
Oracle® Cloud
SQL Dialogs in Digital Assistant

F51479-02
September 2022

Oracle Cloud SQL Dialogs in Digital Assistant,

F51479-02

Copyright © 2022, 2022, Oracle and/or its affiliates.

Primary Author: Chris Kutler

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Welcome to SQL Dialogs in Digital Assistant.

Contents

 Preface

Documentation Accessibility v

Preface vi

1 Basic Concepts

How SQL Dialogs Work 1-1

Supported Queries 1-2

2 Get Started

SQL Dialogs Workflow 2-1

Connect to the Data Service 2-4

Create the SQL Dialog Skill 2-5

Create Query Entities to Model the Data Service 2-6

Train the Skill to Convert Natural Language Utterances into SQL 2-7

Provide Training Data Through Names and Synonyms 2-7

Provide Training Data Through Value Lists 2-8

Provide Training Data Through Utterances 2-9

Configure How Entity Rows and Attributes are Displayed 2-12

Define an Entity's Default Sort Order 2-12

Define Which Attributes to Include When Not Specified by the Utterance 2-12

Define Which Attributes to Always Include in the Results 2-12

Add a Custom Attribute 2-13

Define Query Rules 2-13

Enable Natural Language Queries for Denormalized Columns 2-14

Test and Repair 2-15

Monitor and Improve 2-16

3 OMRQL Reference

iii

Abstract

This document describes how to build SQL Dialogs, which are skills that can translate
a user's natural language utterances into SQL queries and return a response to the
user.

4

Preface

Welcome to SQL Dialogs in Digital Assistant.

Audience
SQL Dialogs in Digital Assistant is intended for developers who want to develop digital
assistants with skills that can translate a user's natural language utterances into SQL queries,
send the queries to a backend data source, and display the response.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface
Welcome to SQL Dialogs in Digital Assistant.

Audience
SQL Dialogs in Digital Assistant is intended for developers who want to develop digital
assistants with skills that can translate a user's natural language utterances into SQL
queries, send the queries to a backend data source, and display the response.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Basic Concepts

SQL Dialogs are skills that can translate a user's natural language utterances into SQL
queries, send the queries to a backend data source, and display the response.

When writing skills that provide database information to end users, developers typically need
to define the use cases, write custom components to retrieve the data, create intents for the
use cases, map user utterances to intents, and write the dialog flow to handle every intent.
With SQL skills, you don't need to do these steps. Instead, you map the users' mental models
of the data to the physical data source, and the skill uses the map to dynamically generate
SQL from natural language utterances.

For example, users might know that employees belong to departments that are in various
locations, and they have employee IDs, job titles, hire dates, and sometimes commissions.
Given their mental model, they can retrieve the data by asking the skill "What is James
Smith's job?", "When was James Smith hired?", "How many employees are in New York?",
and "Who has the highest commission?

This version of SQL Dialogs supports integration with Oracle database services, such as
Oracle Enterprise Database Service.

Note:

The current version doesn't support more than one language per skill.

How SQL Dialogs Work
To implement a SQL Dialogs, you create a visual dialog skill and import information about the
physical model (database schema) from the data service. Oracle Digital Assistant uses this
information to create a query entity for each table you selected to import (the logical model).
The query entities contain attributes that model the table columns.

If a table in the physical model has a foreign key, then the query entity as an attribute that
links to the related query entity. For example, if an Emp table has a foreign key to the
Depttable, then the Emp query entity has a dept attribute, which links to the Dept entity.

As soon as you create the query entities and identify their primary keys, you can train the skill
and it's ready to use in a rudimentary way. That is, you can use free form utterances, but, for
now, the query must use the exact entity and attribute primary names, which are initially
derived from the physical model's names (the canonical names). This will change as you
enhance the logical model to more closely reflect natural language.

To enable the end users to inquire about the data by using natural language, you map end-
user terminology to the physical model by changing the primary names and adding synonyms
for both the query entities and their attributes. For example, you might change the primary
name for the Emp table to "employee" and add the "staff member" synonym. Adding primary
names and synonyms is one of the ways that you train the natural language parser (NLP) to
resolve utterances into Oracle meaning representation query language (OMRQL) queries.

1-1

OMRQL queries are like SQL queries but are based on the canonical names of the
object models (the query entities). For example, if you change the primary name for
empno to "employee number" then "what is Joe Smith's employee number" resolves to
SELECT empno FROM emp WHERE ename = 'Joe Smith'. To even further improve
the natural language processor (NLP) resolution, you also can associate the attributes
with value lists, which are automatically populated from the data service upon creation.

For example, let's say that you import Emp and Dept tables from a data service, which
results in Emp and Dept query entities. Immediately after you import the tables and train
the skill, you can query the query entities using utterances like following:

Show all Emp in dept 10

After you change the primary names for the entities and attributes to more natural
language terms, such as Employees for the entity and department for the attribute, you
can use utterances like this one:

Show all the employees in department 10

You can further add synonyms to model all the ways people typically refer to the entity
or attribute. For example, you might add the synonyms district and territory for
department so that the NLP recognizes this utterance:

Show all employees in district 10

With more complex utterances, you can teach the skill how to resolve the queries to
OMRQL by adding custom data that associates the utterances with specific OMRQL
statements.

When the skill outputs a query result, it lets the user give a thumbs up or thumbs down
to indicate whether the result is correct. The Insights page shows the thumbs up
(correct queries) and thumbs down (incorrect queries) counts so you can see how well
the skill is doing.

Supported Queries
Users can ask questions relating to the database and receive the relevant information.
Using the example of an employees/departments database, this table shows the kinds
of queries that a user can make.

Category Behavior Examples

Request an entity Returns a table with all the
rows in the table that
correspond to the request.
When the attributes aren't
named, the columns are the
default attributes defined in the
logical model.

• show me all the
employees

• show details about each
employee

Chapter 1
Supported Queries

1-2

Category Behavior Examples

Request an attribute Returns a table with the
requested attribute as well as
the minimum attributes of the
entity that the attribute
belongs to.

• salary of employees
• what is the salary of all

employees?

Request distinct attribute Returns a table with only the
unique values of the given
attribute.

• Show the different jobs of
employees:

• what are the unique jobs
that an employee can
have?

• return distinct jobs

Request an aggregation Users can choose to request a
summary of the information in
the database.

• how many employees
• what is the total salary of

all employees
• what is the average

salary of employees
• what is the lowest salary

of employees
• what is the maximum

salary of employees

Filter by attribute equal to a
value

This can be used for all
attributes.

• show me employees
whose hire date is 10 Dec
2020

• who are the employees
with hire date 10 Dec
2020

Filter by implicit value
reference

Can be used for values that
are present in an associated
value list (including
synonyms).

