
Oracle® Cloud
Using Oracle Digital Assistant

24.04
F95943-01
April 2024

Oracle Cloud Using Oracle Digital Assistant, 24.04

F95943-01

Copyright © 2018, 2024, Oracle and/or its affiliates.

Primary Authors: John Bassett, Patrick Keegan, Chris Kutler

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Audience li

Documentation Accessibility li

Diversity and Inclusion li

Conventions li

Part I Overview and Getting Started

1 Overview of Digital Assistants and Skills

What are Digital Assistants? 1-1

What a Digital Assistant Does 1-1

What Are Skills? 1-2

Basic Concepts 1-2

Platform Features and Capabilities 1-3

Register for Email Notifications 1-4

2 Users, Groups, and Policies

Digital Assistant Policies 2-2

Resource-Types 2-2

Verbs 2-3

Example Set of Policies 2-3

Create a Compartment 2-6

Create New IAM Users 2-6

Create Groups 2-6

Add IAM Users to a Group 2-7

Map IDCS Users to an IAM Group 2-8

Create Policies 2-8

Setup and Policies for Oracle Functions 2-9

Create Compartment for Functions and Network Resources 2-9

Set Up a Virtual Cloud Network (VCN) 2-10

iii

Set Up Network Access Permissions 2-10

Set Up Permissions for Functions Developers 2-11

Create a Dynamic Group 2-12

Example: Dynamic Group for a Single Instance 2-12

Create a Policy to Access Oracle Functions 2-13

Policies for OCI Language 2-13

Role-Based Access and Identity Domains 2-15

Create an Identity Domain 2-15

User Roles in IAM 2-15

Create a User in an Identity Domain 2-16

Create a Group in an Identity Domain 2-16

Assign a Role in an Identity Domain 2-17

3 Order the Service and Provision an Instance

Digital Assistant Product Types 3-1

Place an Order for Oracle Digital Assistant 3-1

Activate a Digital Assistant Subscription 3-2

Set Up Digital Assistant as an Individual Service 3-2

Create an Oracle Digital Assistant Service Instance 3-3

Access the Service Instance from the Infrastructure Console 3-4

Get the Service Instance URL 3-4

Sign-In Options 3-5

Service Limits 3-5

View Service Limits in the Infrastructure Console 3-5

Service Quotas 3-6

Example Quota Policy for Oracle Digital Assistant 3-6

Instance Shapes and Rate and Storage Limits 3-6

Recipe for Quick Setup and Provisioning 3-7

Oracle Fusion Cloud Applications and Digital Assistant 3-10

Linking of Digital Assistant Instances 3-10

Manually Link Digital Assistant Instances 3-11

Administration of Linked Instances 3-12

Unlink an Instance 3-12

Migration from Gen 1 to Gen 2 Infrastructure 3-12

IDCS Application in Migrated Instances 3-12

Differences in Migrated Instances 3-12

Manage User Access in a Migrated Instance 3-14

IP Addresses for the Allowlist 3-15

iv

4 Service Administration

Manage Features 4-1

Audit Trail 4-1

Example: Searching for Delete Operations 4-1

Events for Digital Assistant Instances 4-2

Event Types 4-2

Example Digital Assistant Service Instance Event 4-3

Metrics, Alarms, Notifications, and Billing 4-3

Digital Assistant Metrics 4-4

View Metrics for a Single Instance 4-5

View Metrics for All Instances 4-6

Monitor Billing 4-6

Stop and Start Instances 4-6

Delete an Instance 4-7

Break Glass 4-7

Temporary Access Approval 4-8

Provide Your Own Key 4-8

Create and Import Your TDE Master Key 4-8

Update the Key 4-9

Disaster Recovery 4-10

Cross-Region Failover 4-10

Set Up Failover 4-11

Private Endpoint 4-11

Set Up a Private Endpoint 4-11

Permissions for Private Endpoints 4-12

Create a Policy to Access a Private Endpoint 4-12

Create a Private Endpoint 4-13

Add a Service for the Private Endpoint in Digital Assistant 4-13

SCAN Proxies for Private Endpoints 4-13

Further Administration Information 4-14

Programmatic Creation and Management of Skills and Digital Assistants 4-14

Packaged Skills 4-14

Importing and Managing Packages 4-15

5 Get Started

Create a Digital Assistant 5-1

Create a Skill 5-1

Skill Store 5-1

Access the Skill Store 5-1

v

Install Update from the Skill Store 5-2

6 Sample Digital Assistants and Skills

Part II Digital Assistant Development Blueprint

7 Preparation is the Key to Success

CDX Workshop 7-2

Identify Good Digital Assistant Use Cases 7-2

Define Digital Assistant Success 7-3

Identify What the Digital Assistant Should Not Do 7-3

In-Domain but Out-of-Scope 7-3

Not Suitable for the Channel 7-4

Shape Your Conversational Mindset 7-4

Define a Digital Assistant Persona 7-5

Identify the Team Roles You Need for Bot Development 7-5

Coversation Designer 7-5

Conversation Message Writer 7-6

Model Designer 7-7

Break Down a Big Problem Into Small Ones 7-7

Use Case: Break Expense Functionality Into Multiple Skills 7-7

Splitting Up Intents 7-9

Prepare for Failure 7-9

Small Talk in Digital Assistant Conversations 7-10

Checklist of Preparation Steps 7-10

Learn More 7-10

8 Train Your Model for Natural Language Understanding

Create Intents 8-2

The Two Types of Intents 8-2

Consider a Naming Convention 8-2

Use Descriptive Conversation Names 8-3

Use the Description Field 8-3

Define the Scope of Your Intents 8-3

Example: Intent Scope Too Narrow 8-4

Example: Intent Scope Too Broad 8-4

Create Intents for What You Don't Know 8-4

Create Entities for the Information You Want to Collect from Users 8-5

vi

Other Entity Features 8-5

Consider a Naming Convention 8-6

Use the Description Field 8-6

Create Utterances for Training and Testing 8-6

Training Utterances vs. Test Utterances 8-6

How to Build Good Utterances 8-7

What to Avoid When Writing Utterances 8-8

How to Get Started with Writing Utterances 8-8

How Many Utterances to Create 8-8

What Level of Confidence Should You Aim For? 8-9

Checklist for Training Your Model 8-9

Learn More 8-10

9 Additional Languages

Translation Service vs. Multilingual NLU 9-1

Use Resource Bundles Everywhere 9-2

Why Resource Bundles 9-2

About Resource Bundle Strings 9-2

Consider a Naming Convention for Resource Bundle Key Names 9-3

Use Resource Bundles for Keywords 9-4

Use the ICU Message Format 9-4

Impact of Second Language Support on the Bot Persona 9-4

Example: Handling Regional Differences in Messages 9-4

Checklist for Additional Languages 9-5

Learn More 9-5

10

Model Testing

Create a Baseline 10-1

Perform Positive and Negative Testing 10-1

Checklist for Model Testing 10-2

Learn More 10-2

11

Conversational Design

Orient Users 11-1

Welcome 11-1

Help 11-2

Letting Users Exit 11-2

Hints and Cues 11-2

Show Quick Responses as Action Buttons 11-2

vii

Ensure Mutual Understanding 11-3

Use Plain Language 11-3

Don't Expect Users to Know the Magic Words 11-3

Give Feedback Within the Conversation 11-4

Disambiguate User Input 11-4

Provide Alternating Prompts 11-4

Gradually Disclose Additional Information 11-5

Varied Responses and Progressive Disclosure 11-5

Confirmation and Reflective Listening 11-5

Close the Gap that Exists Between AI and Human Understanding 11-6

Good Manners 11-6

Small Talk 11-6

Don't Assign Blame 11-7

Use of Empathy 11-7

Brevity 11-7

Keep Interactions Short 11-7

Don't Design Like It's a Web App 11-8

Consider Multi-Language Support 11-8

Checklist for Conversational Design 11-9

Learn More 11-9

12

Channel-Specific Considerations

Consider Channel Limitations When Designing Your Chatbot 12-1

Design Your Bot for a Single Channel 12-2

Design your Bot for the Highest Common Denominator 12-2

Design Your Bot for All Channels and Optimize for a Few 12-2

Implementing Channel-Specific Bot Responses 12-3

Checklist for Channel Considerations 12-3

Learn More 12-4

13

Implement Conversation Flows

Use Visual Mode 13-1

Dialog-Driven Conversations 13-1

Use a Naming Convention for Dialog Flow State Names 13-2

Best Practices for Using Variables 13-2

Using Keywords on Action Items 13-2

Consider NLU-Based Action Menus 13-3

Interrupting a Current Conversation for a New Conversation 13-4

Model-Driven Conversations 13-5

viii

Recommended Approach 13-5

How to Design Model-Driven Conversations 13-6

Resource Bundles for Messages and Prompts 13-6

Apache FreeMarker Best Practices 13-6

Checklist for Implementing Conversations 13-7

Learn More 13-7

14

Custom Code and Backend Integration

Custom Dialog Flow Components 14-2

Use Good Names for Components and Input Parameters 14-2

Avoid Making Assumptions in Your Code 14-3

Think Library 14-3

How to Write Log Messages 14-4

Manage Your Component's Internal State 14-4

Validate Input Parameters 14-5

Use the MessageFactory Class for Component Messages 14-5

Checklist for Custom Components 14-5

Learn More 14-6

Entity Event Handlers 14-6

Add Missing Functionality to Resolve Entities Components 14-6

Manage State 14-6

How to Write Log Messages 14-7

Displaying User Messages 14-7

Checklist for Entity Event Handlers 14-7

Learn More 14-7

Which Component Should You Use? 14-7

Using Resource Bundles for CCS and EEH 14-8

How to Use Named Parameters 14-9

Our Recommendation Regarding Resource Bundles and Custom Components 14-10

Should You Migrate to Entity Event Handlers? 14-10

Best Practices When Migrating to Entity Event Handlers 14-10

15

Build Your Digital Assistant

About Training of unresolvedIntent in Your Skills 15-1

Digital Assistant is the Home of your Persona 15-2

Resource Bundles 15-2

Disambiguation and Interruption Dialogs 15-2

Checklist for Building Your Digital Assistant 15-3

ix

Learn More 15-3

16

Digital Assistant Testing

Utterance Testing 16-1

Conversation Testing 16-2

User Testing of Digital Assistants 16-2

Checklist for Digital Assistant Testing 16-3

Learn More 16-3

Part III Digital Assistants

17

Create, Version, and Publish Digital Assistants

Create from Scratch 17-1

Clone 17-2

Create by Import 17-3

Publish 17-3

Create New Version 17-3

Delete 17-4

Export a Digital Assistant to Another Instance 17-4

Add a Skill to a Digital Assistant 17-5

Maximum Intents and Training Utterances 17-5

18

Personalize Your Digital Assistant

Invocation Name 18-1

Modify a Skill's Invocation Name 18-1

Invocation Name Guidelines 18-1

Explicit Invocation Patterns 18-2

System Intents for Digital Assistants 18-2

Specify States for a Digital Assistant's System Intents 18-2

Add Utterances 18-4

Pre-Seeded Training Data in System Intents 18-4

Disable Pre-Seeded Training Data 18-5

Customize Messages and Prompts 18-5

System Variables for Digital Assistants 18-6

Limit the Frequency of Prompts 18-6

Disable a Skill 18-8

Hidden Skills 18-9

Hide a Skill 18-9

x

Image-Initiated Flows 18-9

Set Values for Custom Parameters 18-10

Auto-Numbering for Digital Assistants 18-10

Disable Selection of Old Actions in a Digital Assistant 18-11

19

Tune Routing Behavior

Train the Digital Assistant 19-1

What to Test 19-1

The Routing Model 19-2

Start, Welcome, and Help States 19-2

Specify Start, Welcome, and Help States 19-4

Explicit Invocation 19-4

Context Awareness 19-5

help and unresolvedIntent Intents 19-6

exit Intent 19-6

Skill Groups 19-7

Group Context vs. Skill Context 19-7

Delineating Skill Groups 19-7

Naming Skill Groups 19-8

Common Skills and Skill Groups 19-8

Examples: Context Awareness within Skill Groups 19-8

Example: Context Awareness among Skill Groups 19-9

Add Skill Groups 19-9

Context Pinning 19-10

Win Margin and Consider All 19-11

Interruptions 19-11

Enforce Calls to a Skill's System.Intent Component 19-12

Route Directly from One Skill to Another 19-13

Suppress the Exit Prompt 19-13

Routing Parameters 19-13

Adjust Routing Parameters 19-14

The Routing Tester 19-15

Illustrations of Routing Behavior 19-16

Example: Route to Flow 19-16

Example: Disambiguating Skill Intents 19-17

Example: Explicit Invocation 19-18

Example: Context Awareness 19-20

Tutorial: Digital Assistant Routing 19-22

Test Cases for Digital Assistants 19-22

Test Routing with the Utterance Tester 19-23

xi

Quick Tests 19-23

Test Cases 19-23

Create a Routing Test Case 19-23

Add Test Cases for System Intents 19-24

Import Test Cases for Digital Assistant Test Suites 19-24

20

Languages and Digital Assistants

Choosing Between Native Language Mode and Translation Service Mode 20-1

Native Language Support in Digital Assistants 20-2

Set Up a Digital Assistant in Native Language Mode 20-2

Complete and In-Progress Languages 20-3

Switch from a Translation Service to Native Language Support 20-3

Language Detection in Digital Assistants with Natively-Supported Languages 20-4

Digital Assistants with Translation Services 20-4

Set Up a Non-English Single-Language Digital Assistant in Translation Service Mode 20-4

Set Up a Multi-Language Digital Assistant in Translation Service Mode 20-5

Add a Translation Service to a Digital Assistant 20-5

Enable Language Detection in Translation-Enabled Digital Assistants 20-6

Translating Output Text 20-7

Explicit Invocation in Translated Digital Assistants 20-7

Conditions for Adding a Skill to a Digital Assistant 20-7

Resource Bundles for Digital Assistants 20-8

Translatable Strings in Digital Assistants 20-8

Create and Edit Resource Bundle Keys 20-9

Reference Resource Bundle Keys for Help Cards in a Digital Assistant 20-10

Reference Resource Bundle Keys for Prompts and Messages 20-10

System Variables in Resource Bundles 20-11

Export and Import Resource Bundles 20-11

Resource Bundle Entries for Digital Assistant Configuration Settings 20-12

Sample Resource Bundle Entries 20-15

21

Digital Assistant Insights

Chat Session Metrics for Digital Assistants 21-1

Conversation Metrics for Digital Assistants 21-2

Report Types 21-3

Review the Overview Metrics and Graphs 21-3

View the Conversations Report 21-6

Apply the ODA Retrainer 21-7

PII Anonymization 21-8

xii

Enable PII Anonymization 21-8

Create an Export Task 21-9

Live Agent Metrics for Digital Assistants 21-10

Live Agent Conversation Metrics for Digital Assistants 21-11

Events Insights 21-12

Inbound Events 21-12

Outbound Events 21-13

Part IV Skills

22

Create, Configure, and Version Skills

Create from Scratch 22-1

Clone 22-2

Create by Import 22-3

Create New Version 22-3

Dialog Mode 22-4

Configure for Use In a Digital Assistant 22-5

Delete 22-5

Publish 22-5

Export a Skill to Another Instance 22-6

The Skill Development Process 22-6

Validate Your Work 22-8

Names You Can't Use for Skills 22-9

23

Platform Version

Lifecycle Phases of Platform Versions 23-1

Change a Bot's Platform Version 23-2

Best Practices for Managing Platform Versions 23-2

New Features and Changes in Platform Versions 23-3

Extended Bots and Platform Versions 23-3

Platform Versions in Migrated Instances 23-3

24

Intents

Create an Intent 24-1

Add Entities to Intents 24-3

Value Agnostic Intent Entities 24-5

Import Intents from a CSV File 24-6

Export Intents to a CSV File 24-8

xiii

Which Training Model Should I Use? 24-8

Trainer Tm 24-9

Trainer Ht 24-10

Build Your Training Corpus 24-10

Guidelines for Trainer Tm 24-11

Guidelines for Trainer Ht 24-12

Limits for Training Data Shape and Size 24-13

Export Intent Data 24-14

Intent Training and Testing 24-14

Testing Utterances 24-14

The Utterance Tester 24-14

Quick Tests 24-16

Test Cases 24-16

Manage Test Cases 24-17

Create Test Suites 24-18

Create Utterance Test Cases 24-19

Add Test Cases from the Utterance Tester 24-19

Create a Test Case 24-19

Import Test Cases for Skill-Level Test Suites 24-21

Create Test Runs 24-22

Test Run Summary Report 24-26

Intents Report 24-28

Test Cases Report 24-33

Exported Test Runs 24-37

Failure Testing 24-37

Similar Utterances 24-38

Tutorial: Best Practices for Building and Training Intents 24-42

Reference Intents in the Dialog Flow 24-42

Tune Intent Resolution Before Publishing 24-42

How Confidence Threshold Works 24-43

How Confidence Win Margin Works 24-43

Answer Intents 24-44

Generate Answer Intents from an Existing Knowledge Resource 24-44

Create a Single Answer Intent 24-46

Create Answer Intents from a CSV File 24-47

DO's and DON'Ts for Conversational Design 24-47

Intent Design and Training 24-47

Conversational User Experience 24-48

Test Strategies 24-49

Project Considerations 24-49

xiv

Names You Can't Use for Intents 24-50

25

Entities

Built-In Entities 25-1

Built-In Entities and Their Properties 25-2

The DATE_TIME Entity 25-14

Attributes for Each DATE_TIME Subtype 25-15

DATE Subtype Attributes 25-15

TIME Subtype Attributes 25-17

DATETIME Subtype Attributes 25-18

DURATION Subtype Attributes 25-18

INTERVAL Subtype Attributes 25-19

RECURRING Subtype Attributes 25-21

Ambiguity Resolution Rules for Time and Date Matches 25-23

Resolution Rules for Matches to the Date Subtype 25-25

Resolution Rules for Matches to the Time Subtype 25-26

Locale-Based Entity Resolution 25-27

Locale-Based Date Resolution 25-28

Locale-Based Currency Resolution 25-29

Locale-Based Number Resolution 25-29

Custom Entities 25-30

Composite Bag 25-30

ML Entities 25-30

Value List Entities 25-31

Dynamic Entities 25-31

Regular Expression 25-32

Entity List 25-32

Derived 25-32

Create Entities 25-32

Value List Entities for Multiple Languages 25-36

Word Stemming Support in Fuzzy Match 25-36

Create ML Entities 25-37

Exclude System Entity Matches 25-41

Import Value List Entities from a CSV File 25-41

Export Value List Entities to a CSV File 25-43

Create Dynamic Entities 25-44

Guidelines for Creating ML Entities 25-45

ML Entity Training Guidelines 25-48

ML Entity Testing Guidelines 25-49

Configure Composite Bag Entities 25-49

xv

Create a Composite Bag Entity 25-50

Enhanced Slot Filling 25-51

Add Prompts 25-51

Updating Slotted Values with Apache FreeMarker Expressions 25-52

Enable Out-of-Order Extraction 25-52

Enable Extract With 25-53

Add Validation Rules 25-54

Configure a YAML Dialog Flow for Composite Bag Entities 25-54

The system.entityToResolve Variable 25-55

entityToResolve Expressions 25-57

Entity Event Handlers 25-57

Create Entity Event Handlers with the Event Handler Code Editor 25-58

Replace or Remove an Entity Event Handler 25-65

Which IDE Should I Use? 25-66

Simplify Dialog Flows with Entity Event Handlers 25-66

Entity Event Handler Tutorials 25-67

Disambiguate Nested Bag Items and Subtypes 25-67

Add the DATE_TIME Entity to a Composite Bag 25-68

Tutorial: Real-World Entity Extraction with Composite Bag Entities 25-70

Query Entities 25-70

26

Visual Flow Designer

Basic Concepts 26-1

Visual Designer 26-1

Multiple Flows 26-1

Events 26-1

Variables, Scope, and Parameters 26-2

New, Modified, and Removed Components 26-3

Get Started with the Visual Flow Designer 26-3

Create the Visual Designer Flow Skill 26-3

Map Events 26-4

Build an Intent Event Flow 26-5

Reference Variable Values in FreeMarker Expressions 26-9

Build a Flow for Built-In Events 26-10

Sample Messages for Built-In Event Flows 26-13

Tutorials: Visual Flow Designer 26-14

Flows 26-14

Flow Types 26-15

Main Flow 26-15

Intent Flows 26-15

xvi

Utility Flows for Built-In Events and System Transitions 26-16

Custom Sub-Flows 26-16

Variables and Scope 26-16

Notes for Developers Used to YAML-Based Dialog Flows 26-17

Designing Flows 26-17

Create a Flow 26-17

Create the Skill-Level Variables 26-18

Designate a Start State 26-19

Add a State 26-19

Insert a State Between States 26-20

Edit a State's Properties 26-21

Deleting States 26-22

Restore a Deleted State 26-24

Reconnect a Disconnected State 26-25

Insert a New First State 26-25

Copy States 26-27

Intent Detection and Resolution 26-29

Answer Intent Resolution 26-29

Flow Mapping 26-30

Map an Intent to a Flow 26-30

Map a Built-In Event to a Flow 26-31

Map a Transition Event to a Flow 26-32

Invoke One Flow from Another Flow 26-32

Invoke Another Skill from a Flow 26-33

Events and Transitions 26-34

Built-In Events for the Main Flow 26-35

System Transitions for Flows 26-36

Event Listening and Triggering 26-36

Expressions for Variable Values 26-37

Handy Expressions 26-37

Apache FreeMarker Template Language Syntax 26-38

Referencing Entity Values in Multi-Language Skills 26-39

Other Variables Types 26-40

Profile-Scope Variables for User Context 26-40

Save User-Specific Values for Return Visits 26-41

System Variables 26-42

Test the Dialog Flow 26-42

Other Tasks 26-43

User Authorization 26-43

Auto Numbering Response Items 26-43

Limiting the Number of User Prompts 26-44

xvii

Resource Bundles and the Visual Flow Designer 26-44

Modify a Resource Bundle Entry 26-45

User Input Form Messages 26-45

The Edit Forms Metadata Template 26-48

Input Form Fields 26-50

Custom Parameters 26-57

Create a Custom Parameter 26-57

Secure Parameters 26-58

Modify the Value for a Custom Parameter in a Published Skill 26-58

Set the Value for a Parameter in Digital Assistant 26-58

Import and Export Flows 26-59

Export Flows 26-59

Import Flows 26-60

Insights for Flows Created in the Visual Flow Designer 26-61

Group Chats 26-61

User Authorization in Group Chats 26-62

Enforce User Authorization for Group Chats 26-62

Enable Messages Without User Mention in Slack Group Chats 26-63

Enable Users to Stop Messages from Being Sent to the Slack App 26-64

What Users Need to Know About Group Chats 26-64

Component Templates 26-65

Send Message 26-65

Ask Question 26-65

Resolve Composite Bag 26-66

User Messaging Templates 26-66

Common Response Component Templates 26-66

Resolve Entity 26-69

User Feedback 26-70

Variables Templates 26-72

Copy Variables 26-72

Reset Variables 26-72

Set Variable 26-72

Set Custom Metrics 26-72

Language Templates 26-73

Detect Language 26-73

Translate Input 26-73

Translate Output 26-74

Match Entity 26-74

Security Templates 26-75

OAuth Account Link 26-75

OAuth 2.0 Account Link 26-78

xviii

OAuth 2.0 Client 26-82

Reset OAuth 2.0 tokens 26-82

Flow Control Templates 26-83

Switch 26-83

Invoke Flow 26-83

Invoke Skill 26-83

End Flow 26-84

Service Integration Templates 26-85

Agent Communication Template 26-85

Agent Transfer 26-91

Agent Transfer Condition 26-93

Call REST Service 26-96

Knowledge Search 26-99

Incident Creation 26-102

Intelligent Advisor 26-102

Webview Component 26-106

Notify User 26-107

Publish Event 26-108

Component Changes in the Visual Flow Designer 26-108

Message Handling for User Message Components 26-109

Handling Free Text 26-109

Handling Multimedia Messages 26-110

Handling Location Messages 26-110

Postback Actions 26-110

How Out-of-Order Actions Are Detected 26-111

Override Out-of-Order Message Handling with a Message Handling State 26-111

The Metadata Property in Common Response Components 26-112

Keyword Metadata Properties 26-115

Extract Keywords from Messages 26-117

The visible Property 26-117

The Action Metadata Properties 26-119

The payload Properties 26-120

How Do Non-Postback Actions Render on Text-Only Channels? 26-120

The Text Response Item 26-121

The Card Response Item 26-123

How Do Cards Render on Text-Only Channels? 26-125

Optimize Cards on Text-Only Channels with Keywords 26-126

The Attachment Response Item 26-128

Field 26-129

ReadOnly Field 26-129

Form 26-131

xix

FormRow 26-132

Column 26-132

The editForm Response Item 26-133

The textInput Field 26-133

The datePicker Field 26-137

The timePicker Field 26-140

The numberInput Field 26-143

The singleSelect Field 26-146

The multiSelect Field 26-151

The toggle field 26-156

Text Field 26-158

Link 26-159

EditFormMessagePayload 26-160

SubmitFormAction 26-161

Updating the Input Form 26-162

The dataSet Response Item 26-163

DataSet data Properties 26-163

DataSet Data Item Properties 26-164

The system.entityToResolve Variable 26-165

User Message Validation 26-166

Migrate to Visual Dialog Mode 26-167

What Happens When You Migrate to a Visual Flow Designer Skill 26-169

Migration Summary 26-170

27

LLM Integration

LLM Services 27-2

Create an LLM Service 27-2

Import an LLM Service 27-4

Generative AI Service 27-7

Sample Payloads 27-8

Open AI and Azure Open AI 27-9

Cohere (Command Model) 27-10

Cohere via Oracle Generative AI Service 27-11

Cohere Command - Light 27-12

Llama 27-14

Summarize Payloads 27-16

LLM Transformation Handlers 27-17

Create an LLM Transformation Handler 27-18

LLM Provider Transformation Code Samples 27-20

Azure OpenAI 27-20

xx

Oracle Generative AI Service – Cohere 27-23

Oracle Generative AI - Llama 27-26

Oracle Generative AI - Llama 27-29

Cohere (Command Model) – Direct Access to Cohere 27-31

The Common LLM Interface 27-33

CLMI Request Body Specification 27-33

The Message Object Structure 27-37

Success Response Body Specification 27-37

Candidate Objects 27-38

Error Response Body Specification 27-38

Create the LLM Service 27-40

The Invoke Large Language Model Component 27-41

General Properties 27-43

User Messaging 27-44

Transition Actions for the Invoke Large Language Model Component 27-48

User Ratings for LLM-Generated Content 27-48

Response Validation 27-49

Create LLM Validation and Customization Handlers 27-51

Advanced Options 27-65

The Prompt Builder 27-67

Prompts: Best Practices 27-69

Tokens and Response Size 27-77

Embedded Conversation History in OOS/OOD Prompts 27-78

LLM Interactions in the Skill Tester 27-79

Tutorials: Integrating LLMs 27-80

28

SQL Dialog Skills

How SQL Dialogs Work 28-1

Supported Queries 28-3

Tutorial: Getting Started with SQL Dialogs 28-5

SQL Dialogs Workflow 28-5

Connect to the Data Service 28-8

Oracle Data Service 28-8

Expressions for OICD Profile Claims 28-11

MySQL Data Service 28-12

Create the SQL Dialog Skill 28-13

Create Query Entities to Model the Data Service 28-13

Train the Skill to Convert Natural Language Utterances into SQL 28-14

Provide Training Data Through Names and Synonyms 28-15

Provide Training Data Through Value Lists 28-16

xxi

Provide Training Data Through Regular Expressions 28-17

Provide Training Data Through Utterances 28-18

Provide Query Suggestions for SQL Dialog Users 28-20

Route Utterances to the SQL Dialogs Conversation 28-21

Generate SQL Dialogs Routing Data 28-21

Handcraft SQL Dialogs Routing Data 28-22

Configure Presentation of Entities and Attributes 28-23

Configure Whether to Display Form or Table 28-23

Show One or Two Horizontal Sections in Form 28-25

Set the Title for the Results 28-25

Define an Entity's Default Sort Order 28-25

Define Which Attributes to Include When Not Specified by the Utterance 28-25

Define Which Attributes to Always Include in the Results 28-25

Configure the Results Page Size 28-25

Add Buttons and Links to Results 28-25

Add a Custom Attribute 28-26

Dynamically Configure Presentation Using Event Handlers 28-27

Define Query Rules 28-27

Enable Natural Language Queries for Denormalized Columns 28-29

Test and Repair 28-29

Troubleshooting SQL Queries 28-32

General Limitations in SQL Dialogs 28-32

Troubleshooting Basic Query Issues 28-37

Troubleshooting Date and Time Issues 28-38

Troubleshooting Attribute Selection Issues 28-39

Troubleshooting Group By Issues 28-41

Troubleshooting Entity Issues 28-43

Troubleshooting Other Issues 28-44

Monitor and Improve 28-46

Monitor Using Insights 28-46

Monitor with Query Entity Batch Testing 28-47

OMRQL Reference 28-48

Link Attributes 28-52

Order by * 28-53

29

Languages and Skills

Language Use Cases for Skills 29-1

Ability to Train in Multiple Languages 29-1

Avoid Using a 3rd-Party Translation Service 29-2

Create a Skill in a Language Not Supported Natively 29-2

xxii

Create a Multi-Language Skill that Targets Languages That Are Not Supported Natively 29-2

Create a Multi-Language Skill Without Resource Bundles for Each Language 29-3

Language Mode 29-4

Native Language Support for Skills 29-4

How Native Language Support Works 29-4

Natively-Supported Languages 29-5

Create a Skill with Natively-Supported Languages 29-5

Add Natively-Supported Languages to a Skill 29-6

Switch from a Translation Service to Native Language Support 29-8

Training Corpus for an Additional Language 29-9

Language Detection in Skills with Natively-Supported Languages 29-10

Translation Services in Skills 29-10

Translation Services Supported 29-10

OCI Language 29-10

Google Translation API 29-11

Microsoft Translator 29-11

Register a Translation Service in Oracle Digital Assistant 29-11

Add a Translation Service to Your Skill 29-11

Approaches Based on Translation Services 29-11

Non-English Single-Language Skill Using a Translation Service 29-12

Multi-Language Skills with Auto-Translation 29-13

Manipulate Input Before Translation 29-18

Predominant Language 29-19

Resource Bundles for Skills 29-19

Types of Resource Bundle Keys 29-20

Create Resource Bundle Keys 29-21

Add a Language to a Resource Bundle Key 29-21

Translate Conversation Name 29-22

Translate Answers for Answer Intents 29-22

Reference Resource Bundles in the Dialog Flow 29-23

Message Formats 29-23

Simple Messages 29-23

Example: Simple Message 29-24

Messages with Parameters 29-24

Example: Message with Named Parameters 29-24

Example: Message with Numbered Parameters 29-24

Complex Messages 29-25

Resource Bundles and Auto-Translation of Skills 29-29

Conditional Auto-Translation 29-30

Resource Bundle Entry Resolution 29-31

Export and Import Resource Bundles 29-31

xxiii

Internationalize and Localize Custom Component Responses 29-31

Reference Resource Bundles from the Custom Component 29-32

Use a System Component to Reference a Resource Bundle 29-33

Send Responses Directly to the Translation Service 29-34

Use a System Component to Pass the Message to the Translation Service 29-35

Detect the User Language in a Custom Component 29-36

Resource Bundle Entries for Skill Configuration Settings 29-37

30

The Skill Tester

Track Conversations 30-1

Test Suites and Test Cases 30-4

Add Test Cases 30-5

Create a Test Case from a Conversation 30-5

Add Input Parameters for User Messages 30-6

Add Variable Placeholders 30-8

Create a Test Case from a JSON Object 30-9

Run Test Cases 30-11

View Test Run Results 30-12

Review Failed Test Cases 30-12

Fix Failed Test Cases 30-12

Import and Export Test Cases 30-14

Test Individual Flows and Application Events 30-16

31

Q&A

Adding Q&A to a Skill 31-1

Create the Data Source File 31-4

The Data Source Guidelines 31-5

Q&A Modules and Data Sources Management 31-6

Add More Data Sources 31-6

Edit the Q&A Data Source Configuration Parameters 31-6

Add Questions and Answers One-by-One 31-7

Edit Questions and Answers One-by-One 31-8

Export the Q&A Data Set 31-9

Improved Accuracy with Abbreviations and Ignored Words 31-10

Add Ignored Words, Synonyms, and Abbreviations 31-10

Q&A Testing 31-12

Test a Q&A Match 31-12

Create the CSV File for Batch Testing 31-13

Batch Test the Q&A Module 31-14

xxiv

How Do I Configure the Dialog Flow for Q&A? 31-17

Creating a Skill with Intent and Q&A Flows 31-18

Q&A Dialog Examples 31-19

Configure the Intent and Q&A Routing 31-23

32

Components

Built-In Components 32-1

Custom Components 32-1

Other Properties Available to Custom Components 32-2

33

Backend Integration

Access Backends Using the REST Service Component 33-1

Add a REST Service for an Endpoint 33-1

Use the Call REST Service Component 33-4

Access Backends Using Custom Components 33-5

Implement Custom Components 33-6

Step 1: Install the Software for Building Custom Components 33-6

Step 2: Create the Custom Component Package 33-7

Step 3: Create and Build a Custom Component 33-8

Create the Component File 33-8

Add Code to the metadata and invoke Functions 33-9

Control the Flow with keepTurn and transition 33-10

Access the Backend 33-16

Use the SDK to Access Request and Response Payloads 33-16

Custom Components for Multi-Language Skills 33-16

Ensure the Component Works in Digital Assistants 33-18

Run the Component Service in a Development Environment 33-21

Deploy the Component Package to a Service 33-22

Deploy to a Node.js Server 33-22

Deploy to Oracle Cloud Infrastructure Functions 33-22

Get Artifact Names and Permissions for Oracle Cloud Infrastructure Functions
Deployment 33-23

Set Up Your User Account for Oracle Functions 33-23

Set Up Your Local Machine for Oracle Functions 33-26

Modify the Custom Component Package for Oracle Functions 33-29

Deploy the Custom Components to Oracle Cloud Infrastructure Functions 33-32

Deploy to Mobile Hub 33-33

Add Component Package to a Skill 33-34

Add Embedded Component Service 33-35

Prepare the Package for an Embedded Container Service 33-36

xxv

Upload Package to Create an Embedded Component Service 33-37

Add Oracle Function Service 33-39

Add External Component Service 33-40

Add Mobile Hub Component Service 33-40

Set the Read Timeout for Custom Components 33-41

Export and Import a REST Service Endpoint 33-41

34

Backend Authentication

Built-In Security Components 34-1

Identity Provider Registration 34-2

Register an Application with IDCS or OAM 34-2

Register an Application with Microsoft Identity Platform 34-3

Register an Application with Google OAuth2 Authorization 34-3

Authentication Services 34-4

Add an Authorization Code Service 34-4

Add a Client Credentials Service 34-8

User Identity in Digital Assistant 34-9

Configuring Unified User Identity 34-10

Enable Channel Account Linking 34-10

End User Privacy: User Consent Options 34-11

Customize the User Consent Prompts and Messages 34-11

Retention of Unified User Data 34-11

35

Webviews

How Do I Integrate a Webview into a Skill? 35-1

Digital Assistant-Hosted Webviews 35-2

Enable the SPA to Access the Input Parameters and Callback URL 35-3

Defining Placeholders in the index.html File 35-4

Add a Single Placeholder in the <head> Element 35-4

Add Multiple Placehoders in the <head> Element 35-5

Wire the Callback URL to a Done Button in the Web App 35-6

Externally Hosted Webviews 35-6

Create a Webview Service 35-9

Create a Digital Assistant-Hosted Webview Service 35-9

Package Oracle Visual Builder Applications 35-10

Package the Oracle Visual Builder App Locally 35-10

Package the App Using Oracle Developer Cloud Service 35-11

Create an Externally-Hosted Webview Service 35-12

Reference the Returned Data in the Dialog Flow 35-12

xxvi

Scenario: Integrating a Web App With a Skill 35-13

Configure the index.html File 35-15

Configure the Dialog Flow to Pass Values to the Web App 35-16

36

Skill Quality Reports

Skill Quality Overview Report 36-1

How to Use the Overview Report 36-1

The Skill Quality Anomalies Report 36-4

How to Use the Anomalies Report 36-4

37

Insights

Chat Session Insights 37-1

Conversation Insights for Skills 37-3

Report Types 37-3

Review the Summary Metrics and Graphs 37-4

Common Metrics 37-5

Voice Metrics 37-6

Incomplete Conversation Breakdown 37-7

User Metrics 37-8

Enable New User Tracking 37-8

Review Conversation Trends Insights 37-9

View Intent Usage 37-9

Review Intents and Retrain Using Key Phrase Clouds 37-11

Review Key Phrases 37-12

Retrain from the Word Cloud 37-13

Review Native Language Phrases 37-14

Review Language Usage 37-15

Review User Feedback and Ratings 37-15

How to Add the Feedback Component to the Dialog Flow 37-17

Using Custom Metrics to Measure Feedback 37-19

Review Custom Metrics 37-21

Instrument the Skill for Custom Metrics 37-22

Creating Dimensions for Variable Values 37-23

Creating Dimensions that Track Skill Usage 37-25

Export Custom Metrics Data 37-27

Review Intents Insights 37-28

Completed Paths 37-29

Incomplete Paths 37-30

unresolvedIntent 37-32

xxvii

Review Path Insights 37-33

Query the Paths Report 37-33

Scenario: Querying the Pathing Report 37-35

Review the Skill Conversation Insights 37-36

View Conversation Transcripts 37-37

View Voice Metrics 37-37

How the Insights Reports Handle return Transitions 37-38

How the Insights Reports Handle Empty Transitions 37-39

PII Anonymization 37-39

Enable PII Anonymization 37-40

PII Anonymization in the Export File 37-41

Model the Dialog Flow 37-42

Mark the End of a Conversation 37-42

Streamline the Data Collected by Insights 37-43

Use Cases for Insights Markers 37-43

Use Case 1: You Want to Separate Conversations by Intents or Transitions 37-43

Use Case 2: You Want to Exclude Supporting States from the Insights Pathing
Reports 37-46

Tutorial: Optimize Insights Reports with Conversation Markers 37-47

Apply the Retrainer 37-47

Update Intents with the Retrainer 37-49

Moderated Self-Learning 37-50

Support for Translation Services 37-50

Create Data Manufacturing Jobs 37-51

Create a Test Suite 37-52

Review Language Usage 37-53

Export Insights Data 37-54

Create an Export Task 37-54

Review the Export Logs 37-55

Filter the Exported Insights Data 37-56

The Export Log Fields 37-57

Internal States 37-61

Tutorial: Use Oracle Digital Assistant Insights 37-62

Live Agent Insights for Skills 37-62

Review the Deflection Rate 37-63

Live Agent Conversation Metrics for Skills 37-63

Live Agent Conversation Metrics 37-64

Live Agent Handle/Wait Times 37-64

xxviii

38

External Events

Workflow for Implementing an Application Event 38-1

Define an Event Type 38-1

Example: Cloud Event Type Schema 38-2

Configure a Skill to Consume an Event 38-3

Create a User Notification for the Event 38-3

Determine the Event Receipient from the Flow 38-4

Create a Handler for the External Event 38-4

Add the Skill to a Digital Assistant 38-5

Create a Channel for the External App 38-5

Generate an Event from an External App 38-6

Structured Form for Sending Events 38-6

Form for Sending Events in Node.js 38-7

Event Payload Attributes 38-8

Event Context Attributes 38-8

Example: Event Payload 38-9

Example: Payload with IDCS User ID 38-9

Example: Payload with User ID and Channel Name 38-10

Publish an Event from a Skill 38-11

39

Application-Initiated Conversations

Use Case: An Expense Reporting App 39-1

How Application-Initiated Conversations Work 39-1

Tutorial: Application-Initiated Conversations 39-3

Implementing Application-Initiated Conversations 39-3

Configure the Skill 39-3

Configure a User-Authenticated Skill 39-5

Create a User Channel for the Messaging Platform 39-6

Create a Channel for the External App 39-6

Configure the Digital Assistant 39-7

Configure the External App 39-7

Testing Application-Initiated Conversations from Preview 39-11

Get the System Channel Name and Preview User ID 39-11

Send a Notification to the Skill Preview 39-12

40

Data Manufacturing

What is a Data Manufacturing Job? 40-1

Annotation Jobs 40-1

Validation Jobs 40-1

xxix

Paraphrasing Jobs 40-1

The Data Manufacturing Job Workflow 40-1

Create the Job 40-1

Monitor the Progress of the Crowd Workers 40-3

Review the Results 40-4

Paraphrasing Jobs 40-7

Create the Paraphrasing Job 40-8

Tips for Paraphrasing Jobs 40-13

Review the Paraphrasing Job 40-13

Annotation Jobs 40-16

Create the Intent Annotation Job 40-16

Review the Annotation Job 40-18

Create the Entity Annotation Job 40-19

Validation Jobs 40-23

Create an Intent Paraphrasing Validation Job 40-23

Review a Validation Job 40-25

Create an Entity Annotation Validation Job 40-27

Create Test Suites 40-31

Part V Channels

41

Channel Basics

What Are Channels? 41-1

Channel Types 41-1

User Channel Routing 41-2

Route (or Reroute) a Channel 41-3

How Digital Assistant User Channel Routing Works 41-3

Test Rendering for a Channel 41-3

Zero-Downtime Channel Updates 41-3

Rich Text Formatting in Channels 41-4

Session Expiration 41-5

Change the Session Expiration Prompt 41-5

Reset User Channel Sessions 41-6

Enable or Disable Channels 41-6

Channel-Specific Extensions 41-6

Comparison of Channel Capabilities 41-8

Comparison of Channel Message Constraints 41-8

Text Message Constraints 41-9

Horizontal Card Messages 41-9

Vertical Card Messages 41-11

xxx

Attachment Messages 41-12

Action Buttons 41-13

42

Voice

Enable Voice for the Oracle Android Channel 42-1

Enable Voice for the Oracle Web Channel 42-1

Enable Voice on the Oracle iOS Channel 42-1

Improve ASR with Enhanced Speech 42-1

43

Facebook Messenger

Step 1: Set Up Facebook Messenger 43-1

Step 2: Create the Channel in Digital Assistant 43-3

Step 3: Configure the Facebook Messenger Webhook 43-4

Step 4: Enable the Facebook Channel 43-6

Step 5: Test Your Bot on Facebook Messenger 43-6

Persistent Menu 43-7

Create a Persistent Menu Item 43-8

Persistent Menu Items for a Digital Assistant 43-8

Persistent Menu Items for a Standalone Skill 43-9

Supported Capabilities 43-10

Message Constraints 43-11

Facebook Messenger Channel Extensions 43-12

44

Slack

Step 1: Get a Slack Workspace 44-1

Step 2: Create a Slack App 44-1

Step 3: Add OAuth Scopes for the Slack App 44-1

Step 4: Add the App to the Workspace 44-2

Step 5: Create a Channel in Digital Assistant 44-2

Step 6: Configure the Webhook URL in the Slack App 44-3

Step 7: Test Your Bot in Slack 44-4

"New" vs. "Classic" Slack Apps 44-4

Supported Capabilities 44-4

Message Constraints 44-5

Slack Channel Extensions 44-6

Slack Modals 44-9

Slack Dialog Window 44-12

xxxi

45

Microsoft Teams

Step 1: Create a Bot 45-1

Step 2: Create a Channel in Digital Assistant 45-3

Step 3: Configure the Webhook URL for Microsoft Teams 45-3

Step 4: Enable Apps in Your Office 365 Tenant 45-4

Step 5: Test in Microsoft Teams 45-4

SSO Configuration for Microsoft Teams Channels 45-4

Create an Azure AD Application 45-5

Update the Bot Registration with the SSO Details 45-7

Register the Azure AD App as an Authentication Service in Digital Assistant 45-7

Reference the Authentication Service from Your Skills 45-8

Supported Capabilities 45-8

Message Constraints 45-9

Adaptive Cards in Microsoft Teams 45-10

Example: Adaptive Card in Cards Response Item 45-11

Example: Adaptive Card in Text Response Item 45-12

Submit Actions 45-13

Echo Text of Selected Button in Adaptive Card 45-15

Disable Buttons and Fields in Adaptive Cards 45-15

Tips for Creating Adaptive Cards Definitions 45-15

Disable the Welcome Message for a Digital Assistant 45-16

Enable the Welcome Message for a Skill 45-17

46

Cortana

Step 1: Create a Bot Channels Registration in Azure 46-1

Step 2: Create a Channel in Digital Assistant 46-2

Step 3: Configure the Webhook URL and Deploy to Cortana 46-3

Step 4: Test Your Bot in Cortana 46-3

Supported Capabilities 46-3

Message Constraints 46-4

Cortana Channel Extensions 46-5

47

Text-Only Channels

Twilio/SMS 47-1

Step 1: Get an SMS-Enabled Twilo Number 47-2

Step 2: Link Your Bot to the Twilio Number 47-3

Testing Tips 47-3

Supported Capabilities 47-3

Message Constraints 47-4

xxxii

Twilio Channel Extensions 47-5

48

Oracle Web

Basic Setup 48-1

What Do You Need? 48-1

Configure the Oracle Web Channel 48-1

Tutorial: Secure Your Oracle Web SDK Chat 48-3

Install the SDK 48-3

Import the Library Using the Asynchronous Module Definition API 48-4

Import the Library Dynamically with JavaScript 48-5

Configure Client Authentication 48-5

The JWT Token 48-6

Customize the Chat Widget 48-7

Network Configuration 48-7

Feature Flags 48-8

Functionality 48-13

Read More and Read Less Buttons for Multi-Paragraph Skill Responses 48-28

Layout 48-32

Custom Header Button Icons 48-34

Custom Colors 48-34

Custom Icons 48-41

Custom Strings 48-45

Configure Share Menu Options 48-53

Custom Share Menu Items 48-55

Customize CSS Classes 48-56

Customize the Timestamp 48-57

Format the Date-Time with Pattern Strings 48-57

Format the Timestamp with Intl.DateTimeFormat Objects 48-58

Customize the Feedback Message Rating Gauge 48-59

Send the Initial Message when the Conversation History is Empty 48-60

Speech Synthesis Service Injection 48-61

Text-to-Speech 48-61

Speech Synthesis Service Interface 48-63

Features 48-65

Absolute and Relative Timestamps 48-65

How Relative Timestamps Behave 48-66

Add a Relative Timestamp 48-67

Autocomplete 48-68

Auto-Submitting a Field 48-69

Replacing a Previous Input Form 48-69

xxxiii

Automatic RTL Layout 48-69

Avatars 48-70

Cross-Tab Conversation Synchronization 48-70

Custom Message Rendering 48-71

Default Client Responses 48-71

Delegation 48-71

beforeDisplay 48-72

beforeSend 48-72

beforePostbackSend 48-73

beforeEndConversation 48-73

render 48-73

Draggable Launch Button 48-73

Dynamic Typing Indicator 48-73

Control Embedded Link Behavior 48-74

Embedded Mode 48-75

End the Conversation Session 48-76

Focus on the First Action in a Message 48-77

Keyboard Shortcuts and Hotkeys 48-77

Headless SDK 48-78

Multi-Lingual Chat 48-79

Enable the Language Menu 48-79

Disable Language Menu 48-81

Language Detection 48-81

Multi-Lingual Chat Quick Reference 48-82

In-Widget Webview 48-82

Configure the Linking Behavior to the Webview 48-82

Open Links from Within the Webview 48-83

Customize the WebView 48-83

Long Polling 48-84

Typing Indicator for User-Agent Conversations 48-85

Voice Recognition 48-85

Voice Visualizer 48-85

Message Model 48-87

Action 48-87

PostbackAction 48-88

CallAction 48-88

urlAction 48-89

ShareAction 48-89

LocationAction 48-89

PopupAction 48-89

SubmitFormAction 48-91

xxxiv

Attachment 48-92

Card 48-92

Location 48-93

PaginationInfo 48-93

FormRow 48-94

Column 48-94

Form 48-95

Row 48-95

Heading 48-96

Field 48-96

selectFieldOption 48-97

Read Only Field 48-97

Text Field 48-97

Link Field 48-98

Media Field 48-98

Action Field 48-98

Editable Field 48-99

Single-Select 48-99

Multi-Select 48-100

DatePicker 48-100

TimePicker 48-100

Toggle 48-101

TextInput 48-101

NumberInput 48-102

EventContextProperties 48-102

Conversation Message 48-103

Message 48-103

User Message 48-103

User Text Message 48-104

User Postback Message 48-104

User inboundEvent Message 48-104

User Form Submission Message 48-105

User Attachment Message 48-106

User Location Message 48-107

Skill Message 48-107

Bot Text Message 48-108

Skill Location Message 48-108

Skill Attachment Message 48-108

Passing File Names 48-109

Feedback Messages 48-109

Skill Card Message 48-111

xxxv

Card 48-111

Skill Postback Message 48-113

Skill Form Message 48-113

Skill Table Message 48-117

Skill Table-Form Message 48-121

Skill Outbound Event Message 48-125

Skill Edit Form Message 48-126

Skill Raw Message 48-130

Embed Chat in Visual Builder Apps 48-130

Tutorial: Access a Skill from Your Website 48-130

Oracle Web Channel Extensions 48-130

49

Oracle iOS

What Do You Need? 49-1

Create the Oracle iOS Channel 49-1

Configure the Oracle iOS Channel 49-2

Add the SDK to the Project 49-3

Initialize the SDK in Your App 49-4

App Development Settings 49-5

Initialize the Feature Flag Settings 49-5

Network Configuration 49-6

Feature Flags 49-7

Strings 49-13

UI Properties and Colors 49-19

Icons 49-22

Features 49-23

Absolute and Relative Timestamps 49-23

Configure Relative Timestamps 49-23

Actions Layout 49-24

Agent Avatars 49-24

Dynamically Update Avatars and Agent Details 49-24

Set the User Avatar 49-24

Set the Agent Details 49-25

setAgentDetails(agentDetails: AgentDetails) 49-25

getAgentDetails() 49-25

Attachment Filtering 49-26

public func shareMenuItems(shareMenuItems: ([ShareMenuItem],
[ShareMenuCustomItem])) 49-26

public func shareMenuItems() -> ([ShareMenuItem], [ShareMenuCustomItem]) 49-26

Auto-Submitting a Field 49-27

Connect, Disconnect, and Destroy Methods 49-27

xxxvi

public func destroy() 49-27

public func disconnect() 49-27

public func connect() 49-27

public func connect(botsConfiguration: BotsConfiguration) 49-27

Default Client Responses 49-27

Delegation 49-28

public func beforeDisplay(message: [String: Any]?) -> [String: Any]? 49-28

public func beforeSend(message: [String: Any]?) -> [String: Any]? 49-28

public func beforeSendPostback(action: [String: Any]?) -> [String: Any]? 49-28

End the Chat Session 49-29

Headless SDK 49-29

public func send(message: UserMessage) 49-29

BotsEventListener 49-30

In-Widget Webview 49-31

Configure the In-Widget Webview 49-31

Message Timestamp Formatting 49-32

Multi-Lingual Chat 49-32

Enable the Language Menu 49-32

Disable Language Menu 49-33

Language Detection 49-33

Multi-Lingual Chat Quick Reference 49-33

Replacing a Previous Input Form 49-34

Share Menu Options 49-34

public func shareMenuItems(shareMenuItems: ([ShareMenuItem],
[ShareMenuCustomItem])) 49-34

public func shareMenuItems() -> ([ShareMenuItem], [ShareMenuCustomItem]) 49-34

Speech Recognition 49-35

public func startRecording() 49-35

public func stopRecording() 49-35

public func isRecording() -> Bool 49-35

Speech Synthesis 49-35

public func speak(text: String) 49-36

public func stopSpeech() 49-36

Speech Service Injection 49-36

The TTSService Protocol 49-36

Typing Indicator for User-Agent Conversations 49-37

Voice Visualizer 49-38

Message Model 49-38

Attachment 49-39

Location 49-39

Action 49-40

xxxvii

PostbackAction 49-40

CallAction 49-40

urlAction 49-41

SubmitFormAction 49-41

LocationAction 49-42

Card 49-42

Heading 49-42

Field 49-43

selectFieldOption 49-43

Read Only Field 49-44

Text Field 49-44

Link Field 49-44

Media Field 49-44

Action Field 49-45

Editable Field 49-45

Single-Select 49-46

Multi-Select 49-46

DatePicker 49-47

TimePicker 49-47

Toggle 49-47

TextInput 49-48

NumberInput 49-48

Row 49-49

Form 49-49

PaginationInfo 49-49

Conversation Message 49-50

User Message 49-50

User Text Message 49-50

User Postback Message 49-51

User Attachment Message 49-51

User Location Message 49-52

User Form Submission Message 49-52

Skill Message 49-53

Skill Raw Message 49-53

Skill Text Message 49-53

Skill Attachment Message 49-55

Skill Card Message 49-55

Skill Table Message 49-57

Skill Form Message 49-61

Skill Table-Form Message 49-65

Skill Edit Form Message 49-69

xxxviii

Oracle iOS Channel Extensions 49-73

50

Oracle Android

What Do You Need? 50-1

Create the Oracle Android Channel 50-1

Configure the Oracle Android Channel 50-3

Add the Oracle Android Client SDK to the Project 50-3

Initialize the Oracle Android Client SDK in Your App 50-6

App Development Settings 50-8

Network Configuration 50-8

Feature Flags 50-9

Custom Colors 50-17

Custom Text 50-21

Localization 50-29

Custom Icons 50-30

Set Feature Flags 50-30

Initialize the SDK 50-31

public static void init(Application application, BotsConfiguration botsConfiguration) 50-31

public static void init(Application application, BotsConfiguration botsConfiguration,
BotsCallback botsCallback) 50-31

public static void init(Application application, String chatServerUrl, String
channelId, String userId, BotsCallback botsCallback) 50-32

public static void init(Application application, String chatServerUrl,
AuthenticationTokenProvider authTokenProvider, BotsCallback botsCallback) 50-32

Interface AuthenticationTokenProvider 50-33

Interface BotsCallback 50-33

Show Conversation Activity 50-33

Customize Notifications 50-33

Features 50-34

Absolute and Relative Timestamps 50-34

Configure Relative Timestamps 50-34

Action Buttons Layout 50-35

Attachment Filtering 50-35

public static void shareMenuItems(ArrayList<Object> shareMenuItems) 50-36

public static void shareMenuItems() 50-37

Auto-Submitting a Field 50-37

Replacing a Previous Input Form 50-37

Connect and Disconnect Methods 50-37

Default Client Responses 50-38

Delegation 50-38

public Message beforeDisplay(Message message) 50-39

xxxix

public Message beforeDisplay(Message message) 50-39

public Message beforeNotification(Message message) 50-39

Display the Conversation History 50-39

End the Chat Session 50-39

public static void endChat() 50-40

CompletionHandler 50-40

Foreground Service 50-40

Headless SDK 50-40

public static void sendMessage(String text) 50-40

In-Widget Webview 50-42

Configure the In-Widget Webview 50-42

Multi-Lingual Chat 50-43

Enable the Language Menu 50-43

Disable Language Menu 50-44

Language Detection 50-44

Multi-Lingual Chat Quick Reference 50-44

Share Menu Options 50-45

public static void shareMenuItems() 50-46

public static void shareMenuItems(ArrayList<Object> shareMenuItems) 50-46

Speech Recognition 50-46

public static void startRecording(IBotsSpeechListener listener) 50-47

public static void stopRecording() 50-47

public static boolean isRecording() 50-47

IBotsSpeechListener 50-47

void onError(String error) 50-47

void onSuccess(String utterance) 50-47

void onSuccess(BotsSpeechResult botsSpeechResult) 50-47

void onPartialResult(String utterance) 50-48

void onClose(int code, String message) 50-48

void onOpen() 50-48

onActiveSpeechUpdate(byte[] speechData) 50-48

Speech Synthesis 50-49

public static void initSpeechSynthesisService() 50-49

public static void startBotAudioResponse(String text) 50-50

public static void stopBotAudioResponse() 50-50

public static boolean isSpeaking() 50-50

public static void shutdownBotAudioResponse() 50-50

Speech Service Injection 50-50

The SpeechSynthesisService Interface 50-51

Typing Indicator for User-Agent Conversations 50-53

Update the User Avatar 50-55

xl

public void updatePersonAvatar 50-55

Expose Agent Details 50-55

public AgentDetails getAgentDetails() 50-55

public void setAgentDetails(AgentDetails) 50-55

public AgentDetails getAgentDetails() 50-55

Voice Visualizer 50-55

Message Model 50-56

Action 50-56

PostbackAction 50-57

CallAction 50-57

urlAction 50-58

SubmitFormAction 50-58

LocationAction 50-59

Attachment 50-59

Card 50-59

Location 50-60

Heading 50-60

Field 50-61

selectFieldOption 50-61

Read Only Field 50-62

Text Field 50-62

Link Field 50-62

Media Field 50-62

Action Field 50-62

Editable Field 50-63

Single-Select 50-63

Multi-Select 50-64

DatePicker 50-64

TimePicker 50-65

Toggle 50-65

TextInput 50-65

NumberInput 50-66

Row 50-66

Form 50-67

PaginationInfo 50-67

Conversation Message 50-67

Message 50-68

User Message 50-68

User Text Message 50-68

User Postback Message 50-68

User Attachment Message 50-69

xli

User Form Submission Message 50-69

User Location Message 50-70

Skill Message 50-71

Skill Text Message 50-71

Location Message 50-72

Skill Attachment Message 50-72

Skill Card Message 50-73

Skill Table Message 50-75

Skill Form Message 50-79

Skill Table-Form Message 50-82

Skill Edit Form Message 50-87

Skill Raw Message 50-90

Oracle Android Channel Extensions 50-91

51

Apple Messages for Business

Step 1: Set Up an Apple Messages for Business Account 51-1

Step 2: Create a Channel in Digital Assistant 51-2

General Capabilities Supported 51-2

Supported Apple Messages for Business Features 51-3

Rich Link 51-3

Example: Rich Link Image 51-3

Example: Rich Link Video 51-4

Quick Reply 51-4

Example: Quick Reply 51-4

List Picker 51-5

Example: Single-Select List Picker Using Cards 51-6

Examples: Single-Select ListPicker Using editForm 51-7

ListPicker (Multi-Select) 51-8

Time Picker 51-9

Example: Time Picker 51-9

Apple Form 51-10

Example: Apple Form 51-11

Authentication 51-12

iMessage App 51-12

Example: iMessage App Payload 51-13

ChannelCustomProperties for Apple Messages for Business 51-14

52

Zoom App

Step 1: Install Zoom's Digital Assistant App 52-1

xlii

Step 2: Create a Channel in Digital Assistant 52-1

Step 3: Create a Connection to the Channel from the App in Zoom 52-1

Open the Connection to Your Digital Assistant 52-2

Uninstall the Digital Assistant for Zoom App 52-2

Zoom App Channel Limitations 52-3

Zoom App Channel Attributes Available to Skill 52-3

Troubleshooting 52-4

53

Webhooks

Inbound Messages 53-2

Example Payloads: Inbound Messages 53-4

Outbound Messages 53-5

Part VI Extension of Digital Assistants and Skills

54

Extending Digital Assistants and Skills

What is Extension and What's it For? 54-1

Cloning vs. Extending 54-1

What Happens When You Extend a Skill or a Digital Assistant 54-2

Important Note for Developers of Base Bots 54-2

Skills 54-3

Extend a Skill 54-3

What You Can Add and Customize in an Extended Skill 54-3

Modifications Which Aren't Preserved When Rebasing 54-4

Disable Intents 54-4

Digital Assistants 54-5

Extend a Digital Assistant 54-5

What You Can Add and Customize in an Extended Digital Assistant 54-5

Disable Skills 54-5

Update a Skill in an Extended Digital Assistant 54-6

Extend a Skill in an Extended Digital Assistant 54-6

Make, Review, and Revert Customizations 54-7

Testing Customizations 54-7

Rebasing 54-7

How Rebasing Works 54-7

Rebase a Skill Extension 54-8

Rebase a Digital Assistant Extension 54-8

How Do I Respond to a Failed Rebase? 54-9

Branching an Extension 54-9

xliii

Post-Deployment Lifecycle of an Extended Skill 54-9

Part VII Service Integration

55

Intelligent Advisor

How the Intelligent Advisor Framework Works 55-1

Add an Intelligent Advisor Service 55-2

Create and Test Skills From Intelligent Advisor Service Page 55-3

List Available Deployments 55-4

Creating a Conversational Interview 55-5

What Makes an Interview Conversational 55-7

How Artifacts Display in a Conversation 55-9

Tips for Conversational Design of Interviews 55-14

Designing Interviews for Text-Only Channels 55-21

Use the Intelligent Advisor Component in Your Skill 55-22

Pass Attribute Values and Connection Parameters 55-27

Access Interview Attributes 55-28

56

Knowledge Search

Add a Knowledge Search Service 56-1

Test Knowledge Foundation Search Terms 56-3

Use the System.KnowledgeSearch Component 56-3

Associate Related Questions with a Search Term 56-4

Employ User Utterance as Search Term 56-11

Find Only the Results That Contain Every Word in the Knowledge Foundation Search
Term 56-13

Filter Results by Product and Category 56-14

Tailor Knowledge Foundation Response for Chat Conversation 56-14

Remove the View Details Button and Display All the Text 56-15

Implement Multi-Lingual Knowledge Search 56-16

Knowledge Foundation Sample Skill 56-16

How the System.KnowledgeSearch Component Displays in Oracle B2C Service Chat 56-17

57

Live Help Approaches

DA as an Agent 57-1

Live Agent Transfer 57-1

xliv

58

DA as an Agent

Supported Chat Services for DA as Agent 58-1

The Digital Assistant as Agent Framework in Action 58-1

How the Digital Assistant as Agent Framework Works 58-1

DA-as-Agent Template 58-2

Basic Steps for Creating a Digital-Assistant Agent 58-2

Task 1: Build a DA-as-Agent Digital Assistant 58-3

Build the Skill 58-4

Create and Configure the Skill 58-4

Add Intents and Entities 58-4

Access Contact and Chat Launch Page Information 58-5

Enable Transfer to a Human Agent 58-8

Pass Information to the Service 58-10

Configure When to Attempt Agent Transfer 58-11

Get Agent Availability and Wait Time 58-12

Create an Incident Report 58-15

How the UI Components Display in the Service Chat 58-16

Train the Skill 58-22

Configure the DA-as-Agent Digital Assistant 58-22

Task 2: Configure the Service 58-23

Configure Oracle B2C Service 58-23

Configure a Queue, Profile, and Agent for the Digital-Assistant Agent 58-24

Create a Digital-Assistant Queue 58-24

Create a Digital-Assistant Profile 58-26

Assign the Digital-Assistant Agent to the Digital-Assistant Profile 58-27

Add Chat Rules 58-28

Pass the Initial Utterance to the Digital Assistant 58-30

Configure Oracle Fusion Service 58-30

Task 3: Sign Your Digital Assistant into the Service 58-31

Change DA as Agent Channel Configuration 58-33

59

Insights for Oracle B2C Service Chat and Oracle Fusion Service Chat

60

Live Agent Transfer

The Live-Agent-Transfer Framework in Action 60-1

How the Live-Agent-Transfer Framework Works 60-1

Integrate a Skill with a Live Agent 60-2

Create an Agent Integration Channel 60-3

xlv

Enable Conversation History Transfer 60-4

Configure the Agent Transfer Dialog Flow 60-4

Enable Agents to Specify the Transition Action 60-6

Override Queue Position and Wait Time Message 60-10

Handle Agent Initiation Rejection and System Errors 60-11

Configure When to Attempt Agent Transfer 60-13

Enable Agents to Specify the Transition Action 60-13

Tutorial: Live Agent Transfer 60-18

Pass Customer Information to a Live Chat 60-18

The incidentID Property 60-19

The Standard customerInformation Object 60-20

The Legacy customerInformation Object 60-21

The Standard customFields Object 60-25

The Legacy customFields Object 60-27

Configure the Fields in the Dialog Flow 60-29

Step 1: Declare the Custom Properties Variable 60-29

Step 2: Set the Values for the customProperties Map Variable 60-29

Step 3: Define the Fields for the customProperties Map Variable 60-30

Step 4: Add the customProperties to the System.AgentInitiation Component 60-30

Tutorial: Pass Customer Information to a Live Chat 60-31

Enable Attachments 60-31

Create an Incident Report 60-31

Get Survey Information 60-32

Transfer the Chat to a Specific Oracle B2C Service Queue 60-34

Tutorial: Transfer to a Live Chat Queue 60-36

Part VIII Analytics

61

Analytics

Metrics 61-2

Skill- and Digital Assistant-Level Reports 61-2

Skill Performance 61-3

Compare Metrics Across Different Versions of Skills 61-3

Part IX Data Management

xlvi

62

Data Management

Monitor Insights Data Storage Capacity 62-1

View Storage Indicators 62-1

View Storage Capacity 62-2

Manage Data Capacity with Archive and Purge Tasks 62-3

Free Capacity Manually with Archive and Purge Tasks 62-4

Schedule Automated Archive and Purge Tasks 62-4

The Auto Purge Preferences 62-4

Manage, Track, and Monitor Archive Tasks 62-5

Part X Reference

A The Dialog Flow Definition

The Dialog Flow Structure in YAML Mode A-1

The context Node A-2

The defaultTransitions Node A-3

The states Node A-3

How Do I Write Dialog Flows in OBotML? A-5

Dialog Flow Syntax A-6

Flow Navigation and Transitions A-8

next Transition A-11

Configure the Dialog Flow for Unexpected Actions A-11

Call a Skill from Another Skill from a YAML Dialog Flow A-14

Example: Call a Skill from Another Skill A-16

User-Scoped Variables in YAML Dialog Flows A-17

Built-In YAML Components for Setting User Values A-19

Auto-Numbering for Text-Only Channels in YAML Dialog Flows A-19

Set Auto-Numbering for YAML Dialog Flows A-20

Render Content for Text-Only Channels in YAML Dialog Flows A-21

B Built-In Components: Properties, Transitions, and Usage

Control Components B-1

System.ConditionEquals B-1

How Do I Use Apache FreeMarker Expressions with the System.ConditionEquals
Component? B-2

System.ConditionExists B-4

System.Switch B-5

xlvii

How Do I Use Apache FreeMarker Expressions with the System.Switch
Component? B-6

Language B-6

System.Intent B-6

Q&A Properties for the System.Intent Component B-9

System.MatchEntity B-12

System.DetectLanguage B-14

The profile.locale and profile.languageTag Variables B-15

System.TranslateInput B-16

Direct Input Translation B-17

The source Variable B-17

The sourceVariable Property B-18

System.TranslateOutput B-18

System.Qna B-19

Increase the Precision of the Returned Q&A Using minimumMatch B-23

keepTurn key-value Maps and Transition Actions B-24

Q&A Transitions B-25

Security B-25

System.OAuth2Client B-25

System.OAuth2AccountLink B-26

Store IDCS User Profile for the Duration of the Session B-32

Handle Multiple Authentication Services B-33

System.OAuth2ResetTokens B-34

System.OAuthAccountLink B-34

The authorizeURL Property B-38

User Interface Components B-39

System.CommonResponse B-39

The Component Properties B-41

Transitions for the System.CommonResponse Component B-43

Composite Bag Transitions in the System.CommonResponse Component B-44

System.Webview B-44

System.WebView Component Properties B-44

Transitions for the System.Webview Component B-46

System.IncidentCreation B-46

System.IntelligentAdvisor B-48

System.KnowledgeSearch B-52

System.KnowledgeSearch Transitions B-56

System.AgentTransfer B-56

System.AgentTransferCondition B-60

Live-Agent-Transfer Components B-64

System.AgentInitiation B-65

xlviii

System.AgentInitiation Transitions B-71

System.AgentConversation B-72

System.AgentConversation Transitions B-74

System.ResolveEntities B-76

Calendar Components B-78

Calendar Authorization B-78

Working with Calendar Dates and Times B-81

Handling Calendar Errors B-82

System.CreateCalendarEvent B-84

System.DeleteCalendarEvent B-89

System.GetCalendarEventDetails B-94

System.ListCalendarEvents B-96

System.SelectCalendarEvent B-101

System.SendInviteResponse B-107

System.UpdateCalendarEvent B-110

Footers B-118

The translate Property B-119

System.Feedback B-120

System.Feedback Component Properties B-120

System.Feedback Component Transitions B-120

System.Text B-122

How Do I Use the System.Text Component? B-123

System.List B-124

Value Lists B-125

The options Property B-127

Action Lists B-128

System.Output B-129

How Do I Use the System.Output Component B-130

Defining Value Expressions for the System.Output Component B-131

Translating the Output Text B-134

Variable Components B-134

System.SetVariable B-134

System.ResetVariables B-135

System.CopyVariables B-136

System.SetCustomMetrics B-136

C Conversation Markers for Insights

xlix

D Apache FreeMarker Reference

Built-In String FreeMarker Operations D-1

Example: Improving the Confidence Level with Casing D-3

Example: Transforming Case with the System.Switch Component D-4

Example: Concatenating FTL Expressions D-4

Built-In FreeMarker Number Operations D-5

Built-In FreeMarker Array Operations D-6

Returning Intents and Scores D-8

Example: Iterating Arrays D-9

Built-In FreeMarker Date Operations D-10

Example: Extracting Dates from User Input D-12

Example: Setting a Default Date (When No Date Value Is Set) D-13

FreeMarker-Accessible System Variables D-16

E Feature Support by Language

General Feature Support by Language E-1

Entities Support by Language E-1

Basic and Full Entity Support E-2

l

Preface

Welcome to Using Oracle Digital Assistant.

Audience
Using Oracle Digital Assistant is intended for developers who want to develop digital
assistants to enable users to handle a variety of tasks through natural language
conversations.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

li

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I
Overview and Getting Started

• Overview of Digital Assistants and Skills

• Users, Groups, and Policies

• Order the Service and Provision an Instance

• Service Administration

• Get Started

• Sample Digital Assistants and Skills

For a rundown of recent changes, see What's New in Oracle Digital Assistant.

1
Overview of Digital Assistants and Skills

Oracle Digital Assistant is a platform that allows you to create and deploy digital assistants for
your users.

With Oracle Digital Assistant, you create:

• Digital assistants, which are AI-driven interfaces (commonly known as chatbots) that
help users accomplish a variety of tasks in natural language conversations. For each
digital assistant, you assemble one or more skills.

• Skills, which are individual bots that are focused on specific types of tasks, such as
tracking inventory, submitting time cards, and creating expense reports.

You can add skills to digital assistants or deploy them to a channel on their own.

What are Digital Assistants?
Digital assistants are virtual devices that help users accomplish tasks through natural
language conversations, without having to seek out and wade through various apps and web
sites. Each digital assistant contains a collection of specialized skills. When a user engages
with the digital assistant, the digital assistant evaluates the user input and routes the
conversation to and from the appropriate skills.

You can populate your digital assistant with skills from the Skill Store and with skills you have
designed yourself.

You can make digital assistants available to users through a variety of channels, such as
Microsoft Teams, Slack, and your own web and mobile apps.

What a Digital Assistant Does
A digital assistant enables a user to interact with multiple skills through a unified user
interface. To help facilitate this, a digital assistant performs the following functions.

• Greets the user upon access.

• Upon user request, lists what it can do and provide entry points into the given skills.

• Routes explicit user requests to the appropriate skill.

• Handles interruptions to flows.

For example, if a user inputs something that reflects a different intent or which requires a
different skill, the digital assistant prompts the user to confirm a transition to the desired
flow. And once that new flow is completed, offers to return the user to the preceding flow.

• Handles disambiguation.

For example, if a user types ”cancel”, it may need to prompt the user whether to cancel a
request that she previously made, to leave the existing flow, or to exit the bot entirely.

• Handles requests to exit the bot.

1-1

To optimize the behavior of a digital assistant (so that it is best able to respond to
ambiguous user input), you will probably want to tune its configuration and the way
that the skills are registered in the digital assistant. To dig in, see Digital Assistants.

What Are Skills?
Skills are individual chatbots that are designed to interact with users and fulfill specific
types of tasks, such as ordering food, making reservations, and changing contact
information. Each skill helps a user complete a task through a combination of text
messages and simple UI elements like select lists.

Basic Concepts
Before you dive into digital assistant and skill development, here are some concepts
you’ll want to get familiar with:

• Intents—Categories of actions or tasks users expect your skill to perform for them.

• Entities—Variables that identify key pieces of information from user input that
enable the skill to fulfill a task.

Both intents and entities are common NLP (Natural Language Processing)
concepts. NLP is the science of extracting the intention of text and relevant
information from text.

Chapter 1
What Are Skills?

1-2

• Components—Provide your skill with various functions so that it can respond to users.
These can be generic functions like outputting text, or they can return information from a
backend and perform custom logic.

• Dialog Flow—The definition for the skill-user interaction. The dialog flow describes how
your skill responds and behaves according to user input.

• Channels—Digital assistants and skills aren’t apps that you download from an app
marketplace, like iTunes. Instead, users access them through messaging platforms or
through client messaging apps. Channels, which are platform-specific configurations,
allow this access. A single digital assistant or skill can have several channels configured
for it so that it can run on different services simultaneously.

Platform Features and Capabilities
Here is a summary of the key features and capabilities of the Oracle Digital Assistant
platform.

• Regular intents and answer intents. You design intents for your skills to categorize
typical user requests by the tasks and actions that your skill performs. With regular
intents, you map the user's message to a conversation flow. With answer intents, you
display a ready-made answer to the message.

• The Utterance Tester, which enables you to iteratively test your skill's intent resolution.
You can do ad hoc tests and create and save batch tests.

• Built-in entities, including ADDRESS, DATE_TIME, DURATION, EMAIL, LOCATION,
NUMBER, PERSON, PHONE NUMBER, URL, and YES_NO, which you can use to
detect specific data from user input.

• Custom entity types, including value list, derived, regular expression, dynamic, ML
(machine learning), and composite bag.
With composite bag entities, you can create a group of entities that can be treated as a
whole within a conversation. This enables you to resolve the values of business objects
with multiple attributes (such as a pizza where you need to determine things like type,
size, and extra toppings) within one state of a dialog flow. For complex cases, you can
use entity event handlers to programmatically handle validation, prompting, and
disambiguation for the composite bag entity items.

• Visual Flow Designer, which enables you to visually and declaratively define the model
of interaction between a skill and its users. You can also create conversations modularly
with separate and reusable flows.

• Backend integration support, including:

– The REST Service component that you can use to send a request to a REST
service's endpoint.

– Custom components, which you can use to do complex processing as well as call
REST endpoints.

– Authentication services to enable interaction between Digital Assistant and identity
providers.

• SQL Dialog Skills, which translate a user's natural language utterances into SQL
queries, send the queries to a backend data source, and display the response.

• Channel support for messenger clients, mobile apps, and Web pages, through
which users can access your digital assistants. There is built-in support for platforms
such as Microsoft Teams, Slack, and Twilio. And there are SDKs for integrating the iOS

Chapter 1
Platform Features and Capabilities

1-3

and Android platforms and Web applications. In addition, you create a Webhook
channel to integrate with a platform that is not supported out of the box.

• Voice. The SDKs for the Android, iOS, and Web channels have speech
recognition capabilities to allow users to talk directly to skills and digital assistants
and get the appropriate responses

• Native-language support for skills and digital assistants. When you develop a
skill with native language support, understanding of multiple languages is built into
the model. Arabic, Dutch, English, French, German, Italian, Portuguese, and
Spanish are supported natively.

• Translation service support. If the languages that you want to include in your
digital assistant are not part of the native-language support, you can use a
translation service to translate user input. OCI Language, the Google Translation
API, and Microsoft Translator are supported.

• Skill Store, which provides skills and digital assistants that you can pull into your
Digital Assistant instance and clone, extend, or use as is. When you extend a skill
or digital assistant that you have pulled, you can customize it and then, when a
new version is made available in the Skill Store, rebase it to the new version while
keep your customizations.

• Insights, which provides developer-oriented analytics that pinpoint issues with
your skills and digital assistants. You can track metrics at both the chat session (or
user session) level and at the conversation level. You can also define custom
metrics and use the User Feedback component in your dialog flows to collect
additional data.

• External Events and Application-Initiated Conversations, which enable you to
trigger a conversation with a user's digital assistant from an external application.

• Data Manufacturing, which helps you crowdsource the training data for your
skills.

• Customer Service Integration, which enables you to integrate your digital
assistants with customer service applications in the following ways:

– By using the DA as an Agent feature to integrate with Oracle B2C Service or
Oracle Fusion Service and turn a digital assistant into an automated agent that
participates in live-help chats in much the same way that human agents do.

– If you have Oracle B2C Service Chat, by using the Live Agent Transfer feature
to pass the conversation to a human whenever the skill senses that the
customer is stuck or frustrated.

– By incorporating Oracle Intelligent Advisor interviews in to your skills.

– By using the Knowledge Search feature to search for and display articles from
Oracle B2C Service Knowledge Foundation or Oracle Fusion Service
Knowledge Management.

Register for Email Notifications
You can subscribe to email notifications on upcoming new features and changes in
Digital Assistant.

To subscribe, open the user profile menu on the top right of Oracle Digital Assistant
and select Subscription Preferences.

Chapter 1
Register for Email Notifications

1-4

1. In the top right of Digital Assistant, click the user profile menu and select Subscription
Preferences.

2. In the dialog, enter your email address and select one or more of the message
categories.
You will only receive email notifications for the categories you select.

Chapter 1
Register for Email Notifications

1-5

2
Users, Groups, and Policies

Oracle Digital Assistant uses Oracle Cloud Infrastructure Identity and Access Management
(IAM) as its base service for authentication and authorization.

IAM comes in two flavors:

• IAM without Identity Domains. This flavor provides policy-based access. The tenancy
administrator for your organization needs to set up compartments, groups, and policies
that control which users can access which resources and how. For an overview of this
process, see Setting Up Your Tenancy.
In Digital Assistant instances that are provisioned without identity domains, policies
control who can develop skills and digital assistants, access Insights data, and call the
service's APIs. For details on how policies work, see Getting Started with Policies. For
specific details about writing policies, see Policy Reference.

• IAM with Identity Domains. This flavor provides the possibility of role-based access in
addition to policy-based access. To provide role-based access, the tenancy administrator
for your organization needs to set up compartments, groups, and roles that control which
users can access which resources and how. The process is similar to what is described
in Setting Up Your Tenancy, except that you use pre-defined roles instead of writing
policy statements.
The identity domain feature enables you to manage access to Digital Assistant using the
same concepts and techniques that you would use if Oracle Identity Cloud Service
(IDCS) was your identity provider.

Note:

It is possible that the Identity Domains feature is not yet available for your
tenancy. To determine if your tenancy has been updated with this feature, log

into your cloud account, open the console's navigation menu (), and select
Identity & Security. If you see a Domains link in the Identity section of the
page, identity domains are available in your tenancy.

Through IAM, you can also set up federation to other identity providers, such as Oracle
Identity Cloud Service (IDCS).

2-1

https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/overview.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/home1.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/settinguptenancy.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Concepts/policygetstarted.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/Reference/policyreference.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/home.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/settinguptenancy.htm

Note:

If your Digital Assistant instance is paired with a subscription to a Fusion-
based Oracle Cloud Applications service, such as HCM Cloud or Sales
Cloud, you do not use IAM to set up permissions for users. Instead, you use
Oracle Identity Cloud Service (IDCS). See Getting Started with Oracle Digital
Assistant for Fusion Applications.
Similarly, if you have an instance that was initially provisioned on the Gen 1
cloud infrastructure (in 2019 or before) and then migrated to the Gen 2
infrastructure, you also use IDCS instead of IAM. See Manage User Access
in a Migrated Instance.

Digital Assistant Policies
Before you start organizing your users into groups, you should learn the basics on how
policies work and decide on what policies you want to apply to which groups of users.

Policies are created with statements that specify resource-types, verbs (which
describe the level of access to those resource types), and locations (typically the
names of compartments).

For example, you could create a policy statement that enables a group named
ServiceDevelopers to be able to use the resource type oda-design in a compartment
named MyDigitalAssistantTest.

Resource-Types
This table shows the resource types that are available for Oracle Digital Assistant.

Resource-type Description

oda-instance-resource Enables use of REST APIs for exporting
Insights data, exporting conversation logs,
managing dynamic entities, and managing
resource bundles. There are three permissions
levels (verbs) that you can apply. For details on
which endpoints are covered in each
permission level (inspect, read, and use),
see REST API for Oracle Digital Assistant and
click Permissions in the left navigation of the
page.
Note: For Service Instance APIs that enable
you to do things like create skills and
channels, you need the a policy with the oda-
design resource type.

oda-design Enables access to the user interface for skills,
digital assistants, and channels. At the read
permission level, users can see the artifacts
that have been created. At the use level, users
can actively develop, test, and deploy these
artifacts. Also enables you to create an
manage these artifacts using the Service
Instance APIs.

