup
language.

1. In the navigation bar, click Project Administration .

2. Click Properties.

3. In the Properties page, from Markup Language, select the wiki markup language.

When you’re finished, use the project navigation bar to switch to another page.

Set the Organization’s Default Wiki Markup Language
When you create a new project, the project creation wizard displays the default wiki
markup language of the organization. If you don’t change the wiki markup language,
the default markup language is used as the project’s markup language. You can

Chapter 5
Collaborate on Documentation Using Wikis

5-19

change the default markup language for new projects, but note that existing projects
continue to use their original markup language.

 You must be the Organization Administrator to set or change the organization’s
default wiki markup language.

1. In the navigation bar, click Organization .

2. Click the Properties tab.

3. In Markup Language, select the default wiki markup language.

Share and Use Code Snippets
A Snippet hosts reusable code in files that you can use in the project and share with
other project members. The file could include a small block of reusable source code or
text that can be incorporated into larger modules.

Content in snippet files may not be code, but it should be useful. This content could be
notes that you want to share with project members, or something you want to keep
private, such as a reminder to yourself. If a snippet is shared, project members can
copy or download the snippet files and then use them in their own applications.

A snippet can contain several files. When you create a snippet, you can add one file
only, but you can add additional files after creating the snippet.

Create and Manage Snippets
You can create a snippet from the Snippets page or from a text selection in a code
editor. You can only add one file when you create the snippet, but you can add more
files later.

This table describes how you can create and manage a snippet.

Action How To

Create a snippet
1. In the navigation bar, click Snippets .

2. Click + Create Snippet.

3. On the Snippet Details page of the New Snippet wizard, enter the
snippet name and description.

4. In Visibility, select Private if you don’t want to share the snippet’s
files and keep them for personal use. Select Shared to share the
snippet’s files with project members.

5. To edit the snippet and add more files immediately after creating
the snippet, select the Edit snippet when finished check box.

6. Click Next.

7. In the Snippet Content page of the New Snippet wizard, enter
content for the default file of the snippet.

If you don’t enter content, an empty file snippet1.txt is added
to the snippet.

8. Click Finish.

Chapter 5
Share and Use Code Snippets

5-20

Action How To

Create a snippet from
a selection

You can create a snippet from a file that’s open in the code editor.

1. In the open file, select the text.

2. Right-click and select New Snippet from Selection.

3. On the Snippet Details page of the New Snippet wizard, enter the
snippet name and description.

4. In Visibility, select Private if you don’t want to share it and keep
for personal use. Select Shared to share the snippet with project
members.

5. To edit the snippet and add more files immediately after creating
the snippet, select the Edit snippet when finished check box.

6. In the Snippet Content page of the New Snippet wizard, enter
content for the default file of the snippet.

If you don’t enter content, an empty file is added to the snippet.

7. Click Finish.

Share or stop sharing
a snippet

After creating a snippet you may want to share it with your team
members, or stop sharing it if it is already shared. You can set the
share status of a snippet that you own.

To share a snippet, in the My Snippets view of the Snippets page,

click Share . The icon changes to Shared . To stop sharing a

snippet, click Shared . The icon changes to Private .

Edit a snippet’s title You can edit the title of a snippet that you own. On the Snippets page,

click the snippet name, and then click Edit .

Delete a snippet You can delete a snippet that you own. On the Snippets page, click the
snippet name, and then click Delete. In the Delete Snippet dialog box,
click Yes to confirm.

Add and Manage Files of a Snippet
You must be the creator of the snippet to add or manage its files.

Action How To

Add a file 1. Open the snippet.

2. Scroll down and after the snippet’s files, click Add File.

3. In the header, enter the file name with extension. In the editor,
enter the file’s content.

The editor supports various code editing features such as
autocomplete, indentation, syntax highlighting, code folding, and
bracket matching.

4. After adding the content, scroll up and at the top of the page, click
Save.

To save the updates and stay on the Edit Snippet page, select
Save To save the updates and exit, select Save and Exit.

Chapter 5
Share and Use Code Snippets

5-21

Action How To

Edit a file 1. Open the snippet.

2. If necessary, rename the file and configure its properties.

3. In the editor, update the file contents.

4. At the top of the page, click Save.

To save the updates and stay on the Edit Snippet page, select
Save To save the updates and exit, select Save and Exit.

Delete a file 1. Open the snippet.

2. For the file that you want to delete, on the right side of the file

header, click Remove File .

3. In the Delete Snippet File dialog box, click Yes to confirm.

4. At the top of the page, click Save.

To save the updates and stay on the Edit Snippet page, select
Save To save the updates and exit, select Save and Exit.

Copy Contents of a Snippet File
You can copy contents of a snippet file manually from the Snippets page or insert it
from the context menu in the code editor component.

The code editor is available in various editing pages and input fields such as the Edit
Wiki page, edit mode of the readme file, snippet file editor, merge request comment
box, and the shell command box of the Configure Build page.

Action How To

Copy from the
Snippets page

1. Open the snippet.

2. For the file whose contents you want to copy, click Copy .

In some browsers, you must press Ctrl+C to copy the content to

the clipboard after clicking Copy .

3. Paste the contents into the text field.

Insert from the context
menu

1. In the code editor, right-click, and select Insert from Snippet.

2. In the Select Snippet page of the Insert From Snippet wizard,
select the snippet, and click Next.

3. In the Select File page, click the file name whose contents you
want to insert.

4. Click Finish.

Add a Comment to a Snippet
Add a comment to a snippet to share information with other developers.

To add a comment to a snippet:

Chapter 5
Share and Use Code Snippets

5-22

1. Open the snippet.

2. Scroll down to the Comments section.

3. Enter the comment in the comment box.

Use the project’s wiki markup language to format the comment.

4. Click Add.

Use Git with Snippets
You can use Git to clone a snippet repository and manage its files. After you clone the
snippet’s repository, you can view the file history, and update and commit files locally.
However, you can only push updates to repositories for snippets that you own.

1. Open the snippet.

2. On the Snippet Details page, at the top, click Clone, and then click Copy to
copy the HTTP or the SSH URL of the snippet repository.

3. Use Git commands to clone the repository, update files, and push the commits to
the project.

Download an Archive of the Snippet
You can download a zip or a tgz file of the snippet to your computer. You may want to
do this if you back up the files of the snippet before deleting it.

1. Open the snippet.

2. On the Snippet Details page, at the top, click Clone, and the select Download ZIP
or the Download TGZ option.

The downloaded file is an archive file that contains the latest content of all the files in
the snippet. To view previous versions of the files, you must clone the snippet
repository, and then use Git commands to show the history of the files.

Chapter 5
Share and Use Code Snippets

5-23

6
Build Applications and Deploy to Oracle
Cloud

After uploading the source code files to Git repositories, you’d want to run their builds
and generate artifacts, and then deploy those artifacts to Oracle Cloud.

This table describes the Oracle Developer Cloud Service pages you’d use to build and
deploy artifacts.

Use this page ... To:

Builds Create and configure build jobs.

Deployments Deploy build artifacts to Oracle Java Cloud Service, Oracle Application
Container Cloud Service, and Oracle Java Cloud Service - SaaS
Extension.

Configure and Run Project Jobs and Builds
Oracle Developer Cloud Service (DevCS) includes continuous integration services to
build project source files. You can configure the builds from the Builds page.

The Builds page, also called the Jobs Overview page, displays information about all
build jobs of the project and provides links to configure and manage them.

What is a Job and a Build?
A Job is a configuration that defines the builds of your application. A Build is a result of
a job’s run.

A job defines where to find the source code files, how and when to run builds, the
software and the environment required to run builds. When a build runs, it creates
packaged archives of the application that you can deploy to a web server. A job can
have hundreds of builds. Each build would’ve its artifacts, logs, and reports.

Build Concepts and Terms
Here are some terms that this documentation uses to describe the build features and
components.

Term Description

Build System Software that automates the process of compiling, linking and
packaging the source code into an executable form.

Build executor A basic block that enables a build to run. Each build uses one build
executor.

Workspace A temporary directory used by the build executor to download source
code files and generate artifacts when a build runs.

6-1

Term Description

Build artifact A file generated by a build. It could be a packaged archive file, such as
a .zip or .ear file, that you can deploy to a build server.

Trigger A condition to run a build.

Create and Manage Jobs
To run builds and generate artifacts that you can deploy, you must create a job. You
can create a job from the Build page.

Action How To

Create a blank job 1. On the Build page, click + Create Job.

2. In the New Job dialog box, enter a unique name and description.

3. Select Create a free-style job.

4. Click Save.

Copy an existing job At times, you may want to copy parameters and configuration of a job
to another. You can do that when you create a job. You can’t copy the
configuration of an existing job to another existing job.

1. On the Build page, click + Create Job.

2. In the New Job dialog box, enter a unique name and description.

3. Select Copy existing job.

4. From the Select a Job drop-down list, select the source job.

5. Click Save.

After you create the new job, you can change the copied parameters
and configuration. Note that the job is disabled by default to prevent it
from running any scheduled build while you are configuring the job. To
run builds of the copied job, you must enable it manually.

Configure a job The job configuration page opens immediately after you create a job.
You can also open it from the Jobs tab. From the jobs list, click the job
name, and then click Configure.

Run a build of a job From the jobs list, click Build Now .

Delete a job From the jobs list, click the job name, and then click Delete.

Configure a Job
You can create, manage, and configure jobs from the of the Builds page.

To open a job’s configuration page, in the Builds page, click the job’s name. In the
job’s details page, click Configure.

Access Project Git Repositories
You can configure a job to access project’s Git repositories and their source code files.

1. Open the Configure Build Job page of the job.

Chapter 6
Configure and Run Project Jobs and Builds

6-2

2. Click the Source Control tab.

3. Select the Git option.

4. In Repository, select the Git repository.

5. To specify a branch other than the default branch, in Branches, click Add and
select the branch in Branch Specifier.
Specify ** to examine all branches for changes. The branch with the most recent
changes will be used.

Click Advanced to set the advanced settings for the branch.

6. Click Save.

Trigger a Build Automatically on SCM Commit
You can configure a job to monitor its Git repositories and trigger a build automatically
after a commit is pushed to the Git repository.

1. Open the job’s configuration page.

2. Click the Triggers tab.

3. Select the Based on SCM polling schedule check box.

4. To specify a list of files and directories to track for changes in the repository, in the
Source Control tab, expand Advanced Git Settings, and enter the list in
Included Region. You can use a regular expressions to specify files.

You must separate each entry by a new line. An empty list implies that all files and
directories must be tracked.

For example, this list configures the job to trigger a build when a user adds or
updates an .html, .jpeg, or .gif file in the myapp/src/main/web/ directory of the
specified Git repository.

myapp/src/main/web/.*\.html

myapp/src/main/web/.*\.jpeg

myapp/src/main/web/.*\.gif

5. To specify a list of files and directories not to track for changes in the repository, in
the Source Controltab, expand Advanced Git Settings, and enter the list in
Excluded Region. You can use a regular expressions to specify files.

You must separate each entry by a new line. An empty list implies that all files and
directories must be tracked. If a change occurs in any of the specified files or
directories, a build won’t run. If there is an overlap between included and excluded
regions, exclusions take precedence over inclusion.

6. To exclude users whose commits to the repository don’t trigger builds, in
Excluded User, enter the list of user names.

7. Click Save.

Trigger a Build Automatically on SCM Polling
SCM polling enables you to configure a job to periodically check the job’s Git
repositories for any commits pushed since the job’s last build. If updates are found, it
triggers a build. You can configure the job and specify the schedule in Coordinated

Chapter 6
Configure and Run Project Jobs and Builds

6-3

Universal Time (UTC). UTC is the primary time standard by which the world regulates
clocks and time.

1. Open the job’s configuration page.

2. Click the Triggers tab.

3. Select the Based on SCM polling schedule check box.

4. In Schedule, specify the schedule using Cron expressions.

5. To not to run a build on every push to the project Git repository, select the Do not
poll on SCM change check box. The builds now run only on the specified
schedule.

6. Click Save.

To see the SCM poll log of the job after the build runs, in the job's details page or the

build's details page, click SCM Poll Log .

Generate Cron Expressions

You can use Cron expressions to define periodic build patterns.

For more information about Cron, see http://en.wikipedia.org/wiki/Cron.

You can specify the Cron schedule information in the following format:

MINUTE HOUR DOM MONTH DOW

where:

• MINUTE is minutes within the hour (0-59)

• HOUR is the hour of the day (0-23)

• DOM is the day of the month (1-31)

• MONTH is the month (1-12)

• DOW is the day of the week (1-7)

To specify multiple values, you can use the following operators:

• * to specify all valid values

• - to specify a range, such as 1-5

• / or */X to specify skips of X's value through the range, such as 0/15 in the MINUTE
field for 0,15,30,45

• A,B,...,Z can be used to specify multiple values, such as 0,30 or 1,3,5

Access Files of a Git Repository's Private Branch
To access a Git repository's private branch, configure the job to use SSH.

1. On the computer that you'll use to access the Git repository, generate a SSH key
pair and upload its private key to DevCS. See Upload Your Public SSH Key. Make
sure that the private key on your computer is accessible to the Git client.

Ignore this step if you've already uploaded the SSH public key.

2. Copy the Git repository’s SSH URL.

Chapter 6
Configure and Run Project Jobs and Builds

6-4

On the Git page, from the Repositories drop-down list, select the Git repository.

From the Clone drop-down list, click Copy to clipboard to copy the SSH URL.

3. Open the job’s configuration page.

4. Click Configure , if necessary.

5. Click the Git tab.

6. From the Add Git list, select Git.

7. In Repository, paste the SSH URL of the Git repository.

8. In Branch, select the private branch.

9. Click the Before Build tab.

10. Click Add Before Build Action and select SSH Configuration.

11. In Private Key and Public Key, enter the private and the public key of your SSH
Private-Public key pair.

Leave the Public Key empty to use fingerprint.

12. In Pass Phrase, enter the pass phrase of your SSH Private-Public key pair. Leave
it empty if the keys aren’t encrypted with a pass phrase.

13. Continue to configure the job, as desired.

14. Click Save.

Publish Git Artifacts to a Git Repository
Git artifacts, such as tags, branches, and merge results can be published to a Git
repository as a post-build action.

1. Open the job’s configuration page.

2. In the Source Control tab, add the Git repository where you want to publish Git
artifacts.

3. Click the Post Build tab.

4. Select the Git Publisher check box.

Chapter 6
Configure and Run Project Jobs and Builds

6-5

5. To push Git artifacts to the Git repository only if the build succeeds, select the
Publish only if build succeeds check box.

6. To push merges back to the target remote name, select the Merge results check
box.

7. To push a tag to the remote repository, in Tag to push, click Add and specify the
Git repository tag name. You can also use environment variables. In Target
remote name, specify the target remote name of the Git repository where the tag
is pushed. By default, origin is used.

The push fails if the tag doesn’t exist. Select the Create new tag check box to
create the tag and enter a unique tag name.

8. To push a branch to the remote repository, in Branch to push, click Add and
specify the Git repository branch name. You can also use environment variables.
In Target remote name, specify the target remote name of the Git repository
where the branch is pushed. By default, origin is used.

9. Click Save.

Advanced Git Options
When you configure the Git repositories of a job, you can also configure the job with
some advanced Git options, such as change the remote name of the repository, set
the checkout directory in the workspace, and whether to clean the workspace before a
build runs.

Use these fields of the Source Control tab of the job's configuration to set advanced
settings.

Advanced Repository Settings

Element Description

Name Enter the name of the repository. Leave the field empty to use the
default name of the repository.

Reference spec Specify the reference specification of the repository. This is an optional
field.

Leave the field empty to create a default reference specification.

Local Subdirectory Specify a local directory where the Git repository will be checked out. If
left empty, the workspace root itself will be used.

Advanced Git Settings

Chapter 6
Configure and Run Project Jobs and Builds

6-6

Element Description

Included Regions Enter the list of files and directories that will be tracked for changes in
the SCM. If a change occurs in any of the specified files or directories,
a build is triggered automatically.

Each inclusion uses regular expression pattern matching, and must be
separated by a new line. An empty list implies that all files and
directories will be tracked.

For example, the following list illustrates that a build will be triggered
when any HTML, JPEG, or GIF file is committed to the /main/web/
directory in the SCM.

myapp/src/main/web/.*\.html

myapp/src/main/web/.*\.jpeg

myapp/src/main/web/.*\.gif

Excluded Regions Enter the list of files and directories that will not be tracked for changes
in the SCM. If a change occurs in any of the specified files or
directories, a build will not run.

If there is an overlap between included and excluded regions,
exclusions take precedence over inclusion.

Excluded Users Enter the list of users whose commits to the SCM will not trigger
builds.

You can use literal pattern matching and users must be separated by a
new line.

Checkout/merge to
local branch

Specify the branch name to merge to. If specified, checkout the
revision to build as HEAD on this branch.

Config user.name
Value

Enter a user name value for the Git user.name variable.

Config user.email
Value

Enter the user’s email address for the Git user.email variable.

Merge options Select the Merge before build check box to perform a merge to a
particular branch before running a build.

Enter the name of the repository that will be merged in Name of
repository and the branch name in Branch to merge to. The build
will run if the merge is successful.

Prune remote
branches before
build

Select the check box to run the git remote prune command for
each remote to prune obsolete local branches before running a build.

Skip internal tag Select the check box to skip the internal tag. By default, a tag is
applied to the local repository after the code is checked out.

Clean after checkout Select the check box to run the git clean -fdx command after
every checkout to ensure a clean build.

Recursively update
submodules

Select the check box to retrieve all sub-modules recursively.

Use commit author
in changelog

Select the check box to use the commit's Author value in the build's
changesets. By default, the commit's Committer value is used.

Git creates a changeset every time you do a checkin. All the files that
are checked in together are included in the changeset.

Wipe out workspace
before build

Select the check box to delete the contents of the workspace before
running a build.

Chapter 6
Configure and Run Project Jobs and Builds

6-7

View Changes Log
The Change log displays the files that were added, edited, or removed from the job’s
Git repositories before the build was triggered.

You can view the SCM changes log from the job’s details page and a build’s details
page. The Recent Changes page that you open from the job’s details page displays
SCM commits from last 20 builds in the reverse order. The Changes page that you
open from a build’s details page displays SCM commits that happened after the
previous build.

The log shows build ID, commit messages, commit IDs, and affected files.

Trigger a Build Automatically on a Schedule
You can configure a job to run builds on a specified schedule specified in Coordinated
Universal Time (UTC). UTC is the primary time standard by which the world regulates
clocks and time.

1. Open the job’s configuration page.

2. Click the Triggers tab.

3. Select the Based on this schedule check box.

4. In Schedule, specify the schedule using Cron expressions.

5. Click Save.

Use Build Parameters
Using build parameters, you can pass additional information when a build runs that is
not available at the time of job configuration.

You can configure a job to use a parameter and its value as an environment variable
or through variable substitution in other parts of the job configuration. When a build
runs, a Configure Parameters dialog box opens so you can enter or change the default
values of the parameters.

1. Open the Configure Build Job page of the job.

2. Click the Build Parameters tab.

3. Select the This build is parameterized check box.

4. From the Add Parameter drop-down list, select the parameter type.

5. Enter values such as name, default value, and description.

6. Click Save.

When the Enable merge requests parameters check box is selected, the job
configuration creates three String parameters GIT_REPO_URL,
GIT_REPO_BRANCH, and MERGE_REQ_ID to accept the Git repository URL, the Git
repository branch name, and the merge request ID as input from the merge request
respectively.

Chapter 6
Configure and Run Project Jobs and Builds

6-8

Access the Oracle Maven Repository
The Oracle Maven Repository contains artifacts, such as ADF libraries, provided by
Oracle. You may require these artifacts to compile, test, package, perform integration
testing, or deploy your applications. For more information about the Oracle Maven
repository, see https://maven.oracle.com/doc.html.

To build your applications and access the Oracle Maven Repository, you configure the
job and provide your credentials to access the repository.

1. Open https://www.oracle.com/webapps/maven/register/license.html in your
web browser, sign-in with your Oracle Account credentials, and accept the license
agreement.

2. Configure the POM file and add the Oracle Maven Repository details.

a. Add a <repository> element to refer to https://maven.oracle.com.

Example:

<repositories>
 <repository>
 <name>OracleMaven</name>
 <id>maven.oracle.com</id>
 <url>https://maven.oracle.com</url>
 </repository>
</repositories>

Depending on your application, you may also want to add the
<pluginRepository> element to refer to https://maven.oracle.com.

Example:

<pluginRepositories>
 <pluginRepository>
 <name>OracleMaven</name>
 <id>maven.oracle.com</id>
 <url>https://maven.oracle.com</url>
 </pluginRepository>
</pluginRepositories>

b. Commit the POM file to the project Git repository.

3. If you’re a project owner, set up Oracle Maven Repository connections for the
project’s team members.

4. Create and configure a job to access Oracle Maven Repository.

Configure a Job to Connect to the Oracle Maven Repository
1. Open the Environment tab.

2. Select the Connect Oracle Maven Repository check box.
The following table highlights what options you can set for the Oracle Maven
Repository.

Element Description

OTN Login Enter your OTN SSO user name.

OTN Password Enter your OTN SSO password.

Chapter 6
Configure and Run Project Jobs and Builds

6-9

Element Description

Server Id If required, enter the ID to use for the <server> element of the
Maven settings.xml file. If not provided, the ID will default to
maven.oracle.com.

Custom
settings.xml

If you are using a custom settings.xml file, enter the path to the
file in the build workspace.

3. Click Save.

Run UNIX Shell Commands
You can configure a job to run a shell script or commands when a build runs.

1. Open the job’s configuration page.

2. Click the Build Steps tab.

3. From Add Build Step, select Execute Shell.

4. In Command, enter the shell script or commands.

The script runs with the workspace as the current directory. If there is no header
line, such as #!/bin/sh specified in the shell script, then the system shell is used.
You can also use the header line to write a script in another language, such as
Perl (#!/bin/perl) or control the options that shell uses.

By default, when a build runs, it invokes the shell with the -ex option. It prints all
commands before they run. The build failsif any of the commands exits with a non-
zero exit code. You can change this behavior by adding the #!/bin/... line.

Tip:

Don’t enter a long shell script. For a long script, create a script file and
add it in the Git repository. You can run the script with a command (such
as bash -ex /myfolder/myscript.sh).

5. Click Save.

Build Maven Applications
Using Apache Maven, you can automate your build process and download
dependencies, as defined in the POM file.

1. Upload the Maven POM files to the project Git repository.

2. Open the job’s configuration page.

3. In the Source Controltab, add the Git repository where you uploaded the build
files.

4. Click the Build Steps tab.

5. From Add Build Step, select Invoke Maven 2 or Invoke Maven 3.
The following table lists the fields of the Maven section.

Chapter 6
Configure and Run Project Jobs and Builds

6-10

Element Description

Goals Enter Maven goals, or phases, to run. This is a required field.

For example: clean and install are added by default.

For more information about Maven goals, see the Maven Lifecycle
Reference documentation at http://maven.apache.org.

Properties Enter custom system properties in the key=value format. This is
an optional field.

POM File Enter the Maven POM file name and location, relative to the
workspace root. This is an optional field.

Private repository Select the check box to use a private repository for builds. This is
an optional field.

Private temporary
directory

Select the check box to use a private temporary directory for builds.
This is an optional field.

Offline Select the check box to work offline. This is an optional field.

Profiles Enter the list of profiles to activate. The list can be comma or space
separated. This is an optional field.

For more information about Maven profiles, see the Maven
documentation at http://maven.apache.org.

Show Errors Select the check box to produce execution error detail messages.
This is an optional field.

Verbosity Select the Maven verbosity level from the list. You can select the
level as NORMAL, QUIET, or DEBUG. This is an optional field.

Checksum Mode Select the checksum handling mode from the list. You can select
the mode as NORMAL, STRICT, or LAX. This is an optional field.

Snapshot Updates Select how SNAPSHOT artifact updates are handled. You can select
the handling mode as NORMAL, FORCE, or SUPPRESS. This is an
optional field.

Recursive Indicates that all sub-modules will build recursively. The check box
is selected by default. This is an optional field.

Projects Enter the list of projects to include in the reactor. The reactor is a
mechanism in Maven that handles multi-module projects. This is an
optional field.

A project can be specified by [groupId]:artifactId or by its
relative path. The list can be comma or space separated.

Resume From Enter the project name from where you would like to resume the
reactor. The project can be specified by [groupId]:artifactId
or by its relative path. This is an optional field.

Fail Mode Select the failure handling mode from the list. You can select the
handling mode as NORMAL, AT_END, FAST, or NEVER. This is an
optional field.

Make Mode Select the Make-like reactor mode from the list. You can select the
mode as NONE, DEPENDENCIES, DEPENDENTS, or BOTH. This is an
optional field.

Threading Enter the configuration of the reactor threading model. This is an
optional field.

JVM Options Enter the parameters to be passed to the Java VM when running
Maven via the MAVEN_OPTS environment variable. This is an
optional field.

Chapter 6
Configure and Run Project Jobs and Builds

6-11

http://maven.apache.org
http://maven.apache.org

6. Click Save.

Use the WebLogic Maven Plugin
The WebLogic server includes a Maven plugin that you can use to perform various
deployment operations against the server, such as deploy, redeploy, and update. The
plugin is available in the DevCS build executor.

When a build runs, the build executor creates an empty Maven repository in the
workspace. To install the WebLogic plugin every time a build starts, in the job
configuration, add a shell command to install the plugin and then deploy it.
For more information about how to use the WebLogic Maven plugin, see Fusion
Middleware Deploying Applications to Oracle WebLogic Server in Oracle Fusion
Middleware Online Documentation Library.

1. Open the job’s configuration page.

2. Click the Build Steps tab.

3. From Add Build Step, select Execute Shell.

4. In Command, enter this command.

mvn install:install-file -Dfile=$WLS_HOME/server/lib/weblogic-maven-plugin.jar -
DpomFile=$WLS_HOME/server/lib/pom.xml
mvn com.oracle.weblogic:weblogic-maven-plugin:deploy

5. Click Save.

Upload to or Download Artifacts from the Project Maven Repository
To upload artifacts to the Maven repository, you'll use the distributionManagement
snippet in the POM file. To download artifacts from the Maven repository, use the
repositories snippet in the POM file.