• salary of everyclerk
• what's the salary of all

employees who are
clerks

Filter by attribute containing a
value

Can be used for both text and
numeric attributes

• Employees with name
containing Jo

• employees where the ID
includes 0153

Filter by value comparison Compares a numerical
attribute to a value.

• Employees whose salary
is less than 1000

• employees who earn over
100000

• employees who earn at
most 50000

• employees who earn
1000 or more in salary

• employees who earn
between 1000 and 1500
in salary

Filter by aggregate Returns only the attributes that
satisfy criteria based on an
aggregation functions.

• Show jobs where average
salary is more than 70000

Chapter 1
Supported Queries

1-3

Category Behavior Examples

Combined filters Users can combine filters with
either

• AND: both conditions are
true

• OR: one of the conditions
is true

You can't have more than 2
filters. For example, you can't
ask "Employees whose first
name is John and belongs to
the Sales dept and their salary
is more than 70000"

• employees whose job is
clerk and salary is above
1000

• employees who earn a
salary above 100000 or
commission above 300

Filter or group across entities Users can filter or group by
attributes from linked entities.

• salary of employees
located in New York City

• average salary per
department name

• Department names with
average salary above
70000

Order by an attribute Returns the rows sorted by the
specified attribute.

• show employees sorted
by their names

• employees ordered by
name from Z to A

Limit the number of rows Users can order and restrict
the number of rows returned .
If you don't specify the
attribute to use for
comparison, then the entity's
Measure By value determines
which attribute to sort on. See
Define Query Rules. However
the NLU doesn't always
predict ORDER BY in the
OMRQL for these types of
queries.

• what are the 10 highest
salaries of all employees

• employee with the lowest
salary

Group by attributes Users can group the results
based on attributes, and then
request summary statistics for
each group.

• how many employees per
job

Queries with dates The queries can contain
absolute and relative dates
and times as well as date
intervals. They also can
include natural language
terms that are associated with
date operators. For example,
you can use these natural
terms to refer to the relative
future and past:
• Past (<): before, earlier

than
• Future (>): after,later than

• what invoices are due
after 11/10/2022

• what invoices are due in
the next 10 days

• what invoices were paid
last year

• what installments are due
after 5th August 3 pm

• which vulnerabilities were
discovered yesterday?

• which vulnerabilities were
discovered last Saturday?

Here are examples of queries that aren't currently supported:

Chapter 1
Supported Queries

1-4

• User pronouns. For example: what is my salary?

• Implicit date and time, date, or time values. For example: what is the next event?

• Date durations which need to be coerced to dates. For example: due in 2 days.

• Date intervals with both date and time values. "show meetings between 9 am July 5 and
5 pm July 6".

• A date interval where the start or end date does not contain all the information. For
example "show all invoices due between July and December 2022" (the start date is
missing the year).

• A date utterance where the natural language phrase for a date operator can't be resolved
correctly. For example, for "what installments have due date more than 40 days ago",
"more than" implies ">" but "more than 40 days ago" implies "<".

• Resolving ambiguous dates based on the context. For example: "invoices that were due
on Wednesday" (ambiguious) versus "invoices that were due last Wednesday" (not
ambiguous). All ambiguous dates are resolved based on the Resolve Date & Time as
setting (Default, Past, Future, Nearest) for the DATE_TIME entity. If Resolve Date &
Time as is set to Future, then "invoices that were due on Wednesday" resolves to the
upcoming Wednesday.

• Limited performance for domain specific entity/attribute synonyms. When two words are
synonyms in the context of the domain and only in the context of the domain, then the
model may not accurately map the synonym to the correct attribute. For example, in the
mobile phone domain, IP address and device are synonymous, but that's not true outside
the domain.

• Implicit distinct. Show the cities of all employees (currently shows multiple rows with
repeating cities).

• Implicit aggregations. For example: how much do we pay to all employees in Accounting
dept?

• Implying an attribute by referring only to the entity. For example: Show invoices
containing 1234.

• Group by attributes across multiple entities with aggregations. For example: Show
number of employees for every department location.

• Group by attributes across multiple entities with aggregations. For example: Show
number of employees for every department location.

• Negation. For example: Which employees are not in the accounting department?.

• Disambiguation. For example: Show amount for all invoices (not clear if invoice amount
or gross amount).

• Implicit attribute reference for values not in the value list entity. For example: Show salary
of all employees in HM (where HM is not in the value list for department names, nor is it a
synonym for one of the values in the list).

• Group by attributes across multiple entities with aggregations. For example: Show
number of employees for every department location.

• Queries in any language other than English.

• Limited resolution of word names for numbers. You can use the following word names for
numbers. All other word names are not supported.

– one, two, three, four, five, six, seven, eight, nine

– ten

Chapter 1
Supported Queries

1-5

– twenty

– fifty

• Typographical errors. For example: Employees in acounting department
(accounting is misspelled).

• Fuzzy matching for value list entities. For example: Show invoices for Amazon
(where the value list contains "Amazon LLC").

• Yes/no question. For example: Do we have any employees who don't belong to
any department?

• Query containing "starts with" or "ends with". For example: Employees whose
name ends with Smith.

• Subqueries. For example: Show employees whose salaries are more than the
highest salary of the Sales dept.

• Set operations. There is no support for queries which require the use of
INTERSECT, UNION, EXCEPT, or NONE.

• Arithmetic operations. For example: How much money is left for project VMON.

• The EXISTS and NOT EXISTS keywords.

• Order-by superlatives. NLU does not consistently predict the order by clause in the
OMRQL for superlative queries.. For example: Show top 10 employees.

Chapter 1
Supported Queries

1-6

2
Get Started

You build a SQL Dialogs skill differently than regular skills. To enable the skill to understand
and respond to natural language utterances, you create a logical model and you teach that
model by using natural language terms to describe describing the physical model.

SQL Dialogs Workflow
How you build a SQL Dialogs skill differs from regular skills. Here are the major steps to build
a SQL Dialogs skill and train it so that people can use natural language to query the data
services.

The participants in the following steps are the skill developer, service administrator, database
expert, and AI trainer.

• The skill developer gathers the skill requirements (user personas, use cases, and tasks)
and training corpus (sample user utterances), and creates the skill. The developer also
helps define how the results are displayed. This person is sometimes referred to as the
conversation designer.

• The service administrator adds a connection to the data service.

• The database expert analyzes the skill requirements and training corpus to identify the
tables and attributes that provide the answers. The expert then creates the base logical
model by importing information from the physical model into the skill. The expert also
assists the skill developer and AI trainer with tasks such as adding SQL-expression
based attributes, associating attributes with value lists uploaded from tables, and
performing custom training.