Chapter 2
Digital Assistant Policies

2-2

http://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FAGDA
http://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FAGDA
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/

Resource-type Description

oda-insights Enables access to the user interface for skill
and digital assistant Insights.

oda-instances Enables access to the console for Oracle
Digital Assistant instances. At the manage
permission level, you can create and delete
instances.

oda-family This resource type is a superset of the Oracle
Digital Assistant resource types. For each verb
(inspect, read, use, and manage) that you
use with this resource-type in a policy
definition, all operations covered by that verb
are included. For example, if you have a policy
using this resource type and the manage verb,
the user(s) that are covered by this policy will
have all possible Oracle Digital Assistant
permissions.
This resource type also includes the resource
types oda-private-endpoints and oda-
private-endpoint-attachments, which
relate to the Private Endpoint feature.

Verbs
You use verbs in policy definitions to set the permission levels that given user groups have for
given resource-types. For example, you would use the read verb to allow read-only access.

Here are the verbs have been defined for the set of Oracle Digital Assistant resource-types.

Verb Description

inspect Generally covers operations that list contents of a
resource. This is the verb that provides the most
limited access.

read In user interface terms, this generally means read-
only access. In API terms, it generally applies to
GET operations.

use When applied to resources in the service's user
interface, this generally allows developing, testing,
and deploying of these resources. At the API level,
it generally allows GET, PUT, POST, PATCH, and
DELETE operations, with the exception of more
high-impact operations (such as creating
instances and purging data).

manage Generally allows the user to perform the whole set
of a resource type's operations, including high-
impact operations such as creating instances and
purging data.

Example Set of Policies
The following table illustrates the patterns for IAM policies and provides typical examples for
Oracle Digital Assistant.

Chapter 2
Digital Assistant Policies

2-3

IAM Policy Pattern for Policy Statement

Policy for Service Administrators • Allow group
<name_of_your_Service_Administra
tors_Group> to manage oda-family
in compartment
<your_digital_assistant_compartm
ent>

Policy for Service Developers • Allow group
<name_of_your_Service_Developers
_Group> to use oda-design in
compartment
<your_digital_assistant_compartm
ent>

• Allow group
<name_of_your_Service_Developers
_Group> to use oda-insights in
compartment
<your_digital_assistant_compartm
ent>

In addition, if you want these users to be able
to see details of the Digital Assistant instances
in the OCI console, you can add this
statement:

• Allow group
<name_of_your_Service_Developers
_Group> to read oda-instances in
compartment
<your_digital_assistant_compartm
ent>

Policy for Service Business Users • Allow group
<name_of_your_Service_Business_U
sers_Group> to read oda-design
in compartment
<your_digital_assistant_compartm
ent>

• Allow group
<name_of_your_Service_Business_U
sers_Group> to use oda-insights
in compartment
<your_digital_assistant_compartm
ent>

In addition, if you want these users to be able
to see details of the Digital Assistant instances
in the OCI console, you can add this
statement:

• Allow group
<name_of_your_Service_Business_U
sers_Group> to read oda-
instances in compartment
<your_digital_assistant_compartm
ent>

Chapter 2
Digital Assistant Policies

2-4

IAM Policy Pattern for Policy Statement

Policy for Digital Assistant API Users • Allow group
<name_of_your_Digital_Assistant_
API_Users_Group> to use oda-
instance-resource in compartment
<your_digital_assistant_compartm
ent>

• Allow group
<name_of_your_Digital_Assistant_
API_Users_Group> to use oda-
design in compartment
<your_digital_assistant_compartm
ent>

Note:

The first
statement
provides access
to all of
endpoints in the
REST API for
tasks such as
exporting
insights,
managing
dynamic entities,
and managing
resource
bundles. You can
also create
policies using the
inspect and
read verbs for
more limited
access. To see
which endpoints
are covered by
which verbs, see
the
documentation
for these APIs.
The second
statement
provides access
to the Service
Instance APIs,
which enable you
to do things such
as create skills
and channels.

Chapter 2
Digital Assistant Policies

2-5

https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/

Create a Compartment
Compartments enable you to partition resources in Oracle Cloud so that you can
better control access to those resources. When you write policies to give users access
to a Digital Assistant instance, the compartment name is one of the parts of the policy
statement.

Note:

You can also write policies that give users access to the resources in the
entire tenant, but that is best for very simple setups (such as if you never
intend to have more than one Digital Assistant instance.

To create a compartment:

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Compartments.

2. Click Create Compartment.

3. Fill in the required values and click Create Compartment.

Create New IAM Users
If any of your users don't have user accounts yet, create them in IAM.

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Users.

2. Click Create User.

3. In the Create User dialog, fill in the necessary details, with special attention to the
following:

• The Name value can be an email address or a unique name. This will be the
name that the user uses to log in to the instance.

• The Email value, which is used for password recovery.

4. Click Create.

5. Once the user is created, select the user and click Create/Reset Password.

6. Click Copy.

7. Paste the password in a secure place, and then provide it to the user.

The user will need to log in with that password and then immediately change it.

Create Groups
Groups are collections of users that can be referenced in policies. You create groups
to help manage which users get access to what.

Here is an example set of user groups that you could set up.

Chapter 2
Create a Compartment

2-6

User Group Description and Purpose

Service Administrators Has complete unfettered access to manage,
administer, and develop with the Oracle Digital
Assistant service instance.

Service Developer Has privileges to develop and train digital
assistants. However, can't delete published digital
assistants or skills nor purge data. These
privileges are a subset of service administrator
privileges.

Service Business Users Mostly read-only access. Can use the skill and
digital assistant tester, view Insights reports, and
also enhance the training corpus by adding
sample utterances (retraining). These privileges
are a subset of service developer privileges.
Intended for line-of-business users and analysts.

External Service Users Has permissions to call Oracle Digital Assistant
REST APIs. There are three different permission
levels (the inspect, read, and use verbs) for
Oracle Digital Assistant APIs. As such, you may
want to create a separate group for two or three of
those permission levels.

To create a group:

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Identity & Security, and then click Groups.

A list of the groups in your tenancy is displayed.

2. Click Create Group.

3. Enter the following:

• Name: A unique name for the group. The name must be unique across all groups in
your tenancy. You cannot change this later.

• Description: A friendly description. You can change this later if you want to.

• Tags: Optionally, you can apply tags. If you have permissions to create a resource,
you also have permissions to apply free-form tags to that resource. To apply a
defined tag, you must have permissions to use the tag namespace. For more
information about tagging, see Resource Tags. If you are not sure if you should apply
tags, skip this option (you can apply tags later) or ask your administrator.

4. Click Create Group.

Add IAM Users to a Group
You'll need to add each user to a group in order to give them access to the service.

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Identity & Security, and then click Groups.

A list of the groups in your tenancy is displayed.

2. Locate the group in the list.

3. Click the group.

Chapter 2
Add IAM Users to a Group

2-7

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm

4. Click Add User to Group.

5. Select the user from the drop-down list, and then click Add User.

Map IDCS Users to an IAM Group
If the user accounts for the team members that need to access Digital Assistant have
been set up in Oracle Identity Cloud Service (IDCS), you can map those users to an
IAM group.

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Federation.

2. Click the OracleIdentityCloudService link.

3. In the left navigation, click Group Mappings.

4. Click Edit Mapping.

5. Click Add Mapping.

6. In the Identity Provider Group field, select the IDCS group for the users that you
want to give access to Digital Assistant.

7. In the OCI Group field, select the IAM group that corresponds with the access that
you want to provide for those users.

8. Click Submit.

Create Policies
You define IAM policies to apply to your user groups.

To create a policy:

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Policies.

A list of the policies in the compartment you're viewing is displayed.

2. If you want to attach the policy to a compartment other than the one you're
viewing, select the desired compartment from the Compartment drop-down list on
the left. Where the policy is attached controls who can later modify or delete it (see
Policy Attachment).

3. Click Create Policy.

4. Enter the following:

• Name: A unique name for the policy. The name must be unique across all
policies in your tenancy. You cannot change this later.

• Description: A friendly description. You can change this later if you want to.

• Policy Versioning: Select Keep Policy Current if you'd like the policy to stay
current with any future changes to the service's definitions of verbs and
resources. Or if you'd prefer to limit access according to the definitions that
were current on a specific date, select Use Version Date and enter that date
in format YYYY-MM-DD format. For more information, see Policy Language
Version.

Chapter 2
Map IDCS Users to an IAM Group

2-8

https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm#Policy3
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policyadvancedfeatures.htm#Policy2
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policyadvancedfeatures.htm#Policy2

• Statement: A policy statement. For the correct format to use, see Policy Basics and
also Policy Syntax. If you want to add more than one statement, click +.

• Tags: Optionally, you can apply tags. If you have permissions to create a resource,
you also have permissions to apply free-form tags to that resource. To apply a
defined tag, you must have permissions to use the tag namespace. For more
information about tagging, see Resource Tags. If you are not sure if you should apply
tags, skip this option (you can apply tags later) or ask your administrator.

5. Click Create.

The new policy will go into effect typically within 10 seconds.

For an example of how you might define your Oracle Digital Assistant policies, see Example
Set of Policies.

For more background on IAM policies, see How Policies Work.

Setup and Policies for Oracle Functions
If you decide to use Oracle Functions to host code custom component code for any of your
skills, you need to configure your tenancy for function development. This includes setting up
permissions for the developers and giving your Digital Assistant instance permissions to call
the functions that contain that code.

Here are the general steps:

1. Set up compartments for Functions and a virtual cloud network (VCN).

2. Set up the VCN.

3. Set up permissions for network access.

4. Set up permissions for Functions developers.

5. Set up a dynamic group for your Digital Assistant instance (or instances).

6. Define a policy to give the dynamic group access to the functions.

The following topics will give you a quick walkthrough of those steps. If you need more
background information, see Configuring Your Tenancy for Function Development.

Create Compartment for Functions and Network Resources
In your tenancy, you'll want to have separate compartments for your functions and network
resources. This enables you to write specific policies for each.

To create the compartments:

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Identity & Security, and then click Compartments.

2. Click Create Compartment.

3. Fill in the required values for the compartment dedicated to Functions and click Create
Compartment.

4. Click Create Compartment again and fill in the values for the compartment that you are
dedicating to network resources.

Chapter 2
Setup and Policies for Oracle Functions

2-9

https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm#Policy
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policysyntax.htm
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcetags.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Functions/Concepts/functionsoverview.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingdynamicgroups.htm
https://docs.cloud.oracle.com/iaas/Content/Functions/Tasks/functionsconfiguringtenancies.htm

Set Up a Virtual Cloud Network (VCN)
Before your team can create and deploy functions, you need a virtual cloud network
(VCN) containing the subnets for your functions.

The easiest way to create the VCN is to use the VCN with Internet Connectivity
wizard, which creates the necessary artifacts for you. See Create the VCN and
Subnets to Use with Oracle Functions in Oracle Cloud Infrastructure Documentation.

Note:

You need to create the VCN in the region where you plan to deploy your
functions.

Set Up Network Access Permissions
To set up permissions for users who will manage network resources:

1. If you haven't already done so, create a group for those users.

a. In the Infrastructure Console, click on the top left to open the navigation
menu, select Identity & Security, and then click Groups.

b. Click Create Group.

c. Complete the wizard, making sure that the name for the group is unique
across all groups in the tenancy. You can't change this later.

d. Click Create Group.

2. Add the appropriate users to the group.

• For each user, click Add User to Group, select the user from the drop-down
list, and then click Add User.

3. Create the required policy for the group:

a. From the Infrastructure Console's navigation menu, select Identity &
Security, and then click Policies.

b. Click Create Policy.

c. Complete the wizard, paying particular attention to the following fields:

• Name: Enter a unique name for the policy. The name must be unique
across all policies in your tenancy. You can't change this later.

• Statement: Add the following policy statement, where you replace
<group-name> and <network-resources-compartment-name> with the
names of the appropriate user group and compartment, respectively:

Allow group <group-name> to manage virtual-network-family in
compartment <network-resources-compartment-name>

For further elaboration on the policy format, see Policy Basics and Policy
Syntax.

Chapter 2
Setup and Policies for Oracle Functions

2-10

https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionscreatingvcn.htm
https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionscreatingvcn.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm#Policy
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policysyntax.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policysyntax.htm

Set Up Permissions for Functions Developers
To set up permissions for the function developers:

1. If you haven't already done so, create a group for those users.

a. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Groups.

b. Click Create Group.

c. Complete the wizard, making sure that the name for the group is unique across all
groups in the tenancy. You can't change this later.

d. Click Create Group.

2. Add the appropriate users to the group.

• For each user, click Add User to Group, select the user from the drop-down list, and
then click Add User.

3. Create the required policies for the group:

a. From the Infrastructure Console's navigation menu, select Identity & Security, and
then click Policies.

b. Click Create Policy.

c. Complete the wizard, paying particular attention to the following fields:

• Name: Enter a unique name for the policy. The name must be unique across all
policies in your tenancy. You can't change this later.

• Statement: Add the following policy statements (clicking + for each statement
after the first), where you replace <group-name>, <network-resources-
compartment-name>, and <functions-compartment-name> with the names of the
appropriate user group and compartment:

Allow group <group-name> to use virtual-network-family in
compartment <network-resources-compartment-name>
Allow group <group-name> to manage functions-family in compartment
<functions-compartment-name>
Allow group <group-name> to read metrics in compartment <functions-
compartment-name>
Allow group <group-name> to manage logging-family in compartment
<functions-compartment-name>
Allow group <group-name> to manage repos in tenancy
Allow group <group-name> to read objectstorage-namespaces in
tenancy

Note:

The first statement applies to a different compartment than the next three
statements. Make sure that the first of these policy statements specifies the
compartment that you set up for network resources and the next three
statements specify the compartment that you set up for functions
development.

Chapter 2
Setup and Policies for Oracle Functions

2-11

Create a Dynamic Group
For Digital Assistant to be able to call functions written in Oracle Functions or to invoke
other OCI services (like Language), you need to give permissions to the Digital
Assistant service instance itself (as opposed to users of the instance). To do so, you
first need to create a dynamic group that contains a rule that matches that instance.
You can then apply a policy to the dynamic group to give it the desired permissions.

Here are the steps for creating a dynamic group for Digital Assistant instances.

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Dynamic Groups.

2. Click Create Dynamic Group to open the Create Dynamic Group dialog.

3. Fill in values for Name and Description.
The name must be unique across all groups in your tenancy (dynamic groups and
user groups). You can't change this later.

4. In the Matching Rules section, add one or more rules to match the instance or
instances that you want to have access to the component.
You can add rules for instances or for compartments that contain the instances.

Tip:

Click the Rule Builder link to get assistance with the rule syntax.

Here are rules that you could use for Digital Assistant instances in a specific
compartment.

 resource.type = 'odainstance',
 resource.compartment.id = '<ocid-of-compartment-containing-
DigitalAssistant-instance>'

5. Click Create.

Example: Dynamic Group for a Single Instance
Here are the steps that you would follow to create a dynamic group for a single Digital
Assistant instance.

1. Get the OCID of your instance. You can do this by following these steps:

a. In the Infrastructure Console, click on the top left to open the navigation
menu, select Analytics & AI, and select Digital Assistant (which appears
under the AI Services category on the page).

b. From the Compartments panel, select a compartment.

c. Select the instance.

d. In the Instance Information section of the page, click the Copy link for the
instance's OCID.

Chapter 2
Setup and Policies for Oracle Functions

2-12

2. From the Infrastructure Console's navigation menu, select Identity & Security, and then
click Dynamic Groups.

3. Click Create Dynamic Group to open the Create Dynamic Group dialog.

4. Fill in values for Name and Description.

5. Click the Rule Builder link.

6. In the Create Matching Rule dialog, in the Match Instances With field, select Instance
OCID.

7. In the Value field, paste the OCID that you just copied.

8. Click Add Rule.

9. Click Create.

Create a Policy to Access Oracle Functions
Once you have a dynamic group for the instance or instances that you want to be able to
invoke functions in Oracle Functions, you create a policy for that dynamic group to access the
functions:

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Identity & Security, and then click Policies.

A list of the policies in the compartment you're viewing is displayed.

2. From the list of compartments, select the compartment to which you want to attach the
policy. This controls who can later modify or delete the policy (see Policy Attachment).

3. Click Create Policy.

4. Complete the wizard, paying particular attention to the following fields:

• Name: Enter a unique name for the policy. The name must be unique across all
policies in your tenancy. You cannot change this later.

• Statement: Enter a policy statement with the following format:

Allow dynamic-group <name_of_your_dynamic_group> to use fn-invocation
in compartment <name_of_your_Functions_compartment>

Policies for OCI Language
If you configure OCI Language as a translation service in Digital Assistant, you need to
create the appropriate policies to give your Digital Assistant instance permission to use it.
Currently, this is only possible for instances that you have provisioned through the OCI
Universal Credit program.

The setup steps and policy (or policies) required to use the OCI Language service in your
skills and digital assistants depends on how your Digital Assistant instance was set up and
whether the OCI Language service is available to you in the same OCI tenancy.

If you have provisioned your Digital Assistant instance through the OCI Universal Credit
program, these are the general steps:

1. In the OCI Console for your tenancy, subscribe to the OCI Language service.

Chapter 2
Policies for OCI Language

2-13

https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm#Policy3
https://docs.oracle.com/iaas/language/using/language.htm

2. Optionally, create a dynamic group for the Digital Assistant instance that will be
calling OCI Language. See Create a Dynamic Group.

3. Create a policy that enables the Digital Assistant instance to use the Language
service.
If you don't have a dynamic group, the policy would take this form:

Allow any-user to use ai-service-language-family in compartment
<name_of_your_compartment> where
request.principal.id='<ocid_of_your_Digital_Assistant_instance>'

If you do have a dynamic group, the policy would take this form:

Allow dynamic-group <name_of_your_dynamic_group> to use ai-service-
language-family in compartment <name_of_your_Language_compartment>

See Create Policies for the steps to create policies in the OCI Console.

If you have an Oracle Digital Assistant Platform for SaaS subscription and are
using a Digital Assistant in that OCI tenancy, you will need to get another OCI tenancy
through Oracle Cloud's Universal Credit program to use OCI Language. Here are the
steps:

1. In your Universal Credit program tenancy, subscribe to the OCI Language service.

2. In the tenancy where you have your OCI Language subscription, add an admit
policy in the following form:

define tenancy digital-assistant-tenancy as <tenancy-ocid>
admit any-user of tenancy digital-assistant-tenancy to use ai-
service-language-family in compartment <chosen-compartment> where
request.principal.id = '<digital-assistant-instance-OCID>'

3. In the OCI tenancy where you have your Digital Assistant instance, add an
endorse policy in the following form:

endorse any-user to use ai-service-language-family in any-tenancy
where request.principal.type =
'<ocid_of_your_Digital_Assistant_instance>'

See Create Policies for the steps to create policies in the OCI Console.

If you don't have direct access to the OCI Console for the tenancy of your Digital
Assistant instance because it is managed by Oracle, as is likely the case if your
instance is paired with a subscription to a Fusion-based Oracle Cloud
Applications service, you need to follow these steps:

1. File a service request (SR) with Oracle Support to get the OCID of your Digital
Assistant.

2. Get a separate Oracle Cloud tenancy through Oracle Cloud's Universal Credit
program. See Buy an Oracle Cloud Subscription.

3. In your Universal Credit program tenancy, subscribe to the OCI Language service.

4. In an OCI tenancy that you do have direct access to, subscribe to the OCI
Language service.

Chapter 2
Policies for OCI Language

2-14

https://docs.oracle.com/en-us/iaas/Content/GSG/Tasks/buysubscription.htm

5. In the tenancy where you have subscribed to OCI Language, create a policy to allow the
Digital Assistant to use OCI Language. In the statement, you use the OCID that is given
to you as a result of your service request. The statement takes the following form.

define tenancy digital-assistant-tenancy as <tenancy-ocid>
admit any-user of tenancy digital-assistant-tenancy to use ai-service-
language-family in compartment <chosen-compartment> where
request.principal.id = '<digital-assistant-instance-OCID>'

See Create Policies for the steps to create policies in the OCI Console.

Role-Based Access and Identity Domains
If, when creating a Digital Assistant instance, you have enabled role-based access for that
instance, you can assign roles to Oracle Cloud Infrastructure IAM groups and users within an
identity domain.

The tenancy in which your Digital Assistant instance is provisioned contains a default identity
domain in the root compartment. If the tenancy already existed before the Identity Domains
feature was enabled, any users and groups that existed in the tenancy at the time that
Identity Domains was enabled will be included in the default identity domain.

You can create additional identity domains for your tenant, either in the root compartment or
in other compartments. For example, you might do something like the following:

• In the root (default) compartment, create a default domain for administrators only.

• In another compartment (for example, named Dev), create a domain for users and
groups in a development environment

• In another compartment (for example, named Prod), create a domain for users and
groups in a production environment.

Create an Identity Domain
1. Open the navigation menu and click Identity & Security. Under Identity, click

Domains .The Domains page is displayed.

2. If not already selected, select the Compartment where you want to create the domain.

3. Click Create domain.

4. Enter required information in the Create domain page. See Creating Identity Domains in
the Oracle Cloud Infrastructure documentation.

User Roles in IAM
If your instance of Digital Assistant is set up for role-based access, you give your team
members access to the instance by assigning them one of the following roles:

• ServiceBusinessUser. This role is designed for business users to analyze how the skills
and digital assistants are being used. Users with this role can do the following:

– View skills, digital assistants, and channels that have already been created.

– Use Insights features for skills and digital assistants, including using the retrainer to
add utterances to draft versions of skills.

Chapter 2
Role-Based Access and Identity Domains

2-15

https://docs.oracle.com/iaas/Content/Identity/domains/overview.htm#creating_domains

• ServiceDeveloper. This role is designed for developers who will be extending,
updating, and/or developing skills and digital assistants. Users with this role can:

– Develop, test, train, and deploy skills and digital assistants and create
channels.

– Use the Insights features for skills and digital assistants, including using the
retrainer to add utterances to draft versions of skills.

• ServiceAdministrator. This role is designed for administrators and gives them
permissions to do things such as purge data and delete published skills. Users
with this role can:

– Access the OCI console for Oracle Digital Assistant instances.

– Develop, test, train, and deploy skills and digital assistants and create
channels.

– Use the Insights features for skills and digital assistants, including using the
retrainer to add utterances to draft versions of skills.

Create a User in an Identity Domain
1. Open the navigation menu and click Identity & Security. Under Identity, click

Domains.

2. If not already selected, select the Compartment in which the domain that contains
the group to which you want to add a new user resides.

3. In the Name column, click the domain for the group in which you want to create
the user.

4. Click Users.

5. Click Create user.

6. In the Create user screen, enter the user's first and last name, and their username,
then select the one or more groups to which the user should be assigned.

7. Click Create.
The new user is added to the selected group(s) and has permissions assigned to
the group by its policy statement.

8. On the user details page that is displayed, you can edit user information as
needed, and reset the user's password.

9. Provide new users with the credentials they need to sign in to their cloud account.
Upon signing in, they will be prompted to enter a new password.

Create a Group in an Identity Domain
1. Open the navigation menu and click Identity & Security. Under Identity, click

Domains.

2. If not already selected, select the Compartment in which the domain where you
want to create the group resides.

3. In the Name column, click the domain in which you want to create the group for
creating and managing instances.The domain Overview page is displayed.

4. Click Groups.The Groups page for the domain is displayed.

5. Click Create group.

Chapter 2
Role-Based Access and Identity Domains

2-16

6. In the Create group screen, assign a name to the group (for example, oci-integration-
admins), and enter a description.

7. Click Create.

Assign a Role in an Identity Domain
1. Open the navigation menu and click Identity & Security. Under Identity, click Domains.

2. If not already selected, select the Compartment in which the domain that contains the
user or group to which you want to assign the Digital Assistant roles resides.

3. In the Name column, click the domain for the user or group to which you want to assign
roles.

4. In the navigation pane, click Oracle Cloud Services.

5. In the Name column, click the Digital Assistant instance for which you want to assign
group roles.

6. In the navigation pane, click Application roles.

7. In the Application roles list, locate the role(s) you want to assign. At the far right, click
the menu icon and select Assign groups or Assign users.

8. Select the user or group to which to assign the service role, and click Assign.

Chapter 2
Role-Based Access and Identity Domains

2-17

3
Order the Service and Provision an Instance

To get your team set up with Oracle Digital Assistant, you order the service, give users
appropriate permissions, and then provision the instance.

Digital Assistant Product Types
Oracle Digital Assistant is available through a variety of pricing and subscription models. How
you set up your instance depends on which of these models you select when you order the
service.

The pricing models break down into the following general types:

• Individual service. When you order Digital Assistant as an individual service, you
typically provision such instances yourself. See Set Up Digital Assistant as an Individual
Service.

• Paired with Fusion-based Cloud applications. You can get Digital Assistant in this way
when you have Fusion-based Oracle Applications Cloud services (such as Sales Cloud
or HCM Cloud).
When you get ODA in this form, it is automatically provisioned for you. You give team
members access to the instance in the IDCS application for the instance. See Oracle
Fusion Cloud Applications and Digital Assistant.

Note:

This type of Digital Assistant order is specifically designed for you to be able to
extend those out-of-the-box skills for your business. If you also want to create
custom skills or integrate with backends other than the service that the out-of-
the-box skills are tied to, you need to get a separate individual subscription to
Digital Assistant. See Linking of Digital Assistant Instances.

Place an Order for Oracle Digital Assistant
You can place an order for Oracle Digital Assistant in one of these ways:

• Navigate to https://www.oracle.com/application-development/cloud-services/digital-
assistant/ and click Buy now.

• Contact your Oracle sales representative.

After you place an order for Oracle Digital Assistant as in individual service, you receive an
email with instructions on accessing your Cloud account with a temporary password. Once
you log in with that password, you are prompted to enter a new password. After that, you can
go ahead and set up your users and provision your instance.

3-1

https://www.oracle.com/application-development/cloud-services/digital-assistant/
https://www.oracle.com/application-development/cloud-services/digital-assistant/

Activate a Digital Assistant Subscription
If you have subscribed to Oracle Digital Assistant Platform for SaaS, you will get an
email that prompts you to activate the subscription. Following the instructions in the
email, activate the account.

• If you have purchased a Oracle Digital Assistant Platform for SaaS subscription to
use with a Digital Assistant instance that was provisioned for you as part of a
Fusion-based Oracle Applications Cloud service subscription, activate the new
Digital Assistant subscription in the same tenant where you have the Oracle
Applications Cloud service.

Once you have activated the subscription in the same tenant as your Oracle
Applications Cloud service, you gain the entitlements to use the full Digital
Assistant functionality in your pre-provisioned instances. You don't need to
provision separate instances to gain these entitlements. You can simply use the
instances that were already provisioned for you.

• If you have purchased an Oracle Digital Assistant Platform for SaaS subscription
but will not be linking it with another Digital Assistant instance:

1. Following the instructions in the activation email, activate the subscription.

2. Set up your Digital Assistant instance (or instances) as described in the
following topics.

If you are paying for use of Digital Assistant through Universal Credits (instead of
purchasing a subscription), there is no activation step.

Set Up Digital Assistant as an Individual Service
To set up an individual instance of Oracle Digital Assistant (in other words, an instance
that is not paired with an order of Oracle Cloud Applications and thus not provisioned
automatically for you), you need to go into the Oracle Cloud Infrastructure Console
and do the following:

1. Set up a compartment for the Digital Assistant in your tenancy.

2. Set up users and groups for the users.

3. Set up policies that govern the permissions for the user groups.

4. Provision the instance.

If you have not yet set up the compartment, users, groups, and policies, see Users,
Groups, and Policies for the information you need to do so. If you'd like to quickly get
an instance up and running and configure a basic set of user permissions, you can
follow this Recipe for Quick Setup and Provisioning.

After you finish those steps, you can proceed with provisioning the instance, as
described in the next topic.

Chapter 3
Activate a Digital Assistant Subscription

3-2

Note:

If you have subscribed to Oracle Digital Assistant Platform for SaaS and that
subscription has been linked to a Digital Assistant instance that was provisioned for
you as part of a Fusion-based Oracle Applications Cloud service subscription, you
don't need to provision the Oracle Digital Assistant Platform for SaaS instance. In
fact, it is simplest if you do your Digital Assistant development work in the instance
that was provisioned for you.

Create an Oracle Digital Assistant Service Instance
1. Sign in to your Oracle Cloud account.

2. In the Infrastructure Console, click on the top left to open the navigation menu, select
Analytics & AI, and select Digital Assistant (which appears under the AI Services
category on the page).

3. From the Compartments panel, select a compartment.
If you haven't yet created a compartment, see Understanding Compartments and
Managing Compartments.

4. Click Create Digital Assistant Instance.

5. On the Create Digital Assistant Instance page, fill in the following details:

• Compartment.

• Name. Enter a name that reflects usage of the instance. For example, for a
development environment, you might use oda-dev1.

• Instance shape. Select between the following shapes:

– Development. This is a lightweight option that is geared toward development
work.

– Production. This option should be selected for production instances of Digital
Assistant. In comparison with the Development shape, this option has higher rate
limits and greater database capacity, which enables more Insights data to be
collected.

See Instance Shapes and Rate and Storage Limits for information on the rate limits.

• If you want to enable role-based access to the instance (instead of IAM's default
policy-based access), click Show Advanced Options, select Enable Role Based
Access, and select an identity domain.
See Role-Based Access and Identity Domains for information on setting up users and
groups and assigning roles.

Note:

The Enable Role Based Access option is disabled if the current tenancy
doesn't yet have support for Identity Domains.

• Tag Namespace. (Optional) To learn how this works, see Managing Tags and Tag
Namespaces.

6. Click Create.

Chapter 3
Set Up Digital Assistant as an Individual Service

3-3

https://docs.oracle.com/iaas/Content/GSG/Concepts/settinguptenancy.htm#Understa
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.oracle.com/en-us/iaas/Content/Tagging/Concepts/taggingoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Tagging/Concepts/taggingoverview.htm

After a few minutes, your instance will go from the status of Creating to Active,
meaning that your instance is ready to use.

Note:

If provisioning of the instance fails, it could be because you have reached the
service limit for Digital Assistant instances on your account. For an
explanation of service limits and the possibility of requesting a higher limit,
see Service Limits.

Access the Service Instance from the Infrastructure Console
Once you have provisioned an instance, you can access it from the Infrastructure
Console by following these steps:

1. In the console page for the instance, click the Service Console button.

You will be redirected to another login page.

2. Click the Change tenant link.

3. In the Cloud Tenant field, enter the value of the Cloud Account field from the
Access Details section of your welcome email.

4. Sign in to the instance.

As the tenant administrator, you can always log in with your single-sign on
credentials (on the left side of the page). Similarly, any users that have been
federated through IDCS can log in with these credentials.

Any users that have been provisioned with IAM user accounts can log in on the
right side.

Once you have signed in, you should be directed to your Oracle Digital Assistant
service instance.

Note:

If your new password doesn't work, it may be because it hasn't taken
effect yet. If that is the case, try entering the temporary password you
received from your welcome email.

Get the Service Instance URL
You can retrieve the URL for your service instance on the console page for the
instance. You will then need to share that URL with your team, since they will not be
otherwise notified, even when they are granted permissions for Digital Assistant.

1. In the Instance Information tab, click the Copy link that appears to the right of the
Base Web URL field.

This will copy the URL to your system's clipboard.

2. Paste the URL to a convenient location.

3. Share this URL with members of your team.

Chapter 3
Set Up Digital Assistant as an Individual Service

3-4

Sign-In Options
When you enter the URL for your Oracle Digital Assistant instance in your browser, you are
presented with two login options:

• Oracle Cloud Infrastructure Direct Sign-In (IAM): IAM is the native identity service for
Oracle Cloud Infrastructure. If all of your Oracle Cloud services fall under Oracle Cloud
Infrastructure (Gen 2), you should set up your user accounts in IAM and use this as your
primary sign-in option.

• Single Sign-On (SSO): With this option, you can log in if you have a user account with
an identity provider that is federated with IAM. For example, Oracle Identity Cloud
Service (IDCS) is a service used by many Oracle Cloud services, including ones that are
not part of the Oracle Cloud Infrastructure (Gen 2) architecture. Once such a user
account is federated and assigned to groups with appropriate permissions, that user
account can be used as a single sign-on option for all of that user's Oracle Cloud
services.

Note:

If you are the Cloud account administrator, you can log in to Digital Assistant
with your IDCS account, even if you haven't explicitly added that account to a
group with permissions for accessing Digital Assistant.

For more on these options, how they relate to each other, and what it looks like when you
sign in with each, see Understanding the Sign-In Options.

Service Limits
Oracle Digital Assistant has limits for the number of instances and embedded custom
component services that you can create. Whenever you create a new instance or embedded
custom component service, the system ensures that your request is within the bounds of your
limit.

For instances, the limit depends on the way you ordered Digital Assistant:

Resource Limit Limit Short Name Limit Description

Digital Assistant
instance count

instance-count (View in the
Infrastructure Console)

Maximum number of
instances of Oracle
Digital Assistant.

Embedded custom
component service
count

embedded-custom-
component-service-
count

(View in the
Infrastructure Console)

Limit per instance on
embedded container
services that you can
create to host custom
components.

Private endpoint count private-endpoint-count (View in the
Infrastructure Console)

Limit per account of
private endpoints.

View Service Limits in the Infrastructure Console
To view your current service limits:

Chapter 3
Set Up Digital Assistant as an Individual Service

3-5

https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Concepts/signinoptions.htm

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Governance & Administration, and select Limits, Quotas, and Usage
(which appears within the Governance category on the page).

2. In the Service dropdown, select Digital Assistant.

If the limit is too low for your need, you can request an increase. See Requesting a
Service Limit Increase.

Service Quotas
You can use quotas to determine how other users allocate resources across
compartments in Oracle Cloud Infrastructure. Whenever you create an Oracle Digital
Assistant instance or scale up, the system ensures that your request is within the
bounds of the quota for that compartment.

For more on how quotas work, see Compartment Quotas.

This table shows the Digital Assistant-related quota that you can apply to
compartments

Quota Name Scope Description

instance-count Regional Maximum number of instances
of Oracle Digital Assistant for
the compartment

Example Quota Policy for Oracle Digital Assistant
Here's an example of a quota statement:

Set digital-assistant quota instance-count to 3 in compartment
MyCompartment

In this example, the number of Oracle Digital Assistant instances that can be
provisioned in the compartment MyCompartment is limited to 3.

Instance Shapes and Rate and Storage Limits
The number of requests per minute that can be made to your instance depends on
your instance's shape:

• Development shape: 50 requests per minute

• Production shape: 500 requests per minute

These limits cover requests from user channels (such as Slack, Microsoft Teams,
Web, Twilio, Webhook, and so on).

For any requests that occur when the rate limit has been reached, a HTTP 429 (Too
Many Requests) response is returned.

In addition, the amount of storage allocated for Insights data is dependent on instance
shape:

• Development shape: 40GB

Chapter 3
Set Up Digital Assistant as an Individual Service

3-6

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/resourcequotas.htm

• Production shape: 100GB

Recipe for Quick Setup and Provisioning
When you set up your instance for your users, you should carefully plan how you organize
your tenancy and construct your user groups and policies. However, if you'd like to quickly set
up an instance before becoming completely conversant in these concepts, you can follow the
"recipe" below.

In this recipe, in addition to provisioning the instance, you set up permissions for developers
and administrators using Oracle Cloud Infrastructure's Identity and Access Management
(IAM) service. You can later adapt the recipe to your own needs.

1. Create a compartment in which you'll place your instance.

Compartments provide logical groupings of service instances and other cloud resources.
By creating a compartment for your instance, you can grant users permissions for the
instance without granting those permissions for your whole tenancy.

a. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and select Compartments.

b. Click Create Compartment.

c. In the Name field, enter da_development.
You can choose another name if you wish. If you do so, remember to adjust the
policy definitions below accordingly.

d. Fill in the rest of the required values and click Create Compartment.

2. Create IAM user accounts for any other team members that you want to have
access the instance.

a. Under the Identity section of the Identity & Security page, click Users.

b. Click Create User.

c. In the Create User dialog, fill in the necessary details, with special attention to the
following:

• The Name value can be an email address or a unique name. This will be the
name that the user uses to log in to the instance.

• The Email value, which is used for password recovery.

d. Click Create.

e. Once the user is created, select the user and click Create/Reset Password.

f. Click Copy.

g. Paste the password in a secure place, and then provide it to the user.

The user will need to log in with that password and then immediately change it.

3. Create one IAM group for your developers and one for your administrators.

a. Under the Identity section of the Identity & Security page, click Groups.

b. Click Create Group.

c. Complete the fields in the dialog as follows:

• Name: ServiceDevelopers

Chapter 3
Set Up Digital Assistant as an Individual Service

3-7

• Description: Developer access to the instance of Digital
Assistant in the da_development compartment.

d. Click Create Group to complete creation of the group.

e. Again, click the page's Create Group button.

f. Enter the following:

• Name: ServiceAdministrators
• Description: Complete access to the instance of Digital Assistant

in the da_development compartment, including the ability to set
feature flags and purge data.

g. Click Create Group.

Note:

As with the compartment name, you can name the groups anything that
you wish. If you use different names, remember to adjust the policy
definitions below accordingly.

4. Create policies for each group that define the level of access each member
gets to the Digital Assistant instance.

In these steps, you'll create policies to define the access that each group will have.
For the developer group, you'll give permissions that allow development of skills
and digital assistants, creation of channels, and other functions useful for
developers. For the administrator group, you'll provide full permissions for the
instance, including the ability to enable features and manage analytics data.

a. Under the Identity section of the Identity & Security page, click Policies.

b. From the list of compartments on the left, select da_development.

c. Click Create Policy.

d. For Name and Description, enter the following:

• Name: Policy-for-DA-ServiceDevelopers
• Description: Policy for developer access to instances of Digital

Assistant in the da_development compartment.
e. For Policy Versioning, select Keep Policy Current.

f. For Statement, enter the following two statements:

• Allow group ServiceDevelopers to use oda-design in compartment
da_development

• Allow group ServiceDevelopers to use oda-insights in
compartment da_development

g. Click Create.

h. Again, click Create Policy.

i. Enter the following:

• Name: Policy-for-DA-ServiceAdministrators

Chapter 3
Set Up Digital Assistant as an Individual Service

3-8

• Description: Policy for complete access to instances of Digital
Assistant in the da_development compartment.

• Policy Versioning: Keep Policy Current.

• Statement: Allow group ServiceAdministrators to manage oda-family in
compartment da_development

j. Click Create.

5. Add users to the appropriate IAM groups. (You don't need to add yourself, because
you already have access to the instance as the Cloud account administrator.)

a. In the Identity menu, select Groups.

b. Locate the group in the list.

c. Click the group.

d. Click Add User to Group.

e. Select the user from the drop-down list, and then click Add User.

6. Create the Oracle Digital Assistant service instance.

a. Click on the top left to open the navigation menu, select Analytics & AI, and
select Digital Assistant.

b. From the Compartments panel, select da_development.

c. Click Create Instance.

d. On the Create Instance page, fill in the following details:

• Compartment: da_development
• Name: da-dev1 (or another name that reflects usage of the instance)

• Instance shape:

– Development. This is a lightweight option that is geared toward development
work.

– Production. This option should be selected for production instances of
Oracle Digital Assistant. In comparison with the Development shape, the
Production shape can accept more requests per minute and has greater
database capacity, which enables more Insights data to be collected and
stored.

e. Select the VIEW DIGITAL ASSISTANT INSTANCE DETAILS UPON CREATING
checkbox.

f. Click Create.
After a few minutes, your instance will go from the status of Creating to Active,
meaning that your instance is ready to use.

7. Get the URL for your users.

a. On the Instance Information tab of the page for your instance in the Infrastructure
Console, click the Copy link that appears to the right of the Base Web URL field.

This will copy the URL to your system's clipboard.

b. Paste the URL to a convenient location.

c. Share this URL with members of your team.

Chapter 3
Set Up Digital Assistant as an Individual Service

3-9

Since you have set them up with IAM accounts, tell them to sign in on the right
side of the login page (under Oracle Cloud Infrastructure).

However, you will need to log in on the left side of the page with your SSO
account (unless you have added your IAM user account to either the
ServiceDevelopers or ServiceAdministrator group).

Note:

As the Cloud account administrator, you have both SSO (via Oracle
Identity Cloud Service) and IAM accounts. And, as Cloud account
administrator, you can sign in into Digital Assistant with your SSO
account without first having to add yourself to a group with
permissions for Digital Assistant.

8. (Optional) Access the instance from the Infrastructure Console.

You can also access the service instance from the Infrastructure Console:

a. In the console page for the instance, click the Service Console button.

You will be redirected to another login page.

b. On the login page, where it says Signing in to cloud tenant, make sure that
the tenant name matches the name in the Cloud Account field in the Access
Details section of your welcome email. Otherwise, click the Change tenant
link and enter the name of your cloud account before continuing.

c. On the left side of the page, under Single Sign-On (SSO), click Continue.

You should be directed to your Oracle Digital Assistant service instance.

Oracle Fusion Cloud Applications and Digital Assistant
If you have a Digital Assistant instance that is paired with a subscription to a Oracle
Fusion Cloud Applications service, such as HCM Cloud or Sales Cloud, the setup
steps are different than if you have ordered Digital Assistant independently.

In this case, Digital Assistant is provided so that you can customize out-of-the-box
skills that come with your Fusion Applications service. This Digital Assistant is
automatically provisioned for you.

See Getting Started with Oracle Digital Assistant for Fusion Applications for the setup
steps.

Linking of Digital Assistant Instances
Digital Assistant instances that are paired with subscriptions to an Oracle Fusion
Applications Cloud service are designed for you to use and extend existing out-of-the-
box skills that are provided by that Fusion Applications service. By default, these
paired instances do not allow you to use the full range of Digital Assistant features,
such as creating and cloning skills and digital assistants.

If you want to take advantage of Digital Assistant's full range of features within the
paired instance, you can link that paired instance to a subscription to Digital Assistant
as an individual service. If your paired instance isn't linked in this way, you will get

Chapter 3
Oracle Fusion Cloud Applications and Digital Assistant

3-10

http://www.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FAGDA

warning messages when creating skills or digital assistants or performing any other task that
is not covered by the terms for the paired instance.

There are two ways that you can link your paired Digital Assistant instance:

• Using the same Oracle Cloud account in which you have your Fusion Applications
subscription, purchase an Oracle Digital Assistant Platform for SaaS subscription. Once
you have enabled the entitlement for that subscription, the linking should occur
automatically.

You'll know the link has been successfully established if you can do things in the paired
instance like create new skills without seeing a warning that you do not have the
necessary entitlement to do so.

Note:

When linking to this type of subscription, you don't need to actually provision a
new instance for the linking to work. In fact, it is best to keep doing your
development work in the paired instance and not provision an instance for the
Oracle Digital Assistant Platform for SaaS subscription.

• Using the same Oracle Cloud account in which you have your Oracle Applications
subscription, subscribe to Digital Assistant Cloud Service through the Universal Credits
program, provision an instance, and then manually link that instance to your paired
instance. See Manually Link Digital Assistant Instances.

Note:

If you have previously manually linked an instance and then you purchase a
subscription to Oracle Digital Assistant Platform for SaaS, that subscription might
get linked as well, meaning that you'll have two linked instances. To unlink one of
them, file a Service Request.

Manually Link Digital Assistant Instances
If you have purchased an Oracle Digital Assistant Platform for SaaS subscription in the same
Oracle Cloud account as a Digital Assistant instance that is paired with an Oracle Cloud
Applications service and you have enabled the entitlement for that subscription, your paired
instance should be linked with that entitlement automatically. In this case, you don't need to
do anything more to be able to use the full range of Digital Assistant features.

However, if you want to link your paired instance with a Digital Assistant instance that you
have provisioned through the Universal Credits program, you need to do so manually. Here
are the steps:

1. Using the same Oracle Cloud account in which you have your Oracle Applications
subscription, subscribe to Digital Assistant Cloud Service through the Universal Credits
program, and provision an instance in the same region.

See Set Up Digital Assistant as an Individual Service.

2. Log in to the paired instance of Digital Assistant with administrator privileges.

3. Click to open the side menu and select Settings > Linked Instance.

Chapter 3
Oracle Fusion Cloud Applications and Digital Assistant

3-11

4. Click Set Linked Instance.

5. In the dialog, select an instance from the Service Instance dropdown and click
Link Instance.

If there are no instances shown in the dropdown, you either:

• Don't have any instances in the same Oracle Cloud account that your paired
instance is in.

• Don't have any instances in the same region that your paired instance is in.

Administration of Linked Instances
When you have linked Digital Assistant instances, there are some important
administrative details to be aware of:

• In the Infrastructure Console, you can't stop or delete instances that have been
linked to.

• After an instance has been linked, any billable activity related to your custom skills
and digital assistants is billed to the linked instance, even if those bots are hosted
in the instance that was provisioned for your out-of-the-box Oracle Cloud
Applications skills.

Unlink an Instance
If you have a Digital Assistant instance that is paired with an Oracle Cloud Applications
subscription and which has been linked to a separate Digital Assistant and you want to
unlink the instances, file a Service Request.

Migration from Gen 1 to Gen 2 Infrastructure
If you have instances of Oracle Digital Assistant that were originally provisioned on
Oracle's Gen 1 cloud infrastructure (in 2019 and earlier) and which have since been
migrated to Oracle Cloud Infrastructure (Gen 2), most of your work with the migrated
instances should proceed without interruption. However, there are some differences.
Here's what you need to know.

IDCS Application in Migrated Instances
Each instance of Digital Assistant that has been migrated from the Gen 1 infrastructure
to the Gen 2 infrastructure has an IDCS application to handle user authorization and
access to APIs. The name of the IDCS application should begin with idcs-oda.

Within that IDCS application is a group called OCI_Administrators. The Cloud account
administrator is assigned to this group. Members of this group can later access the
Gen 2 infrastructure console to provision new instances and manage users in IAM.

Differences in Migrated Instances
Here are some differences that you need to note (and possibly take action on) once an
instance has been migrated from Gen 1 to Gen 2:

Chapter 3
Migration from Gen 1 to Gen 2 Infrastructure

3-12

• There are two new application roles available in the instance's IDCS application
(ServiceAdmin and ServiceBusinessUser), in addition to ServiceDeveloper, which was
the only role available in Gen 1 instances.

• Custom component packages that you upload to an embedded custom component
service must contain all node module dependencies as described in Prepare the
Package for an Embedded Container Service. If the package doesn't contain all its
dependencies, then you'll receive an invalid component path error.

• In the Gen 2 infrastructure, there are service limits for embedded custom components
services.

If you need to raise the limit, you can request an increase. For more information, see
View Service Limits in the Infrastructure Console and Requesting a Service Limit
Increase.

• If any of your skills use the OAuth2Client component to access the Oracle Digital
Assistant REST APIs, then the authentication service that they rely on must be updated
to use the new IDCS confidential app that has been provisioned for the Gen 2 instance.
You'll need to update the client ID, client secret, and scope. To learn how to get the new
values, see the Send Requests topic in REST API for Oracle Digital Assistant on Oracle
Cloud Infrastructure. To learn about updating the authentication service, see
Authentication Services.

• The Sessions API endpoint has changed and now includes the user ID and channel ID in
addition to the session ID. For any custom components that call this API to get the
conversation log, you need to modify that API call. In addition, the client ID, client secret,
and scope that you use to get the access token to authorize the REST call must be
updated. For custom components that access the Sessions API, you need to make these
changes:

– Your code must call conversation.channelId() to get the channel ID for the request
path.

– You must change the request path to /api/v1/bots/sessions/{channelId}/
{userId}/{sessionId}/log. Note that currently, the user ID has the same value as
the session ID.

– If the custom component retrieves the access token, then the client ID, client secret,
and scope must be updated in the REST call to the access token endpoint. To learn
how to get the new values, see the Send Requests topic in REST API for Oracle
Digital Assistant on Oracle Cloud Infrastructure.

After you make the changes, re-package the components. Then, for all skills that have a
component service for the component package, reload the package.

For further details about the API, see REST API for Oracle Digital Assistant on Oracle
Cloud Infrastructure.

• For Agent Transfer (Agent Integrations), the customInfo object structure is different for
new channels if the target OSvC is 19A or later.

• The Web, Android, and iOS SDK channel types in Gen 1 instances are replaced by
Oracle native versions of those channel types in Gen 2 (with new SDKs for each channel
type). If you have any skills or digital assistants that use the old channel types, you
should migrate them to use the new Oracle native channel types.
See Oracle Digital Assistant Web SDK customization and programming examples on the
TechExchange blog for concrete examples of how to adapt web app code to the new
Web SDK.

Chapter 3
Migration from Gen 1 to Gen 2 Infrastructure

3-13

https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three
https://blogs.oracle.com/mobile/techexchange%3a-oracle-digital-assistant-web-sdk-customization-and-programming-examples

• You can now use Answer Intents to add FAQ functionality to a skill. As opposed to
the Q&A functionality, answer intents are resolved with NLP. In addition, you don't
need to update the dialog flow to handle answer intents the way you do a Q&A
module.

• There is a variety of other features and enhancements available in Gen 2
instances of Digital Assistant that are not available in Gen 1 instances. For a
rundown of these features, see What's New in Oracle Digital Assistant.

Manage User Access in a Migrated Instance
For Digital Assistant instances that have been migrated from the Gen 1 cloud
infrastructure to Gen 2, you use an Oracle Identity Cloud Service (IDCS) application to
manage access to Digital Assistant.

In Gen 2 instances, the following application roles are available:

• ServiceAdministrator, which provides full permissions for the instance. In Gen 1
instances, the ServiceDeveloper role provides this level of access.

• ServiceDeveloper, which provides permissions that are relevant for users who
develop skills and digital assistants. It lacks some admin permissions (such as the
ability to purge data).

• ServiceBusinessUser, which provides a subset of the ServiceDeveloper
permissions and is primarily focused on the ability to work with Insights reports.

By default, all users of a migrated instance are assigned the ServiceAdministrator role.
For users that should not have the full ServiceAdministrator permissions, you can
change their roles that better align with their use of the instance.

To assign a user one of these roles:

1. As the Cloud Account Administrator, log in to IDCS.

2. Click the Oracle Cloud Services tile.

3. Navigate to the IDCS application for your migrated Digital Assistant instance.

This application should have a name that matches the first part of your instance's
fully-qualified domain name (FQDN). For example, if your instance's FQDN is
idcs-oda-abcd1234-p0.digitalassistant.example.com, then the IDCS
application should have idcs-oda-abcd1234-p0 at the beginning of its name.

4. In the IDCS application, click the Application Roles tab.

5. In the tile for the role that you want to add users to, click) and select Assign
Users or Assign Group.

6. Select the users or groups that you want to assign the role to and click Assign.

Note:

If you want to be able to access the Digital Assistant user interface, be
sure to assign yourself that role as well.

To remove a role assignment for a user, click) in the tile for the role and select
Revoke Users.

Chapter 3
Migration from Gen 1 to Gen 2 Infrastructure

3-14

Note:

In the Gen 1 infrastructure, the only available IDCS application role for Digital
Assistant is called ServiceDeveloper, but its Gen 2 equivalent is
ServiceAdministrator.

IP Addresses for the Allowlist
As Oracle Cloud Infrastructure (Gen 2) is a multi-tenant architecture, Digital Assistant
instances that are migrated to Gen 2 do not have their own range of IP addresses. Instead,
you have a range of public IP addresses that are determined by the region that your instance
resides in. If you had previously had an allowlist with a range of IP addresses for your
instance when it was on the Gen 1 infrastructure, you'll need to update that list with public IP
addresses provided in the Gen 2 infrastructure.

To determine the range of IP addresses for your region, see Public IP Addresses for VCNs
and the Oracle Services Network.

Chapter 3
Migration from Gen 1 to Gen 2 Infrastructure

3-15

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/addressranges.htm#PublicIPAddressesforVCNsandtheOracleServicesNetwork
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/addressranges.htm#PublicIPAddressesforVCNsandtheOracleServicesNetwork

4
Service Administration

The topics below cover various Oracle Digital Assistant administration tasks on the OCI
console, including managing and monitoring events, metrics, notifications, billing, and the
Digital Assistant instances themselves.

Manage Features
In each release of Oracle Digital Assistant, there are sets of optional features that you can
enable or disable. You do so by selecting a profile that contains the features you want to have
enabled.

To change the optional features that are enabled:

1. In Oracle Digital Assistant, click to open the side menu and select Settings > Feature
Management.

2. From the Current profile dropdown, select the profile that corresponds with the features
that you want enabled and disabled.

Audit Trail
Should you need to see a history of user activity in an instance of Oracle Digital Assistant and
you have administrator privileges for the instance, you can view the instance's activity logs.

These logs capture granular detail of user sessions, such as listing, creating, editing, and
deleting skills.

To browse the logs:

1. In the instance, click to open the side menu and select Settings > Audit Trail.

2. If you want to see results for more than the current day, go to the Today dropdown and
select a different date range.

3. Click + Criteria one or more times to create search criteria to home in on the type of
activity that you want to view.

4. Click Search.

5. To see details for a log entry, click the entry.

Example: Searching for Delete Operations
Here's an example of how you can use the search feature to see all delete operations:

1. Click + Criteria.

2. In the Filter field, select Operation.

3. In the Operator field, select Starts With.

4. In the value field, enter Delete.

4-1

5. Click Search.

In the results for that search, you'll see entries for any operations with names
beginning with Delete, such as DeleteSkill or DeleteSkillIntent.

Events for Digital Assistant Instances
You can create automation based on state changes for your Oracle Digital Assistant
service instances by using event types, rules, and actions.

For information on how events work, see Overview of Events.

Event Types
These are the event types that Oracle Digital Assistant service instances emit:

Friendly Name Event Type

Change Digital Assistant Compartment Begin
com.oraclecloud.digitalassistant.c
hangeodacompartment.begin

Change Digital Assistant Compartment End
com.oraclecloud.digitalassistant.c
hangeodacompartment.end

Create Digital Assistant Instance Begin
com.oraclecloud.digitalassistant.c
reateodainstance.begin

Create Digital Assistant Instance End
com.oraclecloud.digitalassistant.c
reateodainstance.end

Delete Digital Assistant Instance Begin
com.oraclecloud.digitalassistant.d
eleteodainstance.begin

Delete Digital Assistant Instance End
com.oraclecloud.digitalassistant.d
eleteodainstance.end

Update Digital Assistant Instance

com.oraclecloud.digitalassistant.u
pdateodainstance

Chapter 4
Events for Digital Assistant Instances

4-2

https://docs.cloud.oracle.com/iaas/Content/Events/Concepts/eventsoverview.htm

Example Digital Assistant Service Instance Event
This is a reference event for Oracle Digital Assistant service instances.

{
 "id":
"ocid1.eventschema.oc1.phx.abyhqljrfajridyag4epdbthdjuhwgkwxxog32ed4e36yx2zot
mphyxe3z5q",
 "exampleEvent": {
 "eventID": "unique_id",
 "eventTime": "2019-10-09T13:58:03.575Z",
 "contentType": "application/json",
 "eventType": "com.oraclecloud.digitalassistant.createodainstance.end",
 "cloudEventsVersion": "0.1",
 "source": "DigitalAssistant",
 "extensions": {
 "compartmentId": "ocid1.compartment.oc1..unique_ID"
 },
 "eventTypeVersion": "2.0",
 "data": {
 "resourceName": "example_name",
 "compartmentId": "ocid1.compartment.oc1..unique_ID",
 "availabilityDomain": "all",
 "compartmentName": "example_name",
 "resourceId": "ocid1.odainstance.oc1.phx.unique_ID"
 }
 },
 "serviceName": "Digital Assistant",
 "displayName": "ODA Instance - Create End",
 "eventType": "com.oraclecloud.digitalassistant.createodainstance.end",
 "additionalDetails": [],
 "timeCreated": "2019-10-09T13:58:03.575Z"
}

Metrics, Alarms, Notifications, and Billing
You can monitor the health, performance, and usage of Oracle Digital Assistant service
instances in Oracle Cloud Infrastructure by using metrics, alarms, and notifications.

For example, you can:

• See how many messages have been sent over a given period of time by users to skills
and digital assistants in your service instance.

• See any errors that have occurred over a given period of time.

• Set alarms to alert you when any of these metrics hit a certain threshold.

For information on how these features work, see Monitoring Overview and Notifications
Overview.

Chapter 4
Metrics, Alarms, Notifications, and Billing

4-3

https://docs.cloud.oracle.com/iaas/Content/Monitoring/Concepts/monitoringoverview.htm
https://docs.cloud.oracle.com/iaas/Content/Notification/Concepts/notificationoverview.htm
https://docs.cloud.oracle.com/iaas/Content/Notification/Concepts/notificationoverview.htm

Digital Assistant Metrics
Oracle Digital Assistant metrics are emitted with the metric namespace
oci_digitalassistant.

Here are the available metrics for Oracle Digital Assistant instances.

Metric Metric Display
Name

Unit Description Dimensions

RuntimeReques
ts

Runtime
Requests

count Number of
runtime requests
sent to the
service.

This includes

• Messages
sent by a
user through
a skill or
digital
assistant.

• Authenticatio
n and
authorization
attempts.

• Invocations
of WebView
components.

• Calls to the
embedded
container for
custom code.

• Calls through
the Skill
Tester.

• Views of
individual
Insights
reports.

• Notifications
sent to users
to initiate a
conversation
(through the
Application-
Initiated
Conversation
s feature).

resourceIdres
ourceDisplayN
ameshape

Chapter 4
Metrics, Alarms, Notifications, and Billing

4-4

Metric Metric Display
Name

Unit Description Dimensions

RuntimeErrorR
esponses

Runtime Error
Responses

count Number of
runtime error
responses
returned during
conversations
with a skill or
digital assistant.

This includes API
calls that return
status codes of
400-499 and
500-599.

Such errors may
indicate problem
with a channel or
its configuration.

resourceIdres
ourceDisplayN
ameshapeerror
Type

CustomCompone
ntErrorRespon
ses

Custom
Component
Error
Responses

count Number of error
responses
received from
custom
components or
from functions
from the
Functions
service.

resourceIdres
ourceDisplayN
ameshape

CustomCompone
ntRejectedRes
ponses

Custom
Component
Rejected
Responses

count Number of invalid
responses
received from
custom
components or
functions from the
Functions
service.

For example, this
might include
responses with a
200 status code
but which are
wrapped in
malformed JSON.

resourceIdres
ourceDisplayN
ameshape

You can view metrics by individual service instance or in aggregated form for all instances.

View Metrics for a Single Instance
To view metrics for an individual service instance:

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Analytics & AI, and then click Digital Assistant.

2. Select the instance's compartment.

3. Select the instance.

Chapter 4
Metrics, Alarms, Notifications, and Billing

4-5

4. Scroll down to the Metrics section of the page to view the metrics.

View Metrics for All Instances
To view aggregated metrics for all service instances:

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Observability & Management, and then click Service Metrics.

2. In the Compartments dropdown, select the compartment for which you want to
view metrics.

3. In the Metric Namespace, select oci_digitalassistant.

Monitor Billing
The Infrastructure Console provides various billing and payment tools that make it
easy to monitor your Oracle Digital Assistant billing, service costs, and usage.

To view your billing and usage, perform the following steps:

1. Sign in to Oracle Cloud as the cloud account administrator. You can find your
account name and login information in your welcome email.

2. In the Infrastructure Console, click on the top left to open the navigation menu,
select Governance & Administration, and then select one of the following
options:

• Cost Analysis: provides easy-to-use visualization tools to help you track and
optimize your spending.

• Cost and Usage Report: view comma-separated value (CSV) files that can
be used to get detailed breakdowns of resources for audit or invoice
reconciliation.

Note:

The first time you access usage reports, you must create a policy in
your root compartment. Follow the instructions on the Usage Report
page to create the policy, copying the statements as directed.

• Budgets: set thresholds for your spending. You can set alerts on your budget
to let you know when you might exceed your budget, and you can view all of
your budgets and spending from one single place.

• Invoices: view and download invoices for your usage.

For more information on the billing and payment tools, see Billing and Payment Tools
Overview.

Stop and Start Instances
You can stop and start instances of Oracle Digital Assistant.

Chapter 4
Stop and Start Instances

4-6

https://cloud.oracle.com/
https://docs.cloud.oracle.com/iaas/Content/Billing/Concepts/billingoverview.htm
https://docs.cloud.oracle.com/iaas/Content/Billing/Concepts/billingoverview.htm

When you stop an instance, the instance's state changes to INACTIVE, which means that the
instance can't be accessed and any metering is suspended. Starting an instance returns it to
the ACTIVE state, making it available to users and resuming metering.

To stop or start an instance:

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Analytics and AI, and select Digital Assistant (which appears under the AI Services
category on the page).

2. Select the instance's compartment.

3. Select the instance.

4. Click the Stop or Start button.

Delete an Instance
To permanently delete an instance of Oracle Digital Assistant:

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Analytics & AI, and select Digital Assistant (which appears under the AI Services
category on the page).

2. Select the instance's compartment.

3. Select the instance.

4. From the More Actions menu, select Delete.

Break Glass
Oracle Break Glass for Oracle Digital Assistant enables you to securely restrict Oracle's
access to your cloud environment.

The Break Glass for Oracle Digital Assistant feature is enabled if you have a Digital Assistant
instance that is paired with a Fusion-based Oracle Cloud Applications subscription that
includes Break Glass.

When you use Break Glass, Oracle Support representatives can access your cloud
environment only after relevant approvals and authorization to troubleshoot any issues that
may arise in your cloud environment.

Break Glass has these primary features:

• Temporary access approval, in which Oracle personnel can only access instance data
through a strict customer approval process. Typically, such a process would only be
initiated to help resolve a customer service request.
Such access is time limited. Any temporary access credentials are automatically reset
after the agreed upon time.

Such access is logged and detailed reports are available.

• The option to upload your own Transparent Data Encryption (TDE) master
encryption key.
By default, your data in the Oracle Cloud environment is encrypted at rest using TDE.

Chapter 4
Delete an Instance

4-7

With Break Glass, you can upload your own TDE master encryption key and
manage its lifecycle. If you provide your own key, your data will also be protected
and audited using Data Vault. You can also periodically update the keys.

Temporary Access Approval
If you submit a service request (SR) and Oracle Support determines that it needs
access to some of your data for debugging purposes, you can agree to give them
temporary access to your service instance data. Here's the general flow of the
process:

1. You submit an SR.

2. If Oracle Support determines that they need access to any of your data for
debugging purposes, they will contact your administrator via email for approval to
conduct a Break Glass session. (The email has a link to the Temporary Access
Approval page of your Digital Assistant, where your administrator can click
Approve or Reject.)

3. If your administrator approves the request, a temporary password is generated to
enable Oracle Support to start a Break Glass session, in which they can access
the required data.

4. Once Oracle support completes its work in the Break Glass session, they
terminate the session. If they don't explicitly terminate the session, it expires
automatically within the timeframe that you have agreed upon.

Provide Your Own Key
By default, Oracle provides and manages the TDE keys for encrypting the data in your
Digital Assistant instance.

If your instance has Break Glass enabled, you can also replace the Oracle-provided
private key with your own, which also enables you to rotate the keys as you require.

Note:

When you first switch to using your own key, you need to allow some time for
your instance to be out of service. You should also back up any key artifacts
in your instance.

Create and Import Your TDE Master Key
To provide your own key, follow these steps:

1. In Oracle Digital Assistant, click to open the side menu and select Settings >
Break Glass.

2. On the Provide Your Own Key Page, click + Provide Your Own Key.

3. Click Public Key to download the Oracle public wrapping key that you will need to
encrypt your own transparent data encryption (TDE) master key.

4. Use OpenSSL to generate and encrypt your key:

Chapter 4
Break Glass

4-8

a. Create a new directory for the key and assign it to an environment variable:

$ mkdir –p dir_of_key

$ export KEYPATH dir_of_key

b. Make sure the directory is restricted:

$ chmod go-rwx $KEYPATH

c. Generate the TDE master key:

$ openssl rand 32 > $KEYPATH/clearkey

d. Encrypt your generated TDE master key with the Oracle public wrapping key that you
downloaded in step 3:

$ openssl pkeyutl -encrypt -in $KEYPATH/clearkey -inkey $KEYPATH/
wrappingkey -pubin -pkeyopt rsa_padding_mode:oaep -pkeyopt
rsa_oaep_md:sha256 > $KEYPATH/wrappedkey

5. In the External Key Data Source field, upload the encrypted TDE master key (e.g.
wrappedkey, as in the above example).

6. In the Email Address field, enter the email address of the person to notify when the
reconfiguration of the Digital Assistant instance has finished and the instance is ready to
used again.

7. Click Submit and then Confirm.

Update the Key
If you have previously provided your own TDE key for your Digital Assistant instance, you can
update that key.

1. In Oracle Digital Assistant, click to open the side menu and select Settings > Break
Glass.

2. On the Provide Your Own Key Page, click + Update the key.

3. Click Public Key to download the Oracle public wrapping key that you will need to
encrypt your own transparent data encryption (TDE) master key.

4. Use OpenSSL to generate and encrypt your key:

a. Create a new directory for the key and assign it to an environment variable:

$mkdir –p dir_of_key

$ export KEYPATH dir_of_key

b. Make sure the directory is restricted:

$ chmod go-rwx $KEYPATH

Chapter 4
Break Glass

4-9

c. Generate the TDE master key:

$ openssl rand 32 > $KEYPATH/clearkey

d. Encrypt your generated TDE master key with the Oracle public wrapping key
that you downloaded in step 3:

$ openssl pkeyutl -encrypt -in $KEYPATH/clearkey -inkey $KEYPATH/
wrappingkey -pubin -pkeyopt rsa_padding_mode:oaep -pkeyopt
rsa_oaep_md:sha256 > $KEYPATH/wrappedkey

5. In the External Key Data Source field, upload the encrypted TDE master key.

6. Click Submit and then Confirm.

Note:

Once you create or update your key, you have to wait 16 days or more
before you can update it again.

Disaster Recovery
Oracle Digital Assistant has a high-availability (HA) architecture to prevent against
disasters and to smoothly recover from what disasters do occur. Here are some facets
of the architecture of Oracle Cloud Infrasture and Digital Assistant that are used to
prevent and mitigate disasters:

• Oracle Cloud Infrasture is divided into regions. Each region is separated from
other regions by great distances, meaning that disasters such as earthquakes and
major weather events that may negatively impact service in one region are
extremely unlikely to affect the other regions.

• Within each data center, there are three fault domains, each of which is a
physically separate grouping of hardware and infrastructure with its own power
supply and cooling.

• The architecture of a single Digital Assistant instance is spread among different
fault domains with automated backup, which makes it resilient against any
disasters that may occur in that region.

Cross-Region Failover
Oracle Digital Assistant is architected for high availability (HA). However, if you need to
ensure that your instance can still function if a disaster strikes your instance's region,
you can request to have cross-region failover set up.

When cross-region failover is set up and the primary instance goes down:

• Any runtime requests to the primary instance are redirected to the backup
instance.

• A banner appears in the Digital Assistant UI that notes that the backup instance is
being used.

Chapter 4
Disaster Recovery

4-10

• You should not do any work on skills, digital assistants, channels, Insights, or other
artifacts (whether through the UI or through REST APIs) in the backup instance. Any
changes you make in the backup instance will not be preserved when the primary
instance is restored.

When the outage ends:

• Service to the primary instance is restored.

• Any Insights data that has accumulated on the backup instance is preserved and
combined with existing Insights data associated with the primary instance.

• Artifacts such as skills and digital assistants are restored to the state they were in when
the primary instance went down. (Practically speaking, this simply means any changes
that you happen to make to these artifacts in the backup instance won't be preserved.)

Set Up Failover
To set up cross-region failover:

1. File a service request (SR) for cross-region failover and, in the request, mention the
instance URL of the primary Digital Assistant instance.

2. Once the Support team has responded to you with information on which backup regions
are available, subscribe to a backup region in the OCI Console.
The Support team will then create the backup instance.

During the failover setup, a system-level skill (named Echo) is set up in the instance you have
specified and exposed through a web channel (named heartbeat) in that instance. From the
backup region, the primary instance is then regularly polled for its health status through this
skill.

Private Endpoint
You can set up a private endpoint to give your Oracle Digital Assistant secure access to
backend services that are not exposed to the public internet.

For example, you might need to set up a private endpoint to be able to connect to an on-
premises database, or a database running in an Oracle Cloud Infrastructure VCN, that you
need to use for SQL Dialog skills. Or you may need to connect to REST service that's on-
premises or in a VCN.

Set Up a Private Endpoint
To set up a private endpoint for Digital Assistant, you follow these general steps:

1. Make sure that you have the required permissions to configure private endpoints and
attach them to Digital Assistant instances.

2. If you don't already have them in place, on the OCI Console, create a virtual cloud
network (VCN) and its associated resources, including:

• At least one subnet.

• Route tables to route the traffic through the subnet to its destinations.

• Security lists or network security groups to establish a set of ingress and egress
security rules that you'll use for the private endpoint.

• Optionally, an Internet gateway to give Internet access to the VCN.

Chapter 4
Private Endpoint

4-11

• Optionally, an NAT (Network Address Translation) gateway, which gives
resources that don't have public IP addresses access to the Internet without
exposing them to incoming Internet connections.

See the OCI documentation for VCNs and subnets.

3. Create the private endpoint and associate it with your Digital Assistant instance.

4. In Digital Assistant, configure a data service or REST service that points to the
endpoint.

Permissions for Private Endpoints
To set up private endpoints, you need to have the proper permissions in the
Infrastructure Console.

There are two resource types for private endpoints that encompass these required
permissions:

• oda-private-endpoints - enables you to configure private endpoints and SCAN
proxies.

• oda-private-endpoint-attachments - enables you to attach a private endpoint a
Digital Assistant instance.

Permissions for those resource types are also part of the oda-family resource type.
So if you are covered by a policy statement to manage oda-family resource types in
the compartment where your private endpoint is, you don't have to create separate
policies for your private endpoints.

The following are examples of broad policies to enable creation and configuration of
private endpoints and attach them to Digital Assistant instances.

allow group <group-name> to manage oda-private-endpoints in
compartment <private-endpoint-compartment>
allow group <group-name> to manage oda-private-endpoint-attachments in
compartment <private-endpoint-compartment>

For more detail on how policies work, see Digital Assistant Policies.

Create a Policy to Access a Private Endpoint

1. In the Infrastructure Console, click on the top left to open the navigation menu,
select Identity & Security, and then click Policies.

A list of the policies in the compartment you're viewing is displayed.

2. From the list of compartments, select the compartment to which you want to attach
the policy. This controls who can later modify or delete the policy (see Policy
Attachment).

3. Click Create Policy.

4. Complete the wizard, making sure that they name you provide is unique across all
policies in your tenancy.

Chapter 4
Private Endpoint

4-12

https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/managingVCNs_topic-Overview_of_VCNs_and_Subnets.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm#Policy3
https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/policies.htm#Policy3

Create a Private Endpoint

1. In the Infrastructure Console, click on the top left to open the navigation menu, select
Analytics & AI, and select Digital Assistant (which appears under the AI Services
category on the page).

2. In the left navigation of the AI Services page that appears, click Private endpoints.

3. If you haven't already done so, create the compartment where you want to keep the
private endpoint and, optionally, add the VCN and subnet you will be using to that
compartment.
See Understanding Compartments and Managing Compartments.

4. Click Create private endpoint and fill in the required fields, including the VCN and
private subnet.

5. Once the endpoint is created, click Associate ODA Instance, select the compartment
that contains the Digital Assistant instance that you want to be able to use the private
endpoint, and then select that instance.

Add a Service for the Private Endpoint in Digital Assistant
Once you have created a private endpoint, you need to add a service for that private endpoint
to use it in Digital Assistant.

• To add a data service for the private endpoint, see Connect to the Data Service.

• To add a REST service for the private endpoint, see Add a REST Service for an
Endpoint.

SCAN Proxies for Private Endpoints
If you are using your private endpoint for a RAC-enabled database, you also need to
configure a SCAN proxy for the private endpoint.

To set up a SCAN proxy:

1. Get the SCAN DNS name and port number for the database.

• If the database is an on-premises database, get it from the database administrator.

• If the database is on OCI, do the following in the Infrastructure Console:

a. Navigate to the DB System Details page for the database and select the DB
system information tab.

b. In the Network section of the page, copy the SCAN DNS name and paste it in a
convenient place.

c. Note the Port Number.

2. In the Infrastructure Console, click on the top left to open the navigation menu, select
Analytics & AI, and select Private endpoints (which appears under the AI Services
category on the page).

3. Select your private endpoint.

4. In the Resources section of the page, select SCAN proxies.

5. Click Add SCAN proxy.

Chapter 4
Private Endpoint

4-13

https://docs.oracle.com/iaas/Content/GSG/Concepts/settinguptenancy.htm#Understa
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingcompartments.htm

6. In the Add SCAN proxy dialog, select the type (FQDN (for fully-qualified domain
name) or IP address) and then fill in the rest of the required fields.

• If you have selected FQDN as the proxy type, use the database's SCAN DNS
name for the Host name and the database's port number as the Port.

• If you have selected IP address as the proxy type, click Add SCAN Listener
to add IP addresses and port numbers for one or more SCAN listeners in the
database.

Further Administration Information
Once you have set up your Oracle Digital Assistant instance and its users, you may
wish to delve further into setup of your account. Here are some topics containing more
details on administering services in Oracle Cloud Infrastructure that you may wish to
explore:

• Oracle Cloud Infrastructure Docs Home

• Signing in to the Console

• Using the Console

• Changing Your Password

Programmatic Creation and Management of Skills and
Digital Assistants

The Digital Assistant Service Instance API enables you to programmatically manage
skills and their artifacts, digital assistants, and channels. This includes creation,
updating, deletion, and training. In addition, you can manage other resources in your
instance that your skills depend on, such as authorization services and translation
services.

You can access the API through multiple SDKs and a CLI. See the OCI Developer
Tools and Resources page for the details.

Packaged Skills
If you are managing multiple Digital Assistant instances, you can programmatically
manage packages for those instances as well.

A package can contain some combination of skills and digital assistants as well as
specify any required resources, such as translation services, authorization services,
and custom parameters that are required for the skills.

You can manage the importing and updating of these packages through the Digital
Assistant Service Instance API.

For information on working with the API and the SDKs and the CLI that are based on
that API, see the OCI Developer Tools and Resources page.

Chapter 4
Further Administration Information

4-14

https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/baremetalintro.htm
https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/signingin.htm
https://docs.cloud.oracle.com/iaas/Content/GSG/Concepts/console.htm
https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/changingyourpassword.htm
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/
https://docs.oracle.com/en-us/iaas/Content/devtoolshome.htm
https://docs.oracle.com/en-us/iaas/Content/devtoolshome.htm
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/
https://docs.oracle.com/en-us/iaas/Content/devtoolshome.htm

Importing and Managing Packages
In general, the process for importing packages using the API (either directly or via the CLI or
one of the SDKs) is:

1. If it doesn't yet exist, create the Oracle Digital Assistant instance where you want to
import the package.

a. Call CreateOdaInstance to create the instance.

b. From the response to the CreateOdaInstance call, take the opc-work-request-id
response header value and use it to call GetWorkRequest to monitor the progress of
the instance creation operation.

c. Once the instance creation has completed, using the value of the odaInstanceId
attribute that was returned in the response body to call GetOdaInstance.

2. Call ListPackages to see what packages are available for the instance (or instances) that
you specify.

3. For any available packages that you want to import, call GetPackage to get the package's
import contract.
The import contract specifies conditions that need to be satisfied before you can import
the package. This might include things like specifying an auth provider and filling in
values for custom parameters.

4. Satisfy the import contract.
You do so by constructing a payload that provides values for all of the required
parameters in the import contract. The payload might looks something like this:

{
 "packageId": "<packageId-OCID>",
 "parameterValues": {
 "authProvider.providerX.clientSecret": "some value",
 "authProvider.providerX.authorizationEndpointUrl": "http://
host:80/file",
 "authProvider.providerX.revokeEndpointUrl": "http://host:80/file",
 "authProvider.providerX.allowedScopes": "some value",
 "authProvider.providerX.tokenEndpointUrl": "http://host:80/file",
 "authProvider.IDCS_OAuthForIDR.allowedScopes": "some value",
 "authProvider.providerX.clientId": "some value",
 "skillParameter.da.backendRestEndPoint": "http://host:80/file",
 }
}

To simplify this task, the GetPackage response contains a section called
defaultParameterValues that you can use to assemble the parameter value portion of
the payload.

5. Import the package into the instance(s).

a. Call CreateImportedPackage using the payload you just assembled.

b. From the response to the CreateImportedPackage call, take the opc-work-request-
id response header value and use it to call GetWorkRequest to monitor the progress of
the package import operation.

Chapter 4
Packaged Skills

4-15

https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/OdaInstance/CreateOdaInstance
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/WorkRequest/GetWorkRequest
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/OdaInstance/GetOdaInstance
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/PackageSummary/ListPackages
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/Package/GetPackage
https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/WorkRequest/GetWorkRequest

c. Once the package import has completed, using the value of the
odaInstanceId attribute that was returned in the response body to call
GetImportedPackage to view the package details.

If an update for a package is available, you can add that updated package to the
instance through the UpdateImportedPackage operation.

Chapter 4
Packaged Skills

4-16

https://docs.oracle.com/en-us/iaas/api/#/en/digital-assistant/20190506/ImportedPackage/GetImportedPackage

5
Get Started

As a first step in learning how to work with Oracle Digital Assistant, you may want to create
some empty skills and digital assistants that you can play with. Here are some things that you
can do to get started.

Create a Digital Assistant
• Click to open the side menu, select Development > Digital Assistants, and click

New Digital Assistant.

Create a Skill
• Click to open the side menu, select Development > Skills, and click New Skill.

Skill Store
Digital Assistant's Skill Store offers a range of pre-packaged skills and digital assistants.
Some of these are samples and others are designed to work with and expose other Oracle
Cloud services.

Access the Skill Store
To get a skill or digital assistant from the Digital Assistant Skill Store:

1. Click to open the side menu and select Development > Store.

2. In the tile for the skill that you want to add, click and select Pull.

Once you pull a skill or digital assistant from the Skill Store, you can:

• Use it as is.

• Extend it, which enables you to customize it in several ways. Then, if a new version of
that skill or digital assistant becomes available in the Skill Store, you can rebase your
customizations to the new version.

• Clone it, which enables you to make any modifications that you want. However, when you
clone a skill or digital assistant that you have pulled from the Skill Store, you can't later
rebase to new versions.

Note:

By default, only one version of each skill is displayed (the version that was most
recently updated). To view all versions of a particular skill, click .

5-1

Install Update from the Skill Store
If you have a skill or digital assistant that you have installed from the Skill store and an
update becomes available, you can update that skill or digital assistant with the newest
version from the Skill Store by doing the following:

1. Click to open the side menu and select Development > Digital Assistants.

2. In the tile for the skill or digital assistant that you want to update, click and
select Install Update.

Note:

If the skill or digital assistant that you are updating is one that you have
extended, you can rebase your extension to the updated version. See
Rebasing.

Chapter 5
Skill Store

5-2

6
Sample Digital Assistants and Skills

To get you familiar with the skill and digital assistant builders, as well as some of the
techniques used to create dialog flows, intents, and entities, we’ve provided you with a
sample digital assistant and some sample skills. You can use them as references as you
build your own.

The following digital assistant is included. You can access it by clicking , selecting
Development > Store, clicking the tile for the digital assistant, and clicking the Pull button.

Digital Assistant Description

Financial.DigitalAssistant A digital assistant with four skills that highlights a
variety of useful design and implementation
practices, including composite bag entities, ML
entities, visual flow design, test suites, handling of
small talk, and using well-trained answer intents to
answer FAQs. You can use this as a template of
best practices to consider following in your own
digital assistant development. See this Oracle
Digital Assistant Blog entry for a guide to some of
the best practices used in this digital assistant.

The following sample skills are included. You can access them by clicking , selecting
Development > Store, clicking the tile for the skill you want, and clicking the Pull button.

Skill Description

PizzaSkill - Visual Flow Designer Shows a dialog flow that was created with the
Visual Flow Designer and demonstrates the
following techniques:
• Separate flows for each regular intent.
• A default flow for answer intents.
• A special flow for an answer intent that

includes states that allow the user to respond
to the answer.

• Creating user-scoped variables to store user
information from prior visits.

• Use of resource bundles for messages to
users.

• Native multi-language support.
See Tour of the Visual Flow Designer Sample
Skill.

Financial.Account A sample banking skill that is part of the
Financial.DigitalAssistant sample digital
assistant. This skill highlights a variety of useful
design and implementation practices, including
composite bag entities, ML entities, visual flow
design, and test suites.

6-1

https://blogs.oracle.com/digitalassistant/post/a-showcase-of-best-practices-with-the-new-financial-digital-assistant-sample
https://blogs.oracle.com/digitalassistant/post/a-showcase-of-best-practices-with-the-new-financial-digital-assistant-sample

Skill Description

Financial.Common A sample utility skill that is part of the
Financial.DigitalAssistant sample digital
assistant. This skill provides common functionality
for the whole digital assistant, including greeting
and acknowledgement behavior and handling of
unrelated small talk that a user might initiate.