1. To upload a build artifact to the Maven repository, copy the
distributionManagement snippet of the project’s Maven repository and add it to
the POM file.

a. In the navigation bar, click Maven .

b. On the right side of the page, click Browse.

c. In the Artifact Details section, expand Distribution Management.

d. In the Maven tab, click Copy to copy the <distributionManagement> code
snippet to the clipboard.

e. Open the POM file of your project in a code editor (or a text editor) and paste
the contents of the clipboard under the <project> element.

Example:

Chapter 6
Configure and Run Project Jobs and Builds

6-12

2. To download an artifact from the Maven repository, use the repositories snippet
of the project’s Maven repository.

a. In the navigation bar, click Maven .

b. On the right side of the page, click Browse.

c. In the Artifact Details section, expand Distribution Management.

d. In the Maven tab, copy the <repository> element of the Distribution
Management to the clipboard.

e. Open the POM file of your project in a code editor (or a text editor) and paste
the <repository> element in the<repositories> element under <project>.

Example:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.example.employees</groupId>
 <artifactId>employees-app</artifactId>
 <packaging>war</packaging>
 <version>0.0.1-SNAPSHOT</version>
 <name>employees-app Maven Webapp</name>
 <url>http://maven.apache.org</url>

 <repositories>
 <repository>
 <id>Demo_repo</id>
 <name>Demo Maven Repository</name>
 <url>http://developer.us2.oraclecloud.com/profile/my-org/s/my-
org_demo_12345/maven/</url>
 </repository>
 </repositories>
.
.
.
</project>

3. Save the file, commit it to the Git repository, and then push the commit.

4. Configure the job to add a Maven step and add the required Maven goals.

Chapter 6
Configure and Run Project Jobs and Builds

6-13

Tip:

Use the deploy goal to upload Maven artifacts to the project’s Maven
repository.

5. Run a build of the job.

6. If you configured the job to upload artifacts to the project’s Maven repository, after
the build is successful, verify the artifacts in the Maven page.

Example:

Note that the credentials in settings.xml aren’t required to access the project’s
Maven repository when running a build. The Build job has full access to the project’s
Maven repository for uploads and downloads.

Build Ant Applications
Using Apache Ant, you can automate your build processes as described in its build
files. For more information, see https://ant.apache.org/.

1. Upload the Ant build files (such as build.xml and build.properties) to the
project Git repository.

2. Open the job’s configuration page.

3. In the Source Controltab, add the Git repository where you uploaded the build
files.

Chapter 6
Configure and Run Project Jobs and Builds

6-14

4. Click the Build Steps tab.

5. From Add Build Step, select Invoke Ant .

6. In Targets, specify the Ant targets or leave it empty to run the default Ant target
specified in the build file.

7. InBuild File, specify the path of the build file.

8. If necessary, in Properties, specify the values for properties used in the Ant build
file.

Example:

comment
name1=value1
name2=$VAR2

When a build runs, these are passed to Ant as -Dname1=value1 -Dname2=value2.
You should always use $VAR for parameter references (don’t use%VAR%). Use \\to
escape a \ and avoid using double-quotes ("). To define an empty property, use
varname=in the script.

9. If your build requires a custom ANT_OPTS, specify it in Java Options. You may use
it to specify Java memory limits (example: -Xmx512m). Don’t specify other Ant
options here (such as -lib), but specify them in Targets.

10. Click Save.

Build Gradle Applications
Using Gradle, you can automate your build processes as defined in its build script. For
more information about Gradle, see https://gradle.org/.

In DevCS, Gradle 5 is available. To use another version of Gradle, use Gradle
Wrapper in the Gradle build step. Gradle recommends using Gradle Wrapper as the
preferred way to run a Gradle build. To learn more about using Gradle Wrapper, see
https://docs.gradle.org/current/userguide/gradle_wrapper.html.

Configure a Job to Run Gradle Commands

1. Upload the build.gradle file to the project Git repository.

2. Open the job’s configuration page.

3. Click the Build Steps tab.

4. From Add Build Step, select Invoke Gradle.

5. To invoke the default Gradle script, select Invoke Gradle. From Gradle Version,
select the Gradle version.

To use Gradle wrapper script, select Use Gradle Wrapper. If you want to use the
gradlew command as an executable command, select the Make gradlew
executable check box. To use the gradlew command from the root build script
directory, select the From Root Build Script Dir check box.

6. In Build step description, enter a description.

7. In Switches, enter Gradle switches.

8. In Tasks, enter Gradle tasks.

Chapter 6
Configure and Run Project Jobs and Builds

6-15

9. In Root Build Script, enter the path and directory name of the top-level
build.gradle file if it’s available in a directory other than the module root
directory. The path must be relative to the root directory.

If left empty, the path defaults to build.gradle in the root directory.

10. In Build File, enter the name and path of the Gradle build.gradle file.

11. If you are using a multi-executor slave, select the Force GRADLE_USER_HOME
to use workspace check box to set the GRADLE_USER_HOME to the workspace and
avoid collisions while accessing Gradle cache.

By default, GRADLE_USER_HOME is set to $HOME/.gradle.

12. Click Save.

Build Node.js Applications
Using Node.js, you can develop applications that run JavaScript on a server. For more
information, see https://nodejs.org.

Configure a Job to Build a Node.js Application

1. Open the job’s configuration page.

2. In the Source Control tab, add the Git repository where you uploaded the script
file.

3. Click the Environment tab.

4. Select the Use NodeJS Version check box.

5. From NodeJS Installation, select the Node.js version.

6. Click the Build Steps tab.

7. From Add Build Step, select Invoke NodeJS.

8. In Script, enter the script.

9. Click Save.

Access an Oracle Database Using SQLcl
Using SQLcl, you can run SQL statements from a build to connect and access an
Oracle Database. You can use SQLcl to access any Oracle Database available on
public internet that you can connect to using a JDBC connect string. You can run DML,
DDL, and SQL Plus statements. You can also use SQLcl in a test scenario and run
SQL scripts to initialize seed data or validate database changes.

SQLcl requires Java SE 1.8 or later. To learn more about SQLcl, see http://
www.oracle.com/technetwork/developer-tools/sqlcl/overview/index.html. Also
see Using the help command in SQLcl in Using Oracle Database Exadata Express
Cloud Service and the SQL Developer Command-Line Quick Reference
documentation to know more about using SQLcl supported commands.

To connect to Oracle Database Exadata Express Cloud Service, download the ZIP file
that contains its credentials and upload it to the job’s Git repository. You can download
the ZIP file from the Oracle Database Cloud Service service console. See

Chapter 6
Configure and Run Project Jobs and Builds

6-16

Downloading Client Credentials in Using Oracle Database Exadata Express Cloud
Service.

Configure a Job to Run SQLcl Commands
Before you configure the job, note these points:

• DevCS doesn’t support SQL commands to edit buffer (such as set sqlformat
csv) or edit console.

• DevCS doesn’t support build parameters in the SQL file.

• If you are using Oracle REST Data Services (ORDS), some SQLcl commands,
such as the BRIDGE command, requires a JDBC URL.
Example: BRIDGE table1 as "jdbc:oracle:thin:DEMO/demo@http://
examplehost.com/ords/demo"(select * from DUAL);

• To mark a build as failed if the SQL commands fail, add the WHENEVER SQLERROR
EXIT 1 line to your script.

1. Open the job’s configuration page.

2. Click the Main tab.

3. From the JDK drop-down list, select JDK 8, or later.

4. Click the Build Steps tab.

5. From Add Build Step, select SQLcl Builder.

6. In Username and Password, enter the user name and password of the Oracle
Database account.

7. In Credentials File, enter the workspace path of the uploaded credentials zip file.

8. In Connect String, enter the JDBC or HTTP connection string of the Oracle
Database account using any of the host_name:port:SID or host_name:port/
service_name formats.

JDBC Example: test_server.oracle.com:1521:adt1100 where adt1100 is the
SID, and test_server.oracle.com:1521/ora11g where ora11g is the service
name.

HTTP Example: http://test_server.oracle.com:8085/ords/demo

9. In Source, select SQL File if the SQL statements are in a file uploaded to the
project Git repository. Select Inline SQL to specify the SQL statements.

10. If you selected SQL File in Source, then in SQL File Path, enter the path of the
SQL file in the Git repository. You can copy the file’s path from the Code page.

11. If you selected Inline SQL in Source, then in SQL Statements, enter the SQL
statements in the code editor.

12. In Role, elect the database role of the user. By default, it is set to Default.

13. In Restriction Level, Specify the restriction level on the type of SQL statements
that are allowed to run. By default, it is set to 0.

14. Click Save.

When a build runs, DevCS stores your Oracle Database credentials in the Oracle
Wallet. Check the build’s log for the SQL output or errors.

Chapter 6
Configure and Run Project Jobs and Builds

6-17

Run Oracle PaaS Service Manager Commands Using PSMcli
Using Oracle PaaS Service Manager command line interface (PSMcli) commands, you
can create and manage the lifecycle of various services in Oracle Public Cloud. You
can create service instances, start or stop instances, or remove instances when a
build runs.

For more information about PSMcli and its commands, see About the PaaS Service
Manager Command Line Interface in PaaS Service Manager Command Line Interface
Reference.

Configure a Job to Run PSMcli Commands
1. Open the job’s configuration page.

2. Click the Build Steps tab.

3. From Add Build Step, select Invoke PSMcli.

4. In Username and Password, enter the user name and password of the Oracle
Cloud account.

5. In Identity Domain, enter the identity domain.

6. In Region, select your identity domain’s region.

7. In Output Format, select the preferred output format: JSON (default) or HTML.

8. From Add Build Step, select Execute Shell.

9. In Command, enter the PSM commands on separate lines.

10. Click Save.

You can add multiple shell steps to run different group of commands. Don’t add the
PSMcli build step again.

Publish JUnit Results
If you use JUnit in your application to run test scripts, you can configure your job to
publish JUnit test reports and get useful information about test results, such as
historical test result trends, failure tracking, and so on.

1. Upload your application with test script files to the Git repository.

2. Open the job’s configuration page.

3. Click the Post Build tab.

4. Select the Publish JUnit test result report check box.

5. In Test Report XMLs, specify the path and names of XML files to include.

If you are using Ant, specify the path such as **/build/test-reports/*.xml. If
you are using Maven, specify the path such as target/surefire-reports/*.xml.
Make sure that you don’t include any non-report files into this pattern.

6. To see and retain the standard output and errors in the build log, select the Retain
long standard output/error check box.

If you don’t select the check box, the build log is saved, but the build executor
truncates it to save space. If you select the check box, every log message is

Chapter 6
Configure and Run Project Jobs and Builds

6-18

saved, but this might increase memory consumption and can slow the
performance of the build executor.

7. To combine all test results into a single table of results, select the Organize test
output by parent location check box.

If you use multiple browsers, then the build executor categorizes results by
browsers.

8. Click Save.

After a build runs, you can view its test result.

View Test Results
You can view the JUnit test results of a build from the Test Results page.

Action How To

View test results of the
last build

1. Open the job’s details page.

2. Click .

View test results of a
particular build

1. Open the job’s details page.

2. In the Build History table, click the build number.

3. Click .

View test suite details On the Test Results page, click the All Tests toggle button. From the
Suite Name, click the suite name.

View details of a test Open the test suite details page and click the test name.

To view details of a failed test, on the Test Results page, click the All
Failed Tests toggle button, and then click the test name.

View test results
history

On the Test Results page, click View Test Results History.

If you configure the job to archive videos and image files, click Show to download

the test image and click Watch to download the test video file.

The supported image formats
are .png, .jpg, .gif, .tif, .tiff, .bmp, .ai, .psd, .svg, .img, .jpeg, .ico, .eps,
and .ps.

The supported video formats
are .mp4, .mov, .avi, .webm, .flv, .mpg, .gif, .wmv, .rm, .asf, .swf, .avchd,
and .m4v.

Use the Xvfb Wrapper
Xvfb is an X server that implements the X11 display server protocol and can run on
machines with no physical input devices or display.

Configure a Job to Run Xvfb

Chapter 6
Configure and Run Project Jobs and Builds

6-19

1. Open the Build Environment tab.

2. Click Add Build Environment and select Xvfb Wrapper.

The following table highlights what options you can set for the Xvfb Wrapper.

Element Description

Display Number Specify the ordinal number of the display the Xvfb server will be
running on. The default value is 0. If left empty, a random number
will be chosen.

Screen offset Specify the offset for display numbers. The default value is 0.

Screen Size
(WxHxD)

Specify the resolution and color depth of the created virtual frame
buffer in the WxHxD format. The default value is 1024x758x24.

Additional options Specify any additional Xvfb command line options. The default
options are -nolisten inet6 +extension RANDR -fp /usr/
share/X11/fonts/misc.

Timeout in seconds Specify the timeout duration for the build to wait before returning
control to the job. The default value is 0.

Log Xvfb output The check box is selected by default to redirect the output of Xvfb
to the job log. Deselect the check box if you do not want to redirect
the output.

Shutdown Xvfb with
whole job, not just
with the main build
action

The check box is selected by default to keep the Xvfb server
running for post-build steps. Deselect the check box if you do not
want to keep the server running.

3. Click Save.

Publish Javadoc
If your application source code files are configured to generate Javadoc, then you can
configure a job to publish Javadocs when a build runs.

1. Open the job’s configuration page.

2. Click the Post Build tab.

3. Select the Archive the Artifacts check box.

4. In Files to archive, enter space or comma separated list of files (with path) to
archive. You can use wildcards too. Example: module/dist/**/*.zip.

To enable automatic validation for file masks, select the Enable auto validation
for file masks check box.

5. In Excludes, enter space or comma separated list of files (with path) to exclude.

A file that matches the exclude pattern isn’t archived even if it matches the pattern
specified in Files to archive.

6. To discard artifacts from older builds and save artifacts from the last stable build,
select the Discard all but the last successful/stable artifact to save disk space
check box. Artifacts from the last unstable build or last failed build are also saved if
they are newer than the last stable build.

7. From Compression Type, select the archive format.

Chapter 6
Configure and Run Project Jobs and Builds

6-20

8. If your application is a Maven application and you want to archive Maven artifacts,
select the Archive Maven 3 Artifacts check box.

To archive the Maven POM file along with Maven artifacts, select the Include
generated POMs check box. To retain the most recent artifacts, select the
Discard old artifacts check box.

9. Click Save.

Archive Artifacts
If you want builds of a job to archive artifacts, you can do so as a after build action.
Once archived, you can download the artifacts manually and deploy them. By default,
artifacts of a build are kept as long as the build log is kept.

1. Open the job’s configuration page.

2. Click the Post Build tab.

3. Select the Archive the Artifacts check box.

4. In Files to archive, enter space or comma separated list of files (with path) to
archive. You can use wildcards too. Example: module/dist/**/*.zip.

To enable automatic validation for file masks, select the Enable auto validation
for file masks check box.

5. In Excludes, enter space or comma separated list of files (with path) to exclude.

A file that matches the exclude pattern isn’t archived even if it matches the pattern
specified in Files to archive.

6. To discard artifacts from older builds and save artifacts from the last stable build,
select the Discard all but the last successful/stable artifact to save disk space
check box. Artifacts from the last unstable build or last failed build are also saved if
they are newer than the last stable build.

7. From Compression Type, select the archive format.

8. If your application is a Maven application and you want to archive Maven artifacts,
select the Archive Maven 3 Artifacts check box.

To archive the Maven POM file along with Maven artifacts, select the Include
generated POMs check box. To retain the most recent artifacts, select the
Discard old artifacts check box.

9. Click Save.

Discard Old Builds and Artifacts
To save storage space, you can configure a job to discard its old builds and artifacts.
The old builds are discarded after the job configuration is saved and after a job is built.

1. Open the job’s configuration page.

2. Select the Main tab.

3. Configure the discard options.

4. Click Save.

Chapter 6
Configure and Run Project Jobs and Builds

6-21

Copy Artifacts from Another Job
If your application depends on another job’s artifacts, you can configure the job to copy
those artifacts when a build runs.

1. Open the job’s configuration page.

2. Click the Build Steps tab.

3. Click Add Build Step and select Copy Artifacts from Another Job.

4. In Job Name, select the job whose artifacts you want to copy.

5. In Which Build, select the build that generated the artifacts.

6. In Artifacts to copy, specify the artifacts to copy. When a build runs, the artifacts
are copied with their relative paths.

If no value is specified, the build copies all artifacts. Note that the archive.zip file
is never copied.

7. In Target Directory, specify the target directory in the workspace where the
artifacts are copied.

8. To flatten the directory structure of copied artifacts, select the Flatten Directories
check box.

9. By default, if a build can’t copy artifacts, it is marked as failed. If you don’t want the
build to be marked as failed, select the Optional (Do not fail build if artifacts
copy failed) check box.

10. Click Save.

Configure General and Advanced Job Settings
You can configure several general and advanced job settings, such as name and
description, the JDK version used in the build, discarding old builds, running
concurrent builds, adding timestamps to the build log, and more.

Action How To

Update the job’s name
and description

1. Open the job’s configuration page.

2. Click the Main tab.

3. In Name and Description, update the job name and description.

4. Click Save.

Run concurrent builds By default, DevCS runs one build of a job at a time. The next build
runs after the running build finishes.

To configure the job to run concurrent builds, do this:

1. Open the job’s configuration page.

2. Click the Main tab.

3. Select the Execute concurrent builds if necessary check box.

4. Click Save.

Chapter 6
Configure and Run Project Jobs and Builds

6-22

Action How To

Set a quiet period You can specify a period (in seconds) before a new scheduled build of
the job should wait before it runs. If the build server is busy with too
many builds, setting a longer quiet period can reduce the number of
builds.

1. Open the job’s configuration page.

2. Click the Advanced tab.

3. Select the Quiet period check box and specify the value in
seconds.

4. Click Save.

Set a retry count If the builds of a job fail, by default, the build executor tries five times to
run the build. You can increase or decrease the count.

1. Open the job’s configuration page.

2. Click the Advanced tab.

3. Select the Retry Count check box.

4. In SCM Checkout specify the number of times the build executor
tries the build to checkout files from the Git repository.

5. Click Save.

Abort a build if it’s
stuck for some
duration

1. Open the job’s configuration page.

2. Click the Environment tab.

3. Select the Abort the build if it is stuck check box.

4. In Timeout Minutes, specify the duration.

If a build doesn’t complete in the specified amount of time, the
build is terminated automatically and marked as aborted. Select
the Fail the build check box to mark the build as failed, rather
than aborted.

5. Click Save.

Add timestamps to the
build log

By default, build logs are not timestamped, however you can configure
a job to add them to the log.

1. Open the job’s configuration page.

2. Click the Environment tab.

3. Select the Add Timestamps to the Console Output check box.

4. Click Save.

Change a Job's JDK Version
1. Open the job’s configuration page.

2. Click Settings .

3. Click the Software tab.

4. In Available Software, from the Java drop-down list, change the JDK's version
number.

Chapter 6
Configure and Run Project Jobs and Builds

6-23

You can also select GraalVM instead of selecting JDK. GraalVM is a universal
virtual machine for running applications written in JavaScript, Python, Ruby, R,
JVM-based languages like Java, Scala, Groovy, Kotlin, Clojure, and LLVM-based
languages such as C and C++. To learn more, see https://www.graalvm.org/
docs/.

5. Click Save.

Run a Build
You can run a job’s build manually or configure the job to trigger it automatically on an
SCM commit or according to a schedule.

Action How To

Run a build manually Open the job’s details page and click Build Now.

You can also run a job’s build from the Jobs Overview page. In the

jobs table, click Build Now .

Run a build on SCM
commit

See Trigger a Build Automatically on SCM Commit.

Run a build on a
schedule

See Trigger a Build Automatically on a Schedule.

View a Job’s Builds and Reports
To view a job’s builds, reports, build history and perform actions such as run a build or
configure the job, on the Build page, click the job name to open its details page.

View a Build’s Logs and Reports
A build generates various types of reports and logs such as SCM Changes, test
results, and action history. You can open these reports from the Job Details page or
the Build Details page.

The following table lists the various types of reports generated by a build. On the Job
Details page or the Build Details page, click the report icon to view its details.

Log/Report Description

Build Log View the last build’s log. In the log page, review the build log. If the log
is displayed partially, click the Full Log link to view the entire log. To
download the log as a text file, click the Download Console Output
link.

SCM Changes
View all files that have changed in the build.

When a build is triggered, the build system checks the job’s Git
repositories for any changes to the SCM. If there are any updates, the
SCM Change log displays the files that were added, edited or
removed.

Chapter 6
Configure and Run Project Jobs and Builds

6-24

Log/Report Description

SCM Poll Log
View the Git SCM polling log of the builds that displays the log of
builds triggered by SCM polling. The log includes scheduled uilds and
builds triggered by SCM updates.

In the Job Details page of a job, click Latest SCM Poll Log to
view the Git SCM polling log of the last build.

Test Results
View the log of build’s JUnit test results.

To open the Test Suite details page, on the Test Results page, click
the All Tests toggle button and click the suite name in the Suite Name
column.

To view details of a test, on the Test Results page, click the All Failed
Tests toggle button and then click the test name link in the Test Name
column. You can also click the All Tests toggle button, open the test
suite details page, and then click the test name link in the Test Name
column.

Audit
View the Audit log of user actions.

You can use the Audit log to track the user actions on a build. Use the
log to see who performed particular actions on the job. For example,
you can see who cancelled a build of the job, or who disabled the job
and when was it disabled.

View a Project’s Build History
The Build History page displays builds of all jobs of the project.

To view the build history, in the Build Queue box of the Builds page, click the View
Recent Build History link. The history page shows the last 50 builds of the project.
Click a job name to open its details page. Click a build number to open its details

page. Click to open the build’s console and view the console log output.

Tip:

To sort the table data by a column, right-click inside the build history table
column and select the sort order from the Sort context menu.

View a Job’s Build History
A job’s build history can be viewed in the Build history section of the Job Details page.
It displays the status of the running builds, and completed job builds in descending
order (recent first) along with their build numbers, date and time, and a link to the
console output of the build.

The build history shows information abut how the build was triggered, its status, build

number, date-time stamp, a Console icon to open the build’s console, and a

Delete icon to delete the build.

To review the build history, note these points:

• In the Build column, an * in the build number indicates the build is annotated with
a description. Mouse over the build number to see the description.

Chapter 6
Configure and Run Project Jobs and Builds

6-25

• The list doesn’t show the discarded and deleted jobs.

• If a running build is stuck in the Queued status for a long time, mouse over the
Queued status to see a message about the problem.

• To sort the table data in ascending or descending order, click the header column
name and then click the Previous or Next icon in the column header.

You can also right-click inside table column and then select the sort order from the
Sort context menu.

• A project non-member can’t delete a build.

View a Job’s User Action History
You can use the Audit log to track a job’s user actions. For example, you can see who
cancelled a build of the job, or who disabled the job and when it was disabled.

To open the Audit log, from the job’s details page, click Audit .
The log displays information about these user actions:

• Who created the job

• Who started a build or how a build was triggered (followed by the build number),
when the build succeeded or failed, and the duration of the build

A build can also be triggered by a timer, a commit to a Git repository, or an
upstream job.

• Who aborted a build

• Who changed the configuration of the job

• Who disabled a job

• Who enabled a job

View a Build’s Details
To open the a build’s details page, click the build number in the Build History.

A build’s details page shows its status, links to open build reports, download artifacts,
and logs. You can perform these common actions from a build’s details page.

Action How To

Keep a build forever A build that’s marked as ‘forever’ isn’t removed if a job is configured to
discard old builds automatically. You can’t delete it either.

To keep a build forever, click Configure, select the Keep Build
Forever check box, and click Save.

Add a name and
description to a build

Adding a description and a name is especially helpful if you mark a
particular build to keep it forever and not get discarded automatically.
When you add a description to a build, an * is added to the build
number in the Build History table.

To keep a build forever, click Configure. In Name and Description,
enter the details, and click Save.

Open a build’s log Click Build Log.

Delete a build Click Delete.

Chapter 6
Configure and Run Project Jobs and Builds

6-26

Download Build Artifacts
If the job is configured to archive artifacts, you can download them to your computer
and then deploy to your web server.

The build artifacts are displayed in a directory tree structure. You can click the link to
download parts of the tree including individual files, directories, and subdirectories.

1. Open the job’s details page.

2. Click Latest Artifacts.

To download artifacts of a particular build, n the Build History, click the build
number, and then click Build Artifacts.

3. Expand the directory structure and click the artifact link (file or directory) to
download it.

To download a zip file of all artifacts, click All files in a zip.

4. Save the file to your computer.

Watch a Job
You can subscribe to email notifications when a build of a job is successful or fails.

To get email notifications, enable them in your user preferences, and then set up a
watch on the job.

Action How To

Enable your email
notifications
preference

In your user preferences page, select the Build Activities check box.

Watch a job 1. Open the job’s details page.

2. Click the On toggle button, if necessary.

3. Click CC Me.

4. In the CC Me dialog box, to receive email when the build is
successful, select the Successful Builds check box. Select
Failed Builds to receive email when the build fails.

5. Click OK.

Disable email
notifications of the job
to all subscribed
members

1. Open the job’s details page.

2. Click the Off toggle button, if necessary.

Build Executor Environment Variables
When you run a build job, you can use the environment variables in your shell scripts
and commands to access the software on the build executor.

To use a variable, use the $VARIABLE_NAME syntax. Example: $BUILD_ID.

Chapter 6
Configure and Run Project Jobs and Builds

6-27

Common Variables

This table describes some common environment variables.

Environment
Variable

Description

BUILD_ID The current build’s ID.

BUILD_NUMBER The current build number.

BUILD_URL The full URL of the current build.

BUILD_DIR The build output directory.

JOB_NAME The name of the job.

EXECUTOR_NUMBER The unique number that identifies the current executor (among
executors of the same machine) that's running the current build.

HTTP_PROXY The HTTP proxy for outgoing connections.

HTTP_PROXY_HOST The HTTP proxy host for outgoing connections.

HTTP_PROXY_PORT The HTTP proxy port for outgoing connections.

HTTPS_PROXY The HTTPS proxy for outgoing connections.

HTTPS_PROXY_HOST The HTTPS proxy host for outgoing connections.

HTTPS_PROXY_PORT The HTTPS proxy port for outgoing connections.

JOB_NAME The name of the current job.

JOB_URL The full URL of the current job.

NO_PROXY Specify the comma separated list of domain names or the IP
addresses for which the proxy should not be used. You can also
specify port numbers.