• The AI trainer adds primary names and synonyms teach the natural language parser
how to understand the natural language utterances. For utterances that the skill can't
translate to OMRL, the AI trainer adds custom training to teach the natural language
parser how to understand these utterances. The trainer continually monitors and tests the
skill to increase the accuracy of translating natural language into database queries.

To help illustrate the workflow, we'll use an example accounts payable data service with the
following tables. For brevity, we just show the columns mentioned in this topic.

Table Columns

invoices • invoice_num
• invoice_date
• pmt_status_flag
• invoice_amount
• vendor

payment_schedules • invoice_num
• due_date
• amount_remaining

suppliers • vendor_num
• vendor_name

2-1

1. Define the Requirements: The skill developer gathers the use cases and tasks
that the SQL Dialogs skill is expected to support. For example, an accounts
payable department might have this use case:

• Use Case: Pay all invoices with outstanding balances that are due within 30
days so that we can avoid penalties.

– Task: Find all unapproved invoices that are due within 30 days so that we
can approve them in time.

– Task: Find all outstanding approved invoices due within 30 days so that
we can schedule to pay them in time.

As part of this requirements phase, the skill developer compiles a representative
list of the different ways people ask for this information. This list serves as the set
of example utterances that the AI trainer uses for the training corpus.

2. Set Up the Skill: The service administrator, skill developer, and database expert
work together to set up the basic skill.

a. Integrate with the Service: The service administrator creates a connection
from Oracle Digital Assistant to the data service. See Connect to the Data
Service.

b. Create the SQL Dialogs Skill: The skill developer creates the SQL Dialogs
skill, ensuring that the dialog mode is set to Visual in the Create Skill dialog.
See Create the SQL Dialog Skill.

c. Import the Schema: The database expert identifies the tables and fields that
are necessary to support the use cases and then, from the skill's Entities
page, imports them from the data service as described in Create Query
Entities to Model the Data Service. This creates a base logical model that
contains a query entity for each imported table.

In our example, the database expert imports the invoices,
payment_schedules, and vendors, tables.

At this point, the skill is ready for use with limited functionality. For the base
logical model, the entity and attribute names are derived from the physical
model's table and field names. For example, if the table name is
payment_schedules, then the primary name is payment schedules. The AI
trainer can test queries from the Entities page or use the conversation tester
(Preview) to try out the SQL functionality.

In our example data service, they can use test utterances such as "show
invoices with pmt status flag N", "show invoice num 17445", or "show payment
schedules with due date before 2022-08-30".

3. Train: Add training data through primary names, synonyms, value lists, and
natural language queries mapped to OMRQL.

a. Add Natural Language Terminology: To help associate natural language
phrases with the underlying data structure, the AI trainer teaches the skill the
different ways that end users refer to the entities and attributes. That is, it
teaches the names that people will use in their natural language utterances.
The trainer starts by analyzing the phrases that the skill developer gathered to
identify the utterances that the skill should handle (the training corpus).
Additionally, they can consult a thesaurus for synonyms and crowd-source for
similar phrasing. Then the AI trainer records the equivalent terms by changing
the primary names and adding synonyms. See Provide Training Data Through
Names and Synonyms.

Chapter 2
SQL Dialogs Workflow

2-2

In our example, one of the utterances gathered during the requirements phase is
"Give me list of invoices with an outstanding balance greater than zero." The attribute
that contains the balance is amount remaining, so the AI trainer adds the synonym
outstanding balance to that attribute.

b. Associate with Value Lists: To improve accuracy, the AI trainer can, where
appropriate, create value lists that contain sample values from the data service. The
skill automatically associates the lists with their respective attributes, which helps the
natural language parser understand the kinds of values those attributes can hold.
See Provide Training Data Through Value Lists.

In our example, they associate a vendor_name attribute with a value list retrieved from
the data service. If the value list includes "Seven Corporation" and a user asks "show
summary flag for Seven Corporation", the NLP will deduce that Seven Corporation is
a vendor name.

c. Map Complex Queries: In cases where the skill isn't able to translate a valid
utterance into OMRQL, the AI trainer adds that utterance to the query entity dataset
and maps it to OMRQL as described in Provide Training Data Through Utterances.
For example, you can map "show unpaid invoices" to SELECT * payment_schedules
WHERE payment_status_flag = 'Y' .

d. Train the NLP Model: To incorporate training data into the NLP model, the AI trainer
clicks the Train icon and clicks Submit.

4. Configure How Information is Displayed: The database expert and skill developer
work together to fine tune how each entity's results are displayed, as described in
Configure How Entity Rows and Attributes are Displayed. For example, they can set an
entity's default sort order, set the minimum attributes to include in the output, and add
attributes that display derived or calculated data.

In our example, they might set both the invoice entity's default sort order and minimum
attributes to invoice_num, and set the default attributes to invoice_num, invoice_date,
pmt_status_flag, and invoice_amount. They might also add an age attribute that is
calculated using the difference between today's date and the invoice date.

5. Configure Query Rules: The database expert and AI trainer work together to set the
query rules, such as when to use partial matching and what attribute to use for measuring
when someone asks to compare rows without specifying an attribute to compare with.
See Define Query Rules.

In our example, they anticipate end users asking for the 10 most payments to make, so
they'll configure the payment schedules entity to use due_date for comparisons, and
they'll invert comparisons for that attribute so that earlier dates rank higher than later
dates.

6. Test and Repair: The AI trainer uses the query tester from the Entities page to verify
that the test utterances resolve to the desired OMRQL, and that the skill can translate the
OMRQL to executable SQL. When the query tester can't translate the OMRQL to SQL, it
requests training data. In many cases, you can resolve this by adding the utterance to the
query entities dataset and associating it with an OMRQL statement. See Test and Repair.

7. Monitor and Improve: After the skill enters the beta testing phase and beyond, the AI
trainer, skill developer, project manager, and stakeholders can continually monitor
Insights data to see how well the skill is performing and to identify areas for improvement.
See Monitor and Improve.

Chapter 2
SQL Dialogs Workflow

2-3

Connect to the Data Service
Before you can access a data service from any SQL Dialogs skill, you need to add a
data service integration that enables Oracle Digital Assistant to access the data
service. You only need one integration per data service.

For this release, integrations have been tested with Oracle Database Cloud Service
Enterprise Edition 12c and 19c Oracle Autonomous Transaction Processing.

Note:

After you create the service, you can't change it. Should the password
change, you'll need to delete and recreate the data service integration.

1. In Digital Assistant, click to open the side menu, click Settings, click
Additional Services, and click the Data tab.

2. Click + Add Service.

3. In the New Data Service dialog, provide this basic information:

Field Name Description

Name A unique name for the service.