Financial.Insurance An FAQ skill that is part of the
Financial.DigitalAssistant sample digital
assistant. This skill uses answer intents that are
trained to answer common questions about
insurance.

Financial.OnlineBanking An FAQ skill that is part of the
Financial.DigitalAssistant sample digital
assistant. This skill uses answer intents that are
trained to answer common questions about online
banking.

Note:

There are a number of older sample skills in the Store, such as PizzaBot,
PizzaBotWithMemory, CrcPizzaBot, CbPizzaBot, FinancialQnaBot, and
WineBot. However, none of these use the Visual Flow Designer or
demonstrate currently recommended design practices. If you want to learn
by example with sample skills, it is best to use the skills in the table above.

Chapter 6

6-2

Part II
Digital Assistant Development Blueprint

You may have already gotten started with Oracle Digital Assistant and created some skills
and digital assistants. However, even if you are conversant in many of the key concepts and
have some practical experience with bots, there very well could be more that you could learn
to make your bots much more effective. The following chapters provide an overview of best
practices for creating successful digital assistants.

Here are the main topic areas for Digital Assistant best practices:

• Preparation is the Key to Success

• Train Your Model for Natural Language Understanding

• Additional Languages

• Model Testing

• Conversational Design

• Channel-Specific Considerations

• Implement Conversation Flows

• Custom Code and Backend Integration

• Build Your Digital Assistant

• Digital Assistant Testing

Tip:

• Many of the suggestions in this guide are also available in the Oracle Digital
Assistant Design Camp video Cheat Sheet for Creating Great Digital
Assistants. This video gives you a concise overview of how to create great
chatbots that's great for getting started or for reinforcing things you have
already learned.

• Also check in with Artie, the digital assistant for Oracle Digital Assistant
learning. Artie is particularly helpful if you need a quick answer or need a
pointer to appropriate materials when trying to solve a programming or
architectural problem. Artie is available in the bottom right corner of this page
and other Oracle Digital Assistant documentation pages.

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Cheat+Sheet+for+Building+Great+Digital+Assistants/1_5dbwlwxk
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Cheat+Sheet+for+Building+Great+Digital+Assistants/1_5dbwlwxk

7
Preparation is the Key to Success

Let's go over the types of preparation you should to before diving into development of your
digital assistant project.

A quote attributed to Abraham Lincoln reads, "Give me six hours to cut a tree, and I'll spend
the first four sharpening the ax." Digital assistant developers are certainly not forest workers,
and developing digital assistants is not a physically demanding job either.

What forestry and building digital assistants have in common, however, is that preparation is
a critical success factor. So, let's take a look at the prep work that is involved in starting a
digital assistant project.

Firstly, you need to identify a project and goals that fit the conversational channel and that
would allow you to benefit from having a digital assistant.

You then break the problem down into manageable use cases. Each of those partitions can
then be implemented iteratively one-by-one until you have built the final product. Each use
case has its own set of user messages that reflect how you think users would request that
conversation.

A digital assistant is not human but should have human-like features that users will like.
These human-like features include the definition of the conversation style your digital

7-1

assistant should follow, which is best visualized as a persona for which you define a
background story and CV.

When designing user interaction flows, it helps to know about the medium you want to
expose your digital assistant on, such as web, mobile, Facebook, Slack, just to name a
few. The medium you expose your digital assistant on is referred to as channel. You
can support multiple channels.

CDX Workshop
To help with the preparational steps described in this section, consider participating in
a conversation design experience (CDX) workshop. In a CDX workshop, you bring
people from your project team and people from the intended user group together to
discuss use cases and the way your digital assistant should be in terms of personality,
voice, language, and attitude.

A CDX workshop can help you with the following fundamental aspects of a digital
assistant project:

• Identify the problem to be solved with a digital assistant and the corresponding use
cases.

• Identify the target audience and develop a bot persona that suits that audience in
terms of voice, tone, and educational and cultural background.

• Work through the existing user journey and identify where and how it can be
improved with a digital assistant.

• Identify the best channel or channels for reaching your users, also keeping in mind
the capabilities of the different channels.

• Model the dialog between the bot and user.

• Identify the backend systems that have the data required to support the
conversations.

You can run such a workshop yourself or with the help of your contact at Oracle.

Identify Good Digital Assistant Use Cases
Digital assistants don't replace web and mobile applications: they complement them.
So, before you start building a digital assistant, ask yourself "why?" Why are you
building a digital assistant and how would you like to benefit from it? We're not saying
you shouldn't be building digital assistants. Rather, we want to make sure that you are
building digital assistants that have their use cases within their sweet spot.

The sweet spot of digital assistants lies in their ease of use: the use of natural
language conversations for user interaction with the application interface and the
ability to extract information from the user message, which then leads to an overall
reduction in the number of prompts displayed to a user.

Years ago, when mobile application development was a new skill to learn, the Oracle
User Experience team recommended that a mobile task should take no more than 3
minutes. We don't have a corresponding recommendation for digital assistants.
However, based on our experience, we are sure that it should be well below that,
perhaps in the neighborhood of 60 seconds.

So, when defining a digital assistant use case, pay attention to the amount of user
interaction required to get a task done. If you find that the interaction is very long, then

Chapter 7
CDX Workshop

7-2

the use case is either not suitable for digital assistants or you need to consider shortening
interactions, e.g., by incorporating structured data entry forms into a conversation.

As a general recommendation, find use cases that are neither too large nor too complex (and
break down bigger use cases into smaller ones). Especially if the digital assistant you want to
create is your first, "simple" might already be too complex.

Define Digital Assistant Success
As with anything else you want to achieve, you need to set goals. For digital assistants, it's
important to set realistic goals that will also benefit your company. For example, moving a
web application to a conversational channel may not be a good goal unless the web
application can be broken down into realistic digital assistant use cases and the digital
assistant works better than the web application. In most cases, "moving from ... to ..." projects
are unsuccessful because users and the development team simply copy the functionality and
appearance of the application that they are moving away from.

Success has to be measured. For example, a digital assistant is a smart way to automate
self-service, so it can offer a real benefit. However, in order to properly assess whether there
is any benefit, you need to define what success means and how it can be measured for each
of your digital assistant use cases. Here are some example criteria:

• "We want 60% of all incoming student requests for books from our library to be resolved
by the digital assistant to reduce the workload for our librarians."

• "70% of our current IT operations, such as resetting passwords and access and
authorization requests, should be handled by the digital assistant."

• "All customer inquiries to buy new real estate should be pre-qualified and forwarded by a
digital assistant so that our real estate agents can increase the number of on-site visits by
30%."

• "The expense digital assistant should reduce the time between submitting an expense
report by an employee and the reimbursement of expenses by the company to 3 days."

Identify What the Digital Assistant Should Not Do
Conversational use cases define the tasks that a bot should handle. However, there may be
reasonable and related use cases within a domain that you don't want the digital assistant to
handle but want it to be aware of.

In-Domain but Out-of-Scope
"In-domain but out-of-scope" use cases define tasks for which a digital assistant is not set up
(yet) or is not allowed to handle due to company policies or legal restrictions. When a user
requests such a task, a digital assistant should however understand the request and advise
the user.

Suppose that in a digital assistant used by a bank, the digital assistant is not authorized to
approve loan applications. If, however, the digital assistant understands what it is not
supposed to do, it could advise the user and possibly connect them to a human agent.

Chapter 7
Define Digital Assistant Success

7-3

Not Suitable for the Channel
Though it does not process them, a digital assistant should be aware of cases that are
not suitable for the conversational channel the digital assistant is using.

Channels are constrained by the design of the party that owns their platform (unless
you create a custom channel, in which case you are also responsible for developing
the client that displays bot responses and user input controls). Those constraints might
include a lack of rich user interface components and layouts, a reduced canvas size, a
limited number of items that can be added as buttons or select items in a list of values
or action menu, and more.

So, if a use case is not suited for the conversation channel due to its user interface or
data requirements, building a web application may be a better choice to follow up with.
Nevertheless, the digital assistant needs to know about the use case and that it does
not support it because "no" as an answer is better than no answer at all.

Shape Your Conversational Mindset
Having a conversation is a native skill for humans and no special training is required to
get a conversation going. For digital assistants, we need to identify the principles of a
good conversation (which we might otherwise take for granted) and then incorporate
them into our bot conversation design. If you don't shape your conversational mindset,
you run the risk of creating your digital assistant as a command line or web application
in disguise and not using any of the conversational features that make digital
assistants so great.

So how do you shape your conversational mindset? Here are some options:

• Take part in a conversation design experience (CDX) workshop to help define your
digital assistant.

One exercise to try during the workshop is to have two people sit back to back on
chairs. (When sitting back to back, you better simulate a digital assistant
conversation, since you eliminate non-verbal cues.) One person acts as a digital
assistant, the other as a user. Give them a use case and see how the conversation
develops, how it progresses, and also where it gets stuck. If the conversation gets
stuck, observe how the two persons resolve to a state where the conversation can
be resumed. Take notes of the conversation, put them on sticky notes, and add
them to a wall to discuss with the group.

• Go to a pub or restaurant to observe people or the friends you are with. Don't stalk
them; just watch them order food and drinks.

– How many people order food by mentioning the number of the meal on the
menu? How many people mention the name of a meal as it is written on the
menu? How many people order by mentioning the ingredients of a meal? How
many people reference a previous person's order by saying "the same for
me"?

– How does the bartender or waiter acknowledge or confirm your orders (if they
do at all)?

– What does a bartender or waiter do if they did not understand the order due to
a noisy environment?

Chapter 7
Shape Your Conversational Mindset

7-4

– Does the bartender or waiter encourage you to order more? If so, how does he do it?

– How does the bartender or waiter support you with your order?

– Does the bartender or waiter ask how it is going or how you are doing while you are
enjoying your food and drink? If so, why do you think they are doing this?

Pay attention to the details and maybe even take notes. All of what you notice and note is
conversational style and practice.

Restaurant employees represent the restaurant itself and are usually the first impression a
restaurant makes. The more professional the staff in a restaurant, the more likely it is that
they have been trained in dealing with customers. They have learned the do’s and don'ts and
how to deal with difficult customers. What do you think psychology has to do with food and
drink sales and customer returns?

When you see an analogy with digital assistants, you understand why conversation design is
important.

Define a Digital Assistant Persona
The digital assistant persona gives conversation designers and bot message writers a more
concrete and representational framework for building a consistent user bot experience. In
crafting the engagement between the digital assistant and user they might ask "how would
<DIGITAL_ASSISTANT_NAME> handle this situation".

Though digital assistants are not humans, they can be given human characteristics. So, when
you define a persona for your digital assistant, you are not only creating an avatar and a
name to represent your brand or company, you're also creating a backstory that will serve as
a handrail that your development team can use when designing user interactions and
messages. The backstory should include all the things you might like to know about it if the
digital assistant was a real person: name, age, schools visited, region the person was born in,
region the person currently lives in, hobbies, marital status, the music, the food and the
movies the person likes, the humor she has, the accent that she speaks in and much more.

If you design a digital assistant that will be accessed from users in different countries around
the globe, you’ll want to consider cultural and regional differences. Though your digital
assistant should be the same persona no matter from where it is accessed, it is okay – and
sometimes a necessity – to adapt to regional and cultural specialities. But keep in mind that
your digital assistant is there to serve and please them all.

Identify the Team Roles You Need for Bot Development
Digital assistants don't build themselves. They require a diverse set of skills such as backend
integration, system administration, and programming. In addition, they require roles that are
very specific to bots: conversation designer, conversation message writer, and model
designer. While the latter three do not necessarily have to be represented by full-time
positions on the team, those assigned to the positions must become experts at those roles.

Coversation Designer
It’s the job of the conversation designer to translate a technical process or problem into a
conversation that the user perceives as natural, that is truly conversational and intuitive to
use, and that keeps the interactions between the user and the digital assistant short.

Chapter 7
Define a Digital Assistant Persona

7-5

After completing the CDX workshop, you should have a clear idea of the use cases
and conversations a bot should have with users. The next step is to design these
conversations so that users who start a conversation can complete the conversation
successfully, regardless of how much experience they have with conversational
channels or whether they are first-time or returning users. It’s also important to plan for
mistakes as there is always the possibility that the user or the digital assistant will not
get things right.

The role of a conversation designer also is to understand the psychology of human
conversations and the human motivation that leads into completion of a task. For each
of your identified use cases, the conversation designer needs to outline the
conversation for the “happy path” (in other words, the flow you expect users to follow)
as well as conversations dealing with errors and objections.

The biggest mistake we see in the development of digital assistants is that developers
give digital assistants a web-oriented design that uses buttons and menus more than a
conversational approach. Therefore, it is important not only to have a conversation
designer to design the conversations, but also to continuously enforce the use of a
conversational style throughout the digital assistant development project.

One aspect of good conversation design is employing active listening to make users
feel heard. Have you ever had a conversation where you had the impression that the
other was not listening? So, can you remember how it made you feel? How would it
have been if the other person had given you feedback in between, for example by
repeating part of your last statement?

Active listening is an important part of a conversation, especially when other modes of
communication, such as facial expressions and body language, are missing. The lack
of feedback is daunting and, in the event of a digital assistant interaction, increases
the likelihood of incomplete digital assistant conversations.

Conversation designers work closely with conversation message writers.

Conversation Message Writer
When all you have are words, make them count. Conversation message writers create
bot messages that mirror the digital assistant personality, guide users to do things
right, ensure consistency in the digital assistant's tone and voice, and interact with
users for a great user experience.

For example, when crafting bot prompts, you need to make sure you provide context,
guidance, and motivation. Consider the example below for a prompt to provide the
reason for an expense in an expense reporting conversation:

"Please briefly describe the reason for the expense"

The message is clear, it doesn’t provide useful context. Providing context is important
because it helps ensure the user knows what the conversation is about and, just as
importantly, it indicates to the user whether the digital assistant understood the initial
request. So, let's have a look at the improved prompt below:

" Sure, let's create the expense report for you. Please briefly describe the reason for
the expense"

This version provides the context that is missing from the first version, and the user
gets confirmation that the request for filing an expense has been understood.

Chapter 7
Identify the Team Roles You Need for Bot Development

7-6

The prompt can be further improved by setting the expectation of how long it will take the
user. We mentioned that digital assistant conversations should be short, but the user doesn’t
necessarily know that that’s our intention. So, what about telling her?

"Sure, let's create the expenses report for you. With just a few questions, I will assist you to
get your costs reimbursed. I promise it won't take long. So, first briefly describe the reason for
the expense."

The revised prompt above contains two more bits of information. It firstly mentions that the
bot will ask a few questions and, secondly, it reassures that the process won't take long.

Note:

Conversation message writers may not be developers, and therefore may not be
familiar with the development environment that they use to create digital assistants.
It is recommended that messages and prompts be stored in resource bundles that
can be exported for external editing by the message writer or that provide a single
editing environment for the message writer. Select the resource bundle keys names
so that the message writer can easily identify which messages are related to the
same conversation.

Model Designer
A badly trained digital assistant won't do anybody any good. So it’s important to have a model
designer to focus on this aspect of bot development.

Model designers identify intents and entities to be required for a use case. They also help
finding good utterances for training and testing the model. In Oracle Digital Assistant, model
designers don't need to be data scientists, but they should have a good feel for how to build
utterances for intents that don't overlap with the utterances of other intents. Besides collecting
and curating utterances, model designers maintain and enhance models over time. This
includes re-running tests and comparing the results with the previously-documented baseline
results.

Break Down a Big Problem Into Small Ones
enables you to use skills to break down large use cases into many small ones. A skill is an
individual digital assistant that is configured together with others in a digital assistant. Using
machine learning, the digital assistant then determines the skill to which a request needs to
be forwarded based on the content of a user message.

Partitioning a large use case into multiple skills allows you to incrementally increase the
functionality of your digital assistant, eases development, and allows you to clearly separate
concerns.

Use Case: Break Expense Functionality Into Multiple Skills
For example, an expense reporting use case may be broken up into the following
functionality:

• create, update, and cancel expense reports

• find expense reports

Chapter 7
Break Down a Big Problem Into Small Ones

7-7

• check status of a report

• human agent integration

• frequently asked questions

• small talk

The skills to partition this into could be:

• a skill to handle the user welcome message

• a skill to report new expenses, check expense status, and cancel or update
expenses

• a skill to transfer users to a human agent for help

• a skill handling frequently asked questions

• a skill for dealing with small talk

Each skill processes one or more conversations for which it has intents defined.
Therefore, intents are a next level in breaking down a larger problem into many small
ones. For example, the skill handling finding, updating and cancelling of expense
reports would have at least three conversations defined for which it creates intents:

• Find expense report

• Update expense report

• Cancel expense report

Because the update and cancel expense reports use cases must query an existing
expense report before they can apply an operation, they can reuse parts of the
conversation to find expense reports.

A valid question that may arise is whether, because of their similarity, the three use
cases should be served from a single intent rather than three. The conversation could
then differentiate the user request based on keywords in the message such as
“cancel”, “update” or “find”, for which an entity could be built to extract the contained
keyword:

"I want to update my recent expense report"
"I want to cancel my recent expense report"
"I want to find my recent expense report"

Of course, it sounds feasible to do and a couple of years back we probably would have
recommended to do so. However, conversational AI (Artificial Intelligence) has
improved greatly over time and is now in a position to distinguish between the use
cases when trained accordingly. This not only allows you to associate different entities
to extract information from user messages, it also is more mature if you consider user
messages like those shown below:

"I’d like to update my recent expense report"
"I need to apply a change to my recent expense report"
"I want to add changes to my recent expense report"
"My recent expense report requires modifications"
"I need to correct my recent expense report"

Chapter 7
Break Down a Big Problem Into Small Ones

7-8

Splitting Up Intents
Even with individual intents you can split them up into several intents if the use case of an
intent is linguistically too broad. That is, if an intent was designed to handle multiple
conversations for which you would have to use entities to determine the specific conversation
to have with a user.

At the end of the previous example, there is a list of messages, all of which regard updating
an existing expense report. However, notice the different ways in which the "update"
operation is referred to. Therefore, trying to identify keywords in a user message can be a
difficult task and at the same time error prone. You will get much better results here if the
intent tells your bot what a user wants.

Sometimes it can even be beneficial to create two intents that eventually lead to the same
user conversation. Think about how people can request a product return:

• "I want to return the shirt I bought"

• "The shirt I bought does not fit"

While the first utterance expresses the user's intent to return a product, the second describes
a problem that implicitly indicates that the user wants to return it. To clearly separate the two
motivations and to have it easier to curate and quality test utterances you use for the intent
training, having two intents pointing to the same conversation flow could make sense.

A CDX workshop will help you identify the partitions into which your digital assistant use case
can be broken down.

Prepare for Failure
As with everything new, your first release of a digital assistant will not be your best version of
it. Like a toddler that first needs to learn how to crawl, then how walk, and eventually how to
run, you will:

• Experience situations that you did not consider in your design.

• See messages logged that you as a human understand but the digital assistant did not
get right.

Observe users struggling with conversations you thought were easy to have.

• Notice users who abandon conversations.

As you need to have a way to measure success, you also need to have a plan for improving
your digital assistant. Such a plan includes the frequency with which you monitor your digital
assistant, add new features and bug fixes, and release new versions.

Oracle Digital Assistant includes Insights, an analytics feature that reports performance
indicators for the skills and the digital assistant, that allows you to detect broken conversation
paths and messages that the bot could not map to a task. In addition, Digital Assistant allows
you to re-deploy new versions of a digital assistant without users experiencing a downtime.

The bitterness of failure also comes from overselling what a digital assistant can do. Manage
expectations to be realistic when you start out with your digital assistant project. Your bot will
eventually perform well and achieve the success goals you set, but it won't be in its first
version.

Chapter 7
Prepare for Failure

7-9

Small Talk in Digital Assistant Conversations
A user's attention rate when working with bots is not endless. Soon, users may get
sidetracked from the idea of testing what else your digital assistant can do or how to
crack it. Therefore, beyond the business-related function design, you require
functionality that is not in the domain of the business you built the digital assistant for.

Dealing with small talk is a common requirement for a digital assistant. Users can ask
the bot if it is human, if it wants to go out on a date, what the weather is like, if it knows
a good joke to share, and the like. The digital assistant doesn’t have to answer these
queries perfectly but it should be able to handle the most common ones.

For example, when asked for the weather, a digital assistant that sells flowers could
answer: "I don't have a window in my data center, but I’ve been told the weather is
good enough for ordering flowers. So let me help you with your flower orders." So,
thanks to small talk, the digital assistant understands the request and deals with it
such that the user gets reminded of what the purpose of the bot is. Small talk, if
handled well, is a win-win situation for the user and the bot.

Checklist of Preparation Steps
☑ Did you spend enough time sharpening the ax?
☑ Run a CDX workshop with stakeholders and project team members.
☑ Identify use cases that are within the sweet spot for digital assistants.
☑ Identify use cases that are in-domain but out-of-scope for a digital assistant.
☑ Define what success means for your digital assistant and how it can be
measured for your use cases.
☑ Partition large use cases into smaller use cases.
☑ For each use case, identify the conversations to have.
☑ Define the goals and measures of success. How do you measure conversational
success? Where is the business value in conversational?
☑ Check if you have the right skills on the team: conversation designer, NLP
trainer, product management, Oracle Digital Assistant developer, backend
integration developer.
☑ Define a bot persona.
☑ Write the backstory for the bot.
☑ Consider how to handle small talk and frequently asked questions.
☑ Prepare a plan for dealing with failure.

Learn More
• Oracle TechExchange article: Decide how to partition your digital assistant into

multiple skills

• Tutorial: Use Oracle Digital Assistant Insights

Chapter 7
Small Talk in Digital Assistant Conversations

7-10

https://blogs.oracle.com/digitalassistant/post/techexchange-best-practices-in-how-to-partition-your-digital-assistant-into-multiple-skills
https://blogs.oracle.com/digitalassistant/post/techexchange-best-practices-in-how-to-partition-your-digital-assistant-into-multiple-skills
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-insights/

8
Train Your Model for Natural Language
Understanding

Here are some best practices for training your digital assistant for natural language
understanding.

Building digital assistants is about having goal-oriented conversations between users and a
machine. To do this, the machine must understand natural language to classify a user
message for what the user wants. This understanding is not a semantic understanding, but a
prediction the machine makes based on a set of training phrases (utterances) that a model
designer trained the machine learning model with.

Defining intents and entities for a conversational use case is the first important step in your
Oracle Digital Assistant implementation. Using skills and intents you create a physical
representation of the use cases and sub-tasks you defined when partitioning your large digital
assistant project in smaller manageable parts.

When collecting utterances for training intents, keep in mind that conversational AI learns by
example and not by heart. What this means is that, once you have trained the intents on
representative messages you have anticipated for a task, the linguistic model will be able to
also classify messages that were not part of the training set for an intent.

Oracle Digital Assistant offers two linguistic models to detect what users want and to kick-off
a conversation or display an answer for a question: Trainer Ht and Trainer Tm.

8-1

Trainer Ht is good to use early during development when you don't have a well-
designed and balanced set of training utterances as it trains faster and requires fewer
utterances.

We recommend you use Trainer Tm as soon as you have collected between 20 and 30
high quality utterances for each intent in a skill. It is also the model you should be
using for serious conversation testing and when deploying your digital assistant to
production. Note that when deploying your skill to production, you should aim for more
utterances and we recommend having at least 80 to 100 per intent.

In the following section, we discuss the role of intents and entities in a digital assistant,
what we mean by "high quality utterances", and how you create them.

Create Intents

The Two Types of Intents
Oracle Digital Assistant has support for two types of intents: regular intents and
answer intents. Both intent types use the same NLP model, which should be set to
Trainer Tm for pre-production testing and in production.

The difference between the two intent types is that answer intents are associated with
a pre-defined message that is displayed whenever the intent resolves from a user
message, whereas regular intents, when resolved, lead to a user – bot conversation
defined in the dialog flow.

You use answer intents for the bot to respond to frequently asked question that always
produce a single answer. Regular intents are used to start a longer user-bot interaction
that leads to the completion of a transactional task, querying a backend system, or
providing a response to a frequently asked question that needs to consider external
dependency like time, date or location, when providing an answer.

Consider a Naming Convention
To make developing and maintaining the skill more efficient, you should come up with
a naming convention for your intents that makes it easy for you to immediately
understand what a particular intent stands for and to use the filter option when
searching for intents.

For example, a part of the name should delineate between answer intents and regular
intents (and perhaps also regular intents that you need so you can return a direct
answer but with more complex processing, such as with an attachment or based on a
query to a remote service). With that in mind, you might start with a scheme similar to
the following:

• Regular intents: reg.<name_of_intent>

• Answer intents: ans.<name_of_intent>

• Regular intents that are answers: reg.ans.<name_of_intent>

If your skill handles related tasks that can be categorized, then this can be used too in
the intent naming. Let's assume you have an intent to create orders and to cancel
orders. Using these two use cases, the naming convention could be:

• Regular intents: create.reg.<name_of_intent>, cancel.reg.<name_of_intent>

Chapter 8
Create Intents

8-2

• Answer intents: create.ans.<name_of_intent>, cancel.ans.<name_of_intent>

• Regular intents that are answers: create.reg.ans.<name_of_intent>,
cancel.reg.ans.<name_of_intent>

There is no strict rule as to whether you use dot notation, underscores, or something of your
own. However, keep the names short enough so that are not truncated in the Oracle Digital
Assistant intent editor panel.

Use Descriptive Conversation Names
Every intent also has a Conversation Name field. The conversation name is used in
disambiguation dialogs that are automatically created by the digital assistant or the skill, if a
user message resolves to more than one intent.

The disambiguation dialog may prompt a message like "what do you want to do" followed by
the names of the candidate intents. Though you can customize the message displayed in the
disambiguation dialog, the problem remains, which is that you should find a good descriptive
conversation name for your intents. For example "Create Order", "Cancel Order", "Question
about Return Policy", etc.

Note:

The value of the conversation name is saved in a resource bundle entry, so it can
be translated to the different languages supported by your skill.

Use the Description Field
Each intent has a Description field in which you should briefly describe what an intent is for
so that others maintaining the skill can understand it without guessing.

Define the Scope of Your Intents
Intents are defined in skills and map user messages to a conversation that ultimately
provides information or a service to the user. Think of the process of designing and training
intents as the help you provide to the machine learning model to resolve what users want
with a high confidence.

The better an intent is designed, scoped, and isolated from other intents, the more likely it is
that it will work well when the skill to which the intent belongs is used with other skills in the
context of a digital assistant. How well it works in the context of a digital assistant can only be
determined by testing digital assistants, which we will discuss later.

Intents should be narrow in scope rather than broad and overloaded. That said, you may find
that the scope of an intent is too narrow when the intent engine is having troubles to
distinguish between two related use cases. If this is a problem you experience while testing
your intents, and if it still remains a problem after reviewing and correcting the intent training
and test utterances, then it is probably best to combine the conflicting intents into a one intent
and use an entity to distinguish the use cases.

Chapter 8
Define the Scope of Your Intents

8-3

Example: Intent Scope Too Narrow
An example of scoping intents too narrowly is defining a separate intent for each
product that you want to be handled by a skill. Let's take the extension of an existing
insurance policy as an example. If you have defined intents per policy, the message "I
want to add my wife to my health insurance" is not much different from "I want to add
my wife to my auto insurance" because the distinction between the two is a single
word. As another negative example, imagine if we at Oracle created a digital assistant
for our customers to request product support, and for each of our products we created
a separate skill with the same intents and training utterances.

As a young child, you probably didn't develop separate skills for holding bottles, pieces
of paper, toys, pillows, and bags. Rather, you simply learned how to hold things. The
same principle applies to creating intents for a bot.

Example: Intent Scope Too Broad
An intent’s scope is too broad if you still can’t see what the user wants after the intent
is resolved. For example, suppose you created an intent that you named
"handleExpenses" and you have trained it with the following utterances and a good
number of their variations.

• "I want to create a new expense report"

• "I want to check my recent expense report"

• "Cancel my recent expense report"

• "My recent report requires corrections"

With this, further processing would be required to understand whether an expense
report should be created, updated, deleted or searched for. To avoid complex code in
your dialog flow and to reduce the error surface, you should not design intents that are
too broad in scope.

Always remember that machine learning is your friend and that your model design
should make you an equally good friend of conversational AI in Oracle Digital
Assistant.

Create Intents for What You Don't Know
There are use cases for your digital assistant that are in-domain but out-of-scope for
what you want the digital assistant to handle. For the bot to be aware of what it should
not deal with, you create intents that then cause a message to be displayed to the user
informing her about the feature that wasn't implemented and how she could proceed
with her request.

Defining intents for in-domain but out-of-scope tasks is important. Based on the
utterances defined for these intents, the digital assistant learns where to route
requests for tasks that it doesn't handle.

Chapter 8
Create Intents for What You Don't Know

8-4

Create Entities for the Information You Want to Collect from
Users

There are two things you want to learn from a user:

• what she wants

• the information required to give her what she wants

Using entities and associating them with intents, you can extract information from user
messages, validate input, and create action menus.

Here are the main ways you use entities:

• Extract information from the original user message. The information gathered by entities
can be used in the conversation flow to automatically insert values (entity slotting). Entity
slotting ensures that a user is not prompted again for information she has provided
before.

• Validate user input. For this you define a variable for an entity type and reference that
variable within input components. This will extract the information even if the user
provides a sentence instead of an exact value. For example, when prompted for an
expense date, the user may message "I bought this item on June 12th 2021". In this case
the value "June 12th 2021" would be extracted from the user entry and saved in the
variable. At the same time, it also validates the user input, since the user is re-prompted
for the information if no valid date is extracted.

Entities are also used to create action menus and lists of values that can be operated via text
or voice messages, in addition to the option for the user to press a button or select a list item.

Other Entity Features
And there is more functionality provided by entities that makes it worthwhile to spend time
identifying information that can be collected with them.

For example, what if a user enters the message "I bought this item on June 12, 2021 and July
2, 2021" when asked for a purchase date? In this case, the entity, if used with the Common
Response or Resolve Entities component, will auto-generate a disambiguation dialog for the
user to select a single value as her data input. As in human conversation where a person
would ask another to disambiguate a statement or order, entities will do the same for you.
And of course, entities can also be configured to accept multiple values if the use case
supports it.

Also, when using the Common Response or Resolve Entities component with custom
entities, the prompts displayed to users can be defined in the entity such that users get
alternating prompts when re-prompted for previously failed data input. When the prompt
message changes in between invocations, it makes your bot less robotic and more
conversational. In addition, you can use alternating prompts to progressively reveal more
information to assist users in providing a correct input.

As a general practice, it is recommended that you use entities to perform user input validation
and display validation error messages, as well as for displaying prompts and disambiguation
dialogs.

Chapter 8
Create Entities for the Information You Want to Collect from Users

8-5

Consider a Naming Convention
As with intents, we recommend a naming convention to follow when creating entity
names. For starters, if you include the entity type in the name of the entity, it makes it
easier to understand at a glance and provides an easy way to filter a list of entities. For
example, you could use the following scheme:

• Value list entity: list.<name_of_entity>

• Regular expression entity: reg.<name_of_entity>

• Derived entity: der.<name_of_entity>, or der.DATE.<name_of_entity>

• Composite bag entity: cbe.<name_of_entity>

• Machine learning entity: ml.<name_of_entity>

Whether you use dot notation as in the examples above, underscores, or something of
your own is up to you. Beyond that, we’d suggest that you try to keep the names fairly
short.

Use the Description Field
Each entity has a Description field in which you should briefly describe what an entity
is for. The field is limited in the number of characters you can enter, so be sure to be
concise.

Create Utterances for Training and Testing
Utterances are messages that model designers use to train and test intents defined in
a model.

Oracle Digital Assistant provides a declarative environment for creating and training
intents and an embedded utterance tester that enables manual and batch testing of
your trained models. This section focuses on best practices in defining intents and
creating utterances for training and testing.

Allow yourself the time it takes to get your intents and entities right before designing
the bot conversations. In a later section of this document, you will learn how entities
can help drive conversations and generate the user interface for them, which is
another reason to make sure your models rock.

Training Utterances vs. Test Utterances
When creating utterances for your intents, you’ll use most of the utterances as training
data for the intents, but you should also set aside some utterances for testing the
model you have created. An 80/20 data split is common in conversational AI for the
ratio between utterances to create for training and utterances to create for testing.

Another ratio you may find when reading about machine learning is to a 70/15/15 split.
A 70/15/15 split means that 70% of your utterances would be used to train an intent,
15% to test the intent during development, and the other 15% to be used for testing
before you go production with it. A good analogy for intent training is a school exam.
The 70% is what a teacher teaches you about a topic. The first 15% are then tests that

Chapter 8
Create Utterances for Training and Testing

8-6

you take while you study. Then when it comes to writing your exam you get another 15% set
of tests you haven't seen before.

Though the 70/15/15 is compelling, we still recommend using an 80/20 split for training
Oracle Digital Assistant intents. As you will see later in this guide, you’ll get additional data for
testing from cross-testing utterances in the context of the digital assistant (neighbour testing).
So, if you follow the recommendations in this guide, you will be gathering enough data for
testing to ensure your models work (even if it doesn’t end up being a 70/15/15 split). And you
will be able to repeatedly run those tests to get an idea of improvements or regression over
time.

How to Build Good Utterances
There's no garbage in, diamonds out when it comes to conversational AI. The quality of the
data with which you train your model has a direct impact on the bot's understanding and its
ability to extract information.

The goal of defining utterances is to create an unbiased and balanced set of training and
testing data that does not clutter the intent model. In order to do so, here are some rules for
you to follow that, in our experience, give good results

• Do not use generation tools to create utterances. Chances are you will get many
utterances with little variation.

• Consider different approaches to trigger an intent, such as "I want to reset my password"
vs. "I cannot log into my email".

• Do not use utterances that consist of single words, as they lack the context from which
the machine model can learn.

• Avoid words like “please”, “thank you”, etc. that don’t contribute much to the semantic
meaning of the utterances.

• Use a representative set of entity values, but not all.

• Vary the placement of the entity. You can place the entity at the beginning, middle and
end of the utterance.

• Keep the number of utterances balanced between intents (e.g. avoid 300 for one intent
and 15 for another).

• Strive for semantically and syntactically complete sentences.

• Use correct spellings. Only by exception would you add some very likely misspellings and
typos in the utterances. The model is generally able to deal with misspellings and typos
on its own.

• Add country-specific variations (e.g. trash bin vs. garbage can, diaper vs. nappy).

• Vary the sentence structure (e.g. "I want to order a pizza", "I want a pizza, can I order").

• Change the personal pronoun (e.g. I, we are, we are, I would, I would, we, you, your, we).

• Use different terms for the verb (e.g. order, get, ask, want, like, want).

• Use different terms for the noun (e.g. pizza, calzone, Hawaiian).

• Create utterances of varying lengths (short, medium, and long sentences).

• Consider pluralization (e.g. "I want to order pizzas", "Can I order some pizzas").

• Consider using different verb forms and gerunds ("Fishing is allowed", "I want to fish, can
I do this").

Chapter 8
Create Utterances for Training and Testing

8-7

• Use punctuation in some cases and omit it in others.

• Use representative terms (e.g. avoid too many technical terms if the software is
used by consumers).

What to Avoid When Writing Utterances
Utterances should not be defined the same way you would write command line
arguments or list keywords. Make sure that all utterances you define have the notion
of "conversational" to them. Creating utterances that only have keywords listed lack
context or just are too short for the machine learning model to learn from.

How to Get Started with Writing Utterances
Ideally, good utterances are curated from real data. If you don't have existing
conversation logs to start with, consider crowdsourcing utterances rather than merely
synthesizing them. Synthesizing them should be your last resort.

For crowd-sourced utterances, email people who you know either represent or know
how to represent your bot's intended audience. In addition, you can use Oracle Digital
Assistant’s Data Manufacturing feature to set up an automated process for collecting
(crowdsourcing) suggestions for utterances, which you’ll then probably want to curate
so that they comply with the rules we have outlined for what makes a good utterance.

Note that you may find that people you ask for sample utterances feel challenged to
come up with exceptionally good examples, which can lead to unrealistic niche cases
or an overly artistic use of language requiring you to curate the sentences.

Also, keep in mind that curating sample utterances also involves creating multiple
variations of individual samples that you have harvested through crowdsourcing.

How Many Utterances to Create
The quality of utterances is more important than the quantity. A few good utterances is
better than many poorly designed utterances.Our recommendation is to start with
20-30 good utterances per intent in development and eventually increase that number
to 80-100 for serious testing of your intents. Over time and as the bot is tested with
real users, you will collect additional utterances that you then curate and use to train
the intent model.

Depending on the importance and use case of an intent, you may end up with different
numbers of utterances defined per intent, ranging from a hundred to several hundred
(and, rarely, in to the thousands). However, as mentioned earlier, the difference in
utterances per intent should not be extreme.

Note:

It's important that you maintain a baseline against which new test results are
compared to ensure that the bot's understanding is improving and not
dropping.

Chapter 8
Create Utterances for Training and Testing

8-8

What Level of Confidence Should You Aim For?
A machine learning model evaluates a user message and returns a confidence score for what
it thinks is the top-level label (intent) and the runners-up. In conversational AI, the top-level
label is resolved as the intent to start a conversation.

So, based on the model training and the user message, imagine one case where the model
has 80% confidence that Intent A is a good match, 60% confidence for Intent B, and 45% for
Intent C. In this case, you would probably be pretty comfortable that the user wants Intent A.

But what if the highest scoring label has only 30% confidence that this is what the user
wants? Would you risk the model to follow this intent, or would you rather play it safe and
assume the model can't predict what a user would want and display a message to the user to
rephrase a request?

To help the intent model make a decision about what intents to consider matching with a user
utterance, conversational AI uses a setting called the confidence threshold. The intent model
evaluates a user utterance against all intents and assigns confidence scores for each intent.
The confidence threshold is a value within the range of possible confidence scores that
marks the line:

• below which an intent is considered to not correspond at all with the utterance; and,

• above which an intent is considered to be a candidate intent for starting a conversation.

In Oracle Digital Assistant, the confidence threshold is defined for a skill in the skill’s settings
and has a default value of 0.7.

A setting of 0.7 is a good value to start with and test the trained intent model. If tests show
the correct intent for user messages resolves well above 0.7, then you have a well-trained
model.

Note:

If you find that two intents both resolve to a given phrase and their confidence
scores are close together (for example, 0.71 vs. 0.72), you should review the two
intents and see if they can be merged into a single intent.

If you get good results with a setting of 0.7, try 0.8. The higher the confidence, the more likely
you are to remove the noise from the intent model, which means that the model will not
respond to words in a user message that are not relevant to the resolution of the use case.

However, the higher the confidence threshold, the more likely it is that the overall
understanding will decrease (meaning many viable utterances might not match), which is not
what you want. In other words, 100 percent “understanding” (or 1.0 as the confidence level)
might not be a realistic goal.

Remember that conversational AI is about understanding what a user wants, even though
they may express that in many different ways. E.g, in a pizza bot case, users should be able
to order pizza with phrases as diverse as "I want to order a pizza" and "I am hungry".

Checklist for Training Your Model
☑ Use Trainer Tm.

Chapter 8
Checklist for Training Your Model

8-9

☑ Review the scope of your intents. Find and correct intents that are too narrow
and intents that are too broad.
☑ Use a good naming convention for intents and entities.
☑ Make use of the Description fields that exist for intents and entities.
☑ Always curate the phrases you have collected before you use them as
utterances.
☑ Create an 80/20 split for utterances you use for training and testing. Training
utterances should never be used for testing.
☑ Determine the optimum confidence threshold for your skills, preferably 0.7 or
higher.
☑ Identify the information you need in a conversation and build entities for them.
☑ Look out for entities with a large number of values and synonyms whose only
role is to identify what the user wants. Consider re-designing those to using intents
instead.

Learn More
• Tutorial: Best practices for training intents

Chapter 8
Learn More

8-10

https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-intents/index.html

9
Additional Languages

Here are some best practices for developing digital assistants to support multiple languages.

The requirement for digital assistants to support multiple languages is quite common and
affects different areas of your digital assistant and skill development. Support for additional
languages is an implementation task that goes beyond the translation of user and bot
messages and that also needs to be considered in your conversation design to capture
regional and cultural differences.

Language support is configured and implemented at the skill level. This includes the setting
for the type of translation to be used and the configurations required for the type of
translation. For skills exposed though a digital assistant, the digital assistant also needs to be
configured to support multiple languages.

Translation Service vs. Multilingual NLU
Oracle Digital Assistant provides two options for supporting multiple languages in digital
assistants.

• The use of a translation service requires you to configure a translation service key from
Google or Microsoft with your digital assistant instance. Incoming user messages are
translated to the base language configured for a skill. The base language is the language
you use to train the model, which for translation services most often is English. The
benefit of using translation services at the moment is that it supports more languages
than native language support does.

• Native language support supports a smaller number of languages directly in the
linguistic model (natural language understanding – NLU) without the need for a

9-1

translation service. While the built-in language recognition is pretty good without
any further language specific training, you can refine it by adding utterances for
each language you want to support. For entities, you need to add translation
strings for the values and synonyms in value-list entities.

The decision of which approach to use depends on the number of languages you need
to support in your digital assistant project, the immediate need for each language, and
whether or not the language exists as a natively supported language.

It is not possible to use skills using translation services with skills using NLU native
support in the same digital assistant. Therefore, the decision as to which translation
option to use should be made for all skills in a digital assistant when creating your first
skill.

Our recommendation is to use native NLU language support if you can because of its
better support for extraction of list entities and the ability to fine tune the understanding
for additional languages by adding sample utterances for that language.

Both translation options support non-English language as a base language for training
your intent models and building your skills.

Use Resource Bundles Everywhere
We recommend using resource bundle strings for all bot messages and prompts. Even
if you use a translation service to support multiple languages in your bot, don't use
translation services for outgoing messages: always use resource bundles and use
them everywhere.

Why Resource Bundles
Digital assistant development is all about the persona you’ve designed for it. The
persona defines the language, the tone of voice, and the attitude of a digital assistant.

To ensure that your digital assistant takes on the persona you designed, you need to
stay in control of the bot's outgoing messages for each language you support.
Resource bundles represent a single place where you manage bot messages, which
makes it easy to ensure consistency in the tone of voice. For building digital assistants
that support a second language, there is no realistic alternative to resource bundles for
displaying bot messages.

About Resource Bundle Strings
Resource bundle strings are declaratively created in Oracle Digital Assistant skills and
digital assistants. You reference them from conversations, in entities, and in skill
configuration settings using Apache FreeMarker expressions. To reference a message
string, you use an expression like the following:

${rb('message_key')}
rb references the resource bundle definition and looks for a message identifier with the
specified name. In the sample above, it would look for a message key with the name
message_key.

If a resource bundle key name does not exist for the user’s language, then the string
defined for the default language (the base language) will be used. If a message string
is missing for the default language, then an exception is thrown during runtime testing.

Chapter 9
Use Resource Bundles Everywhere

9-2

If you need to pass data to a message printed through a resource bundle, then you can do
this through positional and named parameters.

Positional parameter: Hello {0}, {1}
Named parameter: Hello {name}, {greeting}
To pass values that you read from variables added to a conversation, you use an expression
like the one shown below.

For positional parameters: ${rb('message_key',firstname.value,
greetingMessage.value)}
For named parameters: ${rb('message_key','name,greeting',firstname.value,
greetingMessage.value)}
Although positional parameters seem simpler to use, we recommend that you use named
parameters when you can, because they provide the context for the type of data that is added
to a message. Knowing the context makes a translator's life easier.

Consider a Naming Convention for Resource Bundle Key Names
Comprehensive use of resource bundles in your skill means referring to them from entities,
the dialog flow, and from skill and digital assistant settings. To make resource bundles string
references easier to find in your skill and digital assistant, we recommend adding context to
the resource bundle key names by implementing a naming convention.

For example, you could use the following names for an error message, a disambiguation
message, and prompts in a value list entity:

• list.<entity_name>.errorMessage
• list.<entity_name>.disambiguationMessage
• list.<entity_name>.prompt1
• list.<entity_name>.prompt2
For a composite bag entity, you could use a similar naming structure, but add the name of the
bag item to it:

• cbe.<entity_name>.<bag_item_name>.errorMessage
• cbe.<entity_name>.<bag_item_name>.disambiguationMessage
• cbe.<entity_name>.<bag_item_name>.prompt1
• cbe.<entity_name>.<bag_item_name>.prompt2
If you reference a resource bundle string from the prompt of a dialog flow state, or if a dialog
flow state just prints a user message you could use:

• <dialog_flow_state_name>.prompt
• <dialog_flow_state_name>.message
For global items, like pagination or help buttons on a Common Response component, you
could use a naming convention that does not contain the name of a specific dialog flow state:

• button.next
• button.previous

Chapter 9
Use Resource Bundles Everywhere

9-3

• button.cancel
• button.help
There is no strict rule as to whether you use dot notation as in the examples above,
underscores, or something of your own.

Use Resource Bundles for Keywords
The Common Response component allows you to define keywords for action items so
the user can "virtually press" them by sending the keyword as a message. Keywords
are especially important if the user interface does not allow the user to press a button
(such as when using text-only channels or voice).

As a gentle but obvious reminder, "submit" is not called "submit" in German,
Portuguese, French, Arabic and all the other languages you support with your bot. So
it’s good to know that the keyword property of action items in the Common Response
component can be read from a resource bundle key. The resource bundle message
would be a comma-separated list of keywords you want to use.

Use the ICU Message Format
In addition to named parameters that you add to a resource bundle message, there
are a number of other options that you can use to handle certain conditions when
translating messages. For example, the message you print for multiple items is usually
different from the message you print when a single item is ordered or shipped.

ICU, which stands for International Components for Unicode, is a language formatting
syntax supported by message packets in Oracle Digital Assistant. This syntax allows
you to write very flexible messages that make it easy to apply language-specific and
regional differences to bot messages.

For starters, it may be sufficient to use the ICU message syntax for handling
messages with singular and plural value references and for messages that change
due to conditions such as the gender of the user working with the digital assistant.

Impact of Second Language Support on the Bot Persona
It is not necessary to change the digital assistant’s persona for a specific language.
However, if regional or cultural differences require a change in the attitude, voice, or
wording of the bot persona, it is legitimate to apply those changes. The goal of a digital
assistant is to please and engage users, which also means it needs to adapt to
regional habits.

You can use resource bundles in the ICU format to help with changing messages
according to region. You can do so by passing an argument to the resource bundle to
identify a region for which you need to adapt the bot persona, and use the ICU
message format to display a message different from the one it would display
otherwise.

Example: Handling Regional Differences in Messages
This resource bundle message example expects argument for region to be passed
when referencing the resource bundle key name. In the example, the values to be

Chapter 9
Use the ICU Message Format

9-4

handled differently are defined as region1 and region2. You can set those values however
you want, e.g. to a country code.

{region, select,
 region1 {message for region 1}
 region2 {message for region 2}
 other {message for all other regions}
}

To reference the message in the resource bundle for one of the regions, you would use the
following expression in your dialog flow, entity or skill configuration:

${rb('the_key_name','region','<VARIABLE_CONTAINING_REGION_VALUE>.value')}

<VARIABLE_CONTAINING_REGION_VALUE> needs to be replaced by a variable name in your skill
that holds the value for which you have a different message defined.

Checklist for Additional Languages
• ☑ Decide between using translation services or native language support before building

your skills.

• ☑ Ensure all skills that you want to add to a digital assistant use the same language
support type.

• ☑ Use resource bundles for all prompts and messages displayed by your bot.

• ☑ Use named parameters when passing dynamic data to a resource bundle message.

• ☑ Use the ICU message format for plurals in messages and for messages that change
based on a condition.

• ☑ Use resource bundle references when creating keywords.

• ☑ Use the Annotation field of the resource bundle string to provide the translator with
additional information about the meaning and the use of a string and, optionally, how you
want message to be translated.

• ☑ Understand regional and cultural differences.

Learn More
• Oracle Design Camp video: Internationalization (I18n) Conversation Design

• Oracle Design Camp video: Multi Lingual NLU

• Oracle Design Camp video: Use Resource Bundles Like a Pro

• TechExchange: Resource bundle and ICU format sample code

Chapter 9
Checklist for Additional Languages

9-5

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+Camp+-+Internationalization+%28I18N%29+Conversational+Design+%E2%80%93+Response+Strings/1_lum5co4u
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+Camp+-+Multilingual+NLU/1_5wa3z4wn
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+Camp+-+Use+Resource+Bundles+Like+a+Pro/1_oun7n1nd
https://blogs.oracle.com/mobile/techexchange%3A-sharing-a-skill-with-sample-code-for-using-the-icu-message-format-in-oracle-digital-assistant

10
Model Testing

Here are some best practices for testing your model for natural language understanding.

You will need to test the understanding of your model for each skill and then later for the
digital assistant as a whole. A well-trained model in a skill that understands how to correctly
map in-domain messages to an intent and that does not respond to non-domain messages is
an important pillar of a well-trained digital assistant.

Oracle Digital Assistant provides an utterance tester in its skills that allow you to perform
manual and batch testing of how well the model resolves intents from user messages. For
batch testing, it is where you use the 20% of the utterances you defined for an intent but that
you held back for testing.

In general, you should test your models often and early, but not before you have enough
good utterances for the skill’s intents. The goal of your tests is for the model to gain a high
level of confidence in resolving intents.

Create a Baseline
After development is completed, you should run tests and use the results to establish a
baseline of the model’s level of understanding. You can use that baseline as a point of
comparison when you update the training model with additional and improved utterances and
when you later test the skill on updated versions of the Digital Assistant platform. For these
and future tests, you need a model that is trained with a sufficient number of quality
utterances.

Perform Positive and Negative Testing
You should have both positive and negative tests:

• In positive tests, you want the utterances to resolve to the intent you have designated.
The more tests that pass, the better the model is trained.

• For negative tests, you want the utterances to not resolve. Negative tests help you
tighten the boundaries of understanding for an intent.

As an example, for a positive test, assume that in an expense report skill you are testing the
"create expense" intent. All utterances in a positive test contain messages that should resolve
to this intent. So, the more tests that pass, the better the model is trained.

Negative testing includes the following types of tests:

• Neighbour testing: Test an intent with the utterances you created to test the other intents
in a skill.

• Out-of-domain testing: With these tests you try utterances that semantically don't belong
to the intent but use similar words. For example, an expense report should understand "I
bought a family calendar for work" as a user requesting to file a new expense, but should
not respond to "create a new entry in my family calendar".

10-1

• Random phrase testing: Trying random messages should not resolve to the intent
you test. For example, "the cookie cutter cuts cookies" or "I am on a stairway to
heaven" should not lead to a match for the "create expense" intent.

Checklist for Model Testing
☑ Test early and test often.
☑ Don't test an undertrained model.
☑ Use positive and negative testing.
☑ Utterances used for testing should be of the same quality as training utterences,
but must not be the same utterances used for training.
☑ Aim for results well above confidence threshold when testing utterances.
(However, a 100 % confidence rate is not a goal.)
☑ Before putting your skill into production, keep a note of the test results as a
baseline for future tests you run.

Learn More
• Oracle Design Camp video: Testing Strategies

Chapter 10
Checklist for Model Testing

10-2

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Testing+Strategies/1_qpfeu8xp

11
Conversational Design

Here are some high-level best practices for designing conversations in digital assistants.

Users implicitly expect software applications to have human qualities. When an application is
considered "user-friendly", it's often because it exhibits human characteristics such as
courtesy and common sense.

With conversational interfaces (digital assistants), the expectations are even higher. Since
digital assistants are designed around the concept of human conversation, it is particularly
important to design the digital assistant well so that it meets user expectations, both
conscious and unconscious.

Conversational design removes the technical aspects from the interaction model of an
underlying task or process and replaces it with a natural-sounding conversation that users
find easy to understand and engaging.

Good conversation design aims for efficiency, has an understanding of context, reflects backs
to the user, is emotionally engaging, and builds great dialogs. As an engineer, you might think
good conversation design is easy to achieve, but keep in mind that not every great singer
knows how to write good lyrics. And not every author of good lyrics can sing.

Your digital assistant isn't human, but if it uses conversational techniques and cues and
exhibits human consideration, it can make the conversations seem more natural (and
pleasant) and minimize potential for irritating users. These qualities in a digital assistant can
give your users confidence that it is capable of addressing their real concerns.

Here are some conversational techniques that can help make your digital assistant more
engaging to users.

Orient Users
A basic but important part of designing a digital assistant is making sure that users can easily
discover how to use it effectively.

Welcome
To get off on the right foot with your users, put some thought into the way your digital
assistant greets users. You should:

• Provide a positive and welcoming introduction.

• Indicate what the digital assistant can do and/or what is expected next from the user.

• Vary the greetings, especially for digital assistants that get repeated use.

Digital assistants come with a default welcome implementation, but you can also provide your
own implementation.

11-1

Help
An important part of any digital assistant is to be able to tell users what the digital
assistant can do and to help them get unstuck if the conversation isn’t going as they
expect. You should:

• Ensure the digital assistant can handle a request for help at any point in the
conversation, whether it is an explicit request for help or a more subtle inquiry like
"what can you do?"

• As you do when welcoming users, indicate what the digital assistant can do and/or
what is expected next from the user.

Digital assistants come with a default help implementation, but you may wish to design
the help experience yourself.

Letting Users Exit
Forcing a user to complete a conversation thread they have erroneously initiated
makes for a bad user experience. When a user is in a conversation, they should
always have a way of exiting, whether it's because the conversation has taken a turn
that they don't want or that they simply don't wish to complete the conversation at that
time.

You can achieve this in a few ways. For example, you can make sure all choice lists
have an option to exit the current conversation. Or you can use the digital assistant's
built-in exit intent to explicitly handle any specific requests to end the current
conversation.

Hints and Cues
Depending on the complexity of your skills and digital assistant, it might be useful for
you to provide various forms of guidance and visual cues to suggest to users what
they can do. This can take the form of things like:

• Hints within messages (such as "… or just tell me to exit this conversation if you
don’t want to go on").

• Information that tells the user what they can expect next after they have completed
an action.

• Buttons for the most common actions.

• Reminders interspersed throughout the conversation describing how to do things
like launch a menu, exit a conversation, ask for help, and speak to an agent.
On some channels, you can also take advantage of features specific to the
messenging platform to provide buttons for common actions like exiting and
displaying the menu.

Show Quick Responses as Action Buttons
When prompting users for information, you may be able to anticipate the user's choice
based on what people usually select.

For example, if you are asking for a date for a calendar entry, common options are
"today" or "tomorrow". So, below the prompt, you could add two buttons that say

Chapter 11
Orient Users

11-2

Today and Tomorrow. When a user selects one of the two buttons or enters the label of one
of the buttons, the current date or tomorrow's date is set to the underlying variable.

Another example is the case where the bot needs a delivery address. If there’s a home
address on file, you can ask for a delivery address and also include a home delivery button.

When using quick replies, make sure users understand that the buttons are not their only
choice and that the button can be triggered by a message. Always remember that
conversation also means speech and that users who operate the chatbot using their voice will
not have an opportunity to press a button. Most likely, they will mention the button label.

Ensure Mutual Understanding
For conversations to go well, you need to make sure that the digital assistant understands
users and that the user understands the digital assistant. Here are some techniques that help
in that regard.

Use Plain Language
No user speaks the way your product database was designed. Make sure your bot is using
the language of your target audience for which the persona you have defined should guide
you. For example:

• "user account" instead of "user Id"

• "where can I deliver this to" instead of "shipping address"

• "I tried my best but could not find what you were looking for" instead of "the query did not
return a result"

Also, you can make messages less robotic sounding by providing context and guidance.

So, instead of "What is your order Id?", you could provide a more helpful message like "I can
help you find your order. If you can tell me your order number, that would be great. If not, no
problem. I can also search by product or date."

Don't Expect Users to Know the Magic Words
Imagine a sales bot that sales reps could use to request a graphical representation of the
revenue they generated and how that revenue met their forecasted goals.

Charts can be made with many functions including what type of chart to add, whether or not
to add labels, how many y-axes to show. A digital assistant where the sales representative
has to request her statistics by saying things like "Show me my sales for Q2 / 2021 as a pie
with no_label double_y_axis in linear_plot" will not work in practice.

Make the options clear, keep them conversational, and use the language of your target
audience. If you offer funnels, Gantt charts, scatter charts, bubble charts, and Pareto charts,
keep this information to yourself and present it differently to the user. Here are some
examples of what a user of that bot would be more likely to ask:

• "Show me an overview of my sales for Q2 / 2021"

• "Show me my sales for Q2 / 2021 in comparison to last year"

For both queries, the response could be rendered with different types of graphs without the
user having to understand the magic words that give them what they want. Not only does it
make your digital assistant intuitive to use, it also reduces choice, which is a good thing

Chapter 11
Ensure Mutual Understanding

11-3

keeping in mind that conversational tasks should be kept short, as we discuss in the
next section.

Give Feedback Within the Conversation
Make sure your bot is not designed as an escape game and that you provide enough
pointers, feedback, confirmation, signposting, and help so that users always
understand what is expected of them now, what is next, and how to get unstuck. Here
are some examples of those techniques:

• Confirmation: "OK. I got your order."

• Signposting: "OK. I got your order. Next, I need to know where to send this to."

• Prompt: "OK. I got your order. Next, I need to know where to send this to. So, let
me know the address I should deliver it to."

• Help: "OK. I got your order. Next, I need to know where to send this to. So, let me
know the address I should deliver it to or use the button below to ship to your
home address.

There may be situations in which the user does not know what information to provide
or perhaps has even lost interest in completing a task. One way to help in these cases
is to display additional controls (like buttons) for the user to cancel a task or navigate
to a help state. Also, by using the maxPrompts setting on input components, you can
even automate the navigation to a help state when the user provides incorrect
information multiple times.

Disambiguate User Input
Don't be afraid to have your skill verify its understanding of user input. Language can
be ambiguous, even in person.

For example, if it is Thursday and a user says "I want to book an appointment next
Saturday", one could interpret that date as being either two or nine days in the future.
In this case, you would want your skill to verify the date, perhaps with wording like
"OK, just to make sure I've understood you correctly, is that Saturday the 10th or
Saturday the 17th?"

In dialog flows, we recommend that you use entities as variable types when collecting
user input. Using entities as variable types validates user input and automatically
detects ambiguity, which means that all you need to do is to find the right wording
when prompting users.

Provide Alternating Prompts
As mentioned earlier, it’s important to write messages in a conversational style. But
what happens if that message needs to be repeated because the user didn’t respond
correctly? For example:

"Cool. So, tell me where to ship this to"

"Cool. So, tell me where to ship this to"

"Cool. So, tell me where to ship this to"

Chapter 11
Ensure Mutual Understanding

11-4

Even messages that are written conversationally will sound robotic and unengaging if they
are repeated. Therefore, you should write multiple versions of each prompt so that a user
sees different text if re-prompted (or if she repeats the conversation).

You can use multiple prompts defined on entities to show alternating prompts automatically.
So, if the user information gets validated by an entity type variable, you can use the entity's
prompt property to define as many prompts as you like. Using the Resolve Entities
component all you need to do is to then associate the variable to it.

Gradually Disclose Additional Information
Having alternating prompts is great. But if a user does not understand, rephrasing will make it
only slightly better. Here you want to progressively disclose more information or escalate
when needed.

Bot: "Cool. So, tell me where to ship this to"
User: "to me"
Bot: "I am sorry, but 'to me' doesn't seem to work for me. If you can give me a street
name, a house number and a city name then I can ship this to you"
User: "send it to me"
Bot: "Tried, that did not work for me either. I’d really like to help you out here. Maybe you
want to talk to a human colleague of mine. If so, just ask me to connect you to a human
agent. Or, you give me an address I can ship this to."

In that set of prompts, notice how the messages gradually reveal more information to help the
user. Using entities to define the prompts makes it easy to implement such a conversation.
Just add a sequence number to the prompts.

The sequence number of a prompt indicates when it is displayed. The above example
contains messages with sequence numbers from 1 to 3. If you then configure the maxPrompts
property of the Resolve Entities component to 3, a third failed user input attempt triggers
navigation to e.g. a help or a human agent state.

Prompts with the same sequence number show alternating behaviour, as described in the
previous section. This way you can achieve both, gradually exposing additional information
plus displaying alternating prompts.

Varied Responses and Progressive Disclosure
Have multiple responses for various points of the conversation. Varied responses enhance
the skill's credibility with the user (it doesn't sound like it is stuck in a loop). You can also use
them to progressively disclose more information to help a user get unstuck.

For example, if the user provides invalid input to the question "What size would you like?",
you could follow up that prompt with something like "OK, lets try again to find a size for you.
Select small, medium, or large."

Confirmation and Reflective Listening
Your skill's responses should use reflective listening (the restating of the user's input, but with
different wording) to demonstrate that the skill understands the user requests before moving
on to the next step. For example, if the user asks “I want to order a pizza”, the skill could
respond with “OK, let's get your pizza order started" before continuing with the next question
(such as "what size can we get you?”). Also notice that this acknowledgement can be
expressed implicitly and in a natural human tone ("let's get your pizza order started") as

Chapter 11
Ensure Mutual Understanding

11-5

opposed to something more literal and less natural sounding (like "request to order
pizza confirmed").

Also consider the situation when a user has entered information but the skill needs a
little time to execute something in the backend. Instead of waiting for the process to
complete before responding, you might want to confirm that the request is in process.
For example, the skill could respond with the following after payment details have
been submitted but before they have been processed: “OK, I’ve got all the payment
information. Let me check those details with your bank.”

Similarly, use the typing indicator to show when the digital assistant is working on a
response.

Close the Gap that Exists Between AI and Human Understanding
The human brain is by far the slowest but best computer in the world. And this is
because of its ability to detect and maintain context. Despite all improvements in
conversational AI, you will experience situations in which the chatbot won't be able to
determine what a user wants or what the information a user provided is for. This is
where your conversation design needs to step up to help your chatbot and the user.

For example, consider the following three messages:

"block my diary from 10 a.m. to 12 p.m. tomorrow"
"set a marker in my calendar for tomorrow at 10 a.m. for 2 hours"
"for 2 hours tomorrow, create an entry in my schedule at 10 a.m."

All three messages say the same thing and the human brain immediately gets it what
the user wants, what the event date is, and what the start and the end time are.

Conversational AI, when trained well, will understand that "block my diary", " set a
marker in my calendar" and "create an entry in my schedule" have the same meaning,
which is to create an event in the user calendar.

However, as far as the information goes, conversational AI extracts "tomorrow" as the
event date, 10 a.m. and 12 p.m. as time and 2 hours as a duration. By itself it might
have trouble understanding what the start time for a meeting is and what is the end
time, especially when the end time needs to be computed from a duration. And what
does "tomorrow" mean from the perspective of a bot if you live in Australia as opposed
to (for example) Jordan?

For whatever you cannot handle in your implementation, your design needs to handle
it, even if it means admitting that the bot did not understand and thus re-prompts for an
information.

Good Manners
A digital assistant should show consideration for the user's time and concerns. Here
are a few aspects of good manners to build into your digital assistant.

Small Talk
Not only is small talk a natural part of human conversation, but people also initiate
small talk with digital assistants. With digital assistants it actually has practical uses,
such as:

Chapter 11
Good Manners

11-6

• Verifying that it is a bot behind the chat interface and not a human.

• Discovering what the digital assistant can do.

• Expressing frustration.

For example, if the user enters expletives, this may be a cue that the digital assistant can use
to apologize, connect the user with a human agent, or otherwise try to remediate the
problem.

At the very least, you should be able to handle small talk on a basic level. If you handle it
well, it makes your digital assistant appear smarter, which helps user confidence in the digital
assistant.

Don't Assign Blame
Be careful not to assign blame to users (whether explicitly or implicitly) when they enter
something incorrectly or do something else to interrupt progress in the conversation. In such
cases, the phrasing should focus on where the digital assistant is having difficulties, not on
what the user did incorrectly.

For example, the response "That is an incorrect Order ID" subtly implies that the problem is
the user's fault, which might cause irritation or offense (and might not even be true). A better
response would be "I couldn't find an order with that number".

Use of Empathy
You can use empathy and humor to make the digital assistant more personal, but be
judicious and don't overdo it. The costs of misunderstandings are much greater than any
benefits.

For example, if a user of a conference registration digital assistent enters "I won't be able to
make it to the conference", the following might seem like a reasonable beginning of a
response: “I’m sorry to hear that”. But if the user instead says "I won't be able to make it to
the conference because my daugher is due to deliver a baby", the response won't seem
empathetic at all!

Brevity
Keep messages short and to the point. (Be considerate of the user's time and screen real
estate.)

If your channel supports links, you may want to provide links to external content.

Keep Interactions Short
To get things done, think about the shortest path from the start to the end of a conversation.
Use whatever options you have to skip a stop in a conversation. Here are two options to
consider:

• Use entity slotting and guide users on how to include some, if not all, of the information
needed for a task in the first message.

In dialog flows designed in Visual mode, Common Response and Resolve Entity
components automatically extract entity values provided by users in their initial message
and don't prompt for those provided values.

Chapter 11
Keep Interactions Short

11-7

In dialog flows designed in YAML mode, you can use the nlpResultVariable
property on input components to enable this automatic slotting.

• Allow users to provide additional information when prompted. For example, in a
pizza order bot, when the user is asked for the pizza size, why not also accept the
pizza type and toppings? Out-of-order information extraction can be easily
implemented with the composite bag entities.

Don't Design Like It's a Web App
It's likely that your team has experience with developing web applications and thus will
also be likely to apply web application paradigms to the digital assistant, whether
consciously or sub-consciously. Try to avoid this! The point of a digital assistant is for a
user to complete a task with natural language, not to put a web app in a smaller
window.

Here are a couple of things to consider:

• Don't use terms that sound like database field names in a response.
For example, instead of responding with "invalid Order ID", say something like "I
couldn't find that order number."

• If the user is making a request and there are hundreds of possible solutions, don't
respond with hundreds of rows of data for them to scroll through. Think of ways
you can help the user narrow down their request before presenting them with a
more concise list.
For example, if you enter a wine shop and ask for a bottle of wine, the merchant
won't name every bottle that she has. She'll ask you about your preferences (e.g.
red vs. white, regions, and various qualities of the wine) before listing some
specific options. Your skill can operate in the same manner.

• Find ways to collect information for the conversation without querying the user
about every detail. For example, you may have a way to determine a user's
location without asking. Another example might be asking the user to submit an
image (such as a receipt) that provides the required information.

Consider Multi-Language Support
Have you ever wondered why installation instructions for products that are imported
from abroad are sometimes translated so poorly? One likely reason is that a
translation service was used and the translator was not familiar with the subject or
product. Another reason is that certain idioms do not exist or are expressed differently
in the language to be translated. Just to give you some examples for what would work
in the United States but probably not elsewhere:

"under the weather"
"hang in there"
"we’ll cross that bridge when we get to it"
"go Dutch"
"call it a day"

To ensure that conversations that are defined for your digital assistant also work when
translated, you have a couple of options: annotate any idioms in a resource bundle for
the translator to know the meaning of a message, or don’t use idoms at all. Naturally,
machine translation services will not serve you well when translating your bot
responses to a foreign language.

Chapter 11
Don't Design Like It's a Web App

11-8

Checklist for Conversational Design
☑ Make sure that your conversation design guides users in using the chatbot, regardless
of their current experience.
☑ If you can, check with people from the target user group to see if the persona is
working or not.
☑ Review your bot messages for technical terms that don’t make much sense to users.

Learn More
• Oracle Digital Assistant Design Camp video: The Proven Workflow For Designing Human

Centric Conversations

Chapter 11
Checklist for Conversational Design

11-9

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+The+proven+workflow+for+designing+human-centric+conversations/1_dueg8umy
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+The+proven+workflow+for+designing+human-centric+conversations/1_dueg8umy

12
Channel-Specific Considerations

Here are some channel-related things you should think about and plan for when designing
your digital assistant.

The term "channel" encompasses the messaging platform and the messenger client a bot
uses to interact with users. Channel considerations should be made during the planning
phase of a digital assistant project and when implementing the digital assistant.

Oracle Digital Assistant has native support for a number of channels including Facebook, MS
Teams, Slack, Web, iOS, Android, and SMS. For natively-supported channels, Digital
Assistant handles the message transformation of incoming message payloads into the format
used in the digital assistant and vice versa. As a developer, all you have to do is create a
channel configuration in Digital Assistant and provide the required channel-specific
information.

Channels that don’t have native support in Digital Assistant can be connected to a digital
assistant via a webhook. This is a generic configuration that you use with custom code that
you need to write to convert and queue messages.

Consider Channel Limitations When Designing Your Chatbot
Although all channels generally do the same thing, each has channel-specific features and
limitations. Typical limitations include the number of actionable items that can appear in a list
of values or on cards in a carousel, or the layout of cards. For example, Slack only supports
for vertical card layouts.

12-1

Other differences are in the support of message formatting and highlighting. The web
channel, for example, allows you to use HTML markup and stylesheet to format
messages while others don't.

Note:

Depending on the channels that you are targeting and the extent of the
formatting that you need, it may be possible for you to use HTML markup in
your messages. If you use that approach, the markup will be automatically
converted to the channel-specific format when the message is transmitted to
each channel. See Rich Text Formatting in Channels.

As a strategy you can choose between:

• Designing your bot for a single channel.

• Designing your bot for the highest common denominator.

• Designing your bot for all channels and optimizing it for a few.

Design Your Bot for a Single Channel
The least sustainable solution is to design your digital assistant for only one channel
and ignore the others, even those that may be options in the future. In addition to
being the least sustainable, this solution is also the least recommended since you are
designing a single-use product.

There might be use cases for such an approach, like a proof of concept that you need
to create quickly. But for any bots that you want to release into production you should
consider one of the other two approaches.

Design your Bot for the Highest Common Denominator
If you know the channels you need to support with your bot and agree on an
implementation that each of the channels can support, you can create a digital
assistant that works the same on multiple channels with little development effort and
therefore without much delay. The downside of this is that, for some channels, it will
feel like driving a sports car but only using the first of six gears.

This option makes sense if the goals you have outlined for your chatbot don’t require
an optimized channel experience.

Design Your Bot for All Channels and Optimize for a Few
Another term we use for this option is “adaptive design” or “adaptive bot response
design”. Much like the same paradigm in web application development, you build your
chatbot to work for all channels and then apply changes for some that optimize the
user experience. Adaptive bot response design will take longer for you to implement
but ensures the best user experience possible, plus the ability to leverage channel
specific features like adaptive cards on the MS Teams channel.

To implement this design strategies, you have the following tools available:

Chapter 12
Consider Channel Limitations When Designing Your Chatbot

12-2

• Resource bundles that use the ICU message format to display channel specific
messages.

• The Switch component to branch to channel specific conversation flows.

• The visible property on the Common Response component to show or hide response
items based on the channel type that is used.

• The ${system.channelType} expression in dialog flows on entities and for built-in dialogs
to display channel specific messages. If you use custom components to render bot
responses, then the channel type is also available as a function on the context object.

• The Common Response component and custom components, which support channel
custom properties, which you can use to send channel specific properties, like adaptive
card payloads for the MS Teams channel.

• Optimization built into Oracle Digital Assistant that automatically uses the best
replacement for functionality that is not available on a platform. For example, the
horizontal card layout in Slack is automatically changed to vertical cards.

Implementing Channel-Specific Bot Responses
One implementation that we observe frequently but which we don’t recommend is to write
text messages directly into the UI components instead of using resource bundle references.

A second pattern we see is developers adding HTML markup to messages that they either
add directly to the text message property in UI components or that they store in resource
bundles. Using HTML markup limits channel support for a bot to those channels that support
markup.

You can use markup, but we suggest that you use it in a way that does not lock you in. Here
is an example that uses the ICU message format for resource bundles in Oracle Digital
Assistant to avoid a channel lock-in:

{channelType, select,
 web {This message uses HTML markup to display in bold}
 slack {*This message uses markdown to display in bold*}
 other {This message is for all other channels}
}

To reference the message in the resource bundle, you would use the following expression in
your dialog flow, entity, or skill configuration:

${rb('the_key_name','channelType',system.channelType)}

Checklist for Channel Considerations
☑ Design for all, optimize for a few.
☑ Consider adaptive design when supporting multiple channels.
☑ Use resource bundle strings for all your bot messages.
☑ Leverage the ICU message format to build resource bundles that adapt to the message
to a channel.

Chapter 12
Implementing Channel-Specific Bot Responses

12-3

Learn More
• Oracle Digital Assistant Design Camp video: Designing Chatbots for the Web

• Oracle Digital Assistant Design Camp video: Building Webhooks for Custom
Messengers

• Oracle Digital Assistant documentation: Channels

• Tutorial: Secure your Oracle Web SDK chat

Chapter 12
Learn More

12-4

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Designing+chatbots+for+the+Web+using+the+Oracle+Web+messenger+%28Web+SDK%29/1_4rduv0d8
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Building+Webhooks+for+custom+messengers/1_zcvlwzmp
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Building+Webhooks+for+custom+messengers/1_zcvlwzmp
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-web-jwt/

13
Implement Conversation Flows

Here are some best practices for implementing conversations flows in digital assistants.

With a well-designed model, you are ready to start building the conversation flows for your
regular intents. Conversations are defined by a series of dialog flow steps in Oracle Digital
Assistant skills.

Use Visual Mode
When you create a skill, you have the option to set it to use Visual or the legacy YAML
design mode. You should always use Visual mode, which is also the default option. Visual
mode offer the follows a host of advantages over the legacy YAML mode, including the
following:

• A visual design experience, with flow states represented visually on a canvas, component
property editors, and design-time validation.

• The ability to break the overall dialog flow into multiple flows.

• The ability to create reusable flows that can be called from other flows to handle things
that are used by multiple flows.

• Much easier readability and maintainability.

Dialog-Driven Conversations
Dialog-driven conversations collect the user information needed to complete a task by
navigating a user through a series of dialog flow states. Each state is linked to a component

13-1

to render bot responses and user prompts, or to handle conditions, logic, and other
functionality.

With this approach, you develop the dialog flow like a film script that you derive from
the use cases that you designed in the planning phase of your project. Because the
individual steps in a conversation are controlled by the dialog flow, your dialog flow can
quickly become quite large. To avoid dialog flows that are unmanageable in size, you
should partition your use cases into different skills.

Use a Naming Convention for Dialog Flow State Names
Consider the names of dialog flow states as part of your documentation. If the name of
the dialog flow state provides a context, code reviewers find it easier to understand
what a dialog flow state does, and which conversation flow it belongs to. For example:

promptForOrderNumber
findOrder
cancelOrder

Also, if your skill is in YAML mode, consider keeping related dialog flow states closely
together within the BotML so it is easier to follow the course of actions in a
conversation when reviewing your code.

Best Practices for Using Variables
Variables contain the information that a skill collects from a user. Whenever possible,
use variables of an entity type for the information you want to collect. Do this for the
following reasons:

• User input is validated, and users are re-prompted after an invalid data input.

• Digital assistants handle non sequitur navigation, which means that users can start
a new conversation while in an existing conversation without you needing to code
for it.

• For built-in entities wrapped in a composite bag entity and for custom entities, you
can define prompts, a validation error message, and a disambiguation prompt (that
is automatically shown by the Common Response and Resolve Entities
components).

• A variable of an entity type can be slotted from initial user messages if you
associate the entity with the intent. For skills developed in Visual dialog mode, this
slotting happens automatically with the Common Response and Resolve Entities
components. For skills developed in YAML dialog mode, use the
nlpResultVariable property on the input components to get this functionality.

Using Keywords on Action Items
Common Response components and custom components allow you to define
keywords for your action items. With a keyword, users can invoke an action by
sending a shortcut like a number or an abbreviation. This means that they don't have
to press an action item, which they couldn't anyway using a text-only channel or voice,
or type the full text of the displayed action item label.

Consider the following when defining keywords using Common Response or custom
components, including entity event handlers.

Chapter 13
Dialog-Driven Conversations

13-2

• Keywords don’t have to have the same text shown in the label.

• Keywords are case-insensitive. You do not have to define a keyword in all possible case-
sensitive variants.

• If you plan to build bots for multiple languages, then your keywords cannot be defined in
English only. To support multilingual keywords, you can reference a resource bundle
string from the keyword property of Common Response components ($
{rb('resource_key_name')}). The resource bundle string then contains a comma-
separated list of keywords.

• Provide visual clues indicating that keywords can be used, such as by adding an index
number in front of the label.

For example, an action menu to submit or cancel an order could be defined with the
following labels: "1. Send", "2. Cancel". And the keywords could be defined as "1,1.,send"
and "2,2.,cancel". So, to cancel an order, the user could type "cancel", "2", or "2.".

Note:

Note that in this case “send” and "cancel" also need to be defined as keywords
because the labels are “1. Send” and “2. Cancel”, not just “Send” an "Cancel".

• Keywords don't work if used in a sentence. If, for example, a user writes "I’d prefer to
cancel my order", "cancel" is not detected as a keyword. If you expect your users to use
conversation instead of keywords to select from an option, then consider NLU-based
action menus as explained in the next section.

If you’re wondering how to create index-based keywords for dynamically-created action
items, here are the choices:

• Enable auto-numbering in your skills through the skill's Enable Auto Numbering on
Postback Actions in Task Flows configuration setting. This configures the components
to add the keyword to the list of keywords and the index to the label.

• Use Apache FreeMarker expressions to add the index number and/or to reference a
resource bundle string that contains the action item value in its name.

Consider NLU-Based Action Menus
Action menus usually use action items a user can press to perform navigation to a specific
conversation or to submit, confirm, or cancel an operation. When an action item is pressed, a
message is sent to the skill with an optional payload for updating variables and an action
string to determine the dialog flow state to transition to.

If a user types a message that does not match the action item label, or a keyword defined for
an action item, then the next transition is followed. For example, imagine a pair of action
items that use Send expense report and Cancel expense report as labels. If a user types
or says "Yes, please send", the next transition is triggered instead of the action item marked
with Send expense report. The reason this would happen is because an implementation that
requires users to press a button or action item is not conversational!

To create robust and truly conversational action menus, you need to create them based on
value-list entities, where the list values indicate the action to follow and the synonyms define
possible keywords a user would use in a message to invoke an action.

Chapter 13
Dialog-Driven Conversations

13-3

To do this, you first create a value list entity, for which you then define a variable in the
dialog flow. You can then use a Common Response or Resolve Entities component to
display the list of options. The variable you create must be configured as the value of
the variable property of the component. In this way, the next transition is triggered
when the user types "Yes, please send" and navigates to a dialog flow state that
checks the value stored in the variable.

The value stored in the variable is one of the values defined in the value-list entity.
Using a Switch component, you can define the next dialog flow state the conversation
continues with.

If the user enters a message that is not in the value-list entity or as one of its
synonyms, the action menu is invoked again. Since you used a value-list enitity, you
can use the error message defined for the entity to help users understand what is
expected of them. Also, because you can configure multiple prompts for the value-list
entity, you can display alternative prompts and even messages that gradually reveal
additional information, including information about how to cancel the action menu from
displaying.

If you create resource bundle string names for the values in the value-list entity, then
you can make sure the labels displayed on the action items can be translated using
one of the following expressions:

• ${rb(enumValue)}
• ${rb(enumValue.value.primaryLanguageValue)} (if the fullEntityMatches

property is set to true for the Common Response component)

To dynamically set the values on an action item, Common Response components are
easier to work with. If you are comfortable programming entity event handlers, the use
of the Resolve Entities is also possible.

With NLU-based action menus, users can press an action item or type a message that
doesn’t have to be the exact match of an action label or keyword.

Interrupting a Current Conversation for a New Conversation
A frequently asked question is how to configure a conversation so that users can start
a new or different conversation when prompted for input. However, this question is
more a design decision that you need to make than about technical know-how. Here
are the design considerations:

• Is your skill exposed through a digital assistant? If so, the skill participates in
the non sequitur routing of the digital assistant, which routes messages to another
skill or another intent in the same skill if the user message could not be
successfully validated for the current dialog flow state. To make this non sequitur
navigation happen, make sure user input gets validated against an entity-based
variable.

• Is your skill exposed as a stand-alone skill? If so, then there is no built-in non
sequitur navigation, and you need to design for it. To do this you use an entity-
based variable for the dialog flow state that you want to allow users to branch into
a new conversation. You then set the maxPrompts property of the user input
component to 1 and configure the cancel action transition to start a new
conversation. It would be a mistake to directly point the cancel transition to the
intent state as it most likely would cause an endless loop. So, before navigating
back into the intent state, make sure you use a dialog flow state configured with

Chapter 13
Dialog-Driven Conversations

13-4

the Reset Variables component to reset the nlpresult type variable and other variables
needed for the conversation.

Note:

While creating standalone skills that you expose directly on a channel is an option,
we don't recommend it. The main reason is that you miss out on all the
conversational and development benefits you get from using a digital assistant.
Some of the benefits you would miss out on are:

• Non sequitur navigation, which is the ability of digital assistant to suspend a
current conversation to temporarily change the topic to another conversation.

• Modular development that allows you to partition your development effort into
multiple skills, allowing incremental development and improvements to your bot.

• Automatic handling of help requests.

• Reuse of commonly needed skills like frequently asked questions, small talk,
and agent integration.

Model-Driven Conversations
Model-driven conversations are an extension of dialog-driven conversations. With model-
driven conversations, you reduce the amount of dialog flow code you write, providing a
mature and domain object focused navigation of bot-user interactions.