NO_PROXY_ALT Specify the pipe (|) separated list of domain names or the IP
addresses for which the proxy should not be used. You can also
specify port numbers.

PATH The PATH variable set in the build executor specifying the path of
executables in the build executor.

WORKSPACE The absolute path of the build executor's workspace.

Software Variables

Environment
Variable

Description

DYNAMO_HOME The path of the Oracle ATG home directory.

DYNAMO_ROOT The path of the Oracle ATG root directory.

GRADLE_HOME The path of the Gradle directory.

JAVA_HOME The path of the directory where the Java Development Kit (JDK) or the
Java Runtime Environment (JRE) is installed.

If your job is configured to use a specific JDK, the build executor sets
the variable to the path of the specified JDK. When the variable is set,
PATH is also updated to have $JAVA_HOME/bin.

HUDSON_HOME The path of the Hudson home directory.

Chapter 6
Configure and Run Project Jobs and Builds

6-28

Environment
Variable

Description

HUDSON_URL The full URL of the Hudson server.

NODE_HOME The path of the Node.js home directory.

NODE_PATH The path of the Node.js modules directory.

To access JDeveloper or SOA, use these variables.

Software Variables

JDeveloper JAVACLOUD_HOME_11_1_1_7_1=/opt/Oracle/
Middleware_11.1.1.7.1/jdeveloper/cloud/oracle-
javacloud-sdk/lib

JAVACLOUD_HOME_11G=/opt/Oracle/Middleware_11.1.1.7.1/
jdeveloper/cloud/oracle-javacloud-sdk/lib

JAVACLOUD_HOME=/opt/Oracle/Middleware_11.1.1.7.1/
jdeveloper/cloud/oracle-javacloud-sdk/lib

MIDDLEWARE_HOME_11_1_1_7_1=/opt/Oracle/
Middleware_11.1.1.7.1

MIDDLEWARE_HOME_11G=/opt/Oracle/Middleware_11.1.1.7.1

MIDDLEWARE_HOME=/opt/Oracle/Middleware_11.1.1.7.1

ORACLE_HOME_11_1_1_7_1=/opt/Oracle/
Middleware_11.1.1.7.1/jdeveloper

ORACLE_HOME_11G=/opt/Oracle/Middleware_11.1.1.7.1/
jdeveloper

ORACLE_HOME=/opt/Oracle/Middleware_11.1.1.7.1/
jdeveloper

WLS_HOME_11_1_1_7_1=/opt/Oracle/Middleware_11.1.1.7.1/
wlserver_10.3

WLS_HOME_11G=/opt/Oracle/Middleware_11.1.1.7.1/
wlserver_10.3

WLS_HOME=/opt/Oracle/Middleware_11.1.1.7.1/
wlserver_10.3

Chapter 6
Configure and Run Project Jobs and Builds

6-29

Software Variables

SOA JAVACLOUD_HOME_SOA_12_1_3=/opt/Oracle/
MiddlewareSOA_12.1.3/jdeveloper/cloud/oracle-
javacloud-sdk/lib

JAVACLOUD_HOME_SOA_12_2_1=/opt/Oracle/
MiddlewareSOA_12.2.1.1/jdeveloper/cloud/oracle-
javacloud-sdk/lib

JAVACLOUD_HOME_SOA=/opt/Oracle/MiddlewareSOA_12.1.3/
jdeveloper/cloud/oracle-javacloud-sdk/lib

JAVACLOUD_HOME_12C3=/opt/Oracle/MiddlewareSOA_12.1.3/
jdeveloper/cloud/oracle-javacloud-sdk/lib

MIDDLEWARE_HOME_SOA_12_1_3=/opt/Oracle/
MiddlewareSOA_12.1.3

MIDDLEWARE_HOME_SOA_12_2_1=/opt/Oracle/
MiddlewareSOA_12.2.1.1

MIDDLEWARE_HOME_SOA=/opt/Oracle/MiddlewareSOA_12.1.3

MIDDLEWARE_HOME_12C3=/opt/Oracle/MiddlewareSOA_12.1.3

ORACLE_HOME_SOA_12_1_3=/opt/Oracle/
MiddlewareSOA_12.1.3/jdeveloper

ORACLE_HOME_SOA_12_2_1=/opt/Oracle/
MiddlewareSOA_12.2.1.1/jdeveloper

ORACLE_HOME_SOA=/opt/Oracle/MiddlewareSOA_12.1.3/
jdeveloper

ORACLE_HOME_12C3=/opt/Oracle/MiddlewareSOA_12.1.3/
jdeveloper

WLS_HOME_SOA_12_1_3=/opt/Oracle/MiddlewareSOA_12.1.3/
wlserver

WLS_HOME_SOA_12_2_1=/opt/Oracle/
MiddlewareSOA_12.2.1.1/wlserver

WLS_HOME_SOA=/opt/Oracle/MiddlewareSOA_12.1.3/wlserver

WLS_HOME_12C3=/opt/Oracle/MiddlewareSOA_12.1.3/
wlserver

• Use JAVACLOUD_HOME variables to access the Java SDK

• Use ORACLE_HOME variables to access JDeveloper

• Use MIDDLEWARE_HOME variables to access Oracle Fusion Middleware. The
MIDDLEWARE_HOME directory includes the JDeveloper installation directory,
WebLogic Server installation directory, and the Oracle Common library
dependencies.

• Use WLS_HOME variables to access the WebLogic server binary directory bundled
with JDeveloper

Chapter 6
Configure and Run Project Jobs and Builds

6-30

Tip:

• You can run the env command as a Shell build step to view all
environment variables of the build executor.

• Some Linux programs, such as curl, only support lower-case
environment variables. Change the build steps in your job configuration
to use lower-case environment variables.

Example:

export http_proxy="$HTTP_PROXY"
export https_proxy="$HTTPS_PROXY"
export no_proxy="$NO_PROXY"
curl -v http://www.google.com

Software Installed on the Build Executor
Various software, such as JDeveloper, Xvfb, and Node.js, are installed on the build
system and are available to the build executors when running on Oracle Cloud.

Executables from the software bundles are available on the builder's PATH variable,
which is set to/usr/bin, and can be invoked directly from the Execute Shell build
step. You should use the PATH variable and other environment variables to access the
installed software.

This table lists software available in the software catalog, in addition to the software
installed by default.

Software Version

Ant 1.9.6

Findbugs 3.0.1

Firefox 45.x

Git 1.7.1

Gradle 2.x

3.x

4.x

Java 10.x

9.x

1.8.x

1.7.x

1.6.x

Maven 3.3.3

Node.js 0.12.x

4.x

6.x

8.x

Chapter 6
Configure and Run Project Jobs and Builds

6-31

Software Version

Node.js – grunt 0.4.5

Node.js – gulp 3.9.0

Node.js – grunt-cli 0.1.13

Node.js – gulp-cli 0.3.0

Node.js – bower 1.7.7

Node.js – oracledb 1.7

Node.js Driver for Oracle Database 12.1.0.2

Oracle ATG 11.1.0.1 11.1.0.1

Oracle Developer Studio 12.5 12.5

Oracle Instant Client 12c 12.1.0.2.0

Oracle JDeveloper 11g 11.1.1.7.1

Oracle SOA Suite 12c 12.2.1.1.0

12.1.3.0.0

SQLcl 17.4.0

Python 2.6.x

Python – pip3 8.1.x

Ruby 1.9.3p448

SFTP yum:latest

Xvfb 1.15.0

To know about the environment variables that you can use to access the software, see
Build Executor Environment Variables.

Monitor Jobs and Builds from IDEs
You can monitor jobs and builds from IDEs such as OEPE, NetBeans IDE, and
JDeveloper.

See these topics for more information:

• Monitor a Project’s Builds in Eclipse IDE

• Monitor a Project’s Builds in NetBeans IDE

• Monitor a Project’s Builds in JDeveloper

Deploy Your Application to Oracle Cloud
You can deploy your project’s build artifacts to Oracle Java Cloud Service (JCS), to
Oracle Application Container Cloud Service (ACCS), and to Oracle Java Cloud
Service - SaaS Extension (JCS-SX) from Oracle Developer Cloud Service (DevCS)
without leaving its web interface.

Chapter 6
Deploy Your Application to Oracle Cloud

6-32

Deployment Concepts and Terms
Here are some concepts and terms that this documentation uses to describe
deployment functions and components in DevCS.

Term Description

Deployment
configuration

Defines how to deploy a build artifact to a target Oracle Cloud service.

Deployment target An instance of the target Oracle Cloud service.

Continuous delivery A method to automatically deploy a build artifact to the target service.

Deploy an Application to Oracle Java Cloud Service
You can deploy your application to a publicly available JCS instance and make it
publicly accessible.

You can deploy your application from DevCS to JCS using the Oracle WebLogic
RESTFul Management Interface or the SSH tunnel. You can use either the RESTful
interface or SHH to deploy to the Oracle WebLogic Server 12c of JCS, but you can
only use SSH to deploy to Oracle WebLogic Server 11g (10.3.x) of JCS.

Before creating a deployment configuration, enable the HTTPS or the SSH access rule
in the JCS console. See Enabling Console Access in an Oracle Java Cloud Service in
Administering Oracle Java Cloud Service.

Use the Oracle WebLogic RESTFul Management Interface
Deploying to JCS using the Oracle WebLogic RESTFul Management Interface is easy
and doesn’t require any additional configuration.

1. In the navigation bar, click Deployments .

2. Click + Create Configuration.

3. In Configuration Name, enter a name to identify the deployment configuration. By
default, the same name is used by Application Name, however you can modify it.

4. From the Deployment Target drop-down list, select the JCS target that uses the
Oracle WebLogic RESTFul Management Interface.

To create a target, see Add an Oracle Java Cloud Service Deployment Target.

5. To deploy the artifact manually, from the Type options, select On Demand. To
deploy the artifact automatically every time the specified job’s build is successful,
select Automatic.

6. In Job, Build, and Artifact, specify the job, build, and artifact to deploy to the
target service.

Build isn’t available if you selected Automatic as Type.

7. If you selected On Demand as Type, click Save and Deploy. If you selected
Automatic as Type, click Save.

Chapter 6
Deploy Your Application to Oracle Cloud

6-33

Use SSH
To deploy to a JCS instance using SSH, you must set up an authenticated connection
between DevCS and JCS.

To set up the connection, get the DevCS SSH public key and append it to the
authorized_keys file of the JCS instance. Then, create a deployment configuration to
deploy the artifact.

For more information about accessing the services and resources of a JCS instance
via SSH, see Accessing a Node with a Secure Shell (SSH) in Administering Oracle
Java Cloud Service.

Upload the DevCS public key to the JCS instance
This is a one-time step. After a connection is authenticated, you don’t have to repeat
the steps to upload the public key.

1. Get the DevCS SSH public key through the REST API.

Use this URL syntax to get the key:

https://<host-name>/<organization-name>/api/deployment/sshkey

If the base URL of your DevCS instance is https://
developer.us2.oraclecloud.com/my-org/, then your host name is
developer.us2.oraclecloud.com and the organization name is my-org.

Don’t enter the URL in the web browser address bar. Instead, use cURL or a
browser REST plugin to get the SSH key. For more information about cURL, see
http://curl.haxx.se/.

cURL example:

curl -u alex.admin:my_password https://
developer.us2.oraclecloud.com/my-org/api/deployment/sshkey

Use the same user name and the password that you use to access DevCS. When
you have the key, copy the key string value and save it in a .pub file (for example,
odcskey.pub).

2. In the JCS console, open the Overview page of the service instance.

To know more about the Overview page, see Exploring the Oracle Java Cloud
Service Instance Overview Page in Administering Oracle Java Cloud Service.

3. In the header of the Overview page, click next to the Oracle Java Cloud
Service link and select SSH Access.

4. In the Add New Key dialog box, with Upload a new SSH Public Key value from
file selected, click Browse, and select the DevCS SSH public key file that you
saved in Step 1.

You can also copy the key value to the Key Value text box.

5. Click Add New Key.

6. In the Add New Key dialog box, click Submit.

The DevCS SSH public key is added to the authorized_keys file of the JCS instance.
After adding the public key, the instance restarts automatically. Wait for some time.

Chapter 6
Deploy Your Application to Oracle Cloud

6-34

The icon in the header section also changes. You can track the restart activity in the
Activity Summary section of the Overview page. When the instance has restarted
and the activity is complete, you see the Add SSH Key is Completed message in
Activity Summary.

Create the Deployment Configuration
1. Open DevCS.

2. In the navigation bar, click Deployments .

3. Click + Create Configuration.

4. In Configuration Name, enter a name to identify the deployment configuration. By
default, the same name is used by Application Name, however you can modify it.

5. From the Deployment Target drop-down list, select the JCS target that uses
SSH.

To create a target, see Add an Oracle Java Cloud Service Deployment Target.

6. To deploy the artifact manually, from the Type options, select On Demand. To
deploy the artifact automatically every time the specified job’s build is successful,
select Automatic.

7. In Job, Build, and Artifact, specify the job, build, and artifact to deploy to the
target service.

Build isn’t available if you selected Automatic as Type.

8. If you selected On Demand as Type, click Save and Deploy. If you selected
Automatic as Type, click Save.

Add an Oracle Java Cloud Service Deployment Target
To deploy to JCS, you need the credentials of a user with the JaaS_Administrator
(Java Administrators) identity domain role, public IP address of the JCS instance, and
the port number of the WebLogic Server.

You can find the IP address and the port number from the software development
environment in the Environments page, if configured. You can also find the details
from Overview page of the JCS instance. See Exploring the Oracle Java Cloud
Service Instance Overview Page and Understanding the Default Access Ports in
Administering Oracle Java Cloud Service.

1. On the Deployment Configuration page, from the New drop-down list of
Deployment Target, select Java Cloud Service.

2. In the Deploy to Java Cloud Service dialog box, select the WebLogic Server
version and the protocol (Oracle WebLogic RESTFul Management Interface or
SSH).

You can’t deploy to Oracle WebLogic Server 11g (10.3.x) using the Oracle
WebLogic RESTFul Management Interface.

3. In Host, enter the public IP address of the JCS instance.

4. In HTTPS Port, enter the HTTPS port number of the WebLogic Server that runs
on the JCS instance. By default, it’s 7002.

Chapter 6
Deploy Your Application to Oracle Cloud

6-35

If you’ve selected the SSH protocol, in Administration Port, enter the admin port
number of the WebLogic Admin Server that runs on the JCS instance. By default,
it’s 9001.

5. In Username and Password, enter the credentials of the user with the
JaaS_Administrator (Java Administrators) identity domain role.

6. Click Find Targets.

7. In the Available Targets dialog box, select the JCS servers or clusters you want to
deploy the application to. You can select more than one option.

To know more about servers and clusters, see the Targeting Deployments to
Servers, Clusters, and Virtual Hosts topic in Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

8. Click OK.

9. Continue filling in the details in the deployment configuration page.

Deploy an Application to Oracle Application Container Cloud Service
DevCS provides tools to build and deploy your Java, Java EE, PHP, and Node.js
applications to ACCS.

You can deploy the application to the ACCS instance of any identity domain and data
center. To deploy your application to ACCS, configure a job to create an archive of the
application that includes the application, any dependent libraries, and the
manifest.json file. See Packaging Your Application in Developing for Oracle
Application Container Cloud Service.

You can deploy the application, undeploy it, and start and stop the application on the
target ACCS instance. Other operations, such as scaling up and down of applications,
can be managed from the ACCS console. See About Your Application and Oracle
Application Container Cloud Service in Developing for Oracle Application Container
Cloud Service.

1. In the navigation bar, click Deployments .

2. Click + Create Configuration.

3. In Configuration Name, enter a name to identify the deployment configuration. By
default, the same name is used by Application Name, however, you can modify
it.

4. From the Deployment Target drop-down list, select the target deployment
service.

To create a target, see Add an Oracle Application Container Cloud Service
Deployment Target.

5. In ACCS Properties, select the application type and subscription type.

6. To deploy the artifact manually, from the Type options, select On Demand. To
deploy the artifact automatically every time the specified job’s build is successful,
select Automatic.

7. In Job, Build, and Artifact, specify the job, build, and artifact to deploy to the
target service.

Build isn’t available if you selected Automatic as Type.

Chapter 6
Deploy Your Application to Oracle Cloud

6-36

8. To override the commands of the manifest file in the artifact zip, select the Include
ACCS Manifest check box. For example, you can override the deployed
application's version number at the time of deployment.

In ACCS Manifest, enter the contents of the manifest file. The field is a code
editor component and you can use code editor features.

9. To enter the contents of the deployment descriptor, select the Include ACCS
Deployment check box and enter the commands in ACCS Deployment.

You can also enter commands to override the deployed application's container's
configuration (such as RAM) at the time of deployment. The field is a code editor
component and you can use code editor features.
For more information about the ACCS metadata files, see Creating Metadata Files
in Developing for Oracle Application Container Cloud Service.

10. If you selected On Demand as Type, click Save and Deploy. If you selected
Automatic as Type, click Save.

Add an Oracle Application Container Cloud Service Deployment Target
To deploy to ACCS, you need credentials of a user with the APaaS_Administrator
(APaaS Administrator) identity domain role and the identity domain of the target
service.

If you have an IDCS account, enter the value of Identity Service Id in the identity
domain field. The Identity Service Id is displayed in the ACCS service details page.

Chapter 6
Deploy Your Application to Oracle Cloud

6-37

1. On the Deployment Configuration page, from the New drop-down list of
Deployment Target, select Application Container Cloud .

2. In the Deploy to Application Container Cloud dialog box, in Data Center, select the
data center of the target ACCS instance.

3. In Identity Domain, enter the traditional or IDCS identity domain name.

4. In Username and Password, enter the credentials of the user with the
APaaS_Administrator (APaaS Administrator) identity domain role.

5. Click Test Connection.

6. After the connection is successful, click Use Connection.

7. Continue filling in the details in the deployment configuration page.

Deploy an Application to Oracle Java Cloud Service - SaaS Extension
You can deploy your application artifacts to the JCS-SX instance of the current identity
domain and to a service instance of another data center or identity domain,.

To prepare your application to deploy to JCS-SX, see Preparing Applications for
Oracle Java Cloud Service - SaaS Extension Deployment in Using Oracle Java Cloud
Service - SaaS Extension.

1. In the navigation bar, click Deployments .

2. Click + Create Configuration.

3. In Configuration Name, enter a name to identify the deployment configuration. By
default, the same name is used by Application Name, however you can modify it.

4. From the Deployment Target drop-down list, select the target deployment
service.

To create a target, see Add an Oracle Java Cloud Service - SaaS Extension
Deployment Target.

5. To deploy the artifact manually, from the Type options, select On Demand. To
deploy the artifact automatically every time the specified job’s build is successful,
select Automatic.

6. In Job, Build, and Artifact, specify the job, build, and artifact to deploy to the
target service.

Build isn’t available if you selected Automatic as Type.

7. If you selected On Demand as Type, click Save and Deploy. If you selected
Automatic as Type, click Save.

See the deployment logs for the status of the deployment.

Add an Oracle Java Cloud Service - SaaS Extension Deployment Target
To deploy to JCS-SX, you need credentials of a user with the JaaS_Administrator
(Java Administrators) identity domain role and identity domain of the service.

1. On the Deployment Configuration page, from the New drop-down list of
Deployment Target, select Java Cloud Service - SaaS Extension.

2. In the Deploy to Java Cloud Service - SaaS Extension dialog box, in Data Center,
select the data center of the target JCS-SX instance.

Chapter 6
Deploy Your Application to Oracle Cloud

6-38

3. In Identity Domain, enter the traditional or the IDCS identity domain name.

4. In Username and Password, enter the credentials of the user with the
JaaS_Administrator (Java Administrators) identity domain role.

5. Click Find Targets.

6. In the Available Targets dialog box, click the JCS-SX instance name.

7. Continue filling in the details in the deployment configuration page.

Automatically Deploy a Build Artifact
You can configure a deployment configuration to automatically deploy new version of a
build artifact as soon as it becomes available. You can also configure a job to trigger a
deployment configuration and deploy artifact as a post-build action.

Action How To

Configure a
deployment
configuration to auto-
deploy its artifact

You can configure the deployment configuration to automatically
deploy an artifact when you create the configuration, or later when you
edit the configuration.

1. Create or edit a deployment configuration.

2. In Configuration Name, enter the configuration name.

3. Specify the deployment target.

4. In Type, select Automatic.

5. To deploy an artifact of a build only if it’s stable, select Deploy
stable builds only.

6. If necessary, specify the build job and artifact in Job and Artifact.

7. Click Save.

Whenever the job of the deployment configuration runs a build, DevCS
deploys the specified artifact of the build immediately.

Chapter 6
Deploy Your Application to Oracle Cloud

6-39

Action How To

Configure a job to
trigger a deployment
action of a deployment
configuration

You can configure a job of a deployment configuration to trigger its
deployment actions (such as deploy, start, stop, or undeploy) when a
build of the job runs. The build is marked as successful if the
deployment actions are successful.

This is useful if you want to configure a job to run tests on its deployed
artifacts. When you create the job and the deployment configuration,
you must use the same name for both.

1. On the Builds page, create a job and configure it to generate the
artifacts that you want to deploy.

2. On the Deployments page, click + Create Configuration.

3. In Configuration Name, enter the configuration name. Ensure
that its name is the same as the job’s name.

4. Specify the deployment target.

5. In Type, select On Demand.

6. Click Save and Deploy.

7. Open the job’s configuration page again.

8. Click the Post Build tab.

9. From Add Post Build Action, select Oracle Cloud Service
Deployment.

10. From Add Deploy Task, select the deployment action.

For example, select Deploy to deploy the artifact of the
deployment configuration.

11. In Deployment Configuration, select the deployment
configuration.

12. If required, add additional deployment actions. For example, you
can add an undeploy action first and then add a deploy action of
the same deployment configuration. This is useful if you want to
make sure that the application is undeployed before it’s
redeployed.

13. Click Save.

Now, when a build of the job runs, it automatically triggers the
deployment actions specified in the deployment configuration.

Manage Deployment Configurations and Deployments
After you’ve created a deployment configuration, you can edit its properties, start and
stop the deployment, redeploy an application, view deployment logs, and delete a
deployment configuration.

Action How To

Edit a deployment
configuration

On the Deployments page, in the deployment configuration tile,

mouse over Settings and select Edit Configuration.

You can’t change the application name and the deployment target of a
deployment configuration.

Chapter 6
Deploy Your Application to Oracle Cloud

6-40

Action How To

Start or stop the
application

You can start or stop the deployed application on the target service
from the deployment configuration. you don’t need to open the target
service’s console to do that.

In the deployment configuration tile, mouse over Settings and
select Start or Stop.

Redeploy the
application

If you’ve made changes to the source code or the build generated a
new artifact, you can manually redeploy the application to the target

service. In the deployment configuration tile, mouse over Settings
and select Redeploy. You’ll be prompted to specify the build and the
artifact to deploy.

View deployment logs Select the deployment configuration tile and click the log’s link on the
right side of the page.

Delete a deployment
configuration In the deployment configuration tile, mouse over Settings and

select Delete Configuration. In the Confirm Delete dialog box, select
the Also undeploy check box to undeploy the application. Click
Delete.

Access a Deployed Application
To access a deployed application, in the deployment configuration tile, click the
Application Name link. Enter your identity domain name and your credentials, if you’re
prompted to do so.

You can also access the deployed application from the console of the target service.
Here are some ways to get the deployed application’s URL .

Action How To

Access an application
deployed to JCS-SX

1. From the Oracle Cloud Dashboard, open the Oracle Java Cloud
Service - SaaS Extension Control.

You can also open it from the deployment configuration tile. In the
tile, click the Java Service name link.

2. Click the application name link under Applications.

3. Click the application URL under Application URLs to access the
deployed application.

To learn more about accessing JCS-SX, see Accessing Oracle Java
Cloud Service - SaaS Extension in Using Oracle Java Cloud Service -
SaaS Extension.

Chapter 6
Deploy Your Application to Oracle Cloud

6-41

Action How To

Create the
application’s URL
that’s deployed to JCS

1. Use the JCS View a Service Instance API to get the Content URL
and examine the response body output to find the content_url.

Example:

curl -i -X GET -u jdoe@example.com:my_password -H
"X-ID-TENANT-NAME:exampleidentitydomain" https://
jaas.oraclecloud.com/jaas/api/v1.1/instances/
exampleidentitydomain/exampleservice

For more information about the REST API, see REST API for
Oracle Java Cloud Service in Using Oracle Java Cloud Service.

You must use basic authentication to call the REST API. You can
use cURL or a browser REST add-on, such as Postman for
Google Chrome to make the call.

2. Get the context root of the application from the
application.xml deployment descriptor for EAR deployments
or from the web.xml deployment descriptor for WAR
deployments.

If there is no such descriptor, you’ll need to get the context root
from the WebLogic Console.

a. Open the WebLogic Console of the JCS instance. You can
access the console from the Java Service link of the JCS
deployment configuration.

b. Click Deployments in the Domain Structure pane.

c. Click the deployed application name in the Deployments
table.

d. In the Overview tab, copy the value displayed by Context
Root.

Note that the <host>:<port> referenced in the WebLogic
Console is local to the JCS instance, so you’ll need the externally
available IP address or the host name of the JCS instance VM to
access the deployed application.

3. Join the content URL and the context root of the application to
construct the application URL.

For example, if the content URL is http://129.130.131.132
and the context root is /deploy4214351085908057349, the
application’s URL would be http://129.130.131.132/
deploy4214351085908057349.

For more information, see Accessing an Application Deployed to an
Oracle Java Cloud Service Instance in Using Oracle Java Cloud
Service.

Chapter 6
Deploy Your Application to Oracle Cloud

6-42

7
Integrate with External Software

You can integrate Oracle Developer Cloud Service with some common external
software, such as Docker registries, Slack, and Jenkins.

This table describes the Oracle Developer Cloud Service pages you’d use to integrate
external software.

Use this page ... To:

Docker View and link external Docker registries to the project.

Webhooks Send Oracle Developer Cloud Service event notifications using
webhooks to external software.

Send Notifications to External Software Using Webhooks
Using Webhooks, you can send notifications to remote services and applications about
Oracle Developer Cloud Service (DevCS) events such as a Git push, an issue update,
a merge request update, or a build completion.