Data Service Description An optional description of the data service
integration such as a description of the
database or the purpose.

Authentication Type Your database administrator will tell you
whether to select Default, Kerberos, or OS.

Role Currently, there is one choice; Default,
which is the user's default role.

User Name Ask your database administrator for the user
name and password that gives access to the
tables that the skill developers need to
create the composite entities for their SQL
Dialogs skill as described in Create Query
Entities to Model the Data Service.

Password The user's password. Note that for Oracle
Digital Assistant integration, a password
must be at least 14 characters and no more
than 30 characters, and it must contain at
least one upper case character, one
lowercase character and one number. It also
can't start with a digit.

4. Click Continue to configure end-user authentication.

5. If your data service is configured for role-based access, then select End-User
Authentication is required, select the authentication service that you configured
in Settings > Authentication Services, and then select the end-user identifier. If
you choose Custom then provide the custom expression.

6. Click Continue to add the connection details.

Chapter 2
Connect to the Data Service

2-4

7. On the Connection Details page, select Basic or Cloud Wallet Connection for the
connection type.

8. If the connection type is Basic, enter these values, which you can get from the database
administrator:

Field Name Description

Host Name Enter the host for the data service. Leave out
the https:// prefix. For example:
example.com.

Port The port that allows client connections to the
database.

Service Identifier Do one of the following:

• Select SID and enter the Oracle system
identifier of the database instance.

• Select Service Name and enter the service
name for the database.

9. If the connection type is Cloud Wallet Connection, enter these values, which you can
get from the database administrator:

Field Name Description

Wallet File Find and select the Cloud Wallet file that
contains the client credentials or drag and drop
it into the field.

Wallet Password Enter the password that was provided when the
wallet file was downloaded. Note that for Oracle
Digital Assistant integration, a wallet password
must be at least 15 characters and no more
than 30 characters, and it must contain at least
one upper case character, one lowercase
character, one special character, and one
number. It also can't start with a digit.

Service Select the name of the database service.

10. Click Add Service.

You now can import the database schema into a skill to create query entities, which
enable users to query the database using natural language.

Create the SQL Dialog Skill
To create a SQL Dialog skill, you simply create a skill with the Dialog mode set to Visual.

Note:

This version of Oracle Digital Assistant does not support adding intents to the skill,
nor does it support adding SQL Dialog skills to a digital assistant.

Chapter 2
Create the SQL Dialog Skill

2-5

Create Query Entities to Model the Data Service
To enable data service queries in a SQL Dialogs skill, you import information about a
data service's physical model (the tables and columns) to create a base logical model.
During the import, the skill adds query entities to the logical model, where each query
entity represents a physical table.

When you train your skill, it uses the information from the query entities to build a
model for the natural language parser, which enables the skill to translate user
utterances into OMRQL. OMRQL is a query language that's similar to SQL but is
based on object models, which, in this case, are the query entities.

Before you begin, you need the following:

• A skill that was created using Visual mode.

Note:

In this version of Oracle Digital Assistant, the skill can't have intents.

• A data service integration for connecting to the data service as described in
Connect to the Data Service.

To create query entities for the desired tables in your data service:

1. From the Entities page, click More, and then select Import from Data Service.

The Import Query Entities dialog appears.

2. Select the data service, and then select the tables and attributes that you want to
use in the skill.

3. Click Import.

The skill adds query entities for the selected tables. It sets the entity and attribute
primary names based on the canonical names. For example, if the canonical name
is "invoice_num", the primary name will be "invoice num".

4. For each query entity that was added, select the entity, click the Configuration
tab, and verify that the primary key is set.

At this point, you can test the queries using the primary names for the entities and
attributes, such as "show invoices where invoice num is 12345". But first, you must

click , and then, after it completes, you can click Test Queries to try out
utterances, or click Preview to test in the conversation tester.

Because you are working with a minimal SQL dialog skill, which doesn't have custom
training data, you can train with either Trainer Ht or Trainer Tm. However, after you
add custom training data, Trainer Tm produces more accurate results.

Your next step is to teach the skill how the end users refer to the entities and
attributes. See Train the Skill to Convert Natural Language Utterances into SQL.

Chapter 2
Create Query Entities to Model the Data Service

2-6

Train the Skill to Convert Natural Language Utterances into SQL
As an AI trainer, your job is to enable the natural language parser to translate natural
language utterances such as "how many invoices have a due date before 12/15/22" into an
OMRQL query for retrieving the answer from the underlying data source (the physical model).
You do this by building an intuitive logical model of the data that closely reflects natural
language.

After the logical model is created by importing from the data source, you use primary names,
synonyms, value lists, and utterances to help the skill's natural language parser associate
natural language phrases with the physical model's tables and columns.

• To teach the skill about the different ways that people refer to the objects, you add
primary names and synonyms as described in Provide Training Data Through Names
and Synonyms. For example, you might want to teach the skill that people use "invoice
number" to refer to the invoice_num column, and you might also want to add "invoice no"
and "ref number" as synonyms.

• To help the skill identify attribute values in an utterance, you create sample value lists and
associate them with attributes as described in Provide Training Data Through Value Lists.
For example, you might create a value list that contains actual payment statuses and
associate the list with the invoice's payment status attribute.

• When the skill isn't able to correctly translate an utterance into OMRQL, you can add an
utterance-to-OMRQL mapping to the query entity dataset as described in Provide
Training Data Through Utterances and Test and Repair. You can also add utterances to
help the skill know when to route an utterance to the flow that processes it as an SQL
execution (that is, translates to OMRQL and then sends an SQL query to the data
source).

Provide Training Data Through Names and Synonyms
To help a SQL Dialogs skill associate natural language phrases with the underlying data
structure (physical model), start by taking the identified utterances that the skill should handle
(the training corpus), and analyzing them to discover the different ways that end users refer to
the entities and attributes.

For example, suppose that you have these utterances in your training corpus:

• Show me the invoices with outstanding balances greater than zero.

• What's the amount due for reference 12656?

Here, you see that people use "outstanding balance" and "amount due" to refer to the
amount_remaining column. You also see that "reference" is one way people refer to
invoice_num.

In addition to the training corpus, you also might want to crowd-source utterances from your
target users to get more phrases and analyze those as well.

After you compile your list of the ways people refer to the entities and attributes, pick which
term you want to use for the primary name of each entity and attribute. They should be
names that are closest to the most common usages. When you choose the name, consider
that the out-of-the-box NLP model won't likely understand domain-specific relationships. For
example, it won't automatically understand that invoice number and reference refer to the
same thing. Because invoice number is commonly used and also is closest to other

Chapter 2
Train the Skill to Convert Natural Language Utterances into SQL

2-7

commonly used terms such as invoice no and bill number, you would make it the
primary name.