The idea behind what we refer to as model-driven conversation is to handle the conversation
by resolving composite bag entities using Resolve Entities or Common Response
components. Composite bag entities are similar to domain objects in that they group a set of
entities to form a real-world object that represents an order, booking, customer, or the like.

Each entity in the composite bag is automatically resolved by a Resolve Entities or Common
Response component, which means that all bot responses and prompts are generated for
you without the need to create dialog flow states for each of them. With model-driven
conversations, you write less dialog flow code and get more functionality.

Recommended Approach
Best practices for creating model-driven conversation are to use composite bag entities,
entity event handlers, and the Resolve Entities component.

There is nothing wrong with using the Common Response component instead of
ResolveEntities, but, thanks to entity event handlers, Resolve Entities is sufficient for most
implementations.

• Composite bag entities are domain objects that have bag items for each piece of
information to collect from a user. Each bag item has prompts, error messages and a
disambiguation prompt defined that is displayed if needed. For composite bag items that
are based on value list entities, you can also display multi-select lists. A benefit of
composite bag entities is their ability to collect user input for many of its bag items from a
single user message. This functionality is called out-of-order extraction and is enabled by
default.

Chapter 13
Model-Driven Conversations

13-5

• The Resolve Entities component resolves entities by displaying prompts defined
in the entity, validating user input, displaying validation error messages defined in
the entity, and showing a disambiguation dialog when users provide more
information than expected in a message. For composite bag entities, the Resolve
Entities component renders user interfaces for all bag items in the composite bag
entity in the order in which they are defined.

• An Entity Event Handler is a JavaScript component that is registered with a
composite bag entity and contains functions that are called by the Resolve Entities
component when resolving the composite bag entity. This event-driven approach
allows you to run custom code logic and even invoke remote REST services while
a user is working in a composite bag entity. We will cover entity event handlers in
more depth later in this guide.

How to Design Model-Driven Conversations
The best design for model-driven conversations is to minimize the number of bag
items required by a composite bag entity. Imagine composite bag entities as individual
conversational modules you chain up to a conversation.

Check with the user after each composite bag entity you resolve to give her the
opportunity to continue or discontinue the conversation.

Of course, this shouldn't be implemented with a prompt like "should I continue"
followed by a pair of "yes" and "no" buttons. Let your conversation designer create a
less intrusive transition that ties two conversation modules together.

Resource Bundles for Messages and Prompts
As with all messages and prompts we strongly recommend the use of resource bundle
strings for prompts and messages defined in composite entity bag items. Here are
some examples for composite bag entities:

• cbe.<entity_name>.bag_item_name.errorMessage
• cbe.<entity_name>.bag_item_name.disambiguationMessage
• cbe.<entity_name>.bag_item_name.prompt1
• cbe.<entity_name>.bag_item_name.prompt2

Apache FreeMarker Best Practices
Apache FreeMarker is a powerful expression language that you can use in your dialog
flows as well as in entity and skill configurations. However, Apache FreeMarker
expressions become problematic when they get too complex, making them error-prone
and difficult to use due to the lack of debugging options.

Our recommendation is to avoid complex multi-line Apache FreeMarker expressions
and instead consider one of the following options:

• Break up complex FreeMarker expressions by saving values in variables with
short names before using them in the expression.

• Use <#/if …> directives to improve readability for your FreeMarker expressions.

• Use entity event handlers with composite bag entities to deal with complex
validation code or when computing values to be assigned to a variable.

Chapter 13
Model-Driven Conversations

13-6

• Check for null values for variables you reference using the ?has_content built-in
expression. Provide a sensible default value if the expression resolves to false, e.g. ?
has_content?then(…,<SENSIBLE_DEFAULT_VALUE>).

Checklist for Implementing Conversations
☑ Choose sensible and descriptive names for your flows and flow states.
☑ Use entity-type variables.
☑ User input prompts for entity type variables should read the prompt from the entity.
☑ Build model-driven conversations.
☑ Build action menus from value-list entities.
☑ Avoid complex Apache FreeMarker expressions.
☑ Use resource bundles. No text message or prompt should be added directly to the
dialog flow.
☑ Create reusable flows for parts of the conversation that are common to different flows.

Learn More
• Oracle Digital Assistant Design Camp video: The Art of Navigation in Oracle Digital

Assistant

• Oracle TechExchange sample: Model driven conversation – Pasta ordering skill

• Oracle TechExchange sample: Model driven conversation - Expense reporting skill

• Tutorial: Developing dialog flows

• Tutorial: Building composite bag entities

• Tutorial: Optimize Insights Reports with Conversation Markers

Chapter 13
Checklist for Implementing Conversations

13-7

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Art+of+Navigation+in+Digital+Assistants+and+Skills/1_l2bpm372
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Art+of+Navigation+in+Digital+Assistants+and+Skills/1_l2bpm372
https://blogs.oracle.com/mobile/techexchange%3A-model-driven-conversations-in-oracle-digital-assistant-%E2%80%93-building-better-user-interfaces-by-using-entities-for-everything
https://blogs.oracle.com/mobile/techexchange%3A-learning-entity-event-handler-programming-by-example-of-building-an-expense-report-skill
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-web-jwt/
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-entities/index.html
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-conversation-markers/

14
Custom Code and Backend Integration

Here some best practices for writing custom code and doing backend integration for digital
assistants.

At the end of a conversation, you need to do something with the information collected from a
user. That "something" usually requires access to a backend service for querying data or
persistent data for which you need to create custom components. Another use for custom
components is to incorporate custom logic that handles complex validations or other utility
functions. Oracle Digital Assistant supports two types of custom components:

• Custom dialog flow components (CCS)

• Entity event handlers (EEH)

During the planning and design phase of your digital assistant, you need to identify the
backend resources you will need and decide whether the APIs you have available for it are
sufficient or not.

• Because digital assistants are not web applications, existing APIs may need to be
optimized or abstracted through an optimization layer to return only the data and the
amount of data required in a digital assistant conversation.

• If you don't have REST services for the backend functionality to integrate into a digital
assistant conversation, then you need to design and trigger a project to build them.

When implementing your backend service integration, you make decisions about whether to
deploy custom components remotely or to use the embedded component containers in
Oracle Digital Assistant skills.

As the figure below indicates, backend integration is a necessary part of the planning and the
implementation phase.

14-1

Custom Dialog Flow Components
With custom dialog flow components, you can write your own user interface
components that you can add to your dialog flow to execute custom code logic in the
context of a conversation. Use cases for writing those components include:

• Querying and writing of remote backend services via REST services.

• Out-of-the-box solutions that handle all user interactions for a specific task like
requesting user feedback at the end of a conversation, logging and reporting
errors to an administrator, etc.

• Support managing data in object arrays saved to a dialog flow variable.

Use Good Names for Components and Input Parameters
There isn’t a field for providing descriptions for custom components that explain what
they do and what information must be passed to them. So the best ways to help skill
developers with use of your component are to use good names for the component and
input parameters and to carefully choose the action strings that your component
returns.

• Built-in YAML components use System.<name> as their name. So, especially for
YAML-based dialog flows, you may want to use Custom.<name> for skill reviewers
to understand it’s a custom component that the dialog flow references. Or, you can
use a name space to provide context. For our sample custom components we
often use oracle.sample.<name> to indicate that those components are not meant
to be production quality.

• Input parameters provide data to the custom component to process. Often the
data passed to a custom component is not the actual value to work with, but rather
the name of a variable that either holds the data values to process or to which data
queried from a remote service should be written to. Looking at the built-in
components, they use variable as the property name to hold the name of the

Chapter 14
Custom Dialog Flow Components

14-2

variable that the component result will be written to, or <name>Var (e.g. nlpResultVar) to
indicate properties that refer to a variable reference name. You can further improve this
by using the _in and _out postfixes to indicate whether a variable refers to a variable that
contains data or is expecting data from the component.

• Action strings are optional and can be used by the skill developer to determine the next
dialog flow state to navigate to. Using success or failure as an action string does not
provide much context, so we suggest using something like orderSubmitted,
orderRejected, or userUnauthorized instead.

Avoid Making Assumptions in Your Code
The reality is that often the developer of a custom component is also the skill developer who
uses it. For this reason, many developers simplify their work with custom components by
making assumptions about variables that are present in the skill. So instead of passing the
name of a variable to the component, they refer directly to the name in the custom
component logic. We do not recommend this because such assumptions can easily break a
custom component. We recommend defining a clear and complete contract between the
custom component and the skills using it.

Think Library
A common question is about how many custom components should be added to a custom
component service package. In general it is always a good idea to think of custom
component services, and the components it contains, as libraries. So, all components that
relate to a task could be saved in a single custom component service. However,
recommendations need to be able to face reality. Therefore, the question about how to
package custom components needs to be answered based on the intended use of the
custom components.

• Reuse is not an option for many custom component developers. When custom
components are developed for and used in a specific skill, it makes sense to group all
those components into a single custom component service deployment. The exception to
this is for components that are actually reused in other skills.

• Embedded component container deployments are restricted by the number of custom
component services per Oracle Digital Assistant instance. Therefore, you’ll want to use a
single custom component service per skill or look for a remote deployment of your
custom components.

• Use remote custom component service deployment to Kubernetes in Oracle Cloud
Infrastructure, for the following reasons:

– To not disclose sensitive information contained in your custom component code.
Custom component services deployed to the embedded container can be
downloaded by anyone who has full access to your Oracle Digital Assistant instance.

– To implement better segmentation of your code. Custom components should only
contain code that is necessary to interact with the bot and to invoke REST services.
All other code should be stored in external JavaScript files (if using an embedded
container) or in integration layers (REST services). Custom components include code
that does the following things:

* read input parameters

* read/set variable values

* handle messages received by a component

Chapter 14
Custom Dialog Flow Components

14-3

* render the custom component user interface

* determine transition to a next state

* manage component state

* access REST services

– To improve performance. The embedded container for deploying custom
components to skills uses OCI functions, which have a cold start delay. To
avoid this delay, as well as the limit in the number of services that can be
deployed, a remote deployment of custom component provides you with a
worry-free alternative.

– To share common components. Though our experience is that reuse isn’t
highly ranked among custom component developers, it makes sense to create
and deploy commonly used custom components to a remote server. You might
have common components for things like error handling and escalation, 2-
legged OAuth2 authorization handling, and more.

How to Write Log Messages
The default logger implemented for custom components is the console logger. You
access the logger through a call to context.logger(). You can the call logging
functions available for the console logger like ".info('…') or ".warn('…')".

Note: Using context.logger() makes the most sense when deploying to the
embedded container, as the embedded container knows how to properly display these
logs. For custom components that you deploy externally, it is best to use a different
logging library, like log4js.

Manage Your Component's Internal State
Custom dialog flow components may have a longer interaction with a user before
navigation transitions to a next dialog flow state. For this interaction you need to make
sure the component handles its internal state so it can distinguish between an initial
call and subsequent calls. There are two options for doing so:

• Add a token to the postback message payload. When the custom component
renders a user interface where users can press an action item, a postback
message is sent back to the custom component. The custom component must
evaluate the postback messages it receives to determine whether that postback is
from the user interface it is rendering or from another component. For this it can
check the postback message as to whether it contains a token that the custom
component added when rendering the action item.

• Use a context variable. If you need to manage a more complex state between
custom component invocations, e.g. to keep track of values extracted from user
messages, you can use a dialog flow variable for this. Custom components can
create dialog flow variables at runtime in a call to context.variable('variable
name', value). If a variable of the specified name does not exist, then it will be
created. The "value" object can be anything you need to keep track of.

Chapter 14
Custom Dialog Flow Components

14-4

Validate Input Parameters
Input parameters that you define for a custom component need to be validated to have
content. This is also true for parameters that you set as required. The following cases need to
be checked:

• The input parameter has a value set.

• The value does not start with '$ {', as this indicates an expression for reading the input
parameter value from a variable or that an object is not correctly resolved in the dialog
flow.

Use the MessageFactory Class for Component Messages
All bot responses you send from a custom component should use the MessageFactory class.
The MessageFactory class can be used to create the same type of rich user messages as the
Common Response component, which includes list of values, attachments, card layouts and
text messages.

In addition, messages that are defined with the MessageFactory class are channel
independent. This means that you create a single component message, which is then
converted by the channel-specific connectors into the format required by the respective client
channel.

To access the MessageFactory class from a custom component, you use the following
reference:

let MessageFactory = context.MessageFactory();

Note:

The MessageFactory class supercedes the MessageModel class, which has been
deprecated. Both classes have the same general purpose, but MessageFactory has
the following advantages:

• It supports all Common Message Model (CMM) message types and properties,
instead of just a subset.

• Its implementation is class based, providing clean getter, setter, and add
methods to change the message definition. Code completion is when using
Typescript as well as in JavaScript when the proper type definitions are
included at the top of the event handler or custom component.

• The implementation uses the builder pattern, which allows you to chain a
number of setter or add methods, making the code more readable and reducing
the number of lines you have to code

Checklist for Custom Components
☑ Ensure backend services are optimized or abstracted for use with skills.

Chapter 14
Custom Dialog Flow Components

14-5

☑ Custom components should only contain bot-related code. All other code should
be moved into utility classes or libraries, or be deployed as individual REST
services to a remote server or cloud service.
☑ Create a clear and complete contract between custom components and the
skills they are used in.
☑ Use custom components for complex evaluations. Avoid Apache FreeMarker in
those cases.
☑ Manage component state for multi-request user interactions.
☑ Validate all custom component input parameters.
☑ Handle errors by returning an action string for the skill developer to handle
problems.

Learn More
• Tutorial: Custom component development for backend integration

• Tutorial: Custom component debugging

• Embedded Container Limits for Custom Component Services

• Bots Node SDK Documentation: MessageFactory sample code for various UI
responses

Entity Event Handlers
An entity event handler is a type of custom component that allows you to invoke
custom component code in the context of resolving composite bag entities. Entity
event handlers are used in model-driven conversations to interact with and validate
user input and to invoke remote backend services for read and write access. Unlike
custom dialog flow components, the chance of reuse is minimal for an event handler,
which is why the default implementation of entity event handler is to the embedded
skill container.

Add Missing Functionality to Resolve Entities Components
A lot of the functionality that can be set for the Common Response component, like
global buttons for help and cancel, is not available to the Resolve Entities component
through configuration.

However, you can add missing functionality using entity event handlers. This enables
you to take advantage of the simplicity of the Resolve Entities component in the dialog
flow without sacrificing advanced functionality.

Manage State
Entity event handler functions are invoked by the Resolve Entities and Common
Response components when resolving a composite bag entity. There is no need for
you to track which bag item needs to be resolved next as it is all done for you.

Still, you may want to save some information for later use. For this you have two
options:

• Context resolution properties are variables you create on the context object.
The variables and their values exist until the composite bag entity is resolved or
you leave the dialog flow state that resolves a composite bag entity. The benefit of

Chapter 14
Entity Event Handlers

14-6

https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-cc-dev/index.html
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-cc-debug/index.html
https://github.com/oracle/bots-node-sdk/blob/master/MESSAGE_FACTORY.md
https://github.com/oracle/bots-node-sdk/blob/master/MESSAGE_FACTORY.md

using the context resolution properties is that there is no housekeeping you need to do.

For write, use: context.setCustomProperty(name, value);
For read, use: context.getCustomProperty(name);

• Dialog flow variables created at runtime or at design time can be used to store values
you want to persist beyond the resolving of the composite bag entity. Content stored in
dialog flow variables can be accessed from dialog flow states (for variables defined at
design time only) and from other entity event handlers.

For write, use: context.variable(name,value);
For read, use: context.variable(name);

How to Write Log Messages
The default logger implemented for entity event handlers is the console logger.

You access the logger through a call to context.logger().

You can the call logging functions available for the console logger like .info('…')
or .warn('…').

Displaying User Messages
Custom user messages are displayed through the context.addMessage() function. As with
custom dialog flow components, our recommendation is to use the MessageFactory class for
creating channel-agnostic messages instead of outputting channel-specific payloads. Entity
event handlers also support messages of type value-list, card layout, and attachment.

Checklist for Entity Event Handlers
☑ Store temporary values in the resolution context unless needed in a later dialog flow
state.
☑ Use a single custom component service for all entity event handlers used in a skill.
☑ Use the MessageFactory class for messages to display to users.

Learn More
• Oracle Digital Assistant Design Camp video: Understanding Entity Event Handlers

• Tutorial: Developing Entity Event Handler in browser

• Tutorial: Developing Entity Event Handler in external IDE

• Example: Model driven conversations using EEH by example of an expense report

• Bots Node SDK Documentation: MessageFactory sample code for various UI responses

• Documentation: Entity event handler functions (exposed on the context object)

Which Component Should You Use?
Entity event handlers are for use with composite bag entities, while custom dialog flow
components are used in the context of conversations transitioning between dialog flow states.
Ultimately, you'll probably be using both. If you are following the recommendation to use

Chapter 14
Which Component Should You Use?

14-7

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Understanding+Entity+Event+Handlers/1_bavbs6ya
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-entity-event-browser/index.html
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-entity-event-handler
https://blogs.oracle.com/mobile/techexchange%3A-learning-entity-event-handler-programming-by-example-of-building-an-expense-report-skill
https://github.com/oracle/bots-node-sdk/blob/master/MESSAGE_FACTORY.md
https://oracle.github.io/bots-node-sdk/EntityResolutionContext.html

model-driven conversations, you will be more likely to use entity event handlers than
custom dialog flow components.

From a functional point of view, custom dialog flow components (CCS) and Entity
Event Handlers (EEH) are very similar. The table below compares the two custom
component types.

Functionality CCS EEH

Node.js module support /
JavaScript development

Yes Yes

TypeScript support Yes Yes

Browser-based development No Yes

Development in external IDE Yes Yes

Use in dialog flows Yes No

Use in composite bag entities No Yes

Input parameters Yes No

Programmatic navigation to
action transitions

Yes No

Call REST services Yes Yes

Read from / write to dialog
flow variables

Yes Yes

Store values temporarily in
resolution context

No Yes

Use resource bundles / multi-
language support

Yes Yes

Render rich user interfaces
and prompts to interact with
users

Yes Yes

Skill container deployment
support

Yes Yes

Remote deployment support Yes Yes

Local debugging support
(requires NGROK or other
tunnels)

Yes Yes

Custom events No Yes

Post back action support Yes Yes

Using Resource Bundles for CCS and EEH
Custom dialog flow components and entity event handlers that display bot messages
to the user must display messages in the languages supported by the digital assistant.

Until recently, there was no easy way to use resource bundles that were defined in a
skill from custom components. But now there’s a new programming interface that
allows you to refer resource bundle keys in your code. There are two known
restrictions you should be aware of:

• Use of resource bundle strings is limited to resource bundles without parameters
or with positional parameters. Named parameters as used with ICU message
bundles are not yet supported by the new API.

Chapter 14
Using Resource Bundles for CCS and EEH

14-8

• The API produces an expression that, when returned as a bot response gets replaced
with the referenced message bundle string for the detected language.

To call the new API, you use one of the following context object calls:

• let expression = context.translate('resource_bundle_key_name');

• let expression = context.translate('resource_bundle_key_name', param1,
param2);

The expression can be used in text responses, as button labels, and on cards using the
MessageFactory class.

• Entity event handler sample:

const messageModel = context.getMessageFactory();
//create a conversation message format text object that references a key
name
const message =
messageModel.createTextMessage(context.translate('resource_bundle_key'));
//display the message to the user keeping the turn, which means the
composite bag entity
//proceeds with the next bag item to resolve
context.addMessage(message,true);

• Custom dialog flow example:

const messageModel = context.getMessageFactory();
//create a conversation message format text object that references a key
name
const message =
messageModel.createTextMessage(context.translate('resource_bundle_key'));
//display the message to the user keeping the turn, which means the
composite bag entity
//proceeds with the next bag item to resolve
context.reply(message); context.keepTurn(true);
context.transition(); done();

Also see the TechExchange article Use input parameters to pass translated resource bundle
strings to custom components.

How to Use Named Parameters
Here's how you can access named parameters in a resource bundle:

//Entity event handler sample
let expression = "$
{rb('key_name','param_name1,param_name2',"+value1+","+value2+")}";
let message = messageFactory.createTextMessage(expression);
context.addMessage(message,true);

//Custom dialog flow component sample
let expression = "$

Chapter 14
Using Resource Bundles for CCS and EEH

14-9

https://blogs.oracle.com/mobile/techexchange-quick-tip%3A-how-to-use-resource-bundles-defined-in-a-skill-within-custom-components-without-tying-the-component-to-a-specific-skill
https://blogs.oracle.com/mobile/techexchange-quick-tip%3A-how-to-use-resource-bundles-defined-in-a-skill-within-custom-components-without-tying-the-component-to-a-specific-skill

{rb('key_name','param_name1,param_name2',"+value1+","+value2+")}";
let message = messageFactory.createTextMessage(expression);
context.reply(message);

Our Recommendation Regarding Resource Bundles and Custom
Components

Using resource bundles everywhere is a common theme throughout this guide.
However, the use of resource bundles stored in a skill creates a tight coupling between
the custom dialog flow component or event handler and the skill. If you're okay with
this dependency and value the benefit of having resource strings managed in a single
place more than avoiding the problem of tight coupling, you should do it. For event
handlers, the chance of reuse is minimal anyway, which is why there should be no
doubt about the use of resource bundle strings in entity event handlers at all.

For custom dialog flow components that are reused in different skills, the translation
function will also work if the skills have the resource bundle key names required by the
custom component added to their resource bundle.

Using an alternative solution, you can avoid tight coupling of custom components to a
skill by passing the messages read from a resource bundle as input parameters to a
custom dialog flow component.

Should You Migrate to Entity Event Handlers?
If you move from custom dialog flow components to entity event handlers, it should be
for a specific reason, not just because it is a new technology. Changing likes by likes
does not improve your skills. If you are unhappy with your current conversation flow
and are considering using composite bag entities to replace parts of your dialog flow
conversation, that’s one good reason to move the code logic from custom dialog flow
components to entity event handlers.

Best Practices When Migrating to Entity Event Handlers
If you decide to move existing functionality from custom dialog flow components to
entity event handlers to improve your conversation flow, make sure that you are not
just trying to mimic the behavior that you implemented with the custom dialog flow
component and the Common Response component. Instead, start using the Resolve
Entities component and use entity event handler functions to implement all of the
validation and logic required for your conversational use case.

Chapter 14
Should You Migrate to Entity Event Handlers?

14-10

15
Build Your Digital Assistant

Here are some high-level best practices for building digital assistants.

A digital assistant uses machine learning to route user messages to a configured skill that
best fits the content of the message. For this, all utterances defined in a skill are used to train
a classifier for that skill. So, before you can test skills in a digital assistant, make sure they
have a well-trained model for all their intents and that you tested the skill thoroughly.

About Training of unresolvedIntent in Your Skills
It is possible to create a user-defined "unresolvedIntent" intent for a skill and train it with user-
defined utterances. This option was widespread before digital assistants were introduced.
With digital assistants, this development option has lost its relevance and may no longer be
needed. However, in order for you to understand, let's explain what it is about and how and
why it worked.

The unresolved intent in a skill handles messages outside of the domain that a skill is
designed to process. For this you usually map a dialog flow state to the "unresolvedIntent"
action transition to inform the user that the skill could not handle the request.

For example, a skill that handles pizza orders and deliveries is not intended to deal with
financial transactions. So, when a user sends a message to check the balance for an
account, the unresolved intent will handle the request.

Now let's assume that a digital assistant has two skills defined: one skill to handle pizza
orders and deliveries, and another to handle financial use cases. If a user sends a message

15-1

that contains a request to check an account balance, the digital assistant does not
forward it to the pizza skill but to the finance skill. This means that the unresolved
intent in the pizza skill is no longer used to handle financial messages.

Let's further assume, for the same digital assistant, that a user requests information
about the current weather, which of course does not match either the pizza or the
financial skill. In this case, which skill's unresolved intent do you think will handle this
request? You got it right when you shouted out, "the unresolved intent of the digital
assistant".

By adding skills to a digital assistant and then training the digital assistant, the digital
assistant learns about the type of messages that each of the configured skills wants to
handle. If the digital assistant can’t tell which skill to route a message to, it displays the
response that it is configured with to handle unresolved intents.

What does this mean for adding and training a custom "unresolvedIntent" intent in your
skills? It means that a well-trained model does not require a custom "unresolvedIntent"
intent to be defined in each skill. And, as a reminder, having a well-trained models in
all of your skills is what the person wearing the "AI model designer" hat should be
striving for.

On the rare occasion that a skill in a digital assistant incorrectly responds to a
message that it should not handle, you can add a custom "unresolvedIntent" intent to
train the skill to no longer respond to it, so the digital assistant's unresolved intent
message gets displayed or an intent in one of the other skills handles the request.

We recommend creating custom unresolved intents in a skill only as a last resort (i.e. if
testing reveals a problem that you cannot resolve by retraining the affected intent
model).

Digital Assistant is the Home of your Persona
A digital assistant provides a unified chatbot experience to users and therefore
requires the personality that you have defined to be consistently present in all
conversations.

Resource Bundles
Like skills, digital assistants can be configured to support multiple languages. Digital
assistants require all skills that are configured for it to support the languages it
supports. This also includes the type of language support, which could be native NLU-
based or by using external translation services.

All prompts and messages displayed by the digital assistant when routing user
messages to skills should come from resource bundles. Having those messages in a
single place makes it easy to ensure consistency, to make edits, and to hand it to a
translator for translation.

Disambiguation and Interruption Dialogs
Although a digital assistant is made up of many different skills, it should not reveal
these technical details to users. Oracle Digital Assistant uses configurable dialogs that
are displayed to the user when a user message changes the conversational context to
a different skill or intent and when the context is reset to the original conversation.
Make sure to define the transition messages to be less robotic.

Chapter 15
Digital Assistant is the Home of your Persona

15-2

For example, the message that appears during non sequitur routing is defined in the digital
assistant settings as "Switching to ${system.routingToIntent} in $
{system.routingToSkill} now". For navigating to a "create expense" intent in an "expenses"
skill, the printed message would be, "Switching to create expense in expenses skill",
which is not how a human would say it.

If you change the message template to "Sure, let's ${system.routingToIntent} for
you", the user message can become "Sure, Let's create a new expense for you" (where
the "create a new expense" part of the message is the display name you defined for the
intent in the skill).

This however means that you need to ensure that the display names of all intents are set
such that messages printed on the digital assistant level always print semantically correctly.
Therefore, we recommend that you review all of the messages in the Configurations tab of
the digital assistant settings panel, and:

• Change the existing templates according to your needs.

• Move the customized templates to resource bundles. Add a positional placeholder where
the dynamic expression should be added to the message. E.g. " Sure, let's {0} for
you". The resource bundle reference would be created as ${rb('key_name', $
{system.routingToIntent})}.

• Review the display names you have defined for the intents in the skills and ensure they fit
in with the message templates you have defined in the digital assistant configurations.

• Review the skill invocation names, which are defined in the skill's Settings page, to
ensure the names also fit linguistically with their use in the message templates.

• Optionally, change settings like Interrupt Prompt Confidence Threshold to only show
the prompt when the confidence is low or to suppress it altogether.

• In the configuration settings, change the confidence threshold, which determines when a
skill is considered to be a candidate skill. We recommend setting this threshold to a lower
value than the default and then gradually increasing it over time. What you want to find is
the sweet spot that resolves all your skills with confidence with no bad routing.

Checklist for Building Your Digital Assistant
☑ Make sure skills added to a digital assistant have a well-trained and tested model for all
their intents.
☑ Review digital assistant configuration settings to adapt the message templates for built-
in messages to your needs and the persona of your bot.
☑ Review intent display names and skill invocation names to make sure their wording fits
with the digital assistant templates you defined.
☑ When testing the digital assistant conversations, make sure that the persona defined
for your bot is consistently present.

Learn More
• Personalize Your Digital Assistant

Chapter 15
Checklist for Building Your Digital Assistant

15-3

16
Digital Assistant Testing

Here is a set of best practices for testing your digital assistant before (and after) you deploy it
to production.

If you think you are done once you have gone through all of the planning, design, and
development steps, you are not! Although you have tested all of your skills in isolation, you
will need to retest them in the context of a digital assistant.

Note:

If your skills haven’t been thoroughly tested and optimized, there is no point in
seriously testing the digital assistant. Before investing in the creation of batch tests
for your digital assistant, make sure each skill is in the best shape it can be. A skill
that doesn't perform well when tested in isolation will not perform any better when
tested with other skills in a digital assistant.

Utterance Testing
In a nutshell, when you add a skill to a digital assistant and train the digital assistant, all
utterances that were used to train the intents in a skill are used by the digital assistant to train
a classifier for the skill.

If at runtime the routing engine in a digital assistant is confident that a particular skill
represents a match for an incoming user message, it flags the skill as a “candidate skill”. If no
other skill is resolved within a configured confidence range or better, it navigates to the
identified candidate skill and its matching intent and starts a conversation.

So, utterances matter when routing requests in a digital assistant, which requires you to test if
the utterances that successfully resolved to an intent in a skill, still resolve to it. Similarly to
how you test your skills in isolation, you will run positive tests, negative tests, and neighbour
tests on your skills.

The positive and negative tests use utterances you used to test the intents of a skill. If the
tests are positive, you should get results well above the confidence threshold, though not
necessarily the same confidence as when testing in isolation.

For neighbour testing, use test utterances from other skills in the digital assistant and
configure them to resolve into the skill you are testing for. Ideally, when you run the test, all
tests will fail because the utterances are not intended for the skill being tested.

Oracle Digital Assistant supports batch testing of utterances on the digital assistant level,
which you can use to implement the tests explained in this part of the document.

16-1

Conversation Testing
As soon as you are satisfied with the result of the utterance tests, you can start the
conversation test. For this, there is a conversation tester that also explains the
decision making that led to a specific skill routing.

Like for skills, the conversation tester can be used to record test conversations for later
replaying. By replaying conversations, you can ensure that changes to a skill still result
in the same conversation and that it does not behave differently.

User Testing of Digital Assistants
Before signing off on a digital assistant, have real users test it. Give them a minimum
of instructions and see how they do. You can use Insights for monitoring traffic,
identifying utterances that don't find a matching intent, identifying utterances that find a
wrong match, and to learning about the rate of successful vs. unsuccessful
conversations.

Here are some questions you can use to guide users to what you want them to pay
attention to:

• Is it clear to users that they are interacting with a digital assistant and not a
human?

• Does the digital assistant explain to users what it can do and what it can’t?

• Is it possible for experienced users to shorten the conversation by providing more
information in the initial message?

• Can users work with the digital assistant without needing to first learn a set of
keywords or how to start a conversation?

• Does the digital assistant handle errors by directing users to contact a human
agent when they get stuck?

• Does the digital assistant offer a help or cancel option in response to users failing
to provide a valid input when prompted?

• Does the digital assistant offer quick selections for common user input options
when prompted (e.g. a button to set today's or tomorrow's date when creating a
calendar entry)?

• Is the bot persona (tone and voice) used consistently throughout the digital
assistant conversations?

• Is the digital assistant truly conversational or does it have areas that are not
message driven but that mandate users to push a button or select from a list?

• Is the language used by the digital assistant plain? If using expert language and
abbreviations, will it be understood by the intended audience?

• Are bot messages concise and meaningful?

• Do bot messages and prompts contain context for the user to understand what the
current status of the conversation is?

• Does the digital assistant use alternating prompts when re-prompting for a piece of
information?

Chapter 16
Conversation Testing

16-2

• Does the digital assistant actively help to disambiguate user input when the provided
input is not clear (e.g. two sizes entered in a pizza order when only one should be
provided)?

Checklist for Digital Assistant Testing
☑ Test NLU understanding at the digital assistant level using test suites.
☑ Test intent resolution for different contexts (setting a skill to be assumed current).
☑ Review digital assistant configuration settings to adapt the message templates for built-
in messages to your needs and the bot persona.
☑ Use digital assistant confidence settings to tune understanding.
☑ Use the conversation tester to ensure your digital assistant provides the correct
answers to user messages.
☑ Monitor the performance and behavior of your digital assistant at runtime.
☑ Implement a feedback loop for users to provide feedback via the conversation.

Learn More
• Oracle Digital Assistant Design Camp video: Inside Artie – Sharing the experience of

building Artie

• Tune Routing Behavior

• Conversation Metrics for Digital Assistants

Chapter 16
Checklist for Digital Assistant Testing

16-3

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Inside+Artie+-+Sharing+the+process%2C+the+lessons+learned+and+the+experience+gained+from+building+Artie/1_0w734qco
https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+CampA+Inside+Artie+-+Sharing+the+process%2C+the+lessons+learned+and+the+experience+gained+from+building+Artie/1_0w734qco

Part III
Digital Assistants

This part of the guide covers customization and tuning of digital assistants.

• Create, Version, and Publish Digital Assistants

• Personalize Your Digital Assistant

• Tune Routing Behavior

• Languages and Digital Assistants

• Conversation Metrics for Digital Assistants

If you haven’t been introduced to digital assistants yet, see What are Digital Assistants?

17
Create, Version, and Publish Digital
Assistants

Create and access digital assistants from the Digital Assistants page, which you can navigate
to by clicking Development > Digital Assistants in the side menu.

By default, only the most recently updated version of each digital assistant appears. You can
display all versions of a digital assistant by turning the Show Only Latest switch off.

You can access most of the management tasks from a digital assistant’s Options menu.

You can add digital assistants by creating them from scratch, cloning other digital assistants,
and importing digital assistants.

Create from Scratch
To create a new digital assistant:

1. Click to open the side menu, select Development > Digital Assistants, and click
New Digital Assistant.

2. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your digital
assistants, such as the way the Natural Language Understanding (NLU) engine
resolves intents and which languages are supported natively.
By default, this is set to the most recent platform version. However, if you specifically
need the digital assistant to behave like other digital assistants that are based on a
different platform version, you can choose an older version.

See Platform Version.

17-1

• Primary Language: (Appears only if the selected platform version is 20.12 or
higher.) This determines both the default language for the digital assistant and
whether the digital assistant will use native support for that language or rely on
a translation service.
If you plan to design the digital assistant for multiple languages, consider your
choice here very carefully. In particular, if you want to support any languages
other than the natively-supported languages, you should scroll down to the
Translation Service section of the dropdown and select English from there.

See Languages and Digital Assistants for detailed information on designing
your digital assistant for your desired target languages.

Note:

On platform versions 20.09 and lower, you don't specify a primary
language. Instead a predominant language is automatically detected
if you have set up the digital assistant with a translation service.

After you create the digital assistant, it appears in the Digital Assistant page in draft
mode.

Clone
If you want to create a digital assistant that is similar to an existing digital assistant, or
if you want to reuse the artifacts of an existing digital assistant, you can create the
digital assistant by cloning.

To clone a version of a digital assistant:

1. Click to open the side menu and select Development > Digital Assistants.

2. In the tile for the digital assistant that you want to clone, click and select Clone.

3. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your digital
assistants, such as the way the Natural Language Understanding (NLU)
engine resolves intents and which languages are supported natively.
By default, this is set to the most recent platform version. However, if you
specifically need the digital assistant to behave like other digital assistants that
are based on a different platform version, you can choose an older version.

See Platform Version.

• Primary Language: (Appears only if the selected platform version is 20.12 or
higher.) This determines both the default language for the digital assistant and
whether the digital assistant will use native support for that language or rely on
a translation service.
If you plan to design the digital assistant for multiple languages, consider your
choice here very carefully. In particular, if you want to support any languages
other than the natively-supported languages, you should scroll down to the
Translation Service section of the dropdown and select English from there.

See Languages and Digital Assistants for detailed information on designing
your digital assistant for your desired target languages.

Chapter 17
Clone

17-2

Note:

On platform versions 20.09 and lower, you don't specify a primary
language. Instead a predominant language is automatically detected if you
have set up the digital assistant with a translation service.

Create by Import
You can create a digital assistant by importing a version of a digital assistant that was
exported from another instance. The imported digital assistant will be in draft mode, even if it
was published in the source instance.

To import a digital assistant:

1. Click to open the side menu and select Development > Digital Assistants.

2. From the Digital Assistant page, click Import Digital Assistant.

3. Upload the ZIP file that contains the exported digital assistant.

Tip:

If you want to export a version, make changes in the exported files, and then import
it into the same instance, don’t forget to change the version. Otherwise, Oracle
Digital Assistant won’t let you import it.

Note:

There is a size limit of 50 MB for imported skills.

Publish
When you’ve completed building a version of a digital assistant, you can lock it down by
publishing it. If you later want to make further modifications, you must create another version
and work on that one.

To publish a version of a digital assistant:

1. Click to open the side menu and select Development > Digital Assistants.

2. In the tile for the digital assistant that you want to publish, click and select Publish.

Create New Version
At some point, you might want to create another version of a digital assistant, such as to add
new features.

To create another version:

1. Click to open the side menu and select Development > Digital Assistants.

Chapter 17
Create by Import

17-3

2. In the tile for the digital assistant that you want to version, click and select New
Version.

3. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your digital
assistants, such as the way the Natural Language Understanding (NLU)
engine resolves intents and which languages are supported natively.
By default, this is set to the most recent platform version. However, you can
also specify a previous version, such as that used by the base version of the
digital assistant.

See Platform Version.

• Primary Language: (Appears only if the selected platform version is 20.12 or
higher.) This determines both the default language for the digital assistant and
whether the digital assistant will use native support for that language or rely on
a translation service.
If you plan to design the digital assistant for multiple languages, consider your
choice here very carefully. In particular, if you want to support any languages
other than the natively-supported languages, you should scroll down to the
Translation Service section of the dropdown and select English from there.

See Languages and Digital Assistants for detailed information on designing
your digital assistant for your desired target languages.

Note:

On platform versions 20.09 and lower, you don't specify a primary
language. Instead a predominant language is automatically detected
if you have set up the digital assistant with a translation service.

Delete
1. Click to open the side menu and select Development > Digital Assistants.

2. In the tile for the digital assistant that you want to delete, click and select
Delete.

Export a Digital Assistant to Another Instance
If you have multiple Oracle Digital Assistant instances and you want to copy a digital
assistant from one instance to another, you use the Export and Import commands:

1. Log in to the instance that you want to export the digital assistant from.

2. Click to open the side menu and select Development > Digital Assistants.

3. In the tile for the digital assistant that you want to export, click and select
Export.

A zip file with the digital assistant will be downloaded to your system.

4. Log in to the instance that you want to export the digital assistant to.

5. Click to open the side menu and select Development > Digital Assistants.

Chapter 17
Delete

17-4

6. Click Import Digital Assistant.

7. Upload the ZIP file that contains the exported digital assistant.

Note:

The imported digital assistant will be in draft mode, even if it was published in the
source instance.

Add a Skill to a Digital Assistant
To add a skill to a digital assistant:

1. Click to open the side menu, select Development > Digital Assistants, and double-
click your digital assistant.

2. Click Add Skill.

3. In the tile for the skill you want to add, select .

If you don't find the skill you are looking for, it might have a language mode that is not
compatible with the language mode of your digital assistant. See Conditions for Adding a
Skill to a Digital Assistant.

4. Click the Done button to close the Skills Catalog and display the page for the skill in the
digital assistant.

5. Scroll down to the Interaction Model section of the page and make sure that the
Invocation value is the name that you want users to use to invoke the skill.

This name should adhere to these Invocation Name Guidelines.

6. Provide some example utterances that would be typical of how a user would invoke the
skill.

These utterances will be used as selectable options in the digital assistant's default
welcome and help states.

7. If needed, add or change the name of the Group. A skill group is a collection of related
skills. By grouping related skills, you can improve routing behavior in your digital
assistant. See Skill Groups.

Tip:

Click Validate and review the validation messages for utterances that are shared by
skills registered to your digital assistant.

Maximum Intents and Training Utterances
Digital assistants have the following limits for intents and training utterances:

• Maximum intents. Digital assistants can handle routing for up to a total of 10,000 intents
split across all of its skills.

• Maximum training utterances. Digital assistants can handle up to 25,000 training
utterances split across all of its skills.

Chapter 17
Add a Skill to a Digital Assistant

17-5

Note:

Generally speaking, if you have a digital assistant that approaches 10,000
intents, those intents should be distributed among multiple skills. This
provides many benefits, including faster training,modularity, and potentially
better user experience regarding context sensitive help, disambiguation, etc.

Chapter 17
Maximum Intents and Training Utterances

17-6

18
Personalize Your Digital Assistant

Once you have created a digital assistant and added skills to it, you can customize some of
the aspects of the digital assistant, such as the invocation name of the digital assistant’s skills
and the language in the digital assistant’s help and exit intents.

Invocation Name
An important part of configuring a digital assistant is coming up with good invocation names
for each skill. The invocation name is used in explicit invocation of the skill.

Because the routing model gives additional weight to skills invoked explicitly, a good
invocation name helps ensure that users are successful when trying to access that skill (and,
conversely, do not access that skill accidentally).

A skill's invocation name is also presented to the user in messages and dialogs to help
disambiguate intents, show help for the skill, and signal exiting of the skill. So you should take
care to make the invocation name sound natural and user-friendly in those contexts.

Modify a Skill's Invocation Name
The invocation name for a skill is initially set in the Invocation field when you are adding the
skill to the digital assistant. That field is pre-populated with the skill's display name.

If you later want to update the invocation name for a skill in a digital assistant, do the
following:

1. In the left navigation for the digital assistant, click .

2. Select the skill.

3. Scroll down to the Interaction Model section of the page and modify the value of the
Invocation field.

Invocation Name Guidelines
Invocation names must have the following characteristic:

• Be unique for each skill within a digital assistant.

They should also have the following characteristics:

• Have a clear relationship to their function.

• Be easy to remember.

• Be easy to pronounce.

• Not consist of just one word, unless it’s a distinct brand name.

• Not be phrases that occur frequently in everyday speech like “hello”, ”please”, “thanks”,
and ”yes”.

18-1

• Not include words and phrases that would be commonly used when invoking the
skill, such as “go to”, “open”, and “tell me”.

Explicit Invocation Patterns
Digital assistants will try to detect explicit invocation within the user input patterns
described in the table below. When deciding on a skill’s invocation name, try to
imagine if that invocation name would naturally fit into one of these patterns.

Segment 1 Segment 2 Segment 3 Segment 4 Examples (here
Pizza Skill is the
invocation
name)

Starting Phrase
(such as “ask”,
“tell”, “use”, and
“go to”)

Invocation Name Preposition,
Conjunction, or
Punctuation

User Intent • Go to Pizza
Skill to track
my orders

Starting phrase Invocation name User Intent - • Ask Pizza
Skill track my
orders

Invocation name User Intent - - • Pizza Skill to
check my
orders

Invocation Name - - - • Pizza Skill

Starting Phrase Invocation Name - - • Use Pizza
Skill

System Intents for Digital Assistants
As the digital assistant essentially functions as a master bot, it comes with a set of
built-in system intents that are used to identify when a user has general requests for
the digital assistant itself (and not the skills that the digital assistant contains).

The digital assistant's system intents are:

• exit, which applies when the user signals the desire to exit the current
conversation or context in the digital assistant.

• help, which applies when the user greets the digital assistant or asks for help or
orientation. See Start, Welcome, and Help States for details on how the digital
assistant routes help intents.

• unresolvedIntent, which applies to user input that doesn't match well with the exit
and help intents. It improves classification of the exit and help intents (so that
particularly ambiguous utterances aren't attributed to those intents).

Specify States for a Digital Assistant's System Intents
When a digital assistant matches user input with the digital assistant's help, exit, and
unresolvedIntent intents, it provides default behavior:

• For the help intent, it displays a welcome message and then cards for each skill.
Each card contains a label based on the invocation name and options derived
from example utterances that you gave for the skill's interaction model when you
added the skill to the digital assistant.

Chapter 18
System Intents for Digital Assistants

18-2

• For the exit intent, it exits the current context (which can be a flow in a skill or the skill
itself) and provides a message that it has done so.

• For the unresolvedIntent intent, it offers a message indicating it didn't understand what
the user was looking for and then displays the same cards that are displayed for the
digital assistant's help intent.

If you'd like to customize the behavior of the digital assistant when these system intents are
matched, you can do so by configuring the digital assistant to respond to those intent
matches with calls to specific states in a skill that you have added to your digital assistant.

To specify the state for the digital assistant's help intent:

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configurations tab.

3. Scroll down to the Skill State Mappings section of the page.

4. For the Digital Assistant Custom Help Skill property, select the skill that contains the
state that you want to use.

5. For the Digital Assistant Custom Help State property, select the state that you want to
use.

Note:

If your digital assistant contains only one skill, setting the above properties will have
no effect. To determine the help state in this case, the digital assistant will use the
Help State setting for the skill (which you can find by opening the skill, clicking its
icon, and selecting the Digital Assistant tab). If the Help State setting isn't set, the
digital assistant will provide default help behavior for the skill.

To specify a state for the digital assistant's exit intent:

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configurations tab.

3. Scroll down to the Skill State Mappings section of the page.

4. For the Digital Assistant Custom Exit Skill property, select the skill that contains the
state that you want to use.

5. For the Digital Assistant Custom Exit State property, select the state that you want to
use.

To specify the state for the digital assistant's unresolvedIntent intent:

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configurations tab.

3. Scroll down to the Skill State Mappings section of the page.

4. For the Digital Assistant Custom UnresolvedIntent Skill property, select the skill that
contains the state that you want to use.

Chapter 18
System Intents for Digital Assistants

18-3

5. For the Digital Assistant Custom UnresolvedIntent State property, select the
state that you want to use.

Note:

If your digital assistant contains only one skill, setting the above properties
will have no effect. The digital assistant will defer to the skill for handling of
the unresolved intent.

Add Utterances
The built-in intents come with their own training data. If you need to optimize resolution
to these intents, you can add example utterances.

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click

3. Select the intent for which you want to add an utterance.

4. In the Examples text field, type the utterance and press Enter.

Note:

Starting with platform version 20.12, training utterances in all of the natively-
supported languages are built in to the digital assistant's system intents
behind the scenes.

Pre-Seeded Training Data in System Intents
The digital assistant system intents are based on pre-seeded training data so that you
don't need to create utterances to make these intents work.

The exit and help intents each contain sub-categories of training data.

The training data for the exit intent is divided into the following sub-categories:

• Exit: requests to exit or leave a skill.

• Farewell: phrases like "bye" and "farewell".

The training data for the help intent is divided into the following sub-categories:

• Menu: requests to display a menu.

• Help: requests for help.

• Greeting: phrases like "hi", "hello", and "greetings".

If you have designed separate intents to handle any of these sub-categories of user
input, you can disable the training data for those sub-categories.

Chapter 18
System Intents for Digital Assistants

18-4

Disable Pre-Seeded Training Data
If you have created your own intents for the purposes of responding to user greetings,
requests for help, showing menus, and requests to exit, you can disable the corresponding
set of pre-seeded data in the help or exit intent so that the related user utterances don't
resolve to that system intent.

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click

3. In the list of intents, select the help or exit intent.

4. Click Pre-seeded data options.

5. For the category of training data in the intent that you want to disable, slide the switch to
the Off position.

6. Click Apply.

Note:

For the help intent, you can simply slide the Enable Intent switch to the Off position
to disable all of the sub-categories of pre-seeded training data for that intent.

Customize Messages and Prompts
The digital assistant has a set of standard messages and prompts to handle situations such
as:

• Welcoming the user.

• Offering help.

• Providing a choice between multiple intents when it’s uncertain what intent the user is
seeking.

• Managing the transition when the user breaks the expected flow in a conversation.

When this happens, the digital assistant helps to manage the transition to and from the
original flow.

In addition, there are settings for things like the maximum number of options to display in the
help and welcome screens.

To access these settings:

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configurations tab.

3. Scroll down to the Conversation Parameters section of the page.

Chapter 18
Customize Messages and Prompts

18-5

Note:

For digital assistants based on platform version 21.04 and higher, resource
bundle entries are created for textual properties by default. You can access
and edit the resource bundle entries for these properties by clicking to
open the Resource Bundles page and selecting the Configuration tab.

System Variables for Digital Assistants
You'll notice that there are several variables that appear in the default values for some
conversation parameters. Here is the list of those system variables and what they
represent:

• system.routingFromSkill: the invocation name of the current skill (that the digital
assistant is prepared to route away from).

• system.routingToSkill: the invocation name of the skill that the digital assistant
is prepared to route to.

• system.routingFromIntent: the conversation name of the current intent (that the
digital assistant is prepared to route away from).

• system.routingToIntent: the conversation name of the intent that the digital
assistant is prepared to route away to.

• system.channelType: the type of the current channel.

Note:

Each of these variables is only available in the conversation parameters
where it is included in the default values. If you don't see one of these
variables in the default value of a given configuration parameter, you can't
use it there.

Limit the Frequency of Prompts
In the course of a conversation, a digital assistant may prompt a user multiple times,
asking them to click a button or input text for situations such as:

• confirming the desire to interrupt the current flow to switch to a different flow

• confirming the resuming of the previous flow

• exiting the flow

For example, this screenshot shows a prompt to confirm that the user really wants to
switch to a different skill:

Chapter 18
Limit the Frequency of Prompts

18-6

But you may prefer the digital assistant to instead provide a message that details the routing
change and then immediately start the new flow, like this screenshot shows:

Prompts are important for disambiguation. But you may prefer to use messages in cases
where the confidence score for an intent reaches a certain threshold.

Use the following configuration properties to determine conditions for displaying a message
instead of a prompt:

• Interrupt Prompt Confidence Threshold: Determines the confidence threshold that
must be met for the digital assistant to respond with a message instead of a prompt when
the user enters something that is not relevant to the current flow. By default, this property
is set to 1.01 (101%), which effectively means that it is set to always display a prompt.
When the confidence score reaches or exceeds the value of the Interrupt Prompt
Confidence Threshold, a message based on the value of the Interrupt Message property
is displayed.

Chapter 18
Limit the Frequency of Prompts

18-7

When the confidence score does not reach the value of the Interrupt Prompt
Confidence Threshold, a prompt based on the value of the Interrupt Prompt
property is displayed.

• Resume Response Type: Determines how the user should be notified when an
interrupted flow is resumed. The valid values are prompt (which is the default) and
message.

• Exit Prompt Confidence Threshold: Determines the confidence threshold that
must be met for the digital assistant to respond to an exit request with only the exit
confirmation message. By default, it is set to 1.01 (101%), which effectively means
that it is set to always display a prompt.

Tip:

If you do not want any message displayed at all when the Interrupt Prompt
Confidence Threshold is reached, you can simply delete the contents of the
Interrupt Message property. Similarly, if you do not want any prompt or
message displayed upon resuming the flow, set the Resume Response
Type property to message and leave the contents of the Resume Message
property blank.

To access these settings:

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click and select the
Configurations tab.

3. Scroll down to the Conversation Parameters section of the page.

Note:

If you decide to make a skill hidden, these prompts and messages will
automatically not appear for that skill. See Hidden Skills.

Disable a Skill
If you want to turn off a skill in a digital assistant without removing it, you can disable it.
When you disable a skill, you exclude it from the digital assistant's training model. Any
user input that would otherwise match well with the skill's training data will instead
resolve elsewhere (likely the digital assistant's unresolvedIntent).

To disable a skill:

1. In the left navigation for the digital assistant, click .

2. Select the skill you want to disable.

3. Turn the skill's Enabled switch to the OFF position.

Chapter 18
Disable a Skill

18-8

Hidden Skills
In some cases, you might have some skills in your digital assistant that are designed to
handle interactions that are not central to the main purpose of the digital assistant. For
example, you might have skills that:

• Handle irrelevant input, such as attempts at humor.

• Provide information about the digital assistant itself.

In these cases, you might want the skill to play more of a background role in the digital
assistant, where it responds when needed but it is not identified in menus or in transition
messages and prompts.

For example, if you have a skill called Anger Management that is designed to respond to
impolite or abusive language gracefully, you probably don't want this skill to be presented to
users by name in the welcome menu or in a transition message like "Do you want to go to
Anger Management now?"

For hidden skills, the following apply:

• The skill is not listed in the default help and welcome menus.

• When transitioning to or from that skill, no transition dialogs or prompts appear.

• The skill can't be invoked by the user through explicit invocation.

Hide a Skill
To hide a skill so that it functions in the digital assistant but is never explicitly referenced by
name:

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click

3. In the list of intents, select the intent.

4. Slide the Exposed switch to the Off position.

Note:

It is not possible to hide all of the skills in a digital assistant. At least one has to be
left exposed.

Image-Initiated Flows
For each digital assistant, it is possible to designate one skill that is able to start a flow when
the user uploads an image.

The conditions are:

• The user is not currently in a flow.

• The user input that is intended to trigger the flow must contain only images.

Chapter 18
Hidden Skills

18-9

Here’s how to set it up:

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configuration
tab.

3. For the Skill Name For Processing Message With Image Only parameter, enter
name of the skill that will use this flow.

4. For the Skill Start State For Processing Message With Image Only parameter,
enter name of the state to route to once the image-initated flow begins.

Set Values for Custom Parameters
If any of the skills that have been added to your digital assistant have defined custom
parameters and they are scoped to be shared by the whole digital assistant (in other
words, they are prefixed with da.), you can set the value for those parameters in the
digital assistant.

To set the value of a custom parameter:

1. Click to open the side menu, select Development > Digital Assistants, and
select your digital assistant.

2. In the digital assistant's left navigation, click .

3. Select one of the skills that uses the parameter.

4. Scroll down to the Parameters section of the page and enter a value for the
parameter.
The updated parameter value will be applied for all skills that use the parameter.

Auto-Numbering for Digital Assistants
You can set up a digital assistant to use auto-numbering, so that it prefixes buttons
and list options with numbers. This is particularly useful for digital assistants that run
on text-only channels. When users can’t use tap gestures, they can still trigger the
button’s postback actions by entering a number.

To set up auto-numbering for a digital assistant:

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click and select the
Configurations tab.

3. Scroll down to the Conversation Parameters section of the page and fill in a value
for the Enable Auto Numbering on Postback Actions property.

This property accepts FreeMarker expressions, so you can turn the property on
conditionally. For example, the following value turns auto-numbering on for Twilio
channels:

${(system.channelType=='twilio')?then('true','false')}

Chapter 18
Set Values for Custom Parameters

18-10

Disable Selection of Old Actions in a Digital Assistant
Digital assistants have an Enable Clicking History Actions switch that determines whether the
users are allowed to select actions that the digital assistant offers to them earlier in the
conversation. For example, the user conversation might be offered a menu of Human
Resources actions in one turn of the conversation, then enter an unrelated question, and then
later try to select one of the Human Resources actions that were presented earlier. By
default, this switch is turned on.

Note:

When this switch is turned on, it overrides any handling that may have been set up
in any of your skills for user selection of out-of-order actions. If any of your skills are
set up to provide their own handling of out-of-order actions, you should set this
switch to the OFF position.

To prevent users from being able to click old actions in a conversation:

1. Click to open the side menu, select Development > Digital Assistants, and open
your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configurations tab.

3. Scroll down to the Conversation Parameters section of the page and slide the Enable
Clicking History Actions switch to the OFF position.

Chapter 18
Disable Selection of Old Actions in a Digital Assistant

18-11

19
Tune Routing Behavior

Before you put your digital assistant into production, you should test and fine-tune the way
your digital assistant routes and resolves intents.

Train the Digital Assistant
Before tuning your digital assistant, make sure it is trained. By training the digital assistant,
you consolidate the training data for all of the skills that it contains and fill in training data for
the digital assistant's built-in intents (Help, Exit, and UnresolvedIntent).

To train a digital assistant:

1. Open the digital assistant.

2. Click the Train button () and select a training model.
You should use the same training model used to train the majority of the skills.

For a deeper dive into the training models, see Which Training Model Should I Use?

What to Test
Here are some routing behaviors that you should test and fine-tune:

• Explicit invocation (user input that contains the invocation name).

Example (where Financial Wizard is the invocation name): send money using
financial wizard

• Implicit invocation (user input that implies the use of a skill without actually including the
invocation name).

Example: send money
• Ambiguous utterances (to see how well the digital assistant disambiguates them).

Example (where multiple skills allow you to order things): place order
• Interrupting a conversation flow by changing the subject (also known as a non sequitur).

Read further for details on how the routing model works and about the routing parameters
that you can adjust to tune the digital assistant's behavior.

Note:

The most important component of how well routing works in a digital assistant is the
design of the skills themselves. If you are working on a project where you have
input on both the composition of the digital assistant and the design of the skills it
contains, it's best to focus on optimizing intent resolution in the individual skills
before tuning the digital assistant routing parameters. See DO's and DON'Ts for
Conversational Design.

19-1

The Routing Model
When a user inputs a phrase into the digital assistant, the digital assistant determines
how to route the conversation, whether to a given skill, to a different state in the
current flow, or to a built-in intent for the digital assistant.

At the heart of the routing model are confidence scores, which are calculated for the
individual skills and intents to measure how well they match with the user's input.
Confidence scores are derived by applying the underlying natural language processing
(NLP) algorithms to the training data for your skills and digital assistant.

Routing decisions are then made by measuring the confidence scores against the
values of various routing parameters, such as Candidate Skills Confidence Threshold
and Confidence Win Margin.

The routing model has these key layers:

• Determine candidate system intents: The user input is evaluated and
confidence scores are applied to the digital assistant’s intents (exit, help, and
unresolvedIntent). Any of these intents that have confidence scores exceeding the
value of the digital assistant’s Built-In System Intent Confidence Threshold routing
parameter are treated as candidates for further evaluation.

• Determine candidate skills: The user input is evaluated and confidence scores
are applied to each skill. Any skills that have confidence scores exceeding the
value of the digital assistant’s Candidate Skills Confidence Threshold routing
parameter are treated as candidate skills for further evaluation.

• Determine candidate flows: After the candidate skills are identified, each intent in
those skills are evaluated (according to the intent model for each skill) and
confidence scores are applied to each intent. In general, any intent that has a
confidence score exceeding the value of its skill’s Confidence Threshold routing
parameter (not the digital assistant's Candidate Skills Confidence Threshold
parameter) is treated as a candidate flow.

The behavior of this routing can be tuned by adjusting the digital assistant’s routing
parameters.

In addition, there are rules for specific cases that affect the routing formula. These
cases include:

• Explicit invocation: If a user includes the invocation name of a skill in her input,
the digital assistant will route directly to that skill, even if the input also matches
well with other skills.

• Context-aware routing: If a user is already engaged with a skill, that skill is given
more weight during intent resolution than intents from other skills.

• Context pinning: If the user input includes an explicit invocation for a skill but no
intent-related utterance, the router “pins” the conversation to the skill. That means
that the next utterance is assumed to be related to that skill.

Start, Welcome, and Help States
To make navigation between different skills smoother for the user, digital assistants
manage the routing to and displaying of start, welcome, and help states for each skill
that you add to the digital assistant.

Chapter 19
The Routing Model

19-2

You can configure each skill to specify which states in its dialog flow that the digital assistant
should use as the welcome, start, and help states. If these states are not specified in the skill,
the digital assistant will provide default behavior.

Here is a rundown on how these states work.

• Start State: Applies when the intent engine determines that the user wants to start using
a given skill. This generally occurs when the user expresses an intent that is related to
the skill.

If the skill doesn't have a start state specified, the digital assistant simply uses the first
state in the skill as the start state.

• Welcome State: Applies when the user enters the invocation name without an
accompanying intent.

Example (where "cash bank" is the invocation name): cash bank
If (and only if) a welcome state hasn’t been specified in the skill, the digital assistant
automically provides a default response that consists of a prompt and a card showing the
skill’s display name, one-sentence description, and a few of its sample utterances. In
addition, it offers the user the option to exit the conversation and get help for the digital
assistant as a whole.

Here's an example of a default welcome response being applied to a banking skill.

You can also customize the default welcome prompt using the Skill Bot Welcome
Prompt configuration setting.

• Help State: Applies when the intent engine determines that the user is asking for help or
other information.

Example: if a user is in a flow in the banking skill for sending money and they enter
“help” when prompted for the account to send money from.

If (and only if) a help state hasn’t been specified in the skill, the digital assistant
automatically prepares a response that includes a prompt and a card showing the skill’s
display name, one-sentence description, and a few of its sample utterances. In addition, it
offers the user the option to exit the conversation and get help for the digital assistant as
a whole.

Chapter 19
The Routing Model

19-3

Here’s an example of a help prompt and card that is prepared by the digital
assistant:

You can also customize the default help prompt using the Skill Bot Help Prompt
configuration setting.

Specify Start, Welcome, and Help States
If the skill's dialog flow is designed in Visual mode, you can specify these states with
corresponding built-in events in the Main flow:

1. In the skill, click .

2. Select Main Flow.

3. Click in the Built-In Events section.

4. In the Create Built-In Event Handler dialog, select the event type from the and
mapped flow, and click Create.

If the skill's dialog flow is designed in YAML mode, you can specify these states in the
skill's settings:

1. In the skill, click and select the Digital Assistant tab.

2. Select states for Start State, Welcome State, and/or Help State.

Explicit Invocation
Explicit invocation occurs when a user enters the invocation name for a skill as part of
her input. By using explicit invocation, the user helps ensure that her input is
immediately routed to the intended skill, thus reducing the number of exchanges with
the digital assistant necessary to accomplish her task.

When explicit invocation is used, extra weight is given to the corresponding skill when
determining the routing:

• If the user is not already in a skill and enters an explicit invocation, that invocation
takes precedence over other flows in the digital assistant context.

Chapter 19
The Routing Model

19-4

• If the user is in a flow for a different skill, the digital assistant will always try to confirm that
the user really wants to switch skills.

In each digital assistant, you can determine the invocation name you want to use for a given
skill. You set the invocation name on the skill's page in the Digital Assistant. To get there:

1. In the left navbar of the digital assistant, click .

2. Select the skill for which you want to check or modify the invocation name.

3. Scroll down to the Invocation field.

This behavior is supported by the Explicit Invocation Confidence Threshold routing
parameter. If the confidence score for explicit invocation exceeds that threshold, intents from
other skills are not taken into account in the routing decision. The default value for this
threshold is .8 (80% confidence).

Note:

For non-English input in a skill, the invocation name of the skill needs to be entered
before any other words for the input to be recognized as an explicit invocation. For
example, if the skill has an invocation name of Pizza King, the utterance "Pizza
King, quiero una pizza grande" would be recognized as an explicit invocation, but
the phrase "Hola Pizza King, quiero una pizza grande" would not be.

Context Awareness
Routing in digital assistants is context aware, which means that matching intents from the
skill that the user is currently engaged with are given more weight than intents from other
skills during intent resolution.

For example, imagine your digital assistant has a banking skill and a skill for an online retail
shop. If a user inputs the question “What’s my balance?”, this could apply to both the user’s
bank account balance and the balance remaining on a gift card that is registered with the
online retailer.

• If the user enters this question before entering the context of either skill, the digital
assistant should give her a choice of which “balance” flow to enter (either in the banking
skill or the retailer skill).

• If the user enters this question from within the banking skill, the digital assistant should
automatically pick the “balance” flow that corresponds to the banking skill (and disregard
intents from other skills, even if they meet the standard Confidence Threshold routing
parameter).

Chapter 19
The Routing Model

19-5

Note:

Even if the user has completed a flow within a skill, they remain in that skill’s
context unless:

• They have explicitly exited the skill or moved to a different skill.

• Their next request resolves to the skill's unresolvedIntent and doesn't
match with any of the skill's other intents. In this case, the context moves
to the digital assistant and the digital assistant determines how to handle
the unresolved intent.

In addition, context awareness takes skill groups into account. This means that when a
skill is defined as being part of a skill group and that skill is in the current context, the
current context also includes the other skills in that skill group. See Skill Groups.

Context awareness is supported by the Consider Only Current Context Threshold
routing parameter. If the confidence score for an intent in the current context exceeds
that threshold, intents from other contexts are not taken into account in the routing
decision. The default value for this threshold is .8 (80% confidence), since you
probably want to be pretty certain that an intent in the current context is the right one
before you rule out displaying other intents.

help and unresolvedIntent Intents
Within the context of a skill, if user input is matched to the help system intent, the user
is routed to a help flow determined by that skill (not to a flow determined at the digital
assistant level).

For example, if a user is engaged with a skill and types help, help for that skill will be
provided, not help for the digital assistant as a whole.

For the unresolvedIntent system intent, the behavior is different. If the user input
resolves to unresolvedIntent (and there are no other matching intents in the skill), the
input is treated as an unresolved intent at the digital assistant level. However, if
unresolvedIntent is just one of the matching intents within the skill, the skill handles
the response.

This behavior is supported by the Built-In System Intent Confidence Threshold
routing parameter. If the confidence score for one of these intents exceeds that
threshold, that intent is treated as a candidate for further evaluation. Starting with
platform version 20.12, the default value for this threshold is .9 (90% confidence). For
earlier platform versions, the default is .6.

exit Intent
If user input is matched to the exit system intent, the user is prompted to exit the
current flow or the whole skill, depending on the user's context:

• If the user is in a flow, the exit applies to the flow.

• If the user is in a skill, but not in a flow in the skill, the exit applies to the skill.

Chapter 19
The Routing Model

19-6

Note:

The exit intent doesn't apply to the digital assistant itself. Users that are not
engaged within any skills are merely treated as being inactive.

This behavior is supported by the Built-In System Intent Confidence Threshold routing
parameter. If the confidence score for the exit intent exceeds that threshold, that intent is
treated as a candidate for further evaluation. Starting with platform version 20.12, the default
value for this threshold is .9 (90% confidence). In earlier platform versions, the default is .6.

Skill Groups
For skill domains that encompass a lot of functionality, it's often desirable to divide that
functionality into multiple specialized skills. This is particularly useful from a development
perspective. Different teams can work on different aspects of the functionality and release the
skills and their updates on the timelines that best suit them.

When you have multiple skills in a domain, it is likely that users will need to switch between
those skills relatively frequently. For example, in a single session in a digital assistant that
contains several HR-related skills, a user may make requests related to skills for
compensation, personal information, and vacation time.

To optimize routing behavior among related skills, you can define a skill group. Within a digital
assistant, all of the skills within a group are treated as a single, logical skill. As a result, all of
the skills in the group are considered part of the current context, so all of their intents are
weighted equally during intent resolution.

Group Context vs. Skill Context
When you have skill groups in your digital assistant, the routing engine keeps track of both
the skill context and the group context.

The routing engine switches the skill context within a group if it determines that another skill
in the group is better suited to handle the user request. This determination is based on the
group's skills ranking in the candidate skill routing model.

Note:

If the confidence score of the group's top candidate skill is less than 5% higher than
that of the current skill, the skill context in the group is not changed.

When you use the routing tester, you can check the Rules section of the Routing tab to
monitor when any skill context changes within a group occur.

Delineating Skill Groups
Each skill group should be a collection of skills within the same domain that have a linguistic
kinship. The skills within the group should be divided by function.

For example, it might make sense to assemble skills for Benefits, Compensation, Personal
Information, and Hiring into an HCM skill group. Skills for Opportunities and Accounts could
belong to a Sales skill group.

Chapter 19
The Routing Model

19-7

Naming Skill Groups
To best organize your skill groups and prevent naming collisions, we recommend that
you use the <company name>.<domain> pattern for the names of your skill groups.

For example, you might create a group called acme.hcm for the following HCM skills for
a hypothetical Acme corporation.

• Benefits

• Compensation

• Absences

• Personal Information

• Hiring

Likewise, if the hypothetical Acme also has the following skills that are in the sales
domain, you could use acme.sales as the skill group:

• Opportunities

• Accounts

Common Skills and Skill Groups
If you have common skills for functions like help or handling small talk, you probably
don't want to treat them as a separate group of skills since they might be invoked at
any time in the conversation, no matter which group of skills the user is primarily
interacting with. And once invoked, you'll want to make sure that the user doesn't get
stuck in these common skills.

To ensure that other groups of skills are given the same weight as a common skill after
an exchange with the common skill is finished, you can include the common skill in a
group of groups. You do so by including the asterisk (*) in the group name of the
common skill. For example:

• If you use acme.* as the skill group name, any skills in the acme.hcm and
acme.sales groups would be included, but any skill in a group called hooli.hcm
would not be included.

• If you use * as the skill group name, all groups would be included (though not any
skills that are not assigned to a group).

When a user navigates from a skill in a simple group (a group that doesn't have an
asterisk in its name) to a skill with an asterisk in its group name, the group context will
stay the same as the group context before navigating to this skill. For example, if a
conversation moves from a skill in the acme.hcm group to a skill in the acme.* group,
the group context will remain acme.hcm.

Examples: Context Awareness within Skill Groups
Here are some examples of how routing within and between such groups would work:

• A user asks, "What benefits do I qualify for?" The skill context is the Benefits skill
and the group context is acme.hcm. The user then asks, "What is my salary?" The
skill context is changed to Compensation and the groups context remains
acme.hcm.

Chapter 19
The Routing Model

19-8

• A user's current context is the Benefits skill, which means that their current group context
is acme.hcm. The user asks, "What sales opportunities are there?" This request is out of
domain for not only the current skill, but for all of the skills in the HCM group (though
"opportunities" offers a potential match for the Hiring skill). The user is routed to the top
match, Opportunities, which is in the acme.sales group context.

Example: Context Awareness among Skill Groups
Here's an example of context awareness for routing among skill groups:

• A user enters "what are my benefits", which invokes the Benefits skill that's part of the
acme.hcm group.

The user's context is the Benefits skill and the acme.hcm group.

• The user enters "Tell me a joke", which invokes the generic ChitChat skill that is assigned
the acme.* group.

The user is now in the ChitChat skill context. The group context is now any group that
matches acme.*. This includes both acme.hcm (which includes the previously invoked
Benefits skill) and also acme.sales, which is made of the Opportunities and Accounts
skills.

• The user asks "what are my benefits?" and follows that with "I have another question."

The user is in the acme.hcm context because she was previously in that context because
of question about benefits, but has now been routed to the misc.another.question intent in
the Miscellaneous skill, which is a member of the acme.* group.

When a user navigates to a skill belonging to a group name that includes the asterisk (*),
the user group context remains the same (such as acme.hcm in this example) before
getting routed to the skill that belongs to a * group.

• The user is currently in the context of skill called Miscellaneous, which provides common
functions. It belongs to the acme.* group, which means that user's current group context
is all acme groups (acme.sales and acme.hcm). The current skill context is Miscellaneous.
The user enters "What benefits do I qualify for?" The current skill context changes to
Benefits, which belongs to the acme.hcm group.

Add Skill Groups
You can define which group a skill belongs to in the skill itself and/or in a digital assistant that
contains the group.

Set the Skill Group in the Skill

To define a group for a skill:

1. Click to open the side menu, select Development > Skills, and open your skill.

2. In the left navigation for the skill, click and select the Digital Assistant tab.

3. Enter a group name in the Group field.
Once you add the skill to a digital assistant, any other skill in the digital assistant with that
name will be considered a part of the same skill group.

Chapter 19
The Routing Model

19-9

Set Skill Groups in the Digital Assistant
If the skill has been already added to a digital assistant, you can set the group (or
override the group that was designated in the skill's settings) in the digital assistant. To
do so:

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click , select the skill, and select the
General tab.

3. Enter a group name in the Group field.

Context Pinning
If the user input includes an explicit invocation for a skill but no intent-related
utterance, the router “pins” the conversation to the skill for the next piece of user input.
That means that the next utterance is assumed to be related to that skill, so the router
doesn’t consider any intents from different skills.

If the user then enters something that doesn’t relate to that skill, the router treats it as
an unresolved intent within the skill, even if it would match well with an intent from a
different skill. (The exit intent is an exception. It is always taken into account.) After
that, it removes the pin. So if the user then repeats that input or enters something else
unrelated to the pinned context, all flows again are taken into account.

Consider this example of how it works when the user behaves as expected:

• The user enters “Go to Pizza Skill”, which is an explicit invocation of Pizza Skill.
(Including the skill's name in the utterance makes it an explicit invocation.)

At this point, the conversation is pinned to Pizza Skill, meaning that the digital
assistant will only look for matches in Pizza Skill.

• She then enters “I want to place an order”.

The digital assistant finds a match to the OrderPizza intent in Pizza Skill and
begins the flow for ordering a pizza.

At this point, the pin is removed.

And here’s an example of how it should work when the user proceeds in a less
expected manner:

• The user enters “Go to Pizza Skill”, which is an explicit invocation of Pizza Skill.

At this point, the conversation is pinned to Pizza Skill.

• She then enters “transfer money”.

This input doesn’t match anything in Pizza Skill, so the router treats it as an
unresolved intent within Pizza Skill (and, depending on the way the flow for
unresolvedIntent is designed, the user is asked for clarification). Intents from
other skills (such as Financial Skill) are ignored, even if they would provide
suitable matches.

The pin from Pizza Skill is removed.

• She repeats her request to transfer money.

Chapter 19
The Routing Model

19-10

A match is found in Financial Skill, and the transfer money flow is started.

Win Margin and Consider All
To help manage cases where the user input matches well with multiple candidate skills, you
can adjust the following routing parameters:

• Confidence Win Margin: The maximum difference between the confidence score of the
top candidate skill and the confidence scores of any lower ranking candidate skills (that
also exceed the confidence threshold) for those lower ranking candidate skill to be
considered. The built-in digital assistant intents (help, exit, and unresolvedIntent) are also
considered.

For example, if this is set to 10% (.10) and the top candidate skill has a confidence score
of 60%, any other skills that have confidence scores between 50% and 60% will also be
considered.

• Consider All Threshold: The minimum confidence score required to consider all the
matching intents and flows. This value also takes precedence over win margin. (If we
have such high confidence then we can't know for sure which flow the user wants to use.)

For example, if this is set to 70% (.70) and you have candidate skills with confidence
scores of 71% and 90%, both candidate skills will be considered, regardless of the value
of the Confidence Win Margin parameter.

Interruptions
Digital assistants are designed to handle non sequiturs, which are cases when a user
provides input that does not directly relate to the most recent response of the digital assistant.
For example, if a user is in the middle of a pizza order, she may suddenly ask about her bank
account balance to make sure that she can pay for the pizza. Digital assistants can handle
the transitions to different flows and then guide the user back to the original flow.

• Before making any routing decisions, digital assistants always listen for:

– user attempts to exit the flow

– explict invocations of other skills

If the confidence score for the system's exit intent or the explicit invocation of another skill
meets the appropriate threshold, the digital assistant immediately re-routes to the
corresponding intent.

• If user doesn't attempt to exit or explicity invoke another skill, but the current state is
unable to resolve the user's intent, the digital assistant will re-evaluate the user's input
against all the skills and then re-route to the appropriate skill and intent.

This could happen because of:

– Invalid input to a component.

For info on how input is validated for built-in components, see User Message
Validation.

For info on how input is validated for custom components, see Ensure the
Component Works in Digital Assistants.

– (For skills that have flows designed in YAML mode) an explicit transition to the
System.Intent component.

Chapter 19
The Routing Model

19-11

Enforce Calls to a Skill's System.Intent Component
Interruptions in flow can be caused by a user suddenly needing to go to a different flow
in the same skill or to a different skill entirely. In YAML-based skills, to support
interruptions where the user needs to go to a separate skill, by default digital
assistants intercept calls that are made to the skill's System.Intent component before
the current flow has ended (in other words, before a return transition is called in the
flow).

For example, in this code from a skill's dialog flow, there are actions that correspond
with buttons for ordering pizza and ordering pasta. But there is also a textReceived:
Intent action to handle the case of a user typing a message instead of clicking one of
the buttons.

ShowMenu:
 component: System.CommonResponse
 properties:
 metadata: ...
 processUserMessage: true
 transitions:
 actions:
 pizza: "OrderPizza"
 pasta: "OrderPasta"
 textReceived: Intent

If such a skill is running on its own (not in a digital assistant) and a user enters text, the
skill calls System.Intent to evaluate the user's input and provide an appropriate
response. However, within a digital assistant, intents from all of the skills in the digital
assistant are considered in the evaluation (by default).

If you have a case where you don't want the digital assistant to intercept these calls to
System.Intent, set the System.Intent component's daIntercept property to "never",
i.e.:

 daIntercept: "never"

This only applies to dialog flows that are designed in YAML mode (since the Visual
Flow Designer doesn't have an equivalent of the System.Intent component).

Note:

If you want the value of the daIntercept property to depend on the state of
the conversation, you can set up a variable in the dialog flow. For example,
you could set the property's value to ${daInterceptSetting.value}, where
daInterceptSetting is a variable that you have defined in the dialog flow
and where it is assigned a value ("always" or "never") depending on the
course of the user's flow through the conversation.

Chapter 19
The Routing Model

19-12

Route Directly from One Skill to Another
It is possible to design a skill's dialog flow to call another skill in the digital assistant directly.
For example, a pizza ordering skill could have a button that enables a user to check their
bank balance before they complete an order.

If a user selects an option in a skill that leads to another skill, the digital assistant provides
both the routing to that second skill and the routing back to the original skill (after the flow in
the second skill is completed).

See Call a Skill from Another Skill from a YAML Dialog Flow.

Suppress the Exit Prompt
When the exit intent is detected, the user will generally be prompted to confirm the desire to
exit.

If you would like to make it possible for the user to exit without a confirmation prompt when
the confidence score for the exit intent reaches a certain threshold, you can do so by
changing the value of the Exit Prompt Confidence Threshold parameter. (By default, this
parameter is set to 1.01 (101% confidence), meaning that an exit prompt would always be
shown.)

Routing Parameters
Depending on the composition of skills (and their intents) in your digital assistant, you may
need to adjust the values of the digital assistant’s routing parameters to better govern how
your digital assistant responds to user input.

Routing parameters all take values from 0 (0% confidence) to 1 (100% confidence).

Here’s a summary of the digital assistant routing parameters:

• Built-In System Intent Confidence Threshold: The minimum confidence score required
for matching built-in system intents, like help and exit. Default value for platform version
20.12 and higher: 0.9. Default value for platform version 20.09 and lower: 0.6.

Note:

If you have a digital assistant based on platform version 20.09 or earlier and
you have created a new version or clone of that digital assistant on platform
version 20.12 or higher, the value of this parameter will be updated to 0.9 in the
new digital assistant, even if you had modified the value in the base digital
assistant.

• Candidate Skills Confidence Threshold: The minimum confidence score required to a
match a candidate skill. Default value: 0.4

• Confidence Win Margin: The maximum difference between the confidence score of the
top candidate skill and the confidence scores of any lower ranking candidate skills (that
also exceed the confidence threshold) for those lower ranking candidate skills to be
considered. The built-in digital assistant intents (help, exit, and unresolvedIntent) are also
considered. Default value: 0.1

Chapter 19
The Routing Model

19-13

There is a separate Confidence Win Margin parameter for skills that works the
same way, except that it applies to confidence scores of intents within the skill.

• Consider All Threshold: The minimum confidence score required to consider all
the matching intents and flows. This value also takes precedence over win margin.
(If we have such high confidence then we can't know for sure which flow the user
wants to use.) Default value: 0.8

• Consider Only Current Context Threshold: The minimum confidence score
required when considering only the current skill and the digital assistant’s exit
intent. If user input matches an intent above this threshold, other intents are not
considered even if they reach the confidence threshold.

This setting is useful for preventing disambiguation prompts for user input that
matches well with intents from multiple skills. For example, the user input “cancel
order” could match well with intents in multiple food delivery skills. Default value:
0.8

• Explicit Invocation Confidence Threshold: The minimum confidence score
required for matching with input that contains explicit invocation of the skill. Default
value: 0.8

• Exit Prompt Confidence Threshold: The minimum confidence score required for
exiting without prompting the user for confirmation. The default value of 1.01,
which is nominally set outside of the 0 to 1 range for confidence thresholds,
ensures that a confirmation prompt will always be displayed. If you want the user
to be able to exit without a confirmation prompt when the confidence score for
exiting is high, lower this to a threshold that you are comfortable with. Default
value: 1.01

In addition to the digital assistant routing parameters, there are also the following
routing parameters for skills.

• Confidence Threshold: The minimum confidence score required to match a skill's
intent with user input. If there is no match, the transition action is set to
unresolvedIntent. Default value: 0.7

• Confidence Win Margin: Only the top intent that exceeds the confidence
threshold is picked if it is the highest ranking intent which exceeds the confidence
threshold. If other intents that exceed the confidence threshold have scores that
are within that of the top intent by less than the win margin, these intents are also
presented to the user. Default value: 0.1

Adjust Routing Parameters
To access a digital assistant's routing parameters:

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click and select the Configuration
tab.

To access a skill's routing parameters:

1. Click to open the side menu, select Development > Skills, and open your
skill.

2. In the left navigation for the skill, click and select the Configuration tab.

Chapter 19
The Routing Model

19-14

See Illustrations of Routing Behavior for examples of using the tester to diagnose routing
behavior. In addition, the Introduction to Routing in Digital Assistants tutorial also provides
some examples of these parameters in action.

Note:

Starting in Release 21.04, resource bundle keys are automatically generated for
properties with text values. You can edit the values for these keys on the Resource
Bundles page for the digital assistant. In the left navigation of the digital assistant,
click and then click the Configuration tab to access these keys.

The Routing Tester
When you test a digital assistant, you can open the Routing tab in the tester to see:

• The intents that match the utterance that you typed in the tester.