When you create a webhook, you specify a webhook provider. When an event occurs
and the webhook triggers, the webhook provider processes the event, sets the
properties used to generate the HTTP request, and dispatches the HTTP request to
the target service.

 You must be assigned the project Owner role to create and configure a webhook.

Slack
Slack is a cloud based team collaboration software. Using a Slack Webhook, you can
configure DevCS to send events and activities notifications to a Slack channel. To find
more about Slack, see https://slack.com/.

To send notification to a Slack channel, get its incoming webhook URL. Then, create a
DevCS webhook and add the incoming webhook URL to the webhook.

Get the Slack Channel’s Incoming Webhook URL
You must be the workspace owner to get the incoming webhook URL.

1. Open the Slack workspace in a web browser or the Slack app.

For example, this image shows a Slack workspace called Demo.

7-1

2. In the left navigation bar, click Apps.

3. In the search box on the Browse Apps page, enter incoming webhook.

4. If incoming-webhook is pre-installed, click View, and then click Settings.

If it isn't installed, then install it and configure it.

a. Click Install.

b. On the Incoming WebHooks page, click Add Configuration.

Chapter 7
Send Notifications to External Software Using Webhooks

7-2

c. From the Post to Channel list, select the channel, and click Add Incoming
WebHooks integration.

5. In Integration Settings, from the Post to Channel drop-down list, select the
channel. In Webhook URL, click Copy URL.

6. Scroll down to the bottom of the page and click Save Settings.

Configure a Slack Webhook in DevCS to Send Event Notifications
The Slack webhook is a outgoing webhook used to send DevCS event notifications to
a Slack channel.

 You must be assigned the project Owner role to create and configure a webhook.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

Chapter 7
Send Notifications to External Software Using Webhooks

7-3

4. From Type, select Slack.

5. In Name, enter a unique name.

6. In URL, enter or paste the Slack channel’s incoming Webhook URL.

Make sure it's in the https://hooks.slack.com/services/... format.

7. In Subscribe, select the events that trigger the webhook.

If you select the Select specific events option, in Events, select the check boxes
of events that trigger the webhook.

8. To test the webhook, click Test.

9. Click Done.

When DevCS events happen, notifications are sent to the Slack channel.

Oracle Social Network
Oracle Social Network (OSN) is a secure enterprise collaboration and social
networking solution for business. Using the Oracle Social Network webhook, you can
send the DevCS events and activities to OSN conversations.

To send notification to a an OSN conversation, set up an DevCS Incoming Webhook
in OSN and associate it with an OSN Conversation. When set up, the Incoming
Webhook provides a URL with an authentication token to use in the OSN Webhook of
your project. For more information, see https://cloud.oracle.com/social-cloud.

You can also set up the OSN functionality for Oracle Public Cloud from Oracle Content
and Experience. The Oracle Content and Experience Administrator can create an
incoming Webhook integration, associate it with an OSN conversation, and get the

Chapter 7
Send Notifications to External Software Using Webhooks

7-4

URL with an authentication token to use in the OSN Webhook of your project. See
Configuring Webhooks in Administering Oracle Content and Experience Cloud.

Get OSN Conversation's Incoming Webhook URL
You must be the OSN Administrator to set up or get the incoming webhook URL.

1. Sign in to Oracle Social Network as an administrator.

2. Click Webhooks.

3. To the right of Generic Incoming Webhook, click New Instance.

4. In Webhook Name, enter a name.

5. In Target Conversation or Wall, specify the OSN conversation.

6. In Message Template, specify the wording of the text to be included in the
webhook-based message.

7. Fill in the details in other fields of the webhook and click Save.

8. In Webhook URL, click Copy to Clipboard.

Configure an OSN Webhook in DevCS to Send Event Notifications
The Oracle Social Network webhook is a outgoing webhook used to send DevCS
event notifications to an OSN conversation.

 You must be assigned the project Owner role to create and configure a webhook.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Oracle Social Network.

5. In Name, enter a unique name.

6. In OSN URL, enter the OSN webhook URL (without the authentication token)
where the webhook receiver is registered.

7. In Event Groups, select the events to trigger the webhook.

If you selected the Select specific events option, in Events, select the check
boxes of events that trigger the webhook.

8. Click Done.

PagerDuty
PagerDuty is an incident management platform that enables you to send notifications
via email, push, SMS, and phone. Using the PagerDuty webhook, you can send
notifications to your PagerDuty service about events in DevCS. When the PagerDuty
service receives notifications from DevCS, it can redirect those notifications via email,
push, SMS, and phone. To find more about PagerDuty, see https://
www.pagerduty.com/.

To send notifications to PagerDuty, set up your PagerDuty account to receive
notifications and create a DevCS webhook.

Chapter 7
Send Notifications to External Software Using Webhooks

7-5

Set Up the PagerDuty Account
To set up PagerDuty, create an API key, add services, and add users who would
receive PagerDuty notifications .

You must be the account owner or assigned the PagerDuty Admin role to set up the
PagerDuty account.

1. Log in to PagerDuty as the account owner or administrator.

2. To set up the API key, from the Configuration menu, select API Access.

3. Click Create New API Key.

4. In the Create API Key dialog box, enter a name for the key and click Create Key.

5. From the New API Key dialog box, copy the API Key value and keep it safe.

You can't view or copy the key after closing the dialog box.

Chapter 7
Send Notifications to External Software Using Webhooks

7-6

6. Click Close.

7. If not configured, set up services (such as applications or components) you wish to
open incidents against. From the Configuration menu, select Services.

8. Click New Service.

9. Fill in the details and click Add Service.

10. If not configured, add users who'd receive notifications. From the Configuration
menu, select Users.

11. Click Add Users.

12. In the Invite your team dialog box, add the details of users you want to invite, and
click Add.

13. When you're finished adding users, click Send Invitations.

Chapter 7
Send Notifications to External Software Using Webhooks

7-7

14. Return to the dashboard page of PagerDuty.

Configure a PagerDuty Webhook in DevCS to Send Event Notifications
The PagerDuty webhook is a outgoing webhook used to send DevCS event
notifications to a PagerDuty account.

 You must be assigned the project Owner role to create and configure a webhook.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select PagerDuty.

5. In Name, enter a unique name.

6. In API Key, enter the API key of the PagerDuty service.

7. In Service, select the desired PagerDuty service from the list. The webhook sends
event notifications to the selected service.

8. In Sender, select the PagerDuty registered user whose name will be attached to
the events sent by the webhook.

9. In Event Groups, select the events that trigger the webhook.

If you selected the Select specific events option, in Events, select the check
boxes of events that trigger the webhook.

10. Click Done.

Jenkins
Jenkins is an open-source continuous integration software used to build and test your
software applications. Using the various Jenkins webhooks, you can integrate your
Jenkins with DevCS to run builds. Jenkins must be available on the public Internet to
accept webhook notifications.

You can use these webhooks to integrate Jenkins with DevCS:

To do this ... Use this webhook

Trigger a Jenkins job
on SCM polling of the
job's Git repository

Hudson/Jenkins Git Plugin

Trigger a Jenkins job
on a project's Git
repository update

Hudson/Jenkins Build Trigger

Link a Jenkins job with
a merge request

Jenkins Merge Requests

Receive notifications
in DevCS project's
activity feed from
Jenkins when a job's
build runs or
completes

Jenkins Notification Plugin

Chapter 7
Send Notifications to External Software Using Webhooks

7-8

Trigger a Jenkins Job on SCM Polling
Using the Hudson/Jenkins - Git Plugin Webhook, you can trigger a Jenkins job that
uses a DevCS Git repository as source on SCM polling.

To trigger the Jenkins job:

1. If not installed, install the Git plugin.

2. Create or configure the Jenkins job to use the DevCS project Git repository as
source.

3. Enable SCM polling in the Jenkins job.

4. Create or configure a webhook to send a notification to Jenkins when the job's Git
repository (or any project Git repository) is updated.

When the Git plugin of Jenkins receives a notification, it goes through all Jenkins jobs
that have SCM polling enabled and match the provided notification parameters (such
as Git repositories and branches). For all matching jobs, it starts a build. The build
won't run if no changes are found by polling.

For more information about the Jenkins Git plugin, see https://wiki.jenkins-
ci.org/display/JENKINS/Git+Plugin#GitPlugin-
Pushnotificationfromrepository.

Set Up Git on Jenkins
You must be assigned the Admin role of Jenkins to set up Git on it. Git must also be
installed on the computer running Jenkins. If the plugin is already installed and
configured, ignore this section.

1. Log on to Jenkins using the administrator credentials.

2. From the links on the left side of the page, click Manage Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-9

3. To install the Git plugin, click Manage Plugins.

4. In the Available tab, search for Git. Under Source Code Management, select
the plugin's check box and click Download now and install after restart or
Install without restart.

5. Wait for the plugin to install.

6. Restart Jenkins.

7. From the links on the left side of the page, click Manage Jenkins.

8. Click Global Tool Configuration.

9. In Git, enter the local path of the Git executable.

10. Click Save.

Configure the Jenkins Job to Use DevCS Git Repository and Enable SCM Polling
Configure the job to use the DevCS Git repository and enable SCM polling.

1. Log on to Jenkins.

2. Create or open a job.

3. From the links on the left side of the page, click Configure.

4. Click the Source Code Management tab.

5. Select Git.

6. In Repository URL, enter the DevCS project's Git repository URL.

Remember the URL’s protocol as you’d need to specify it when you create the
webhook.

Chapter 7
Send Notifications to External Software Using Webhooks

7-10

You can copy the URL from the Clone menu of the DevCS Git page.

After entering the URL, you might see a Failed to connect to repository …
error message. It appears because you haven't provided the DevCS access
credentials in Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-11

a. Next to the Credentials list, click Add and then select Jenkins.

b. In the Jenkins Credentials Provider dialog box, enter the DevCS username
and password in Username and Password. Leave other fields with their
default values.

c. Click Add.

The error message should disappear. If you still see the error message, configure
the proxy settings of Jenkins. See the Jenkins documentation to know more.

7. Click the Build Triggers tab.

8. Select the Poll SCM check box.

Chapter 7
Send Notifications to External Software Using Webhooks

7-12

9. Continue to configure the job.

10. When you're finished, click Save.

Configure a Webhook in DevCS to Trigger a Jenkins Job on a Git Repository Update
After configuring the Jenkins job, create the DevCS webhook to trigger the job on Git
repository update.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Hudson/Jenkins - Git Plugin.

5. In Name, enter a unique name.

6. In Notification URL, enter the URL of the target Jenkins server.

The URL must be in the http://your_server/.../git/notifyCommit format.
Example: http://my_jenkins.com:8080/git/notifyCommit

7. To ignore SSL errors, select the Ignore SSL Errors check box.

8. In Notification Parameters, specify the URL type.

• In Repository URL Type, select HTTP Repository Address to send the
HTTP URL of the selected Git repository in the webhook notification. Select
SSH Repository Address to send the SSH URL of the selected Git repository
in the webhook notification.

You must specify the same protocol that’s used in the Jenkins job
configuration.

• In Append, to append the SHA-1 Checksum hash of the last commit in the
webhook notification, select the sha1 (Jenkins only) check box.

• To append branch information of the last commit in the webhook notification,
select the branches check box. This enables jobs to poll the specified
branches only.

9. In Repository and Branches, specify the Git repository and branches that trigger
the webhook.

In Repository, select All Repositories to trigger all Jenkins jobs that uses a Git
repository of the project.

10. Click Done.

Trigger a Jenkins Job on a Git Repository Update
Using the Hudson/Jenkins - Build Trigger webhook, you can trigger a Jenkins job
when a project Git repository updates. It's not necessary that the Jenkins job uses a
DevCS project Git repository as source.

To allow the webhook to connect to Jenkins, you'd need to specify the security settings
of Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-13

If ... Do this:

Jenkins allows anonymous user to trigger a
build

1. Create an authentication token in the
Jenkins job.

2. Configure the webhook to connect to the
Jenkins job using the authentication
token.

Jenkins allows only authenticated users to
trigger a build

1. Get an authenticated user's API Access
token.

2. Create an authentication token in the
Jenkins job.

3. Configure the webhook to connect to the
Jenkins job using the API Access and the
authentication token.

Anonymous access is disabled or lacks read
permissions on Jenkins and you want to
trigger the job without an authenticated user's
credentials

Or

Jenkins uses a build token root to trigger
builds

1. If not installed, install the Build
Authorization Token Root Plugin on
Jenkins.

2. Create an authentication token in the
Jenkins job.

3. Configure the webhook to connect to
Jenkins job using the authentication
token.

Security is completely disabled on Jenkins. Configure the webhook to connect to Jenkins
job. No Jenkins configuration required.

Install the Build Authorization Token Root Plugin on Jenkins
If anonymous access is disabled on Jenkins and you want to trigger Jenkins jobs
without an authenticated user's credentials, install the Build Authorization Token Root
plugin on Jenkins. You must be assigned the Admin role of Jenkins to install the
plugin. The plugin is required To find out more about the plugin, see https://
wiki.jenkins-ci.org/display/JENKINS/Build+Token+Root+Plugin.

1. Log on to Jenkins using the administrator credentials.

2. From the links on the left side of the page, click Manage Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-14

3. Click Manage Plugins.

4. In the Available tab, search for Build Authorization Token Root, select its
check box, and click Download now and install after restart or Install without
restart.

5. Wait for the plugin to install.

6. Restart Jenkins.

Get the Jenkins API Access Token
If Jenkins allows only authenticated users to trigger builds, use the API Access token
of an authenticated user as the user's credentials in the DevCS webhook.

To use the API Access token in a DevCS webhook, provide the username and the
token of an authenticated user. If you don't want to provide a user's details, create a
separate username to trigger builds and assign the user the Overall/Read, Job/Read
and Job/Build permissions. Then, use this user's details in the webhook.

1. Log on to Jenkins using the user's credentials whose API Access Token you want
to use in the webhook.

Chapter 7
Send Notifications to External Software Using Webhooks

7-15

2. In the upper-right corner, mouse over the user name, click and select
Configure.

3. In the API Token section, add a new token or use the legacy token.

To view the legacy token, click Show Legacy API Token and then copy the token.
Keep the token value some place safe as you'd need to enter in the DevCS
webhook.
To create a token, click Add new token and copy the token value immediately.
You can't see the token value later and would need to generate another token.
Keep the token value some place safe as you'd need to enter in the DevCS
webhook.

4. Click Save.

Configure the Jenkins Job to Set an Authentication Token
You need to set the authentication token if Jenkins allows anonymous access, access
to authenticated users only, or uses the build token root plugin. Use the same token
name when you configure the webhook.

1. Log on to Jenkins.

2. Click the job name.

3. From the links on the left side of the page, click Configure.

4. Click the Build Triggers tab.

5. Select the Trigger builds remotely (e.g., from scripts) check box.

6. In Authentication Token, enter a unique string as a token. You can enter any
string value. Example: my_auth_token

Make sure that the authentication token isn't used in any other job.

7. Continue to configure the job.

Chapter 7
Send Notifications to External Software Using Webhooks

7-16

8. When you're finished, click Save.

Configure a Webhook in DevCS to Trigger a Jenkins Job on a Git Repository Update
Before you create the webhook, ensure that you have installed the required plugins
and have the required token to access Jenkins through the webhook.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Hudson/Jenkins - Build Trigger.

5. In Name, enter a unique name.

6. In Build Server URL, enter the Jenkins base URL.

If the Jenkins job URL is http://my_jenkins/path/job/my_job, then enter
http://my_jenkins/path/.

7. To ignore SSL errors if Jenkins uses self-signed (or an invalid) certificate and
you’ve provided an HTTPS URL in Build Server URL, select the Ignore SSL
Errors check box.

8. In Job Name, enter the case sensitive name of the job on the target build server.

9. From Build Server Security, select the security schema of Jenkins and enter the
required details.

Security Option Fill in these fields

Anonymous Access Under Authentication, in Remote Build Token, enter the Jenkins
authentication token.
Example:

Chapter 7
Send Notifications to External Software Using Webhooks

7-17

Security Option Fill in these fields

API Token Access Under Authentication, enter the authenticated user's details.

• In User ID, enter the username of the Jenkins user.
• In API Token, enter the API token of the Jenkins user.
• In Remote Build Token, enter the Jenkins authentication

token.
Example:

Chapter 7
Send Notifications to External Software Using Webhooks

7-18

Security Option Fill in these fields

Build Token Root
Plugin

Under Authentication, in Remote Build Token, enter the Jenkins
authentication token.
Example:

No Security NA

10. In Trigger Event: Git Push, specify the Git repository and the branch or tag.

Select the Parametrized Build check box if the build job on target server accepts
parameters. The target URL differs for parametrized and non-parametrized builds.

If the Parametrized Build is enabled, you can add build parameters using Add
Parameter. For each parameter, set the name that must match the parameter
name defined on build server side.

11. Verify the URL displayed in Target URL.

You can use the URL to check your configuration (for example using curl -X GET
'<Target_URL>’).

12. Click Done.

Trigger a Jenkins Job from a Merge Request
Using the Jenkins - Merge Requests webhook, you can link a Jenkins job to a merge
request. When a commit is pushed to the review branch of the merge request, the
webhook sends a notification to Jenkins and triggers a build of the linked job. When
the build completes, it sends a notification back to DevCS. Based on the build’s status,
the linked build approves or rejects the merge request.

The Jenkins Merge Request is an outgoing as well as an incoming webhook. The
Jenkins job and the webhook must use the merge request's Git repository with
parameters to define the branch. The Notification plugin must also be installed on
Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-19

To allow the webhook to connect to Jenkins, you'd need to specify the security settings
of Jenkins.

If ... Do this:

Jenkins allows anonymous user to trigger a
build on Jenkins

1. Create an authentication token in the
Jenkins job.

2. Configure the webhook to connect to the
Jenkins job using the authentication
token.

Jenkins allows only authenticated users to
trigger a build

1. Get an authenticated user's API Access
token.

2. Create an authentication token in the
Jenkins job.

3. Configure the webhook to connect to the
Jenkins job using the API Access and the
authentication token.

Anonymous access is disabled or lacks read
permissions on Jenkins and you want to
trigger the job without an authenticated user's
credentials

Or

Jenkins uses a build token root to trigger
builds

1. If not installed, install the Build
Authorization Token Root Plugin on
Jenkins.

2. Create an authentication token in the
Jenkins job.

3. Configure the webhook to connect to
Jenkins job using the authentication
token.

Security is completely disabled on Jenkins. Configure the webhook to connect to Jenkins
job. No Jenkins configuration required.

Install the Notification Plugin on Jenkins
To send notifications from Jenkins, install the Notification plugin.

You must be assigned the Admin role of the Jenkins server to install plugins.

1. Log on to Jenkins using the administrator credentials.

2. From the links on the left side of the page, click Manage Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-20

3. Click Manage Plugins.

4. In the Available tab, search for Notification, select its check box, and click
Download now and install after restart or Install without restart.

5. Wait for the plugin to install.

6. Restart Jenkins.

Install the Build Authorization Token Root Plugin on Jenkins
If anonymous access is disabled on Jenkins and you want to trigger Jenkins jobs
without an authenticated user's credentials, install the Build Authorization Token Root
plugin on Jenkins. You must be assigned the Admin role of Jenkins to install the
plugin. The plugin is required To find out more about the plugin, see https://
wiki.jenkins-ci.org/display/JENKINS/Build+Token+Root+Plugin.

1. Log on to Jenkins using the administrator credentials.

2. From the links on the left side of the page, click Manage Jenkins.

Chapter 7
Send Notifications to External Software Using Webhooks

7-21

3. Click Manage Plugins.

4. In the Available tab, search for Build Authorization Token Root, select its
check box, and click Download now and install after restart or Install without
restart.

5. Wait for the plugin to install.

6. Restart Jenkins.

Get the Jenkins API Access Token
If Jenkins allows only authenticated users to trigger builds, use the API Access token
of an authenticated user as the user's credentials in the DevCS webhook.

To use the API Access token in a DevCS webhook, provide the username and the
token of an authenticated user. If you don't want to provide a user's details, create a
separate username to trigger builds and assign the user the Overall/Read, Job/Read
and Job/Build permissions. Then, use this user's details in the webhook.

1. Log on to Jenkins using the user's credentials whose API Access Token you want
to use in the webhook.

Chapter 7
Send Notifications to External Software Using Webhooks

7-22

2. In the upper-right corner, mouse over the user name, click and select
Configure.

3. In the API Token section, add a new token or use the legacy token.

To view the legacy token, click Show Legacy API Token and then copy the token.
Keep the token value some place safe as you'd need to enter in the DevCS
webhook.
To create a token, click Add new token and copy the token value immediately.
You can't see the token value later and would need to generate another token.
Keep the token value some place safe as you'd need to enter in the DevCS
webhook.

4. Click Save.

Configure the Jenkins Job to Set an Authentication Token and Accept Build Parameters
To trigger the Jenkins job when it receives a notification from DevCS, configure it to
accept the Git repository’s branch name as a parameter and set an authentication
token.

1. Log on to Jenkins.

2. Create or open the job.

3. On the left side of the page, click Configure.

4. Click the Job Notifications tab.

5. Select the This project is parameterized check box.

6. From Add Parameter, select String Parameter.

7. In Name, enter GIT_REPO_BRANCH.

8. In Default Value, enter the review branch name. Example: patchset_1

Chapter 7
Send Notifications to External Software Using Webhooks

7-23

9. Click the Build Triggers tab.

10. Select the Trigger builds remotely (e.g., from scripts) check box.

11. Enter a unique string as a token. You can enter any string value. Example:
my_auth_token

Make sure that the authentication token isn't used in any other job.

12. Continue to configure the job.

13. When you're finished, click Save.

Configure a Webhook in DevCS to Trigger a Jenkins Job on a Merge Request Update
After installing the required plugins and configuring the Jenkins job, create the
webhook.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Jenkins - Merge Requests.

Chapter 7
Send Notifications to External Software Using Webhooks

7-24

5. In Name, enter a unique name.

6. In Build Server URL, enter the Jenkins base URL.

If the Jenkins job URL is http://my_jenkins/path/job/my_job, then enter
http://my_jenkins/path/.

7. To ignore SSL errors if Jenkins uses self-signed (or an invalid) certificate and
you’ve provided an HTTPS URL in Build Server URL, select the Ignore SSL
Errors check box.

8. In Job Name, enter the case sensitive name of the job on the target build server.

9. In Repository, select the merge request's Git repository.

10. From Build Server Security, select the security schema of Jenkins and enter the
required details.

Security Option Fill in these fields

Anonymous Access Under Authentication, in Remote Build Token, enter the Jenkins
authentication token.

API Token Access Under Authentication, enter the authenticated user's details.

• In User ID, enter the username of the Jenkins user.
• In API Token, enter the API token of the Jenkins user.
• In Remote Build Token, enter the Jenkins authentication

token.

Build Token Root
Plugin

Under Authentication, in Remote Build Token, enter the Jenkins
authentication token.

No Security NA

11. Click Done.

Link the Jenkins Job with the Merge Request
1. In the navigation bar, click Merge Request.

2. Open the merge request.

3. Click the Linked Builds tab.

The tab displays linked jobs, if any.

4. In Search and Link Build Jobs, enter the Jenkins job name and select it from the
list.

5. Click Save .

When a commit is pushed to the review branch of the merge request, the webhook
triggers a build of the specified job on the remote Jenkins server and notification is
posted on the Recent Activity Feed of the project. If the build succeeds, it’s added to
the Approve section of the Review Status list in the Merge Request page. If the build
fails, it’s added to the Reject section of the Review Status list.

Chapter 7
Send Notifications to External Software Using Webhooks

7-25

Receive Build Notifications from a Jenkins Job
Using the Jenkins - Notification Plugin Webhook, you can configure DevCS to accept
build notifications from Jenkins and shows the build notification in the recent activities
feed of the Project Home page.

Jenkins - Notification Plugin Webhook is an incoming Webhook and accepts build
notifications only. Don’t use this webhook to pass information to any external server or
accept information of any other type. To use the webhook, install the Notifications
plugin on Jenkins, configure the DevCS webhook to connect to Jenkins, and then
configure the Jenkins job to send build notifications.

Install the Notification Plugin on Jenkins
To send notifications from Jenkins, install the Notification plugin.

You must be assigned the Admin role of the Jenkins server to install plugins.

1. Log on to Jenkins using the administrator credentials.

2. From the links on the left side of the page, click Manage Jenkins.

3. Click Manage Plugins.

4. In the Available tab, search for Notification, select its check box, and click
Download now and install after restart or Install without restart.

Chapter 7
Send Notifications to External Software Using Webhooks

7-26

5. Wait for the plugin to install.

6. Restart Jenkins.

Configure a Webhook in DevCS to Accept Notifications from Jenkins

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Jenkins - Notification Plugin.

5. In Name, enter a unique name.

6. In Base URL, enter the base URL of Jenkins.

If the Jenkins job URL is http://my_jenkins/path/job/my_job, then enter
http://my_jenkins/path/.

7. In Track, select check boxes of build job actions to be listed in the Recent
Activities Feed of the Project Home page.

• To display an activity after the build server job is finished, select the Build
Results check box.

• To display an activity of running builds, select the Ongoing Builds check box.

8. Click Done.

9. On the Webhooks page, from the webhooks list, select the webhook. From the
details displayed on the right, copy the value of URL.

Configure the Jenkins Job to Send Build Notifications
To configure the Jenkins job to send build notifications, add the DevCS webhook's
URL as a notification endpoint URL.

1. Log on to Jenkins.

2. Click the job name.

3. From the links on the left side of the page, click Configure.

4. Click the Job Notifications tab.

5. In Notification Endpoints, click Add Endpoint.

Chapter 7
Send Notifications to External Software Using Webhooks

7-27

6. In the URL field, paste the URL that you copied from the DevCS webhook. Leave
other fields with their default values.

7. Click Save.

Hudson
Hudson is an open-source extensible continuous integration software used to build
and test your software applications. Using webhooks, you can integrate your Hudson
server with DevCS to run builds. Hudson must be available on the public Internet to
accept webhook notifications.

You can use these webhooks to integrate Hudson with DevCS:

To do this ... Use this webhook

Trigger a Hudson job
on SCM polling of the
job's Git repository

Hudson/Jenkins Git Plugin

Chapter 7
Send Notifications to External Software Using Webhooks

7-28

To do this ... Use this webhook

Trigger a Hudson job
on a project's Git
repository update

Hudson/Jenkins Build Trigger

Trigger a Hudson Job on SCM Polling
Using the Hudson/Jenkins - Git Plugin Webhook, you can trigger a Hudson job that
uses a DevCS Git repository as source on SCM polling.