Treat the rest of the terms as synonyms. In the above example, you would add
reference, invoice no, and bill number to the synonym list.

Note that the primary name is what the skill uses for the result column headers and
labels.

Using your list, you create the training data in the Entities page.

• To set the entity's Primary Name and Synonyms, open the entity's
Configuration tab.

• To set the attribute's Primary Name and Synonyms, open the attribute's Natural
Language tab.

Note:

When processing utterances, the natural language parser doesn't consider
the physical model's canonical names, that is, it doesn't look at table and
column names. It only uses the natural language mappings that you define
using names and synonyms (the logical model).

Provide Training Data Through Value Lists
You can improve the natural language parser's accuracy by associating attributes with
value lists or dynamic entities. This helps the parser identify an attribute based on its
known values. You use Referenced Entity on the attribute's General Information tab
to associate the attribute with the reference entity's values. For value list entities, you
can automatically create the entity, import the data service's values, and associate it
as a referenced entity all in one step.

When deciding whether to use a value list or a dynamic entity to store the values,
consider whether the entity is open or closed.

• An open list is one that is infinite or dynamic (or both). For open lists, consider
creating and maintaining a dynamic entity instead of a value list. If you choose to
use a value list, then you should curate the list to make sure that it at least
contains the most commonly used values. For example, for a vendors list that
most likely grows over time, you'll want the list to include your most frequently
used vendors. This is because queries about a vendor without using the word
"vendor", such as "show the summary flag for Seven Corporation", won't match if
that value isn't in the value list. You thus increase the frequency of correct
resolutions by at least including the most frequently used values.

• A closed list is a static finite list. These are ideal for value list entities.

For both value lists and dynamic entities, add both plural and singular versions of
synonyms for each entity value to indicate the ways that end users will refer to the
value. This is especially important when the list contains values that end users don't
typically use. Take, for example, this list of valid payment statuses. Users will be much
more likely to use words like paid, unpaid, and partially paid than to use Y, N, and P.
Adding these words as synonyms helps to insure that the NLP recognizes that the
users are referring to the payment status attribute.

Chapter 2
Train the Skill to Convert Natural Language Utterances into SQL

2-8

Payment Status Values Synonyms

Y paid

N unpaid, not paid

P partial, partially paid, unpaid

When a term describes more than one entity value, then add that term as a synonym for each
one. For example, both N and P indicate that the invoice is unpaid. If you add "unpaid" as a
synonym for both statuses, then "show unpaid invoices" will retrieve invoices with a
payment_status value of N or P.

For dynamic entities, you create the entity and then use Referenced Entity on the attribute's
General Information tab to associate the attribute with the list.

For value lists, you can create a value list from the data service and associate with an entity
by following these steps:

1. On the Entities page, edit the attribute and go to the General Information tab.

2. Select Entity from the Type drop-down list.

3. Click If the desired entity doesn't exist, you can generate a value-list entity based
on the background mapping by clicking here. The value list is created and populated
from the data service, and the Referenced Entity points to the new value list.

Note that it won't extract more than 100 values but you can add more values manually.
Another option is to upload the values into a value list entity as described in "Import Value
List Entities from a CSV File" in Oracle Cloud Using Oracle Digital Assistant and then
associate the attribute with that value list entity.

4. Open the entity and add plural and singular versions of synonyms for the values, if there
are any.

5. Click Apply to save your changes.

Note:

If any value in the data service's physical table ends with a period, a question mark,
or spaces, then those characters are not included in the value list because they are
not allowed for canonical names. The value list's Fuzzy Matches switch is set to
On automatically. In this version, when this happens, you should switch it to Off.

Provide Training Data Through Utterances
As an AI trainer, you'll encounter natural languages utterances that the skill can't translate to
OMRQL. For example, the model may not be able to handle domain-specific synonyms that
don't seem to be closely related to the primary name. Another example is when the model is
not able to distinguish between two similar entities. When this happens, you can use the
query entities dataset to teach the skill how to correctly parse the utterance into OMRQL.

Adding to the dataset is often referred to as custom training. You use custom training to teach
the model to associate words and phrases with attributes, entities, and OMRQL keywords in
the context of a full utterance by mapping the utterance to OMRQL.

Chapter 2
Train the Skill to Convert Natural Language Utterances into SQL

2-9

For each scenario that you are fixing, start with 20 utterances and add more as
needed. Because too many examples might cause the model to over predict attributes
and operators, you should focus on a smaller set of diverse utterances rather than a
large set of similar, lesser quality ones.

All the values in the OMRQL statement must exactly match the database value and
format. Take, for example, the utterance "who is the employee whose name is Jones",
If the database values for the name attribute are all capital letters, then the name value
must also be all capital letters. That is "SELECT * FROM Emp WHERE name =
'JONES'".

When the utterance that you are mapping uses a synonym for the actual database
value, then that synonym must be defined for the value in a value list, and the OMRQL
must use the actual database value. For example, if the utterance is "show the
department whose location is the big apple", then "big apple" must be defined in the
dept_loc value list as a synonym for the value "NEW YORK", and the OMRQL must be
"SELECT * FROM Dept WHERE loc = 'NEW YORK'".

You can add utterances that contain absolute dates, such as "invoices due on 5 Jan
2022", but don't use utterances with relative dates or dates without the year. For
example, if the utterance is "invoices due today", then today's date would be hard-
coded into the OMRQL as SELECT * FROM invoices WHERE due_date =
'2022-01-01'.

Here are some best practices for custom training utterances:

• Balance the number of utterances: Some of the more complex scenarios may
need more utterances than the simple ones, but try to balance the number of
utterances per scenario.

• Balance the training of similar attributes and entities: If you have two similar
attributes, and you need to provide custom training data for one of them, then you
also should provide the same amount of training data for the other. When the
training data concentrates only on one of the similar attributes, then the model
might over predict that attribute over its counterpart. The same is true for similar
entities. For example, payment currency and invoice currency are similar
attributes. If payment currency is over-represented in the training data, the model
might predict payment currency even when the utterance asks for invoice
currency.

When you need to teach the model how to distinguish between two similar or
closely-related attributes, balance the weighting of importance by providing half
the utterances for one attribute and half the utterances for the other.