• An overview of the routing steps taken.

• A list of any rules that have been applied to the routing.

• A list of any intents that have been matched along with their confidence scores.

In addition the values of the various confidence threshold settings are shown so that you
can compare them with the confidence scores for the intents.

To use the routing tester for a digital assistant:

1. Open the digital assistant that you want to test.

2. At the top of the page near the Validate and Train buttons, click .

3. In the Channel dropdown, select the channel you plan to deploy the digital assistant to.

By selecting a channel, you can also see any limitations that this channel may have.

4. In the text field at the bottom of the tester, enter some test text.

5. In the tester, click the Routing tab.

Here’s what the Routing tab looks like for the ODA_Pizza_Financial_Retail sample digital
assistant after entering “what is account my balance” in the tester.

Chapter 19
The Routing Tester

19-15

Illustrations of Routing Behavior
Here are some examples that, with the assistance of the tester, illustrate how routing
works in digital assistants.

Example: Route to Flow
Here’s a fairly standard example of the digital assistant evaluating the user’s input and
routing the conversation to a specific flow.

First, here’s the user’s input and the digital assistant’s initial response:

In this case, the response from the digital assistant “How old are you?” indicates the
start of the Pizza Skill’s OrderPizza flow (which requires the user to be 18 or over to
order a pizza).

Here’s the intent evaluation that leads to this response:

Chapter 19
Illustrations of Routing Behavior

19-16

As you can see, the digital assistant found that there was a strong match for Pizza Skill
(100%) and a weak match for Retail Skill (21.56%).

• There were no matches for any system intents.

• There was a strong match for Pizza Skill (100%) and a weak match for Retail Skill
(21.56%).

• Since the match for Pizza Skill exceeded the candidate skills confidence threshold (40%),
the digital assistant evaluated flows in Pizza Skill.

You can adjust the value of the Candidate Skills Confidence Threshold in the digital
assistant's configuration settings. You get there by clicking and selecting the
Configuration tab.

• In Pizza Skill, it found one match (OrderPizza).

• Since that match exceeded the confidence threshold for flows in Pizza Skill (and there
were no other qualifying matches to consider), the OrderPizza flow was started.

You can set the confidence threshold for the skill in the skill's digital assistant settings.
You get there by opening the skill, clicking and selecting the Digital Assistant tab.

Example: Disambiguating Skill Intents
Here’s a simple example showing when the user needs to be prompted to clarify her intent.

First, here’s the conversation:

Chapter 19
Illustrations of Routing Behavior

19-17

As you can see, the digital assistant is unsure of what the user wants to do, so it
provides a prompt asking the user to choose among a few options (disambiguate).

In the Intent Calls section of the tester, you can see the data that led to the digital
assistant to provide this prompt. Both the Fin Skill and Retail Skill candidate skills got
high scores (100%). And then for each of those skills, the router identified a candidate
flow that also scored highly (also 100%).

Since the GiftCardBalance and Balances candidate flows exceed the confidence
threshold, and since difference between their scores is less than the Confidence Win
Margin value (10%), the digital assistant asks the user to choose between those
intents.

Example: Explicit Invocation
Here’s an example showing where use of explicit invocation affects routing behavior by
superceding other considerations, such as current context.

Chapter 19
Illustrations of Routing Behavior

19-18

Here's the conversation:

In this case, the user has started using the digital assistant to check for her balance in Retail
Skill but then decides to ask for the balance for her gift certificate in Retail Skill. Since she
uses explicit invocation (calling it by it's invocation name, which is also Retail Skill, and
which is set on the page for the skill within the digital assistant), the router gives preference to
the Retail Skill when trying to resolve the intent, even though the user is in the context of
Financial Skill.

Here's where the tester calls out the routing rule:

And here's how the intent calls are handled:

Chapter 19
Illustrations of Routing Behavior

19-19

As the image shows, there is a match for the current context, but it is ignored. The
match for explicit invocation of the Retail Skill's GiftCardBalance (100%) wins.

Example: Context Awareness
Here’s an example of how the tester illustrates context-aware routing behavior.

First, here’s the conversation:

Chapter 19
Illustrations of Routing Behavior

19-20

As you can see, the user starts with the question" what's my balance", goes through a prompt
to disambiguate between the Fin Skill and Retail skill, and eventually gets her checking
account balance. Then she enters "what's my balance" again, but this time doesn't have to
navigate through any disambiguation prompts. The info in the Routing tab helps to explain
why.

In the Rules section of the tab, you see the following:

Chapter 19
Illustrations of Routing Behavior

19-21

So, even though there are matching intents from the Retail skill, they are ignored. The
Intent Calls section shows all of the matching intents, but the entry for “Current
Context”, which contains only the Fin Skill’s Balances intent, is decisive.

You can adjust the value of the Consider Only Current Context Threshold in the digital
assistant's configuration settings. You get there by clicking and selecting the
Configuration tab.

Tutorial: Digital Assistant Routing
You can get a hands-on look at digital assistant routing by walking through this tutorial:
Introduction to Routing in Digital Assistants.

Test Cases for Digital Assistants
You can create test suites and compilte test cases into them using the Test Suites
feature in the Conversation Tester. You can create the test cases either by recording
conversations in the tester or by writing them in JSON.

These test cases remain a part of the digital assistant's metadata and therefore persist
across versions. In fact, digital assistants that you pull from the Skill Store very well
may have a body of such tests that you can then run to ensure that any modifications
that you have made have not broken any of the digital assistant's basic functions.

Chapter 19
Tutorial: Digital Assistant Routing

19-22

The Test Suites feature works the same way for digital assistants as it does for skills. See
Test Suites and Test Cases for details.

Test Routing with the Utterance Tester
The Utterance Tester (accessed by clicking Test Utterances in the Skills page), enables you
to test the digital assistant's context awareness and its routing by entering test utterances.
Like utterance testing at the skill level, you can use the Utterance Tester for one-off testing, or
you can use it to create test cases that persist across each version of the digital assistant.

Within the context of utterance testing for a digital assistant, your objective is not to test an
entire conversation flow. (You use the Conversation Tester for that.) You are instead testing
fragments of a conversation. Specifically, you're testing if the digital assistant routes to the
correct skill and intent and if it can transition appropriately from an initial context.

Quick Tests
To test your digital assistant's routing:

1. Select the skill for the initial context or select Any Skill for tests with no specific skill
context (a test emulating an initial visit to the digital assistant, for example).

2. If the skills resgistered to the digital assistant support multiple native languages, choose
the testing language.

3. Enter a test utterance.

4. Click Test and then review the routing results. Rather than discarding this test, you can
add it as a test case by first clicking Save as Test Case and then choosing a test suite.
You can then access and edit the test case from the Test Cases page (accessed by
clicking Go to Test Cases).

Test Cases
You can create a digital assistant utterance test case in the same way that you create a skill-
level test case: by saving a quick test as a test case in the Utterance Tester, using the New
Test Case dialog, which you open by clicking + Test Case, or by importing a CSV. However,
because digital assistant test cases focus on skill routing and context transitions as well as
expected intents, they include values for expected skill and initial context (a skill within the
digital assistant).

Creating a test run of test cases is likewise the same as creating a skill-level test case: you
can filter the test cases that you want to include in a run, and after the run has concluded,
you review the results and the distribution analytics.

Create a Routing Test Case
To create a single test case:

1. Click + Test Case.

2. Complete the New Test Case dialog:

• If needed, disable the test case.

• Enter the test utterance.

• Select the test suite.

Chapter 19
Test Routing with the Utterance Tester

19-23

• Enter the expected skill.

• Select the expected intent.

• If the skills registered to the digital assistant are multi-lingual, you can select
the language tag and the expected language.

• Select the initial context: select a skill, or choose Any Skill for no context).

3. Click Add to Suite. You can then edit or delete the test case from the Test Cases
page. You can test context awareness by combining the initial context with the
expected skill. Through these combinations, you can find out if users are likely to
get stuck in a skill because the user's context has not change even after a request
to another skill. If you want to find out how your digital assistant routes a request
when no context has been set, choose Any Skill.

4. Click Add to Suite.

Add Test Cases for System Intents
If you've trained the system intents with additional utterances, you can test the intent
matching by creating system-intent specific test cases. If a test cases passes, it means
that the context routing based on the system-intent has been preserved in light of the
updated training.

The process for creating these test cases is the same as creating a test case for
routing and context, but for system intent testing, you're not testing for an expected
skill. You're instead verifying that the system intent does not clash with either other
system intents or the intents belonging to the member skills.

• Choose the digital assistant for Expected Skill.

• Choose one of the system intents (exit, help, unresolvedIntent) for Expected
Intent.

Note:

You can't test the Welcome system intent.

• To check the system intent routing within a specific skill context, choose from a
skill in the Initial Routing menu.

Import Test Cases for Digital Assistant Test Suites
You can create test cases and test suites in bulk by importing a CSV as you would at
the skill-level (that is, clicking More > Import in the Test Cases page). Digital assistant
CSVs share the same columns with skill CSVs, but also include the initialContent
and expectedSkill columns:

• testSuite – If you don't name a test suite, the test cases will be added to Default
Test Suite.

• utterance – An example utterance (required).

• expectedIntent – The matching intent (required).

• enabled – TRUE includes the test case in the test run. FALSE excludes it.

• languageTag – Optional

Chapter 19
Test Routing with the Utterance Tester

19-24

• expectedLanguageTag – Optional

• initialContext – The name of a skill or Any Skills to test the utterance with no routing
context.

• expectedSkill – Leaving this field blank is the equivalent of choosing unresolvedSkill.

Chapter 19
Test Routing with the Utterance Tester

19-25

20
Languages and Digital Assistants

You can develop both single-language and multi-language digital assistants. Though the
majority of the language-related work is done in the digital assistant's skills, you also need to
ensure that the digital assistant itself detects the user's language and presents welcome,
help, disambiguation, and other messages in that language.

These are your high level options:

• Create a single-language or multi-language digital assistant for skills that use Oracle
Digital Assistant's native language support.

In the digital assistant, you specify the target languages and then add skills that support
those languages. When users initiate conversations in the digital assistant, the language
is automatically detected and then used by the digital assistant for the duration of the
conversation.

For output, you define resource bundle entries for each language.

See also Native Language Support for Skills.

• Create a multi-language digital assistant based on a translation service, in which
you:

– Add a translation service.

– Add skills that are set up with a translation service, are configured with the Detect
Language component, and have their training data in English.

– Optionally (but preferably), add resource bundles for one or more languages for the
digital assistant's labels, prompts, and messages.

See also Multi-Language Skills with Auto-Translation.

• Create a non-English single-language digital assistant based on a translation
service, in which you:

– Add a translation service.

– Add skills that are set up with a translation service, are configured with the Detect
Language component, and have their training data in the target language of the skill
and digital assistant.

– Provide translations for the various output strings (using resource bundles or directly
in the fields for the properties).

See also Non-English Single-Language Skill Using a Translation Service.

Choosing Between Native Language Mode and Translation
Service Mode

When you create skills and digital assistants, you can use either Oracle Digital Assistant's
native language support or you can use a 3rd-party translation service. However, in each skill
and digital assistant, you can only use one of those approaches. A skill can only be added to
a digital assistant if it uses the same translation approach as the digital assistant

20-1

You will probably want to use the native support for languages if all of the languages
that you are targeting are on the list of natively-supported languages. By using the
native language support:

• You can build the skills' and digital assistant's training model with data from all of
your target languages. (When you use the translation service approach, you can
only provide training data for the predominant language.)

• You avoid paying a 3rd-party service for translation charges.

• You don't need to give a 3rd-party service access to your skill's training data or text
from the user conversations.

Use a translation service if you want to support any languages that are not supported
natively.

Native Language Support in Digital Assistants
Starting with Platform Version 20.12, you can develop digital assistants with native
language support. For such digital assistants, you don't need to use a 3rd-party
translation service to handle user input and skill responses in those languages.

A digital assistant with native language support must contain skills with native
language support. To learn about developing such skills, see Native Language Support
for Skills.

Set Up a Digital Assistant in Native Language Mode
Here are the initial steps for setting up a digital assistant in Natively-Supported
language mode:

1. Click to open the side menu, select Development > Digital Assistants, and
click New Digital Assistant.

2. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your digital
assistants, such as the way the Natural Language Understanding (NLU)
engine resolves intents and which languages are supported natively.
For the natively-supported language mode, you need to set this to 20.12 or
higher.

See Platform Version.

• Primary Language: This determines both the default language for the digital
assistant and whether the digital assistant will use native support for that
language or rely on a translation service.
In this field, you need to select one of the languages in the Natively-
Supported section of the dropdown.

3. If you need to add any additional languages to the digital assistant:

a. In the left navigation of the newly created digital assistant, click .

b. Click Add Language and select the language you want to add.

Chapter 20
Native Language Support in Digital Assistants

20-2

Complete and In-Progress Languages
In digital assistants based on Oracle Digital Assistant's native language support, the
languages that you configure for the digital assistant should match the languages that are
configured for the skills.

To help you monitor whether the languages configured for your skills and digital assistant are
in alignment, a check is run whenever you add a language or a skill to the digital assistant
and each language is marked as either Complete or In-Progress:

• Complete languages are those in which each of the digital assistant's skills are
configured for that language.

• In-progress languages are those languages for which one or more skills are not
configured.

You can find the list of complete and in-progress languages on the General tab of the digital
assistant's Settings page ().

Note:

It's also possible to add skills that are configured for a language that the digital
assistant isn't configured for. These languages are not reflected on the digital
assistant's Settings page.

Switch from a Translation Service to Native Language Support
If you want to take advantage of Oracle Digital Assistant native language support in a digital
assistant that has already been configured to use a translation service, follow these general
steps:

1. For all of the skills in the digital assistant, create versions that use the native language
support.

See Create a Skill with Natively-Supported Languages.

For the list of natively-supported languages, see Natively-Supported Languages. (If any
of the languages that you want to support aren't on that list, you need to continue using
translation service mode.)

2. Create a new version or clone of the digital assistant.

a. Click to open the side menu and select Development > Digital Assistants.

b. In the tile for the digital assistant that you want to version or clone, click and select
Version or Clone.

c. Fill in the required fields and click Create.

3. Remove all of the skills from the new version or clone that you just created.

This is necessary, because you can't create switch the digital assistant to use the native
language support if it contains any skills that are in translation service mode.

4. Create a new version or clone of that modified digital assistant, select Platform Version
20.12 or higher, and select the Natively-Supported language mode.

Chapter 20
Native Language Support in Digital Assistants

20-3

With this step, you are able to preserve the configuration that you have done for
the digital assistant, even though you have to handle the skills separately.

5. Add the native-language support versions of the skills to the digital assistant.

Language Detection in Digital Assistants with Natively-Supported
Languages

In digital assistants (or standalone skills) that use multiple natively-supported
languages, the digital assistant can automatically detect the user's language at the
beginning of the session. Here's how it works:

• The language is automatically detected for digital assistants and skills that are
configured with multiple natively-supported languages.

– If there is only one (natively-supported) language in the digital assistant,
language detection is turned off.

– If the digital assistant uses a translation service, the translation service
handles the language detection, not the digital assistant.

• The language is not automatically detected if the digital assistant is accessed
through a channel where the profile.languageTag or profile.locale variable has
been set.

• The language is detected in the first utterance of the conversation and not updated
in the session, even if the user switches languages.

• By default, the channel session last 7 days before it expires.

Digital Assistants with Translation Services

Set Up a Non-English Single-Language Digital Assistant in Translation
Service Mode

Here are the initial steps for setting up a non-English single-language digital assistant
in Translation Service language mode:

1. Click to open the side menu, select Development > Digital Assistants, and
click New Digital Assistant.

2. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your digital
assistants, such as the way the Natural Language Understanding (NLU)
engine resolves intents and which languages are supported natively.
If you are starting with a new digital assistant, you should select the most
recent version available, since support for that version will last the longest.

See Platform Version.

• Primary Language: This field only appears if you have selected Platform
Version 20.12 or higher.
In this field, you need to select your target language in the Translation
Service section of the dropdown.

Chapter 20
Digital Assistants with Translation Services

20-4

Caution:

Be sure that you have selected from the Translation Service section. If
you select from the Natively-Supported section, the digital assistant will
only accept skills that use Natively-Supported mode.

If this field doesn't appear, the language of the digital assistant is determined by the
language of the first skill that you add to it. In this case, this language is referred to as
the predominant language instead of the primary language.

Set Up a Multi-Language Digital Assistant in Translation Service Mode
Here are the initial steps for setting up a multi-language digital assistant in Translation
Service language mode:

1. Click to open the side menu, select Development > Digital Assistants, and click
New Digital Assistant.

2. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your digital
assistants, such as the way the Natural Language Understanding (NLU) engine
resolves intents and which languages are supported natively.
If you are starting with a new digital assistant, you should select the most recent
version available, since support for that version will last the longest.

See Platform Version.

• Primary Language: This field only appears if you have selected Platform Version
20.12 or higher.
In this field, you need to select English in the Translation Service section of the
dropdown.

Caution:

Be sure that you have selected from the Translation Service section. If
you select from the Natively-Supported section, the digital assistant will
only accept skills that use Natively-Supported mode.

If this field doesn't appear, the language of the digital assistant is determined by the
language of the first skill that you add to it. In this case, this language is referred to as
the predominant language instead of the primary language.

Add a Translation Service to a Digital Assistant
1. If you haven't done so already, configure a translation service for your Digital Assistant

instance by:

a. Clicking to open the side menu and selecting Settings > Translation Service.

b. Clicking + Service.

c. Entering the URL and Authorization token for the Microsoft Translator service or the
Google Translation API in the Translation Services dialog.

Chapter 20
Digital Assistants with Translation Services

20-5

Refer to the documentation for Microsoft Translator and Google Translation API to
find out how to get the URL and access token.

Important:

To use the Google Translation API, you need to generate the API Key.
You create this key from the GCP Console (APIs & services >
Credentials). To find out more, see the Google Cloud Platform
Documentation.

2. Set the translation service in your digital assistant by:

a. Clicking to open the side menu, selecting Development > Digital
Assistants, and selecting your digital assistant.

b. In the digital assistant's left navbar, clicking the Settings() icon and
selecting the General tab.

c. Navigating to the Translation Service dropdown and selecting your
translation service.

Enable Language Detection in Translation-Enabled Digital Assistants
By default, if a digital assistant is set up with a translation service, the digital assistant
will detect the user's language in the same way that a skill with the Detect Language
component does.

However, you also need to make sure that the skills in the digital assistant use the
language that is detected by the digital assistant. When a skill is part of a digital
assistant, the digital assistant translates user input into English and passes that
translated English text to the skill. Therefore, by default, the skill's Detect Language
component would detect English as the language and set the profile.LanguageTag
variable to English, even though the user entered non-English text.

To prevent this switch back to English in a skill with a dialog flow developed in Visual
mode, you need to set the Detect Language component's Existing Profile Language
Tag property to True in each skill.

To prevent this switch back to English in a YAML-based skill, you need to add the
following property to the Detect Language component in each skill:

 useExistingProfileLanguageTag: true

This ensures that the skill will honor the value of the profile.LanguageTag variable
that is set by the digital assistant.

Here's an example of a skill's System.DetectLanguage component with the
useExistingProfileLanguageTag set:

 detectLang:
 component: "System.DetectLanguage"
 properties:
 useExistingProfileLanguageTag: true

Chapter 20
Digital Assistants with Translation Services

20-6

https://cloud.google.com/docs/authentication/api-keys#creating_an_api_key
https://cloud.google.com/docs/authentication/api-keys#creating_an_api_key

 transitions:
 ...

Note:

You can add that property to all of your skills, even if they are not all used in a
digital assistant. If the skill isn't part of a digital assistant, the property has no effect.

Translating Output Text
For user-visible text in a digital assistant that uses a translation service, you can use either of
these translation approaches:

• Use the translation service that is configured for the digital assistant.
If you use this approach, you just need to have your output messages in English. No
other configuration is needed. The translation service that you have configured will
automatically translate any output messages to the user's language.

• Use a resource bundle to translate the output messages yourself.

Note:

For any output messages that don't have a reference to a resource bundle key,
the translation service will be automatically used to translate the messages.

Explicit Invocation in Translated Digital Assistants
In digital assistants that use a translation service, explicit invocation of skills is recognized by
the digital assistant in both the detected language and in English.

Conditions for Adding a Skill to a Digital Assistant
When you try to add a skill to a digital assistant, you are only offered skills that are compatible
with the digital assistant. Here are the compatibility rules:

• The skill and the digital assistant must both support its target languages in the same way
(either natively or through a translation service).

• For digital assistants that are created in Natively-Supported Language Mode, the skill
needs to support all of the languages that are supported in the digital assistant.

– If the skill supports more languages, the digital assistant will ignore those languages.

– If the skill is published and supports only a subset of the digital assistant's languages,
it can't be added.

– If the skill is in draft mode, it can be added, even if it only supports a subset of the
digital assistant's languages. However, you need to add any missing languages to
the skill before you publish it.

Chapter 20
Conditions for Adding a Skill to a Digital Assistant

20-7

Note:

If you upgrade a digital assistant (whether through cloning, versioning, or
rebasing) and change its language mode, the skills in the digital assistant will
be disabled. To get those skills to work, you can replace them with versions
that are configured with the same language mode of the digital assistant.

Resource Bundles for Digital Assistants
When you want to control the wording for your digital assistant’s responses in multiple
languages, use resource bundles. You can provide resources bundles for as many
languages as you need.

The process of translating with resource bundles consists of the following steps:

• Identify the fields and properties that need to be translated.

• Create resource bundle keys for any of those fields that don't already have them
and provide values for the default language.

• For each key, enter translated values in as many languages as you need.

• For the fields and properties that you have provided translations for, enter
references to the corresponding resource bundle key. For simple strings, use the
following expression format (where rb is an identifier reserved for the resource
bundle):

${rb.BundleKeyName}

For properties that use variables, use the following expression format:

${rb('bundleKey', variableForParam0, variableForParam1)}

Translatable Strings in Digital Assistants
You can find the translatable strings in the following two places:

• On the Skills () page of the digital assistant.
Here you'll find the strings that are primarily used for the help cards that are
displayed when a user asks for help in the digital assistant and when the digital
assistant first greets the user.

For each skill, you can translate

– The One-sentence Description, Description, and Invocation fields.

– The Example Utterances.

• On the Settings () page, within the Configurations tab, within the
Conversation Parameters section. Starting in platform version 21.04, resource
bundle entries are automatically created for these settings.

Chapter 20
Resource Bundles for Digital Assistants

20-8

Create and Edit Resource Bundle Keys
Resource bundle keys are used to identify output text that needs to be translated and provide
values in one or more languages. For digital assistants that use platform version 21.04 or
later, keys are generated automatically for digital assistant's configuration settings. For other
strings (and for configuration settings in digital assistants that are on platform version 21.02
or earlier), you need to create keys manually.

To create and populate resource bundle keys for a digital assistant:

1. In the digital assistant's left navbar, click .

2. Click Add Bundle.

3. In the Key field, enter a value that you can use to identify the field or property that it
corresponds to.

For example, if the key is for the first example utterance for a pizza skill, you could use
something like PizzaSkillExampleUtterance1.

4. Enter the text for the entry in the language that you want to use as the default language
for the digital assistant. (The default language doesn't have to be in English. It's merely
the language that is used for output messages if there are no translations for the detected
language.)

For skill-specific properties (such as Invocation and Example Utterances), you may
wish to use the values inherited from the skills.

For digital assistant conversation parameters (such as Acknowledgement Response),
you may wish to merely use the default values for those properties if your digital
assistant's default language is English.

Note:

For properties that use system variables as parameters to do things like access
the name of an intent or skill, use substitution codes ({0}, {1}, etc.) for the
parameters. Then, in the property's reference to the bundle key, the given
system variables can be specified.

5. Optionally, fill in the Annotation field to help other developers understand what the string
is for and where it is used.

6. Click Create Entry.

7. To add an additional language version of the string, click Add Language.

8. In the Create Entry dialog, fill in the following fields and click Create.

• Language—Add an IETF BCP 47 language tag like fr for French or de for German.

• Text—The output string for that language.

• Annotation —(Optional). Information to help other developers understand what the
string is for and where it is used.

9. For each additional string that you need to translate, create another entry by clicking Add
Key and repeating steps 3 through 8.

Chapter 20
Resource Bundles for Digital Assistants

20-9

Reference Resource Bundle Keys for Help Cards in a Digital Assistant
When a digital assistant welcomes the user or presents help information for the skills it
contains, it uses values from the Skills page in the digital assistant to populate the
welcome and help cards. You can translate the information that appears on these help
cards by editing some of the fields on the Skills page.

1. In the left navigation for the digital assistant, click

2. Select a skill.

3. Update the One-sentence Description, Description, and Invocation fields with
references to resource bundles in the form:

${rb.BundleKeyName}

For example, you could use the following for a reference to a key for a pizza skill's
one-line description.

${rb.PizzaSkillShortDescription}

4. In the Examples section of the page, hover over an example, click its Edit icon,
and replace the text with a reference to a resource bundle key as above.

5. Repeat the previous step for the skill's other example utterances.

6. Repeat the previous four steps for each skill.

Note:

When you update the version of a skill in the digital assistant, you are
presented with the Overwrite Interaction Model switch. If you keep this
switch in the ON position, the values of the invocation and the example
utterances will be updated with values set on the Digital Assistant tab of the
updated skill's Settings page. This may mean you will need to translate the
invocation and example utterances again.

Reference Resource Bundle Keys for Prompts and Messages
Digital assistants have a number of configuration properties which are used to display
various prompts and messages.

To set the output for a configuration property, you reference the resource bundle
context variable and message key. For example: ${rb('WhatType')}. You can also
use dot notation, e.g.: ${rb.WhatType}

1. In the digital assistant's left navbar, click the Settings () icon and select the
Configurations tab.

2. For the properties within the Conversation Parameters section of the page, enter
the references to resource bundle keys that you have defined for each of them.

Chapter 20
Resource Bundles for Digital Assistants

20-10

For example, if you have a key in your resource bundle called
daAcknowledgementResponse for the Acknowledgement Response property, you would
enter the following in the Acknowledgement Response field:

${rb('daAcknowledgementResponse')}

Note:

Starting with Release 21.04, these resource bundle keys are generated
automatically and the conversation parameters are set to reference these bundle
keys.

System Variables in Resource Bundles
You can also use parameters in values for bundle keys, which enables you to make use of
system variables in the output. For example, the default value of the Exit Flow Confirmation
property is:

Exited ${system.routingFromIntent} in ${system.routingFromSkill}.

You can preserve the references to the system variables (in this case,
system.routingFromIntent and system.routingFromSkill) in your translated responses by
doing the following:

1. In the value for the corresponding resource bundle key, insert {0}, {1}, etc. as
substitution codes for each system variable. For example, in the English (or default) entry
you create for the Exit Flow Confirmation property, you could use the following text:

Exited {0} in {1}.

2. Then, in the value of the property, enter the reference to the bundle key in the following
format:

${rb('bundleKey', '${systemVariableForParam0}', '$
{systemVariableForParam1}')}

For example, this is what it would look like for the Exit Flow Confirmation property (where
daExitFlowConfirmation is the corresponding bundle key):

${rb('daExitFlowConfirmation', '${system.routingFromIntent}', '$
{system.routingFromSkill}')}

Export and Import Resource Bundles
You can export and import resource bundles in the form of a CSV file, which enables you to
work with the bundles offline.

The CSV file needs to have the following columns:

• languageTag

Chapter 20
Resource Bundles for Digital Assistants

20-11

• key
• message
• annotation
To export a CSV file with the existing resource bundle:

• On the Resource Bundle page for your skill or digital assistant, click to export a
CSV file with the existing resource bundle.

Even if you haven't yet added any keys to the resource bundle, a file with the
required format of the CSV will be exported.

To import a resource bundle file:

• On the Resource Bundle page for your skill or digital assistant, click .

Resource Bundle Entries for Digital Assistant Configuration Settings
Starting with platform version 21.04, resource bundle entries are automatically created
for digital assistant configuration settings. If your digital assistant is based on platform
version 21.02 or earlier, you can upgrade to 21.04 or higher to have these entries
generated for you.

Here is a list of all of the system resource bundle entries for digital assistants along
with their default values.

Resource Bundle Entry Default English Text Entry Description

systemConfiguration_aut
oNumberPrefixes

1,2,3,4,5,6,7,8,9,10,11
,12,13,14,15,16,17,18,1
9,20

The prefixes used for auto-
numbering postback action
labels.

systemConfiguration_aut
oNumberPrefixSeparator

. The separator used between
the number prefix and the
postback action label.

systemConfiguration_con
versationAnswerContinue

No, continue based on
my previous response

The label for the answer
'continue'.

systemConfiguration_con
versationAnswerNo

No The label for the answer 'no'.

systemConfiguration_con
versationAnswerTryAgain

No, try again The label for the answer 'try
again'.

systemConfiguration_con
versationAnswerYes

Yes The label for the answer 'yes'.

systemConfiguration_con
versationEventInterrupt
Prompt

You have just received
a notification from
{0}. Would you like to
switch to it?

The prompt to display when a
notification interrupts a flow.

systemConfiguration_con
versationExitFlowConfir
mation

Exited {0} in {1}. The confirmation message to
display when exiting a flow in
skill.

systemConfiguration_con
versationExitHiddenFlow
Confirmation

Exited. The confirmation message to
display when exiting a flow in a
skill that is not exposed.

systemConfiguration_con
versationExitPrompt

Do you want to exit {0}
in {1} now?

The prompt to display before
exiting a flow.

Chapter 20
Resource Bundles for Digital Assistants

20-12

Resource Bundle Entry Default English Text Entry Description

systemConfiguration_con
versationExitSkillConfi
rmation

Exited {0}. The confirmation message to
display when exiting a skill.

systemConfiguration_con
versationExplicitSkillP
rompt

This will exit current
conversation. Do you
want to go to {0} now?

The prompt to display when
exiting current conversation to
go to a new skill due to explicit
invocation.

systemConfiguration_con
versationFlowSelectionP
rompt

Do you want to go to: The prompt to display a list of
flows to choose from.

systemConfiguration_con
versationFlowSelectionV
alue

{0} in {1} The flow name to display as a
selection.

systemConfiguration_con
versationHelpNoSkillPro
mpt

You don't have any
skills registered yet.
Register one or more
skills so that you can
see the digital
assistant in action.

The prompt to display when no
skill bot is registered.

systemConfiguration_con
versationHistoryActionD
isabledPrompt

Sorry, this choice is
no longer available.

Message to display when a
user clicks on a choice in the
conversation history when the
Enable Clicking History
Actions setting is not enabled.

systemConfiguration_con
versationHistoryActionI
nvalidPrompt

Sorry, this choice is
no longer available.

Message to display when a
user clicks on a choice in the
conversation history that can
no longer be processed.

systemConfiguration_con
versationInterruptMessa
ge

Switching to {0} in {1}
now.

The message to display when
a flow is interrupted to start a
new flow when user is not
prompted.

systemConfiguration_con
versationInterruptPromp
t

Do you want to switch
to {0} in {1} now?

The prompt to display when
interrupting a flow to start a
new flow.

systemConfiguration_con
versationInterruptToUnM
atchedFlowPrompt

No match found in {0}.
Do you still want to
switch to it?

The prompt to display when
interrupting a flow to go to a
different skill but that skill
doesn't have a matching flow.
This might happen when a
user interrupts a flow with
input that contains an explicit
invocation, but with a phrase
that doesn't match an intent in
the invoked skill.

systemConfiguration_con
versationNoMatchPrompt

No matches were found.
Here are some things
you can do:

The prompt to display (before
the help card) when no
matches were found.

systemConfiguration_con
versationNothingToExitP
rompt

There's nothing to
exit. You don't have
any requests in
progress.

The prompt to display when
not in a skill context and the
built-in exit intent is invoked.

Chapter 20
Resource Bundles for Digital Assistants

20-13

Resource Bundle Entry Default English Text Entry Description

systemConfiguration_con
versationOdaAck

Okay A simple acknowledgement
bot message.

systemConfiguration_con
versationOdaExitFlowSel
ection

Exit conversation The label for the option to exit
the flow.

systemConfiguration_con
versationOdaExitSkillSe
lection

Exit {0} The label for the option to exit
the skill.

systemConfiguration_con
versationOdaHelpCardDet
ailFooter

Enter the number prefix
to execute the action
of your choice, or
enter '0' to go back to
the skill list.

The footer for the skill's card
detail when optimization of
help card rendering for text-
only channels is enabled.

systemConfiguration_con
versationOdaHelpCardDet
ailHeader

Here are some sample
actions:

The header for the skill's card
detail when optimization of
help card rendering for text-
only channels is enabled.

systemConfiguration_con
versationOdaHelpCardLis
tFooter

Enter skill number to
see sample actions
supported by the skill.

The footer for the skill's card
list when optimization of help
card rendering for text-only
channels is enabled.

systemConfiguration_con
versationOdaHelpNextPro
mpt

Show more Help show more skills prompt.

systemConfiguration_con
versationOdaHelpPrompt

Welcome! Here are some
things you can do:

The help message to display
above the help card.

systemConfiguration_con
versationOdaNoneOption

None of the above Label of the None of the above
option in case of multiple flow
matches.

systemConfiguration_con
versationQnaLabel

Ask Question The label for Q & A action.

systemConfiguration_con
versationResumeMessage

Resuming {0} in {1}
now.

The message to display when
an interrupted flow is
resumed.

systemConfiguration_con
versationResumePrompt

Do you want to resume
{0} in {1} now?

The prompt to display when
resuming an interrupted flow.

systemConfiguration_con
versationSkillExitOnHel
p

Exit conversation and
view assistant help

The label for the option to exit
a skill and display the digital
assistant help card.

systemConfiguration_con
versationSkillHelpPromp
t

You are at {0}. Here
are some things you can
do:

The help message to display
for a skill bot above the help
card.

systemConfiguration_con
versationSkillViewHelpA
gain

View current skill help
again

The label for the option to
display a skill's help card
again.

systemConfiguration_con
versationSkillWelcomeFl
owSelection

Welcome The label for the option to go
to the welcome state.

Chapter 20
Resource Bundles for Digital Assistants

20-14

Resource Bundle Entry Default English Text Entry Description

systemConfiguration_con
versationSkillWelcomePr
ompt

Welcome to {0}. The welcome message to
display for a skill bot.

systemConfiguration_con
versationStartMessage

Starting {0} in {1}
now.

The message to display before
the start of a flow.

systemConfiguration_con
versationStartPrompt

Do you want to start
with {0} in {1} now?

The prompt to display before
the start of a flow.

systemConfiguration_err
orExpiredSessionPrompt

Your session has
expired. Please start
again.

The message when the
session has expired.

systemConfiguration_err
orMaxStatesExceededProm
pt

Your session appears to
be in an infinite loop.

The message when the bot
appears to be in an infinite
loop.

systemConfiguration_err
orUnexpectedErrorPrompt

Oops I'm encountering a
spot of trouble. Please
try again later...

The message when there is
an unexpected error.

systemConfiguration_int
ernalWelcomeMessage

help The internal message sent to
the digital assistant when a
channel handles the event that
a new user has gotten access
to the digital assistant. The
reply to the internal message
is sent as welcome message
to the new user.

systemConfiguration_oau
thCancelPrompt

Authentication
canceled.

The message when OAuth
authorization is canceled.

systemConfiguration_oau
thSuccessPrompt

Authentication
successful! You can
return to the
conversation.

The message when OAuth
authorization succeeds.

Sample Resource Bundle Entries
If you'd like to use resource bundle entries for your configuration settings without upgrading
the platform version of the digital assistant to 21.04 or higher, here's a list of the
customization properties that you can translate along with suggested names for the bundle
keys and the expressions you'd use to reference those bundle keys from the fields for the
properties.

Property to Be
Translated

Suggested Name for
Bundle Key

Default English Text Expression to
Reference Bundle Key

Acknowledgement
Response

systemConfiguration
_conversationAcknow
ledgementResponse

Okay $
{rb.daAcknowledgeme
ntResponse}

Answer No systemConfiguration
_conversationAnswer
No

No ${rb.daAnswerNo}

Chapter 20
Resource Bundles for Digital Assistants

20-15

Property to Be
Translated

Suggested Name for
Bundle Key

Default English Text Expression to
Reference Bundle Key

Answer Yes systemConfiguration
_conversationAnswer
Yes

Yes ${rb.daAnswerYes}

Digital Assistant Exit
Flow in Selection

systemConfiguration
_conversationExitFl
owInSelection

Exit conversation $
{rb.daExitFlowInSel
ection}

Digital Assistant Exit
Skill in Selection

systemConfiguration
_conversationExitSk
illInSelection

Exit {0} $
{rb('daExitSkillInS
election', '$
{system.routingFrom
Skill}')}

Exit Current To Go to
New Skill Prompt

systemConfiguration
_conversationExitCu
rrentToGoToNewSkill
Prompt

This will exit
current
conversation. Do
you want to go to
{0} now?

$
{rb('daExitCurrentT
oGoToNewSkillPrompt
', '$
{system.routingToSk
ill}')}

Exit Flow Confirmation systemConfiguration
_conversationExitFl
owConfirmation

Exited {0} in {1}. $
{rb('daExitFlowConf
irmation', '$
{system.routingFrom
Intent}', '$
{system.routingFrom
Skill}')}

Exit Prompt systemConfiguration
_conversationExitPr
ompt

Do you want to exit
{0} in {1} now?

$
{rb('daExitPrompt',
'$
{system.routingFrom
Intent}', '$
{system.routingFrom
Skill}')}

Exit Skill Confirmation systemConfiguration
_conversationExitSk
illConfirmation

Exited {0}. $
{rb('daExitSkillCon
firmation', '$
{system.routingFrom
Skill}')}

Flow Information in
Selection

systemConfiguration
_conversationFlowIn
formationInSelectio
n

{0} in {1} $
{rb('daFlowInformat
ionInSelection', '$
{system.routingToIn
tent}', '$
{system.routingToSk
ill}')}

Flow Selection Prompt systemConfiguration
_conversationFlowSe
lectionPrompt

Do you want to go
to:

$
{rb.daFlowSelection
Prompt}

Chapter 20
Resource Bundles for Digital Assistants

20-16

Property to Be
Translated

Suggested Name for
Bundle Key

Default English Text Expression to
Reference Bundle Key

Help Cards - Skill
Detail Footer

systemConfiguration
_conversationHelpCa
rdsSkillDetailFoote
r

Enter the number
prefix to execute
the action of your
choice, or enter
'0' to go back to
the skill list.

$
{rb.daHelpCardsSkil
lDetailFooter}

Help Cards - Skill
Detail Header

systemConfiguration
_conversationHelpCa
rdsSkillDetailHeade
r

Here are some
sample actions

$
{rb.daHelpCardsSkil
lDetailHeader}

Help Cards - Skill List
Footer

systemConfiguration
_conversationHelpCa
rdsSkillListFooter

Enter skill number
to see sample
actions supported
by the skill.

$
{rb.daHelpCardsSkil
lListFooter}

Help Show more
prompt

systemConfiguration
_conversationHelpSh
owMorePrompt

Show more $
{rb.daHelpShowMoreP
rompt}

History action
disabled prompt

systemConfiguration
_conversationHistor
yActionDisabledProm
pt

Sorry, this choice
is no longer
available.

$
{rb.daHistoryAction
DisabledPrompt}

Interrupt Message systemConfiguration
_conversationInterr
uptMessage

Switching to {0} in
{1} now.

$
{rb('daInterruptMes
sage', '$
{system.routingToIn
tent}', '$
{system.routingToSk
ill}')}

Interrupt Prompt systemConfiguration
_conversationInterr
uptPrompt

Do you want to
switch to {0} in
{1} now?

$
{rb('daInterruptPro
mpt', '$
{system.routingToIn
tent}', '$
{system.routingToSk
ill}')}

Interrupt To Unmatch
Flow Prompt

systemConfiguration
_conversationInterr
uptToUnmatchFlowPro
mpt

No match found in
{0}. Do you still
want to switch to
it?

$
{rb('daInterruptToU
nmatchFlowPrompt',
'$
{system.routingToSk
ill}')}

Invalid History Action
Message

systemConfiguration
_conversationInvali
dHistoryActionMessa
ge

Sorry, this choice
is no longer
available.

$
{rb.daInvalidHistor
yActionMessage}

Label for Q & A systemConfiguration
_conversationLabelF
orQnA

Ask Question ${rb.daLabelForQnA}

Chapter 20
Resource Bundles for Digital Assistants

20-17

Property to Be
Translated

Suggested Name for
Bundle Key

Default English Text Expression to
Reference Bundle Key

No Matches Were
Found Prompt

systemConfiguration
_conversationNoMatc
hesWereFoundPrompt

No matches were
found. Here are
some things you can
do:

$
{rb.daNoMatchesWere
FoundPrompt}

No Skill Bot Prompt systemConfiguration
_conversationNoSkil
lBotPrompt

You don't have any
skills registered
yet. Register one
or more skills so
that you can see
the digital
assistant in
action.

$
{rb.daNoSkillBotPro
mpt}

None of the above systemConfiguration
_conversationNoneOf
TheAbove

None of the above $
{rb.daNoneOfTheAbov
e}

Nothing to Exit Prompt systemConfiguration
_conversationNothin
gToExitPrompt

There's nothing to
exit. You don't
have any requests
in progress.

$
{rb.daNothingToExit
Prompt}

Notification Interrupt
Prompt

systemConfiguration
_conversationNotifi
cationInterruptProm
pt

You have just
received a
notification from
{0}. Would you like
to switch to it?

$
{rb('daNotification
InterruptPrompt',
'$
{system.routingToSk
ill}')}

Resume Message systemConfiguration
_conversationResume
Message

Resuming {0} in {1}
now.

$
{rb('daResumeMessag
e', '$
{system.routingFrom
Intent}', '$
{system.routingFrom
Skill}')}

Resume Prompt systemConfiguration
_conversationResume
Prompt

Do you want to
resume {0} in {1}
now?

$
{rb('daResumePrompt
', '$
{system.routingFrom
Intent}', '$
{system.routingFrom
Skill}')}

Skill Bot Exit-On-Help
Label

systemConfiguration
_conversationSkillB
otExitOnHelpLabel

Exit conversation
and view assistant
help

$
{rb.daSkillBotExitO
nHelpLabel}

Skill Bot Help Prompt systemConfiguration
_conversationSkillB
otHelpPrompt

You are at {0}.
Here are some
things you can do:

$
{rb('daSkillBotHelp
Prompt', '$
{system.routingFrom
Skill}')}

Chapter 20
Resource Bundles for Digital Assistants

20-18

Property to Be
Translated

Suggested Name for
Bundle Key

Default English Text Expression to
Reference Bundle Key

Skill Bot View Help
Again Label

systemConfiguration
_conversationSkillB
otViewHelpAgainLabe
l

View current skill
help again

$
{rb.daSkillBotViewH
elpAgainLabel}

Skill Welcome Flow in
Selection

systemConfiguration
_conversationSkillW
elcomeFlowInSelecti
on

Welcome $
{rb.daSkillWelcomeF
lowInSelection}

Start Message systemConfiguration
_conversationStartM
essage

Starting {0} in {1}
now.

$
{rb('daStartMessage
', '$
{system.routingFrom
Intent}', '$
{system.routingFrom
Skill}')}

Start Prompt systemConfiguration
_conversationStartP
rompt

Do you want to
start with {0} in
{1} now?

$
{rb('daStartPrompt'
, '$
{system.routingFrom
Intent}', '$
{system.routingFrom
Skill}')}

Skill Bot Welcome
Prompt

systemConfiguration
_conversationSkillB
otWelcomePrompt

Welcome to {0}. $
{rb('daSkillBotWelc
omePrompt', '$
{system.routingFrom
Skill}')}

Expired Session Error
Prompt

systemConfiguration
_conversationExpire
dSessionErrorPrompt

Your session has
expired. Please
start again.

$
{rb.daExpiredSessio
nErrorPrompt}

Max States Exceeded
Error Prompt

systemConfiguration
_conversationMaxSta
tesExceededErrorPro
mpt

Your session
appears to be in an
infinite loop.

$
{rb.daMaxStatesExce
ededErrorPrompt}

OAuth Cancel Prompt systemConfiguration
_conversationOAuthC
ancelPrompt

Authentication
canceled.

$
{rb.daOAuthCancelPr
ompt}

OAuth Success
Prompt

systemConfiguration
_conversationOAuthS
uccessPrompt

Authentication
successful! You can
return to the
conversation.

$
{rb.daOAuthSuccessP
rompt}

Unexpected Error
Prompt

systemConfiguration
_conversationUnexpe
ctedErrorPrompt

Oops I'm
encountering a spot
of trouble. Please
try again later...

$
{rb.daUnexpectedErr
orPrompt}

Chapter 20
Resource Bundles for Digital Assistants

20-19

21
Digital Assistant Insights

For each digital assistant, you can view Insights reports, which are developer-oriented
analytics on usage patterns.

You can track metrics at both the user session level and at the conversation level. A user chat
session begins when a user contacts a digital assistant and ends either when a user has
closed the chat window or after the chat session expiration specified by the channel
configuration. You can toggle between the conversation and chat session reporting using the
Metric filter.

Insights tracks chat sessions at the source. In this case, it's the digital assistant that initiated
a chat session, not the digital assistant's constituent skills. Because users connect directly to
the digital assistant, the skills have no bearing on the chat session tracking.

Note:

Any in-progress chat sessions will be expired after the release of 21.12.

Chat Session Metrics for Digital Assistants
• Number of Sessions Initiated – The total number of chat sessions initiated by the digital

assistant.

• Ended – The number of chat sessions that ended explicitly by users closing the chat
window, or that have expired after the period specified by the channel configuration.

21-1

Note:

Any in-progress sessions will be expired after the release of 21.12.
Sessions initiated through the skill tester are expired after 24 hours of
inactivity. Currently, the functionality for ending a session by closing the
chat window is supported by the Oracle Digital Assistant Native Client
SDK for Web.

• Active – The chat sessions that remain active because the chat window remains
open or because they haven't yet timed out.

• Average User Responses per Session – The average number of responses
from users across the total number of sessions initiated by the digital assistant.
Every time a user asks a question, replies to the digital assistant, or interacts with
it is counted as a response.

• Session Trends – A comparison of the active, ended, and initiated sessions.
These metrics are displayed in proportion to one another on the donut chart, which
contrasts the totals for ended and active sessions against the total number of
initiated sessions. The trend line chart plot the counts for these metrics by date.

Conversation Metrics for Digital Assistants
With digital assistant Insights reports, you can find out:

• The number of conversations initiated from a digital assistant over a given time
period and their rate of completion.

Note:

Conversations are not the same as metered requests. To find out more
about metering, refer to Oracle PaaS and IaaS Universal Credits Service
Descriptions.

Chapter 21
Conversation Metrics for Digital Assistants

21-2

http://www.oracle.com/us/corporate/contracts/paas-iaas-universal-credits-3940775.pdf
http://www.oracle.com/us/corporate/contracts/paas-iaas-universal-credits-3940775.pdf

• The popularity of the skills registered to a digital assistant as determined by the traffic to
each skill.

These reports display data when Enable Insights, located in the General page of Settings
 is switched on. To access the reports, open a digital assistant and then select in its left

navbar.

You can also view detailed reports on individual skills that show things such as how often
each intent is called (and which percentage of those calls have completed) and the paths that
users take through the skill. See Insights.

Report Types
• Overview - Use this dashboard to quickly find out the total number of voice and text

conversations by channel and by time period. The report's metrics break this total down
by the number of complete, incomplete, and in-progress conversations. In addition, this
report tells you how the skill completed, or failed to complete, conversations by ranking
the usage of the skill's transactional and answer intents in bar charts and word clouds.

• Conversations - Displays the transcripts for the conversations that occurred duing a
session. You can read a plain text version of this conversation and also review it within
the context of the digital assistant's skill routing and intent resolution.

• Events - Displays metrics and graphs for the external events relayed to the skills within
the digital assistant and the outbound events sent to external sournces.

• Retrainer - This is the counterpart to the skill-level Retrainer, where you improve the
intent resolution for the registered skills using the live data that flows through the digital
assistant.

• Export - Lets you download a CSV file of the Insights data collected by Oracle Digital
Assistant. You can create a custom Insights report from the CSV.

Review the Overview Metrics and Graphs
Click in the left navbar to access the following reports.

• Completed – The number of conversations that were routed through the digital assistant
and were then completed by the individual skills. Conversations are counted as complete
when the traversal through the dialog flow ends with a return transition or at a state with
the insightsEndConversation property.

• Incomplete – Conversations that users didn't complete, because they abandoned the
skill, or couldn't complete because of system-level errors, timeouts, or flaws in the skill's
design.

• In Progress – The number of skill conversations (that were initiated by the digital
assistant) that are still ongoing. Use this metric to track multi-turn conversations. An in-
progress conversation becomes an incomplete conversation after a session expires.

• No Match - The number of times that the digital assistant could not match any of its
registered skills to a user message.

• Canceled - The number of times that users exited a skill by entering "cancel".

• Help - The number of times the Help system intent was invoked.
When Insights has been disabled for a digital assistant, the Completed count will still
continue to increase if Insights has been enabled for any of the member skills. Despite

Chapter 21
Report Types

21-3

this, there will be no data logged for the digital-assistant specific Help and No
Match metrics until you swich on Enable Insights.

• Languages: Charts the number of conversations for each skill by supported
language.

• Performance: Shows the number of conversations by skill.
The Trend view provides a graph of completed conversations over the selected
time period.

• Skills - The Summary view shows the number of conversations handled by the skill
for a given period. By hovering over the progress bar, you can find out the number

Chapter 21
Report Types

21-4

of completed conversations out of the total.

If a skill has been versioned during the selected time period, you can find out the by-
version distribution of conversations using the Traffic graph. Clicking a skill opens this
graph, which illustrates the volume of conversations handled by each version of the skill
in terms of the total conversations handled by the skill for the selected period. Each arc
on the Traffic graph represents a version of the skill, with the length and accompanying
percentage indicating the volume of conversations that it handled. The hover text for
each of these arcs describes the percentage in terms of the conversation count. To break
this number down, say, to find out what this count means in terms of the intents invoked
for a particular version of the skill, click the arc to drill down to the skill-level Insights.

If there are any incomplete conversations during the selected period, the total number is
broken down by the following error categories:

– Timeouts – Timeouts are triggered when an in-progress conversation is idle for more
than an hour, causing the session to expire.

– System-Handled Errors – System-handled errors are handled by the system, not
the skill. These errors occur when the dialog flow definition is not equipped with error
handling, either globally in the defaultTransitions node, or at the state level with
error transitions.

– Infinite Loop – Infinite loops can occur because of flaws in the dialog flow definition,
such as incorrectly defined transitions.

– Canceled - The number of times that users exited a skill by explicitly canceling the
conversation.

Chapter 21
Report Types

21-5

View the Conversations Report
Instead of filtering an exported spreadsheet, you can use the Conversation report to
track the digital assistant's routing of the chat to its various skills and also find out
which intents were invoked along the way.

This report, which you can filter by both channel and skill, lists the conversations in
chronological order by Session ID (the ID the user's session on a channel) and
presents a transcript of the conversation in its User Messages and Skill Responses
columns. The Session ID is created when a client connects to channel and contains all
of the data from the skills that participated in a conversation. This ID expires if there's
no activity for 24 hours, but may never expire if the client continues with its
conversations.

Clicking View Conversations in the Actions column enables you to view all of the
conversations that occurred for the session in the context of a chat window. In this
mode, you can see the digital assistant routing at work by seeing how it switched skills
in response to the user input and also find out which of the skills' intents were invoked
as a result of this context switching. When a session spans multiple days, the earliest
conversations display first.

Chapter 21
Report Types

21-6

Note:

The View and Skills filters that you can apply to the Conversations report do not
alter the contents of the conversation transcripts displayed in the User Messages
and Skill Responses columns or in the View Conversations mode.

You can share the session with a colleague who has access to your instance by providing a
link that can be pasted into a browser window. To get this link, click Options then Copy
Conversation Link.

Apply the ODA Retrainer
You can improve the intent resolution for the registered skills by updating their training data
with customer input. Some of this input may not have been resolved to any skill, or it may
have been routed to the wrong skill. The Retrainer helps you evaluate this user input and add
it to a skill if you consider it a useful addition to the training data.

By default, Retrainer applies the NoMatch filter so that it returns all of the user messages
that could not be matched to any skill registered to the digital assistant. For each of these
returned phrases, the report presents the top two highest-ranking skills, the Win Margin that
separates them and, through a horizontal bar chart, their contrasting confidence scores.

Before you use the Retrainer, there are a couple of things to keep in mind:To update a skill's
training corpus from the Retrainer:

1. Filter the registered skills. For example, you can filter for all of the phrases that matched
to particular skill within the digital assistant, or you can apply the NoMatch for the
phrases that did not match up with any of the skills.

2. Select the utterance.

3. Select a draft version of the skill for the utterance. If no draft version exists, then create
one. If you can't select a skill, it's because it uses native multi-language support. In this
case, you can't update the skill from here. You'll have to use the skill-level retrainer
instead.

4. Select the intent. After you add the phrase as an utterance in the training corpus, you can
no longer select it for retraining.

5. If your skill supports more than one native language, then you can add the utterance to
the language-appropriate training set by choosing from among the languages in the
Language menu.

Chapter 21
Report Types

21-7

Note:

This option is only available for natively supported skills.

6. Retrain the skill.

7. Republish the skill.

8. Update the digital assistant with the latest version of the skill.

PII Anonymization
Like the skill-level insights, you can apply anonymization to Personally Identifiable
Information (PII) values. At the digital assistant level, anonymization is applied to the
conversations handled by the digital assistant. Anonymization enabled at the digital
assistant level does not extend to the skills. If anonymization is enabled for a skill, but
not for the digital assistant, then only the skill conversations will be anonymized and
vice versa. For completely anonymized conversations, you need to apply
anonymization to the digital assistant and its skills separately.

You can anonymize the PII values recognized for the following system entities:

• PERSON

• NUMBER

• EMAIL

• PHONE NUMBER

• URL

Enable PII Anonymization
1. Click Settings > General.

2. Switch on Enable PII Anonymization.

3. Click Add Entity to select the entity values that you want to anonymize in the
Insights reports and the logs.

Chapter 21
Report Types

21-8

Note:

Anonymized values for the selected entities are persisted only after you enable
anonymization. They are not applied to prior conversations. Depending on the
date range selected for the Insights reports or export files, the entity values
might appear in both their actual and anonymized forms. You can apply
anonymization to any non-anonymized value when you create an export task.
These anonyms apply only to the exported file and are not persisted in the
database.

If you want to discontinue the anonymization for an entity, or if you don't want an anonym
to be used at all, the select the entity and then click Delete Entity. Once you delete an
entity, the actual value appears in the Insights report and throughout the Insights reports
for subsequent conversations, even if it previously appeared in its anonymized form.

Note:

Anonymization is permanent (the export task-applied anonymization
notwithstanding). You can't recover the actual values after you enable
anonymization.

Create an Export Task
If you want another perspective on Insights reporting, then you can create your own reports
from exported Insights data. This data is exported in a CSV file. You can write a script to sort
the contents of this file.

To create an export task:

1. Open the Exports page and then click + Export.

2. Enter a name for the report and then enter a date range.

3. Click Enable PII anonymization for the exported file to replace any non-anonymized
values with anonyms in the exported file. These anonyms exist only in the exported file if
PII is not enabled in the digital assistant settings. They are not persisted to the database
and they do not appear in the logs or in the Conversations report. This option is enabled
by default whenever you set anonymization for the digital assistant.

Chapter 21
Report Types

21-9

Note:

The PII anonymization that's enabled for the skill or digital assistant
settings factors into how PII values that get anonymized in the export file
and also contributes to the consistency of the anonymization in the
export file.

4. Click Export.

5. When the task succeeds, click Completed to download a ZIP of the CSV.

Note:

The CSV file for a digital assistant contains data for the skills that are
directly called through the digital assistant. The data for skills called
outside of the context of a digital assistant is not included in this file.

Note:

The data may be spread across a series of CSVs when the export task
returns more than 1,048,000 rows. In such cases, the ZIP file will contain a
series of ZIP files, each containing a CSV.

Live Agent Metrics for Digital Assistants
Use the live agent metrics to assess your digital assistant's ability to deflect user
requests from live agents. You can access these metrics by selecting Live Agent from
the Handler filter (which only displays when you filter the report by a date or date
range that includes live agent transfer conversations).

Chapter 21
Live Agent Metrics for Digital Assistants

21-10

Note:

Insights reporting, through its Skill and Live Agent handlers, covers all of the
communication between the end user, the skill, and the live agent. This is not the
case for DA as Agent conversations, where Insights only covers the conversation
up until the chat has been transferred to the live agent. For full reporting on DA as
Agent conversations, use Oracle Fusion Service Analytics.

Using these metrics, you can gauge the deflection rate of your digital assistant and its skills
by comparing the number of conversations that they handled against the number of
conversations that ended up getting diverted to agent hand off flows, the sequence of
System.AgentInitiation and System.AgentConversation states that initiate the agent channel hand off
and manage the skill-agent conversation, respectively. Depending on the skill's dialog flow
definition, live agent chats can either be explicitly requested by the user, or requested by the
skill on the user's behalf (or both).

Live Agent Conversation Metrics for Digital Assistants
These metrics reflect how well your digital assistant and its skills are off-loading tasks from
live agents.

• Total Number of Conversations – The total number of conversations routed by the
digital assistant for the selected time period and the channel. This total includes
conversations both with and without live agent requests.

Chapter 21
Live Agent Metrics for Digital Assistants

21-11

https://docs.oracle.com/en/cloud/saas/fusion-service/fairs/how-to-view-analyses-using-otbi.html#s20056371

• Conversations Handled by Live Agent – The total number of conversations
routed by the digital assistant that included a request for a live agent.

• Conversations Handled by ODA – The total number of conversations (complete
or incomplete) that were handled by the digital assistant or its skills because no
live agent requests were made.

• Conversations Resolved by ODA – The number of conversations routed by the
digital assistant that completed (that is, reached an exit state) with no live agent
requests.

• Conversations Abandoned While Waiting for Live Agent - The number of
conversations routed by the digital assistant that were never handed off to a live
agent, despite having requested one. Conversations can be considered
abandoned when users never connect with live agents, possibly because they've
left the conversation or were timed out.

• Deflection – The percentage of conversations deflected from the live agent which
is calculated dividing the tally of Conversations Resolved by ODA by the tally for
the Total Number of Conversations (handled by the digital assistant).

Events Insights
If your digital assistant includes skills that have been equipped to both receive events
from, and publish events back to, external sources, then you can monitor the volume
of these inbound and outbound events using the Event Insights' charts and graphs.

Inbound Events
Skills with a flow containing a Notify User state are the consumers of inbound events,
which are relayed from the event source via the event channel that's routed to the
digital assistant. The receipt of this event causes the Notify User state to send a
notification message to the user. The content of the inbound event message that's
received by a skill is provided by a JSON object. Here are the metrics for inbound
events:

• Total number inbound messages – A tally of the events received by the skill.
The inbound events with errors are also included in this total. The events tracked
in these reports depend on the use case as reflected in the event JSON object.
Because the content of an inbound event is provided by this object, an event may
represent a repeated order made by the user. In this case, it's not the exchange
between the skill and the user, but the result of a previous conversation. When the
user reviews past orders and taps Order Again, for example, the skill receives the
event and sends the user a confirmation message. In terms of the Insights, the
tally for Total number of inbound messages metric, which represents these
repeat orders, is incremented, as is the number of completed conversations in the
Overview report. Looking at the Conversation report, these repeated orders are
aggregated by the user session ID (the userid event context attribute).

Chapter 21
Events Insights

21-12

• Number of inbound event messages with errors – The tally of inbound events that did
not result in user notification messages because of errors. Typically, these are validation
errors that occurred because the event payload did not conform with the schema,
problems with the configuration for the skill that consumes the event, or with the
configuration of the event itself.

• Number of inbound event sources – The number of sources that orginate the inbound
events.

These numbers are broken down by the other inbound event-related graphs:

• Trend of inbound messages – The volume of inbound messages (including those with
errors), over time.

• Inbound messages breakdown – The total of inbound events (including those with
errors) broken down by event source.

Tip:

You can create user-friendly names for the inbound event sources by creating
user-defined resource bundles for them.

• Inbound messages with errors – A comparison of the inbound events that resulted in
notification events to the inbound events with errors.

Outbound Events
Outbound events originate from flows with Publish Event states which are configured to
publish an event to the same event source of the inbound events.

Note:

Outbound events do not exist without the inbound events.

Insights records the following metrics and graphs for outbound events:

• Total number of outbound messages – A tally of the events published by the skills
registered to the digital assistant.

• Trend of outbound messages – The volume of published events over a period of time.

Chapter 21
Events Insights

21-13

• Outbound messages breakdown – The breakdown of outbound messages by
source. For Release 22.10, only application events are tracked.

• Event distribution – The frequency of published events.

Tip:

You can create user-friendly names for the events in the word cloud by
creating user-defined resource bundles for the event names.

Chapter 21
Events Insights

21-14

Part IV
Skills

• Create, Configure, and Version Skills

• Platform Version

• Intents

• Entities

• Visual Flow Designer

• LLM Integration

• SQL Dialog Skills

• Languages and Skills

• The Skill Tester

• Q&A

• Components

• Backend Integration

• Backend Authentication

• Webviews

• Skill Quality Reports

• Insights

• External Events

• Application-Initiated Conversations

• Data Manufacturing

• Application-Initiated Conversations

• Extending Digital Assistants and Skills

22
Create, Configure, and Version Skills

Use the Skill Catalog, which you access by clicking Development > Skills in the side menu,
to manage the life cycle of your skills. You can access most of the management tasks from a
skill’s Options menu.

Note:

When the Show Only Latest switch is turned on in the Skill Catalog, only the most
recently updated version of each skill appears. Because the version values are free
form, the page uses the date last updated to determine which is the latest version.

Create from Scratch
You can create a skill by cloning a version of another skill or by importing one, or you can
build one from scratch, as described here.

1. Click to open the side menu, select Development > Skills, and click New Skill.

2. In the Create Skill dialog, fill in the required fields.

3. In the Platform Version field, optionally select a different platform version.
This setting affects the behavior of your skills, such as the way the Natural Language
Understanding (NLU) engine resolves intents. By default, this is set to the most recent
platform version.

If you specifically need the clone to behave like skills based on a different platform
version, select the platform version used by those skills.

See Platform Version.

4. If you have selected platform version 20.12 or higher, from the Primary Language field,
select the default language for your skill.

22-1

If you plan to design the skill for multiple languages, consider your choice very
carefully. In particular, if you want to support any languages other than the
natively-supported languages, you need to scroll down to the Translation Service
section of the dropdown and select English from there.

See Languages and Skills for detailed information on designing your skills for your
desired target languages.

Note:

On platform versions 20.09 and lower, you don't specify a primary
language. Instead a predominant language is automatically detected for
the skill when you set it up with a translation service.

5. Click Create.

After you create the skill, it appears in the Skill Catalog in draft mode.

Clone
If you want to create a skill that is similar to an existing skill, or if you want to reuse the
artifacts of an existing skill, you can create the skill by cloning.

To clone a version of a skill:

1. From the Skill Catalog, locate the version to clone from.

2. Click the Options icon, and select Clone.

3. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your skills,
such as the way the Natural Language Understanding (NLU) engine resolves
intents and which languages are supported natively.
If you specifically need the clone to behave just like the base skill, select the
platform version used by the base skill.

See Platform Version.

• Primary Language: (Appears only if the selected platform version is 20.12 or
higher.) This determines both the default language for the skill and whether the
skill will use native support for that language or rely on a translation service.
If you plan to design the skill for multiple languages, consider your choice here
very carefully. In particular, if you want to support any languages other than
the natively-supported languages, you should scroll down to the Translation
Service section of the dropdown and select English from there.

See Languages and Skills for detailed information on designing your skills for
your desired target languages.

Note:

On platform versions 20.09 and lower, you don't specify a primary
language. Instead a predominant language is automatically detected
if you have set up the skill with a translation service.

Chapter 22
Clone

22-2

Note:

If the skill uses embedded component services, then the clone's usage of each of
those services adds to the embedded component service count. If this would put
your instance over the embedded component service limit (embedded-custom-
component-service-count), then Digital Assistant won't create the clone. If you
need to raise the limit, you can request an increase. For more information, see View
Service Limits in the Infrastructure Console and Requesting a Service Limit
Increase. Embedded component services in skills that are downloaded from the
Skill Store are not counted.

Create by Import
You can create a skill by importing a version of a skill that was exported from another
instance. The imported skill will be in draft mode, even if it was published in the source
instance.

To import a version of a skill:

1. From the Skill Catalog, click Import Skill.

2. Upload the ZIP file that contains the exported skill.

3. By default, Insights is disabled for imported skills. To activate the Insights reporting for the
imported skill, first click , then choose Enable Insights.

Tip:

If you want to export a version, make changes in the exported files, and then import
it into the same instance, don’t forget to change the version. Otherwise, Digital
Assistant won’t let you import it.

Note:

If the skill uses embedded component services, then the imported skill's usage of
each of those services adds to the embedded component service count. If this
would put your instance over the embedded component service limit (embedded-
custom-component-service-count), then Digital Assistant won't import the skill. If
you need to raise the limit, you can request an increase. For more information, see
View Service Limits in the Infrastructure Console and Requesting a Service Limit
Increase. Embedded component services in skills that are downloaded from the
Skill Store are not counted.

Create New Version
At some point, you might want to create another version of a skill, such as to add new
features.

To create another version:

Chapter 22
Create by Import

22-3

https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three

1. From the Skill Catalog, locate the version from which to create another version.

2. Click the Options icon, and select New Version.

3. Complete the dialog, paying particular attention to these fields:

• Platform Version: The platform version affects the behavior of your skills,
such as the way the Natural Language Understanding (NLU) engine resolves
intents and which languages are supported natively.
If you specifically need this version of the skill to behave just like the previous
version, select the platform version used by the base skill.

See Platform Version.

• Primary Language: (Appears only if the selected platform version is 20.12 or
higher.) This determines both the default language for the skill and whether the
skill will use native support for that language or rely on a translation service.
If you plan to design the skill for multiple languages, consider your choice here
very carefully. In particular, if you want to support any languages other than
the natively-supported languages, you should scroll down to the Translation
Service section of the dropdown and select English from there.

See Languages and Skills for detailed information on designing your skills for
your desired target languages.

Note:

On platform versions 20.09 and lower, you don't specify a primary
language. Instead a predominant language is automatically detected
if you have set up the skill with a translation service.

Note:

If the skill uses embedded component services, then the version's usage of
each of those services adds to the embedded component service count. If
this would put your instance over the embedded component service limit
(embedded-custom-component-service-count), then Digital Assistant won't
create the version. If you need to raise the limit, you can request an increase.
For more information, see View Service Limits in the Infrastructure Console
and Requesting a Service Limit Increase. Embedded component services in
skills that are downloaded from the Skill Store are not counted.

Dialog Mode
When you create a skill, you have two options for how to design the dialog flow:

• Visual. You use the Visual Flow Designer to design dialog flows on a canvas with
tiles for each state and with the connections between states also represented
visually. Variables, parameters, and component properties are defined in
specialized editors and dialogs. In addition, the visual editor enables you to create
modular flows. This is the default mode for new skills.

Chapter 22
Dialog Mode

22-4

https://docs.cloud.oracle.com/iaas/Content/General/Concepts/servicelimits.htm#three

• YAML. You define the framework of the user-skill exchange in a simple markup language
that lets you describe a dialog both in terms of what your skill says and what it does. The
whole dialog flow definition is defined in a single file.

Configure for Use In a Digital Assistant
To prepare a version of a skill to be used in a digital assistant, configure the following
settings:

• Invocation Name: This is the name with which the user can explicitly invoke the skill in
the digital assistant.

See Invocation Name Guidelines.

• Example Utterances: These help the Intent Engine identify when the user wants to
invoke that skill. In the example utterances, it is best to also include the invocation name
to improve matching user utterances with the skill.

The first few utterances also appear on the card for the skill that the digital assistant
supplies by default for the welcome and help states.

For skills developed in YAML mode, you can optionally specify the Start State, Welcome
State, and Help State settings. See Start, Welcome, and Help States. (For skills developed
in Visual mode these settings are not available. Instead, you specify these states using
events. See Built-In Events for the Main Flow.)

In addition, you can use the Group field to group the skill with other related skills. This can
improve routing behavior in your digital assistant. The skill group assignment can be changed
at the digital assistant level. See Skill Groups.

To access these settings:

1. Click to open the side menu, select Development > Skills, and open your skill.

2. In the left navigation for the skill, click and select the Digital Assistant tab.

Delete
To delete a version of a skill, click its Options icon and select Delete.

Publish
When you’ve completed building a version, you can lock it down by publishing it. The only
modification that you can make for a published skill is to change custom parameter values on
the Configuration tab. If you want to make further modifications, you must create another
version and work on that one.

To publish a version:

1. If the skill has intents or Q&A, make sure it has been trained. You must train it before you
can publish it.

2. From the Skill Catalog, locate the version that you want to publish.

3. Click the Options icon, and select Publish.

The skill version in the Skill Catalog now has a lock icon to show that it’s published.

Chapter 22
Configure for Use In a Digital Assistant

22-5

Export a Skill to Another Instance
If you have multiple Digital Assistant instances and you want to copy a skill from one
instance to another, you use the Export and Import commands:

1. Log in to the instance that you want to export the skill from.

2. Click to open the side menu and select Development > Skills.

3. In the tile for the skill that you want to export, click and select Export.

A zip file with the skill will be downloaded to your system.

4. Log in to the instance that you want to export the skill to.

5. Click to open the side menu and select Development > Skills.

6. Click Import Skill.

7. Upload the ZIP file that contains the exported skill.

8. By default, Insights is disabled for imported skills. To activate the Insights reporting
for the imported skill, first click , then choose Enable Insights.

Note:

The imported skill will be in draft mode, even if it was published in the source
instance.

The Skill Development Process
Once you have the skill created and named, you can begin development. Here’s a
bird’s-eye view of the development process.

1. Create Intents—Start off by creating intents. Intents illustrate your use case by
describing the various actions that your skill helps its users complete. If your skill
enables users to perform various banking transactions, for example, then you
could create intents like CheckBalance or TransferMoney. Intents not only
describe what your skill can do, they are also the key to your skill’s intelligence:

Chapter 22
Export a Skill to Another Instance

22-6

they enable it to recognize user input because each intent has a set of typical user
statements known as utterances associated with it. While these phrases share the same
meaning, they make your skill resilient because they’re also varied (for example, What’s
my savings account balance? and How much is in my checking account?). See Intents.

2. Train the Skill—To enable your skill to reference intents when it parses the user input,
you need to train it. Specifically, you need to train it with the intents and their utterances
(collectively, the training data), so that it can resolve the user input to one of the intents.
By training your skill, you leverage the language intelligence framework. Its algorithms
enable your skill to not only recognize the sample phrases that belong to each intent, but
similar phrases as well. See Intent Training and Testing.

3. Create Entities— In some cases, you may need to provide some context to enable your
skill to complete a user request. While some user requests might resolve to the same
intent (What’s my savings account balance? and How much is in my checking account?
would both resolve to the CheckBalance intent, for example), they are nonetheless
asking for different things. To clarify the request, you would add an entity. Using the
banking skill example, an entity called AccountType, which defines values called
checking and saving would enable the skill to parse the user request and respond
appropriately. See Entities.

4. Create the Dialog Flow— Next, you need to give the skill the wherewithal to express its
intelligence to its users by creating the dialog flow. The dialog flow describes how you
skill reacts as different intents are resolved. It defines what your skill says to its users,
how it prompts them for input, and how it returns data. See Visual Flow Designer.

5. Integrate Custom Components—At this point, your skill can recognize input, but it can’t
respond to it. To put your skill’s intelligence to work, you need to add components.
Components enable your skill to do its job. There are two types of components: the ones
we provide that perform functions ranging from holding the intent that’s resolved from the
user’s message to outputting text, and the ones that you create to perform tasks specific
to a particular skill like checking an account balance. See Add Component Package to a
Skill.

6. Test the Skill—Once you’ve started your dialog flow, you can chat with your skill to test it
out.

7. (Optionally) Route to Channels for User Messaging and Other Capabilities—If your
skill will not be added to a digital assistant, you'll need to add it to one or more channels.
Users chat with your skill through various messaging platforms, proprietary messaging
apps, and web pages. You can route one or more of these user messaging channels to
your skill. It runs equally well on any of them, whether they’re text-only or support
scrolling cards, UI elements, and images. In addition to these user-facing channels, there
are other channels: one that links your skill to a customer-support system and another
that routes notifications from an external application that prompts the skill to initiate a
conversation.

8. Review Insights Reports—After you've published your skill, you can review the Insights
reports to find out if its customers are using it as intended. From high-level usage metrics
and conversation trends to individual views of intents, their execution paths, and
conversation transcripts, these reports give you different perspectives on how well your
skill supports its customers, and where it prevents them from completing a task. These
reports not only let you spot problem areas quickly, but they also suggest user input that
can improve your skill's intent resolution. See Insights.

Chapter 22
The Skill Development Process

22-7

Validate Your Work
As you iterate through your dialog flow definitions, intents, entities, and digital
assistants, you can check your work and apply best practices by clicking Validate in
the banner.

For skills, the resulting Validation Results dialog lists critical errors that you must

fix, warnings and tips that point out where you may need to make
improvements.

Some of these messages are general, while others cite the entity, intent, or line in the
dialog flow definition. While the error messages point out problems that prevent the
skill from functioning, like incorrect variable references in the dialog flow definition, you
can use the warning and tip messages to inform your development. These messages
can help you out during your initial development, but they might be especially helpful
when you're working on a skill created by another development team, especially if that
skill was developed on an earlier version of Oracle Digital Assistant. For example, if
you're upgrading a skill that uses the formerly recommended confidence threshold
of .04, then you'll get a message recommending the current threshold instead. For
example:

Skill confidence threshold is set to 0.4. We recommend to set the
threshold to at least 0.7 to improve accuracy of intent matching.

While validation messages at the skill level include error, warning, and tip messages,
digital assistant-level validation consists of warning messages for utterances that are
shared by the skills registered to the digital assistant.

For example:

The utterance 'Cancel my order' is used in 2 intents: wineSkill,
pizzaSkill. Duplicate utterances may cause ambiguity in the model.

Chapter 22
Validate Your Work

22-8

You can filter these messages by warnings or tips. You can hide or reopen the Validation

Results dialog by clicking Findings .

Names You Can't Use for Skills
The following names can't be used for skills:

• type
• version

Chapter 22
Names You Can't Use for Skills

22-9

23
Platform Version

Starting with Release 20.08 of Oracle Digital Assistant, each bot (skill or digital assistant) is
tied to a specific platform version that corresponds with a release version of Digital Assistant.

This means that the bot continues using that platform version, even when the Digital
Assistant instance is upgraded.

The platform version impacts the behavior of your bots. In some cases, this means the
addition of features (like the addition of built-in entities). In others, it merely means fine-tuning
of the platform's Natural Language Understanding (NLU). Each platform version remains
valid for 18 months.

Since a given version of a bot is now permanently tied to a platform version, you can
thoroughly test that bot, optimize its training corpus, and put it into production without
worrying that its behavior will change when your Digital Assistant instance is upgraded to a
new release.

For new bots, you specify the platform version when you create the bot. You can select the
current version (recommend) or any other active or deprecated version. For bots created in
Release 20.06 or earlier, the platform version is set to 20.06.

The platform versions for a digital assistant and skills in a digital assistant do not have to
match. You can use different platform versions for each.

To upgrade a bot's platform version, you need to create a new version (or clone) of the bot.

Lifecycle Phases of Platform Versions
Each platform version goes through the following lifecycle phases:

• Active - You should always use an active platform version (preferably the latest) when
you are developing a new bot.
A platform version remains in the Active state for at least 12 months after release.

• Deprecated - You can continue development of your skill in this phase, but we
encourage you to move to an active platform version to take advantage of new features
and improvements and to lengthen period you can use the bot without needing to update
the platform version.
A platform version may be deprecated starting 12 months after its release. Once
deprecated, it stays in the Deprecated state for six months.

• Obsolete - Published bots with obsolete platform versions will continue to function.
However, you can no longer modify or train draft bots with this status. To continue
development of a bot with this status, you need to clone it or create a new version and
specify an active (or deprecated) platform version.
A platform version becomes obsolete six months after it is deprecated and remains in the
Obsolete state for six months.

If any of your bots (published or draft) are on platform versions with this status, it is
important to create new versions of them before they reach Invalid status. Once they are
in Invalid status, you will not be able to create new versions or clones of them.

23-1

• Invalid - All bots with this status will stop functioning. In addition, it will no longer
be possible to clone, import, or create a new version of a bot with this status.
A platform version becomes invalid after it has been in the Obsolete state for six
months.

Change a Bot's Platform Version
To change the platform version for a skill or digital assistant, you need to create a new
version of the bot itself (or clone the bot) and set the platform version in the new
version of the bot. In the new version or clone, you can change it to any platform
version that is newer than the base bot's platform version and that has either active or
deprecated status.

Here are the steps for updating platform versions of digital assistants and skills by
creating new versions of the bots.

For digital assistants:

1. Click to open the side menu and select Development > Digital Assistants.

2. In the tile for the digital assistant that you want to version, click and select
Version.

3. Fill in the Version field with a unique version number for the digital assistant.

4. Select the platform version you want to switch to from the Platform Version
dropdown.

5. Click Create.

For skills:

1. Click to open the side menu and select Development > Skills.

2. In the tile for the skill that you want to version, click the Options icon, and select
Version.

3. Fill in the Version field with a unique version number for the digital assistant.

4. Select the platform version you want to switch to from the Platform Version
dropdown.

5. Click Create.

Best Practices for Managing Platform Versions
To continuously improve the quality of your skills and digital assistants, while making
sure that there aren't any regressions, here are some best practices:

• Generate test cases from the beginning of the development cycle so that you
can later do regression tests on the new versions.

Even though updates in the platform generally improve the overall quality of bots,
these updates could cause unexpected results in intent resolution that require you
to update the training corpus of your skills.

You can use both:

– Batch tests for intents, which you save as a CSV file and run in the intent
tester. See Create Test Runs.

Chapter 23
Change a Bot's Platform Version

23-2

– Test cases, which you can record in the bot tester and then save as part of your bot's
metadata. SeeTest Suites and Test Cases.

• Test and retrain skills and digital assistants based on user queries every two
months. This well help you improve intent resolution over time.

As part of this process, create new versions of the bots on the most recent platform
version and compare the test results for the bot versions that are on the new platform
with the versions on the existing platform. If the test results for the bots on the new
platform don't reveal regressions, consider moving those versions of the bots into
production.

• Update skills and digital assistants to the latest platform version (and thoroughly
test them) every 6 months. Though you don't strictly need to update your bots that
often, it is likely that you will greatly benefit from doing so, given the ongoing platform
enhancements.

New Features and Changes in Platform Versions
Here is a log of new features and changes that are included in new platform versions.

Platform Version Changes

20.08

Extended Bots and Platform Versions
When you extend a skill or digital assistant, you inherit the platform version from the base bot
and can't change it. Similarly, when you rebase an extended skill or digital assistant, your bot
inherits the platform version that is used by the new version of the base bot.

Platform Versions in Migrated Instances
If you have an instance that has been migrated from the Gen 1 Cloud infrastructure to
Release 20.8 or later of the Gen 2 infrastructure, your bots will be assigned a platform
version of 20.06.

Chapter 23
New Features and Changes in Platform Versions

23-3

24
Intents

Intents allow your skill to understand what the user wants it to do. An intent categorizes
typical user requests by the tasks and actions that your skill performs. The PizzaBot’s
OrderPizza intent, for example, labels a direct request, I want to order a Pizza, along with
another that implies a request, I feel like eating a pizza.

Intents are comprised of permutations of typical user requests and statements, which are
also referred to as utterances. As described in Create an Intent, you can create the intent by
naming a compilation of utterances for a particular action. Because your skill’s cognition is
derived from these intents, each intent should be created from a data set that’s robust (one to
two dozen utterances) and varied, so that your skill can interpret ambiguous user input. A rich
set of utterances enables a skill to understand what the user wants when it receives
messages like “Forget this order!” or “Cancel delivery!”—messages that mean the same
thing, but are expressed differently. To find out how sample user input allows your skill to
learn, see Intent Training and Testing.

Create an Intent
Here are the steps for creating an intent in a skill.

To create an intent:

1. Click Intents in the left navbar.

2. If you already have defined your intents in a CSV file, click Import Intents. Import Intents
from a CSV File describes this file's format. Otherwise, click Add Intent. Your skill needs
at least two intents.

3. Click to enter a descriptive name or phrase for the intent in the Conversation Name
field. For example, if the intent name is callAgent, the conversation name would be Talk
to a customer representative. When the skill can't resolve a message to an intent, it
outputs the user-friendly names and phrases that you enter into the Conversation Name
field as the options that are listed in the Do you want to disambiguation messages
described in How Confidence Win Margin Works and Configure the Intent and Q&A
Routing.