To trigger the job:

• If not installed, install the Git plugin

• Create or configure the Hudson job to use the DevCS project Git repository as
source

• Enable SCM polling in the Hudson job

• Create or configure a webhook to send a notification to Hudson when the job's Git
repository (or any project Git repository) is updated

When the Git plugin of Hudson receives a notification, it goes through all Hudson jobs
that have SCM polling enabled and match the provided notification parameters (such
as Git repositories and branches). For all matching jobs, it starts a build. The build
won't run if no changes are found by polling.

For more information about the Hudson Git plugin, see http://wiki.hudson-ci.org/
display/HUDSON/Git+Plugin#GitPlugin-PostCommitHook.

Set Up Git on Hudson
You must be assigned the Admin role of Hudson to set up Git on it. Git must also be
installed on the computer running Jenkins. If the plugin is already installed and
configured, ignore this section.

1. Log on to Hudson using the administrator credentials.

2. From the links on the left side of the page, click Manage Hudson.

Chapter 7
Send Notifications to External Software Using Webhooks

7-29

3. To install the Git plugin, click Manage Plugins.

4. In the Available tab, click the Search subtab, search for Git, select the Hudson
GIT plugin check box, and click Install.

5. Wait for the plugin to install.

6. Restart Hudson.

7. From the links on the left side of the page, click Manage Hudson.

8. Click Configure System.

9. In Git, enter the local path of the Git executable.

10. Click Save.

Configure the Hudson Job to Use DevCS Git Repository and Enable SCM Polling
Configure the job to access the DevCS Git repository and enable SCM polling.

1. Log in to Hudson.

2. Create or open a job.

3. From the links on the left side of the page, click Configure.

Chapter 7
Send Notifications to External Software Using Webhooks

7-30

4. In Source Code Management, select Git.

5. In URL of repository, enter the DevCS project's Git repository URL.

Remember the URL’s protocol as you’d need to specify it when you create the
webhook.

You can copy the URL from the Clone menu of the DevCS Code page.

6. In Branches to build, specify the branch name.

7. In the Build Triggers section, select the Poll SCM check box.

Chapter 7
Send Notifications to External Software Using Webhooks

7-31

8. Continue to configure the job.

9. Click Save.

Configure a Webhook in DevCS to Trigger a Hudson Job on the Git Repository Update
After configuring the Hudson job, create the DevCS webhook to trigger the job on Git
repository update.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Hudson/Jenkins - Git Plugin.

5. In Name, enter a unique name.

6. In Notification URL, enter the Hudson URL.

The URL must be in the http://your_server/.../git/notifyCommit format.
Example: http://my_hudson.com:8080/git/notifyCommit

7. To ignore SSL errors, select the Ignore SSL Errors check box.

8. In Notification Parameters, specify the URL type.

In Repository URL Type, select HTTP Repository Address to send the HTTP
URL of the selected Git repository in the webhook notification. Select SSH
Repository Address to send the SSH URL of the selected Git repository in the
webhook notification.

You must specify the same protocol that’s used in your the job configuration to
access the Git repository.

To append branch information of the last commit in the webhook notification,
select the branches check box. This enables jobs to poll the specified branches
only.

9. In Repository and Branches, specify the Git repository and branches that trigger
the webhook.

In Repository, select All Repositories to trigger all Hudson jobs that uses a Git
repository of the project.

10. Click Done.

Chapter 7
Send Notifications to External Software Using Webhooks

7-32

Trigger a Hudson Job on a Git Repository Update
Using the Hudson/Jenkins - Build Trigger webhook, you can trigger a Hudson job
when a project Git repository updates. It's not necessary that the Hudson job uses a
DevCS project Git repository as source.

To allow the webhook to connect to Hudson, you'd need to specify the security
settings of Hudson.

If ... Do this:

Hudson allows anonymous user to trigger a
build

1. Create an authentication token in the
Hudson job.

2. Configure the webhook to connect to the
Hudson job using the authentication
token.

Hudson allows only authenticated users to
trigger a build

1. Get an authenticated user's credentials.

2. Create an authentication token in the
Hudson job.

3. Configure the webhook to connect to the
Hudson job using the credentials and the
authentication token.

Security is completely disabled on Hudson Configure the webhook to connect to Hudson
job. No Hudson configuration required.

Configure the Hudson Job
1. Log in to the Hudson server.

2. Click the job name.

3. From the links on the left side of the page, click Configure.

4. In the Build Triggers section, select the Trigger builds remotely (e.g., from
scripts) check box.

5. In Authentication Token, enter a unique string as a token. You can enter any
string value. Example: my_auth_token

Make sure that the authentication token name is not used in any other job.

Chapter 7
Send Notifications to External Software Using Webhooks

7-33

6. Click Save.

Configure a Webhook in DevCS to Trigger a Hudson Job on a Git Repository Update
Before you create the webhook, ensure that you have installed the required plugins
and have the required token to access Hudson through the webhook.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From Type, select Hudson/Jenkins - Build Trigger.

5. In Name, enter a unique name.

6. In Build Server URL, enter the Hudson URL.

If the target build job has address http://my_server/path/job/my_job, then
enter http://my_hudson/path/.

7. To ignore SSL errors if the target build server uses self-signed (or an invalid)
certificate and you’ve provided an HTTPS URL in Build Server URL, select the
Ignore SSL Errors check box.

8. In Job Name, enter the case sensitive name of the Hudson job.

9. From Build Server Security, select the job’s security schema configured on the
target server.

Security Option Fill in these fields

Anonymous Access Under Authentication, in Remote Build Token, enter the Jenkins
authentication token.
Example:

Chapter 7
Send Notifications to External Software Using Webhooks

7-34

Security Option Fill in these fields

API Token Access Under Authentication, enter the authenticated user's details.

• In User ID, enter the username of the Jenkins user.
• In API Token, enter the password of the user.
• In Remote Build Token, enter the Hudson authentication

token.

No Security NA

10. In Trigger Event: Git Push, specify the Git repository and the branch or tag.

Select the Parametrized Build check box if the build job on target server accepts
parameters. The target URL differs for parametrized and non-parametrized builds.

If the Parametrized Build is enabled, you can add build parameters using Add
Parameter. For each parameter, set the name that must match the parameter
name defined on build server side.

11. Verify the URL displayed in Target URL.

You can use the URL to check your configuration (for example using curl -X GET
'<Target_URL>’).

12. Click Done.

GitHub Apps
If you're using apps that accept incoming webhook connections from GitHub, use the
GitHub Compatible webhook to send DevCS event notifications to those apps. The
payload is sent in the similar format as the GitHub, so you don't need to make changes
to your GitHub apps.

To find more about GitHub webhooks, see https://developer.github.com/
webhooks/.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From the Type drop-down list, select GitHub Compatible.

5. In Name, enter a unique name.

6. In URL, enter the URL of the GitHub app.

7. In Secret, enter a secret phrase that’s passed as a string with the HTTP request
as a signature header.

8. From the Payload Type drop-down list, select the media type for the payload. You
can select either form–urlencoded (default) or json.

9. To ignore the host’s SSL certificate verification when delivering the HTTP request,
select the Ignore SSL Errors check box.

10. In Event Groups, select the events that trigger the webhook.

If you selected the Select specific events option, in Events, select the check
boxes of events that trigger the webhook.

11. Click Done.

When you’re finished, use the project navigation bar to switch to another page.

Chapter 7
Send Notifications to External Software Using Webhooks

7-35

Send Event Notifications to Any Application
Using the DevCS Generic Webhook, you can sends event notifications to any
application that accepts webhook requests and can parse payload specific content.
The webhook payload format depends on the type of the event.

The generic webhook supports all possible events of DevCS, including Git pushes,
issue updates, merge request updates, and project builds. It sends a POST request to
the remote service in the JSON format with details of the subscribed events.

1. In the navigation bar, click Project Administration .

2. Click Webhooks.

3. Click + Create Webhook.

4. From the Type drop-down list, select Generic.

5. In Name, enter a unique name.

6. In URL, enter the URL of the remote service where you want to deliver the HTTP
request.

7. In Secret, enter a secret phrase that’s passed as a string with the HTTP request
as a signature header.

8. To ignore the host’s SSL certificate verification when delivering the HTTP request,
select the Ignore SSL Errors check box.

9. In Event Groups, select the events that triggers the webhook.

If you selected the Select specific events option, in Events, select the check
boxes of the events to trigger the webhook.

10. Click Done.

The newly created Webhook appears in the Webhooks table.
To find more about the data structure of a generic Webhook, see Data Structure of a
Generic Webhook.
When you’re finished, use the project navigation bar to switch to another page.

Data Structure of a Generic Webhook
The information sent by a generic webhook is delivered using a POST request with the
application/json content-type, with the UTF-8 character set, in a Message object.

This table describes the fields of the Message object.

Field Description

apiVersion Version of the API. It changes when the payload format of the request
changes.

messageId Unique identifier of the message

timestamp Timestamp of the message when it was generated

testEvent Set to true if this event is generated by the Test button

projectId Unique identifier of the project

events List of events delivered by the message

Chapter 7
Send Notifications to External Software Using Webhooks

7-36

Each event delivered by the message follows a common structure. There are three
types of events (ISSUE/PUSH/BUILD/REVIEW/ACTIVITY).

Field Description

eventId Type of the event (ISSUE/PUSH/BUILD/REVIEW/ACTIVITY)

projectId Unique identifier of the project

timestamp Timestamp of the event

data Data specific to the type of the event

The structure of data of each event type is described in the following sections.

ISSUE Event

The ISSUE event contains the fields described in this table.

Field Description

type Type of the activity (CREATED - issue is created, COMMENTED -
comment added, UPDATED - fields changed)

date Timestamp of the activity

description Description of the change

task Description of the issue after the change

id Issue ID

version Change version

url URL of the issue

title Title of the issue

type Type of the issue (Defect, Feature, or Task)

resolution Resolution of the issue. The value is null if the issue isn’t resolved,
otherwise, it’s set to one of the issue resolution values such as FIXED,
DUPLICATE, and WORKSFORME.

reporter User who reported the issue

asignee User to whom the issue is assigned

comment Content of the added comment, available if the activity type is
COMMENTED

fieldUpdates List of changed fields, available if the activity type is UPDATED

name Field name

oldValue Value before the change

newValue Value after the change

Here is a JSON payload example of an issue create event.

 {
 "apiVersion": "1.0",
 "messageId": "04abc282-a44e-4c23-ba53-15b519d30066",
 "projectId": "qa-dev_example-project",

Chapter 7
Send Notifications to External Software Using Webhooks

7-37

 "testEvent": false,
 "timestamp": 1417810876408,
 "events": [
 {
 "eventId": "ISSUE",
 "projectId": "example-project",
 "timestamp": 1417810876,
 "data": {
 "activities": [
 {
 "type": "CREATED",
 "date": 1417810875820,
 "description": "",
 "author": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 },
 "issue": {
 "id": 2,
 "resolution": null,
 "title": "Test Issue",
 "type": "Feature",
 "url": "http://test-server/#projects/example-
project/task/2",
 "version": "1417810875834",
 "reporter": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 }
 }
 }
]
 }
 }
]
 }

Here is a JSON payload example of an issue update event.

 {
 "apiVersion": "1.0",
 "messageId": "ccce183e-097d-4668-a07b-cf762108716e",
 "projectId": "qa-dev_example-project",
 "testEvent": false,
 "timestamp": 1417811058243,
 "events": [
 {
 "eventId": "ISSUE",
 "projectId": "example-project",
 "timestamp": 1417811058

Chapter 7
Send Notifications to External Software Using Webhooks

7-38

 "data": {
 "activities": [
 {
 "type": "UPDATED"
 "date": 1417811057698,
 "description": "Assign to alex.admin\nset
Resolution to FIXED\nset Status to RESOLVED\n",
 "author": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 },
 "issue": {
 "id": 2,
 "resolution": "FIXED",
 "title": "Test Issue",
 "type": "Feature",
 "url": "http://test-server/#projects/example-
project/task/2",
 "version": "1417811057698",
 "asignee": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 },
 "reporter": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 }
 },
 "fieldUpdates": [
 {
 "name": "assigned_to",
 "newValue": "alex.admin",
 "oldValue": ""
 },
 {
 "name": "resolution",
 "newValue": "FIXED",
 "oldValue": ""
 },
 {
 "name": "bug_status",
 "newValue": "RESOLVED",
 "oldValue": "UNCONFIRMED"
 }
]
 },
 {
 "type": "COMMENTED"
 "date": 1417811057929,

Chapter 7
Send Notifications to External Software Using Webhooks

7-39

 "description": "Feature is implemented",
 "author": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 },
 "comment": {
 "author": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 },
 "date": 1417811057929,
 "text": "Feature is implemented",
 "type": "UNKNOWN"
 },
 "task": {
 "id": 2,
 "resolution": "FIXED",
 "title": "Test Issue",
 "type": "Feature",
 "url": "http://test-server/#projects/qa-
dev_example-project/task/2",
 "version": "1417811057698",
 "asignee": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Alex Admin"
 },
 "reporter": {
 "gravatarHash":
"8940829abebbc5d8d84e37af7161fd31",
 "loginName": "alex.admin",
 "realName": "Alex Admin"
 }
 }
 }
]
 }
 }
]
 }

PUSH Event

The PUSH event contains the fields described in this table.

Field Description

refName Updated references

commits Commits of the Push event

Chapter 7
Send Notifications to External Software Using Webhooks

7-40

Field Description

sha Commit identifier

comment Comment in the commit

author Author of the commit

date Timestamp of the commit

parents List of commit parent identifiers

repository Name of the repository to which the commit was pushed

Here is a JSON payload example of a Git Push event.

 {
 "apiVersion": "1.0",
 "messageId": "c3378be6-6be5-4191-9b20-1fb5d429bfce",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1417810424512,
 "events": [
 {
 "eventId": "GIT_PUSH",
 "projectId": "example-project",
 "timestamp": 1417810424,
 "data": {
 "refName": "refs/heads/master",
 "commits": [
 {
 "sha": "32e03bc46a3a42eeab5dd25144a90c5b4f0b2e11",
 "repository": "example-project.git",
 "date": 1417810387000,
 "comment": "file1.txt deleted, file3.txt created
\n",
 "author": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Admin",
 "username": "alex.admin"
 },
 "parents": [
 "1106e8c81cb49e71024e9017235f89dc3983d4ee"
]
 },
 {
 "sha": "1106e8c81cb49e71024e9017235f89dc3983d4ee",
 "repository": "example-project.git",
 "date": 1417810290000,
 "comment": "file2.txt updated\n",
 "author": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Admin",
 "username": "alex.admin"

Chapter 7
Send Notifications to External Software Using Webhooks

7-41

 },
 "parents": [
 "8dab56fb6ba6dd0fc0d0aa8c7ce4f01d77fa0835"
]
 }
]
 }
 }
]
 }

BUILD Event

The BUILD event contains the fields described in this table.

Field Description

jobName Name of the job

timestamp Build timestamp

number Build number

url Build URL

result Build result (SUCCESS/UNSTABLE/FAILURE/NOT_BUILT/ABORTED)

duration Build duration

fileName Name of the artifact

relativePath Path relative to the job workspace

url URL of the artifact

Here is a JSON payload example of a Build event.

 {
 "apiVersion":"1.0",
 "messageId":"4a253425-4598-4838-a4b5-aac30d0b9710",
 "timestamp":1417795613257,
 "testEvent":true,
 "projectId":"test-project",
 "events":[
 {
 "eventId":"BUILD",
 "projectId":"test-project",
 "timestamp":1417795613256,
 "data":{
 "jobName":"example-job",
 "details":{
 "timestamp":1417795590256,
 "number":16,
 "url":"http://server/test-dev/s2/test-project/hudson/job/
test-project.example-job/16/",
 "result":"SUCCESS",
 "duration":36905,
 "artifacts":[
 {

Chapter 7
Send Notifications to External Software Using Webhooks

7-42

 "fileName":"sample-1.0-SNAPSHOT.jar",
 "relativePath":"sample-project/target/sample-1.0-
SNAPSHOT.jar",
 "url":"http://server/test-dev/s2/test-project/
hudson/job/test-project.example-job/16/artifact/sample-project/target/
sample-1.0-SNAPSHOT.jar"
 }
]
 }
 }
 }
]
 }

REVIEW Event

The REVIEW event represents changes in merge requests and contains the fields
described in this table.

Field Description

review Description of the merge request

id Unique ID of the merge request

title Title of the merge request

created Timestamp of the merge request creation

modified Timestamp of the merge request last modification

reporter Profile of the user who created the merge request

repository Name of the Git repository

reviewBranch Name of the review branch

targetBranch Name of the target branch

user Profile of the user who performed the action

action Merge request action

Here is the list of merge request actions:

• CREATED: Merge request is created
• COMMIT: New commits are pushed to the review branch
• MERGED: Review branch is merged into the target branch

The MERGED action is created if the review branch is merged via
the Merge button in the web user interface. If the review branch is
merged from a Git client (such as the Git command line interface),
no action is generated.

• REVIEWED: Reviewer approves or rejects a merge request
• COMMENTED: A comment is added to the merge request
• CLOSED: Merge request is closed

Chapter 7
Send Notifications to External Software Using Webhooks

7-43

Field Description

commits List of commits added to the merge request

The commits field is generated for the COMMIT action. These fields are
also generated for the commits action:

• author: Author of the commit
• message: Commit message
• sha: SHA-1 checksum hash of the commit

text Text of the comment

The text field is generated for the COMMENTED action.

comment Comment of the rejected or approved review action

The comment field is generated for the REVIEWED action.

result Result of the merge (FAST_FORWARD, FAST_FORWARD_SQUASHED,
ALREADY_UP_TO_DATE, FAILED, MERGED, MERGED_SQUASHED,
MERGED_SQUASHED_NOT_COMMITTED, CONFLICTING, ABORTED,
MERGED_NOT_COMMITTED, NOT_SUPPORTED, CHECKOUT_CONFLICT)

The result field is generated for the MERGED action.

status Status of the merge request (APPROVED, REJECTED, COMPLETED,
CANCELLED)

The status field is generated for the REVIEWED and the CLOSED
action.

Here is a JSON payload example of a REVIEW event.

{
 "apiVersion": "1.0",
 "events": [
 {
 "data": {
 "action": "CREATED",
 "review": {
 "created": 1431944319181,
 "id": 6,
 "modified": 1431944319635,
 "reporter": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 },
 "repository": "example-project.git",
 "reviewBranch": "bug_branch",
 "targetBranch": "master",
 "title": "Bug Fix"
 },
 "user": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"

Chapter 7
Send Notifications to External Software Using Webhooks

7-44

 }
 },
 "eventId": "REVIEW",
 "projectId": "example-project",
 "timestamp": 1431944327
 }
],
 "messageId": "08758261-e4e7-4c8f-b9fe-7b74f715803f",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1431944329923
}

{
 "apiVersion": "1.0",
 "events": [
 {
 "data": {
 "action": "COMMIT",
 "commits": [
 {
 "author": "alex.admin",
 "message": "fix version #3\n",
 "sha": "8fd1d2a53a181aa7015e7535b6f64295c432eca7"
 },
 {
 "author": "alex.admin",
 "message": "fix version #2\n",
 "sha": "ff2bdf91d0fb6fb664315879ec38acc0931beeb6"
 }
],
 "review": {
 "created": 1431944319181,
 "id": 6,
 "modified": 1431944340209,
 "reporter": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 },
 "repository": "example-project.git",
 "reviewBranch": "bug_branch",
 "targetBranch": "master",
 "title": "Bug Fix"
 },
 "user": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 }
 },
 "eventId": "REVIEW",

Chapter 7
Send Notifications to External Software Using Webhooks

7-45

 "projectId": "example-project",
 "timestamp": 1431944353
 }
],
 "messageId": "5de98d08-49cd-4a19-86b5-d89757f75a1d",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1431944355646
}

{
 "apiVersion": "1.0",
 "events": [
 {
 "data": {
 "user": {
 "email": "clara.coder@example.com",
 "firstName": "Clara",
 "lastName": "Coder",
 "username": "clara"
 },
 "review": {
 "created": 1436521285722,
 "id": 23,
 "modified": 1438246154916,
 "reporter": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Admin",
 "username": "alex"
 },
 "repository": "example-project.git",
 "reviewBranch": "bug_branch",
 "targetBranch": "master",
 "title": "Some Review"
 },
 "action": "REVIEWED",
 "status": "REJECTED",
 "comment": "rejected the request because ...",
 },
 "eventId": "REVIEW",
 "projectId": "example-project",
 "timestamp": 1438246163
 }
],
 "messageId": "f0a75815-3470-4dc4-be82-975935152ed3",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1438246165924
}

{
 "apiVersion": "1.0",
 "events": [
 {

Chapter 7
Send Notifications to External Software Using Webhooks

7-46

 "data": {
 "action": "COMMENTED",
 "review": {
 "created": 1431944319181,
 "id": 6,
 "modified": 1431944478701,
 "reporter": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 },
 "repository": "example-project.git",
 "reviewBranch": "bug_branch",
 "targetBranch": "master",
 "title": "Bug Fix"
 },
 "text": "General comment",
 "user": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 }
 },
 "eventId": "REVIEW",
 "projectId": "example-project",
 "timestamp": 1431945965
 }
],
 "messageId": "d2a36692-dae6-44d4-a112-7a615b524cc3",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1431945967166
}

{
 "apiVersion": "1.0",
 "events": [
 {
 "data": {
 "action": "MERGED",
 "result": "FAST_FORWARD",
 "review": {
 "created": 1431944319181,
 "id": 6,
 "modified": 1431944478701,
 "reporter": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 },
 "repository": "example-project.git",
 "reviewBranch": "bug_branch",

Chapter 7
Send Notifications to External Software Using Webhooks

7-47

 "targetBranch": "master",
 "title": "Bug Fix"
 },
 "user": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 }
 },
 "eventId": "REVIEW",
 "projectId": "example-project",
 "timestamp": 1431945438
 }
],
 "messageId": "b06d5581-d38a-4972-9c80-dc1455547776",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1431945440287
}

{
 "apiVersion": "1.0",
 "events": [
 {
 "data": {
 "action": "CLOSED",
 "review": {
 "created": 1431944319181,
 "id": 6,
 "modified": 1431945453967,
 "reporter": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 },
 "repository": "example-project.git",
 "reviewBranch": "bug_branch",
 "targetBranch": "master",
 "title": "Bug Fix"
 },
 "status": "COMPLETED",
 "user": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 }
 },
 "eventId": "REVIEW",
 "projectId": "example-project",
 "timestamp": 1431945459
 }
],

Chapter 7
Send Notifications to External Software Using Webhooks

7-48

 "messageId": "b434f6d2-b5c7-4c0a-bab2-3e6614025865",
 "projectId": "example-project",
 "testEvent": false,
 "timestamp": 1431945453967
}

ACTIVITY Event

The ACTIVITY event contains the fields described in this table.

Field Description

author Profile of the user whose action produced the activity

The value is null for system activities.

name Name of the activity

properties Description of the activity, or the object whose fields depends on the
name field.

Here is the list of supported activities:

• BUILD: Triggered when a build in the integrated Hudson server
ends.

• DEPLOYMENT: Triggered when the application is deployed,
undeployed, started, or stopped using Deploy page in the web
user interface.

• MEMBER: Triggered when a user is added, removed, or role is
updated.

• REVIEW: Triggered when a merge request is created, closed, or
updated.

• RSS: Triggered when a new article is acquired from a registered
feed.

• SCM_COMMIT: Triggered when a commit is pushed to a project
repository.

• SCM_REPO: Triggered when a project repository is added or
removed.

• TASK: Triggered when an issue is created or updated.
• WIKI: Triggered when a wiki page is created or updated.

Here is a JSON payload example of an Activity event.

{
 "apiVersion": "1.0",
 "events": [
 {
 "data": {
 "author": {
 "email": "alex.admin@example.com",
 "firstName": "Alex",
 "lastName": "Alex Admin",
 "username": "alex.admin"
 },
 "name": "WIKI",
 "properties": {
 "page": "New Page Title",

Chapter 7
Send Notifications to External Software Using Webhooks

7-49

 "type": "CREATED"
 }
 },
 "eventId": "ACTIVITY",
 "projectId": "example-project",
 "timestamp": 1432035029
 }
],
 "messageId": "45066d85-5a5c-4647-9a6c-43fc8e99481a",
 "projectId": "qa-dev_test-rss",
 "testEvent": false,
 "timestamp": 1432035031418
}

Access External Docker Registries
If you use an external Docker registry, such as DockerHub or Oracle Cloud
Infrastructure Registry (OCIR), you can link the registry to your project and browse its
repositories and images from Oracle Developer Cloud Service (DevCS).

A Docker Registry is a server-side application that stores and enables you to distribute
Docker images. To find more about Docker images, see https://docs.docker.com/
registry/.

Link an External Docker Registry to Your Project
 You must be assigned the project Owner role to link an external Docker registry to

your project.

1. In the navigation bar, click Project Administration .

2. Click Repositories.

3. In Docker Registries, click + Link External Registry.

To view all linked Docker registries, expand Linked External Docker Registries.

4. In Registry Name and Short Description, enter a unique Docker registry name
and a description.

5. In Registry URL, enter the URL of the Docker registry. For example: https://
registry-1.docker.io.

To link the DockerHub registry, leave the field empty.
To link to OCIR, enter the registry path in the https://
<ocir_region_code>.ocir.io format. For example: If your region is Ashburn,
enter iad.ocir.io. To know the region codes, see Availability by Region Name
and Region Code.

6. In Authentication, select the authentication type

• Basic (default): Select and enter the basic username and password details in
Username and Password.
To connect to OCIR, enter the username of the OCI user who can access
OCIR in the<tenancy_name>/<oci_user_name> format. For example,
mytenancy/myociuser. In password, enter the OCI user's auth token. See
Getting an Auth Token.

Chapter 7
Access External Docker Registries

7-50

https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryprerequisites.htm#Availab
https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryprerequisites.htm#Availab
https://docs.cloud.oracle.com/iaas/Content/Registry/Tasks/registrygettingauthtoken.htm

• OAuth2: Select and enter the long-lived access token as the authentication in
Auth Token. Don’t enter a short-lived access token.
For more information about OAuth2 in Docker, see https://
docs.docker.com/registry/spec/auth/oauth/.