Vary the utterances that refer to these similar attributes. For example, here are
contrasting pairs of utterances to help the model distinguish between
amount_remaining and amount_paid:

– tell me the amount remaining for approved invoices

– show us the amount paid for approved invoices

– view total amount due to be paid to vendor AAD

– calculate the total amount that was paid to vendor AAD

– what is the amount due on invoices to vendor AAD

– list the paid amount on invoices to vendor AAD

• Balance the training of values that match primary names or synonyms: Say,
for example, that your model has a manager attribute and "manager" is also a

Chapter 2
Train the Skill to Convert Natural Language Utterances into SQL

2-10

value for the employee job attribute. If you want to add "How many managers" to the
query entities dataset, then you should balance this training data with utterances that use
the manager attribute, such as "Who is the manager of employee Adam Smith", as well as
utterances that use the manager job, such as "Show all managers". That way, the model
can learn to differentiate between the two usages. If you don't include examples for both
types of usage, then the skill might over predict one usage over the other.

• Diversify phrases: The best practices for diverse phrasing for custom data are similar to
those for intent utterances:

– Use full sentences.

– Use different verbs. For example: view, list, show, tell, and see.

– Use various synonyms and paraphrases in addition to the entity or attribute name.

– Use different pronouns. For example: show me, can we see, tell us, I want.

– Vary the sentence structure. For example, put the attribute value near the beginning,
middle, and end of the sentences.

– If you have utterances with an aggregation, such as AVG, then also add utterances
with other operators as well.

– If possible, use different clauses, such as group by and where clauses with AND and
OR conditions.

• Diversify Values: When you use more than one value in your scenario's utterances, the
model is better able to recognize different values. Include values with different word
lengths. Include some values with special characters such as '/' and "-". Include a few
values with special keywords such as 'and'.

• Include a mix of known and unknown values. For value-list attributes, use a
representative set of attribute values (but not all) to train that value-list matches are
important signals. Also, for value lists that aren't closed lists, include values that aren't in
the value list to teach it to also associate particular phrasings with the attribute.

To add a mapped utterance to the query entities dataset (custom training data):

1. If the Train button has a red badge, click .

Note that when the skill doesn't have custom training data, you can train with either
Trainer Ht or Trainer Tm. However, after you add custom training data, Trainer Tm
produces more accurate results.

2. In the Entities page, go to the Dataset tab and click Query Entities.

3. Click Add Utterance.

The Add Utterance to Dataset dialog displays.

4. Enter the utterance and click Next.

The dialog displays the OMRQL query for the utterance. If it can't translate the utterance
into the query, the query will be blank.

Note that if the skill hasn't been trained, it can't translate the utterance into an OMRQL
query.

5. Review the query and correct it if it's wrong.

For OMRQL keywords and examples, see OMRQL Reference.

6. Click Add to add the mapped utterance to the dataset.

Chapter 2
Train the Skill to Convert Natural Language Utterances into SQL

2-11

Configure How Entity Rows and Attributes are Displayed
Here are the things you can do to control when and how the entity rows and attributes
are displayed in the results:

• Define an Entity's Default Sort Order

• Define Which Attributes to Include When Not Specified by the Utterance

• Define Which Attributes to Always Include in the Results

• Add a Custom Attribute

Typically, the database expert and the conversation designer work together on this
task, as one has database schema expertise and the other has familiarity with user
expectations.

You can test your changes by clicking Preview to open the conversation tester and
entering an utterance to retrieve the appropriate data.

Tip:

Most of the changes that you make will require natural language parser
(NLP) retraining. When you test your changes, if the Train icon has a red

badge (), you'll first have to click Train and complete the training
process.

Define an Entity's Default Sort Order
You can specify a default sort order for the skill to use whenever the user's utterance
doesn't specify one. To set the default, go to the entity's General tab, click Add
Attribute Order, select an attribute and select its order (Ascending or Descending).
You can continue clicking Add Attribute Order to add more attributes to the sort
order.

Define Which Attributes to Include When Not Specified by the
Utterance

If the utterance doesn't name any attributes, then you probably want the results to
include some essential fields. You can use Default Attributes in the entity's
Configuration tab to specify these fields. For example, for an invoices entity, you
might want to display invoice_num, invoice_date, and invoice_amount when no
attributes are named.

Note that you can't add attributes of type query entity to the default attributes list.

Define Which Attributes to Always Include in the Results
When an utterance identifies specific attributes, you might want the result to include
not only the requested attributes, but also some context. For example, if someone
enters "show invoice amounts", the data won't make sense if it only shows the
invoice_amount values, and not some identifying context like invoice_num. Use

Chapter 2
Configure How Entity Rows and Attributes are Displayed

2-12

Minimum Attributes on the entity's Configuration tab to identify the minimum attributes.

You cannot add attributes of type query entity to the minimum attributes list.

Add a Custom Attribute
You can add your own custom attributes to display additional information, such as derived or
calculated values.

1. From the Attributes tab on the entity page, click + Add Attribute, and provide a
canonical name and type.

2. On the Natural Language tab, provide a primary name and optionally add synonyms.

3. On the Backend Mapping tab, select SQL Expression and add the expression.

If the expression references a column, use the column name from the physical model
(database schema) and prepend ${alias}. For example, for an invoices entity, you might
add an amount_to_pay attribute with the expression ${alias}invoice_amount + $
{alias}discount_taken.

You can use this table to determine what type to use for the attribute:

Type When to Use Examples

Number The values are only numeric and
are not restricted to a set list.

Numeric employee ID, invoice
amount

Date The value is a date without a
time.

Hire date

Date/time The value can have both a date
and a time.

Departure date and time

Entity The attribute is associated with a
value list entity. Note that if the
value list enumerates all the valid
values (that is, a closed list) and
the values are rarely used in
natural language utterances, you
should add synonyms for the
values in the list.

status (closed), supplier names
(open)

String Use for text that can contain
numbers and characters where it
doesn't make sense to associate
with a value list.

Alpha-numeric invoice number,
product description

Query entity Only use when you need to link
to another query entity.

No examples

Boolean Do not use. Not applicable

Define Query Rules
Here's how you use an entity's settings on the Entities page to control the ways in which
end-users can ask about the data and how to evaluate the results.

You can test your changes by clicking Preview to open the conversation tester and entering
an utterance to retrieve the appropriate data.

Chapter 2
Define Query Rules

2-13

Tip:

Some of the changes that you make will require natural language parser
(NLP) retraining. When you test your changes, if the Train icon has a red

badge (), you'll first have to click Train and complete the training
process.

• Identify Which Attribute to Use for Measuring or Comparing: If the utterance
asks to compare entity items to a number or asks to rank the entities using a
superlative like greatest or least, which measurable attribute, if any, should the skill
use to perform the comparison? Say, for example, the users ask about the
greatest supplier, you might want the skill to use the rating attribute for
comparisons. To specify which attribute to use for measuring or comparing, go to
the entity's General tab and select the attribute from the Measure By drop-down.
If the ranking is opposite of numerical order, such as 5 being better than 1, then
you should also set the attribute's Invert Comparison to true on its General
Information tab.