4. Add the intent name in the Name field. If you don't enter a conversation name, then the
Name field value is used instead. Keep in mind that a short name with no end
punctuation might not contribute to the user experience. The intent name displays in the
Conversation Name field for skills built with prior versions of Digital Assistant.

Note:

In naming your intents, do not use system. as a prefix. system. is a namespace
that's reserved for the intents that we provide. Because intents with this prefix
are handled differently by Trainer Tm, using it may cause your intents to resolve
in unexpected ways.

24-1

5. Add a description of the intent. Your description should focus on what makes the
intent unique and the task or actions it performs.

6. If this is an answer intent, add a short answer to the Answer field.

7. Optionally, in the Annotations field, add one or more tags for the intent to
categorize it in a way that is useful for you. You can use any words of your
choosing.

Tip:

On the Intents page, you can filter the display of intents by annotation.

8. Start building the training corpus by adding example utterances that illustrate the
meaning behind the intent. To ensure optimal intent resolution, use terms, wording,
and phrasing specific to the individual intent. Ideally, you should base your training
data on real-world phrases. You can save your utterances by clicking Enter or by
clicking outside of the input field. To manage the training set, select a row to
access the Edit () and Delete () functions.

If your skill supports multiple native languages, augment the training set with
phrases in the secondary languages to strengthen the model's accuracy in this
and all other native languages supported by the skill.

See Build Your Training Corpus for tips on building an effective training corpus.

To allow your skill to cleanly distinguish between intents, create an intent that
resolves inappropriate user input or gibberish.

While utterances can be added to an existing intent manually or by importing a
CSV, they can also be assigned to intents through data manufacturing jobs and
the Insights retrainer.

9. In the Auto-Complete Suggestions field, enter a set of suggested phrases that help
the user enter an appropriately worded request. Do not add the entire set of
training data. Add a set of phrases that represent ideal user requests instead.
Adding too broad a set of utterances may not only confuse users, but may also
result in unexpected behavior.

This is an optional step. This function is only supported by the Oracle Web
Channel.

Chapter 24
Create an Intent

24-2

10. Add an entity if the intent needs one to resolve the user input. To find out how, see Add
Entities to Intents.

11. To teach your skill how to comprehend user input using the set of utterances that you’ve
provided so far, click Train, choose a model and then click Submit.

As described in Which Training Model Should I Use?, we provide two models that learn
from your corpus: Trainer Ht and Trainer Tm. Each uses a different algorithm to reconcile
the user input against your intents. Trainer Ht uses pattern matching while Trainer Tm a
machine learning algorithm which uses word vectors. Both skills that use Digital
Assistant's native language support and skills with answer intents require Trainer TM.

You’d typically follow this process:

a. Create the initial training corpus.

b. Train with Trainer Ht. You should start with Trainer Ht because it doesn’t require a
large set of utterances. As long as there are enough utterances to disambiguate the
intents, your skill will be able to resolve user input.

If you get a Something’s gone wrong message when you try to train your skill, then
you may not have added a sufficient number of utterances to support training. First
off, make sure that you have at least two intents with at least two (or preferable more)
utterances each. If you haven’t added enough utterances, add a few more then train
your skill.

c. Refine your corpus, retrain with Trainer Ht. Repeat as necessary—training is an
iterative process.

d. Train with Trainer Tm. Use this trainer when you’ve accumulated a robust set of
intents.

The Training Needed displays whenever you add an intent or when you update an intent
by adding, changing, or deleting its utterances. To bring the training up to date, choose a
training model and then click Train. The model displays an exclamation point whenever it
needs training. When its training is current, it displays a check mark.

12. Click Test Utterances (located at the upper left) to open the Utterance Tester. Select the
target language, then enter utterances similar to those in your training set. The Utterance
Tester returns the confidence level for this utterance and enables you to assign the
utterance to an intent, or add it as a test case.

To log your intent testing results, enable the conversation intent logging (Settings >
General > Enable Insights) .

13. Click Validate and review the validation messages for errors such as too few utterances
and for guidance on applying best practices like adding an unresolvedIntent intent.

Add Entities to Intents
Some intents require entities—both built-in and custom— to complete an action within the
dialog flow or make a REST call to a backend API. The system uses only these entities,
which are known as intent entities, to fulfill the intent that’s associated with them. You can
associate an entity to an intent when you click Add New Entity and then select from the

custom () or built-in () entities. If you're assigning a built-in entity, leave Value Agnostic
enabled (the default) if specific entity values do not factor into intent classification (which is
generally the case). If the intent requires a specific entity value, switch this feature off.

Chapter 24
Create an Intent

24-3

Note:

Value Agnostic applies to built-in entities only. You cannot apply it to custom
entities.

Alternatively, you can click New Entity to add an intent-specific entity.

Chapter 24
Create an Intent

24-4

Tip:

Only intent entities that are included in the JSON payloads are sent to, and returned
by, the Component Service. The ones that aren’t associated with an intent won’t be
included, even if they contribute to the intent resolution by recognizing user input. If
your custom component accesses entities through entity matches, then be sure to
add the entity to your intent.

Value Agnostic Intent Entities
The Value Agnostic feature allows you to adjust how entity values affect intent classification.
When you enable this feature, the specific values for an associated built-in entity do not have
bearing on the intent classification. However, when you disable this feature, you allow the
entity value to play a key role in resolving the input.

In general, you can leave this feature in its default setting (enabled) because a specific entity
value seldom factors into intent classification. The training utterances for an account
balances intent, for example, may include specific dates (What was my balance on October
5?) but these values are not the deciding factor in resolving the input to the intent. Leaving
Value Agnostic enabled will, in most cases, improve intent resolution because it prevents
the values from affecting confidence scores or even signaling an unintended intent. However,
whenever specific values play a key role in intent resolution, you should switch this feature
off. For example, you would disable the feature if the value for a DATE is central to
distinguishing an intent for checking past vacation balances from an intent that checks for
future vacation balances. If these intents were date agnostic, then the model would ignore
past and present and would not resolve input correctly.

Example Intents Associated Entity Training Utterances Enable Value
Agnostic?

Account Balance DATE • Can you tell me my
account balance
yesterday?

• How much money
do I have in
checking?

• What was my
balance on
October 5th?

• What was my credit
card balance last
week?

• What is my bank
balance today?

• What was my
savings account
balance on 5/3?

Yes – The specific date
values do not signal the
intent. The various date
values in these
utterances can be
ignored because a user
can ask for an account
balance on any day.

Chapter 24
Create an Intent

24-5

Example Intents Associated Entity Training Utterances Enable Value
Agnostic?

Holiday Store Hours DATE • Are you open on
January 1st?

• Are you open on
Thanksgiving?

• Hours for New
Year's Day

• What are the store
hours for July 4th?

• What are your
holiday hours?

• Will you be open on
Christmas?

No – The intent
classification is based
on a specific (and
limited) set of values
and users are inquiring
about holidays.

• Check Past
Vacation Balance

• Check Future
Vacation Balance

DATE • Check Past
Vacation Balance
– Did I take any

time off last
month?

• Check Future
Vacation Balance
– Any planned

vacation in
next month?

No – Disable Value
Agnostic for both
intents. Agnostic DATE
values in this case
would mean that the
model would not
consider a value as past
or future. A "last month"
value, which should
signal the Check Past
Vacation Balance intent,
would be ignored. As a
result, similarly worded
input like "Did I take any
time off next month"
may resolve incorrectly
to this intent.

Import Intents from a CSV File
You can add your intents manually, or import them from a CSV file. You can create this
file from a CSV of exported intents, or by creating it from scratch in a spreadsheet
program or a text file.

The CSV file has six columns for skills that use the Natively-Supported language mode
and five columns for those that don't. Here are the column names and what they
represent:

• query: An example utterance.

• topIntent: The intent that the utterance should match to.

• conversationName: The conversation name for the intent.

• answer: For answer intents, the static answer for the intent.

• enabled: If true, the intent is enabled in the skill.

• nativeLanguageTag: (For skills with native-language support only) the language of
the utterance. For values, use two-character language tags (fr, en, etc,).

– For skills with Digital Assistant's native language support, this column is
required.

Chapter 24
Create an Intent

24-6

– For skills without the native language support, you can't import a CSV that has this
column.

Here's an excerpt from a CSV file for a skill that does not have native language support and
which doesn't use answer intents.

query,topIntent,conversationName,answer,enabled
I want to order a pizza,OrderPizza,Order a Pizza.,,true
I want a pizza,OrderPizza,Order a Pizza.,,true
I want a pizaa,OrderPizza,Order a Pizza.,,true
I want a pizzaz,OrderPizza,Order a Pizza.,,true
I'm hungry,OrderPizza,Order a Pizza.,,true
Make me a pizza,OrderPizza,Order a Pizza.,,true
I feel like eating a pizza,OrderPizza,Order a Pizza.,,true
Gimme a pie,OrderPizza,Order a Pizza.,,true
Give me a pizza,OrderPizza,Order a Pizza.,,true
pizza I want,OrderPizza,Order a Pizza.,,true
I do not want to order a pizza,CancelPizza,Cancel your order.,,true
I do not want this,CancelPizza,Cancel your order.,,true
I don't want to order this pizza,CancelPizza,Cancel your order.,,true
Cancel this order,CancelPizza,Cancel your order.,,true
Can I cancel this order?,CancelPizza,Cancel your order.,,true
Cancel my pizza,CancelPizza,Cancel your order.,,true
Cancel my pizaa,CancelPizza,Cancel your order.,,true
Cancel my pizzaz,CancelPizza,Cancel your order.,,true
I'm not hungry anymore,CancelPizza,Cancel your order.,,true
don't cancel my pizza,unresolvedIntent,unresolvedIntent,,true
Why is a cheese pizza called
Margherita,unresolvedIntent,unresolvedIntent,,true

Here's an excerpt from a CSV file for a skill with native-language support that uses answer
intents.

query,topIntent,conversationName,answer,enabled,nativeLanguageTag
Do you sell pasta,Products,Our Products,We sell only pizzas. No salads. No
pasta. No burgers. Only pizza,true,en
Vendez-vous des salades,Products,Our Products,Nous ne vendons que des
pizzas. Pas de salades. Pas de pâtes. Pas de hamburgers. Seulement pizza,fr
do you sell burgers,Products,Our Products,We sell only pizzas. No salads. No
pasta. No burgers. Only pizza,true,en
Do you sell salads,Products,Our Products,We sell only pizzas. No salads. No
pasta. No burgers. Only pizza,true,en
Vendez des hamburgers,Products,Our Products,Nous ne vendons que des pizzas.
Pas de salades. Pas de pâtes. Pas de hamburgers. Seulement pizza,true,fr

To import a CSV file:

1. Click Intents () in the left navbar.

2. Click More, and then choose Import intents.

Chapter 24
Create an Intent

24-7

3. Select the .csv file and then click Open.

4. Train your skill.

Export Intents to a CSV File
You can reuse your training corpus by exporting it to CSV. You can then import this file
to another skill.

To export your intents and their utterances:

1. Click Intents in the left navbar.

2. Click More, and then choose Export intents.

3. Save the file. This file has the following columns, which are described in Import
Intents from a CSV File:

query, topIntent, conversationName, answer, enabled,
nativeLanguageTag

Which Training Model Should I Use?
We provide a duo of training models that mold your skill’s cognition, Trainer Tm and
Trainer Ht. You can use either of these models, each of which uses a different
approach to machine learning. In general, you train your with Trainer Tm before you
put your skills into production. Because of its shorter training time, you can use Ht for
prototyping or for skills.

Note:

You can't use Trainer Ht for skills that use answer intents, use native
language support, or have a large number of intents. Use Trainer Tm for
these skills.

Chapter 24
Create an Intent

24-8

Trainer Ht is the default model, but you can change this by clicking Settings > General and
then by choosing another model from the list. The default model displays in the tile in the skill
catalog.

Trainer Tm
Trainer Tm (Tm) achieves highly accurate intent classification even when a skill has
hundreds, or even thousands, of intents. Even though the intents in these large data sets are
often closely related and are sometimes "unbalanced" in quantity of utterances, Tm can still
differentiate between them. In general, you would apply Tm to any skill before you put it into
production.

Note:

When you train with Trainer Tm, you can also use the Similar Utterances Report.

You don't need to bulk up your training data with utterances that accommodate case
sensitivity (Tm recognizes BlacK Friday as Black Friday, for example), punctuation, similar
verbs and nouns, or misspellings. In the latter case, Trainer Tm uses context to resolve a
phrase even when a user enters a key word incorrectly. Here are some general guidelines for
building a training corpus when you're developing your skill with this model.

Trainer Tm enhances the skill's cognition by

• Recognizing the irrelevant content. For I'm really excited about the coming Black Friday
deals, and can't wait for the deals. Can you tell me what's going to be on sale for Black
Friday?, Trainer Tm:

– Discards the extraneous content (I'm really excited about the coming Black Friday
deals...)

– Resolves the relevant content (Can you tell me what's going to be on sale for Black
Friday?) to an intent. In this case, an intent called Black Friday Deals.

Trainer Tm can also distinguish between the relevant and irrelevant content in a message
even when the irrelevant content can potentially be resolved to an intent. I bought the
new 80 inch TV on Black Friday for $2200, but now I see that the same set is available
online for $2100. Do you offer price match? for example, could be matched to the Black
Friday Deals intent and to a Price Matching intent, which is appropriate for this message.
In this case Trainer Tm:

– Recognizes that I bought the new 80 inch TV on Black Friday for $2200, but now I
see that the same set is available online for $2100 is extraneous content.

– Resolves Do you offer price match?

• Resolving intents when a single word or a name matches an entity. For example, Trainer
Tm can resolve a message consisting of only Black Friday to an intent that's associated
with a entity for Black Friday.

• Distinguishing between similar utterances (Cancel my order vs. Why did you cancel my
order?).

• Recognizing out-of-scope utterances, such as Show me pizza recipes or How many
calories in a Meat Feast for a skill for fulfilling a pizza order and nothing else.

• Recognizing out-of-domain utterances, such as What's the weather like today for a pizza
ordering skill.

Chapter 24
Create an Intent

24-9

Tip:

While Trainer Tm can easily distinguish when a user message is
unclassifiable because it's clearly dissimilar from the training data, you
might still want to define an unresolvedIntent with utterances that
represent the phrases that you want to make sure do not resolve to any
of your skill's intents. These phrases can be within the domain of your
skill, but are still out of scope, even though they may share some of the
same words as the training data. For example, I want to order a car for a
pizza skill, which has also been trained with I want to order a pizza.

• Distinguishing between similar entities – For example, Tm recognizes that mail is
not same as email in the context of an intent called Sign Up for Email Deals.
Because it recognizes that an entity called regular mail would be out of scope, it
would resolve the phrase I want to sign up for deals through regular mail at a lower
confidence than it would for I want to sign up for email deals.

Trainer Ht
Trainer Ht is the default training model. It needs only a small training corpus, so use it
as you develop the entities, intents, and the training corpus. When the training corpus
has matured to the point where tests reveal highly accurate intent resolution, you’re
ready to add a deeper dimension to your skill’s cognition by training Trainer Tm.

You can get a general understanding of how Trainer Ht resolves intents just from the
training corpus itself. It forms matching rules from the sample sentences by tagging
parts of speech and entities (both custom and built-in) and by detecting words that
have the same meaning within the context of the intent. If an intent called SendMoney
has both Send $500 to Mom and Pay Cleo $500, for example, Trainer Ht interprets
pay as the equivalent to send . After training, Trainer Ht’s tagging reduces these
sentences to templates (Send Currency to person, Pay person Currency) that it
applies to the user input.

Because Trainer Ht draws on the sentences that you provide, you can predict its
behavior: it will be highly accurate when tested with sentences similar to the ones that
make up the training corpus (the user input that follows the rules, so to speak), but
may fare less well when confronted with esoteric user input.

Build Your Training Corpus
When you define an intent, you first give it a name that illustrates some user action
and then follow up by compiling a set of real-life user statements, or utterances.
Collectively, your intents, and the utterances that belong to them, make up a training
corpus. The term corpus is just a quick way of saying “all of the intents and sample
phrases that I came up with to make this skill smart”. The corpus is the key to your
skill’s intelligence. By training a model with your corpus, you essentially turn that model
into a reference tool for resolving user input to a single intent. Because your training
corpus ultimately plays the key role in deciding which route the skill-human
conversation will take, you need to choose your words carefully when building it.

Generally speaking, a large and varied set of sample phrases increases a model’s
ability to resolve intents accurately. But building a robust training corpus doesn’t just
begin with well-crafted sample phrases; it actually begins with intents that are clearly
delineated. Not only should they clearly reflect your use case, but their relationship to

Chapter 24
Create an Intent

24-10

their sample sentences should be equally clear. If you’re not sure where a sample sentence
belongs, then your intents aren’t distinct from one another.

You probably have sample utterances in mind when you create your intents, but you can
expand upon them by using these guidelines.

Guidelines for Trainer Tm
• Use a minimum confidence threshold of 0.7 for any skill that you plan to put into

production.

• Use good naming conventions for your intent names so it's easy to review related intents.

• As a general rule, create at least 80 to 100 utterances for each intent. Per the corpus size
and shape guidelines, the minimum (through not recommended) number of utterances for
an intent is two. The total number of utterances in your training set should not exceed
25,000.

• If possible, use unmodified, real-word phrases that include:

– vernacular

– standard abbreviations that a user might enter ("opty" for opportunity, for example)

– non-standard names, such a product names

– spelling variants ("check" and "cheque", for example)

If you don't have any actual data, incorporate these in your own training data. Here are
some pointers:

– Create fully formed sentences that mention both the action and the entity on which
the action is performed.

– Try to keep the utterance length between 3 and 30 words. Utterances that are too
short and lacking context can cause the model to generalize in unpredictable ways.
Utterances that are too long may prevent the model from identifying the pertinent
words and phrases. There can be exceptions, however, for one- or two-word
utterances when they're commonly used phrases. If you expect two-word messages
like order status, price check, membership info, or ship internationally) that specify
both the entity and action, add them to your training data. Be sure that your sample
phrases have both an action and an entity.

– Be specific. For example, What is your store phone number? is better than What is
your phone number? because it enables Trainer Tm to associate a phone number
with a store. As a result of this learning, it will resolve What's your mom's phone
number? to a lower confidence score.

– While Trainer Tm detects out-of-scope utterances, you can still improve confidence
and accuracy by creating an unresolvedIntent for utterances that are in domain but
still out of scope for the skill's intents. This enables Trainer Tm to learn the boundary
of domain intents. You can define an unresolvedIntent for phrases that you do not
want resolved to any of your skill's intents. You may only want to define an
unresolvedIntent when user messages have been resolved to a skill's intents even
when they don't apply to any of them.

– Vary the words and phrases that surround the significant content as much as
possible. For example, I'd like a pizza, please", "Can you get me a pizza?", "A pizza,
please"

– Some practices to avoid:

Chapter 24
Create an Intent

24-11

* Do not associate a single word or phrase with a specific intent unless that
word or phrase indicates the intent. Repeated phrases can skew the intent
resolution. For example, starting each OrderPizza utterance with "I want to
…" and each ShowMenu intent with "Can you help me to …" may increase
the likelihood of the model resolving any user input that begins with "Can
you help me to" with OrderPizza and "I want to" with ShowMenu.

* A high occurrence of one-word utterances in your intents. One-word
utterances are an exception. Use them sparingly, if at all.

* Open-ended utterances that can easily apply to other domains or out-of-
domain topics.

* Your corpus doesn't need to repeat the same utterance with different
casing or with different word forms that have same lemma. For example,
because Trainer Tm can distinguish between manage, manages, and
manager, it not only differentiates between "Who does Sam manage?" and
"Who manages Sam?", but also understands that these words are related
to one another.

Note:

You may be tempted to add misspellings of words. But before
you do, use those misspellings in the utterance tester to see if
the model recognizes them. You might be surprised at how well
it handles them. Also, by not adding misspellings you run less
risk of skewing your model in unexpected ways.

• Create test cases to ensure the integrity of the intent resolution.

• Run the Overview report for skill quality to maintain a balanced training set. Run
the anomalies report as well to check for misclassified or unusual utterances.

• When you deploy your skill, you can continuously improve the training data by:

– Reviewing the Conversation Logs, summaries of all conversations that have
occurred for a specified period. You enable the logging by switching Enable
Insights on in Settings.

– Running Skill Quality Reports and by assigning (or reassigning) actual user
messages to your intents with the Insights Retrainer. If these reports indicate
that unresolvedIntent has a lot of misclassified utterances within the domain
intents:

* Move the in-scope utterances from unresolvedIntent to the domain
intents.

* Move the out-of-scope utterances from the domain intents to
unresolvedIntent.

Guidelines for Trainer Ht
Create 12 to 24 sample phrases per intent, if possible. Use unmodified, real-word
phrases that include:

• vernacular

• common misspellings

Chapter 24
Create an Intent

24-12

• standard abbreviations that a user might enter ("opty" for "opportunity", for example)

• non-standard names, such a product names

• spelling variants ("check" and "cheque", for example)

If you don't have any actual data, incorporate these in your own training data. Here are some
pointers:

• Vary the vocabulary and sentence structure in these starter phrases by one or two
permutations using:

– slang words (moolah, lucre, dough)

– standard abbreviations that a user might enter ("opty" for opportunity, for example)

– non-standard names, such a product names

– common expressions (Am I broke? for an intent called AccountBalance)

– alternate wording (Send cash to savings, Send funds to savings, Send money to
savings, Transfer cash to savings.)

– different categories of objects (I want to order a pizza, I want to order some food).

– alternate spellings (check, cheque)

– common misspellings ("buisness" for business)

– unusual word order (To checking, $20 send)

• Use different concepts to express the same intent, like I am hungry and Make me a pizza

• Do not associate a single word or phrase with a specific intent unless that word or phrase
indicates the intent. Repeated phrases can skew the intent resolution. For example,
starting each OrderPizza utterance with "I want to …" and each ShowMenu intent with
"Can you help me to …" may increase the likelihood of the model resolving any user
input that begins with "I want to" with OrderPizza and "Can you help me to" with
ShowMenu.

• Avoid sentence fragments and single words. Instead, use complete sentences (which can
be up to 255 characters) that include the action and the entity. If you must use single key
word examples, choose them carefully.

• Create test cases to ensure the integrity of the test the intent resolution. Because adding
a new intent examples can cause regressions, you might end up adding several test
phrases to stabilize the intent resolution behavior.

Limits for Training Data Shape and Size
Regarding training data and shape, here are the limits to the number of intents and
utterances.

Intents:

• Minimum number of intents per skill: 2

• Maximum number of intents per skill: 2,500

Utterances:

• Maximum number of utterances per skill: 25,000

• Minimum number of utterances per intent: 2

Chapter 24
Create an Intent

24-13

• Utterance word length: Between 3 and 30 words. Per the guidelines for Trainer
Tm, there are exceptions where one or two-word utterances can be appropriate if
they are commonly used.

Note:

These are technical limits, not recommendations. See Guidelines for Trainer
Tm for practical recommendations for shaping your skills and providing
robust training data.

Export Intent Data
To log conversations, be sure to enable Enable Insights in Settings > General before
you test your intents.

To export data for a skill:

1. Click to open the side menu and select Development > Skills.

2. In the tile for the skill, click and select Export Conversations.

3. Choose Intent Conversation Log, set the logging period, and then click Export.

4. Review the user input by opening the CSV files in a spreadsheet program.

Intent Training and Testing
Training a model with your training corpus allows your bot to discern what users say
(or in some cases, are trying to say).

You can improve the acuity of the cognition through rounds of intent testing and intent
training. You control the training through the intent definitions alone; the skill can’t learn
on its own from the user chat.

Testing Utterances
We recommend that you set aside 20% percent of your corpus for intent testing and
use the remaining 80% to train your intents. Keep these two sets separate so that the
test utterances, which you incorporate into test cases, remain "unknown" to your skill.

Apply the 80/20 split to the each intent's data set. Randomize your utterances before
making this split to allow the training models to weigh the terms and patterns in the
utterances equally.

The Utterance Tester
The Utterance Tester is your window to your skill's cognition. By entering phrases that
are not part of the training corpus, you can find out how well you've crafted your intents
by reviewing the intent confidence ranking and the returned JSON. This ranking, which
is the skill's estimate for the best candidate to resolve the user input, demonstrates its
acuity at the current time.

Chapter 24
Intent Training and Testing

24-14

Using the Utterance Tester, you can perform quick tests for one-off testing, or you can
incorporate an utterance as a test case to gauge intent resolution across different versions of
training models.

Chapter 24
Intent Training and Testing

24-15

Quick Tests
To find out how well your intents work:

1. Click Test Utterances (located at the left side).

2. If your skill supports multiple native languages, choose the testing language.
Choosing this option ensures that the utterance will be added to the corresponding
language version of the corpus. The skill's primary language is selected by default.

3. Enter a string of text.

4. Click Test and then take a look at the ranking and the entities detected in the
utterance (if any).

5. Review the Intent Confidence scores. (The progress bars for each intent listed are
green if they meet or exceed the Confidence Level or red if they fall short).

If your skill’s top-ranking candidate isn’t what you expect, you might need to retrain
the intents after doing one or both of the following:

• Update the better candidate’s corpus with the input text that you just entered—
Select the appropriate intent and then click Add to Intent.

Caution:

Consider how adding new test phrase might affect the training data.
Adding a test phrase can change how the utterances that are similar
to it get classified after retraining. In addition, adding a test phrase
invalidates the test, because the incorporation of a test phrase into
the training set ensures that the test will be successful. Rather than
adding a test phrase to the training data, you should instead save it
as a test case.

• In the Intents page, you can edit an utterance Edit () or remove it. A FAQ
intent, for example, might receive a top rank because of the scope and
phrasing of its constituent utterances. If you don’t want your users to get a
FAQ whenever they ask typical questions, you’ll need to revise the corpus.

You need to retrain an intent whenever you add, change, or delete an utterance.
Training Needed displays whenever you make a change to the training
data.

6. If your intents aren't resolving as intended, you can expand the JSON window to
review the matched intents, scores, and detected entities in the returned JSON.

7. Click Reset.

Test Cases
Each test has an utterance and the intent that it's expected to resolve to, which is
known as a label match. A test case can also include matching entity values and the
expected language for the utterance. You can run test cases when you’re developing a
skill and later on, when the skill is in production, you can use the test cases for
regression testing. In the latter case, you can run test cases to find out if a new release
of the training model has negatively affected intent resolution.

Chapter 24
Intent Training and Testing

24-16

Like the test cases that you create with the Conversation Tester, utterance test cases are part
of the skill and are carried along with each version. If you extend a skill, then the extension
inherits the test cases. Whereas conversation test cases are intended to test a scenario,
utterance test cases are intended to test fragments of a conversation independently, ensuring
that each utterance resolves to the correct intent.

Manage Test Cases
The Test Cases page, accessed by clicking Go to Test Cases in the Utterance Tester, lists
the test suites and the test cases that belong to them. The test suites may be ones that you
have created, or may have been inherited from a skill that you've extended or cloned. In
addition to editing, adding and removing test cases, you use this page to compile test cases
into test runs.

By default, All is selected, which displays every test case. If you want to narrow the display to
only the test cases that belong to a single test suite, you can either select the test suite from
the list of test suites or filter this list using a full or partial match of the test suite name. The
test suite view enables you to manage the suite's member test cases from its Test Cases tab.

From its General tab, you can, in addition to updating the name and description of the test
suite, exclude the test suite from a test run by switching off Enable Test Suite. By switching

Chapter 24
Intent Training and Testing

24-17

off Include in Skill Export, you can prevent the test suite from getting included in the
nluTestSuites folder that houses the skill's test suites when the skill is exported.

Create Test Suites
All test cases belong to a test suite. We provide one for you called Default Test Suite,
but you might want to partition your testing by creating your own test suites. You can
create test suites manually or by importing a CSV. To create a test suite manually:

1. Click + Test Suite.

2. In the General tab, replace the placeholder name (TestSuite0001, for example)
with a more meaningful one by adding a value in the Display Name field.

3. Optionally, add a description that explains the functionality that's covered by the
test suite.

4. Populate the test suite with test cases using any (or a combination of) the
following methods:

• Manually adding test cases (either by creating a test case or by saving an
utterance as a test case from the Utterance Tester).

• Importing test cases.

Note:

To assign a test case to a test suite via import, the CSV's testSuite
field can either be empty, or must contain a name that matches the
test suite that's selected in the import dialog.

• Editing a test case to reassign its test suite.

5. If you want to exclude the test suite from test runs that are launched using the All
and Run All options, switch off Enable Test Suite.

6. If you don't want the test suite included with the skill export, switch off Include in
Skill Export. When you switch off this option for a test suite, it won't be included in
the nluTestSuites folder that houses the skill's test suites in the exported ZIP file.

Chapter 24
Intent Training and Testing

24-18

Create Utterance Test Cases
You can add test cases one-by-one using either Utterance Tester or the New Test Case
dialog (accessed by clicking + Test Case), or you can add them in bulk by uploading a CSV.

Each test case must belong to a test suite, so before you create a test case, you may want to
first create a test suite that reflects a capability of the skill, or some aspect of intent testing,
such as failure testing, in-domain testing, or out-of-domain testing.

We provide a suite called Default Test Suite. You can assign test cases to this test suite if you
haven't yet created any others. Later on, you can edit the test case to reassign it to a new test
suite.

Tip:

To provide adequate coverage in your testing, create test suite utterances that are
not only varied conceptually, but also grammatically since users will not make
requests in a uniform fashion. You can add these dimensions by creating test suites
from actual user message that have been queried in the Insights Retrainer and also
from crowd-sourced input gathered from Data Manufacturing.

Add Test Cases from the Utterance Tester
In addition to adding utterances to the training corpus, you can use the Quick Test page to
create a test case:

1. Click Test Utterances.

2. If the skill is multi-lingual, select the native language.

3. Enter the utterance then click Test.

4. Click Save as Test Case then choose a test suite.

Create a Test Case
To create a single test case:

1. Click Go to Test Cases in the Utterance Tester.

2. Click + Test Case.

3. Complete the New Test Case dialog:

• If needed, disable the test case.

• Enter the test utterance.

• Select the test suite.

• Select the expected intent. If you're creating a test case for failure testing, select
unresolvedIntent.

• For multi-lingual skills, select the language tag and the expected language.

4. Click Add to Suite. From the Test Cases page, you can delete a test case, or edit a test
case, which includes reassigning the test case to a different test suite.

Chapter 24
Intent Training and Testing

24-19

5. To test for entity values:

• Switch on Test Entities. Then click Continue.

• Highlight the word (or words) and then apply an entity label to it by selecting
an entity from the list. When you're done, click Add to Suite.

Note:

Always select words or phrases from the test case utterance after
you enable Test Entities. The test case will fail if you've enabled
Test Entities but have not highlighted any words.

Chapter 24
Intent Training and Testing

24-20

Import Test Cases for Skill-Level Test Suites
From the Test Cases page (accessed by clicking Go to Test Cases in the Utterance Tester),
you can add test suites and their cases in bulk by uploading a CSV file that has the following
fields:

• testSuite – The name of the test suite to which the test case belongs. The testSuite
field in each row of the CSV can have a different test suite name or can be empty.

– Test cases with empty testSuite fields get added to a test suite that you select when
you import the CSV. If you don't select a test suite, they will be assigned to Default
Test Suite.

– Test cases with populated testSuite fields get assigned to the test suite that you
select when you import the CSV only when the name of the selected test suite
matches the name in the testSuite field.

– If a test suite by the name of the one specified in testSuite field doesn't already
exist, it will be created after you import the CSV.

• utterance – An example utterance (required). Maps to query in pre-21.04 versions of
Oracle Digital Assistant.

• expectedIntent – The matching intent (required). This field maps to TopIntent in
pre-21.04 versions of Oracle Digital Assistant.

Tip:

Importing Pre-21.04 Versions of the CSV tells you how to reformat Pre-21.04
CSVs so that you can use them for bulk testing.

• enabled – TRUE includes the test case in the test run. FALSE excludes it.

• languageTag – The language tag (en, for example). When there's no value, the language
detected from the skill's language settings is used by default.

• expectedLanguageTag (optional) – For multilingual skills, this is the language tag for the
language that you want the model to use when resolving the test utterance to an intent.
For the test case to pass, this tag must match the detected language.

• expectedEntities – The matching entities in the test case utterance, represented as an
array of entityName objects. Each entityName identifies the entity value's position in the
utterance using the beginOffset and endOffset properties. This offset is determined by
character, not by word, and is calculated from the first character of the utterance (0-1).
For example, the entityName object for the PizzaSize entity value of small in I want to
order a small pizza is:

[{"entityName":"PizzaSize","beginOffset":18,"endOffset":23,"originalString
":"small"}, …]

Chapter 24
Intent Training and Testing

24-21

To import this CSV:

1. Click More, then select Import.

2. Browse to, then select the CSV.

3. Choose the test suite. The test case can only be assigned to the selected test
suite if the testSuite field is empty or matches the name of the selected test
suite.

4. Click Upload.

Importing Pre-21.04 Versions of the CSV
Test cases imported via the pre-21.04 versions of CSVs, which have the query and
TopIntent fields, get added to Default Test Suite only. You can reassign these test
cases to other test suites individually by editing them after you import the CSV, or you
can update the CSV to the current format and then edit before you import it as follows:

1. Click More > Import.

2. After the import completes, select Default Test Suite, then click More > Export
Selected Suite. The exported file will be converted to the current format.

3. Extract the ZIP file and edit the CSV. When you've finished, import the CSV again
(More > Import). You may need to delete duplicate test cases from the Default
Test Suite.

Note:

If you upload the same CSV multiple times with minor changes, any new
or updated data will be merged with the old: new updates get applied
and new rows are inserted. However, you can't delete any utterances by
uploading a new CSV. If you need to delete utterances, then you need to
delete them manually from the user interface.

Create Test Runs
Test runs are a compilation of test cases or test suites aimed at evaluating some
aspect of the skill's cognition. The contents (and volume) of a test run depends on the
capability that you want to test, so a test run might include a subset of test cases from
a test suite, a complete test suite, or multiple test suites.

The test cases included in a test run are evaluated against the confidence threshold
that's set for the skill. For a test case to pass in the overall test run, it must resolve to
the expected intent at, or above, the confidence threshold. If specified the test case
must also satisfy the entity value and language-match criteria. By reviewing the test

Chapter 24
Intent Training and Testing

24-22

run results, you can find out if changes made to the platform, or to the skill itself, have
compromised the accuracy of the intent resolution.

In addition to testing the model, you can also use the test run results to assess the reliability
of your testing. For example, results showing that nearly all of the test cases have passed
might, on the surface, indicate optimal functioning of the model. However, a review of the
passing test cases may reveal that the test cases do not reflect the current training because
their utterances are too simple or have significant overlap in terms of the concepts and
verbiage that they're testing for. A high number of failed tests, on the other hand, might
indicate deficiencies in the training data, but a review of these test cases might reveal that
their utterances are paired with the wrong expected intents.

To create a test run:

1. Click Run All to create a test run for all of the test cases in a selected test suite. (Or if
you want to run all test suites, select All then click Run All).

• To create a test run for a selection of test cases within a suite (or a test run for subset
of all test cases if you selected All), filter the test cases by adding a string that
matches the utterance text and an expected intent. Select the utterance(s), then click
Run.

Chapter 24
Intent Training and Testing

24-23

• To exclude test suite from the test run, first select the test suite, open the
General tab, and then switch off Enable Test Suite.

• For multilingual skills, you can also filter by Language Tag and Expected
Language options (accessed through Optional Attributes).

2. Enter a test run name that reflects the subject of test. This is an optional step.

3. Click Start

Chapter 24
Intent Training and Testing

24-24

4. Click Test Results, then select the test run.

Tip:

Test runs that contain a large number of test cases may take several minutes to
complete. For these large test runs, you may need to click Refresh periodically
until the testing completes. A percentage replaces the In Progress status for the
Accuracy metric and the Intents report renders after all of the test cases have
been evaluated.

5. Review the test run reports. For example, first review the high-level metrics for the test
run provided by the Overview report. Next, validate the test results against the actual test
cases by filtering the Test Cases report, which lists all of the test cases included in the
test run, for passed and failed test cases. You can then examine the individual test case
results. You might also compare the Accuracy score in the Overview report to the
Accuracy score in the Intents report, which measures the model's ability to predict the

Chapter 24
Intent Training and Testing

24-25

correct intents. To review the test cases listed in this report, open the Test Cases
report and filter by intents.

Test Run Summary Report
The Summary report provides you with an overall assessment of how successfully the
model can handle the type of user input that's covered in the test run. For the test
suites included in the test run, it shows you the total number of test cases that have
been used to evaluate the model, and from that total, both the number of test cases
(both reliable and unreliable) that failed along with the number of reliable and
unreliable test cases that passed. The model's overall accuracy – its ability to predict
expected intents at or above the skill's confidence level, recognize entity values, and
resolve utterances in the skill's language – is gauged by the success rate of the
passing tests in the test run.

Summary Report Metrics
The Summary report includes the following metrics:

• Accuracy – The model's accuracy in terms of the success rate of the passing test
cases (the number of passing test cases compared to the total number of test
cases included in the test run).

Note:

Disabled test cases are not factored into the Accuracy score. Neither are
the tests that failed because of errors. Any test that failed is instead
added to the Failed count.

A low Accuracy score might indicate the test run is evaluating the model on
concepts and language that are not adequately supported by the training data. To

Chapter 24
Intent Training and Testing

24-26

increase the Accuracy score, retrain the model with utterances that reflect the test cases
in the test run.

This Accuracy metric applies to the entire test run and provides a separate score from the
Accuracy metric in the Intents report. This metric is the percentage of test cases where
the model passed all of the test case criteria. The Accuracy score in the Intents report, on
the other hand, is not end-to-end testing. It is the percentage of test cases where the
model had only to predict the expected intent at, or above the skill's confidence threshold.
Other test case criteria (such as enity value or skill language) are not factored in. Given
the differing criteria of what a passing test case means for these two reports, their
respective Accuracy scores may not always be in step. The intent match Accuracy score
may be higher than the overall test run score when the testing data is not aligned with the
training data. Retraining the model with utterances that support the test cases will enable
it to predict the expected intents with higher confidence that will, in turn, increase the
Accuracy score for the test run.

Note:

The Accuracy metric is not available until the test run has completed and is not
available for test runs that were completed when the skill ran on pre-22.12
versions of the Oracle Digital Assistant platform.

• Test Cases – The total number of test cases (both reliable and unreliable test cases)
included in the test run. Skipped test cases are included in this tally, but they are not
considered when computing the Accuracy metric.

• Passed – The number of test cases (both reliable and unreliable) that passed by
resolving to the intent at the confidence threshold and by matching the selected entity
values or language.

• Failed – The number of test cases (bot reliable and unreliable) that failed to resolve to
the expected intent at the confidence threshold and failed to match the selected entity
values or language.
To review the actual test cases behind the Passed and Failed metrics in this report, open
the Test Cases report and then apply its Passed or Failed filters.

Chapter 24
Intent Training and Testing

24-27

Test Suite Breakdown

The Test Suite Breakdown table lists test suites included in the test run and their
individual statistics. You can review the actual test cases belonging to a test suite by
clicking the link in the Test Suite column.

Intents Report
The metrics in this report track the model's label matches throughout the test run's test
cases. This is where the model correctly predicts the expected intent for the test case
utterance. Within the context of this report, accuracy, passing, and failing are
measured in terms of the test cases where the model predicted the correct expected
intent at, or above, the confidence threshold. Other criteria considered in the Summary
report, such as entity value matches or skill language are not considered. As a result,
this report provides you with a different view of model accuracy, one that helps you to
verify if the current training enables the model to consistently predict the correct
intents.

This report provides you with label-match (or intent-match) metrics for the test run at
two levels: one that aggregates the results for the test run and one separates these
results by intent.

Note:

This report is not available for test runs that were completed when the skill
ran on a pre-22.12 version of the Oracle Digital Assistant platform.

Chapter 24
Intent Training and Testing

24-28

Intents Report Metrics
The overall intent-matching results include:

• Test Cases – The number of test cases included in this test run. This total includes both
reliable and unreliable test cases. Skipped test cases are not included in this tally.

Tip:

The unreliable test case links for the Test Cases, Passed and Failed metrics
open the Test Cases report filtered by unreliable test cases. This navigation is
not available when you filter the report by test suite.

• Accuracy – The model's accuracy in matching the expected intent at, or above, the skill's
confidence threshold across the test cases in this test run. The Label Match submetric
represents the percentage of test cases in the test run where the model correctly
predicted the expected intent, regardless of the confidence score. Because Label Match
factors in failing test cases along with passing test cases, its score may be higher than
the Accuracy score.
You can compare this Accuracy metric with the Accuracy metric from the Summary
report. When the Accuracy score in Summary report is low, you can use this report to
quickly find out if the model's failings can be attributed to its inability to predict the
expected intent. When the Accuracy score in this report is high, however, you can rule
out label matching as root of the problem and, rather than having to heavily revise the
training data to increase the test run's Accuracy score, you can instead focus adding
utterances that reflect the concepts and language in the test case utterances.

Chapter 24
Intent Training and Testing

24-29

• Passed – The number of test cases (reliable and unreliable) where the model
predicted the expected intent at the skill's confidence threshold.

• Failed – The number of test cases (reliable and unreliable) where the model
predicted the expected intent below the skill's confidence threshold.

• Confidence Pass – An average of the confidence scores for all of the test cases
that passed in this test run.

• Confidence Fail – An average of the confidence scores for all of the test cases
that failed in this test run.

Note:

When you filter the Intents report by test suite, access to the Test Cases
report from the unreliable test case links in the Test Cases, Passed, and
Failed tiles is not available. These links become active again when you
remove all entries from the Filter by Test Suite field.

Filter by Test Suite
The default results of the Intents report reflect all of the test suites included in the test
run. Likewise, its metrics are based on all of the enabled test cases that belong to
these test suites. If you want to breakdown individual test suite performance (and
essentially create a comparison to the Summary report's Test Suite Breakdown table),
you don't need to create additional test runs. Instead, you can isolate the results for
the test suite (or test suites) in question using the Filter by Test Suite field. You can
add one or more test suites to this field.

The report adjusts the metrics for each test suite that you add (or subsequently
remove). It tabulates the intent matching results in terms of the number of enabled test
cases that belong to the selected test suite.

Chapter 24
Intent Training and Testing

24-30

Note:

You can't filter by test suites that were run on a platform prior to Version 23.06. To
include these test suites, you need to run them again after you upgrade to Versions
23.06 or higher.

Note:

Filtering by test suite disables navigation to the Test Cases report from the
unreliable test cases links in the Test Cases, Passed, and Failed tiles. The links in
the Total column of the Intents Breakdown are also disabled. All of these links
become active again after you remove all of the entries from the Filter by Test Suite
field.

Intents Breakdown
The report's Intents Breakdown table provides the following top-level metrics for the expected
intents named in the test run's test cases. You can narrow the focus by selecting the names
of these intents from the Filter by Intents field.

Chapter 24
Intent Training and Testing

24-31

Note:

The Filter by Intent field changes the view of the Intents Breakdown table but
does not change the report's overall metrics. These metrics reflect the
entries (or lack of entries) in the Filter by Test Suite field.

• Intent – The name of the expected intent.

• Total – The number of test cases, represented as a link, for the expected intent.
You can traverse to the Test Cases report by clicking this link.

Note:

You can't navigate to the Test Cases report when you've applied a test
suite filter to this report. This link becomes active again when you
remove all entries from the Filter by Test Suite field.

• Accuracy – The percentage of test cases that resulted in label matches for the
expected intent at, or above the skill's confidence threshold.

• Passed – The number of test cases (including unreliable test cases) where the
model predicted the expected intent at, or above, the skill's confidence threshold.

• Passed - Unreliable – The number test cases where the model predicted the
expected intent at 5% or less above the skill's confidence threshold.

• Failed – The number of test cases in the test run that failed because the model
predicted the expected intent below the skill's confidence threshold.

• Failed - Unreliable – The number test cases that failed because the model's
confidence in predicting the expected intent fell 5% below the skill's confidence
threshold. These test cases can factor into the

• Label Match – The number of test cases where the model successfully predicted
the expected intent, regardless of confidence level. Because it factors in failed test
cases, the Label Match and Accuracy scores may not always be in step with one
another. For example, four passing test cases out of five results in an 80%
Accuracy score for the intent. However, if the model predicted the intent correctly
for the one failing test case, then Label Match would outscore Accuracy by 20%.

• Confidence Pass – An average of the confidence scores for all of the test cases
that successfully matched the expected intent.

• Confidence Fail – An average of the confidence scores for all of the test cases
that failed to match the expected intent.

Tip:

To review the actual test cases, open the Test Cases report and the filter
by the intent.

Chapter 24
Intent Training and Testing

24-32

Test Cases Report
This report lists all of the test cases included in the test run.

1. You can filter the results by clicking All, Passed (green), or Failed (red). The test cases
counted as skipped include both disabled test cases and test cases where the expected
intent has been disabled.

You can filter the results by unreliable test cases by either clicking Show me unreliable
cases in the warning message, or by selecting Only Unreliable Cases filter.

2. If needed, filter the results for a specific intent or entity or by reliable or unreliable test
cases.

3. For unreliable and failed test cases, click View Similar Utterances (located in the Test
Info page) to find out if the test case utterance has any similarity to the utterances in the
training set.

Chapter 24
Intent Training and Testing

24-33

4. Check the following results:

• Test Info – Presents the test case overview, including the target confidence
threshold, the expected intent, and the matched entity values.

• Test Result – The ranking of intent by confidence level. When present, the
report also identifies the entities contained in the utterance by entity name and
value. You can also view the JSON object containing the full results.

• Failure Analysis – Explains why the test case failed. For example, the actual
intent is not the expected intent, the labeled entity value in the test case
doesn't match the resolved entity, or the expected language is not the same as
the detected language.

Unreliable Test Cases
Some test cases cannot provide consistent results because they resolve within 5% or
less of the Confidence Threshold. This narrow margin makes these test cases
unreliable. When the skill's Confidence Threshold is set a 0.7, for example, a test case
that's passing at 74% may fail after you've made only minor modifications to your
training data or because the skill has been upgraded to a new version of the model.
The fragility of these test cases may indicate that the utterances that they represent in
the training data may be too few in number and that you may need to balance the
intent's training data with similar utterances.

To locate unreliable test cases:

1. Run the test suite. Then click Test Results and select the test run. The unreliable
test cases are sorted at the beginning of the test run results and are flagged with

warnings .

Chapter 24
Intent Training and Testing

24-34

2. To isolate the unreliable test cases:

• Click Show me the unreliable cases in the message.

• Select Only Unreliable Cases from the Filter by Cases menu.

3. To find the proximity of the test case's top-ranking intent to the Confidence Threshold,
open the Test Result window. For a comparison of the top-ranking confidence score to

the Confidence Threshold, click .

Chapter 24
Intent Training and Testing

24-35

4. If you need to supplement the training data for the top-ranking intent, click Go to
top intent in the warning message.

5. If you want to determine the quantity of utterances that are represented by the test
case in the training data, click View Similar Utterances.

Chapter 24
Intent Training and Testing

24-36

You can also check if any of the utterances most similar to the test case utterance are
also anomalies in the training set by running the Anomalies Report.

Exported Test Runs
Test runs are not persisted with with the skill, but you can download them to your system for
analysis by clicking Export Test Run. If the intents no longer resolve the user input as
expected, or if platform changes have negatively impacted intent resolution, you can gather
the details for an SR (service request) using the logs of exported test runs.

Failure Testing
Failure (or negative) testing enables you to bulk test utterances that should never be
resolved, either because they result in unresolvedIntent, or because they only resolve to
other intents below the confidence threshold for all of the intents.

To conduct failure testing:

• Specify unresolvedIntent as the Expected Intent for all of the test cases that you expect
to be unresolved. Ideally, these "false" phrases will remain unresolved.

Chapter 24
Intent Training and Testing

24-37

• If needed, adjust the confidence threshold when creating a test run to confirm that
the false phrases (the ones with unresolvedIntent as their expected intent) can
only resolve below the value that you set here. For example, increasing the
threshold might result in the false phrases failing to resolve at the confidence level
to any intent (including unresolvedIntent), which means they pass because they're
considered unresolved.

• Review the test results, checking that the test cases passed by matching
unresolvedIntent at the threshold, or failed to match any intent (unresolvedIntent or
otherwise) at the threshold.

Similar Utterances

You can find out how similar your test phrase is to the utterances in the training corpus
by clicking View Similar Utterances. This tool provides you with an added perspective
on the skill's training data by showing you how similar its utterances are to the test
phrase, and by extension, how similar the utterances are to one another across
intents. Using this tool, you can find out if the similarity of the test phrase to utterances
belonging to other intents is the reason why the test phrase is not resolving as
expected. It might even point out where training data belongs to the wrong intent
because if its similarity to the test phrase.

Chapter 24
Intent Training and Testing

24-38

The list generated by this tool ranks 20 utterances (along with their associated intents) that
are closest to the test phrase. Ideally, the top-ranking utterance on this list – the one most like
the test phrase – belongs to the intent that's targeted for the test phrase. If the closest
utterance that belongs to the expected intent is further down, then a review of the list might
provide a few hints as to why. For example, if you're testing a Transactions intent utterance,
how much money did I transfer yesterday?, you'd expect the top-ranking utterance to likewise
belong to a Transactions intent. However, if this test utterance is resolving to the wrong intent,
or resolving below the confidence level, the list might reveal that it has more in common with
highly ranked utterances with similar wording that belong to other intents. The Balances
intent's How much money do I have in all of my accounts?, for example, might be closer to
the test utterance than the Transactions intent's lower-ranked How much did I deposit in
April? utterance.

You can access the list, which is generated for skills trained on Trainer Tm, by clicking View
Similar Utterances in the Utterance Tester or from the Test Cases report.

Chapter 24
Intent Training and Testing

24-39

Note:

You can only use this tool for skills trained on Trainer Tm (it's not available
for skills trained with Ht).

You can query utterances from both the Utterance Tester and through testing in the
View Similar Utterances tool itself. When you click View Similar Utterances, the
entire corpus is compared against the test phrase and a ranking is applied to each
utterance. Because no filters are applied by default, however, the list only includes the
20 top-ranked utterances and numbers them sequentially. To find out how utterances
ranked 21 and higher compared, you need to use the filters. By applying the following
filters, you can learn the proximity of similar utterances within the ranking in terms of
language, the intents they belong to, or the words or phrases that they have in
common.

• Filter by Intent – Returns 20 utterances that are closest to the test utterance that
belong to the selected intent (or intents).

Chapter 24
Intent Training and Testing

24-40

• Filter by Utterance – Returns 20 of the of utterances closest to the test utterance that
contain a word or phrase.

• Language – For multi-lingual skills, you can query and filter the report by selecting a
language.

Chapter 24
Intent Training and Testing

24-41

Note:

Applying these filters does not change the rankings, just the view. An
utterance ranked third, for example, will be noted as such regardless of the
filter. The report's rankings and contents change only when you've updated
the corpus and retrained the skill with Trainer Tm.

Tutorial: Best Practices for Building and Training Intents
You can follow this tutorial to find out about batch testing and other testing and training
tips.

• Best Practices for Building and Training Intents

Reference Intents in the Dialog Flow
You can reference intents directly from the dialog flow.

For dialog flows designed in Visual mode you define intent events in the Main Flow.
see Map an Intent to a Flow.

For dialogs designed in YAML mode, you configure intents as action transitions for the
System.Intent component to navigate to appropriate state for the resolved intent. For
example, here's what the System.Intent might like if you had intents called
OrderPizza and CancelPizza:

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 OrderPizza: "startOrder"
 CancelPizza: "cancelorder"
 unresolvedIntent: "unresolved"

Tune Intent Resolution Before Publishing
Before you publish a version of a skill (and thus freeze that version), you should
thoroughly test it and, if necessary, adjust its settings to fine tune its intent resolution.

You can use these settings to tune intent resolution:

• Confidence Threshold: Determines the minimum confidence level required for
user input to match an intent. It's recommended to set this value to .70 or higher.

• Confidence Win Margin: When a skill has multiple intents that exceed the value
of the Confidence Threshold, it displays a list of possible intents and prompts the
user to choose one. This property helps the skill determine what intents should be
in the list. Set the maximum level to use for the delta between the respective
confidence levels for the top intents. The list includes the intents that are greater

Chapter 24
Tutorial: Best Practices for Building and Training Intents

24-42

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=dacti-index

than or equal to this delta and exceed the value set for the Confidence Threshold.

To access these settings:

• Click to open the side menu, select Development > Skills, and open your bot.

• In the left navigation for the skill, click and select the Configuration tab.

Note:

Once you add a skill to a digital assistant, there is another range of settings that you
may need to adjust to better handle intent resolution in the context of the digital
assistant. See Tune Routing Behavior.

How Confidence Threshold Works
You use the Confidence Threshold property to adjust the likelihood that given user input will
resolve to the skill's intents.

When you increase the confidence threshold, you increase the certainty that any matching
intents are accurate (not false positives). However, this also increases the chance that intents
that you want to match with certain input will not get high enough confidence scores for the
matching to occur, thus resulting in matches to unresolvedIntent.

When you lower the value of the Confidence Threshold property, you reduce the chance that
intents that you want to match will fail to match. However, the lower you set this threshold, the
greater risk you have of generating false positives in your matches.

As a general rule the underlying language model works better with higher confidence
thresholds, so you should set the confidence threshold to 70% (.70) or higher to get the best
results.

How Confidence Win Margin Works
With the Confidence Win Margin property (accessed through Settings > Configuration),
you can enable your skill to prompt users for an intent when the confidence scores for
multiple intents are close. For example, if a user asks the FinancialBot, “I want to check
balance or send money,” the skill responds with a select list naming the top intents, Check
Balances and Send Money.

Chapter 24
Tune Intent Resolution Before Publishing

24-43

The skill offers these two intents in a select list, because its confidence in them
exceeds the value set for the Confidence Threshold property and the difference
between their respective confidence levels (that is, the win margin) is within value set
for the Win Margin property.

Answer Intents
In some cases, a user's question requires only a single answer and no further
conversation. Answer intents enable your skill to output these types of replies without
you having to update the dialog definition.

You can create answer intents in the following ways:

• Use the Knowledge feature to generate answer intents from an existing resource,
such as an FAQ that is hosted on a web page or in a PDF document.

• On the skill's Intents page, define answer intents like you would any other intent
but also include an answer in the Answer field.

• Do bulk creation of answer intents by uploading a CSV file.

Here are a few more things you need to know about answer intents:

• Skills with answer intents should be trained with Trainer Tm.

• Unlike regular intents, you don't need to map answer intents to flows (in the Visual
Flow Designer) or to states with System.Intent actions (in the YAML editor).

– In the Visual Flow Designer, you can create a standard flow that handles all
answer intents, map specific answer intents, or use a combination of the
approaches.

– In the YAML editor, you just need to have a System.Intent component to
resolve the answer intents.

• You can optionally store the answer intent in a resource bundle by clicking The
resource bundle entries for answer intents are listed in the resource bundle's Q&A
page.

Generate Answer Intents from an Existing Knowledge Resource
If you already have a web page or PDF document with question and answer pairs, you
can use the Knowledge feature to ingest those Q&A pairs from the document and
generate answer intents automatically. (Other text in the document that is not
organized as question/answer pairs is ignored.) When you create answer intents this
way, example utterances are also generated for the intents.

Chapter 24
Answer Intents

24-44

To generate answer intents from a question and answer document:

1. In the left navbar of the skill, click .

2. Click + Knowledge Document.

3. In the New Knowledge Document dialog:

a. Specify a name and language for the document.
For the language, you can select from the natively-supported languages that you
have specified for your skill.

b. Select PDF or HTML and upload the document, or select URL.
If you are providing a URL, it must point to a static HTML page containing the FAQ.

c. If the document is a PDF or HTML document for upload, select the checkbox
acknowledging that it will be temporarily stored.

d. Click Create.

Note:

The URL option only works for HTML web pages. If you want to import an
online PDF file, you need to first download it from the web page and then
upload it into Digital Assistant.

4. Wait for the generation of the answer intents to occur.
(The status and progress of the job will be updated every 10 seconds.)

5. Once the job is completed, click Review Intents to go over the generated intents and
training utterances. Pay particular attention to each question and answer to make sure
that each contains the right text.

Tip:

For PDF documents, you can click Open PDF to view a color-coded version of
the document to see what text was used to generate the intents and how it was
divided into questions and answers.

6. To edit an intent's name, question, answer, or utterances, click its Edit icon.

Note:

You can also later edit these values on the Intents page.

7. For an intents that you don't want added to the skill, clear the Include checkbox.

8. Click Add Intents to Skill to add the generated intents to the skill.

9. In the left navbar, click Intents and make any further adjustments to the intents, such
as changing the conversation name and adding further example utterances.

The answers are generated with HTML tags for formatting that is included in the original for
things like bold text, italics, and hyperlinks. This markup is then automatically transformed
into the appropriate markup or markdown for the channels through which the skill is exposed.

Chapter 24
Answer Intents

24-45

(If the channel doesn't support formatting, the tags are removed when the message is
sent through that channel.) See Rich Text Formatting in Channels.

Note:

There is a limit of 100 answer intents that can be created at a time. If your
knowledge document has more than 100 question/answer pairs, divide the
document into smaller documents and create the answer intents from each
of those documents.

Create a Single Answer Intent
If you need just a few answer intents, you can create them similarly to how you create
regular intents.

1. Click Intents in the left navbar.

2. Click Add Intent.

3. Click to enter a descriptive name or phrase for the intent in the Conversation
Name field.

4. Add the intent name in the Name field. If you don't enter a conversation name,
then the Name field value is used instead.

Note:

In naming your intents, do not use system. as a prefix. system. is a
namespace that's reserved for the intents that we provide. Because
intents with this prefix are handled differently by Trainer Tm, using it may
cause your intents to resolve in unexpected ways.

5. Click

and then add an answer to the Answer field. Apply formatting to the text as
needed.

6. In the Examples section, add training utterances that reflect typical ways that
users would express the question that the intent is answering.

Chapter 24
Answer Intents

24-46

Create Answer Intents from a CSV File
You can create answer intents in bulk by importing a CSV file. This file is similar to the
standard intent CSV file, but in addition to the query, topIntent, and conversationName
columns, it also has the answer column:

query,topIntent,conversationName,answer
What are your hours?,StoreHours,Our Store Hours,"We're open from 9-5,
Mondays-Thursdays or by appointment."
When are you open?,StoreHours,Our Store Hours,"We're open from 9-5, Mondays-
Thursdays or by appointment."
When do you close?,StoreHours,Our Store Hours,"We're open from 9-5, Mondays-
Thursdays or by appointment."
What do you sell?,Products,Our Products,We sell only hammers. All types.
Do you sell brick hammers?,Products,Our Products,We sell only hammers. All
types.
Do you sell claw hammers?,Products,Our Products,We sell only hammers. All
types.
Do you deliver?,Delivery_and_Pickup,Pickup and Delivery options,"No delivery
service, sorry. Purchases are in-store only"
Can I buy one of your hammers on the web?,Delivery_and_Pickup,Pickup and
Delivery options,"No delivery service, sorry. Purchases are in-store only"
Can you mail me a hammer?,Delivery_and_Pickup,Pickup and Delivery
options,"No delivery service, sorry. Purchases are in-store only"
Can I return a hammer?,Returns,Our Return Policy,You cannot return any
items. All sales are final.
My hammer doesn't work,Returns,Our Return Policy,You cannot return any
items. All sales are final.
Can I exchange my hammer,Returns,Our Return Policy,You cannot return any
items. All sales are final.

DO's and DON'Ts for Conversational Design
Creating a robust set of intents for a successful skill requires a lot of attention. Here are some
best practices to keep in mind.

Intent Design and Training

DO DON'T

DO plan to add utterances until you get results
you expect. Generally speaking, models perform
well as you add more quality training utterances.
The number of utterances you need depends on
the model, the training data, and the level of
accuracy that is realistic for your model.

DON'T over-train individual intents. Don’t add
excessive training data to some intents to make
them work "perfectly". If intent resolution is not
behaving as expected, evaluate your intent
structure for overlap between intents. Intent
resolution will NEVER be 100% accurate.

DO use real world data. Using the actual
language that your skill is most likely to encounter
is critical. Fabricated utterances can only take you
so far and will not prepare your skill for real-world
engagement.

DON'T use just keywords in training data.
While it is acceptable to use single words/short
phrases for training, the training data should have
the same structure as the user’s inputs. The fewer
the words in utterances, the less successful
classification will be.

Chapter 24
DO's and DON'Ts for Conversational Design

24-47

DO DON'T

DO use whole sentences to train intents. While
it’s OK to use short training utterances, be sure to
match the conversational style of your users as
closely as possible.

DON'T inadvertently skew intents. Be careful of
words which add no specific meaning (e.g.
"please" and "thanks") or entity values within
utterances as they can inadvertently skew intent
resolution if they are heavily used in one intent but
not in another.

DO use similar numbers of utterances per
intent. Some intents (e.g., "hello", "goodbye") may
have fewer utterances in their training sets.
However, ensure that your main intents have a
similar number of utterances to avoid biasing your
model.

DON’T rely ONLY on intent resolution. Use
entities to disambiguate common intents. If there’s
linguistic overlap between intents, consider using
entities to disambiguate the user’s intentions (and
corresponding unique conversational path).

DO handle small talk. Users will make requests
that are not relevant to the skill's purpose, such as
for jokes and weather reports. They may also do
things like ask if the skill is human. Ensure that
you have a small talk strategy and aggressively
test how the skill responds at all steps of your
conversational flow.

DON’T overuse unresolvedIntent. Create “out-
of-scope" intents for the things you know you don't
know (that you may or may not enable the skill to
do later).

DO consider multiple intents for a single use
case. Customers may express the same need in
multiple ways, e.g. in terms of the solution they
desire OR the symptom of their problem. Use
multiple intents that all resolve to the same
"answer".

DON’T ignore abusive interactions. Similar to
small talk, have a plan for abuse. This plan may
need to include measures to ensure any abusive
input from the user is not reflected back by the
skill, as well as provisions for immediate
escalation.

Conversational User Experience

DO DON'T

DO give indications of most likely
responses (including help and exit). For
example, "Hey, I'm Bob the Bot. Ask me about
X, Y, or Z. If you run into any problems, just
type 'help'."

DON'T delay conversational design until
"later in the project". For all but the simplest
skills, conversational design must be given the
same priority and urgency as other
development work. It should start early and
proceed in parallel with other tasks.

DO consider a personality for your bot. You
should consider the personality and tone of
your bot. However, be careful of overdoing
human-like interaction (humor and sympathy
often don't resonate well from a bot) and never
try to fool your users into thinking that they are
interacting with a human.

DON'T say that the skill "is still learning".
While well-intended, this bad practice signals
to the user (consciously or subconsciously)
that the skill is not up to the task.

DO guide the user on what is expected
from them. The skill should try to guide the
user toward an appropriate response and not
leave questions open ended. Open-ended
questions make the user more likely to fall off
the happy path.

DON'T use "cute" or "filler" responses. See
"DO guide the user on what is expected
from them".

Chapter 24
DO's and DON'Ts for Conversational Design

24-48

DO DON'T

DO break up long responses into individual
chat bubbles and/or use line breaks. Large
blobs of text without visual breaks are hard to
read and can lead to confusion.

DON'T say "I’m sorry, I don’t understand.
Would you please rephrase your
question?" This lazy error-handling approach
is, more often than not, inaccurate. No matter
how many times a user rephrases an out-of-
scope question, the skill will NEVER have
anything intelligent to say.

-- DON'T overuse "confirmation" phrases.
Confirmation phrases have their place.
However, don’t overuse them. Consider dialog
flows that are able to take confidence levels
into account before asking users to confirm.

Test Strategies

DO DON'T

DO develop utterances cyclically. Developing a
robust training corpus requires multiple iterations
and testing cycles and ongoing monitoring and
tuning. Use a cyclical "build, test, deploy, monitor,
update" approach.

DON'T neglect the need for a performance
measurement and improvement plan. Lacking a
plan for measuring and improving your skill, you'll
have no way of knowing whether it’s really
working.

DO test utterances using the 80/20 rule. Always
test the robustness of your intents against one
another by conducting multiple 80/20 tests, where
80% of newly harvested utterances are used to
train the model and 20% are added to your testing
data.

DON'T test only the happy path. "Getting it
working" is 20% of the work. The remaining 80%
is testing and adjusting how the skill responds to
incorrect input and user actions.

DO test skill failure. Aggressively try to break
your skill to see what happens. Don’t rely solely on
positive testing.

DON'T ignore processing out of order
messages. Users will scroll back in conversation
history and click on past buttons. Testing the
results need to be part of your 80% work (as noted
in DON'T test only the happy path).

-- DON’T forget to re-test as you update your
intents. If you add more training data (e.g., as you
bot gets more real-world usage) and/or you add
new intents for new use cases, don’t forget to
retest your model.

Project Considerations

DO DON'T

DO select use cases that are enhanced by
conversational UI (CUI). Enabling conversational
UI (via skills and digital assistants) is work. Make
sure that the use case will be truly enhanced by
adding CUI.

DON'T fail to have an escalation path. Even if
you don’t plan on allowing escalation to a human,
you must have a strategy for those interactions
where the skill can’t help.

Chapter 24
DO's and DON'Ts for Conversational Design

24-49

DO DON'T

DO anticipate the first day being the worst day.
Even the best-tested skills and digital assistants
require tuning on day 1.

DON'T disband the project team immediately
after launch. When scheduling your skill project,
ensure that you keep the skill’s creators
(Conversational Designer, Project Manager, Tech
Lead, etc.) on the project long enough for
adequate tuning and, ultimately, knowledge
transfer.

Names You Can't Use for Intents
Intent names can not start with system. ("system" followed by ".").

Note:

The Automated Agent Assistant (which is digital assistant template available
in the Skill Store) has several such intents, but they are treated as a special
case and should not be used elsewhere.

Chapter 24
Names You Can't Use for Intents

24-50

25
Entities

While intents map words and phrases to a specific action, entities add context to the intent
itself. They help to describe the intent more fully and enable your bot to complete a user
request.

The OrderPizza intent, for example, describes a user request, but only in general terms. To fill
in the specifics, this intent is augmented by the PizzaSize entity, which identifies values like
large, medium, and small from the user input. There are two types of entities, both of which
you can declare as variables in the dialog flow: built-in entities that we provide for you and
custom entities, which you can add on your own.

Built-In Entities
We provide entities that identify objective information from the user input, like time, date, and
addresses.

25-1

Hello! How may I help
you?

Moose Jaw Express

Done!
You’re booked on Flight
10 from SFO to YQR.
Be sure to check in by
1:00 pm.

Book 2 tickets on the 2pm
flight from SFO to Canada
today!

Entities:
- Number (2)
- Time (2pm)
- Address (SFO, Canada)
- Date (today)

These built-in entities extract primitive values like strings and integers, but can also
extract more complicated values from the user input using groups of properties.

Note:

Whenever you define a variable as an entity in a YAML-based dialog flow, be
sure to match the entity name and letter case exactly. For example, you’ll get
a validation error if you enter confirm: "YESNO" instead of confirm:
“YES_NO”.

Built-In Entities and Their Properties
Entities extract content using properties, each of which recognizes a specific value.
You can see these properties in the JSON output that’s returned by the NLU Engine. In
this output, the matched entities display along with the value that they’ve identified
from the user input. Within your dialog flow definition, you can use these properties to

Chapter 25
Built-In Entities

25-2

isolate a specific facet of an entity value. While each entity has its specific properties, all
entities have the following properties:

Property Description

beginOffset The beginning offset of this slotted entity value
starting at 0.

endOffset The ending offset of this slotted entity value
starting at 0.

originalString The original string that was extracted from the
query for this entity slot or the response to the
prompt.

Note:

The DATE, TIME, and DURATION entities are deprecated in Release 22.08. These
entities are not available to skills created on this version of the platform. They use
the DATE_TIME entity instead. Existing skills upgraded to 22.08 will continue to
support these legacy system entities, though there may be some behavior changes.

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

ADDRESS The city, house
number, and
road
This entity is
English-only.

500 Smith
Road, Smithville

• city
• houseNumb

er
• road

{
"road": "smith road",
"city": "smithville",
"entityName": "ADDRESS",
"houseNumber": "500",
"originalString": "500 Smith
Road, Smithville"
}

CURRENCY Representations
of money. You
can
disambiguate $
and ¥
currencies by
the detected
locale of the
user.

• $67
• 75 dollars

• amount
• currency
• totalCurr

ency

"CURRENCY": [{ "amount": 550,
"currency": "usd",
"totalCurrency": "550.0 usd",
"entityName": "CURRENCY" }]

Chapter 25
Built-In Entities

25-3

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

DATE An absolute or
relative date.
This entity is
deprecated in
Version 22.08
and is
unavailable to
skills created on
this version of
the platform. For
skills created
using prior
versions,
consider using
the DATE_TIME
entity instead.
Note: When the
user input
names a day,
but provides no
other temporal
context, the
system
considers this a
future date. For
example, it
considers
Wednesday in
the following
input as next
Wednesday, not
the current
Wednesday or
the prior
Wednesday.
• Book me a

ticket for
Wednesday
.

• I want to file
an expense
report for
Wednesday
.

You can
override this
behavior by
applying an
ambiguity
resolution rule.
While the DATE
entity resolves
to format of
several
supported

• November
9, 2016

• Today

date
 {
 "entityName":
"Meeting",
 "DATE_TIME": [
 {

"originalString": "Monday,
October 16th",
 "bagItem":
"Meeting:DateTime",
 "subType":
"DATE",
 "timeZone":
"UTC",

"movableDateValue": "--10-16",

"relativeRepresentation":
"--10-16",
 "entityName":
"DATE_TIME",
 "value":
"2022-10-16"
 }
]
 }
]

Chapter 25
Built-In Entities

25-4

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

locales, you can
opt to ignore the
format of the
detected locale,
and impose a
default format
and a tense
(future, past,
nearest, etc.) by
applying an
ambiguity
resolution rule.

Chapter 25
Built-In Entities

25-5

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

DATE_TIME Extracts various
time-related
information
through the
following
subtypes: a
date, a time, a
date and time, a
recurring event,
an interval or a
duration.

• Date:
January 1,
2023

• Time: 10am
• Date and

Time:
January 1,
2023 at
10am

• Interval:
January 1
2023 from
10 am for 2
hours

• Duration: 2
hours

For "Schedule a meeting for every Tuesday
from 10:00 am to 1 pm starting on January
23, 2022 and ending February 23":

 "entityMatches": {
 "Meeting": [
 {
 "entityName":
"Meeting",
 "DATE_TIME": [
 {

"originalString": "February
23",
 "bagItem":
"Meeting:DateTime",
 "subType":
"DATE",
 "timeZone":
"UTC",
 "role": "end",

"movableDateValue": "--02-23",

"relativeRepresentation":
"--02-23",
 "entityName":
"DATE_TIME",
 "value":
"2023-02-23"
 },
 {

"originalString": "January 23,
2022",
 "bagItem":
"Meeting:DateTime",
 "subType":
"INTERVAL",
 "startDate": {

"originalString": "January 23,
2022",
 "subType":
"DATE",
 "timeZone":
"UTC",
 "entityName":

Chapter 25
Built-In Entities

25-6

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

"DATE_TIME",
 "value":
"2022-01-23"
 },
 "entityName":
"DATE_TIME"
 },
 {

"originalString": "every
Tuesday from 10:00 am to 1 pm",
 "bagItem":
"Meeting:DateTime",
 "subType":
"RECURRING",
 "timeZone":
"UTC",

"recurrenceFrequency": {

"originalString": "every
Tuesday from 10:00 am to 1 pm",
 "subType":
"DURATION",
 "timeZone":
"UTC",
 "entityName":
"DATE_TIME",
 "value": "P1W"
 },
 "startInterval":
{

"originalString": "Tuesday
from 10:00 am to 1 pm",
 "subType":
"INTERVAL",
 "timeZone":
"UTC",
 "startDate": {

"originalString": "Tuesday",
 "subType":
"DATE",
 "timeZone":
"UTC",
 "weekday":
"TU",

Chapter 25
Built-In Entities

25-7

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

"relativeReference": "weekday",

"entityName": "DATE_TIME",
 "value":
"2022-10-18"
 },
 "startTime": {

"originalString": "10:00 am",
 "subType":
"TIME",
 "timeZone":
"UTC",

"entityName": "DATE_TIME",
 "value":
"10:00:00"
 },
 "endTime": {

"originalString": "1 pm",
 "subType":
"TIME",
 "timeZone":
"UTC",

"entityName": "DATE_TIME",
 "value":
"13:00:00"
 },
 "entityName":
"DATE_TIME"
 },
 "entityName":
"DATE_TIME"
 }
]
 }
]
 }

• Interpretation of February 23 per the
time resolution rules. Because the use
case is for scheduling a meeting, the

Chapter 25
Built-In Entities

25-8

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

date will always be interpreted as
forward-looking.

"movableDateValue":
"--02-23",

"relativeRepresentation":
"--02-23"

• "value": "P1W": An ISO 8601
interchange standard representation of
weekly/once a week, where P is the
duration desigator and W is the week
designator.

DURATION The amount of
time between
the two
endpoints of a
time interval
This entity is
deprecated in
Version 22.08
and is
unavailable to
skills created on
this version of
the platform. For
skills created
using prior
versions,
consider using
the DATE_TIME
entity instead.

• 4 years
• two weeks

• startDate
• endDate

[{ "originalString": "2 hours",
"bagItem": "Meeting:DateTime",
"subType": "DURATION",
"timeZone": "UTC", "entityName":
"DATE_TIME", "value":
"PT2H" }] }]

Chapter 25
Built-In Entities

25-9

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

EMAIL An email
address. The
NLU system can
recognize email
addresses that
have a
combination of
the following:
• part before

the at (@)
symbol:
– upperc

ase
and
lowerc
ase
letters
in the
Latin
alphab
et (A-Z
and a-
z)

– digits
(0-9)

– the
followin
g
printabl
e
charact
ers: !
#$
%&'*+
-/=?
^_`{
}~

– dot (.)

• part after
the at (@)
symbol:
– upperc

ase
and
lowerc
ase
letters
in the
Latin
alphab
et (A-Z
and a-
z)

ragnar.smith
@example.com

Chapter 25
Built-In Entities

25-10

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

– digits
(0-9)

– hyphen
(-)

LOCATION Extracts cities,
states, and
countries from
the user's input.

• Redwood
City

• CA
• USA

• city
• state
• country

"LOCATION": [{ "originalString":
"Redwood City, CA, USA", "name":
"redwood city, ca, usa",
"country": "usa", "state": "ca",
"city": "redwood city",
"entityName": "LOCATION" }]

NUMBER Matches ordinal
and cardinal
numbers. You
can resolve a
entity as the
locale-specific
format (grouping
of thousands by
full stops,
commas,
spaces, etc.).

• 1st
• first
• 1
• one

PERSON Recognizes a
string as the
name of a
person.
The PERSON
entity can't
match names
that are also
locations (for
example,
Virginia North).

To expand the
PERSON entity
to always match
the people in
your
organization,
you can
associate it with
a Value List
Entity.

• John J.
Jones

• Ashok
Kumar

• Gabriele
D'Annunzio

• Jones,
David

• Cantiflas
• Zhang San
• Virginia

Jones

name "PERSON": [{ "originalString":
"John J. Johnson", "name": "john
j. johnson", "entityName":
"PERSON" }]

Chapter 25
Built-In Entities

25-11

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

PHONE
NUMBER

A phone
number—The
NLU Engine
recognizes
phone numbers
that have seven
or more digits (it
can’t recognize
any phone
number with
fewer digits). All
country codes
need to be
prefixed with a
plus sign (+),
except for the
United States of
America (where
the plus sign is
optional). The
various parts of
the phone
number (the
area code,
prefix, and line
number), can be
separated by
dots (.), dashes
(-), or spaces. If
there are
multiple phone
numbers
entered in the
user input, then
the NLU Engine
can recognize
them when
they’re
separated by
commas. It can’t
recognize
different phone
numbers if
they’re
separated by
dots, dashes or
spaces.

• (650)-555–
5555

• 165055555
55

• +61.3.5555.
5555

• phoneNumb
er

• completeN
umber

{ "phone_number":"(650)-555-5555"
,
"complete_number":"(650)-555-5555
", "entityName":"PHONE_NUMBER" }

Chapter 25
Built-In Entities

25-12

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

TIME A specific time.
This entity is
deprecated in
Version 22.08
and is
unavailable to
skills created on
this version of
the platform. For
skills created
using prior
versions,
consider using
the DATE_TIME
entity instead.

In some cases,
for example,
when the input
is ambiguous,
you may need
the TIME entity
to resolve input
consistently as
a past or future
time, or
approximate it
by the nearest
time. To do this,
apply an
ambiguity
resolution rule.

2:30 pm • hrs
• mins
• secs
• "hourForm

at":"PM"

"startTime": { "date":
1613653200000, "zoneOffset": "0",
"endOffset": 4, "mins": 0,
"zone": "UTC", "entityName":
"TIME", "secs": 0, "hrs": 1,
"originalString": "1 pm", "type":
"TIME", "hourFormat": "PM",
"beginOffset": 0 }

URL A URL—This
entity can
extract IPv4
addresses, Web
URLs, deep
links (http://
example.com/
path/page), file
paths, and
mailto URIs. If
the user input
specifies login
credentials, then
it must also
include the
protocol.
Otherwise, the
protocol isn’t
required.

http://
example.com

• protocol
• domain
• fullPath

{"protocol":"http","domain":"exam
ple.com",}

Chapter 25
Built-In Entities

25-13

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU Engine Response

YES_NO Detects a "yes"
or a "no".

"YES_NO": [{ "beginOffset": 0,
"endOffset": 4, "originalString":
"Yeah", "yesno": "YES",
"entityName": "YES_NO", "type":
"YES_NO" }]

The DATE_TIME Entity
There are many ways that your skill might need to get date and time input. For
example, you may need a simple date or time, a date and a time, or a one-time or
recurring period. You can use the DATE_TIME entity to gather information for all of
these scenarios.

With the DATE_TIME entity, you choose a specific subtype to define what information
to gather. The following table shows which subtype to use for each possible scenario
and links to information about the attributes for each subtype.

Scenario DATE_TIME Subtype Reference

A date. Date. DATE Subtype Attributes

A time. Time TIME Subtype Attributes

A date and a time. Date Time DATETIME Subtype Attributes

A span of time. For example, 1
hour or 4 days.

Duration DURATION Subtype Attributes

A single occurrence of a
period defined by a beginning
and ending date or a
beginning and ending date
and time.

Interval INTERVAL Subtype Attributes

A regularly recurring period
defined by, for example, the
start and end of the first
period, the interval between
the recurring periods, and
when the periods stop
recurring.

Recurring RECURRING Subtype
Attributes

Note:

the DATE_TIME entity supersedes the DATE, TIME, DURATION, and SET
system entities, which have been deprecated and are not available in skills
created in Release 22.08 and later. Existing skills upgraded to 22.08 will
support these deprecated system entities, though there may be some
behavior changes.

Chapter 25
Built-In Entities

25-14

You can use the Date, Time, and Duration subtypes as standalone entities in the dialog flow
(where you declare separate variables for each), but you can only utilize the Interval and
Recurring subtypes by incorporating them into a composite bag entity.

Note:

We recommend that all DATE_TIME subtypes be managed within a composite bag
entity.

In visual dialog mode, reference DATE_TIME subtypes using Resolve Entity and Resolve
Declarative Entity states.

Note:

If you use the Date, Time, and Duration subtypes as standalone entities in a YAML-
based dialog flow, specify the subtype using dot notation: DATE_TIME.DATE,
DATE_TIME.TIME, DATE_TIME.DURATION and for SET, DATE_TIME.RECURRING. For
example:

context:
 variables:
 iResult: "nlpresult"
 Startdate: "DATE_TIME.DATE"
 duration: "DATE_TIME.DURATION"

In the states node, you reference these variables using a
System.ResolveEntities component.

DATE_TIME values are representated as ISO 8601. For user-friendly output, use the Apache
FreeMarker .xs built-in. For example, the Time subtype is extracted using .value.value?
time.xs?string['hh:mm a'] in the following resource bundle reference:

${rb('pizzaDeliveryMessage','time',deliveryTime.value.value?time.xs?
string['hh:mm a'])}

The first value gets the content of the variable as an object. The second value is an attribute
of the DATE_TIME object that holds the time value.

Attributes for Each DATE_TIME Subtype
Here are the attributes for each DATE_TIME subtype.

Note that, just like every other system entity, the subtypes also include the beginOffset,
endOffset, and originalString properties.