• Anonymous: Select if the registry can be accessed anonymously and doesn’t
require an authentication.

7. Click Create.

After verifying the credentials and the URL, the registry is added to the Linked
External Docker Registries section. You can browse its repositories and images from

the Docker page.

Browse a Linked Docker Registry
While browsing a registry, you can view its repositories and images, download its
image manifest file, copy pull and push commands, and delete an image tag.

To browse repositories of a linked Docker registry, select it from the Docker Registry
drop-down list.

Action How To

View images of a
repository

Open the Docker registry repository and click the repository name. To
view tags of an image, click an image tag.

Download the image
manifest of a
repository

1. Open the Docker registry repository.

2. In Image Tags, click the image tag.

3. On the right side, in the Info section of Tag Details, click

Download .

4. Save the file to your computer.

Copy pull and push
commands

To get images of a repository, you use the docker pull command. To
upload the images, you use the docker push command. You can use
these commands while configuring a build job that connects to the
Docker registry.

1. Open the Docker registry repository.

2. In Image Tags, click the image tag.

3. On the right side, in the Docker Command section, pull and push
commands are displayed.

In the Pull tab, click Copy to copy the docker pull

commands to the clipboard. In the Push tab, click Copy to
copy the docker push commands to the clipboard.

Delete an image tag 1. Open the Docker registry repository.

2. In Image Tags, mouse over the tag you want to delete, and click
Delete.

3. In the Confirm Delete dialog, select the I understand that my
selected tag will be permanently deleted check box, and click
Yes.

Chapter 7
Access External Docker Registries

7-51

8
Use Releases and Export/Import Data

After your project is set, you can set up or use release configurations to download
release artifacts. You can also export the project data to Oracle Cloud Infrastructure
Object Storage Classic container for backup and import it later.

This table describes the Oracle Developer Cloud Service pages you’d use to set
releases and export/import data.

Use this page ... To:

Releases
Display the release configurations of the project and enables you to
download release artifacts.

Data Export/Import Export and import project data.

Manage Software Releases
A Release enables you to provide a stable code and artifacts of your applications that
project users can download. For a release, you can specify tags or branches of Git
repositories with stable code, artifacts of project Maven repository, build artifacts of
stable builds, and binary files.

For example, you can you create a release titled V18-Q1 to mark stable code files,
artifacts, and binaries of your application for the first quarter release of 2018 release.
Project users then won’t have to look around or ask which Git repository or branch has
the stable code. They can then download Git repository archives and other artifacts of
the V18-Q1 release from the Release page itself.

You can access and manage releases from the Releases page. When a project user
opens a release, the user can download source snapshots of a specified branch or tag
of the project Git repository, artifacts from the project Maven repository, specified
binaries, and archived build artifacts.

Release States
A release can be in Draft, Pre-Release, or Public state.

8-1

State Description

Draft Indicates that the features of the release are under development.

When you create a release, you specify the Maven artifacts and the Git
repository tags. While adding a Git repository to a release, you may
want to specify a branch that has the stable code at the time of
release. Usually, it’s the master branch, but you can specify any
branch name. You may also want to specify the Git repository tag that
indicates the stable state of the branch. Usually, the tag is created
before the release when the code in the branch is stable. While
creating a Release, if you specify a tag name that doesn’t exist, it’s
automatically created when you change the status of the Release to
Public.

Pre-Release Indicates that the release is stable, but might need some fixes before
it’s made Public.

You usually set the release’s status to this state when you and your
team have completed all features, staged the software, and are waiting
for approvals to release the software. If the Maven artifacts, Git
repositories, tags, or branch names have changed since the release
was in the Draft state, edit the release and update the artifacts.

Public Indicates that the release is public or is ready to go public.

While creating a release, if you specify a tag name that doesn’t exist,
it’s automatically created for the specified branch when the release is
set to Public. If you’ve specified an existing tag name, it’s used. This
might be useful when you create a release, which is already public.

You might want to edit the release and update the Maven artifacts, Git
repositories, tags, or branch names if they have changed while the
release was in the Pre-Release or the Draft state.

Create a Release
When you create a release, you specify the build artifacts, Git repositories and
branches, and Maven artifacts. You can create a release or clone an existing release.

Action How To

Create a release

1. In the navigation bar, click Releases .

2. Click + Create Release.

3. In Name and Description, enter a release name and description.

4. In Status, specify the status of the release.

5. Add the artifacts.

6. In Notes, enter the release notes in the Page Text tab. Preview
the notes in the Preview tab.

You can use the project’s wiki markup language to format the
notes.

7. Scroll to the top of the page and click Save.

Chapter 8
Manage Software Releases

8-2

Action How To

Clone a release

1. In the navigation bar, click Releases .

2. Select the release that you want to edit or clone, click Actions
and then select Clone.

3. In Name and Description, enter a release name and description.

4. In Status, specify the status of the release.

5. Add, update, or remove the artifacts.

6. In Notes, enter the release notes in the Page Text tab. Preview
the notes in the Preview tab.

You can use the project’s wiki markup language to format the
notes.

7. Scroll to the top of the page and click Save.

Specify Artifacts of a Release
You can specify a release’s artifacts when you create it or edit it.

Action How To

Add Build artifacts Expand Builds and specify the job, build number, and its artifact. Click

Add to Release to add the artifact. You can specify multiple
artifacts.

To use the last build of the specified job when the release’s status
changes to Public, in Build, select Last Build. When the release’s
status changes to Public, make sure that the last build is successful
and has generated desired artifacts.

To store the artifact in the project’s storage system, in case the
specified job or build is removed, select the Store check box.

Add Maven artifacts Expand Maven Artifacts and specify the group ID, artifact ID, and

version of artifacts. Click Add to Release to add the artifact. You
can specify multiple artifacts.

Add Git repositories Expand Repositories, and specify Git repositories and branches (or

tags). Click Add to Release to add the artifact. You can specify
multiple artifacts.

If you enter a tag name that doesn't exist, a Git repository tag of the
same name is created when the release is marked as Public.

Add binary artifacts You can add binary artifacts only when you edit a release. You can’t
add binary artifacts when you create a release.

Expand Binaries and upload the binary files.

Change a Release’s Status
You can change the status of a release from the Edit Release page.

1. In the navigation bar, click Releases .

Chapter 8
Manage Software Releases

8-3

2. In the Release list, select the release whose status you want to change.

3. On the right, click Actions and select Edit.

4. In the Edit Release page, change the selected Status option to the desired state.

5. Click Save.

A notification about the change in the state of the release is displayed in the Activity
Feed of the Project Home page.

Manage Releases
After creating a release, you can edit its artifacts and properties, change its status, or
delete it.

Action How To

Edit a release On the Releases page, select the release that you want to edit. Click
Actions and then select Edit. On the Edit Release page, update
its name, description, artifacts, and click Save.

Change a release’s
state

Edit a release. On the Edit Release page, in Status, change the state.
The name of the release at the top of the page shows the selected
release state.

Delete a release On the Releases page, select the release that you want to edit. Click
Actions and then select Delete.

Download Artifacts of a Release
To download an artifact, expand its section, and click the file name. Save the file at the
desired location on your computer.

You can download these artifacts:

• Binary files from the Binaries section

• Build artifacts of successful builds from the Builds section

• Maven artifacts from the Maven Artifacts section

• An archive of a tag of a Git repository in the Repositories section

Export Project Data to and Import Project Data from Oracle
Cloud

You can export your project’s data to an OCI Object Storage Classic container of any
data center to perform a backup. You can then import the data into the same or
another project of the same or a different data center when you want.

To export or import data, first, you’d need to set up a connection to OCI Object
Storage Classic.

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-4

Exported Data
Before you export a project's data, note that not all the artifacts of the project are
exported. You'll have to manually export the remaining artifacts and data manually.

This table shows you which artifacts are exported and which aren't:

Artifact Exported? Notes

Project users No When you export a project's
data, its users are not
exported, but all data
associated to usernames
(such as issue ownership and
reviewers of a merge request)
is preserved.
After you import the project's
data to another project, when
you add a user to the project
with the same username, the
data associated to the
username is automatically
restored.

User's favorite settings or
personal preferences

No

Hosted Git repositories Yes

Mirrored public external Git
repositories

Yes

Mirrored private external Git
repositories

No Password protected external
Git repositories aren't
exported.
After you import the project's
data to another project, you
must add each external
private Git repository.

Branch restrictions Yes

Merge Requests Yes

Default reviewers of a branch Yes After you import the project's
data to another project, default
reviewers are added
automatically after the same
users are added to the target
project.

Maven artifacts No

Linked Docker registries No

Build jobs No

Releases Yes

Deployment configurations No

Environments No

Issues Yes

Agile boards Yes

Wiki pages Yes

Snippets Yes

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-5

Artifact Exported? Notes

Project template definition No

Announcements No

Webhooks No

RSS/ATOM feeds No

Link rules No

Project tags Yes

Issue products and
components

Yes

Default owners of issue
components

Yes After you import the project's
data to another project,
owners are activated
automatically after the same
users are added to the target
project.

Issue custom fields Yes

Named passwords Yes

Export to and Import from an OCI Object Storage Classic Container
If you're an OCI Classic user, you can export project data to an OCI Object Storage
Classic container and import from it.

The exported data isn't encrypted and can be downloaded from the container. If you're
exporting the project's data for the first time, set up an OCI Object Storage Classic
container for the project and users who can read from or write to it. You can use a
common container for all projects of the organization, but it's recommended that you
use a separate container for each project. This allows you to organize archive files
better as they aren't mixed with the archive files of other projects. Contact the identity
domain administrator or the OCI Object Storage Classic administrator to create the
container. You should also ask the administrator to set up users with read-write access
to the container.

Set Up the OCI Object Storage Classic Container
An identity domain administrator or the OCI Object Storage Classic administrator can
create an OCI Object Storage Classic container. After creating the container, assign a
user the Storage_ReadWriteGroup (Storage_ReadWriteGroup). If you want the
user to read files from the container, but don't want them to write or delete files, assign
the Storage_ReadOnlyGroup (Storage_ReadOnlyGroup) role to the user. Then,
share the container and user details with the project owner. Project owner will need
the details to connect to the container to export or import data.
You must be an identity domain administrator to create a container and set up the
user.

1. On the OCI Object Storage Classic console, create a container for the project.

a. Open the Oracle Cloud My Services dashboard.

b. On the Oracle Cloud Dashboard, in the Storage Classic tile, click Action
and select Open Service Console.

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-6

c. On the Storage Classic page, click Create Container.

d. In the Create Storage Container dialog box, enter the container name, and
click Create.

Example:

2. Set up a user to access the container.

a. On the Oracle Cloud My Services dashboard, click Users.

b. Click the user's name tile to whom you want to assign the access.

To create a user, click Add and fill in the details.

c. Click the Roles tab.

d. In All Services, search for Storage Classic.

e. To assign read and write access to the user, add the
Storage_ReadWriteGroup (Storage_ReadWriteGroup) role.

To assign the read access, add the Storage_ReadOnlyGroup
(Storage_ReadOnlyGroup) role.
Example:

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-7

f. Return to the dashboard.

Export Project Data
When you export project data, DevCS exports data to an archive file in the specified
OCI Object Storage Classic container.

To export project data to an OCI Object Storage Classic container, you need the
following:

• Name of the target container

• Credentials of a user with the Storage.Storage_Administrator or the
Storage_ReadWriteGroup identity domain role.

• Service ID and the authorization URL of OCI Object Storage Classic

Contact the identity domain administrator or the OCI Object Storage Classic
administrator for the details and get the required input values.

 You must be assigned the project Owner role to export data.

1. Open the DevCS project.

2. In the navigation bar, click Project Administration .

3. Click Data Export/Import.

4. Click the Job tab.

5. In Account Type, select OCI Classic.

6. In Service ID, enter the value copied from the last part of the REST Endpoint
URL field of the Service Details page.

For example, if the value of REST Endpoint URL is https://
demo12345678.storage.oraclecloud.com/v1/Storage-demo12345678, then enter
Storage-demo12345678.

7. In Username and Password, enter the credentials of the user assigned the
Storage.Storage_Administrator or Storage_ReadWriteGroup identity domain
role.

8. In Authorization URL, enter the URL copied from the Auth V1 Endpoint field of
the Service Details page.

Example: http://storagetria01234-
usoracletria12345.storage.oraclecloud.com/auth/v1.0.

9. Click Connect.

10. In the Create Job section, in Type, select Export.

11. In Name, enter a name for the export job.

12. In Description, enter the job's description.

13. In Storage Container, select the container to export the project data.

14. In Storage Object, if required, update the default .zip file name.

15. Click Export.

16. In the Confirm Project Export dialog box, select the Export project data check
box, and click Yes.

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-8

17. In the Exporting Project page, expand Steps to see the status of each module.

After the export is complete, a notification is added to the Recent Activities feed of the
Project Home page and to the History tab of the Data Export/Import page.

Import Project Data
When you import data, it overwrites the data of the project. All artifacts of the project
are replaced with the components from the imported project.

To import project data from an OCI Object Storage Classic container, you need the
following:

• Name of the target container

• Name of the archive file with the project data

• Credentials of a user with the Storage.Storage_Administrator,
Storage_ReadWriteGroup, or Storage_ReadOnlyGroup identity domain role

• Service ID and the authorization URL of OCI Object Storage Classic

Contact the identity domain administrator or the OCI Object Storage Classic
administrator for the details and get the required input values.

 You must be assigned the project Owner role to import data.

1. Open the DevCS project.

2. In the navigation bar, click Project Administration .

3. Click Data Export/Import.

4. Click the Job tab.

5. In Account Type, select OCI Classic..

6. In Service ID, enter the value copied from the last part of the REST Endpoint
URL field of the Service Details page.

For example, if the value of REST Endpoint URL is https://
demo12345678.storage.oraclecloud.com/v1/Storage-demo12345678, then enter
Storage-demo12345678.

7. In Username and Password, enter the credentials of the user assigned the
Storage.Storage_Administrator, Storage_ReadWriteGroup, or
Storage_ReadOnlyGroup identity domain role.

8. In Authorization URL, enter the URL copied from the Auth V1 Endpoint field of
the Service Details page.

Example: http://storagetria01234-
usoracletria12345.storage.oraclecloud.com/auth/v1.0.

9. Click Connect.

10. In the Create Job section, in Type, select Import.

11. In Name, enter a name for the import job.

12. In Description, enter the job's description.

13. In Storage Container, select the container to import the project data from.

14. In Storage Object, select the .zip file name of the exported data.

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-9

15. Click Import.

16. In the Confirm Project Import dialog box, read and verify the container and object
details, select the Import project data check box, and click Yes.

17. In the Importing Project page, expand Steps to see the status of each module.

If you want to cancel the import process, click Cancel.

When an import job is in progress, the project is in the locked state. You can’t access
other pages of the project until the import job is complete. After the import is complete,
you're redirected to the Project Home page. A notification of the import action is
added to the Recent Activities feed of the Project Home page and to the History tab of
the Data Export/Import page.

View Export and Import History of the Project
If you want to know the export and import history of a project, you can do so from the
History tab of the Data Export/Import page.

1. In the navigation bar, click Project Administration .

2. Click Data Export/Import.

3. Click the History tab.

The history of all export and import jobs is displayed. Select a job to view its details. In
the case of a failure, expand Steps to view the modules that passed and failed.

Chapter 8
Export Project Data to and Import Project Data from Oracle Cloud

8-10

9
Organization and Project Management

With the organization’s administrator and the project’s owner role, you can configure
and manage components of the project, and projects of the organization,

This table describes the Oracle Developer Cloud Service pages you’d use to manage
the organization and the project.

Use this page ... To:

Organization
Manage the organization.

Project

Administration

Configure the project.

Manage the Organization
You can update your Oracle Developer Cloud Service (DevCS) organization’s name,
description, manage projects, and view the usage metric of projects.

 You must be the Organization Administrator to manage the organization.

Update the Organization’s Display Name and Description
By default, the organization's display name is <your_devcs_instance_name>-
<your_oracle_account_name>.

1. In the navigation bar, click Organization .

2. Click the Properties tab.

3. In Name, edit the organization name.

4. In the Confirm Organization Name Change dialog, click Yes.

5. In Description, if necessary, enter or edit the description of the organization.

Manage Projects of the Organization
As the Organization Administrator, you can access and manage all projects. You can
assign a project’s Owner role to yourself, delete a project, revoke a deleted project, or
postpone a deleted project by a few days.

1. In the navigation bar, click Organization .

2. Click the Projects tab.

Example:

9-1

Action How To

Create a project Click + Create.
See Create a Project.

Open a project In the Name column, click the project name.
See Open a Project.

Note that you can open a project only if you're a member or an owner.
Projects where you aren't a member or an owner don't appear as links.
You can't open a project that's in the deleted state.

Search for a project Use the search box above the projects list.

Filter projects In Member/Owner/Favorite/All, click a filter option to enable it.

Click the Member button to view projects where you're a member.
Click Owner to view projects where you're an Owner. Click Favorite to
view your favorite projects. Click All to view all projects of the
organization.
To see more filter options, click Detailed Filter .

Mark a project as a
favorite In the Favorite column, click Favorite and add it to your favorites

list.

View a project's team
members

The Members column shows the gravatars of the project's team
members. A blue circle around a user's gravatar indicates the user is
assigned the project's Owner role. Click the gravatars to display
names and email addresses of all team members.

Assign a project’s
Owner role to yourself

You can assign a project’s Owner role to yourself. This is usually
helpful in a case when all Owners of the project are removed or have
left the organization. As the Organization Administrator, you can then
take the ownership of such projects and then assign the Owner role to
another project user.

For the project whose ownership you want to assign to yourself, click

Update Project and select Assign Me as Owner.

Delete a project As the Organization Administrator, you can delete any project.

1. For the project you want to delete, click Update Project and
select Delete.

2. In the Delete Project dialog box, click Delete.

The project’s State is marked as Deleted - Project will be
removed automatically in N days., but isn’t removed
immediately. In the Delete Project dialog box, read the message
before you click Delete. Also, check the project’s delete message to
know when the project will be permanently removed. To immediately

remove the project permanently, click and select Remove
Forever.

Postpone removal of a
deleted project

At times, you may be unsure if you want to revoke a deleted project
that’s close to its permanent removal date. For such projects, you can
choose to postpone their removal by a few days.

For the deleted project you want to postpone, click Update Project
and select Postpone Removal.
The project’s permanent removal date is rescheduled and the
message is displayed at the top. In Status, check the project’s delete
message to know when the project will be permanently removed.

Chapter 9
Manage the Organization

9-2

Action How To

Undelete a project When you undelete a project, you get an option to update the name
and description of the project. When revoked, the project URLs will
change if a different name of the deleted project is specified.

1. For the deleted project you want to undelete, click Update Project

 and select Undelete.

2. In the Undelete Project dialog, if necessary, update the project
name in Name and description in Description.

You would have to change the project name if another project with
the same name was created after this project was deleted.

3. Click Undelete.

Select multiple
projects

You can select multiple projects and perform a common action on
them.

1. If necessary, filter and sort the projects as desired.

2. Press the Ctrl key or the Shift key and select project rows.

To select all projects, click the check box to the left of the Name
column header.

3. Click Update Selected and select the desired action from the
menu.

Some options, such as Undelete, are not available in the Update
Selected menu.

View usage metrics of
projects

Next to the Detailed Filter , review the projects and disk usage
metrics of the organization.

For each project, the Disk Usage column shows the project's disk
usage and its usage percentage with respect to the total disk usage of
all projects. Click the number to open a pop-up with details of usage by
each service in the project.

Manage the Project
As an Oracle Developer Cloud Service (DevCS) project owner, you can perform
various project-wide actions, such as edit a project’s name and description, configure
the project as a project template, create announcements, set project tags, manage
repositories, and configure link rules.

 You must be assigned the project Owner role to manage a project.

Edit a Project’s Name, Description, or Visibility
After creating a project, you can edit a project's properties from the Project
Administration page.

1. In the navigation bar, click Project Administration .

2. Click Properties.

3. In Name and Description, update the project name and description.

4. In Security, update the project’s share status.

Chapter 9
Manage the Project

9-3

When you’re finished, use the project navigation bar to switch to another page.

Configure Project Templates
You can define an existing project as a template for new projects that users can use
as a starting point. When creating a project, if a user selects a project template, the
project template’s data is copied to the new project, which the user can modify.

Project template data may include its Git repositories, build job configurations,
deployment configurations, links, wikis, and announcements. For example, if a project
template hosts an application in its Git repositories; information on how to use the
application in its wiki pages; build configuration in its jobs; and Oracle Cloud
deployment target details in its deployment configurations, then the data of the project
template is copied to the new project. Members of the new project can use the
application, run builds of pre-configured jobs, and deploy build artifacts to Oracle
Cloud using pre-configured deployment configurations without making any changes to
the code or any of its configurations.

When you define a project template, you define its visibility (who can use the project
template), configure rules (what data can be copied from the project template), and
use variables (customize actions based on user input when the data is copied).

After a project is created using a template, any updates made to the template project
aren’t reflected in the created project.

Visibility, Rules, and Variables
While defining a project template, you define its visibility, rules, and variables.

Visibility
Visibility defines who can access the template.

Type Description

Draft The project template is under design and isn’t available in the
Templates page of the Create Project wizard. No user can copy data
from a draft template.

Private The project template is published and available to organization’s users,
but isn’t visible by name to all. It’s visible by name to members of the
project template.

A non-member user can access the template using the project
template’s private key and can copy data.

Shared The project template is published and is available to all users of the
organization.

Any user can copy data from this project.

Rules
Rules define the data to be copied to the new project.

When you define a project as a project template, all rules are enabled by default.
Some rules can't be edited and some rules can’t be added more than once.

Chapter 9
Manage the Project

9-4

Set this rule ... To copy: Can this rule be
edited?

Can this rule be
added more than
once?

Build Jobs Build jobs of the
project template to the
new project.

No No

Wiki Content Wiki pages of the
project template to the
new project.

No No

Links Link rules of the
project template to the
new project.

No No

Git Repository Specified Git
repositories along with
its branches to the
new project.

Yes Yes

External Git
Repository

Specified external Git
repository along with
its branches to the
new project.

Yes Yes

Deployments Oracle Java Cloud
Service - SaaS
Extension deployment
configurations of the
project template to the
new project.

Other deployment
configurations are not
copied.

No No

Announcements Announcements of the
project template to the
new project.

No No

Variables
Variables define user input. Based on the input, you can configure the template to
change the action or properties of data that’s copied to the new project.

Use this variable
type:

To accept a:

Boolean Boolean string value (such as True-False, Yes-No, or any string
values).

Choice Value from a list of values configured by project owners.

String String value.

URL URL value.

Define and Manage a Project Template
You can define a project template from the Project Administration page.

Chapter 9
Manage the Project

9-5

1. In the navigation bar, click Project Administration .

2. Click Properties.

Action How To

Define a project
template

On the Properties page, in the Template section, click Define
Template.

The project is now defined as a template project in the Draft state with
the default rules.

Edit a project template When you edit a project template, you edit the project template’s title,
description, provide an icon, add variables, and define rules.

On the Properties page, in the Template section, click Edit and set the
properties.

To change the name and description of the project's template, enter a
new name in Name and description in Description. To specify an icon
for the template, in Icon, click Change, browse and upload an image
of size 48x48 pixels. The name, description, and the icon are displayed
on the Templates page in the New Project wizard.

In the Variables and Rules sections, specify the variables and rules.
Click Save when you're done.

Delete a project
template

When you delete a project template, you delete the template metadata
(rules and variables). The project itself isn’t deleted.

On the Properties page, in the Template section, click Delete
Template.

Define a Private Project Template
You can define a private project template if you don’t want all users of the organization
to copy data from the project. Private project templates aren’t listed by name in the
Templates page of the New Project wizard unless you’re a member of the project
template. Non-members can use a private project template only if they have the
private key of the project template.

1. In the navigation bar, click Project Administration .

2. Click Properties.

3. In the Template section, click Define Template.

The project is now defined to be used as a template with the default rules and
properties.

4. Click Edit.

5. On the Template page, in the Visibility section, select Private.

6. For the Private Key field, click Show. Note down the key value.

7. Update settings, add variables, and define rules, as desired.

8. Click Save.

Share the private key with users whom you want to use the project template and copy
the project data.
To generate a new private key, edit the project template, click Show, and then click
Regenerate. You may want to do this if you don't want users who already have the old
key value to copy the project data from the template.

Chapter 9
Manage the Project

9-6

Define Project Template Rules
Rules define the artifacts to copy from the template project to the new project. By
default, all rules are enabled to copy all project artifacts. However, you can edit or
remove a rule, or add it again. Most rules can’t be edited and can be added only once,
but you can edit a Git repository rule and add it more than once.

You can configure the rules from the Rules section of the Template page. To open the
Template page, on the project’s Properties page, in the Template section, click Edit.

Action How To

Remove a rule Click Remove .

Add a rule From the Add Rule drop-down list, select the Git Repository rule.

Add or Edit a Git Repository Rule
By default, all hosted and external Git repositories rules are enabled.

You can edit the default rules and add new Git Repository rules if you added Git
repositories to the project after the template was defined. You can also add a rule to
make a copy of an existing Git repository on the new project that uses the template. If
you don't want a Git repository to be included in the template, remove its rule.

Chapter 9
Manage the Project

9-7

Action How To

Add or edit a hosted
Git repository rule

1. On the Properties page, in the Template section, click Edit.

2. In the Rules section, to add the rule, click Add Rule. From the
menu, select Git Repository.

To edit an existing rule, to the right side of the Git repository rule,

click Edit .

3. In Source Repository, specify the name of the Git repository to
be copied.

4. In Repository Name, specify the new name of the Git repository.
A .git extension is automatically added if you missed it.

To use the new project name as the name of the Git repository,
select the Use target project name check box.

5. If necessary, in Replacements, define file name replacements of
the Git repository matching the specified criterion. This is useful if
you want to make a copy of an existing Git repository.

To add a new replacement rule, click Add new replacement.

a. From the In drop-down list, select the files where the
replacements apply.

You can specify all files, files matching an Ant pattern, or a
specific file.

b. In Replace, specify the search term.

c. In With, specify the replacement term.

You can select a pre-defined variable such as Project Id,
Project Name, Project URL Name, or Repository Name. To
use a variable defined in the Variables section, select
Variable and then select the variable name.

d. Click Save .