• Specify How to Compare Measurable Attributes: By default, measurable
attribute values are compared using numerical order, where 1 is less than 5.
However, sometimes it is more appropriate to invert the comparison where 1 is
better than 5. For example, when looking at race results, the 5 best times are the
lowest values in the results. To invert comparisons for an attribute, set the
attribute's Invert Comparison to true on its General Information tab. Note that
this setting also affects the attribute's sort order.

• Allow Partial Matching for Strings: If you expect that users will frequently leave
out leading or trailing characters or values, such as "manager" instead of
"department manager", then consider enabling partial matching. When partial
matching is turned on, the generated SQL "where clause" uses upper (<column-
name>) LIKE UPPER(%<string>%) instead of = <string>. You can enable partial
matching on the attribute's General Information tab. Note that the partial
matching behavior for entity attributes is different from fuzzy matching behavior for
value lists.

Enable Natural Language Queries for Denormalized
Columns

If you have a denormalized attribute with a name that uses a pattern to identify the
attributes that the column represents, such as PTD_LBR_CST, you can make the
denormalized attribute understandable to the natural language model by mapping a
normalized entity to it through the use of a column expansion backend mapping.

For example, say that you have a costToSales query entity with the attributes
PTD_LBR_CST, QTD_LBR_CST, YTD_LBR_CST, PTD_SUB_CST, QTD_SUB_CST,
YTD_SUB_CST.

To enable the skill to associate natural language queries with these attributes, you
create a Cost query entity that contains the uniquely-identifying attributes, such as
project_num, plus period, type, and cost. The period and type attributes are of type
entity and reference the period (PTD, QTD, YTD) and type (LBR, SUB) value lists. The
cost attribute's backend mapping is a column expansion with the expression "$

Chapter 2
Enable Natural Language Queries for Denormalized Columns

2-14

{period}_${type}_CST". The final step is to add the cost attribute to the costToSales entity,
which references the Cost query entity to link the two entities.

When the query is "what are my YTD labor costs", the backend column expansion mapping
tells the skill to retrieve the value from the YTD_LBR_CST attribute, which is in the
costToSales entity (assuming that the necessary primary names and synonyms are set).

Test and Repair
As you define and add training data to your entities and attributes through names, synonyms,
value lists, and the query entities dataset, you'll want to test how well the training data helps
the natural language translates the end user's utterances into SQL queries.

Tip:

If the Train icon has a red badge (), you'll have to click Train and complete
the training process before you can test the utterances.

The Entities page has a Test Queries link that opens the query tester for trying out the your
use-case utterances. In the tester, you can enter your test utterance and review the OMRQL
query that the skill generated.

If the OMRQL query isn't correct, then you'll need to repair the skill by using the appropriate
fix:

• Add synonyms for an entity or attribute. See Provide Training Data Through Names and
Synonyms.

• Associate an attribute with a value list or add items to a value list. See Provide Training
Data Through Value Lists.

Chapter 2
Test and Repair

2-15

• Add the utterance and corrected OMRQL to the query entities dataset to teach the
model to associate words and phrases with attributes, entities, and OMRQL
keywords in the context of a full utterance. See Provide Training Data Through
Utterances.

If the query tester reports that there's insufficient training data, first check if you
introduced a typo or your query is too vague. These can't be resolved by training.
Otherwise, you might be able to resolve insufficient training data by adding the
utterance to the query entities dataset. Here are some examples of the kinds of
insufficient training data issues that you might be able to resolve by adding to the
dataset.

• Attribute confusion: For example, does status refer to payment status or
approval status.

• Attribute-Value confusion: For example, how many managers are there (is it
referring to the manager attribute's value or the employee's job value?).

• Search values that are also keywords or operators: For example,
distinguishing the synonym "total" from the operator SUM.

If the OMRQL is valid, you can test how the skill translates the OMRQL to SQL by
clicking Click to test this in the conversation tester. The Conversation Tester
displays with the results.

In the conversation tester, you can see the OMRQL and SQL statements on the SQL
Dialogs tab.

Monitor and Improve
The skill's Insights page provides several metrics you can use to measure how well
your SQL Dialog skill is performing and to determine where to make improvements.

As a business analyst, you might be interested in these data query metrics on the
Overview tab:

• Performance: Conversations Trend by Status (Line) shows the number of
conversations over a given time period and whether the traffic is tending up, down,
or sideways.

Chapter 2
Monitor and Improve

2-16

• The ratio between Correct Queries and Incorrect Queries indicates how satisfied the
bot users are with the accuracy of translating utterances to SQL queries.

• The ratio between Completed and Incomplete conversations shows the extent to which
technical issues impact the users' experiences.

• The ratio between Total Conversations and Unresolved (OOD/OOS) Queries helps
measure the extent to which the skill meets the end users expectations.

• Both Conversations Trend by Type and the ratio between Total Conversations and
Data Queries Conversations show the proportion of utterances that are SQL queries.

• Data Query Entities show which entities are queried the most.

As an AI trainer, you can examine the user messages on the Conversations tab to discover
areas for improvement. For example, you can review these user messages:

• Type: Intent, Outcome: Incomplete user messages indicate problems with translating
the utterance to an SQL query. Often, you can fix these issues by adding synonyms or,
for more complex queries, adding mapped utterances to the query entities dataset. Note
that you also can see these messages by selecting System Handled Errors from the
Errors drop-down list.

• Type: Intent, Intent: unresolvedIntent user messages indicate both out of scope
utterances and utterances that the skill doesn't recognize as a data query utterance. For
the utterances that are valid data queries but the skill doesn't recognize as such, you
often can fix the problems by adding synonyms or mapping the utterances to OMRQL in
the query dataset.

• Type: Data Query, Entities shows the user messages by query entity.

• Type: Data Query, Outcome: Incorrect shows the messages that the users thought
returned incorrect results. You should verify that the results are incorrect, and, if so, add
synonyms, value lists, and query dataset entries as appropriate.

Chapter 2
Monitor and Improve

2-17

3
OMRQL Reference

Here are the keywords that you can use when you define OMRQL queries for the utterances
that you add to the query entities dataset. Note that you use the canonical names and not
primary names and synonyms

Component OMRQL Keywords OMRQL Example Constraints

Basic Components • SELECT
• *
• FROM

SELECT * FROM Emp The OMRQL can't name
attributes that aren't
referenced in the
utterance.

Filtering WHERE
Currently, you can't add
custom training data that
filters by date or
datetime.