DATE Subtype Attributes
The DATE subtype contains these attributes about a specific date:

Chapter 25
Built-In Entities

25-15

https://freemarker.apache.org/docs/ref_builtins_date.html

Attribute Type Explanation

entityName String DATE_TIME
month Integer When DATE is an attribute of

the RECURRING subtype,
and the original string includes
the name of a month, such as
"every Monday of July", this
represents the numeric
representation ("7" in this
example) of the explicitly-
specified month value .

movableDateValue String When DATE is an attribute of
RECURRING and the slotted
date doesn't represent a
specific date (that is, it is a
movable date such as July 4),
this represents the explicitly-
specified movable date value
that's used by the
RECURRING subtype's DATE
attribute to differentiate
between the resolved movable
date and the resolved non-
movable date. For example, if
the slotted date is July 4, then
this value is --07-04.

ordinal Integer When DATE is an attribute of
the RECURRING subtype,
and the original string
specifies an ordinal value,
such as first in "every first
Monday", this represents the
numeric value of the ordinal (in
this example, "1").

ordinalReference Enum When DATE is an attribute of
the RECURRING subtype,
and the original string includes
an ordinal that is qualified by
the name of a month, such as
July in "every first Monday of
July", this represents the
explicitly-specified qualifier ('M'
for month).

subType String DATE
timezone String The time zone offset. For

example: +07:00.

type String DATE_TIME
value String The resolved value in ISO

8601 format. For example
2022-08-05.

Chapter 25
Built-In Entities

25-16

Attribute Type Explanation

weekday Enum When DATE is an attribute of
the RECURRING subtype,
and the original string includes
the name of a day, such as
"every Monday", this
represents the explicitly-
specified weekday value using
the iCalendar format, such as
MO, TU, and WE.

year Integer When DATE is an attribute of
the RECURRING subtype,
and the original string includes
the year, such as "every
Monday of 2023", this
represents the explicitly-
specified year value.

Here's an example of the NLU response for the DATE subtype:

 "aDate": {
 "endOffset": 8,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "tomorrow",
 "subType": "DATE",
 "type": "DATE_TIME",
 "value": "2022-09-07",
 "beginOffset": 0
 }

TIME Subtype Attributes
The TIME subtype contains these attributes about a specific time:

Attribute Type Explanation

entityName String DATE_TIME
subType String TIME
timezone String The time zone offset. For

example: +07:00.

type String DATE_TIME
value String The resolved value in ISO 8601

format. For example 12:00:00.

Here's an example of the NLU response for the TIME entity:

 "aTime": {
 "endOffset": 4,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "2 pm",

Chapter 25
Built-In Entities

25-17

 "subType": "TIME",
 "type": "DATE_TIME",
 "value": "14:00:00",
 "beginOffset": 0
 }

DATETIME Subtype Attributes
The DATETIME subtype contains these attributes about a specific date and time:

Attribute Type Explanation

date DATE This object contains the
attributes described in DATE
Subtype Attributes.

entityName String DATE_TIME
subType String DATETIME
time TIME This object contains the

attributes described in TIME
Subtype Attributes.

Here's an example of the NLU response for the DATETIME subtype:

 "aDateAndTime": {
 "date": {
 "endOffset": 5,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "today",
 "subType": "DATE",
 "type": "DATE_TIME",
 "value": "2022-09-06",
 "beginOffset": 0
 },
 "entityName": "DATE_TIME",
 "subType": "DATETIME",
 "time": {
 "endOffset": 13,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "noon",
 "subType": "TIME",
 "type": "DATE_TIME",
 "value": "12:00:00",
 "beginOffset": 9
 }
 }

DURATION Subtype Attributes
The DURATION subtype contains these attributes about a day or time duration, such
as 1 week:

Chapter 25
Built-In Entities

25-18

Attribute Type Explanation

entityName String DATE_TIME
subType String DURATION
timezone String The time zone offset. For

example: +07:00.

type String DATE_TIME
value String Duration in ISO 8601 format.

Examples: PT1H for 1 hour,P4D
for 4 days, P1W for 1 week, P2M
for 2 months.

Here's an example of the NLU response for the DURATION subtype:

 "aDuration": {
 "endOffset": 7,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "3 hours",
 "subType": "DURATION",
 "type": "DATE_TIME",
 "value": "PT3H",
 "beginOffset": 0
 }

INTERVAL Subtype Attributes
The INTERVAL subtype contains these attributes about a period that's defined by a beginning
and ending date and time, or is defined by a date, start time, and length, such as 2 hours.

Attribute Type Explanation

duration ENTITY This object contains the
attributes described in
DURATION Subtype Attributes.

endDate DATE This object contains the
attributes described in DATE
Subtype Attributes.
Included for Date and Time and
Date Only prompt types.

endTime TIME This object contains the
attributes described in TIME
Subtype Attributes.
Included for Date and Time and
Time Only prompt types.

entityName String DATE_TIME
startDate DATE This object contains the

attributes described in DATE
Subtype Attributes.
Included for Date and Time and
Date Only prompt types.

Chapter 25
Built-In Entities

25-19

Attribute Type Explanation

startTime TIME This object contains the
attributes described in TIME
Subtype Attributes.
Included for Date and Time and
Time Only prompt types.

subType String INTERVAL

Here's an example of the NLU response for the INTERVAL entity with the Date and
Time prompt type:

 "anInterval": {
 "duration": {
 "entityName": "DATE_TIME",
 "subType": "DURATION",
 "value": "P1D"
 },
 "endDate": {
 "endOffset": 8,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "tomorrow",
 "subType": "DATE",
 "type": "DATE_TIME",
 "value": "2022-09-07",
 "beginOffset": 0
 },
 "entityName": "DATE_TIME",
 "subType": "INTERVAL",
 "startTime": {
 "endOffset": 4,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "noon",
 "subType": "TIME",
 "type": "DATE_TIME",
 "value": "12:00:00",
 "beginOffset": 0
 },
 "endTime": {
 "endOffset": 4,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "noon",
 "subType": "TIME",
 "type": "DATE_TIME",
 "value": "12:00:00",
 "beginOffset": 0
 },
 "startDate": {
 "endOffset": 5,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",

Chapter 25
Built-In Entities

25-20

 "originalString": "today",
 "subType": "DATE",
 "type": "DATE_TIME",
 "value": "2022-09-06",
 "beginOffset": 0
 }
 }

RECURRING Subtype Attributes
The RECURRING subtype contains these attributes about a regularly recurring period:

Attribute Type Explanation

entityName String DATE_TIME
recurrenceDates Array of DATE Included when multiple recurring

dates are given. This object
contains an array of DATE
objects with the attributes
described in DATE Subtype
Attributes.

recurrenceFrequency DURATION This object contains the
attributes described in
DURATION Subtype Attributes.

recurrenceTimes Array of TIME Included when multiple recurring
times are given. This object
contains an array of TIME
objects with the attributes
described in TIME Subtype
Attributes.

recurrenceUntil INTERVAL Specifies the bounds of the
repetition. Typically, only the end
date is specified. This object
contains the attributes described
in INTERVAL Subtype Attributes.

startDate DATE This object contains the
attributes described in DATE
Subtype Attributes.
Note that for RECURRING
entities, the DATE object may
include the month.
movevableDateValue,
ordinal, ordinalReference,
weekday, and year attributes.

Included for Date Only prompt
type.

Chapter 25
Built-In Entities

25-21

Attribute Type Explanation

startDateTime DATETIME This object contains the
attributes described in
DATETIME Subtype Attributes.
Note that for RECURRING
entities, the DATETIME's DATE
sub-object may include the
month. movevableDateValue,
ordinal, ordinalReference,
weekday, and year attributes.

Included for Date and Time
prompt type.

startInterval INTERVAL This object contains the
attributes described in
INTERVAL Subtype Attributes.

startTime TIME This object contains the
attributes described in TIME
Subtype Attributes.
Included for Time Only prompt
type.

subType String RECURRING

Here's an example of the NLU response for the RECURRING subtype with the Date
and Time prompt type:

 "aRecurringPeriod": {
 "startInterval": {
 "duration": {
 "entityName": "DATE_TIME",
 "subType": "DURATION",
 "value": "PT1H"
 },
 "endDate": {
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "subType": "DATE",
 "value": "2022-07-28"
 },
 "entityName": "DATE_TIME",
 "subType": "INTERVAL",
 "startTime": {
 "endOffset": 7,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "12 noon",
 "subType": "TIME",
 "bagItem": "Meeting:DateTime",
 "type": "DATE_TIME",
 "value": "12:00:00",
 "beginOffset": 0
 },
 "endTime": {
 "entityName": "DATE_TIME",

Chapter 25
Built-In Entities

25-22

 "timeZone": "-10:00",
 "subType": "TIME",
 "value": "13:00:00"
 },
 "startDate": {
 "endOffset": 8,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "tomorrow",
 "subType": "DATE",
 "bagItem": "Meeting:DateTime",
 "type": "DATE_TIME",
 "value": "2022-07-28",
 "beginOffset": 0
 }
 },
 "recurrenceFrequency": {
 "endOffset": 10,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "every week",
 "subType": "DURATION",
 "type": "DATE_TIME",
 "bagItem": "Meeting:DateTime",
 "value": "P1W",
 "beginOffset": 0
 },
 "entityName": "DATE_TIME",
 "subType": "RECURRING",
 "recurrenceUntil": {
 "endDate": {
 "endOffset": 6,
 "entityName": "DATE_TIME",
 "timeZone": "-10:00",
 "originalString": "Sept 1",
 "subType": "DATE",
 "bagItem": "Meeting:DateTime",
 "type": "DATE_TIME",
 "value": "2022-09-01",
 "beginOffset": 0
 },
 "entityName": "DATE_TIME",
 "subType": "INTERVAL"
 }
 }

Ambiguity Resolution Rules for Time and Date Matches
Users can enter partial dates where the time is implied. For example:

• "Schedule a meeting for Monday"

• "Create an expense report for 7/11"

• "Create an expense report for the 11th"

Chapter 25
Built-In Entities

25-23

Some situations, like scheduling a meeting, imply a future time. Others, like creating
an expense report, refer to some time in the past. To ensure that the DATE_TIME
entity Time and Date subtypes can resolve ambiguous input as the past, present, or as
the closest approximation, you can apply Ambiguity Resolution Rules. To set the
temporal context for the time resolution, for example, click the DATE_TIME entity and
then apply a rule.

Note:

The ambiguity resolution rules do not validate the user input. You can
validate the user input with custom validator that uses Apache FreeMarker
(which is not recommended) or in an Entity Event Handler (which is
recommended). This validator returns false (validation fails) if a past date is
given for a forward-looking use case (for example, a meeting scheduler). For
a backward-looking use case like expense reporting, the validator returns
false if the user inputs a future date.

Chapter 25
Built-In Entities

25-24

Note:

If you're referencing the same entity with two or more items within the same
composite bag, or if two or more composite bags reference the same entity and are
also associated with the same intent, upgrade to Release 21.12 to ensure that the
ambiguity resolution rules specific each entity reference are handled separately and
not overwritten by the rules set for a previously resolved entity.

Resolution Rules for Matches to the Date Subtype
Date resolves to the UTC date, not the server's date nor the browser's date. For example,
"today" uttered at 8 pm on July 8th from the Hawaii–Aleutian Time Zone (UTC−10:00) is
resolved as July 9th.

Rule How it works Examples

Past Resolves the ambiguous input as the
nearest day of the week in the past.

• If the utterance includes
"Monday" and the current day is
also Monday, then "Monday" is
resolved as today.

• If the utterance includes
"Monday" and the current day is
Wednesday, the "Monday" is
resolved as the previous
Monday.

Future Resolves the ambiguous input as the
nearest day in the future

• If the utterance includes
"Monday" and the current day is
also Monday, then "Monday" is
resolved as today.

• If the utterance includes
"Monday", and the current day is
Tuesday, then "Monday" is
resolved as the following
Monday.

• If the utterance includes
"Tuesday", and the current day is
Monday, then "Tuesday" is
resolved as this Tuesday.

Nearest Resolves the ambiguous input as the
nearest day.

• If the utterance includes
"Monday"and the current day is
also Monday, the "Monday" is
resolved as today. If the
utterance includes "Monday"
and the current day is Tuesday,
then "Monday" resolves as
yesterday.

• If the utterance includes
"Monday", and the current day is
Sunday, the "Monday" resolves
as tomorrow.

Default Resolves the ambiguous input as a
future date.

For example, if the input includes
Wednesday, the day is interpreted as
next Wednesday, not the prior
Wednesday or the current day (if it's
a Wednesday, that is).

Chapter 25
Built-In Entities

25-25

Resolution Rules for Matches to the Time Subtype

Rule How it works Examples

Past Resolves the input to the
nearest time in the past
relative to the current time in
the UTC time zone.

• If the utterance includes
"9 am" and the current
time is 10:00 am, then the
time is resolved as 9:00
am today.

• If the utterance includes
"9 pm" and the current
time is 10:00 am, then the
time is resolved as 9:00
pm yesterday.

• If the utterance includes
"9" and the current time is
10:00 am, then the time is
resolved as 9:00 am
today.

Future Resolves the input to the
nearest time in the future
relative to the current time in
the UTC time zone.

• If the utterance includes
"9 am" and the current
time right now is 10:00
am, then the time is
resolved as 9:00 am
tomorrow.

• If the utterance includes
"9 pm" and the current
time is 10:00 am, the time
is resolved as 9 pm today.

• If the utterance includes
"9" and the current time is
10:00 am, then the time is
resolved as 9:00 pm
today.

Nearest Resolves the input as the
nearest time relative to the
current time in the UTC time
zone.

• If the utterance includes
"9 am" and the current
time is 10:00 am, then the
time is resolved as today
9:00 am.

• If the utterance includes
"9 pm" and the current
time is 10:00 am, then the
time is resolved as 9:00
pm today.

• If the utterance includes
"9" and the current time is
10:00 am, then the time is
resolved as 9:00 am
today.

• If the utterance includes
"10:00" and the current
time is 1:00 am, then the
time is resolved as 10:00
pm yesterday.

Chapter 25
Built-In Entities

25-26

Rule How it works Examples

Default Resolves the input by the
method used in the pre-21.06
releases of Oracle Digital
Assistant.

• If the utterance includes is
"9 am" and the current
time is 10 am, then the
time is resolved as 9 am
today.

• If the utterance includes
"9 pm" and the current
time is 10 am, then the
time is resolved as 9 pm
today.

• If the utterance includes
"9" and the current time is
10 am, then the time is
resolved as 9 am today.

• If the utterance includes
"1:00 am" and the current
time is 2 pm, then the
time is resolved as 1 am
tomorrow.

Locale-Based Entity Resolution
You can enable the CURRENCY, DATE and NUMBER entities to resolve to the user locale by
switching on Consider End User Locale.

Depending on the entity, this option has different applications:

• DATE resolves to the locale-specific format: it can resolve 11/7 as November 7 for en-US
or July 11 for en-AU, for example. For non-supported locales, you can apply a format and
a temporal context, such as past or future.

• NUMBER resolves to the country-specific numeric format -- the comma, period, or space
used to separate groups of thousands and the decimal point with or without a thin space
that separates the fractional part of the number. For example, the U.K. and U.S. both use
a comma to separate groups of thousands.

Chapter 25
Built-In Entities

25-27

Note:

When Consider End User Locale is switched off, the NUMBER entity
resolves as COMMA_DOT (1,000.00).

• CURRENCY uses locale to resolve to a specific $ or ¥ currency. When no locale is
detected, you can set the input to resolve as the $ or ¥ currency that's set by the
Ambiguity Resolution Rule.

Note:

If you're referencing the same entity with two more items within the same
composite bag, or if two or more composite bags reference the same entity
and are also associated with the same intent, upgrade to Release 21.12 to
ensure that the locale customization specific to each entity reference is
handled separately and not overwritten by the locale configuration of a
previously resolved entity.

Locale-Based Date Resolution
When the user's locale cannot be detected, the date is resolved as the selected default
date format.

For this Locale... This input... ...Resolves as... Format (Date-Month
Sequence)

United States (en_US) 11/7 November 7 MONTH_DAY

Great Britain (en_GB) 11/7 July 11 DAY_MONTH

Canada - English (en_CA) 11/7 November 7 MONTH_DAY

Canada - French (fr_CA) 11/7 November 7 MONTH_DAY

Australia (en_AU) 11/7 July 11 DAY_MONTH

Mexico (es_MX) 11/7 July 11 DAY_MONTH

Singapore (zh_SG) 11/7 July 11 DAY_MONTH

United Arab Emirates
(ar_AE)

11/7 November 7 MONTH_DAY

Arabic (ar_AR) 11/7 November 7 MONTH_DAY

France (fr_FR) 11/7 July 11 DAY_MONTH

Netherlands (nl_NL) 11/7 July 11 DAY_MONTH

Germany (de_DE) 11/7 July 11 DAY_MONTH

Italy (it_IT) 11/7 July 11 DAY_MONTH

Portugal (pt_PT) 11/7 July 11 DAY_MONTH

Spain (en_ES) 11/7 July 11 DAY_MONTH

China (zh_CN) 11/7 November 7 MONTH_DAY

Japan (ja_JP) 11/7 November 7 MONTH_DAY

Chapter 25
Built-In Entities

25-28

Locale-Based Currency Resolution

For this Locale... This input... ...Resolves as
(Dollar Ambiguity)

This input... ...Resolves as (Yen
Ambiguity)

United States
(en_US)

20 dollars 20.0 USD 20 ¥ 20.0 JPY

Great Britain (en_GB) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Canada - English
(en_CA)

20 dollars 20.0 CAD 20 ¥ 20.0 JPY

Canada - French
(fr_CA)

20 dollars 20.0 CAD 20 ¥ 20.0 JPY

Australia (en_AU) 20 dollars 20.0 AUD 20 ¥ 20.0 JPY

Mexico (es_MX) 20 dollars 20.0 MXN 20 ¥ 20.0 CNY

Singapore (zh_SG) 20 dollars 20.0 SGD 20 ¥ 20.0 JPY

United Arab Emirates
(ar_AE)

20 dollars 20.0 USD 20 ¥ 20.0 JPY

Arabic (ar_AR) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

France (fr_FR) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Netherlands (nl_NL) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Germany (de_DE) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Italy (it_IT) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Portugal (pt_PT) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Spain (en_ES) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

China (zh_CN) 20 dollars 20.0 USD 20 ¥ 20.0 CNY

Japan (ja_JP) 20 dollars 20.0 USD 20 ¥ 20.0 JPY

Locale-Based Number Resolution
When Consider End User Locale is switched off, the number format defaults to
COMMA_DOT (1,000.00).

When the locale is enabled for... ...The recognized format is … Example

United States (en_US) COMMA_DOT 1,000,000.00

Great Britain (en_GB) COMMA_DOT 1,000,000.00

Canada - English (en_CA) COMMA_DOT 1,000,000.00

Canada - French (fr_CA) DOT_COMMA 1.000.000,00

Australia (en_AU) COMMA_DOT 1,000,000.00

Mexico (es_MX) COMMA_DOT 1,000,000.00

Singapore (zh_SG) COMMA_DOT 1,000,000.00

United Arab Emirates (ar_AE) DOT_COMMA 1.000.000,00

Arabic (ar_AR) DOT_COMMA 1.000.000,00

France (fr_FR) SPACE_COMMA 1 000 000,00

Netherlands (nl_NL) DOT_COMMA 1.000.000,00

Germany (de_DE) DOT_COMMA 1.000.000,00

Chapter 25
Built-In Entities

25-29

When the locale is enabled for... ...The recognized format is … Example

Italy (it_IT) DOT_COMMA 1.000.000,00

Portugal (pt_PT) COMMA_DOT 1,000,000.00

Spain (en_ES) DOT_COMMA 1.000.000,00

China (zh_CN) COMMA_DOT 1,000,000.00

Japan (ja_JP) COMMA_DOT 1,000,000.00

Custom Entities
You can create custom entities to extract information from user input that is specific to
the use cases of your skills.

Because the built-in entities extract generic information, they can be used in a wide
variety of bots. Custom entities, on the other hand, have a narrower application. Like
the FinancialBot’s AccountType entity that enables various banking transactions by
checking the user input for keywords like checking, savings, and credit cards, they’re
tailored to the particular actions that your bot performs.

Composite Bag
A composite bag is a grouping of related entities that can be treated as a whole within
a conversation. Using composite bags enables a skill to extract values for multiple
entities in one user utterance, which allows a conversation to flow more naturally. Early
on in the designing of your skill, you should identify these groups of related entities,
which often reflect clear business domains, and build composite bags for them.

For example, a composite bag for a pizza might include entities for type, size, crust,
and extra toppings. If a user enters "I'd like a large pepperoni pizza with a gluten-free
crust", the skill could extract "large", "pepperoni", and "gluten-free" from that input and
not need to prompt the user for those values individually.

You can configure the composite bag entity to resolve its constituent items in different
ways: it can prompt for individual entity values when they're missing from the user
input, for example, or it can use the value extracted by one if its entities to resolve a
second entity.

Composite bags can also include other types of items, such as those that store
location and accept free text and attachments.

Composite bag entities allow you to write much shorter, more compact dialog flow
definitions because they can be resolved using just one component. See Configure
Composite Bag Entities for details on creating and configuring composite bags.

ML Entities
An ML (machine learning) entity uses a model to identify the entity values in a user
message. You build this model from training utterances with annotations: labeled text
that corresponds to an entity. In the following utterances, Flo's and SFO can be
annotated for an entity that identifies vendors for an expense reporting skill:

• Reimburse me $100 for dinner at Flo's

• SFO charged $2.75 for parking on May 25th

Chapter 25
Custom Entities

25-30

You can start off by providing your own annotated utterances, but you can bulk up the training
data by sourcing Entity Annotation Jobs through Data Manufacturing. After you train the
entity, it can interpret the context of a message and generalize entity values. This flexible "fill-
in-the-blanks" approach allows an ML entity to recognize values even when they're not
included in the training set.

Because anticipating the format or wording of user messages is challenging, especially for
multi-lingual skills, you may want to use an ML entity in place of the less flexible Value List
and Regular Expression entities. Despite fuzzy matching, Value List entities (both static and
dynamic) can often detect entity values only when they match their values or synonyms.
"Computer engineer" might not match "computer engineering", for example. Regular
Expression entities restrict the user input to matching a predetermined pattern or the wording
that proceeds or follows an entity value. ML entities, on the other hand, are adaptable and
can be made more so through robust training data.

Value List Entities
An entity based on a list of predetermined values, like menu items that are output by a
Common Response component. You can optimize the entity’s ability to extract user input by
defining synonyms. These can include abbreviations, slang terms, and common misspellings.
Synonym values are not case-sensitive: USA and usa, for example, are considered the same
value.

Dynamic Entities
Dynamic entities are entities whose values can be updated even after a skill has been
published.

Note:

Dynamic entities are only supported on instances of Oracle Digital Assistant that
were provisioned on Oracle Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure). If your instance is provisioned on the Oracle
Cloud Platform (as are all version 19.4.1 instances), then you can't use this feature.

Like value list entities, dynamic entities are enum types. However, dynamic entities differ from
value list entities in that their values are not static; they may be subject to frequent change.
Because of this – and also because dynamic entities can contain thousands of values and
synonyms – the values are not usually managed in the UI. They are instead managed by the
Dynamic Entities API (described in REST API for Oracle Digital Assistant).

Note:

Enhanced speech models created for dynamic entity values are currently trained
only after a finalized push request is made from the Dynamic Entity API, so if you
change dynamic entity values through the UI, the change won't be included in the
enhanced speech models after you retrain the skill. Your changes can only be
included after the next update from the API. To preserve your changes, the
request's copy parameter must be set to TRUE.

Chapter 25
Custom Entities

25-31

Regular Expression
Resolves an entity using a regular expression (regex), such as (?<=one\s).*(?
=\sthree). Regular expressions allow your skill to identify pre-defined patterns in user
input, like ticket numbers. Unlike the other entity types, regex-based entities don’t use
NLP because the matching is strictly pattern-based.

Entity List
A super set of entities. Using a travel skill as an example, you could fold the entities
that you’ve already defined that extract values like airport codes, cities, and airport
names into a single entity called Destination. By doing so, you would enable your skill
to respond to user input that uses airport codes, airport names, and cities
interchangeably. So when a user enters “I want to go to from JFK to San Francisco,”
the Destination entity detects the departure point using the airport code entities and
the destination using the cities entity.

Derived
A derived entity is the child of a built-in entity or another entity that you define. You
base this relationship on prepositional phrases (the "to" and "from" in utterances like I
want to go from Boston to Dallas or Transfer money from checking to savings).
Derived entities can’t be parent entities. And because the NLU Engine detects derived
entities only after it detects all of the other types of entities, you can’t add derived
entities as members of an entities list.

Create Entities
Here's how you create an entity.

To create an entity:

1. Click Entities () in the side navbar.

2. Click Add Entity and then enter the name and select the type. The dialog's fields
reflect the entity type. For example, For regular expressions entities, you can add
the expression. For Value List entities, you add the values and synonyms.

If your skill supports multiple languages through Digital Assistant's native language
support, then you need to add the foreign-language counterparts for the Value List
entity's values and synonyms.

Chapter 25
Create Entities

25-32

Because these values need to map to the corresponding value from the primary
langauge (The Primary Language Value), you need to select the primary value before
you add its secondary language counterpart. For example, if you've added French as a
secondary language to a skill's whose primary language is English, you first select small
as the Primary Language Value and then add petite.

3. As an optional step, enter a description. You might use the description to spell out the
entity, like the pizza toppings for a PizzaTopping entity. This descripition is not retained
when you add the entity to a composite bag.

4. You can add the following functions, which are optional. They can be overwritten if you
add the entity to a composite bag.

• If a value list entity has a long list of values, but you only want to show users only a
few options at a time, you can set the pagination for these values by entering a
number in the Enumeration Range Size field, or by defining an Apache FreeMarker
expression that evaluates to this number. For example, you can define an expression
that returns enum values based on the channel.
When you set this property to 0, the skill won't output a list at all, but will the user
input against an entity value.

If you set this number to one lower than the total number of values defined for this
entity, then the Resolve Entities component displays a Show More button to
accompany each full set of values. If you use a Common Response component to
resolve the entity, then you can configure the Show More button yourself.

Chapter 25
Create Entities

25-33

You can change the Show More button text using the showMoreLabel property
that belongs to the Resolve Entities and Common Response components.

• Add an error message for invalid user input. Use an Apache FreeMarker
expression that includes the system.entityToResolve.value.userInput
property. For example, $
{system.entityToResolve.value.userInput!'This'}' is not a valid
pizza type.

• To allow users to pick more than one value from a value list entity, switch on
Multiple Values. When you switch this on, the values display as a numbered
list.

Chapter 25
Create Entities

25-34

Switching this option off displays the values as a list of options, which allows only a
single choice.

• Switching on Fuzzy Match increases the chances of the user input matching a value,
particularly when your values don’t have a lot of synonyms. Fuzzy matching uses
word stemming to identify matches from the user input. Switching off fuzzy matching
enforces strict matching, meaning that the user input must be an exact match to the
values and synonyms; "cars" won’t match a value called "car", nor will "manager"
match a "development manager" value.

• For skills that are configured with a translation service, entity matching is based on
the translation of the input. If you switch on Match Original Value, the original input
is also considered in entity matching, which could be useful for matching values that
are untranslatable.

• To force a user to select a single value, switch on Prompt for Disambiguation and
add a disambiguation prompt. By default, this message is Please select one value of
<item name>, but you can replace this with one made up solely of text (You can only
order one pizza at a time. Which pizza do you want to order?) or a combination of
text and FreeMarker expressions. For example:

"I found multiple dates: <#list
system.entityToResolve.value.disambiguationValues.Date as date>$
{date.date?number_to_date}<#sep> and </#list>. Which date should I
use as expense date?"

• Define a validation rule using a FreeMarker expression.

Chapter 25
Create Entities

25-35

Note:

You can only add prompts, disambiguation, and validation for built-in
entities when they belong to a composite bag.

5. Click Create.

6. Next steps:

a. Add the entity to an intent. This informs the skill of the values that it needs to
extract from the user input during the language processing. See Add Entities
to Intents.

b. In the dialog flow, declare a context variable for the entity.

c. Access the variable values using Apache FreeMarker expressions. See Built-
In FreeMarker Array Operations.

d. Click Validate and review the validation messages for errors related to entity
event handlers (if used), potential problems like multiple values in a value list
entity sharing the same synonym, and for guidance on applying best practices
such as adding multiple prompts to make the skill more engaging.

Value List Entities for Multiple Languages
When you have a skill that is targeted to multiple languages and which uses Digital
Assistant's native language support, you can set values for each language in the skill.
For each entity value in a skill's primary language, you should designate a
corresponding value in each additional language.

Tip:

To ensure that your skill consistently outputs responses in the detected
language, always include useFullEntityMatches: true in Common
Response, Resolve Entities, and Match Entity states. As described in Add
Natively-Supported Languages to a Skill, setting this property to true (the
default) returns the entity value as an object whose properties differentiate
the primary language from the detected language. When referenced in
Apache FreeMarker expressions, these properties ensure that the
appropriate language displays in the skill's message text and labels.

Word Stemming Support in Fuzzy Match
Starting with Release 22.10, fuzzy matching for list value entities is based on word
stemming, where a value match is based on the lexical root of the word. In previous
versions, fuzzy matching was enabled through partial matching and auto correct.
While this approach was tolerant of typos in the user input, including transposed
words, it could also result in matches to more than one value within the value list entity.
With stemming, this scatter is eliminated: matches are based on the word order of the
user input, so either a single match is made, or none at all. For example, "Lovers
Veggie" would not result in any matches, but "Veggie Lover" would match to the
Veggie Lovers value of a pizza type entity. (Note that "Lover" is stemmed.) Stop words,
such as articles and prepositions, are ignored in extracted values, as are special

Chapter 25
Create Entities

25-36

characters. For example, both "Veggie the Lover" and "Veggie////Lover" would match the
Veggie Lovers value.

Create ML Entities
ML Entities are a model-driven approach to entity extraction. Like intents, you create ML
Entities from training utterances – likely the same training utterances that you used to build
your intents. For ML Entities, however, you annotate the words in the training utterances that
correspond to an entity.

To get started, you can annotate some of the training data yourself, but as is the case for
intents, you can develop a more varied (and therefore robust) training set by crowd sourcing
it. As noted in the training guidelines, robust entity detection requires anywhere from 600 -
5000 occurrences of each ML entity throughout the training set. Also, if the intent training
data is already expansive, then you may want to crowd source it rather than annotate each
utterance yourself. In either case, you should analyze your training data to find out if the
entities are evenly represented and if the entity values are sufficiently varied. With the
annotations complete, you then train the model, then test it. After reviewing the entities
detected in the test runs, you can continue to update the corpus and retrain to improve the
accuracy.

To create an ML Entity:

1. Click + Add Entity.

2. Complete the Create Entity dialog. Keep in mind that the Name and Description appear in
the crowd worker pages for Entity Annotation Jobs.

• Enter a name that identifies the annotated content. A unique name helps crowd
workers.

• Enter a description. Although this is an optional property, crowd workers use it, along
with the Name property, to differentiate entities.

• Choose ML Entity from the list.

3. Switch on Exclude System Entity Matches when the training annotations contain
names, locations, numbers, or other content that could potentially clash with system
entity values. Setting this option prevents the model from extracting system entity values
that are within the input that's resolved to this ML entity. It enforces a boundary around
this input so that the model recognizes it only as an ML entity value and does not parse it
further for system entity values. You can set this option for composite bag entities that
reference ML entities.

4. Click Create.

5. Click +Value List Entities to associate this entity with up to five Value List Entities. This
is optional, but associating an ML Entity with a Value List Entity combines the contextual
extraction of the ML Entity and the context-agnostic extraction of the Value List Entity.

6. Click the DataSet tab. This page lists all the utterances for each ML Entity in your skill,
which include the utterances that you've added yourself to bootstrap the entity, those
submitted from crowd sourcing jobs, or have been imported as JSON objects. From this
page, you can add utterances manually or in bulk by uploading a JSON file. You can also
manage the utterances from this page by editing them (including annotating or re-
annotating them), or by deleting, importing, and exporting them.

• Add utterances manually:

– Click Add Utterance. After you've added the utterance, click Edit Annotations
to open the Entity List.

Chapter 25
Create Entities

25-37

Note:

You can only add one utterance at a time. If you want to add
utterances in bulk, you can either add them through an Entity
Annotation job, or you can upload a JSON file.

– Highlight the text relevant to the ML Entity, then complete the labeling by
selecting the ML Entity from the Entity List. You can remove an annotation
by clicking x in the label.

• Add utterances from a JSON file. This JSON file contains a list of utterance
objects.

[
 {
 "Utterance": {
 "utterance": "I expensed $35.64 for group lunch at Joe's
on 4/7/21",
 "languageTag": "en",
 "entities": [
 {
 "entityValue": "Joe's"
 "entityName": "VendorName",
 "beginOffset": 37,
 "endOffset": 42
 }
]
 }
 },
 {
 "Utterance": {
 "utterance": "Give me my $30 for Coffee Klatch on 7/20",
 "languageTag": "en",
 "entities": [
 {
 "entityName": "VendorName",
 "beginOffset": 19,
 "endOffset": 32
 }
]
 }
 }
]

You can upload it by clicking More > Import to retrieve it from your local
system.

Chapter 25
Create Entities

25-38

The entities object describes the ML entities that have been identified within the
utterance. Although the preceding example illustrates a single entities object for
each utterance, an utterance may contain multiple ML entities which means multiple
entities objects:

[
 {
 "Utterance": {
 "utterance": "I want this and that",
 "languageTag": "en",
 "entities": [
 {
 "entityName": "ML_This",
 "beginOffset": 7,
 "endOffset": 11
 },
 {
 "entityName": "ML_That",
 "beginOffset": 16,
 "endOffset": 20
 }
]
 }
 },
 {
 "Utterance": {
 "utterance": "I want less of this and none of that",
 "languageTag": "en",
 "entities": [
 {
 "entityName": "ML_This",
 "beginOffset": 15,
 "endOffset": 19
 },
 {
 "entityName": "ML_That",
 "beginOffset": 32,
 "endOffset": 36
 }
]
 }
 }
]

entityName identifies the ML Entity itself and entityValue identifies the text labeled
for the entity. entityValue is an optional key that you can use to validate the labeled
text against changes made to the utterance. The label itself is identified by the
beginOffset and endOffset properties, which represent the offset for the characters
that begin and end the label. This offset is determined by character, not by word, and
is calculated from the first character of the utterance (0-1).

Chapter 25
Create Entities

25-39

Note:

You can't create the ML Entities from this JSON. They must exist
before you upload the file.

If you don't want to determine the offsets, you can leave the entities object
undefined and then apply the labels after you upload the JSON file.

[
 {
 "Utterance": {
 "utterance": "I expensed $35.64 for group lunch at Joe's
on 4/7/21",
 "languageTag": "en",
 "entities": []

 }
 },
 {
 "Utterance": {
 "utterance": "Give me my $30 for Coffee Klatch on 7/20",
 "languageTag": "en",
 "entities": []

 }
 }
]

The system checks for duplicates to prevent redundant entries. Only changes
made to the entities definition in the JSON file are applied. If an utterance
has been changed in the JSON file, then it's considered a new utterance.

• Edit an annotated utterance:

– Click Edit to remove the annotation.

Note:

A modified utterance is considered a new (unannotated)
utterance.

– Click Edit Annotations to open the Entity List.

– Highlight the text, then select an ML Entity from the Entity List.

– If you need to remove an annotation, click x in the label.

7. When you've completed annotating the utterances. Click Train to update both
trainer Tm and the Entity model.

8. Test the recognition by entering a test phrase in the Utterance Tester, ideally one
with a value not found in any training data. Check the results to find out if the

Chapter 25
Create Entities

25-40

model detected the correct ML Entity and if the text has been labeled correctly and
completely.

9. Associate the ML Entity with an intent.

Exclude System Entity Matches
Switching on Exclude System Entity Matches prevents the model from replacing previously
extracted system entity values with competing values found within the boundaries of an ML
entity. With this option enabled, "Create a meeting on Monday to discuss the Tuesday
deliverable" keeps the DATE_TIME and ML entity values separate by resolving the applicable
DATE_TIME entity (Monday) and ignoring "Tuesday" in the text that's recognized as the ML
entity ("discuss the Tuesday deliverable").

When this option is disabled, the skill instead resolves two DATE_TIME entities values,
Monday and Tuesday. Clashing values like these diminish the user experience by updating a
previously slotted entity value with an unintended value or by interjecting a disambiguation
prompt that interrupts the flow of the conversation.

Note:

You can set the Exclude System Entity Matches option for composite bag entities
that reference an ML entity.

Import Value List Entities from a CSV File
Rather than creating your entities one at a time, you can create entire sets of them when you
import a CSV file containing the entity definitions.

This CSV file contains columns for the entity name, (entity), the entity value (value) and any
synonyms (synonyms). You can create this file from scratch, or you can reuse or repurpose a
CSV that has been created from an export.

Whether you're starting anew or using an exported file, you need to be mindful of the version
of the skill that you're importing to because of the format and content changes for native
language support that were introduced in Version 20.12. Although you can import a CSV from
a prior release into a 20.12 skill without incident in most cases, there are still some
compatibility issues that you may need to address. But before that, let's take a look at the
format of a pre-20.12 file. This file is divided into the following columns: entity, value, and
synonyms. For example:

entity,value,synonyms
PizzaSize,Large,lrg:lrge:big
PizzaSize,Medium,med
PizzaSize,Small,little

For skills created with, or upgraded to, Version 20.12, the import files have language tags
appended to the value and synonyms column headers. For example, if the skill's primary

Chapter 25
Create Entities

25-41

native language is English (en), then the value and synonyms columns are en:value
and en:synonyms:

entity,en:value,en:synonyms
PizzaSize,Large,lrg:lrge:big
PizzaSize,Medium,med
PizzaSize,Small,
PizzaSize,Extra Large,XL

CSVs that support multiple native languages require additional sets of value and
synonyms columns for each secondary language. If a native English language skill's
secondary language is French (fr), then the CSV has fr:value and fr:synonyms
columns as counterparts to the en columns:

entity,en:value,en:synonyms,fr:value,fr:synonyms
PizzaSize,Large,lrg:lrge:big,grande,grde:g
PizzaSize,Medium,med,moyenne,moy
PizzaSize,Small,,petite,p
PizzaSize,Extra Large,XL,pizza extra large,

Here are some things to note if you plan to import CSVs across versions:

• If you import a pre-20.12 CSV into a 20.12 skill (including those that support native
languages or use translation services), the values and synonyms are imported as
primary languages.

• All entity values for both the primary and secondary languages must be unique
within an entity, so you can't import a CSV if the same value has been defined
more than once for a single entity. Duplicate values may occur in pre-20.12
versions, where values can be considered unique because of variations in letter
casing. This is not true for 20.12, where casing is more strictly enforced. For
example, you can't import a CSV if it has both PizzaSize, Small and PizzaSize,
SMALL. If you plan to upgrade Version 20.12, you must first resolve all entity values
that are the same, but differentiated only by letter casing before performing the
upgrade.

• Primary language support applies to skills created using Version 20.12 and higher,
so you must first remove language tags and any secondary language entries
before you can import a Version 20.12 CSV into a skill created with a prior version.

When you import a 20.12 CSV into a 20.12 skill:

• You can import a multi-lingual CSV into skills that do not use native language
support, including those that use translation services.

• If you import a multi-lingual CSV into a skill that supports native languages or uses
translation services, then only rows that provide a valid value for the primary
language are imported. The rest are ignored.

With these caveats in mind, here's how you create entities through an import:

1. Click Entities () in the side navbar.

2. Click More, choose Import Value list entities, and then select the .csv file from
your local system.

Chapter 25
Create Entities

25-42

3. Add the entity or entities to an intent (or to an entity list and then to an intent).

Export Value List Entities to a CSV File
You can export the values and synonyms in a CSV file for reuse in another skill. The exported
CSVs share the same format as the CSVs used for creating entities through imports in that
they contain entity, value, and synonyms columns. The these CVS have release-specific
requirements which can impact their reuse.

• The CSVs exported from skills created with, or upgraded to, Version 20.12 are equipped
for native language support though the primary (and sometimes secondary) language
tags that are appended to the value and synonyms columns. For example, the CSV in the
following snippet has a set of value and synonyms columns for the skill's primary
language, English (en) and another set for its secondary language, French (fr):

entity,en:value,en:synonyms,fr:value,fr:synonyms

The primary language tags are included in all 20.12 CSVs regardless of native language
support. They are present in skills that are not intended to perform any type of translation
(native or through a translation service) and in skills that use translation services.

• The CSVs exported from skills running on versions prior to 20.12 have the entity, value,
and synonyms columns, but no language tags.

To export value list entities:

1. Click Entities () in the side navbar.

2. Click More, choose Export Value list entities and then save the file.

Chapter 25
Create Entities

25-43

The exported .csv file is named for your skill. If you're going to use this file as an
import, then you may need to perform some of the edits described in Import
Intents from a CSV File if you're going to import it to, or export it from, Version
20.12 skills and prior versions.

Create Dynamic Entities
Dynamic entity values are managed through the endpoints of the Dynamic Entities API
that are described in the REST API for Oracle Digital Assistant. To add, modify, and
delete the entity values and synonyms, you must first create a dynamic entity to
generate the entityId that's used in the REST calls.

To create the dynamic entity:

1. Click + Entity.

2. Choose Dynamic Entities from the Type list.

3. If the backend service is unavailable or hasn't yet pushed any values, or if you do
not maintain the service, click + Value to add mock values that you can use for
testing purposes. Typically, you would add these static values before the dynamic
entity infrastructure is in place. These values are lost when you clone, version, or
export a skill. After you provision the entity values through the API, you can
overwrite, or retain, these values (though in most cases you would overwrite
them).

4. Click Create.

Tip:

If the API refreshes the entity values as you're testing the conversation, click
Reset to restart the conversation.

A couple of notes for service developers:

• You can query for the dynamic entities configured for a skill using the generated
entityId with the botId. You include these values in the calls to create the push
requests and objects that update the entity values.

• An entity cannot have more than 150,000 values. To reduce the likelihood of
exceeding this limit when you're dealing with large amounts of data, send PATCH
requests with your deletions before you send PATCH requests with your additions.

Note:

Dynamic entities are only supported on instances of Oracle Digital Assistant
that were provisioned on Oracle Cloud Infrastructure (sometimes referred to
as the Generation 2 cloud infrastructure). If your instance is provisioned on
the Oracle Cloud Platform (as are all version 19.4.1 instances), then you
can't use feature.

Chapter 25
Create Entities

25-44

Guidelines for Creating ML Entities
Here's a general approach to creating an ML Entity.

1. Create concise ML Entities. The ML Entity definition is at the base of a useful training set,
so clarity is key in terms of its name and the description which help crowd workers
annotate utterances.
Because crowd workers rely on the ML Entity descriptions and names, you must ensure
that your ML Entities are easily distinguishable from each other, especially when there's
potential overlap. If the differences are not clear to you, it's likely that crowd workers will
be confused. For example, the Merchant and Account Type entities may be difficult to
differentiate in some cases. In "Transfer $100 from my savings account to Pacific Gas
and Electric," you can clearly label "savings" as Account Type and Pacific Gas and
Electric as Merchant. However, the boundary between the two can be blurred in
sentences like "Need to send money to John, transfer $100 from my savings to his
checking account." Is "checking account" an Account type, or a Merchant name? In this
case, you may decide that any recipient should always be a merchant name rather than
an account type.

2. In preparation of crowd sourcing the training utterances, consider the typical user input
for different entity extraction contexts. For example, can the value be extracted in the
user's initial message (initial utterance context), or is it extracted from responses to the
skill's prompts (slot utterance context)?

Context Description Example Utterances
(detected ML Entity values in
bold)

Initial utterance context A message that's usually well-
structured and includes ML
Entity values. For an expense
reporting skill, for example, the
utterance would include a value
that the model can detect for an
ML Entity called Merchant.

Create an expense for team
dinner at John's Pasta Shop
for $85 on May 3

Slot utterance context A user message that provides
the ML Entity in response to a
prompt, either because of
conversation design (the skill
prompts with "Who is the
merchant?") or to slot a value
because it hasn't been provided
by a previously submitted
response.
In other circumstances, the ML
Entity value may have already
been provided, but may be
included in other user messages
in the same conversation. For
example, the skill might prompt
users to provide additional
expense details or describe the
image of an uploaded receipt.

• Merchant is John's Pasta
Shop.

• Team dinner. Amount $85.
John's Pasta Shop.

• Description is TurboTaxi
from home to CMH airport.

• Grandiose Shack Hotel
receipt for cloud
symposium

3. Gather your training and testing data.

Chapter 25
Create Entities

25-45

• If you already have a sufficient collection of utterances, you may want to
assess them for entity distribution and entity value diversity before you launch
an Entity Annotation job.

• If you don't have enough training data, or if you're starting from scratch, launch
an Intent Paraphrasing Job. To gather viable (and abundant) utterances for
training and testing, integrate the entity context into the job by creating tasks
for each intent. To gather diverse phrases, consider breaking down each intent
by conversation context.

• For the task's prompt, provide crowd workers context and ask them, "How
would you respond?" or "What would you say?" Use the accompanying hints
to provide examples and to illustrate different contexts. For example:

Prompt Hint

You're talking to an expense reporting bot,
and you want to create an expense. What
would be the first thing you would say?

Ensure that the merchant name is in the
utterance. You might say something like,
"Create an expense for team dinner at
John's Pasta Shop for $85 on May 3."

This task asks for phrases that not only initiate the conversation, but also
include a merchant name. You might also want utterances that reflect
responses prompted by the skill when the user doesn't provide a value. For
example, "Merchant is John's Pasta Shop" in response to the skill's "Who is
the merchant?" prompt.

Prompt Hint

You've submitted an expense to the an
expense reporting bot, but didn't provide a
merchant name. How would you respond?

Identify the merchant. For example,
"Merchant is John's Pasta Shop."

You've uploaded an image of a receipt to
an expense reporting bot. It's now asking
you to describe the receipt. How would
you respond?

Identify the merchant's name on the
receipt. For example: "Grandiose Shack
Hotel receipt for cloud symposium."

To test false positives for testing – words and phrases that the model should
not identify as ML Entities – you may also want to collect "negative examples".
These utterances do include an ML Entity value.

Context Example Utterances

Initial utterance context Pay me back for Tuesday's dinner

Slot utterance context – Pos presentation dinner. Amount $50.
4 people.

– Description xerox lunch for 5
– Hotel receipt for interview stay

• Gather a large training set by setting an appropriate number of paraphrases
per intent. For the model to generalize successfully, your data set must contain
somewhere between 500 and 5000 occurrences for each ML entity. Ideally,
you should avoid the low end of this range.

4. Once the crowd workers have completed the job (or have completed enough
utterances that you can cancel the job), you can either add the utterances, or
launch an Intent Validation job to verify them. You can also download the results to
your local system for additional review.

Chapter 25
Create Entities

25-46

5. Reserve about 20% of the utterances for testing. To create CSVs for the Utterance Tester
from the downloaded CSVs for Intent Paraphrasing and Intent Validation jobs:

• For Intent Paraphrasing jobs: transfer the contents in the result column (the
utterances provided by crowd workers) to the utterance column in the Utterance
Tester CSV. Transfer the contents of the intentName column to the expectedIntent
column in the Utterance Tester CSV.

• For Intent Validation jobs: transfer the contents in the prompt column (the utterances
provided by crowd workers) to the utterance column in the Utterance Tester CSV.
Transfer the contents of the intentName column to the expectedIntent column in the
Utterance Tester CSV.

6. Add the remaining utterances to a CSV file with a single column, utterance. Create an
Entity Annotation Job by uploading this CSV. Because workers are labeling the entity
values, they will likely classify negative utterances as "I'm not sure" or "None of the
entities apply."

7. After the Entity Annotation job is complete, you can add the results, or you can launch an
Entity Validation job to verify the labeling. Only the utterances that workers deem correct
in an Entity Validation job can be added to the corpus.

Tip:

You can add, remove, or adjust the annotation labels in the Dataset tab of the
Entities page.

8. Train the entity by selecting Entity.

9. Run test cases to evaluate entity recognition using the utterances that you reserved from
the Intent Paraphrasing job. You can divide up these utterances into different test suites
to test different behaviors (unknown values, punctuation that may not be present in the
training data, false positives, and so on). Because there may be a large number of these
utterances, you can create test suites by uploading a CSV into the Utterance Tester.

Note:

The Utterance Tester only displays entity labels for passing test cases. Use a
Quick Test instead to view the labels for utterances that resolve below the
confidence threshold.

10. Use the results to refine the data set. Iteratively add, remove, or edit the training
utterances until test run results indicate the model is effectively identifying ML Entities.

Chapter 25
Create Entities

25-47

Note:

To prevent inadvertant entity matches that degrade the user experience,
switch on Exclude System Entity Matches if the training data contains
names, locations, numbers.

ML Entity Training Guidelines
The model generalizes an entity using both the context around a word (or words) and
the lexical information about the word itself. For the model to generalize effectively, we
recommend that the number of annotations per entity to range somewhere between
500 and 5000. You may already have a training set that’s both large enough and has
the variation of entity values that you’d expect from end users. If this is the case, you
can launch an Entity Annotation job and then incorporate the results into the training
data. However, if you don’t have enough training data, or if the data that you do have
lacks sufficient coverage for all the ML entities, then you can collect utterances from
crowd-sourced Intent Paraphrasing jobs.

Whatever the source, the distribution of entity values should reflect your general idea
of the values that the model may encounter. To adequately train the model:

• Do not overuse the same entity values in your trainining data. Repetitive entity
values in your training data prevent the model from generalizing on unknown
values. For example, you expect the ML Entity to recognize a variety of values, but
the entity is represented by only 10-20 different values in your training set. In this
case, the model will not generalize, even if there are two or three thousand
annotations.

• Vary the number of words for each entity value. If you expect users to input entity
values that are three-to-five words long, but your training data is annotated with
one- or two-word entity values, then the model may fail to identify the entity as the
number of words increase. In some cases, it may only partially identify the entity.
The model assumes the entity boundary from the utterances that you've provided.
If you've trained the model on values with one or two words, then it assumes the
entity boundary is only one or two words long. Adding entities with more words
enables the model to recognize longer entity boundaries.

• Utterance length should reflect your use case and the anticipated user input. You
can train the model to detect entities for messages of varying lengths by collecting
both short and long utterances. The utterances can even have multiple phrases. If
you expect short utterances that reflect the slot-filling context, then gather your
sample data accordingly. Likewise, if you're anticipating utterances for the initial
context scenario, then the training set should contain complete phrases.

• Include punctuation. If entity names require special characters, such as '-' and '/',
include them in the entity values in the training data.

• Ensure that all ML Entities are equally represented in your training data. An
unbalanced training set has too many instances of one entity and too few of
another. The models produced from unbalanced training sets sometimes fail to
detect the entity with too few instances and over-predict for the entities with
disproportionately high instances. This leads to false-positives.

Chapter 25
Create Entities

25-48

ML Entity Testing Guidelines
Before your train your skill, you should reserve about 20% of unannotated utterances to find
out how the model generalizes when presented with utterances or entity values that are not
part of its training data. This set of utterances may not be your only testing set, depending on
the behaviors you want to evaluate. For example:

• Use only slot context utterances to find out how well the model predicts entities with less
context.

• Use utterances with "unknown" values to find out how well the model generalizes with
values that are not present in the training data.

• Use utterances without ML Entities to find out if the model detects any false positives.

• Use utterances that contain ML Entity values with punctuation to find out how well the
model performs with unusual entity values.

Configure Composite Bag Entities
Composite bag entities allow you to write much shorter, more compact dialog flow definitions
because they can be resolved using just one component (either Resolve Entities or a
Common Response).

We recommend that you use this approach, because you don't need components like Switch
or Set Variable to capture all of the user input that's required to perform some business
transaction. Instead, a single component can prompt users to provide values for each item in
the bag. The prompts themselves are condition-specific because they're based on the
individual configuration for each bag item. Using the composite bag entity, an entity event
handler or Apache FreeMarker, and either Common Response or Resolve Entities
components, your skill can:

• Capture all free text, allow file uploads, and collect the user's current location with the
STRING, ATTACHMENT, and LOCATION items.

• Execute individual behavior for each member entity in the bag–You can add value-
specific prompts and error messages for individual entities within the composite bag
(which includes custom entities, system entities, and the STRING, ATTACHMENT, and
LOCATION items). You can also control which entities should (or shouldn't) match the
user input. Because you can create a prompt sequence, the skill can output different
prompts for each user attempt.

• Present multi-select pick lists.

• Validate value matches based on validation rules.

• Support for the unhappy flow–Users can correct prior entries.

• Execute temporary, match-based transitions–The dialog flow can temporarily exit from
the component when an entity has been matched, so that another state can perform a
supporting function like a REST call. After the function completes, the dialog flow
transitions back to the component so that the value matching can continue. For example:

– After a user uploads a receipt, the receipt itself needs to be scanned so that values
like expense date, amount, and expense type can be extracted from it for the other
entities in the bag. This allows the component to fill the rest of values from the
receipt, not from any user input.

Chapter 25
Configure Composite Bag Entities

25-49

– The skill outputs a message like, “Almost there, just a few more questions” in
between matching sets of entities in the bag.

– The user input must be validated through a backend REST call. The validation
might be required immediately, because it determines which of the bag items
must prompt for further user input. Alternatively, the call might return
information that needs to be shared with the user, like an out-of-policy
warning.

• Disambiguate values–You can isolate a value from the user input through entity-
specific prompts and component properties. These include support for corrections
to prior input (the “unhappy” flow) and for prompting user input for specific built-in
entity properties.

Create a Composite Bag Entity
1. Click Entities in the side navbar.

2. Click Add Entities.

3. Choose Composite Bag as the entity type.

4. Enter the name and description.

5. Click + Event Handler if you want to use execute the composite bag's prompting
and logic programmatically using entity event handlers.

6. Click + Bag Item to open the Add Bag Item dialog. If you’re adding a built-in entity
or an existing custom entity, you can create a bag-specific name for it and add a
description of its role within the context of the composite bag.

7. You can fill the bag with custom entities, built-in entities, and the following:

• STRING—Captures free text from the user.

• LOCATION—Captures the user’s location.

• ATTACHMENT—Accepts files, audio files, video, or image files uploaded by
the user. The composite bag entity stores the URL where the attachment is
hosted.

Note:

You are prompted for a subtype when you add the DATE_TIME entity.

The items get resolved in the order that you add them. However, the sequence
can be affected depending on how you configure individual members of the
composite bag.

8. Clicking Close returns you to the Entities page, but you can add other bag-specific
capabilities to the item first (or update it later by clicking in the Entities page).

9. Next steps:

• Add individual error messages, disambiguation prompts, or conditional
prompting for the bag items.

Chapter 25
Configure Composite Bag Entities

25-50

Note:

These will be overwritten if you add the entity to a composite bag.

• Add the entity to an intent. See Add Entities to Intents.

• Configure the dialog flow to use the composite bag entity..

Enhanced Slot Filling
When you enable enhanced slot filling by switching on Use Enhanced Slot Filling in
Settings > Configuration:

• Only the currently resolving item will be updated. When a match applies to more than one
bag item, the currently resolving bag item takes precedence over other items. If you
switch off enhanced slot filling, then all items are updated with the same value.

• If the current resolving item is a STRING bag item, then no other bag items are ever
updated.

• If an entity match applies to multiple (non-resolving) bag items, a disambiguation dialog
displays, allowing the user to choose which item should be updated instead of updating
all bag items.

• The entity's Prompt for Disambiguation switch is ignored. We recommend that you
implement custom disambiguation with an entity event handler.

Note:

The Use Enhanced Slot Filling toggle is switched on by default for skills created
using Version 22.08 of the platform. It's switched off for skills that have been
upgraded to this version.

Add Prompts
You can add a single prompt, or create a sequence of prompts, each providing increasingly
specific information for each time the user enters an invalid value. By default, prompting is
enabled. To add these prompts:

1. If you want to enable prompting, leave the Prompt for Value field blank (its default state).
Entering false in the Prompt for Value field prevents prompting. To prompt for a
conditional value, add a boolean FreeMarker expression that evaluates to either true (for
prompting) or false.

Tip:

When you set Prompt for Value to false, the item can still be resolved as part
of another item that’s being prompted for when you enable Out of Order
Extraction.

2. Click Add Prompt to build the prompt sequence. You can reorder it by shuffling the fields
through drag and drop gestures, or by renumbering them. You can randomize the output
of the prompts when you give two or more prompts the same number.

Chapter 25
Configure Composite Bag Entities

25-51

Note:

You can only add prompts for built-in entities when you add them to a
composite bag.

You can store prompts in resource bundles (for example, ${rb.askCheese}), or
write them as combinations of text and FreeMarker expressions.

Updating Slotted Values with Apache FreeMarker Expressions
In the Updatable field, enter an Apache FreeMarker expression that evaluates to true
to allow the value slotted for a composite bag item to be updated.

Enable Out-of-Order Extraction
Out of order extraction enables value slotting and updating for a composite bag item at
any point in the conversation regardless of whether the composite bag has prompted
the user for the value or not. Using the following rules, you can set how, when, or if, a
value can slotted or changed at any point in the conversation for any item or item
subtype (such as the DATE_TIME subtypes).

• Always – The default option. When you choose this option for an item, its value
can be slotted with no prompting. For example, the PizzaSize entity might be
resolved when a customer enters I want a large pizza. This option also enables
the item value to be changed at any point, provided that the expression in the
Updatable property does not evaluate to false. For example, when the composite
bag prompts for the PizzaType entity, the customer might then reply Veggie
please, but make it a medium. The skill can update the PizzaSize entity value with
medium without restarting the conversation because Always is enabled for the
bag's PizzaSize and PizzaType items.

Note:

Although this option is the default behavior, it may not always be
appropriate for STRING items. If you chose this option on for a STRING
item, for example, the first user message would be stored by STRING
item instead of getting matched by intended entity (which might be
designated as the first item in the bag to get resolved).

• Never – When you choose this option, the item is only slotted after it's been
prompted for, even when other user messages contain valid values. Choose
Never to prevent inadvertent matches.

• Only when resolving the intent utterance – Restricts the out-of-order value
slotting to the first user utterance that has been resolved to the intent that's
associated with the composite bag entity.

Here are examples of the out-of-order extraction rules as they're applied to a
PizzaToppings composite bag item.

Chapter 25
Configure Composite Bag Entities

25-52

Out of Order
Extraction Rule

Initial User Utterance Value Slotted Notes

Always Order pizza with tuna Tuna The value slotting for the
PizzaToppings item can
be matched whenever
the user message
contains the correct
value ("Mushrooms
instead!). It can be
slotting or updated at
any point in the
conversation without
prompting.

Never Order pizza with tuna None The value for
PizzaTopping item
cannot slotted out of
order or updated ad
hoc. It can only be
matched when it's
prompted for.

Only when resolving
the intent utterance

Order pizza with tuna Tuna. However, if the
user entered "Order
large pizza", the
composite bag would
have to prompt for the
PizzaTopping value.

The PizzaTopping item
can be slotted out of
order only when the first
user utterance that
resolves to an intent has
a matching value.
Otherwise, this value
must be prompted for.
The composite bag will
not allow ad hoc
updating or slotting of
this item.

Enable Extract With
Use the Extract With option to enable your skill to resolve one bag item using the input
entered for a second item in the bag. This option, which allows your skill to handle related
values, provides greater flexibility for user input. Users can enter home instead of a full
address, for example. Here's how:

• The composite bag has two address-related entities: NamedAddress, a list value entity
with values like home and office, and DeliveryAddress, an ADDRESS entity.

• The DeliveryAddress entity's prompt is Where do you want that delivered?

• The NamedAddress entity does not prompt for input (false is entered in the Prompt for
Value field).

• The NamedAddress entity can be extracted with DeliveryAddress (DeliveryAddress is
selected from the Extract With menu).

When the composite bag prompts for the DeliveryAddress entity, it can resolve the entity
using either a physical address, or one of the NamedAddress list values (home or office).

Chapter 25
Configure Composite Bag Entities

25-53

Add Validation Rules
Each item in the bag can have its own validation rules. You can add a validation rule
by first clicking +Validation Rule and then adding a FreeMarker expressions and a
text prompt. The expression uses the following pattern to reference the item value,
where varName is the name of the composite bag entity that’s declared as a context
variable in the dialog flow definition:

${varName.value.itemName}

If this expression evaluates to false, then the user input is not valid.

The following example of a validation expression is for a item called Amount. It’s a
built-in entity, CURRENCY. To return a number amount for the comparison, the
expression adds the CURRENCY entity’s amount property:

${expense.value.Amount.amount > 4}

The corresponding validation message can also reflect the user input through a
FreeMarker expression. For example, the following message uses the type of currency
extracted from the user's input as part of the validation message:

Amounts below 5 ${expense.value.Amount.currency} cannot be expensed.
Enter a higher amount or type 'cancel'.

To find out about other CURRENCY properties (and the other built-in entity properties
as well), see Built-In Entities and Their Properties.

Configure a YAML Dialog Flow for Composite Bag Entities
If your skill is being developed in YAML dialog mode, here are the things you need to
do to configure the dialog flow for composite bag entities:

1. In the context node, declare the composite bag entity as a variable:

...
metadata:
 platformVersion: "1.1"
main: true
name: "ExpenseBot"
context:
 variables:
 expense: "Expense"
 iResult: "nlpresult"

2. You can use System.ResolveEntities or System.CommonResponse. Both of these
components let you leverage the composite bag entity and both provide their own
benefits. The System.ResolveEntities is the simpler of the two, having a small
set of properties. Unlike the System.ResolveEntities component, the
System.CommonResponse provides you with more control over the UI that’s used to

Chapter 25
Configure Composite Bag Entities

25-54

resolve the entities in the bag. For example, you can add conditional logic to determine
prompts and value-related global actions.

Tip:

Because the metadata for the System.CommonResponse component can become
very complex when you use composite bag entities, we recommend that you
use the System.ResolveEntities component instead and use entity event
handlers for any UI customizations.

3. Reference the composite bag entity context variable in the component’s variable
property and then define the other properties as needed. System.ResolveEntities and
The Component Properties describe them and provide further examples.

Here’s an example of the System.ResolveEntities component:

createExpense:
 component: "System.ResolveEntities"
 properties:
 variable: "expense"
 useFullEntityMatches: true
 nlpResultVariable: "iResult"
 cancelPolicy: "immediate"
 transitions:
 actions:
 cancel: "cancelExpense"
 return: "done"

The system.entityToResolve Variable
The system.entityToResolve variable provides information on the current status of the entity
resolution process as performed by Resolve Entities and Common Response components.
You will typically reference the properties of this variable value in the Common Response
component metadata when you want to customize messages. You can use it to define the
logic for an entity's error message, or for various properties that belong to the Resolve
Entities and Common Response components. Append the following properties to return the
current entity value:

• userInput
• prompt
• promptCount
• updatedEntities
• outOfOrderMatches
• disambiguationValues
• enumValues
• needShowMoreButton
• rangeStartVar
• nextRangeStart

Chapter 25
Configure Composite Bag Entities

25-55

You can also reference the properties in FreeMarker expressions used bag item
properties like prompt, errorMessage and validation rules.

Here's an example of using this variable to return the current user input in an entity's
error message:

Sorry,'${system.entityToResolve.value.userInput!'this'}' is not a
valid pizza size.

Here's an example of using various system.entityToResolve definitions. Among
these is a message defined for the text property, which confirms an update made to a
previously set entity value using an Apache FreeMarker list directive and the
updatedEntities property.

 metadata:
 responseItems:
 - type: "text"
 text: "<#list system.entityToResolve.value.updatedEntities>I
have updated <#items as ent>${ent.description}<#sep> and </#items>. </
#list><#list system.entityToResolve.value.outOfOrderMatches>I got
<#items as ent>${ent.description}<#sep> and </#items>. </#list>"
 - type: "text"
 text: "${system.entityToResolve.value.prompt}"
 actions:
 - label: "${enumValue}"
 type: "postback"
 iteratorVariable: "system.entityToResolve.value.enumValues"

For global actions, this variable controls the Show More global action with the
needShowMoreButton, rangeStartVar, and the nextRangeStart properties:

 globalActions:
 - label: "Show More"
 type: "postback"
 visible:
 expression: "$
{system.entityToResolve.value.needShowMoreButton}"
 payload:
 action: "system.showMore"
 variables:
 ${system.entityToResolve.value.rangeStartVar}: $
{system.entityToResolve.value.nextRangeStart}
 - label: "Cancel"
 type: "postback"
 visible:
 onInvalidUserInput: true
 payload:
 action: "cancel"

The Show More label must include a system.showMore (action: "system.showMore").
Otherwise, it won't function.

Chapter 25
Configure Composite Bag Entities

25-56

entityToResolve Expressions

Expression Description

$
{system.entityToResolve.value.resolving
Field}

Returns the name of the bag item.

$
{system.entityToResolve.value.allMatche
s[0].entityName}

Returns the entity name that's referenced by the
bag item. The allMatches array contains all of
the entities whose values could potentially be
updated by the user's message.

$
{<variable>1.value[system.entityToResol
ve.value.resolvingField]}

Returns the bag item value that users enter or
select.

$
{system.entityToResolve.value.userInput
}

Returns the text entered by the user. You can use
this expression to log the user input or display it in
the chat, for example, when a user enters an
invalid value.

$
{system.entityToResolve.value.outOfOrde
rMatches[n].entityName}

Returns the name(s) of the entities that are
extracted out-of-order. Along with the values that
the Resolve Entities or the Common Response
components prompt for, users may provide
additional values that trigger out-of-order value
extraction and updates to other entities in the
composite bag.

$
{system.entityToResolve.value.outOfOrde
rMatches[n].name}

Returns the name of the composite bag item.

$
{system.entityToResolve.value.outOfOrde
rMatches? has_content?then(…,…)}

Returns the value of an entity that has been
matched out of order. Because it's likely that no
entity has been matched out of order, this
expression uses the has_content operator.

Entity Event Handlers
You can execute validation, prompting, and disambiguation for the composite bag entity items
programmatically using Entity Event Handlers. An Entity Event Handler (EEH) is a JavaScript
(or TypeScript) implementation that's created for a composite bag entity and deployed as a
custom code service.

Note:

You can manage the service deployed for the EEH from the Components page .

You can control the resolution behavior for both individual bag items and for the entity itself by
defining the event handler functions provided by the bots-node-sdk. For example, the
following snippet illustrates defining a validate event on a bag item called ExpenseDate that
prevents users from entering a future date when filing an expense report.

ExpenseDate: {

Chapter 25
Configure Composite Bag Entities

25-57

 validate: async (event, context) => {
 if (new Date(event.newValue.date) > new Date()) {

context.addValidationError("ExpenseDate",context.translate('ExpenseDate
.text'));
 return false;
 }
 }

The bots-node-sdk’s Writing Entity Event Handlers documentation describes the
overall structure of the event handler code, the item- and entity-level events, and the
EntityResolutionContext methods like addValidationError and translate in the
above snippet.

Because Entity Event Handlers are written in JavaScript, you can use advanced logic
that isn’t easily achieved – or even feasible – with the FreeMarker expressions that
you can use to define the validation, errors, and prompts in the edit bag item page and
the dialog flow. They’re also easier to debug. That said, you don't have to choose
Entity Event Handlers over FreeMarker expressions. You can combine the two. For
example, you can use FreeMarker expressions for simple validations and prompts and
reserve an EEH for more complicated functions like calling a REST API when all of the
bag items have been resolved.

Create Entity Event Handlers with the Event Handler Code Editor
You can build the EEH using the Event Handler Code editor that's accessed from the
composite bag properties page or with the IDE of your choice. While the Event
Handler Code editor has some advantages over a third-party tool, you may want to
alternate with a third-party IDE depending on the size of the task and the libraries that
you need. To weigh the pros and cons, refer to Which IDE Should I Use?

To access the Event Handler Code editor:

1. Click + Event Handler.

2. Complete the Create Event Handler dialog by adding a service name and a
handler name.

After you've created the handler, you can open the editor by clicking .

The editor is populated with starter code. Its handlers object contains entity, items,
and custom objects. Within these objects, you define event-level events, which are
triggered for the entire composite bag, the item-level events, which control the
resolution of the individual bag items, and the custom events that are fired on postback
actions. By default, the handler object has an entity object defined. The items and
custom objects get populated when you add an item-level or custom template.

Chapter 25
Configure Composite Bag Entities

25-58

https://github.com/oracle/bots-node-sdk/blob/master/ENTITY_EVENT_HANDLER.md
https://oracle.github.io/bots-node-sdk/EntityResolutionContext.html

The events themselves are asynchronous JavaScript functions that take two arguments:

• event: A JSON object of the event-specific properties.

• context: A reference to the EntityResolutionContext class, whose methods (such as
addValidationError in the following snippet) provide the event handler logic.

items: {
 Amount: {
 validate: async (event, context) => {
 let amount = event.newValue.amount;
 if (amount < 5) {
 context.addValidationError("Amount",`Amounts below 5 $
{event.newValue.currency} cannot be expensed. Enter a higher amount or type
'cancel'.`);
 }
 }
 }

You access the templates by clicking + Add Event.

Note:

Refer to the bots-node-sdk’s Writing Entity Event Handlers documentation for
further information on the EEH starter code, item- and entity-level events,
EntityResolutionContext, and code samples.

Add Events
Clicking + Add Event enables you to add the templates for event, item, and custom events.

Chapter 25
Configure Composite Bag Entities

25-59

https://oracle.github.io/bots-node-sdk/EntityResolutionContext.html
https://github.com/oracle/bots-node-sdk/blob/master/ENTITY_EVENT_HANDLER.md
https://oracle.github.io/bots-node-sdk/EntityResolutionContext.html

For example, adding a validate event template populates the editor with the following
code:

validate: async (event, context) => {

 },

You can then update this template with your own code:

validate: async (event, context) => {
 if (event.newValue.value === 'PEPPERONI')
 context.addValdiationError('Type', "Sorry, no pepperoni pizzas
today!");
 },

Clicking Validate checks your code for design time issues, so you should click this
option regularly. You can’t add further events if the code is invalid, neither can you
save invalid code. Because saving code means also deploying it, you can’t deploy
invalid code either.

When your code is valid, clicking Save automatically deploys it and packages it in a
TGZ file. You can monitor the status of the deployment and download the TGZ file for
reuse in other skills from the Components page.

Chapter 25
Configure Composite Bag Entities

25-60

Tip:

To check for runtime errors, switch on Enable Component Logging and then
review the logs (accessed by clicking Diagnostics > View Logs) to find about the
parameters that invoked the events.

In the composite bag page, a Ready status and an Edit icon for revising your code
becomes available after you’ve deployed the service.

Add Entity-Level Event Handlers

For entity-level, events, you can update the templates for the validate, publishMessage,
maxPromptsReached, resolved, attachmentReceived, and locationReceived entity level
events.

Chapter 25
Configure Composite Bag Entities

25-61

Event Description

validate A handler for entity-level validations that's called when
the value for at least one of the bag items has been
changed.

publishMessage A generic fallback handler that's called whenever a bag
item lacks a prompt message or disambiguation
handling.

maxPromptsReached A generic fallback handler when the item-specific
handler for reaching the maximum number prompts has
not been specified.

resolved This function gets called when the composite bag entity
has been resolved. You would typically add a resolved
event to call a backend API that completes a transaction
related to the values collected by the composite bag
entity. If API call returns errors because some the values
collected by the composite bag are not valid, then you
can clear these values.

attachmentReceived This handler is called when the user sends an
attachment.

locationReceived This handler gets called when the user sends a location.

By default, the template is populated with an entity-level event, publishMessage.
Through the updatedItemMessage and outOfOrderItemsMessage functions (which are
also defined in the default template), this event enables the skill to output messages
that confirm that a previously resolved bag item value has been updated, or that it has
accepted valid input for a bag item other than the one that the entity is currently
prompting for (out-of-order input).

Chapter 25
Configure Composite Bag Entities

25-62

This event is optional. You can delete it, leave it as is, or add functionality to it. For example,
you can add a cancel button when a user’s attempts at entering a valid value have exceeded
the maximum number of prompts.

publishMessage: async (event, context) => {
 updatedItemsMessage(context);
 outOfOrderItemsMessage(context);
 //Add Cancel button for invalid values entered by users
 let message = context.getCandidateMessageList()[0];
 }
…
message.addGlobalAction(context.getMessageFactory().createPostbackAction('Can
cel', {action:'cancel'}));
 context.addMessage(message); }
}

Add Item-Level Handlers

For the bag items listed in the dialog, you can add templates for the item level events:
shouldPrompt, validate, publishPromptMessage, publishDisambiguateMessage, and
MaxPromptsReached .

Event Description

shouldPrompt Prompts for an item based on the values of the other
items in the bag. This handler takes precedence over
the prompting configured through the Prompt for Value
field.

validate This handler is called only when a value has been set for
a bag item. If the validity of the value depends on other
bag items, then you should implement the entity-level
validate event instead.

publishPromptMessage Use this function to replace or extend the message
that's generated by the Common Response and Resolve
Entities components to prompt for the item.

Chapter 25
Configure Composite Bag Entities

25-63

Event Description

publishDisambiguateMessage Use this function to replace or extend the
disambiguation prompt message generated by the
Common Response and Resolve Entities components.

maxPromptsReached This function gets called when the maximum number of
prompts for this item, which specified by Maximum User
Input Attempts the in the composite bag item screen,
has been reached.

Adding an item-level event generates the items object.

Add Custom Events

You can create custom events that are called from postback actions (buttons or list
items) using the custom event template.

Chapter 25
Configure Composite Bag Entities

25-64

Adding a custom template adds a custom object with the basic event code. Refer to the bots-
node-sdk’s Writing Entity Event Handlers documentation for examples of implementing a
custom event.

someCustomEvent: async (event, context) => {

}

Replace or Remove an Entity Event Handler
If you need to replace or remove an EEH:

1. Select an empty line from the Event Handler menu to reactivate the + Event Handler
button.

Chapter 25
Configure Composite Bag Entities

25-65

https://github.com/oracle/bots-node-sdk/blob/master/ENTITY_EVENT_HANDLER.md#custom

2. Open the Components page . Switch off Service Enabled or delete the service.

Note:

You can't delete or disable a service if the EEH is still associated with the
composite bag entity.

3. If needed, add a new EEH to the composite bag, or if you're not opting for a new
EEH, you can add the resolution logic with FreeMarker expressions.

Tip:

Deleting the composite bag entity will also delete the service deployed for the
EEH.

Which IDE Should I Use?
You can create an EEH using the IDE of your choice and then deploy the code using a
TGZ file that you packaged manually with bots-node-sdk pack, or you can use the
Event Handler Code editor that we provide. When you use our editor, you don’t have
to set up your development environment or package and deploy your code. The code
is deployed automatically after you save it. You can also revise the code directly
without having to redeploy it, something that you can’t do when you package and
deploy a handler created with your own IDE. You can't add additional NPM packages
using Event Handler Code editor. You'll need another IDE. For example, if you want to
use Moment.js to work with dates, then you must download the TGZ, add the library
using the IDE of your choice, and then repackage and deploy the TGZ. After that, you
can continue using the Event Handler Code editor.

Tip:

The Event Handler Code editor might be a better option for small changes. If
you need to make bigger changes, or add additional NPM packages, then
you can download the TGZ from the Components page, unzip it, and then
use your favorite editor to modify the code before repackaging and deploying
it.

Simplify Dialog Flows with Entity Event Handlers
Entity event handlers can simplify your dialog flow definition because they’re used with
the dialog-shortening best practice that is composite bag entities. When it comes to
backend services, they make your dialog flow definition less complicated because you
don’t need to write a separate state for the custom component that calls them.

Event handlers simplify the dialog flow definition in another way: they enable you to
modify the messages that are generated by the Resolve Entities component. For
example, you can create a carousel of card messages without using the complex
structure of the Common Response component metadata property. You can instead
add the carousel through simple code, which means you can also add card responses
to the Resolve Entities component. For example, this code enables the Resolve

Chapter 25
Configure Composite Bag Entities

25-66

https://www.npmjs.com/package/moment/v/1.1.0

Entities component to output a horizontally scrolling carousel of cards for pizza type, with
card each having a cancel button:

Type: {

 publishPromptMessage: async (event, context) => {
 let candidateMessage = context.getCandidateMessageList()[0];
 const mf = context.getMessageFactory();
 const message = mf.createCardMessage()
 .setLayout(horizontal)
 .setCards(context.getEnumValues().map(p => {
 mf.createCard(p.value)
 .setDescription(pizzaInfo[p.value].description)
 .setImageUrl(pizzaInfo[p.value].image)
 .addAction(mf.createPostbackAction('Order',
{variables: {pizza: p.value}}));
 })
 .setGlobalActions(candidateMessage.getGlobalActions());
 context.addMessage(message);
 }

Entity Event Handler Tutorials
Follow this tutorial to get acquainted with entity event handlers by creating one using the
editor. Then check out this advanced tutorial for creating an entity event handler with an
external IDE and bots-node-sdk.

Disambiguate Nested Bag Items and Subtypes
The composite bag will always prompt for values per the item order that's dictated by the
hierarchical structure a nested bag item. It will not blindly slot values for multiple items. It
instead attempts to match the value in the user message only to the item that it's currently
prompting for. When the user input doesn't match the current item, or could potentially match
more than one item, as might be the case for the startTime and endTime for an INTERVAL
subtype, it presents users with the value defined for the Label property to clarify the
requested input.

Chapter 25
Configure Composite Bag Entities

25-67

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=dateb-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=datee-index

Tip:

As with all strings, we recommend that you define the Label value as a
resource bundle.

Add the DATE_TIME Entity to a Composite Bag
To enable your skill to handle complex scenarios that require multiple user prompts
like scheduling a meeting, or setting a recurring event, you need to create a
DATE_TIME composite bag item and then configure the attributes of the Interval,
Recurring, and Date and Time subtypes and their respective nested bag items.

Note:

While you can use the Date, Time and Duration as standalone entities, we
recommend that you use them within composite bag entities.

1. Before you create a DATE_TIME bag item, configure the date and time ambiguity
resolution rules appropriate for your use case. For example, if you're creating an
expense reporting skill, select Past. If the skill is a meeting scheduler, select
Future.

2. Within the composite bag entity, click Add item.

3. Select Entity from the Type menu.

4. Select DATE_TIME from the Entity Name menu.

5. Choose a DATE_TIME subtype from the Subtype menu.

The configuration options on the Add Bag Item page change depending on the
subtype that you select. For example, if you select the Recurring subtype, then
you can access configuration options for the nested bag items that are specific to
setting a repeating event, such as the Date and Time object for the initial starting
date and time and the Duration object for setting the event frequency.

Chapter 25
Configure Composite Bag Entities

25-68

6. If you selected the Recurring or Interval subtypes:

• Set the subtype values that the composite bag prompts for from the Prompt for
menu.

• Because meetings typically start and end on the same day, switch on Default end
date to start date for the startDate subtype. This sets the end date as equal to the
start date when the user message does not mention the end date (or when the end
date is not extracted out of order).

7. Optionally add a disambiguation label if the user input can match more than one subtype.

Tip:

You can also configure the properties that are not DATE_TIME-specific, such as
enhanced slot filling, updating slotting values with Apache FreeMarker, custom
prompts, and error messages.

8. You can access subtype-level configuration by clicking a subtype. Use the traversal to
return to the item-level configuration.

Chapter 25
Configure Composite Bag Entities

25-69

9. Next steps:

• Associate the composite bag entity with the intent.

• Declare a variable for the entity in the dialog flow.

• In the dialog flow, reference the composite bag entity with the DATE_TIME
item using a Resolve Composite Bag state.

• The DATE_TIME values are represented as ISO 8601. For user-friendly
output, use the Apache FreeMarker .xs built-in. In the following snippet, the
value for the Time subtype is formatted using .value?time.xs?string['hh:mm
a'].

Your pizza will be delivered at ${pizza.value.deliveryTime.value?
time.xs?string['hh:mm a']}.

Instead of referencing the DATE_TIME item as a string, you can follow the
best-practice approach of referencing it in a resource bundle, such as
DeliveryMessage in the following example.

${rb('DeliveryMessage','time',pizza.value.deliveryTime.value?
time.xs?string['hh:mm a'])}

For the DeliveryMessage resource bundle message, the value is rendered
through the {time} parameter:

Your pizza will be delivered at {time}.

Tutorial: Real-World Entity Extraction with Composite Bag Entities
You can get a hands-on look at creating a composite bag through this tutorial: Enable
Real-World Entity Extraction with Composite Bag Entities.

Query Entities
You can create SQL Dialogs skills that let users query databases using natural
language. You start by importing information about the data service's physical model
into the skill. During the import, the skill adds query entities to the logical model, where
each query entity represents a physical table.

You next build your SQL Dialogs skill around these query entities. To learn more, see
SQL Dialog Skills.

Chapter 25
Query Entities

25-70

https://freemarker.apache.org/docs/ref_builtins_date.html
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=dacte-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=dacte-index

26
Visual Flow Designer

You use the Visual Flow Designer to create the dialog flow definition, which is the model of
the interaction between a skill and its users.

The Visual Flow Designer enables you to design conversations visually. And, unlike the
legacy YAML-based designer, the Visual Flow Designer enables you to create conversations
modularly with separate and reusable flows.

Basic Concepts
The Visual Flow Designer is a visual tool for designing interactions between a skill and its
users. The following topics contain the first things that you need to know.

Visual Designer
With the Visual Flow Designer, dialog flows are designed visually instead of through a code
editor. The connections between states are represented in visual diagrams. Variables,
parameters, and component properties are defined in specialized editors and dialogs.