When you create a project using this template, the project creation
wizard searches through the specified files in the Git repository
and replaces the term with the specified value of the selected
variables.

6. Click Save to save the Git repository rule.

7. Click Save to save the project template.

Chapter 9
Manage the Project

9-8

Action How To

Add or edit an external
Git repository rule

1. On the Properties page, in the Template section, click Edit.

2. In the Rules section, to add the rule, click Add Rule. From the
menu, select External Repository.

To edit an existing rule, to the right side of the Git repository rule,

click Edit .

3. In Repository URL, enter the external Git repository URL. To
update a rule, enter a new URL.

4. In Username and Password, enter credentials to access the
external Git repository.

For public Git repositories, don’t fill these fields.

5. In Repository Name, specify the new name of the Git repository.
A .git extension is automatically added if you missed it.

To use the new project name as the name of the Git repository,
select the Use target project name check box.

6. Click Save .

7. Click Save.

Use Variables
You can add or edit variables from the Variables section on the Template page.

Action How To

Add a variable 1. In the Variable section, from the Add Variable menu, select the
variable type.

2. Fill in the fields of the variable and click Save .

Edit a variable
1. In the Variable section, click Edit .

2. Update the fields of the variable and click Save .

Delete a variable 1. In the Variable section, to the right of the variable, click Remove

.

Manage Project Announcements
Project announcements are messages available on the Project Home page above the
Recent Activity feed.

Example:

Chapter 9
Manage the Project

9-9

To create an announcement, follow these steps:

1. In the navigation bar, click Project Administration .

2. Click Announcements.

Action How To

Create an
announcement

1. On the Announcements page, click + New Announcement.

2. In Name and Contents, enter name and announcement’s text.

You can use the project’s wiki markup to format the text.

3. Upload an icon, if necessary. The icon's size must be 48x48
pixels.

4. Click Done.

Copy an
announcement

Instead of creating an announcement, you can copy the contents and
icon of an existing announcement, and edit it.

1. In the Announcements list, select the announcement to copy.

2. Click Copy Announcement.

3. Edit the details in the Create Announcement page.

4. Click Done.

View or edit an
announcement

1. In the Announcements list, select the announcement.

2. In the Announcement section to the right of the list, view or edit
the announcement’s details.

Any changes made to the fields are saved immediately when the focus
moves out of the field.

Deactivate or activate
an announcement

If you don’t want to display an announcement and don’t want to delete
it either, you can deactivate it. Deactivated announcements aren’t
visible on the Project Home page. Later, if you want, you can activate
it and make it visible.

1. In the Announcements list, select the announcement.

2. Click Deactivate or Activate.

A deactivated announcement appears greyed in the
Announcements list.

Chapter 9
Manage the Project

9-10

Action How To

Delete an
announcement

1. In the Announcements list, select the announcement.

2. Click Delete.

3. In the Delete Announcement dialog box, click Yes to confirm.

Manage Project Tags
A project tag is a keyword that you can use to categorize an artifact, such as an issue
or a merge request. You can use the tags to search for artifacts. By default, three tags
(Plan, Release, and Epic) are available in a project.

1. In the navigation bar, click Project Administration .

2. Click Tags.

Action How To

Create a project tag 1. In the Tags page, click New Tag.

2. In Tag Name, enter a unique name and press the Enter key.

The tag name must contain only letters and numbers.

Rename a tag 1. In the Tags page, select the tag.

2. Type a new name and press the Enter key.

Delete a tag You can’t delete a tag if artifacts refer to it. First, remove all artifacts
that refer to the tag or remove the tag from those artifacts, and then
remove the tag.

In the Tags page, to the right side of the tag name, click Delete

View a Project’s Usage Metrics
When you subscribe to DevCS, you’re entitled to some storage space on Oracle
Cloud. To learn about your storage entitlement, see the Pricing tab on https://
cloud.oracle.com/developer_service.

You can find out the disk usage metrics of your project’s components, such as Git
repositories, wikis, and issues.

1. In the navigation bar, click Project Administration .

2. Click Usage Metrics.

Manage Repositories
You can manage the Git, Maven, and linked Docker registries from the Project
Administration: Repositories page.

See these links to find out how to manage repositories.

• Create and Manage Git Repositories

Chapter 9
Manage the Project

9-11

• Maven Repository Administration

• Link an External Docker Registry to Your Project

Display RSS/ATOM Feeds
Some websites use ATOM and RSS feeds to publish news feeds. You can subscribe
to the RSS/ATOM feeds and configure your project to display them in the Recent
Activities feed of the Project Home page. All project members can see the feed. You
can add any RSS/ATOM feed including Oracle approved RSS Feeds, News, Site
monitors, and Jenkins or Hudson servers.

To configure RSS/ATOM feeds, follow these steps:

1. In the navigation bar, click Project Administration .

2. Click RSS/ATOM Feeds.

Action How To

Create an RSS/ATOM
Feeds handler

1. On the RSS/ATOM Feeds page, click + New Handler.

2. In Name, enter the name of the handler.

3. In URL, enter the URL of the feed.

4. From Display Type, select the feed’s display type.

5. In Fetch Interval, enter the feed’s fetch interval. By default, the
interval is set to 1 day.

For the fetch interval period, the feed results are cached. All
requests during the interval period retrieve the cached results.
When the time expires the cache is cleared. The next request
would check for the cached results and not find them and proceed
to fetch a new copy to be cached.

6. Click Done.

Test a feed handler 1. On the RSS/ATOM Feeds page, select the feed.

2. Click Test .

3. Click Done.

If the test is successful, the status icon changes from Untested to

Tested . If the test fails, the status icon changes to Failed .

View logs 1. On the RSS/ATOM Feeds page, select the feed.

2. Click Logs.

3. Click Done.

In the Logs page, all Request and Response logs of each test are
available. Select the date-time stamp in the left list of the test to view
its logs.

Edit a feed’s handler 1. On the RSS/ATOM Feeds page, select the feed.

2. Edit the fields on the left.

3. Click Done.

Chapter 9
Manage the Project

9-12

Action How To

Deactivate or activate
a handler

1. On the RSS/ATOM Feeds page, select the feed.

2. Click Deactivate. The icon of the feeds handler is greyed out and
the Active check box is deselected.

To activate the feeds handler, click Activate or select the Active
check box.

3. Click Done.

Delete a handler 1. On the RSS/ATOM Feeds page, select the feed.

2. Click Remove or .

3. In the Remove ATOM/RSS Handler dialog box, click Yes to
confirm.

4. Click Done.

Configure Link Rules
In a project, you can define rules to convert plain text to URL links automatically when
the text is entered in commit comments and merge request comments. For example,
when you enter an email address or a URL in a merge request comment, it’s
automatically converted to a link.

To configure link rules, follow these steps:

1. In the navigation bar, click Project Administration .

2. Click Links.

From the Links page, you can create and manage link rules that convert plain text to
URL links automatically. You can use Regular Expressions, also called as RegExp, to
define the link rules. Some pre-defined built-in link rules are available on the Links
page. To create a custom rule, you can either copy an existing link rule or create a
blank rule. To find more about RegExp, see http://www.regular-expressions.info.

This illustration shows an example of a custom link rule.

Chapter 9
Manage the Project

9-13

This illustration shows an example of the link in a merge request comment.

Chapter 9
Manage the Project

9-14

Action How To

Create a link rule 1. On the Links page, click + Create Link.

2. In Name, enter a name.

3. In Pattern, enter the RegExp link rule pattern.

4. In URL, enter the link URL.
You can also use placeholders:
• Use {project} to insert the project ID.
• Use {organization} to insert the organization ID.
• Use $& to insert the entire matching text, or use $1, $2, $3,

and so on to insert text of matched groups. For more
information, see http://www.regular-
expressions.info/brackets.html.

5. To test the rule, expand Test and Test Value, enter a test value.
Verify the result link in Test Result.

6. Click Done.

Copy a link rule 1. On the Links page, click + Copy Link.

2. On the Create Link page, edit the name, RegExp link rule pattern,
and the URL of the link with parameters.
You can also use placeholders:
• Use {project} to insert the project ID.
• Use {organization} to insert the organization ID.
• Use $& to insert the entire matching text, or use $1, $2, $3,

and so on to insert text of matched groups. For more
information, see http://www.regular-
expressions.info/brackets.html.

3. To test the rule, expand Test and Test Value, enter a test value.
Verify the result link in Test Result.

4. To test the rule, in the Test section, click Test Value. Enter a
value and verify its result in Test Result.

5. Click Done.

Edit a link rule You can’t edit a built-in link rule. You can create a copy of built-in rule
and edit it, and if required, disable the original pre-configured rule.

On the Links page, in the link rule list on the left, select the rule to edit
its details on the right.

Activate or deactivate
a link rule

If deactivated, the text that matches the rule is not converted to a link.

On the Links page, in the link rule list on the left, select the rule. Click
Activate or Deactivate. You can also select or deselect the Active
check box.

Delete a link rule You can’t delete a built-in rule.

On the Links page, in the link rule list on the left, select the rule. On the
right side of the page, click Delete.

Chapter 9
Manage the Project

9-15

10
Use IDEs

This chapter provides documentation about Oracle Developer Cloud Service
integration with Eclipse IDE, Oracle JDeveloper, and NetBeans IDE.

Using the Oracle Developer Cloud Service integration, you can access and update
application source code files, manage issues, and monitor builds of your applications
from the IDEs.

Eclipse IDE
You can use the Eclipse IDE and the Oracle Enterprise Pack for Eclipse (OEPE) to
access Oracle Developer Cloud Service (DevCS) projects, its Git repositories, issues,
and builds.

You use the Oracle Cloud view of the Eclipse IDE to access projects. The IDE uses
Mylyn (a plugin) to access issues and EGit to access Git repositories.

Sign In to DevCS from the Eclipse IDE
To access DevCS from Eclipse IDE, set up the IDE and create an Oracle Cloud
connection.

Set Up the Eclipse IDE
1. In the Eclipse IDE’s installation directory, open eclipse.ini in a text editor.

2. Add these code lines at the end of the file.

-DOracle.Cloud.Debug=true
-DOracle.Cloud.Dcs.Debug=true

3. Save the file.

Connect to DevCS from the Eclipse IDE
1. Open the Eclipse IDE.

2. From the Window menu, select Show View and then select Oracle Cloud.

If the Oracle Cloud option doesn’t appear in the Show View menu, click Other. In
the Show View dialog box, expand Oracle Cloud and select Oracle Cloud.

10-1

3. If you’re connecting to DevCS for the first time, in the Oracle Cloud view, click
Connect or New Cloud Connection .

4. In the Oracle Cloud Connection dialog box, select your account type.

If your account is a traditional account, select Traditional Cloud Account. If
you’re using an IDCS account, select Developer Cloud Service.

5. If you selected Traditional Cloud Account, enter your identity domain.

If you selected Developer Cloud Service, enter the DevCS URL in the https://
<hostname>.oraclecloud.com/<org-name>/ format.

6. In Username and Password, enter your Oracle Cloud user name and password.

Chapter 10
Eclipse IDE

10-2

7. Click Finish.

After the connection is successful, expand the identity domain node in the Oracle
Cloud view, and then expand the Developer node to view projects that are assigned
to you.

Tip:

The Oracle Cloud view is visible in the Java and Java EE perspective, by
default. To open the Java EE perspective, from the Window menu, select
Perspective, then Open Perspective, and then Java or Java EE.

Chapter 10
Eclipse IDE

10-3

Use the Oracle Cloud View
The Oracle Cloud view shows all projects of which you’re a member and provides links
to access DevCS features. Some of these links open the DevCS web page, while
others open the native IDE interface.

You can perform these actions from the Oracle Cloud view.

Action How To

Open the Oracle
Cloud portal

Select the identity domain node, right-click, and select Open Cloud
Portal.

Open the Identity
Manager console

Select the identity domain node, right-click, and select Open IDM
Console.

Edit the connection’s
properties

Select the identity domain node, right-click, and select Properties.

Open the DevCS page
in a web browser

Select the Developer node, right-click, and select Open Service
Console.

View all project By default, the Oracle Cloud view shows the projects which you’re a
member of.

To see all projects, select the Developer node, right-click, and select
Show All Projects.

Chapter 10
Eclipse IDE

10-4

Action How To

Open a project Expand the Developer node and double-click the project.

• To view Git repositories of the project, expand or double-click the
Code node.

• To view issues of the project, expand or double-click the Issues
node.

• To view builds of the project, expand or double-click the Build
node.

Open a DevCS Project as an Eclipse IDE Project
You can open a DevCS project in the Eclipse IDE and add or edit the files of the
project’s Git repositories from the IDE. To access files of a DevCS project Git
repository, you must clone the repository to the IDE workspace.

1. In the Oracle Cloud view, expand the Developer node and double-click the project
name.

You can also right-click the project and select Activate.

2. Expand the Code node.

3. Double-click the Git repository of the DevCS project that you want to clone. You
can also right-click the Git repository and select Activate.

Activating a Git repository clones it to the IDE’s workspace. If the project Git
repository contains more than one branch, the Clone Git Repository dialog box
opens where you can select branches to clone. By default, all branches are
selected. Deselect the check box of the branch not to clone. Select the initial
branch in Initial Branch and click OK.

After the repository is cloned, expand the Git repository in the Oracle Cloud view
to view its branches, references, remote repository names, and tags.

The cloned Git repositories are also visible in the Git Repositories view of the IDE.
To open it, from the Window menu, select Show View, and then select Git
Repositories.

4. Right-click the Git repository and select Import Projects.

5. In the Import Projects page of the Import Projects from File System or Archive,
verify the details, and click Finish.

After cloning the repository, Eclipse IDE displays the project in the Project Explorer
view.

Upload an Eclipse IDE Project to DevCS
You can upload local Eclipse project application source code files to an empty Git
repository of a DevCS project.

Before you proceed, create an empty Git repository in the project where you want to
upload files. You must be a project owner to create the Git repository.

Chapter 10
Eclipse IDE

10-5

Action How To

Upload the Eclipse
IDE project using
drag-and-drop action

1. In the Eclipse IDE, create or open the IDE project.

2. In the Oracle Cloud view, open the DevCS project and expand the
Code node.

3. From the Project Explorer view, drag the IDE project and drop it to
the empty Git repository node.

4. In the Synchronize dialog box, verify the details, select any
additional options, and click Finish.

Wait for some time to upload the files. Eclipse IDE adds all files of the
IDE project to the Git repository index, commits all files to branches,
and pushes the commits to the DevCS project’s Git repository. Open
the Git page of the DevCS project in the web browser and verify the
files.

Use Git actions to
upload the Eclipse
IDE project

1. In the Eclipse IDE, open the project in the Oracle Cloud view.

2. Expand the Code node.

3. Select the empty Git repository to clone, right-click, and select
Activate.

4. Create or open the IDE project that you want to export.

5. Select the project and then from the Project menu, select Share
Project.
You can also right-click the project, select Team, and then select
Share Project.

6. In Project Explorer view, select the project, right-click, select
Team, and then select Commit.

7. In the Git Staging view, click Add All to add all files to the
stage index, enter a commit description, and click Commit and
Push.

8. In the Push Results dialog box, click Close.

Open the Git page of the DevCS project in the web browser and verify
the files.

Upload a project that’s
saved in a local Git
repository to the
DevCS project

1. In the Eclipse IDE, open the project in the Oracle Cloud view.

2. Select the IDE project, right-click, select Team, then select
Remote, and then Push.

3. In the Push Branch dialog box, enter the DevCS project’s empty
Git repository’s URL.

4. In Authentication, enter your credentials, if necessary.

5. Click Next.

6. Follow the steps of the wizard, verify the details, and click Finish.

Open the Git page of the DevCS project in the web browser and verify
the files.

Use Git in the Eclipse IDE
Using Git tools in the Eclipse IDE, you can create and merge branches, commit files,
and push commits to the project Git repository.

Chapter 10
Eclipse IDE

10-6

Eclipse IDE uses EGit to manage Git repositories. To know more about EGit, see
http://eclipse.org/egit/ and the EGit documentation at http://
wiki.eclipse.org/EGit/User_Guide.

You can view and manage Git repositories from the Oracle Cloud view and the Git
Repositories view (Window > Show View > Other). The Git Repositories view shows
activated repositories only.

This table describes some common actions you can perform to manage Git
repositories.

Action How To

View Git repositories
of a project

In the Oracle Cloud view, expand the Code node.

Access branches of a
project Git repository

In the Oracle Cloud view, double-click the Git repository and expand
the Branches node to see local and remote branches.

Checkout a branch Right-click the Branches node, select Switch To, and then select the
branch name.

Create a branch Right-click the Branches node, select Switch To, and then select
New Branch.

In the Create Branch dialog box, enter a branch name, configure other
options, and click Finish.

Add a file to Git index In the File Explorer, right-click the file, select Team, and the Add to
Index.

Commit files Right-click the Branches node and select Commit. In the Git to Stage
view, verify files and stage them, enter a commit message, and click
Commit.

Push commits to the
project’s Git repository

Right-click the repository and select Push or Push branch. In the
Push dialog box, verify the details, specify any additional configuration,
and submit.

Manage DevCS Issues in the Eclipse IDE
In the Eclipse IDE, you can manage DevCS issues, create issues, update issues, and
create a search query. Eclipse uses Mylyn, a built-in plugin, to manage issues.

To know more about Mylyn, see https://wiki.eclipse.org/Mylyn/User_Guide.

To view and update DevCS issues of a project, you must activate the Tasks node.
You can double-click the Tasks node, or right-click and select Activate.

This table describes common actions you can perform to manage issues from the
Eclipse IDE.

Action How To

View issue filters of
the project

Expand the Tasks node. By default, the Tasks node displays issues of
these filters:

• Mine: Lists all issues assigned to you
• Open: Lists all open issues
• Recent: Lists all recently changed issues
• Related: Lists all issues related to you

See issues of a query Expand the Tasks node and then expand the issue query.

Chapter 10
Eclipse IDE

10-7

Action How To

Open and update an
issue

Expand the Tasks node, expand the query, and double-click the issue.
The issue’s details display in a new tab of the IDE. Update the issue’s
properties and click Submit.

Create an issue Right-click the Issues node and select New Issue. Update the details
and click Submit. The issue is automatically synchronized with the
DevCS project is available to other project members.

Create a query Right-click the Issues node and select New Query. Enter the search
criteria and click Finish. Issue matching the search criteria display
under the new query node in the Oracle Cloud view.

Synchronize a query To manually synchronize a query, get new issues or updates from
DevCS, or send issue updates from the IDE, expand the Tasks node,
select the query, right-click, and select Synchronize.

Associate an Issue with a Commit
When you commit files, you can associate an issue with a commit. To associate the
issue, you must activate it first.

Eclipse IDE provides task integration with Mylyn. Activating an issue enables Mylyn to
track files related to the current issue. Mylyn automatically hides files that aren’t
related to the active issue. When you commit changes to the Git repository, the
commit message automatically references the active issue’s ID. This effectively
creates a link between the code commit and the issue, allowing for easy traceability.
Links between source commits and issues are also reflected in DevCS.

1. Expand the Tasks node.

2. Double-click the issue you want to associate with the commit and update it.

3. In the top-left corner of the issue tab, click Activate .

4. Commit your files to the Git repository.

The issue’s name and its URL are automatically included in Commit Message.

After a successful commit, open the issue in DevCS. The SHA-1 checksum hash of
the commit is available in Commits under Associations.

Monitor a Project’s Builds in Eclipse IDE
You can view your project build jobs from the Build node in the Oracle Cloud view. You
can’t create, edit, or delete a job from the Oracle Cloud view.

To view build jobs of a project, you must activate the Build node. You can double-click
the Build node, or right-click and select Activate. When activated, the Build node
shows all jobs and builds of your project. There are no filters available.

This table describes common actions you can perform to manage builds from the
Eclipse IDE.

Action How To

View jobs of the
project

Expand the Build node.

Chapter 10
Eclipse IDE

10-8

Action How To

View builds of a job Expand the Build node and then expand the job. The job node
displays its builds along with their status.

See a build’s details Expand the Build node, expand the job, select the build, right-click,
and select Open. The build’s details along with its status, artifacts, test
results, console, and SCM changes log display in a new tab of the IDE.

Run a build of a job Expand the Build node, select the job, right-click, and select Run
build. You may want to refresh the job in the Build node to see the
running build. Right-click the job node and select Refresh.

You can also open a build and click Run Build .

Abort a running build Double-click the build node to open its details in the tab and click
Abort Build .

Open the Build page
in a web browser

Right-click the Build node and select Open in Browser.

NetBeans IDE
NetBeans IDE is closely integrated with Oracle Developer Cloud Service (DevCS).
You can create and open DevCS projects in NetBeans IDE, update files and commit
them to the Git repository, create and update issues, and manage project builds.

Sign In to DevCS from the NetBeans IDE
You use the Team window to sign in to DevCS.

1. Open the NetBeans IDE.

2. From the Team menu, select Team Server, then Add Team Server.

3. In the New Team Server dialog box, enter a unique name in Name and the DevCS
URL in URL.

4. Click OK.

5. From the Window menu, select Team.

Chapter 10
NetBeans IDE

10-9

6. In the Team window, click Click here to select project to see the list of team
servers. Click Login under the DevCS team server.

7. In the Login to Team Server dialog box, enter the user name and password, and
click Login.

Use the Team Server
From the Team tab, you can access DevCS projects, create a project, search a
project, access its Git repositories, issues, and builds.

Using the Configure menu, you can create or open a project, or logout of DevCS.

Action How To

Open the project’s
dashboard

The project’s dashboard lists the recent activities and builds of the
project. To open the Dashboard, in the Team tab, click Dashboard.

Open the project in
the web browser

In the Team tab, click Project Web.

Create a DevCS
project

Click Configure and select New Project. Follow the steps of the
wizard to create the project.

Open a project Click Configure and select Open Project. To switch to another
project from an open project, you can also click the project name and
select another project’s name from the list.

By default, NetBeans IDE synchronizes information from all recently selected or
opened projects. If you want to synchronize information for the selected project, click

Chapter 10
NetBeans IDE

10-10

the Configure , select Auto Synchronize Services, and then Selected Project
Only.

Create a DevCS Project in NetBeans IDE
You can create a DevCS project in NetBeans IDE and then push it to Oracle Cloud.
You can also push an existing NetBeans IDE project to an empty repository of a
DevCS project Git repository.

1. Open the NetBeans IDE.

2. From the Team menu, select Team Server, select DevCS team server, and then
click New Project.

You may also select New Project from the DevCS team server Configure
menu.

3. In the Name and License page of the New Project wizard, perform these steps:

a. In Project Name, enter a unique project name.

b. In Description, enter a brief description of the project.

c. In Security, select the project's privacy.

d. In Wiki Markup, select the wiki markup language.

4. Click Next.

5. In the Source Code and Issues page of the New Project wizard, specify the
directory of source code files.

If you haven’t created an IDE project, specify the directory on your computer to
use as project’s Git repository. In Local Repository Folder, click Browse and
select the local directory.

If you’ve an IDE project that you want to upload to the DevCS project, specify the
IDE project’s directory. In Folders or Projects, click Add Project, browse, select
the project directory, and click Open Project. If you don’t want to add an existing
project or directory, leave the Folders or Projects field blank.

6. Click Next.

7. In the Summary page, review the information and click Finish.

8. After the project is successfully created in DevCS, a dialog box displays a
message showing the local repository location. Click Close to close the dialog
box.

Open a DevCS Project in NetBeans IDE
1. Open the project in the Team window.

To search for a project, from the Team menu, select Team Server, select the
DevCS server, and then select Open Project. You can also click Configure and
select Open Project.

2. In the open project, expand Sources and click the get link of the Git repository
you want to clone.

3. In the Get Sources from Team Server dialog box, verify the Git repository URL and
click Get From Developer Server.

Chapter 10
NetBeans IDE

10-11

4. In the Remote Repository page of the Clone Repository wizard, verify the
repository URL, and click Next.

The user name and password are automatically picked from the Team Server
you’re logged into and the wizard automatically moves to the Remote Branches
page. To verify the details, click Back.

5. If required, in the Remote Branches page of the Clone Repository wizard, select
branches to clone and click Next.

6. In the Destination Directory page of the Clone Repository wizard, perform these
steps:

a. In Parent Directory, specify the directory path.

b. In the Clone Name, enter the name of the cloned repository.

c. In Checkout Branch, select the default branch to checkout.

d. In Remote Name, if necessary, enter or update the remote name of the
repository.

e. If you want NetBeans IDE to scan the cloned project for any NetBeans IDE
metadata, select the Scan for NetBeans Projects after Clone check box. If
metadata is found, the project automatically opens in the Projects window of
NetBeans IDE.

7. Click Finish.

All cloned Git repositories are available in the Git Repository Browser. To open the Git
Repository browser, from the Team menu, select Git, then Repository Browser.

Use Git in NetBeans IDE
Using the Team menu or the Git Repositories Browser, you can commit files, create
and merge branches, and push changes to the hosted Git repository.

To know more information about the Git commands and actions in NetBeans IDE,
refer to the NetBeans IDE Git documentation at https://netbeans.org/kb/docs/ide/
git.html.

This table describes some common actions you can perform to manage Git
repositories from the NetBeans IDE.

Action How To

View Git repositories
of a project

In the Team tab, expand the Sources node.

Access branches of a
cloned project Git
repository

From the Team menu, select Repository, and then select Repository
Browser. Expand the repository node and then the Branches node to
see local and remote branches.

Checkout a branch Expand the Branches node, right-click the branch, and select
Checkout Revision.

Create a branch Expand the Branches node, right-click the base branch, and select
Create Branch. In the Create Branch dialog box, enter a branch
name, configure other options, and click Create.

Add a file to index In the Files tab, select the file. From the Team menu, select Add.

Chapter 10
NetBeans IDE

10-12

Action How To

Commit files Select the IDE project in the Files tab and then from the Team menu,
select Commit. In the Commit dialog box, enter a message, verify the
commit files, author and commiter, and then click Commit.

Push commits to the
project’s Git repository

Select the IDE project in the Files tab. From the Team menu, select
Remote, and then select Push.

Manage DevCS Issues in the NetBeans IDE
In the NetBeans IDE, you can create and update DevCS issues and search queries.

NetBeans IDE displays tasks in the Tasks tab. To open the tab, from the Window
menu, select Tasks.