SELECT * FROM Emp
WHERE comm > 0

None.

Linking Entities (see
the information about
link attributes below)

. (period) SELECT * FROM Emp
WHERE Dept.loc =
'NYC'

None.

Ordering • ORDER BY
• LIMIT
• ASC
• DESC

SELECT name FROM
Emp ORDER BY
hiredate DESC LIMIT 10

The OMRQL can order
data using ORDER BY
<ATTR> [LIMIT N] only if
the utterance includes
the word order or its
natural language
synonyms such as
sorted, ordered, highest,
and smallest.

Aggregate Functions • COUNT
• DISTINCT
• AVG
• SUM
• MIN
• MAX

SELECT AVG(sal) from
Emp

The OMRQL can
contain DISTINCT only
if the utterance contains
that word or a natural
language synonym such
as different or unique.

Grouping • GROUP BY
• HAVING

SELECT COUNT(*)
FROM Emp GROUP BY
Dept.loc HAVING
Dept.loc = 'NYC'

None.

3-1

Component OMRQL Keywords OMRQL Example Constraints

Comparison Operators • =
• !=
• <>
• >
• >=
• <
• <=
• LIKE
• NOT LIKE
• BETWEEN
• IN
• NOT IN

SELECT * from Dept
WHERE name IN
('Sales', 'HR')

For the >, >=, <, and <=
operators, the utterance
must contain an
equivalent natural
language synonym such
as greater than, at least,
less than, and at most.
If the utterance doesn't
contain an operator
synonym, then the
OMRQL must contain =.

The OMRQL can
contain LIKE only if the
utterance contains that
word or a natural
language synonym such
as includes, contains, or
substring.

The OMRQL can
contain BETWEEN only
if the utterance contains
that word or a natural
language synonym such
as in the range of.

Logical Operators • AND
• OR
• NOT

SELECT name FROM
Emp WHERE sal >
100000 AND role = 'VP'

None.

All the values in the OMRQL statement must exactly match the database value and
format. Take, for example, the utterance "who is the employee whose name is Jones",
If the database values for the name attribute are all capital letters, then the name value
must also be all capital letters. That is "SELECT * FROM Emp WHERE name =
'JONES'".

When the utterance that you are mapping uses a synonym for the actual database
value, then that synonym must be defined for the value in the value list, and the
OMRQL must use the actual database value. For example, if the utterance is "show
the department whose location is the big apple", then "big apple" must be defined in
the dept_loc value list as a synonym for the value "NEW YORK", and the OMRQL
must be "SELECT * FROM Dept WHERE loc = 'NEW YORK'".

Here are some examples of how to write OMRQL for your utterances:

Utterance SQL OMRQL Comments

Show me all
employees who
work as a clerk

SELECT * FROM
Emp WHERE job
= 'CLERK'

SELECT * FROM
Emp WHERE job
= 'CLERK'

OMRQL is
identical to SQL.

Chapter 3

3-2

Utterance SQL OMRQL Comments

Show me all
employees who
work in sales
department

SELECT * FROM
Emp AS T1 JOIN
Dept AS T2 ON
T1.deptno =
T2.deptno
WHERE
T2.dname =
'SALES'

SELECT * FROM
Emp WHERE
dept.dname =
'SALES'

Instead of a
JOIN, use
"link_attribute.attri
bute_name" to
refer to an
attribute from
another entity.

Adams is a
member of what
department?

SELECT * FROM
Dept AS T1 JOIN
Emp AS T2 ON
T1.deptno =
T2.deptno
WHERE
T2.ename =
'Adams'

SELECT * FROM
Dept WHERE
emp.ename =
'ADAMS'

Instead of a
JOIN, use
"link_attribute.attri
bute_name" to
refer to an
attribute from
another entity.

What is the
department
location and job
role of employee
Adams

SELECT T1.LOC,
T2.JOB FROM
DEPT T1 JOIN
EMP T2 ON
T1.DEPTNO =
T2.DEPTNO
WHERE
T2.ENAME =
'ADAMS'

SELECT loc,
emp.job FROM
Dept WHERE
emp.ename =
'ADAMS'

Notice how the
OMRQL is
simpler to write
than the SQL.

How many
employees are
there for every
job role?

SELECT
COUNT(*), job
FROM Emp
GROUP BY job

SELECT
COUNT(*), job
FROM Emp
GROUP BY job

OMRQL is
identical to SQL.

Which employee
has the highest
salary?

SELECT * FROM
Emp ORDER BY
salary DESC
LIMIT 1

SELECT * FROM
Emp ORDER BY
salary DESC
LIMIT 1

OMRQL is
identical to SQL.

Show employee
name and
department name
ordered by the
salary in
ascending order

SELECT
T1.ename,
T2.dname FROM
Emp AS T1 JOIN
Dept AS T2 ON
T1.deptno =
T2.deptno
ORDER BY
T1.sal ASC

SELECT ename,
dept.dname
FROM Emp
ORDER BY
salary ASC

Notice how the
OMRQL is
simpler to write
than the SQL.

With the exception of linking entities, the OMRQL components are similar to SQL. Instead of
an SQL JOIN, you use a pair of link attributes to link one entity to another. Attribute links have
primary names and synonyms that define the relationship between the entities. For example
an employee/department attribute link with a 1-1 relationship can have a primary name
"department" and synonyms "works in", "belongs to", and "team". A department/employees
attribute link with a 1-many relationship can have a primary name "employees" and synonyms
"members", and "workers".

Besides the typical primary key/foreign key link attributes you also can have these types of
link attributes:

Chapter 3

3-3

• Multiple link attributes from one entity to another that define multiple semantic
relationships.

• A link attribute from an entity to itself that implies a self join.

• A link attribute for an intersection table due to a many-to-many join

Chapter 3

3-4

	Contents
	Abstract
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions
	Preface
	Documentation Accessibility
	Preface
	Documentation Accessibility

	1 Basic Concepts
	How SQL Dialogs Work
	Supported Queries

	2 Get Started
	SQL Dialogs Workflow
	Connect to the Data Service
	Create the SQL Dialog Skill
	Create Query Entities to Model the Data Service
	Train the Skill to Convert Natural Language Utterances into SQL
	Provide Training Data Through Names and Synonyms
	Provide Training Data Through Value Lists
	Provide Training Data Through Utterances

	Configure How Entity Rows and Attributes are Displayed
	Define an Entity's Default Sort Order
	Define Which Attributes to Include When Not Specified by the Utterance
	Define Which Attributes to Always Include in the Results
	Add a Custom Attribute

	Define Query Rules
	Enable Natural Language Queries for Denormalized Columns
	Test and Repair
	Monitor and Improve

	3 OMRQL Reference