This table describes common actions you can perform to manage issues from the
NetBeans IDE.

Chapter 10
NetBeans IDE

10-13

Action How To

View issues of the
project

In the Tasks tab, expand Repositories. In the project name’s node,
expand the filter to view its issues. By default, the Tasks tab displays
issues of these filters:

• All tasks
• Assigned to me
• Open tasks
• Related to me
• User-defined custom queries

Open and update an
issue

In the Tasks tab, double-click the issue. The issue’s details display in a
new tab of the IDE. Update the issue’s properties and click Submit.

Create an issue In the Tasks tab, select the project node, right-click, and select Create
Task. Enter the details and click Submit. The issue is automatically
synchronized with the DevCS project is available to other project
members.

Create a query In the Tasks tab, select the project node, right-click, and select Create
Query. In the Find Tasks tab, enter the search criteria and click Save
Query.

Associate an Issue with a Commit
When you commit files, you can associate an issue with a commit.

1. In the Tasks tab, open and update the issue that you want to associate with the
commit.

2. From the Team menu, select Commit.

3. In the Commit dialog box, enter the commit’s message and verify the files.

4. In the Update Task section, select the issue from the Task list.

5. Select the desired resolution check boxes and the commit option.

6. Click Commit.

Open the issue in DevCS and verify the SHA-1 checksum hash of the commit is now
available in Commits under Associations.

Monitor a Project’s Builds in NetBeans IDE
You can view your project build jobs from the Build node in the Team tab. You can’t
create, edit, or delete a job from the Team tab.

To view a particular build's details, double-click the job name in the Team tab to view
its builds in the Services tab. You can also open the Services tab from the Window
menu.

Chapter 10
NetBeans IDE

10-14

This table describes some common actions you can perform to manage builds from
the Services tab of the NetBeans IDE.

Action How To

View jobs of the
project

In the Services tab, expand the Hudson Builders node, and then
expand the project node.

View builds of a job Expand the job. The job node displays its builds along with their status.

See a build’s artifacts
and console log

Expand the build node to view its artifacts. To view the console log,
right-click the build node, and select Show Console. To see the SCM
log, select Show Changes.

Run a build of a job Select the job, right-click, and select Start Job.

JDeveloper
Oracle JDeveloper enables you to develop applications and commit the files to the
Oracle Developer Cloud Service Git repository. JDeveloper also uses the Team Server
plugin to access DevCS projects. The plugin is installed by default in JDeveloper.

Sign In to DevCS from JDeveloper
You use the Team window to sign in to DevCS.

1. Open JDeveloper.

2. From the Team menu, select Team Server, then Add Team Server.

3. In the New Team Server dialog box, enter a unique name in Name and the DevCS
URL in URL.

Chapter 10
JDeveloper

10-15

4. Click OK.

5. From the Window menu, select Team.

6. In the Team window, click Click here to select project to see the list of team
servers. Click Login under the DevCS team server.

7. In the Login to Team Server dialog box, enter the user name and password, and
click Login.

Use the Team Server
From the Team tab, you can access DevCS projects, create a project, search a
project, access its Git repositories, issues, and builds.

Using the Configure menu, you can create or open a project, or logout of DevCS.

Chapter 10
JDeveloper

10-16

Action How To

Open the project’s
dashboard

The project’s dashboard lists the recent activities and builds of the
project. To open the Dashboard, in the Team tab, click Dashboard.

Open the project in
the web browser

In the Team tab, click Project Web.

Create a DevCS
project

Click Configure and select New Project. Follow the steps of the
wizard to create the project.

Open a project Click Configure and select Open Project. To switch to another
project from an open project, you can also click the project name and
select another project’s name from the list.

Create a DevCS Project in JDeveloper
You can create a DevCS project in JDeveloper and then push it to Oracle Cloud. You
can also push an existing JDeveloper project to an empty repository of a DevCS
project Git repository.

1. Open JDeveloper.

2. From the Team menu, select Team Server, select DevCS team server, and then
select New Project.

You may also select New Project from the DevCS team server Configure
menu.

3. In the Name and License page of the New Project wizard, perform these steps:

a. In Project Name, enter a unique project name.

b. In Description, enter a brief description of the project.

c. In Security, select the project's privacy.

d. In Wiki Markup, select the wiki markup language.

4. Click Next.

5. In the Source Code and Issues page of the New Project wizard, specify the
directory of source code files.

If you haven’t created an IDE project, specify the directory on your computer to
use as project’s Git repository. In Local Repository Folder, click Browse and
select the local directory.

If you’ve an IDE project that you want to upload to the DevCS project, specify the
IDE project’s directory. In Folders or Projects, click Add Project, browse, select
the project directory, and click Open Project. If you don’t want to add an existing
project or directory, leave the Folders or Projects field empty.

6. Click Next.

7. In the Summary page, review the information and click Finish.

8. After the project is successfully created in DevCS, a dialog box displays a
message showing the local repository location. Click Close to close the dialog
box.

Chapter 10
JDeveloper

10-17

Open a DevCS Project in JDeveloper
You can open an DevCS project in JDeveloper and update its source code files.

1. Open the project in the Team window.

To search for a project, from the Team menu, select Team Server, select the
DevCS server, and then select Open Project. You can also click Configure and
select Open Project.

2. In the open project, expand Sources and click the get link of the Git repository
you want to clone.

3. In the Get Sources from Team Server dialog box, verify the Git repository URL and
click Get From Developer Server.

4. In the Remote Repository page of the Clone Repository wizard, verify the
repository URL, and click Next.

The user name and password are automatically picked from the Team Server
you’re logged into and the wizard automatically moves to the Remote Branches
page. To verify the details, click Back.

5. If required, in the Remote Branches page of the Clone Repository wizard, select
branches to clone and click Next.

6. In the Destination Directory page of the Clone Repository wizard, perform these
steps:

a. In Parent Directory , specify the directory path .

b. In the Clone Name , enter the name of the cloned repository.

c. In Checkout Branch, select the default branch to checkout.

7. Click Finish.

Use Git in JDeveloper
Using the Team menu or the Versions tab, you can commit files, create and merge
branches, and push changes to the hosted Git repository.

For more information about Git actions in JDeveloper, read the Versioning Applications
with Source Control chapter of Oracle Fusion Middleware Developing Applications with
Oracle JDeveloper on http://docs.oracle.com/middleware.

Watch a short video to learn more about using Git in Oracle JDeveloper.

Video
This table describes some common actions you can perform to manage Git
repositories from the NetBeans IDE.

Action How To

View Git repositories
of a project

In the Team tab, expand the Sources node.

Access branches of a
cloned project Git
repository

From the Team menu, select Versions. Expand the repository node
and then the Branches node to see local and remote branches.

Chapter 10
JDeveloper

10-18

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10150

Action How To

Checkout a branch Expand the Branches node, right-click the branch, and select
Checkout.

Create a branch Expand the Branches node, right-click the base branch, and select
Create Branch. In the Create Branch dialog box, enter a branch
name, configure other options, and click OK.

Add a file to index In the Applications tab, select the file. From the Team menu, select
Git, and then select Add.

Commit files Select the IDE project in the Applications tab and then from the Team
menu, select Git, and then select Commit. In the Commit dialog box,
enter a message, verify the commit files, author and commiter, and
then click Commit.

Push commits to the
project’s Git repository

Select the IDE project in the Applications tab. From the Team menu,
select Git, and then select Push.

You can download the Git extension from the Help menu. Open the Help menu and
select Check for Updates. See the JDeveloper documentation for more information.

Manage DevCS Issues in JDeveloper
In JDeveloper, you can manage DevCS issues, create issues, update issues, and
create a search query.

JDeveloper displays tasks in the Tasks tab. To open the tab, from the Window menu,
select Tasks.

Chapter 10
JDeveloper

10-19

This table describes some common actions you can perform to manage issues from
JDeveloper.

Action How To

View issues of the
project

In the Tasks tab, expand Repositories. In the project name’s node,
expand the filter to view its issues. By default, the Tasks tab displays
issues of these filters:

• All tasks
• Assigned to me
• Open tasks
• Related to me
• User defined custom queries

Open and update an
issue

In the Tasks tab, double-click the issue. The issue’s details display in a
new tab of the IDE. Update the issue’s properties and click Submit.

Create an issue In the Tasks tab, select the project node, right-click, and select Create
Task. Enter the details and click Submit. The issue is automatically
synchronized with the DevCS project is available to other project
members.

Create a query In the Tasks tab, select the project node, right-click, and select Create
Query. In the Find Tasks tab, enter the search criteria and click Save
Query.

Associate an Issue with a Commit
When you commit files, you can associate an issue with a commit.

1. In the Tasks tab, open and update the issue that you want to associate with the
commit.

2. From the Team menu, select Commit.

3. In the Commit dialog box, enter the commit’s message and verify the files.

4. In the Update Task section, select the issue from the Task list.

5. Select the desired resolution check boxes and the commit option.

6. Click Commit.

Open the issue in DevCS and verify the SHA-1 checksum hash of the commit is now
available in Commits under Associations.

Monitor a Project’s Builds in JDeveloper
The Team tab displays all builds and jobs of the project along with their status.

To view a particular build's details, double-click the job name in the Team tab to view
its builds in the web browser.

Build Oracle ADF Applications
You can develop Oracle ADF applications in JDeveloper and then build them using
OJMake and OJDeploy tools with Ant or Maven in DevCS.

Chapter 10
JDeveloper

10-20

Build ADF Applications with Ant

 Tutorial

1. Create an Oracle ADF application in Oracle JDeveloper.

2. Add or configure the build.properties and build.xml files.

• In build.xml, add <property environment="env"/> immediately after the
<project> element to enable Ant to access the system environment variables
and store them in properties, prefixed with env.

Example:

<?xml version="1.0" encoding="windows-1252" ?>
<project name="HelloWorldADFProject" basedir=".">
 <property environment="env" />
 <property file="build.properties"/>
 ...
</project>

Configure the build.properties file to use DevCS build executor
environment variables to access the Ant library, the OJDeploy tool, and the
JDeveloper directory installed on the DevCS build executor.

3. Commit and push the application to the hosted Git repository.

4. In DevCS, create and configure a job with an Ant build step.

5. Run a build of the job to generate the artifacts.

Use OJServer with OJDeploy
When you run a job configured to use multiple OJDeploy builds, the build starts, runs,
and then shuts down JDeveloper ojdeploy for each invocation. You can increase the
OJDeploy performance by using OJServer, which eliminates the requirement to start
and stop OJDeploy after each invocation.

To use OJServer with OJDeploy, you must configure the job and update the Ant script
to use OJServer.

1. Configure the build.xml file of your application to add the ojserver argument
(<arg value="-ojserver"/>) before parameters are defined.

Example:

<property file="build.properties"/>
 <target name="deploy" description="Deploy JDeveloper profiles">
 <taskdef name="ojdeploy"
 classname="oracle.jdeveloper.deploy.ant.OJDeployAntTask"
 uri="oraclelib:OJDeployAntTask"
 classpath="${oracle.jdeveloper.ant.library}"/>
 <ora:ojdeploy xmlns:ora="oraclelib:OJDeployAntTask"
 executable="${oracle.jdeveloper.ojdeploy.path}"
 ora:buildscript="${oracle.jdeveloper.deploy.dir}/ojdeploy-
build.xml"
 ora:statuslog="${oracle.jdeveloper.deploy.dir}/ojdeploy-
statuslog.xml">
 <arg value="-ojserver"/>
 <ora:deploy>
 <ora:parameter name="workspace" value="$

Chapter 10
JDeveloper

10-21

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:13330

{oracle.jdeveloper.workspace.path}"/>
 <ora:parameter name="profile" value="$
{oracle.jdeveloper.deploy.profile.name}"/>
 </ora:deploy>
 </ora:ojdeploy>

2. In DevCS, configure the job to run a Shell build step that starts OJServer before
running OJDeploy commands.

Examples of commands:

$ORACLE_HOME_SOA_12_1_3/jdev/bin/ojserver -start &

$ORACLE_HOME_SOA_12_2_1/jdev/bin/ojserver -start &

• In the command that runs ojserver, add a & character at the end of the
command to keep ojserver running in the background. In the command, use
the correct environment variables that matches your JDeveloper 12c or above
version. OJServer isn’t supported in JDeveloper 11g. For more information
about environment variables, see Build Executor Environment Variables.

• In the Shell build step that starts the ojserver, use the sleep command to add
a 30 seconds or more wait time to allow the ojserver process to start before
any other command runs.

Example:

$ORACLE_HOME_SOA_12_1_3/jdev/bin/ojserver -start &

sleep 30

• Configure the job to use JDK 8 (or above) as JDev 12.2.1 and above versions
don’t support JDK 7 (or below).

The ojserver process automatically stops with any other remaining processes
when the build executor is recycled/cleaned up for the next users job.

Build ADF Applications with Maven
You can configure the Maven POM file to access the Oracle Maven Repository to
access JDeveloper and ADF libraries. You’d also need Oracle SSO credentials to
access the Oracle Maven repository.

 Tutorial

1. Create an Oracle ADF application in Oracle JDeveloper.

2. Add and configure the Maven POM file of the ADF application. Use the DevCS
build executor environment variables to access OJMake, OJDeploy, and the
Oracle Maven Repository.

3. Commit and push the application to the hosted Git repository.

4. In DevCS, create and configure a job with a Maven build step.

5. Run a build of the job to generate the artifacts.

Chapter 10
JDeveloper

10-22

https://apexapps.oracle.com/pls/apex/f?p=44785:112:0::::P112_CONTENT_ID:13331

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Overview
	What is Oracle Developer Cloud Service?
	What is a Project?
	Project Visibility

	Key Concepts, Components, and Terms
	Roles
	Identity Domain Roles
	Project Roles

	2 Get Started
	Know Yourself
	Know Your Identity Domain Roles
	Know Your Project Role
	What Actions Can Each Role Perform in a Project?
	Project Home Page
	Git Actions
	Merge Requests Actions
	Maven Actions
	Docker Actions
	Builds Actions
	Releases Actions
	Deployments Actions
	Environments Actions
	Issues Actions
	Boards Actions
	Wiki Actions
	Snippets Actions

	Access Oracle Developer Cloud Service
	Sign In From a Web Browser
	Access from IDEs

	Set Your User Preferences
	Update Your Display Name
	Update Your Email Address
	Add Your Avatar Picture
	Configure Your Global Email Notifications
	Upload Your Public SSH Key
	Generate an SSH Key
	Add the Public SSH Key to Your DevCS Account

	See the News Banner

	Set Up IDEs and Git Clients
	Eclipse IDE
	NetBeans IDE
	JDeveloper
	Git Command-Line Interface

	Use Projects
	Create a Project
	Empty Project
	With an Initial Git Repository
	From an Exported Project
	From a Project Template

	From IDEs

	Open a Project
	Review a Project’s Summary

	Add and Manage Project Users
	Add Users from Another Project

	3 Plan Your Project
	Manage Software Development Environments
	Set Up an Environment
	Manage an Environment

	Track and Manage Tasks, Defects, and Features
	Set Up Issue Products and Custom Fields
	Create and Configure Issue Products
	Create and Configure Issue Custom Fields

	Create Issues
	Create an Issue from the Issues Page
	Create an Issue from an IDE

	Search Issues
	Save a Custom Search
	Share Custom Search Filters

	View and Update Issues
	Resolve an Issue
	Mark an Issue as Duplicate
	Update Time Spent on an Issue
	Associate an Issue with a Sprint
	Create a Relationship Between Issues
	Update Multiple Issues
	Update Issues from IDEs

	Watch an Issue

	Use Agile Boards to Manage and Update Issues
	Agile Boards Concepts and Terms
	Create and Configure Agile Boards
	Create a Board
	Add and Manage Progress States of a Board
	Configure Working Days of a Board
	Configure and Manage a Board

	Use Scrum Boards
	Create and Manage Sprints
	Add and Manage Issues of a Sprint
	Update Issues of an Active Sprint
	Update an Issue’s Progress in an Active Sprint
	Reschedule a Sprint
	Complete a Sprint

	Review Issue Reports of a Scrum Board

	Use Kanban Boards
	Add and Manage Active Issues
	Update Active Issues
	Update an Active Issue’s Progress State
	Archive Completed Issues

	Review Issue Reports of a Kanban Board

	Review Agile Reports and Charts
	Burndown Chart
	Sprint Report
	Issues Report
	Epic Report
	Velocity Report
	Cumulative Flow Chart
	Control Chart

	4 Use Project's Repositories
	Manage Code Files Using Git Repositories
	Git Concepts and Terms
	Migrate to Git

	Set Up a Git Repository
	Create and Manage Git Repositories
	Create an Empty Git Repository
	Import an External Git Repository
	Mirror an External Git Repository
	Manage a Git Repository

	Upload Files From Your Computer to the Project’s Git Repository
	Push a Local Git Repository to the Project’s Git Repository
	Access a Git Repository using SSH

	Add and Manage Files of a Git Repository
	Manage Files from the Git Page
	Use Git Commands to Manage Files from Your Computer
	Associate a DevCS Issue with a Commit

	Copy the URL of a Git Repository or a File
	View the History of Files and Repositories
	Use Branches
	Create a Branch
	Protect a Branch
	Manage a Branch

	Use Tags
	Create and Manage Tags

	Compare Revisions
	Add Comments to a File

	Watch a Git Repository
	Search in Git Repositories
	Download an Archive of a Git Repository

	Manage Binaries and Dependencies Using the Project’s Maven Repository
	Maven Concepts and Terms
	Upload an Artifact Manually
	Upload Artifacts Using the Maven Command-Line Interface

	Search Artifacts
	Download an Artifact Manually
	Copy Distribution Management Snippets
	Maven Repository Administration
	Configure Auto-Cleanup of Snapshots
	Configure Overwrite for Artifacts

	5 Collaborate with Your Team
	Review Source Code with Merge Requests
	Merge Requests Concepts and Terms
	Merge Request States

	Create and Manage Merge Requests
	Create a Merge Request
	Add or Remove Reviewers
	Link an Issue to a Merge Request
	Link a Build Job to a Merge Request

	Watch a Merge Request
	Merge Request Email Notifications

	Review a Merge Request
	Open a Merge Request
	View Commits and Changed Files
	Add a General Comment
	Add an Inline Comment to a File
	Manage Unpublished Comments

	Approve or Reject a Merge Request

	Merge Branches and Close the Merge Request
	Merge Branches
	Resolve a Merge Conflict
	Close a Merge Request

	Merge Request and Branch Administration
	Set Review and Merge Restrictions on a Repository Branch

	Collaborate on Documentation Using Wikis
	Create and Manage Wiki Pages
	Add Comments
	Watch a Wiki Page
	View History and Compare Versions of a Wiki Page
	Wiki Administration
	Configure Edit and Delete Rights for Wiki Pages
	Change a Project’s Wiki Markup Language
	Set the Organization’s Default Wiki Markup Language

	Share and Use Code Snippets
	Create and Manage Snippets
	Add and Manage Files of a Snippet
	Copy Contents of a Snippet File
	Add a Comment to a Snippet
	Use Git with Snippets
	Download an Archive of the Snippet

	6 Build Applications and Deploy to Oracle Cloud
	Configure and Run Project Jobs and Builds
	What is a Job and a Build?
	Build Concepts and Terms
	Create and Manage Jobs
	Configure a Job
	Access Project Git Repositories
	Trigger a Build Automatically on SCM Commit
	Trigger a Build Automatically on SCM Polling
	Generate Cron Expressions

	Access Files of a Git Repository's Private Branch
	Publish Git Artifacts to a Git Repository
	Advanced Git Options
	View Changes Log

	Trigger a Build Automatically on a Schedule
	Use Build Parameters
	Access the Oracle Maven Repository
	Configure a Job to Connect to the Oracle Maven Repository

	Run UNIX Shell Commands
	Build Maven Applications
	Use the WebLogic Maven Plugin
	Upload to or Download Artifacts from the Project Maven Repository

	Build Ant Applications
	Build Gradle Applications
	Configure a Job to Run Gradle Commands

	Build Node.js Applications
	Configure a Job to Build a Node.js Application

	Access an Oracle Database Using SQLcl
	Configure a Job to Run SQLcl Commands

	Run Oracle PaaS Service Manager Commands Using PSMcli
	Configure a Job to Run PSMcli Commands

	Publish JUnit Results
	View Test Results

	Use the Xvfb Wrapper
	Configure a Job to Run Xvfb

	Publish Javadoc
	Archive Artifacts
	Discard Old Builds and Artifacts

	Copy Artifacts from Another Job
	Configure General and Advanced Job Settings
	Change a Job's JDK Version

	Run a Build
	View a Job’s Builds and Reports
	View a Build’s Logs and Reports
	View a Project’s Build History
	View a Job’s Build History
	View a Job’s User Action History
	View a Build’s Details
	Download Build Artifacts

	Watch a Job
	Build Executor Environment Variables
	Software Installed on the Build Executor
	Monitor Jobs and Builds from IDEs

	Deploy Your Application to Oracle Cloud
	Deployment Concepts and Terms
	Deploy an Application to Oracle Java Cloud Service
	Use the Oracle WebLogic RESTFul Management Interface
	Use SSH
	Upload the DevCS public key to the JCS instance
	Create the Deployment Configuration

	Add an Oracle Java Cloud Service Deployment Target

	Deploy an Application to Oracle Application Container Cloud Service
	Add an Oracle Application Container Cloud Service Deployment Target

	Deploy an Application to Oracle Java Cloud Service - SaaS Extension
	Add an Oracle Java Cloud Service - SaaS Extension Deployment Target

	Automatically Deploy a Build Artifact
	Manage Deployment Configurations and Deployments
	Access a Deployed Application

	7 Integrate with External Software
	Send Notifications to External Software Using Webhooks
	Slack
	Get the Slack Channel’s Incoming Webhook URL
	Configure a Slack Webhook in DevCS to Send Event Notifications

	Oracle Social Network
	Get OSN Conversation's Incoming Webhook URL
	Configure an OSN Webhook in DevCS to Send Event Notifications

	PagerDuty
	Set Up the PagerDuty Account
	Configure a PagerDuty Webhook in DevCS to Send Event Notifications

	Jenkins
	Trigger a Jenkins Job on SCM Polling
	Set Up Git on Jenkins
	Configure the Jenkins Job to Use DevCS Git Repository and Enable SCM Polling
	Configure a Webhook in DevCS to Trigger a Jenkins Job on a Git Repository Update

	Trigger a Jenkins Job on a Git Repository Update
	Install the Build Authorization Token Root Plugin on Jenkins
	Get the Jenkins API Access Token
	Configure the Jenkins Job to Set an Authentication Token
	Configure a Webhook in DevCS to Trigger a Jenkins Job on a Git Repository Update

	Trigger a Jenkins Job from a Merge Request
	Install the Notification Plugin on Jenkins
	Install the Build Authorization Token Root Plugin on Jenkins
	Get the Jenkins API Access Token
	Configure the Jenkins Job to Set an Authentication Token and Accept Build Parameters
	Configure a Webhook in DevCS to Trigger a Jenkins Job on a Merge Request Update
	Link the Jenkins Job with the Merge Request

	Receive Build Notifications from a Jenkins Job
	Install the Notification Plugin on Jenkins
	Configure a Webhook in DevCS to Accept Notifications from Jenkins
	Configure the Jenkins Job to Send Build Notifications

	Hudson
	Trigger a Hudson Job on SCM Polling
	Set Up Git on Hudson
	Configure the Hudson Job to Use DevCS Git Repository and Enable SCM Polling
	Configure a Webhook in DevCS to Trigger a Hudson Job on the Git Repository Update

	Trigger a Hudson Job on a Git Repository Update
	Configure the Hudson Job
	Configure a Webhook in DevCS to Trigger a Hudson Job on a Git Repository Update

	GitHub Apps
	Send Event Notifications to Any Application
	Data Structure of a Generic Webhook

	Access External Docker Registries
	Link an External Docker Registry to Your Project
	Browse a Linked Docker Registry

	8 Use Releases and Export/Import Data
	Manage Software Releases
	Release States
	Create a Release
	Specify Artifacts of a Release
	Change a Release’s Status
	Manage Releases
	Download Artifacts of a Release

	Export Project Data to and Import Project Data from Oracle Cloud
	Exported Data
	Export to and Import from an OCI Object Storage Classic Container
	Set Up the OCI Object Storage Classic Container
	Export Project Data
	Import Project Data

	View Export and Import History of the Project

	9 Organization and Project Management
	Manage the Organization
	Update the Organization’s Display Name and Description
	Manage Projects of the Organization

	Manage the Project
	Edit a Project’s Name, Description, or Visibility
	Configure Project Templates
	Visibility, Rules, and Variables
	Visibility
	Rules
	Variables

	Define and Manage a Project Template
	Define a Private Project Template

	Define Project Template Rules
	Add or Edit a Git Repository Rule

	Use Variables

	Manage Project Announcements
	Manage Project Tags
	View a Project’s Usage Metrics
	Manage Repositories
	Display RSS/ATOM Feeds
	Configure Link Rules

	10 Use IDEs
	Eclipse IDE
	Sign In to DevCS from the Eclipse IDE
	Set Up the Eclipse IDE
	Connect to DevCS from the Eclipse IDE

	Use the Oracle Cloud View
	Open a DevCS Project as an Eclipse IDE Project
	Upload an Eclipse IDE Project to DevCS
	Use Git in the Eclipse IDE
	Manage DevCS Issues in the Eclipse IDE
	Associate an Issue with a Commit

	Monitor a Project’s Builds in Eclipse IDE

	NetBeans IDE
	Sign In to DevCS from the NetBeans IDE
	Use the Team Server
	Create a DevCS Project in NetBeans IDE
	Open a DevCS Project in NetBeans IDE
	Use Git in NetBeans IDE
	Manage DevCS Issues in the NetBeans IDE
	Associate an Issue with a Commit

	Monitor a Project’s Builds in NetBeans IDE

	JDeveloper
	Sign In to DevCS from JDeveloper
	Use the Team Server
	Create a DevCS Project in JDeveloper
	Open a DevCS Project in JDeveloper
	Use Git in JDeveloper
	Manage DevCS Issues in JDeveloper
	Associate an Issue with a Commit

	Monitor a Project’s Builds in JDeveloper
	Build Oracle ADF Applications
	Build ADF Applications with Ant
	Use OJServer with OJDeploy

	Build ADF Applications with Maven