Multiple Flows
In the Visual Flow Designer, you create flows to handle the various parts of the conversations
you are designing your skill for. Typically you would have:

• The Main Flow, which is the main entry point for the skill and which is more of a
configuration than a flow. The main flow contains:

– Global variables.

– Events that map to flows.

• A flow for each regular intent.

• A single flow to handle all answer intents (though it is also possible to have separate
flows for individual answer intents if you want to include behavior that is specific to those
answer intents).

• Sub-flows and reusable utility flows (e.g. for authentication) that can be called by other
flows.

Events
In skills created with the Visual Flow Designer, a flow is triggered when an event that is
mapped to that flow occurs. There are events for each of the skill's intents and built-in events
for standard cases (such as unexpected user input and errors). In addition, you can define
custom events, which enable you to trigger flows based on actions emitted when another flow
ends.

Events that are triggered at the skill level are mapped to flows. Events that are triggered in a
flow are mapped to states in the flow. (In the case of Dialog Error events, if you haven't

26-1

mapped the event to a state in the current flow, the event propagates to the Main Flow,
from where it is mapped to a flow.)

Note:

Events in the Visual Flow Designer roughly correspond with default transition
actions in YAML dialog flows.

Variables, Scope, and Parameters
With the Visual Flow Designer, you can define variables at the level of individual flows
and globally.

• In individual flows. Variables defined in a flow can't be directly accessed from
outside of that flow.
The lifespan of a flow variable is limited to that flow. Its value is cleared after the
dialog has traversed to the end of the flow. If a user returns to that flow later in the
session, the variable is re-initialized.

• In the Main Flow. Variables defined here have a skill-wide (global) scope,
meaning that they can be accessed by all flows in the skill.
Values for these global variables persist througout the user's session with the skill.
The variables are cleared when the user session with the skill ends, which
happens when one of the following things occurs:

– The user closes the chat window.

– The session times out after a period of inactivity (the value of which is defined
at the channel level and which is typically 24 hours).

– In the context of a digital assistant, the user exits the skill or reaches a state
that directly invokes another skill.

Note:

When the user interrupts a conversation with a non sequitur input
and is temporarily routed to a different skill, the digital assistant
remains in the context of the original skill and its variables are not
automatically cleared. In this case, if the user returns to the original
skill after the interruption, the variables hold their values. If the user
selects not to return to the original skill, the original skill is exited and
the variables are cleared.

Values of variables can be passed in and out of flows by using input and output
parameters. By using parameters instead of direct references to variables across
flows, you make flows that are self-contained, which enables reusability, fosters
predictable behavior, and reduces the likelihood of bugs.

Note:

The names of input parameters for a flow need to be distinct from the names
of that flow's variables.

Chapter 26
Basic Concepts

26-2

For more information on working with variables, see Expressions for Variable Values and
Other Variables Types.

New, Modified, and Removed Components
The Visual Flow Designer's set of components is largely the same as in the YAML-based
editor, but there are some additions, removals, and modifications. Here's a quick rundown of
the biggest differences.

The following components are exclusive to the Visual Flow Designer:

• Invoke Flow: Used to call a flow from an existing flow.

• End Flow: Used to end a given flow. You can also use this component's action property
to specify an event that triggers another flow. Typically, such an action would be used by
an action transition specified in an Invoke Flow component in the parent flow. For top-
level flows, the action in the End Flow state triggers the custom event in the Main Flow.

• Send Message: A simplified Common Response (System.CommonResponse) component
for displaying a message.

• Ask a Question: A simplified Common Response (System.CommonResponse) component
for prompting a user for a response.

• Resolve Composite Bag: A simplified Resolve Entities (System.ResolveEntities)
component that is designed specifically to work with composite bag entities.

• Display Tables and Forms components.

The following components are not available in the Visual Flow Designer:

• System.Intent: This functionality has been replaced by automatic intent resolution, which
occurs when there is no active flow. See Intent Detection and Resolution.

• System.ConditionEquals: Use the Switch component instead.

• System.ConditionExists: Use the Switch component instead.

• System.Text: Use one of the Common Response Component Templates, the Resolve
Entity component, or the new Ask Question component instead.

• System.List: Use a Common Response component template or the Resolve Entity
component instead.

• System.Output: Use a Common Response component template, the Resolve Entity
component, or the Send Message component instead.

• System.Qna: If you are using Q&A modules, you should migrate to the use of answer
intents.

For a complete rundown of the components in the Visual Flow Designer, see Component
Templates.

Get Started with the Visual Flow Designer
Here's a quick set of steps to get started with the Visual Flow Designer.

Create the Visual Designer Flow Skill
To create a visual flow skill:

Chapter 26
Get Started with the Visual Flow Designer

26-3

1. Click + New Skill in the skills landing page.

2. Choose Visual as the dialog mode.

Note:

The platform version must be set to 22.04 or later for this option to be
available.

3. Create intents and entities. You will need to have these in place before you create
variables and intent flows.

4. Click Flows in the left navbar. The editor opens to the Main Flow, where you
set and manage the configuration for the entire skill. Among other things, you use
its Skill Variables page to add the variables that are shared across flows and its
Events page to create and manage the mappings of transactional flows to intents
and the mapping of utility flows to built-in events that handle unresolved intents,
dialog errors, and presenting answer intents.

Map Events
You can add, edit, or delete mappings from the Main Flow's Event's page. You can
various types of events to existing flows using the mapping dialog.

You access this dialog by clicking .

Chapter 26
Get Started with the Visual Flow Designer

26-4

Build an Intent Event Flow
Here you create flows to map to specific intents in your skill. Intent flows are typically mapped
to regular intents, though you can also create them for answer intents.

To create an intent event flow:

1. Create the corresponding intent and any entities that will be referenced within the flow.
For example, if you're creating a pizza skill, you might create the following artifacts:

• An orderPizza intent.

• A value list PizzaTopping entity.

2. Train the skill.

3. Get started with the flow:

• Click Flows in the left navbar, then click + Add Flow.

• Enter a flow name, then select the name of the intent that's mapped to this flow. Then
click Create.

Note:

You can only choose from the available flow.

Chapter 26
Get Started with the Visual Flow Designer

26-5

4. Create any variables that are used within the flow:

a. Open the Configuration tab. Then click + Add Variable.

b. Select the variable type. If the variable references an entity, complete the
dialog by naming the variable for the selected entity. Then click Apply.

Note:

Within a flow, a variable and an output parameter can share the
same name. However, variables and output parameters cannot have
the same names as input parameters.

Chapter 26
Get Started with the Visual Flow Designer

26-6

5. Build the flow:

a. Open the Flow tab.

b. Click the menu in the flow start, then click Add Start State to open Add State
dialog.

c. Select a state from the component picker, then click Insert.

d. Open the state's property inspector to configure the component.

Using the pizza skill as an example, you'd begin the flow as follows:

1. Select Ask Question then click Insert.

2. Open the Component tab in the question state's property window.

3. Add a question ("What pizza do you want?", for example). Then select the flow variable.

Tip:

Use resource bundles for all user-facing text in your skill.

4. Add another state after the question by clicking the menu.

5. Choose Send Message and then click Insert.

6. In the property window for the send message state, enter a confirmation message with a
FreeMarker expression that accesses the flow variable using the $
{varName.value.value} syntax. For example:

Your ${PizzaType.value.value} pizza is on the way.

Chapter 26
Get Started with the Visual Flow Designer

26-7

If you're referencing a a flow-level composite bag entity, use the $
{cbVarName.value.itemName.<attribute>} syntax.

After you've added states to the flow, you can reassign the start state by clicking

the menu , then choosing Make start state.

7. Open the Transitions tab of the output component's property inspector. Note that
End flow (implicit) is selected as the transition. Because this flow has no required
output parameters, the transition to the implicit End flow will suffice. However, if
this flow had one more required output parameters, then the output state would
have to transition to an actual End flow state (inserted by clicking Flow Control >
End Flow in the Add State dialog) that specifies the flow's output parameter(s).

Chapter 26
Get Started with the Visual Flow Designer

26-8

Reference Variable Values in FreeMarker Expressions
Use ${varName.value.value} to reference a value list entity. Because entities are resolved
as JSON objects, the first .value returns the JSON object and the second .value returns the
value of a property in that JSON object. To return the value of the entity in the primary
language of the skill, use ${varName.value.primaryLanguageValue}.

For composite bag entities, use ${cbVarName.value.itemName.value} for value list items
and {cbVarName.value.itemName} for non-value list items.

• When an item is a value list, use a value property: ${cbVarName.value.itemName.value}
or ${cbVarName.value.itemName.primaryLanguageValue}.

• For non-value list items, you do not access the item with a value property (no .value
or .primaryLanguageValue). For example, if you're referencing a DATE entity whose item
name is date in the composite bag, you'd use ${cbVarName.value.date}. For a
NUMBER entity item (number), you'd use ${cbVarName.value.number}.

The reference syntax depends on context. To allow the different flows within your skill to
reference a skill-level variable, prepend the variable name in the expression with skill. For
example, the following expression references an item (Type) in a composite bag entity
(Order) that's shared across flows:

${skill.Order.value.Type.value}

skill is not required in expressions for flow-scoped variables:

${Order.value.Type.value}

Chapter 26
Get Started with the Visual Flow Designer

26-9

Tip:

Autocompletion makes writing Apache FreeMarker expressions less error-
prone.

Build a Flow for Built-In Events
You'll likely want to have utility flows for built-in events like handling unresolved intents,
dialog errors, and presenting answer intents. You map these flows to built-in events in
the main flow. In general, the flows mapped to built-in events get invoked when there
is no active intent-level flow, such as when the skill starts, or when an intent flow
terminates with an end flow state.

For example, to create a generic flow that handles all answer intents:

1. Create or import an answer intent and then train the skill.

2. Click Flows, then click + Add Flow.

3. Enter a flow name for the answer intent flow, then click Create.

4. Click the menu in the flow start, then click Add Start State to open the Add
State dialog.

5. Add a display intent answer state by selecting User Messaging > Display text
and multimedia messages > Display intent answer, or by entering intent
answer in the Search field. Then click Insert.

Chapter 26
Get Started with the Visual Flow Designer

26-10

Tip:

You use the search field to locate a state template.

6. Click the display intent answer state to open the Component tab of the property inspector,
then click Edit Response Items.

7. Update the text message, incorporating the template FreeMarker expression that
accesses the answer intent message ("$
{skill.system.event.value.intent.answer}"). For example:

"Hello, ${profile.firstName?capitalize} ${profile.lastName?capitalize}.
You were asking about ${skill.system.event.value.intent.intentName?
lower_case}. Here's your answer: $
{skill.system.event.value.intent.answer}."

Chapter 26
Get Started with the Visual Flow Designer

26-11

Note:

8. Click Apply.

9. Click Main Flow.

10. Click next to the Built-In Events.

11. Complete the Create Built-In Event Handler dialog:

• Select Answer Intent (located under Intent Events) from the Unhandled Event
Type dropdown.

Chapter 26
Get Started with the Visual Flow Designer

26-12

• Select the answer intent flow from the Mapped Flow dropdown.

12. Click Create.

Note:

The dialog error event flow can exist at both the skill and flow levels. The skill-level
dialog error flow, which is mapped to the Dialog Error built-in event, acts as a
fallback in the absence of an error-handling flow mapped to the flow-level Dialog
Error event. If your skill does not have any dialog error flows at all, then the skill
outputs the default error message (Oops! I’m encountering a spot of trouble).

Sample Messages for Built-In Event Flows
Use FreeMarker expressions to access the errors and answer intents. For more ideas, see
Handy Expressions.

Chapter 26
Get Started with the Visual Flow Designer

26-13

Built-in Event Expression Syntax and Examples

Answer Intent Use the following syntax for a generic flows
that handle all answer intents for the skill:

$
{skill.system.event.value.intent.a
nswer}

For example:

Hello, ${profile.firstName?
capitalize} ${profile.lastName?
capitalize}, you were asking about $
{skill.system.event.value.intent.int
entName?lower_case}. Here's your
answer: $
{skill.system.event.value.intent.ans
wer}.

Dialog Error Use the following syntax for dialog error
messages:

$
{skill.system.event.value.dialogEr
ror.errorMessage}

For example:
An error occurred while processing your
order: $
{skill.system.event.value.dialogErro
r.errorMessage}

Tutorials: Visual Flow Designer
You can get hands-on practices designing a dialog flow and learn some useful design
practices by following these tutorials:

• Create a Dialog Flow with the Oracle Visual Flow Designer

• Tour of the Visual Flow Designer Sample Skill

Flows
A flow is a piece of the skill dialog flow that defines the interaction with the user to
complete a task or a part of a task that the user wants to perform.

Typical examples of flows include:

• Intent-driven flows, where each intent defined in the skill has an associated flow,
for example 'Order Pizza', 'Send Money' or 'Create Expense'.

• Supporting or utility flows for tasks like user authorization, new user onboarding,
logging, or providing user assistance. Such flows can be invoked from multiple
flows.

Chapter 26
Tutorials: Visual Flow Designer

26-14

For example, you could have a Create Account sub-flow that you invoke from flows like
Order Pizza or Send Money.

Flow Types
Generally speaking, flows break down into the following types:

• Main Flow.

• Intent flows.

• Flows for built-in events and system transitions.

• Sub-flows that can be used by top-level flows.

Main Flow
With dialog flows created in the Visual Flow Designer, each dialog flow has a single main flow
that is used to configure:

• The mappings between events and flows.

• Global context variables that can be used in all of the skill's flows.
When accessing such a variable with a Freemarker expression, you prefix the variable
name with skill. in the expression.

These skill-level variables are cleared after the user session expires. Session expiry is
configured at the channel level and is typically 24 hours by default.

The main flow isn't really a flow as such. Rather, it is the control center for the skill, from
where users are directed to specialized flows that are mapped to the resolved intents. The
main flow configuration includes the pre-defined skill.system.nlpresult variable that is
populated with intent and entity matching results whenever an intent is resolved, which
enables control to be passed to individual flows.

Intent Flows
When you design dialog flows with the Visual Flow Designer, you create flows that you then
map to your intents. All regular intents (meaning intents that are not answer intents) must be
linked to a flow.

For answer intents, you can use either (or a combination) of the following approaches:

• Create a single flow and map it to the Answer Intent built-in event.

• Create individual flows for specific answer intents.
This approach enables you to have specific prompts or questions to precede and/or
follow each answer.

Note:

You also have the option to not provide any flow at all for answer intents, in which
case the answer is given to the user without the dialog flow being directly involved.

Chapter 26
Flows

26-15

Utility Flows for Built-In Events and System Transitions
You can create flows that are triggered by the skill's built-in events (such as Answer
Intent and Dialog Error), custom events, and system transitions (such as Authorize
User and Dialog Error).

Custom Sub-Flows
You can also create flows that are not mapped to a specific intent or based on built-in
events (or system transitions) but which can invoked by other flows.

For example, in a skill for a restaurant, you may want to have a Show Menu flow that
can be called in the middle of an order flow if a user so requests.

Variables and Scope
In the Visual Flow Designer, variables for can be defined at two levels:

• In an individual flow. Variables defined at this level can only be accessed from
inside the flow where they are defined.
A flow-scope variable can't be directly accessed outside of the flow where it is
defined, even from sub-flows or calling flows. However, you can define input and
output parameters for a flow to pass values to and from variables defined in the
flow.

When the flow ends, the variable values are reset.

Most of your variables should be defined at this level. By making regular use of
flow variables, you make your flows more self-contained, which makes them
easier to reuse, easier to test in isolation, and less likely to be adversely affected
by bugs in other flows.

• In the Main Flow. Variables defined here have a skill-wide (global) scope,
meaning that they can be accessed by all flows in the skill.
Values for these global variables persist througout the user's session with the skill.
The variables are cleared when the user session with the skill ends, which
happens when one of the following things occurs:

– The user closes the chat window.

– The session times out after a period of inactivity (the value of which is defined
at the channel level and which is typically 24 hours).

– In the context of a digital assistant, the user exits the skill or reaches a state
that directly invokes another skill.

Note:

When the user interrupts a conversation with a non sequitur input
and is temporarily routed to a different skill, the digital assistanta
remains in the context of the original skill and its variables are not
automatically cleared. In this case, if the user returns to the original
skill after the interruption, the variables hold their values. If the user
selects not to return to the original skill, the original skill is exited and
the variables are cleared.

Chapter 26
Flows

26-16

You should limit your use of these skill-scope variables to variables that require a shared
context. For example, in a food delivery skill, you might need a skill-level variable for the
list of all orders that a user has made in a session.

Variable values must match the type that was declared for the variable. If a variable is
assigned a value that doesn't match its declared type, a runtime error occurs.

Note:

In the Visual Flow Designer, variables can be assigned an initial value when they
are declared. (This is different in YAML-based dialog flows, where you need to use
a System.SetVariable component to set the initial value.)

Notes for Developers Used to YAML-Based Dialog Flows
If you are used to designing dialog flows using the OBotML code editor, you need to know the
following about flows that you create with the Visual Flow Designer:

• There is no return transition available in the Visual Flow Designer.
When the last state of a flow is reached the flow's variables are cleared automatically
(though any skill-level variables remain active until the end of the session).

• State transitions can only be defined through the next transition or transition actions.
When you use the designer to insert a state into a flow, the appropriate next transitions
are inserted into that state and the preceding state.

Implicit transitions based on the sequence of the states are not allowed. If no matching
transition can be found, a runtime error will be thrown.

• It is not possible to directly use FreeMarker expressions to conditionally define the target
states for transitions in a component. To conditionally specify the target state, insert a
Switch component into the flow to hold the expression and define the action transitions
based on the result of the expression.

Designing Flows

Create a Flow
Before you can map any type of event, whether it's an intent event for a transactional flow, or
a built-in event for a utility flow, you need to first create the flow itself. The mapping that you
eventually assign to a flow determines whether its scope extends to the entire skill, or only to
a flow.

To create a flow, click + Add Flow.

The editor is populated with a Flow start node . You build out the flow from here. The
editor also includes Events node where you define the subflows for the system transition
events that handle dialog errors, out-of-order user messages, unexpected user input, and
authentication.

Chapter 26
Flows

26-17

Your flow can end without an actual end flow state (implicitly), but if you've defined
output parameters that pass required values to another flow, then you need to add an

end flow state , one that specifies these output parameters.

Tip:

Click Validate and then review the findings as you create a flow.

.

Create the Skill-Level Variables
If you need to create a variable that's accessed by all of the flows, then your first stop
before building any of the actual flows is to create a skill variable in the Main Flow's
Skill Variables page:

1. Select Main Flow > Skill Variable.

2. Click + Add Variable and then complete the dialog.

3. Select the variable type as an entity, a primitive type, or as a list (JSON array) or
map (JSON object). If the variable references an entity (custom or built-in),
complete the dialog by naming the variable for the selected entity.

Note:

You need to create variables for any variables that are set or created in
entity event handlers or custom components.

4. If needed, enter an initial (default) value. This can be a single value (e.g., false,
for a boolean or 4 for an integer), an expression (e.g.,
list.ManageAccounts.addAccount for a string) or a JSON object, one that
encloses the keys and values in double quotes (") as illustrated by the following
list object:

[
 {
 "pizzaType":"Veggie",
 "price":"10 USD"
 }
]

This snippet illustrates the default value for a list type variable in an array.

Chapter 26
Flows

26-18

Tip:

If you set an initial value for a variable, you won't need to add a Set Variable
state in the flow to give it an initial value.

Designate a Start State
You can use the menu to continue to add or delete states, or to reassign the start state, or

starting node , of the flow. For example, if you're adding a preceding state to the starting
node, you can assign it as the starting state.

Note:

The start state is the first state to execute within a flow. If any other states precede
the start state, the flow will skip those states, leaving them unexecuted.

Add a State

Chapter 26
Flows

26-19

From the Flow start node, you can build out your state by first clicking the menu
and then by inserting a state selected from the Add State dialog, opened by clicking
Add start state.

Insert a State Between States
To insert a state between two existing states:

• Click the transition line that connects the two states and then open the Add State

menu by clicking . Note that the transition line notes the type of transition
between the states (next, for example).

• Create a state on the fly by choosing Add State from the Next Transition menu or
Transition to menu for actions.

Chapter 26
Flows

26-20

Edit a State's Properties
Clicking a state opens its property editor, where you set the component configuration and
transitions.

Chapter 26
Flows

26-21

The property editor for the output state, for example, is a send message component
for outputting a string.

Deleting States

You can delete a state by hovering its tile, clicking and then selecting Delete.

Chapter 26
Flows

26-22

WARNING:

Deleting a state can have unintended consequences. If you delete a state, the state
is removed entirely from every place that it appears in the flow. If you delete the
wrong state, you can restore it.

If you want to delete a sequence of states:

1. Choose Delete states from the menu.

2. Click Delete in the confirmation dialog.

Chapter 26
Flows

26-23

If you've deleted the states in error, click Undo.

Tip:

If you want to just remove one occurrence of a state in a flow, you can
disconnect it from that part of the flow by changing the value of the transition
to it from the preceding state.

Restore a Deleted State
If you accidentally delete a state and then realize that you want it back, you can
restore it as long as you remain in the Visual Flow Designer and you haven't made any
other changes. To do so:

1. Locate the dialog confirming that the state was deleted. This should appear in the
lower left of your screen and look something like the following screenshot:

Chapter 26
Flows

26-24

2. Click Undo.

Reconnect a Disconnected State
In the course of development, you might cause a break between states by changing a
transition. At this point, the part of the flow that is broken off from the flow is parked within a
tile named Disconnected, which appears below the Events tile.

You can reconnect a part of a disconnected flow to a working flow by specifying the name of
a disconnected state as a transition in the working flow. To do so:

1. If you are unsure of which states have been disconnected, double-click the
Disconnected tile to display the states that have been disconnected from the flow.

2. Select the tile of the state from which you want to transition to the currently disconnected
state to open its property inspector.

3. In the property inspector, select the Transitions tab.

4. If you are using the Next transition, select the disconnected state from the Next
Transition dropdown.

5. If you are using an action transition, click Edit () for the transition that you want to use
for the state and change the Transition to value to the state that you want to connect to.

Insert a New First State

You may need to insert a state before the start node. . For example, after building your
flow, you might find out that you need to revise it because it's starting at the wrong point. For
example, your flow starts abruptly: its start node is a state that calls a REST service that
requires user input, but there is no preceding state to collect this user input. And because it's
a start node, there's no transition line that enables you to insert a state. To add a state before
the start node, you need to use the Add preceding state option. To add a state with this
option:

1. Hover over the start node state to invoke the menu .

2. Choose Add preceding state.

Chapter 26
Flows

26-25

3. Select a template from the Add State dialog. You can choose the default Next
transition, or create a transition action, which you can later configure in the
property editor.

4. After you've inserted the preceding state, you can assign it as the start node by
choosing Make start state from the menu.

Chapter 26
Flows

26-26

Copy States
You can copy and paste a state (or states) to another part of the flow or to a separate flow
within the skill.

1. Click the menu on the state that you want to copy, then choose Copy states. Your
selection might include a single state, or an entire branch, depending on the state's
position and relation to other states.

2. Select the target flow (either the current flow or another flow within the skill). Then click
Copy. If you're selecting a separate flow, then any variables associated with the selection
will be copied to that flow.

Chapter 26
Flows

26-27

3. Open the Disconnected node, then set a transition that connects the state or
states to the flow. If you're creating an new flow based on the copied states,
choose Make start state for the selected state.

Chapter 26
Flows

26-28

Note:

States copied to the current flow are differentiated from the originals with a 1.
For example, the copy of cancelOrder is cancelOrder1.

Intent Detection and Resolution
For dialog flows designed with the Visual Flow Designer, intents are detected (and resolved)
automatically when there is no active flow.

This means the dialog engine performs intent resolution on the user message when:

• The session is started with a user message.

• A previous top-level task flow has just been ended, and the action specified by the End
Flow component does not match another event (default transition).

Note:

This differs from YAML-based dialog flows, where you have to explicitly add a
System.Intent component to the dialog flow. In the Visual Flow Designer, there
isn't a System.Intent component.

When the dialog engine performs intent resolution, it stores the result in the pre-defined
variable named system.nlpresult (which you can access with the expression $
{skill.system.nlpresult.value}). In addition it raises an event named
system.intent.<IntentName> for the intent match that is found or
system.intent.unresolvedIntent when no intent match is found. In the Main Flow, you
create the mappings between the intents and the flows that need to be invoked for those
intents.

Note:

The automatic detection of intents in the Visual Flow Designer is similar to how
digital assistants already work, with the main difference being that digital assistants
support non sequiturs within an active skill when the user input is unresolved.

Answer Intent Resolution
If an answer intent is matched and you have mapped a flow to that that answer intent, then
that flow is invoked.

If an answer intent is matched and you have not mapped a flow to that answer intent, but you
have mapped the Answer Intents built-in event to a flow, then the flow mapped to the Answer
Intents built-in event is invoked.

You can use the following expression to access the resolved answer intent answer from the
event payload:

• ${skill.system.event.value.intent.answer}

Chapter 26
Intent Detection and Resolution

26-29

Note:

It's not strictly necessary to create a flow for answer intents. If user input
resolves to an answer intent that doesn't have a specific or standard flow
mapped, the main flow handles the display of the answer.

Flow Mapping
The following topics show the various types of events from which you can map to a
flow.

Map an Intent to a Flow
You can map an intent to a flow when you create the flow:

1. On the Events page, click + Add Flow.

2. In the Create Flow dialog, fill in the required fields, including Intent Name.

If you have already defined a flow and now need to map an intent to it, here's how you
map the intent:

1. On the Flows page, in the list of flows, select Main Flow.

2. Click in the Intent Events section.

3. In the Create Intent Event Handler dialog, select the intent name and mapped flow,
and then click Create

Chapter 26
Flow Mapping

26-30

.

Map a Built-In Event to a Flow
1. Select Main Flow.

2. Click in the Built-In Events section.

3. In the Create Built-In Event Handler dialog, select the event type from the and mapped
flow, and click Create.

Chapter 26
Flow Mapping

26-31

Map a Transition Event to a Flow
1. Select the flow to which you want to map the event.

2. Select the Configuration tab.

3. Expand the Event Mappings section.

4. In the field for the transition that you want to map, select a state.

Invoke One Flow from Another Flow
If you want to call a flow from another flow, you do so by using Invoke Flow and End
Flow components. Here's how it works:

• The parent flow calls the child flow from an invoke flow state. It uses this state to
pass values to and receive values from the child flow.

• The child flow's end flow state passes its output parameters back to the parent
flow and can also trigger an action that the parent flow executes after the child flow
has ended.
If the child flow branches and has multiple end flow states, each can pass its own
action back to the parent flow, and the parent flow can use these actions to
determine which branch to follow.

(Action transitions enable you to branch the parent flow based on the results of the
child flow. For example, if you have a child flow that is supposed to look up an
account, it could pass an action for success and an action for failure.)

• After the child flow has ended, the parent flow resumes.

For example, an Update Account flow in a finance skill would be the parent flow that
can only complete the user's update request by calling a child flow, Get Account. The
result, or output parameter that the parent flow expects after the child flow executes, is
the user account. In this case, the account is the output parameter sent to the invoke
flow state by the child flow's end flow state.

To link flows:

1. Create the input and output parameters for the child flow.

2. In the parent, or calling flow, click the Add State icon at the point where you want
to call the child flow and select the Flow Control > Invoke Flow component. Then
click Insert.

3. Open the property inspector for the invoke flow state that you just added.

4. On the General page, enter a name and a description.

5. On the Component page, select the child flow from the Flow dropdown.

6. If the parent flow needs to pass parameters to the child flow, click Add, then select
the input parameter belonging to the child flow and enter a default value. Then
click Save. Repeat this step for each input parameter.

7. If the parent flow expects a result from the child flow, click Add to select the output
parameter belonging to the child flow and then name the variable of the current
(parent) flow that gets set to the value of the output parameter.

8. Open the Transitions page to set the next state and, if needed, add action
transitions such as cancel or error.

Chapter 26
Flow Mapping

26-32

9. If you have configured action transitions in the parent flow, configure end flow states in
the child flow to trigger those actions. You do those on the Component page of each end
flow's property inspector.

10. If you need to pass a parameter back to the parent flow, click Add and then enter the
name that matches the parameter name in the parent flow's invoke flow state. Then enter
a parameter output value and click Save.

Invoke Another Skill from a Flow
If you want to call another skill from a flow, you do so by using Invoke Skill and End Flow
components. Here's how it works:

• The skill that you are calling must be in the same digital assistant as the skill you are
calling from.

• The skill that you are calling must have a flow that's designated as public.

• The calling flow uses an Invoke Skill state to specify a version of a skill and a target flow
in that skill. It uses this state to pass values to and receive values from the called skill.

• The target flow's end flow state passes its output parameters back to the calling flow and
can also trigger an action that the calling flow executes after the target flow has ended.
If the target flow branches and has multiple end flow states, each can pass its own action
back to the calling flow, and the calling flow can use these actions to determine which
branch to follow.

(Action transitions enable you to branch the calling flow based on the results of the target
flow. For example, if you have a target flow that is supposed to look up an account, it
could pass an action for success and an action for failure.)

• After the target flow has ended, the calling flow from the calling skill resumes.

For example, an Update Account flow in a finance skill would be the calling flow that can only
complete the user's update request by calling a target flow, Get Account. The result, or output
parameter that the calling flow expects after the target flow executes, is the user account. In
this case, the account is the output parameter sent to the invoke skill state by the target flow's
end flow state.

To link flows:

1. Create the input and output parameters for the target flow.

2. In the target flow, select the Configuration tab, expand the General section, and turn the
Public switch on.

3. In the calling flow, click the Add State icon at the point where you want to call the target
flow and select the Flow Control > Invoke Skill component. Then click Insert.

4. Open the property inspector for the invoke skill state that you just added.

Chapter 26
Flow Mapping

26-33

5. On the General page, enter a name and a description.

6. On the Component page, select skill from the Skill dropdown.

7. Select a version from the Skill Version dropdown.

Note:

This value only applies if the referenced skill is a standalone skill. If the
target skill is in the same digital assistant as the calling skill, at runtime
the version of that skill that is in the digital assistant is used and the
value of this field is ignored.

8. From the Flow Name dropdown, select one of the public flows that belong to the
selected skill.

9. If the calling flow needs to pass parameters to the target flow, click Add, then
select the input parameter belonging to the target flow and enter a default value.
Then click Save. Repeat this step for each input parameter.

10. If the calling flow expects a result from the target flow, click Add to select the
output parameter belonging to the target flow and then name the variable of the
calling flow that gets set to the value of the output parameter.

Note:

If the target flow isn't yet available, you can specify that the flow use
mock data for the output parameters so that you can continue
developing and testing the flow while waiting for the target flow to
become available. To do so, set the Use Mock property to True and
enter output parameters and values in the Mock Output Parameters
field. Enter each parameter on a separate line in the form

ParamName: ParamValue

11. Open the Transitions page to set the next state and, if needed, add action
transitions such as cancel or error.

12. If you have configured action transitions in the calling flow, configure end flow
states in the target flow to trigger those actions. You do those on the Component
page of each end flow's property inspector.

13. If you need to pass a parameter back to the calling flow, click Add and then enter
the name that matches the parameter name in the calling flow's invoke skill state.
Then enter a parameter output value and click Save.

Events and Transitions
In dialog flows developed with the Visual Flow Designer, events are used to route a
conversation to flows or states within flows.

At the skill level, events are broken down into the following types:

Chapter 26
Events and Transitions

26-34

• Intent. These events correspond to the skill's intents. Such an event occurs when user
input resolves to a given intent.

• Built-In. These are standard events for typical use cases like unresolved intent, answer
intent, and dialog error.

• End Flow Action. These are events that you define yourself and which can be triggered
by actions in end flow states (both states that use the End Flow component and states
which implicitly end the flow).

At the flow level, events are broken down into the following types:

• System Transitions. These are built-in events for typical use cases like unresolved user
input, required authorization, and errors.

• Custom Transitions. These are events that you can specify yourself and which are
typically assigned to component transitions actions. When the flow reaches such a
transition, the corresponding event is fired, and the state mapped to the event is invoked.

Built-In Events for the Main Flow

Event When Fired How to Use

Start Skill When a skill starts for the first time. Map to a custom flow to do such
things as initalize backend systems
or display a Help menu.

Dialog Error When an error is thrown by a
component during a conversation.
This event can also be fired when
there is an error in another flow and
that flow's Dialog Error system
transition isn't mapped.

Map to a custom error-handling flow.
If this event is fired but there is no
mapping, the current flow is
terminated and the skill outputs the
default error message ("Oops! I’m
encountering a spot of
trouble)".

Answer Intent When an answer intent is resolved. Map to a custom flow dedicated to
answer intents.

Unresolved Intent When the user intent is unresolved. Map to a custom help flow.

Digital Assistant Help When the user expresses a request
for help. This only applies when the
user has accessed the skill through a
digital assistant and the skill is in the
digital assistant's current context.

Map to a custom help flow.

Digital Assistant Welcome When the user initiates contact with
the digital assistant. This only applies
when the user has used explicit
invocation to access the skill through
a digital assistant but has not
expressed an intent.

Map to a custom welcome or help
flow.

Note:

By specifying flows for the Digital Assistant Help and Digital Assistant Welcome
events, you are not completely overwriting the behavior for the digital assistant's
help and unresolvedIntent system intents. If you want to universally change that
behavior, you do so in the digital assistant's settings. See Specify States for a
Digital Assistant's System Intents.

Chapter 26
Events and Transitions

26-35

System Transitions for Flows
For each flow, you can take advantage of system transitions to define where you
handle events such as dialog errors and out of order messages.

To define the state that is used to handle a given event:

1. On the flow's Configuration tab, scroll down to and expand the Events Mappings
section.
You'll see the System Transitions sub-section.

2. For the event that you want to map, select the state that you want to map it to.
This state would typically be an Invoke Flow component that points to the utility
flow for handling the event. See Invoke One Flow from Another Flow.

Here are the events that you can map as system transitions in a flow.

Event When Fired How to Use

Authorize User When a state is reached where its
Requires Authorization state
resolves to true.

Map to an Invoke Flow component
that calls an authorization flow.

Dialog Error An unexpected error occurs in the
conversation.

Map to an Invoke Flow component
that calls a flow for error handling.

If this event isn't mapped and an
error occurs in the flow, the error
handling flow that's mapped to the
Dialog Error built-in event for the
main flow gets invoked. When Dialog
Error is mapped neither for the flow
nor for the main flow, the skill outputs
the default error message (Oops!
I’m encountering a spot of
trouble) when an error occurs.

Out-of-Order Message The user selects an option from a
previous message in the
conversation instead of from the
current message.

Map to an Invoke Flow component
that calls a flow you have provided
for handling out-of-order messages.

Unexpected User Input The user provides textual input
instead of selecting one of the
options provided in the message.

Map to an Invoke Flow component
that calls a flow you have provided
for handling unexpected input.

Event Listening and Triggering
When you have nested flows (flows with sub-flows):

• The current flow both listens for and triggers built-in and end flow action events.

• The calling flow only listens for end flow action events that are triggered by the
current flow. Then, when the sub-flow that has triggered an end flow action event
has finished, the parent flow acts on the triggered event.
The primary example of this is when a sub-flow's Action property specifies an end
flow action event.

Chapter 26
Events and Transitions

26-36

Expressions for Variable Values
You can use FreeMarker expressions for values of variables in your dialog flows.

Handy Expressions
Here are some common expressions you can use in your flows.

Tip:

Autocompletion guides you through writing these (and other) Apache FreeMarker
expressions.

Operation Freemarker Expression Result Type

Get name of parent flow ${system.parentFlow} String

Get event payload $
{skill.system.event.value
.EVENT_NAME}

JSON object

Access NLP result $
{skill.system.nlpresult.v
alue}

JSON object

Access skill-scope variable ${skill.VAR_NAME}
Access flow-scope variable ${VAR_NAME}
Access flow input param ${INPUT_PARAM_NAME}
Access user-scope variable ${user.VAR_NAME}
Access profile-scope variable ${profile.VAR_NAME}
Get Answer Intent answer $

{skill.system.event.value
.intent.answer}
Note: You can also use $
{skill.system.event.value
.answerIntent.answer}.

Get intent name $
{skill.system.event.value
.intent.intentName}

String

Get error message $
{skill.system.event.value
.dialogError.errorMessage
}

String

Access Resource bundle entry $
{skill.system.rb.RB_ENTRY
_NAME}

Resource Bundle

Access the value of a custom
parameter

$
{skill.system.config.CUST
OM_PARAMETER_NAME}

String

Chapter 26
Expressions for Variable Values

26-37

For more on FreeMarker in your components, see Apache FreeMarker Template
Language Syntax.

Apache FreeMarker Template Language Syntax
You can use Apache FreeMarker Template Language (FTL) to access variable values,
show or hide response items, find key words in a user message, print a list of values,
or display arrays that are sorted by a specific data attribute. The basic syntax for these
value expressions is ${...}. You can incorporate FTL into the property definitions for
various dialog flow components.

Note:

You can also define the expressions using the if directive (<#if>...</#if>).

To do this... ...Do this

Read values from variables. Add the value property using dot notation:

${VAR_NAME.value}

For example:

${MyEmail.value}

Read values from variables defined by
complex entities.

Use dot notation to add an additional property:

${VAR_NAME.value.property}

For example:

${MyMoney.value.totalCurrency}

If you use an expression like ${MyMoney} in a System.Output
component, you will see all the properties of the referenced currency
JSON object.

Return the set of values that are defined
for a value list entity.

Use the built-in type and enumValues variable in the following syntax:

${VAR_NAME.type.enumValues}

Chapter 26
Expressions for Variable Values

26-38

HTTPS://FREEMARKER.APACHE.ORG/

To do this... ...Do this

Use built-ins for strings, arrays
(sequences), numbers, and dates. See
Apache FreeMarker Reference.

Follow the value property with a question mark (?) and the operation
name:

${VAR_NAME.value?ftl_function}

• string operations:

${VAR_NAME.value?lower_case}
• array operations:

${VAR_NAME.value?size?number}
• number operations:

${VAR_NAME.value?round}
• time and date operations:

${VAR_NAME.value.date?long?number_to_date?
string.short}

Concatenate FTL expressions. String the operations together using a question mark (?):

${VAR_NAME.value?ftl_function1?ftl_function2}

Referencing Entity Values in Multi-Language Skills
When you have multi-language skills, you should make sure the component that is resolving
your entities has Use Full Entity Matches set to true. This enables you to write the following
kinds of expressions:

• Expressions that reference the entity value in the language of the conversation.
You can use such expressions to do things such as display the entity values to users in
buttons, confirmation messages, etc.
For such expressions, you append value to get the value in the language of the
conversation. For example, if you have defined a context variable, pizza, and want to
reference the PizzaSize entity value in a prompt, you would use the following in the
expression: pizza.value.PizzaSize.value (instead of just pizza.value.PizzaSize).

• Expressions that reference the value of the entity in the primary language. The
primary language value serves as a kind of key for the corresponding values in all of the
entity's languages. You can reference this value for business logic purposes without
having to worry about which language the conversation is in.
For these expressions, you append primaryLanguageValue (e.g.
pizza.value.PizzaSize.primaryLanguageValue).

Chapter 26
Expressions for Variable Values

26-39

https://freemarker.apache.org/docs/ref_builtins.html

Other Variables Types
Besides flow variables and global variables, you can use user-scope, profile, and
system variables.

Profile-Scope Variables for User Context
You can access values for a user’s name, locale, and local time using profile-scope
variables, which access the profile settings from the chat client.

For example:

"Hello ${profile.firstName}, how can I help you today?"

Use these pre-defined variables to output context-specific for the skill user.

To do this... Use this...

Get the first name of the bot user. ${profile.firstName}
Get the last name of the bot user. ${profile.lastName}
Get the bot user’s locale. ${profile.locale}

Chapter 26
Other Variables Types

26-40

To do this... Use this...

Get the user’s time zone (offset in
milliseconds).

${profile.timezoneOffset}

These pre-defined variables are set automatically from values that the messaging platform
passes in. The values differ by messaging platform and some messaging platforms may not
provide them. For digital assistant as agent integrations, for example, the
profile.firstName, profile.lastName, and profile.email have values only if the user was
signed in to Oracle Service Cloud, or if a user filled out fields for the first name, last name,
and email address on the Oracle Service Cloud chat launch page before requesting a chat.
For the Oracle Web Client, these profile values must be set with the initUserProfile
property or the updateUser method.

Save User-Specific Values for Return Visits
You can create user-scope variables to persist across sessions.

In general, when a user conversation with a skill or digital assistant ends, the variable values
that were set from the user input are destroyed. However, you can also define user-scope
variables to retain user input from previous sessions to enhance new conversations. You
create user-scope variables directly in the components themselves.

To create a user-scope variable:

1. In the Variable field of the property inspector of the component where you want to create
it, select User Scope Variable from the dropdown.

2. In the Scoped Variable Name field that appears, enter the variable name.
Enter the name without the user. prefix. (Though you use that prefix when referencing a
user-scope variable, you don't use it when defining it.)

To reference a user-scope variable, you use an expression like ${user.VAR_NAME}.

For example in the Pizza Skill - Visual Flow Designer sample skill, the lastOrderNumber
user-scope variable is set after the user places the order in the service.reg.placeOrder
flow. This variable is referenced by the expression ${((user.lastOrderNumber)?
has_content)} in the first state of the flow that is called whenever the skill starts
(handler.startSkill) to determine if the user has made any previous orders.

Note:

The values of user-scope variables are channel specific. For example, if a user
access a skill on a web channel and then later access the skill via a Microsoft
Teams channel, the Teams channel will have its own instances of the user variables
and won't recognize the values from the previous conversation in the web channel.

Chapter 26
Other Variables Types

26-41

System Variables

Variable Type Description

system.nlpresult NLP Result Used to store the NLP result
for the user utterance. To get
the full NLP result, you can
use the expression $
{skill.system.nlpresult
.value}.

system.intent.utterance String When this variable has a
value, it will be used for intent
matching instead of the last
user message. To access this
variable, you can use the
expression $
{skill.system.intent.ut
terance}.

system.event Map When one of the built-in
events is mapped in the main
flow or a sub flow, this variable
holds event properties you can
use to handle the event. For
example, to get an event
payload, you'd use an
expression in the form $
{skill.system.event.val
ue.EVENT_NAME}.

system.rb resource bundle Used to access language
resource bundle entries. To
access a resource bundle
entry, you can use an
expression in the form $
{skill.system.rb.RB_ENT
RY_NAME}.

Test the Dialog Flow
Once you have a valid dialog flow, you can test your skill bot as a whole. Be sure to
validate the syntax before you test the bot.

To test the dialog flow:

1. Click Skill Tester ().

2. Enter a test phrase or utterance and then click Send. Click to test an
attachment response rendered by a Common Response component.

3. Click Conversation to see the traversal through the states.

During testing, you can export the conversation log for offline analysis by:

a. Turning on Enable Insights in Settings > General.

b. Choosing Skill Conversation Log and a time period in the Export
Conversation Log dialog (accessed from the Export Conversation Log option

Chapter 26
Test the Dialog Flow

26-42

in the tile menu). When your skill is in a production environment, be sure to turn the
Skill Conversation Log option in the Settings page off to prevent the database from
running out of space.

Other Tasks
Here are some topics on various other tasks in the Visual Flow Designer, including user
authentication, auto-numbering, resource bundles, creating input forms, creating custom
parameters, and importing and exporting flows.

User Authorization
At certain points in a flow, you may wish to enforce user authorization.

You accomplish this by doing the following:

1. On the states where you want to enforce authorization, set the Requires Authorization
property to True. This property is on the General tab of the state's property inspector.
If a user that reaches such a state hasn't authorized yet, the Authorize using OAuth state
is invoked, and then the flow invokes the state that required authorization.

2. Create an authorization component and map it to the flow's Authorize User standard
transition event:

a. Select the flow and then select the flow's Flow tab.

b. Double-click the Events tile for the flow to expand it.

c. Mouse over the Authorize User tile, click the ellipsis (…) button that appears, and
select Add State.

d. From the Security category of the template picker, select a component, provide a
name for the state, and click Insert.
See Security Templates for details of each of the available templates.

e. In the component's property inspector, configure the component's properties,
including its transition actions.

Auto Numbering Response Items
You can use the auto-numbering feature to prefix buttons and list options with numbers in
your responses.

When users can’t use tap gestures, they can still trigger the button’s postback actions by
entering a number. This feature is particularly helpful for text channels.

You configure auto numbering at the skill level.

To configure auto numbering:

1. In the left navigation of the skill, select .

2. Select the Configuration tab.

3. Set the value of Enable Auto Numbering on Postback Actions in Task Flows.
If you want to turn on auto numbering for all channels, set the value to true.

Chapter 26
Other Tasks

26-43

If you want to turn auto numbering on only for certain channels, provide an
expression to determine which channels will get auto numbering. For example, to
turn on auto numbering only for Twilio channels, you would enter:

${(system.channelType=='twilio')?then('true','false')}

Limiting the Number of User Prompts
You can keep ensure that users don't get stuck on a step in a dialog flow by
configuring that component to limit the number of times it repeats a prompt to the user.

The maxPrompts property limits the number of times that Common Response
components can prompt the user when they can’t match the input value to any of the
values defined for the entity or input type that’s referenced by the variable property.
You can use this property to prevent your dialog from going in circles when users
repeatedly enter invalid values. You can set the maximum number of prompts using an
integer . The dialog moves onto the next state if the user enters a valid value before
reaching this limit. Otherwise, the dialog transitions to the state defined by the cancel
action.

Resource Bundles and the Visual Flow Designer
You can use resource bundles to store any user-visible strings that you add to your
dialog flow.

You reference resource bundle message keys through the variable rb. A reference to
a simple resource bundle message takes either of the following two forms:

• ${skill.system.rb.RB_ENTRY_NAME}
• ${rb.RB_ENTRY_NAME}
For more on resource bundles, including information on creating the resource bundle
entries themselves and using complex message formats, see Resource Bundles for
Skills.

Chapter 26
Other Tasks

26-44

Tip:

Autocompletion helps you select the resource bundles referenced in Apache
FreeMarker expressions.

Modify a Resource Bundle Entry
1. In the skill, click to open the Resources Bundle.

2. Select the Configuration tab.

3. Using the Filter field, navigate to the entry that you want to update.

4. Mouse over the value for the key and select the icon that appears.

5. In the Text field, enter the updated message.

6. Click Update Entry.

User Input Form Messages
In dialog flows, you can also create create input forms.

Sometimes an input form is the quickest and least error-prone way of collecting user
information. Rather than a subjecting users to a volley of questions, your skill can guide users
to providing valid input by sending them forms that contain input elements like text input
fields, time and date pickers and toggle switches.

Chapter 26
Other Tasks

26-45

Wherever the conversation flow calls for a message containing an input form, you can
insert one by adding an inputForm state:

1. From the Add State dialog, choose User Messaging > Create Tables and
Forms. Then choose Create Input Form.

2. To create the form's layout, actions and editable and read only fields, first click
Edit Response Items and then edit the ResponseItems metadata template. In this
case, the template is for the editForm response item.

responseItems:
 - type: editForm
 title: Input Form
 formColumns: 2
 items:
 - autoSubmit: false
 displayType: textInput
 defaultValue: "${(submittedFields.value.myText)!''}"
 multiLine: false
 minLength: 5
 name: myText
 label: Text
 placeholder: Enter free text
 clientErrorMessage: Field is required and must be between 5
and 50 characters
 required: true
 maxLength: 50
 - validationRegularExpression: "^[a-zA-Z\\s]*$"
 autoSubmit: false
 displayType: textInput
 defaultValue: "${(submittedFields.value.myTextArea)!''}"
 multiLine: true
 name: myTextArea
 label: Text Area
 placeholder: Enter free text

Chapter 26
Other Tasks

26-46

 clientErrorMessage: Numbers are not allowed
 - autoSubmit: false
 displayType: datePicker
 minDate: "1970-01-01"
 defaultValue: "${(submittedFields.value.myDate)!''}"
 name: myDate
 maxDate: "${.now?iso_utc[0..9]}"
 label: Date
 placeholder: Pick a date in the past
 clientErrorMessage: Date is required and must be in the past.
 required: true
 - autoSubmit: false
 maxTime: "12:00"
 displayType: timePicker
 minTime: "00:00"
 defaultValue: "${(submittedFields.value.myTime)!''}"
 name: myTime
 label: Time
 placeholder: Pick a time in the morning
 clientErrorMessage: Time must be in the morning.
 required: false
 - autoSubmit: false
 displayType: numberInput
 minValue: 5
 maxValue: 500
 defaultValue: "${(submittedFields.value.myNumber)!''}"
 name: myNumber
 label: Number
 placeholder: Enter a number between 5 and 500
 clientErrorMessage: Number is required and must be between 5 and
500.
 required: true
 - autoSubmit: false
 displayType: singleSelect
 defaultValue: "${(submittedFields.value.mySingleSelect)!''}"
 name: mySingleSelect
 options:
 - label: Label 1
 value: Value 1
 - label: Label 2
 value: Value 2
 - label: Label 3
 value: Value 3
 layoutStyle: list
 label: Single Select
 clientErrorMessage: Field is required
 required: true
 - autoSubmit: false
 displayType: multiSelect
 defaultValue: "${(submittedFields.value.myMultiSelect?
join(','))!''}"
 name: myMultiSelect
 options:
 - label: Label 1
 value: Value 1

Chapter 26
Other Tasks

26-47

 - label: Label 2
 value: Value 2
 - label: Label 3
 value: Value 3
 layoutStyle: list
 label: Multi Select
 clientErrorMessage: Field is required
 required: true
 - displayType: toggle
 defaultValue: "${(submittedFields.value.myToggle)!'true'}"
 name: myToggle
 labelOn: "Yes"
 label: Toggle
 valueOff: "false"
 labelOff: "No"
 valueOn: "true"
 actions:
 - label: Submit
 type: submitForm
 channelCustomProperties:
 - channel: "${system.channelType}"
 properties:
 replaceMessage: "${system.message.messagePayload.type ==
'formSubmission'}"

The Edit Forms Metadata Template
Here are some things to note about template for the editForm response type:

• The properties provided for the items, actions and channelCustomProperties are
all specific to the editFormMessagePayload objects. Among other things, this payload
contains descriptions of the overall layout of the input form message that's
received by the user, the form fields (both read only and editable), and channel-
specific customizations for platform-specific UI rendering and form submission
behavior.

• For each item and within the actions node, the template references a flow-level
variable called submittedFields that holds the user input. This is a map variable
that's generated when you add an inputForm state to the dialog flow.

Note:

Depending on your needs, you can reference individual variables or a
composite bag variable in place of the submittedFields variable.

• items:

– While the template provides properties for the editable fields (single and
multiselect fields, date and time pickers, the number input field and the toggle
switch), you can also add items for the text and link read only elements.

– The editable fields share a set of common properties, including the
autoSubmit property. This is an optional property, but enabling it (autoSubmit:
true) allows the form to submit a field value before the user has actually

Chapter 26
Other Tasks

26-48

submitted the entire form. You can use this property for interdependent fields within
your form. For example, you can set this property when the display of one field
depends on a value entered in another field, or when a value set for one field restricts
the input allowed in another field.

Note:

Microsoft Teams does not support autoSubmit.

– The optional clientErrorMessage property sets the field-specific error message that
displays when there is limited client-side validation or when client-side validation fails.
For example, for messages sent through the Slack channel, this property is only
supported when the form is within the conversation page. It does not display when
the form message is in a modal dialog.

Note:

This property is mainly intended for Microsoft Teams adaptive cards, which
limits you to use a single message for all different field-level errors.

• actions - Within this node, the template describes the form submission actions that
submit the user input through the FormSubmissionMessagePayload.

• channelCustomProperties - To support a multi-mode experience, where the user might
use combinations of text and voice to fill in the form fields before submitting the form, the
template includes the replaceMessage property configuration that instructs the client
channel to update the current input form message instead of adding a new input form to
the conversation.

Chapter 26
Other Tasks

26-49

Input Form Fields

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Single-select List Allows users to search
for, and select, an item
from a predefined list.
You can style this
component as a list of
options which users
can query for, and
select.

 - displayType:
singleSelect

defaultValue: "$
{(submittedField
s.value.Type)!''
}"
 name:
Type
 options:
 -
iteratorVariable
: option

iteratorExpressi
on: "$
{expenseType.typ
e.enumValues?
split(',')}"

label: "$
{option}"

value: "$
{option}"

layoutStyle:
list
 label:
Expense Type

placeholder:
Select expense
type

clientErrorMessa
ge: Expense
type is required

required: true

Yes

Chapter 26
Other Tasks

26-50

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Multiselect List A list that supports
multiple selections.
You can style this
component as a pick
list that users can filter
and select from, or as
a set of checkboxes.

 - displayType:
multiSelect

defaultValue: "$
{(submittedField
s.value.Attendee
s?
join(','))!''}"
 name:
Attendees
 options:
 -
iteratorVariable
: option

iteratorExpressi
on: "$
{attendee.type.e
numValues?
split(',')}"

label: "$
{option}"

value: "$
{option}"

layoutStyle:
list
 label:
Attendees

placeholder:
Select attendees

Yes

Chapter 26
Other Tasks

26-51

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Time Picker Allows the user to
enter a time value
within a specified
range. The
component's maxTime
and minTime
properties validate the
user input.

 -
displayType:
timePicker

defaultValue: "$
{(submittedField
s.value.Time.val
ue?time.xs?
string['hh:mm
a'])!''}"

maxTime: "23:00"

minTime: "13:00"
 name:
Time
 label:
Expense Time

placeholder:
What time was
the expense?

clientErrorMessa
ge: This time
is outside the
limits.

required: true

Yes

Chapter 26
Other Tasks

26-52

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Date Picker A field with a drop
down calender that
allows users to select
a day, month, and
year. The component's
maxDate and
minDate properties
validate the user input.

 - displayType:
datePicker

defaultValue: "$
{(submittedField
s.value.Date)!''
}"
 name:
Date

maxDate: "$
{.now?
iso_utc[0..9]}"
 label:
Expense Date

placeholder:
Pick a date in
the past

clientErrorMessa
ge: Expense
date is
required and
must be in the
past.

required: true

Yes

Chapter 26
Other Tasks

26-53

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Number Input Allows the user to
enter a number value.
The minValue and
maxValue properties
validate the user input.

 -
displayType:
numberInput

minValue: 5

serverErrorMessa
ge: "$
{(amountError.va
lue)!''}"

maxValue: 500

defaultValue: "$
{(submittedField
s.value.Amount)!
''}"
 name:
Amount
 label:
Amount

placeholder:
Enter expense
amount

clientErrorMessa
ge: Amount is
required and
must be between
5 and 500.

required: true

Yes

Chapter 26
Other Tasks

26-54

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Text Input Allows the user to
enter a text value.

 -
displayType:
textInput

multiLine: true

defaultValue: "$
{(submittedField
s.value.Descript
ion)!''}"

minLength: 10
 name:
Description
 label:
Description

placeholder:
What is the
expense
justification?

clientErrorMessa
ge:
"Description
must be 10
characters
minimum, 50
characters
maximum."

maxLength: 50

required: true
 -
displayType:
textInput

multiLine: true

defaultValue: "$
{(submittedField
s.value.Notes)!'
'}"

minLength: 10
 name:
Notes

Yes

Chapter 26
Other Tasks

26-55

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

inputStyle:
email
 label:
Notes

placeholder:
Expense notes
(optional)

maxLength: 50

required: false

Toggle Presents a toggle
switch (or a radio
button grouping,
depending on the
channel) for two
options.

 -
displayType:
toggle

defaultValue:
"false"
 name:
TipIncluded

labelOn: Tip
 label:
Tip Included?

valueOff:
"false"

labelOff: No Tip

valueOn: "true"

Yes

Text Read only inline text

 -
displayType:
text

alignment: left
 value:
Read our
expenses policy.

No – Read only

Chapter 26
Other Tasks

26-56

Element Example Sample Code: Map
Variable
(submittedFields)

Editable?

Link An inline link

 -
displayType:
link

alignment: left
 value:
"http:www.oracle
.com"

No – Read only

Custom Parameters
In your skill, you can define customer parameters to be referenced from dialog flows.

After you have published the skill, you can change the values of these parameters (though
you can not change other parameter details or add or delete parameters).

Custom parameters are exposed as skill.system.config variables for use in the dialog flow
definition. For example, a custom parameter named faHostName would be accessed with the
following expression:

${skill.system.config.faHostName}

If you want to be able to set the value for a skill's parameter in the digital assistant that you
add the skill to, preface the parameter name with da. (including the dot (.)). For example, you
could use da.faHostName as the name for a parameter for a host name.

Using this approach, you can define parameters with the same names in multiple skills, add
all of those skills to a digital assistant, and then set the values for the shared parameters in
one place in the digital assistant.

To access a parameter from a custom component, define an input parameter in the custom
component and then pass the value of the skill parameter to it.

Note:

You can't set the values of custom parameters (or any other variables prefixed with
skill.system.config directly in the dialog flow or in custom components.

Create a Custom Parameter
1. Click to open the side menu, select Development > Skills, and select your skill.

2. In the skill’s left navigation, click .

3. Click the Configuration tab.

4. Click New Parameter and fill in the fields of the dialog that appears.

Chapter 26
Other Tasks

26-57

Secure Parameters
If your skill relies on a parameter, the value of which you don't want to be visible to
others who are developing that skill or versions or clones that skill, you can designate
that parameter as a secure parameter. Anybody who then navigates to the Settings
page in the skill can see the name of the parameter, but not the value.

If you export the skill, the value of the parameter is not included in the export.

To create a secure parameter:

• In the Create Parameter dialog, select Secure from the Type dropdown.

Modify the Value for a Custom Parameter in a Published Skill
Once you have published a skill, you can't add or delete custom parameters, but you
can change their values. To do so:

1. Click to open the side menu, select Development > Skills, and select your
skill.

2. In the skill’s left navigation, click .

3. Select the Configuration tab.

4. Select the parameter, click Edit, and enter the updated value.

Note:

If you have added a skill with a parameter that is prefaced with da. to a
digital assistant and you want to update the value that is used by the digital
assistant, you need to do so in the digital assistant. Otherwise, the digital
assistant will keep using the value that the parameter had at the time when it
was added to the digital assistant. Changing the value in the skill will only
affect the skill if it is used standalone or if it is later added to a different digital
assistant.

Set the Value for a Parameter in Digital Assistant
After a skill has been published and has been added to a digital assistant, you can set
the value in the digital assistant for any of the skill's parameters that are prefixed with
da. (including the period (.)).

If a "da." parameter with the same name is defined in multiple skills in the digital
assistant, the value of that parameter is shared between the skills in the digital
assistant.

To set the value for a parameter in a digital assistant:

1. Click to open the side menu, select Development > Digital Assistants, and
select your digital assistant.

2. In the digital assistant's left navigation, click .

3. Select one of the skills that uses the parameter.

Chapter 26
Other Tasks

26-58

4. Scroll down to the Parameters section of the page and enter a value for the parameter.
The updated parameter value will be applied for all skills that use the parameter.

Import and Export Flows
You can import and export Visual Mode dialog flows using the Import Flow and Export
Selected Flow options from the More menu.

Export Flows
You can export a flow by first selecting it, and then clicking More > Export Selected Flow.
The exported dialog flow is a YAML representation of the dialog. This document is named for
the skill and flow and appended with -Flow (PizzaSkill-pizza.ans.proc.veggiePizza-
Flow.yaml, for example). Its YAML syntax conforms to Visual Dialog Mode, not the OBotML
written for skills created in the YAML mode. When you export a flow, you export this
document only. It will not be accompanied by any of the following dependencies, even if they
are referenced.

• The security service referenced by security component states.

• Services for various service integration states

• Translation services

• Intents, entities, resource bundles

• Referenced task flows

When imported, the flow will run properly if the skill already has the referenced artifacts.
Otherwise, the import will throw validation errors.

Note:

You can export any flow except for the main flow.

An example of the YAML representation of the Visual Dialog Mode is as follows:

name: "WineryChats"
trackingId: "D6BFE43B-D774-412A-91F6-4582D04B3375"
type: "task"
version: "2.0"

Chapter 26
Other Tasks

26-59

interface:
 returnActions:
 - "done"
variables:
- name: "redWineCard"
 type: "map"
 system: false
defaultTransitions:
 actions:
 system.outOfOrderMessage: "outOfOrderMessageHandler"
 system.startTaskFlow: "buildRedWineMenu"
states:
 buildRedWineMenu:
 component: "System.SetVariable"
 properties:
 variable: "redWineCard"
 value:
 Cabernet Sauvignon:
 image: "https://cdn.pixabay.com/photo/2016/05/24/16/16/
wine-1412603__340.jpg"
 price: 35
 description: "Flavor of dark fruits like black cherry and
blackberry along with a warm spice, vanilla and black pepper"
 title: "Cabernet Sauvignon"
...

Import Flows
You can import a flow by clicking More > Import flow and then browsing to, and
selecting, a YAML document formatted for the Visual Dialog Mode. These flows can be
the YAML documents generated when you export a dialog flow (the ones with names
formatted as <skill name> - <flow name> -Flow.yaml), or they can be the YAML
files located in the dialogs folder of an exported ZIP file for a skill built using Visual
Dialog Mode. You can't import an OBotML document directly. You must migrate the
skill first.

There are some exceptions to the flows that can import.

• You can't import a main flow (the System.MainFlow.yaml file located in the
dialogs folder of an exported ZIP file for a Visual Dialog Mode skill.

• You can't import a flow that already exists in the skill or in your instance. If the flow
already exists, you can upload the YAML document by changing the value for the
name node.

name: "WineryChats"
trackingId: "D6BFE43B-D774-412A-91F6-4582D04B3375"
type: "task"
...

However, you may instead want to duplicate the flow (Menu > Duplicate Selected
Flow) rather than edit the YAML.

You can successfully import a flow even if it references artifacts like entities, intents,
resources bundles, or backend services that are not present in the skill. However,

Chapter 26
Other Tasks

26-60

these imports will result in validation errors . To get a list of the validation errors, click View
validation findings in the error messages that display after the import.

Insights for Flows Created in the Visual Flow Designer
A conversation is included in the Total Conversations tally in Insights in the following cases:

• The conversation ends at an End Flow state.

• The conversation ends at state where End flow (implicit) is selected as the transition.

Group Chats
On channels for Microsoft Teams and Slack, it is possible to make skills and digital assistants
available for group chats, where multiple human participants can collaborate with a digital
assistant in the same conversation.

Group chats are good for situations where you need a skill to perform actions or provide
information for a group of human participants. In a group chat:

• All aspects of the conversation are visible to all participants.

• The skill only responds to messages in which the user includes a mention of the
Microsoft bot or Slack app that represents the skill. This means that the human
participants in a group chat can exchange messages among themselves without
involving the skill. For example, they may want to have a discussion to agree on what to
request of the skill before they make that request.

• By default, the skill will not mediate between users. It will respond to input in the order
received as if it was all coming from the same person. For example, if one user
contradicts another user, the bot will not try to reconcile the two, unless some logic has
been programmed in a custom component to do so (but it would probably need to have
logged in users that the bot could explicitly track).

• Any query made to a skill within a group chat is based on the identity (and, in the case of
skills that require authentication, the corresponding credentials) of the user in the group
chat who made the query.

You can also set up the skill to require all participants in a group chat to be authenticated.

For the group chat to work, you need to set up a Microsoft Teams or Slack channel.

If you are using a Microsoft Teams channel, make sure that you have selected the
appropriate bot scopes to enable group chat. You can select Team and/or Group Chat (the
latter of which is a user-defined group).

If you are using Slack as the channel, make sure that the Slack app has the following event
subscriptions:

• message.im

Chapter 26
Insights for Flows Created in the Visual Flow Designer

26-61

• app_mention
• message.mpim
• message.channels
Once a channel is set up for the skill or digital assistant to be used in the group chat,
users can add the corresponding Microsoft bot or Slack app to a group. In the
conversation, they can invoke the bot or app with a user mention.

User Authorization in Group Chats
In skills that you target for group chats, you may wish to require authorization for users
to send messages. Since multiple users may access the skill in a session, you need to
configure the skill to properly handle authorization for each user, not just the user who
first encounters the authorization state. You do this by using:

• The Requires Authorization property on states where you want to enforce
authorization. This ensures that a user can't enter a message in the chat when it is
at such a state until that user is authorized.

• The Authorize User event to direct unauthorized users to the appropriate
authorization state when they try to enter a message in the chat at a secured
state.

• The skill.system.event.value.authorizeUser.requestedState variable to
identify the state at which an unauthorized user enter a message in the chat (and,
therefore, the state where they should be redirected after successful
authorization).

• The system.message.channelConversation.groupConversation Boolean
property, which you can refer to when you need to determine whether the
conversation is a group chat.

Enforce User Authorization for Group Chats
Here are the general steps for enforcing authorization for each user in a group chat:

1. Assuming that you will want to enforce authentication for the majority of the skill's
states, configure the skill as a whole to require authorization by default. To do so:

a. Click to open the side menu, select Development > Skills, and select your
skill.

b. In the skill’s left navigation, click .

c. Click the Configuration tab.

d. Set the Requires Authorization property to true.

Doing this sets the default value for the Requires Authorization property for all of
the states in the dialog flow. This value can be overridden on individual states.

2. For any states that do not require authorization, set the Requires Authorization
property to false. For example:

Chapter 26
Group Chats

26-62

Note:

Alternatively, you can set the skill's Requires Authorization property to false
and then set the Requires Authorization property to individual states to true.

3. Add an OAuth Account Link or OAuth 2.0 Account Link component in the dialog flow for
user authentication.
Use user-scoped variables to store the access token and authenticated user ID.
Otherwise, the authorization info each user who joins the chat would override the
authorization info the preceding user who joined the chat.

For the pass transition, use the
skill.system.event.value.authorizeUser.requestedState system variable to return
the user to the state where they tried to enter the conversation.

4. Add the states for authorization failure. For example, you might have separate states for
the following cases:

• Where the failed authorization happens in a group chat. In this case, the user might
not be able to authenticate, but the conversation can continue with the other
participants.

• Where the failed authorization happens in an individual chat, in which case the
conversation can simply end.

Note:

For this case, you can use the ephemeral custom channel property to
display the message only to the user who is triggering that response.

responseItems:
 - type: "text"
 text: "Sorry ${profile.firstName}, you are not authorized
to use this skill"
 channelCustomProperties:
 - channel: "slack"
 properties:
 ephemeral: true

5. In the Event Mappings section of the flow's configuration, map the Authorize User event
to the user authentication state.
This event is triggered when a not-yet-authorized user tries to join the conversation and
reaches a state that requires authorization.

Enable Messages Without User Mention in Slack Group Chats
It is possible to configure Slack channels to allow messages to be sent to the Slack app
without user mentions of the Slack app. This behavior could be particularly useful for Slack
channels where there are many users and they don't all know that they would would need a
user mention for the Slack app to respond. A user support channel is one such example.

Chapter 26
Group Chats

26-63

To enable messages without user mention to be passed to the digital assistant in Slack
group chats:

• When creating the channel or later modifying the channel's configuration, set the
Allow Messages Without App Mention in Group Chat switch to ON.

Enable Users to Stop Messages from Being Sent to the Slack App
In Slack channels where you have enabled messages without a user mention of the
Slack App to be sent to the digital assistant, there may be cases where the user wants
to stop those messages from being sent to the digital assistant. In this case, you can
initiate "ambient mode" to stop the messages from being sent to the digital assistant
through the Slack app. To do so, you specify a system.startAmbientMode postback
action in the dialog flow definition.

The postback for initiating ambient mode might looking something like the following:

responseItems:
 - type: "text"
 text: "Do you want to stop chatting with the skill?"
 name: "stopMessages"
 actions:
 - label: "Stop chatting with the skill"
 type: "postback"
 payload:
 action: "system.startAmbientMode"
 name: "stop"

Once the user selects this option, the user's following messages will not be sent to the
digital assistant until the user once again enters a user mention of the Slack app in a
message.

Similarly, you could add a system.stopAmbientMode postback action in the dialog flow
definition to end ambient mode.

What Users Need to Know About Group Chats
When you create a skill that is intended to work in a group chat, you should make sure
that users of the skill are aware of the following:

• To involve the skill (or digital assistant) in the group chat, you address the
corresponding Microsoft Teams bot or Slack app with a user mention (@bot_name).

Note:

For Slack channels, you also have the option to send messages to the
Slack app without a user mention. See Enable Messages Without User
Mention in Slack Group Chats.

• For every message that you enter that you expect a response from the bot, you
need to include the user mention of the bot.

• If your message is intended only for the other human participants, don't include a
user mention for the bot. The bot will ignore such messages.

Chapter 26
Group Chats

26-64

• In Slack group chats, the chats need to be held in the thread where the bot was first
introduced in the conversation. If someone responds outside the thread of the
conversation, it creates a new conversation that is independent of the previous one.

• When a participant in the group chat makes a request of the bot, the bot is aware of
which user made the request. Therefore, where appropriate, the response to the request
is based on the requester's identity and credentials. If a different participant then makes a
request, the response to that request is based on that second participant's identity and
credentials.

• All users that have successfully joined a group chat can see all of the bot's responses. It
is the responsibility of the participants in the group chat to not elicit information from the
bot that other participants aren't supposed to see.

Component Templates
Here are descriptions of the templates that are provided for the various dialog flow
components.

Send Message
This is a very simple component that is designed to display one or more messages to the
user. It does not wait for or respond to user input.

The Send Message component has the following property:

Property Description

Messages Messages that are displayed to the user when the
component is called.

Ask Question
This component is designed to ask for user input and then store that input so that it can be
used or processed by other components.

The Ask Question component has the following properties:

Name Description

Question Text that is displayed to the user.

Variable The variable that holds the user's answer to the
question.

This component can return the following actions:

Action Description

cancel The user has reached the maximum number of attempts
to provide a valid value.

system.textReceived The user has entered text (as opposed to, for example,
selecting an action button).

Chapter 26
Component Templates

26-65

Resolve Composite Bag
This component is a simplified version of the Resolve Entities component that you can
use to resolve a composite bag entity.

To use this component, you need a composite bag entity and a skill variable for that
composite bag.

The Resolve Composite Bag component has the following property:

Name Description

Composite Bag Entity Variable Text that is displayed to the user.

This component can return the following actions:

Action Description

cancel The user has reached the maximum number of attempts
to provide a valid value.

disambiguate The user input needs to be clarified to determine which
entity value it matches, if any.

match The user input matches a valid entity value.

User Messaging Templates
The templates in the User Messaging category are designed for displaying messages
and prompts and accepting user input.

With the exception of the Resolve Entity and User Feedback templates, all of these
templates are based on the Common Response component and are tailored to
specific purposes.

Common Response Component Templates
The vast majority of the templates in the User Messaging category are based on the
Common Response component, which enables you to use component properties and
metadata to build a specialized user interface that can include text, action buttons,
images, and cards.

In many of the cases, such as the templates in the Display Multimedia Messages
sub-category, the main differences are in the Metadata property for the Common
Response component.

In other cases, such as in the Display Tables and Forms sub-category, the template
consists of a Common Response component preceded by a Set Variable component.

In the Channel-Specific Features sub-category, there are examples of using
extensions available for Slack and Microsoft Teams channels.

Properties for Common Response Component Templates
Except for the Resolve Entities and User Feedback components, the templates in the
User Messaging category are based on the Common Response component. As such,
they each use the properties in the following table (or a subset of them).

Chapter 26
Component Templates

26-66

Name Description

Metadata The chat response created by this component is
driven by the message-specific ResponseItems
metadata. See The Metadata Property in Common
Response Components.

Process User Message Set this property to True to direct the Dialog
Engine to return to the state after the user enters
text or taps a button. Set this property to False if
no user input is required (or expected).

Set this property to True when setting a location.

Keep Turn A boolean value for relinquishing (False) or
retaining (True) the skill’s control of the dialog
flow. Set to True when you want to output an
unbroken sequence of skill messages wherein no
interjections from the user are accepted.

This property only applies when you set the
Process User Message property to False.

Variable This variable holds the name of the context or user
variable that gets populated when a user responds
by entering free text instead of tapping a button.
This property is ignored when a user taps a
button, because the button’s payload determines
which variables values get set. If the variable
property has already been set when the Dialog
Engine enters this state, then the state is skipped.

For composite bag entities, reference the
composite bag entity variable. Users get prompted
for the individual entity values in the bag. When all
the entity values are set, the component
transitions to the next state.

Maximum Number of Prompts Before the component can populate the variable
value that you’ve specified for the Variable
property from the text entered by the user, it
validates the value against the variable type. This
can be entity-type validation, or in the case of a
primitive type, it’s a value that can be coerced to
the primitive type.

When the component can’t validate the value, the
Dialog Engine sends the message text and
options again. (You can modify this message to
reflect the validation failure.) To avoid an endless
loop resulting from the user’s continued inability to
enter a valid value, use this property to set a limit
on the number of attempts given to the user. When
the user exceeds this allotment, the component
transitions to the cancel action. See Limiting the
Number of User Prompts

As described in Create a Composite Bag Entity,
individual entities in a composite bag entity can
override this setting when the Maximum User
Input Attempts option is set.

Multi-Value Indicates whether an entity variable can store an
array of matching values or just a single matching
value.

Chapter 26
Component Templates

26-67

Name Description

Cancel Policy Determines the timing of the cancel transition:
• Immediate—Immediately after the value set

for the bag item’s Maximum User Input
Attempts has been met. If this value has not
been set, then the component fires this
transition when the component-wide
Maximum Number of Prompts value has
been met.

This is the default value.
• Last Entity—When the last entity in the bag

has been matched with value.
This property is ignored if you've registered an
entity event handler with an item- or event-level
maxPromptsReached handler.

Use Full Entity Matches When set to True, custom entity values are stored
as JSON objects (similar to built-in entity values).
This enables you to create expressions to access
properties such as value,
primaryLanguageValue, and originalString,
which are particularly important for skills that are
currently or eventually might become multi-lingual.

Transitions for Common Response Components
Common Response components use the transitions listed in the following table.
Message Handling for User Message Components describes how these transitions get
triggered.

Transition Description

cancel Triggered when a user exceeds the allotted
attempts set by the maxAttempts property, or
redirect the flow .

textReceived Triggered when a user sends text or emojis
instead of tapping an action button or link.

system.nonSequitur.onResume Use this transition action to provide alternate
navigation for a state when the conversation
returns to that state after having handled a non
sequitur. This can be used to refresh the
component state, bypass the state, or to re-
query information displayed by the state. In
particular, this transition is useful for cases
when the state depends on fresh data (in other
words, it needs to be re-queried whenever a
user returns to it).

system.outOfOrderMessage Set this to circumvent unexpected user
behavior. Specifically, when a user doesn’t tap
an action item in the current message, but
instead taps an action belonging to an older
message in the chat session.

Chapter 26
Component Templates

26-68

Composite Bag Transitions
Common Response components trigger the match and cancel actions based the values
matched from the user input and on your configuration of the cancelPolicy property.

Action Description Required?

match The component triggers this
action to navigate to the
specified state when at least one
entity in the bag has matched the
user input.

No

cancel The component triggers this
action to navigate to the
specified state based on the
setting for the cancelPolicy
property.

No

Resolve Entity

Property Description

Variable Refers to the composite bag entity context variable
that’s populated by this component. If all child entities
of the composite entity variable already have a value,
then the dialog flow transitions to the next state
without sending the user a message.

Maximum Number of Prompts Specifies the number of attempts allotted to the user
to enter a valid value that matches the child entity
type. If the maximum number of attempts is
exceeded for the first child entity, this property resets
to 0 and the bot outputs the prompt for the next child
entity. As described in Create a Composite Bag
Entity, individual entities in the composite bag can
override this setting when the Maximum User Input
Attempts option is set.

Multi-Value Indicates whether an entity variable can store an
array of matching values or just a single matching
value.

Use Full Entity Matches When set to True, custom entity values are stored as
JSON objects (similar to built-in entity values). This
enables you to create expressions to access
properties such as value,
primaryLanguageValue, and originalString,
which are particularly important for skills that are
currently or eventually might become multi-lingual.

Prompt The text used to prompt the user for built-in entities.

Disambiguation Prompt The text used to prompt the user for disambiguation
when the prior user input matched multiple values of
the built-in entity. This property is ignored if the Multi-
Value property resolves to true.

Chapter 26
Component Templates

26-69

Property Description

Header Text A message that displays before the component
prompts the user for the next item in the bag. You
can use this header to provide feedback on the
previous entities in the bag that have been matched
(or updated). For example:

<#list
system.entityToResolve.value.updatedEnt
ities>I have updated <#items as ent>$
{ent.description}<#sep> and </#items>.
</#list><#list
system.entityToResolve.value.outOfOrder
Matches>I got <#items as ent>$
{ent.description}<#sep> and </#items>.
</#list>

Footer Text Enhances the output on text-only channels. For
example, you can use FreeMarker expressions to
conditionalize the footer text for text-only channels.

Cancel Policy Determines the timing of the cancel transition:
• Immediate—Immediately after the value set for

the bag item’s Maximum User Input Attempts
has been met. If this value has not been set,
then the component fires this transition when the
component-wide Maximum Number of
Prompts value has been met.

This is the default value.
• Last Entity—When the last entity in the bag has

been matched with value.
This property is ignored if you've registered an entity
event handler with an item- or event-level
maxPromptsReached handler.

User Feedback
The User Feedback component enables you to collect feedback data for Insights by
presenting users with a rating scale after they've completed a transactional flow. If
you're using the 21.10 SDK or later, this component outputs a horizontal star rating
system. If you're using an earlier SDK, the component outputs this rating scale as a
simple list that allows users to tap the button that corresponds with their rating.

While you can change the behavior of this component using the component properties,
you can change its look and feel when you use the SDK (version 21.10 or later). For
example, you can replace the default star icons used for the feedback buttons with
another icon.

Name Description

Max Rating The maximum rating that a user can submit.
By default, the maximum value is 5. You can
adjust this value downward.

Chapter 26
Component Templates

26-70

Name Description

Threshold A boolean, which if set to true, enables the
user to submit text feedback if the rating is less
than, or equal to, the threshold value. By
default, this property is set to false (no
feedback enabled).

Enable Text Feedback The value for evaluating the transition between
the above and below actions. By default, the
threshold between positive and negative
feedback is set as 2 for the default maxRating
value, which is 5.

Footer Text The text that displays at the bottom of the
feedback dialog.

This component can return the following actions:

Action Description

above Set when the user input is a valid value that's
above the Threshold value.

below Set when user input is a valid value that's equal to,
or below, the Threshold value.).

cancel Set when users decline the rating by clicking Skip.

You can use the following system variables for the messages output by the transition states:

• system.userFeedbackRating – Returns the user's rating.

• system.userFeedbackText – When enableTextFeedback is set to true, your skill can
prompt for feedback when the ratings fall below the threshold value.
system.userFeedbackText returns the user's input ($
{system.userFeedbackText.value}).

The component's standard display text is stored in resource bundle entries. These bundle
entries have default text, but you can customize them. Here are the entries for this
component:

Resource Bundle Key Description

Feedback - feedbackPrompt The prompt shown to the user to select the rating for the
conversation.

Feedback - invalidValuePrompt The prompt shown to the user to select the rating for the
conversation after the user has input an invalid value for
the rating.

Feedback - ratingButtonLabels Comma-separated list of labels displayed on the rating
buttons.

Feedback - skipLabel The label of the button for skipping feedback.

Feedback - textFeedbackPrompt Prompt shown to the user asking them to provide text
feedback when they give a rating below the Threshold
property value.

Feedback - thankYouPrompt The prompt shown to the user when the transition
selected by the user is not defined in dialog flow.

Chapter 26
Component Templates

26-71

Variables Templates

Copy Variables
Copies values from one variable to another.

Property Description

Source Variables The name of the variables that will have their
value copied.

Destination Variables The variables that the values from the source
variables will be copied to.

The definitions of these properties don’t have to mirror one another. While you can
define both destination and source variables as lists of variables, you can also define
the source variable with a single variable and the destination as a list. If you set an
additional destination variable, it inherits the variable value of the proceeding source
value specified.

Reset Variables
This component resets the values of specified variables to null.

Property Description

Variables to Reset The variables that need to be reset.

Set Variable
The Set Variable component sets the value of a pre-defined variable.

Property Description

Variable The name of the variable.

Value The target value, which you can define as a
literal or as a FreeMarker expression that
references another variable. The value must
match type of the declared variable.

Set Custom Metrics
Click Dimensions to add the name-value pairs for the dimensions and dimension
values.

Attribute Description

name The name of the dimension (in 50 characters
or less) as it appears in the Custom Metrics
report. Use only letters, numbers, and spaces.
Do not use special characters.

Chapter 26
Component Templates

26-72

Attribute Description

value You can define the dimension value as either a
FreeMarker expression or a text string.
• Use FreeMarker expressions to reference

a variable declared for an entity.

• Use a string to track a value that's not set
by variables in the dialog flow definition,
but is instead tracks other aspects of skill
usage.

Language Templates

Detect Language
The Detect Language component uses the translation service to detect the user’s language
from the user input.

Note:

This component is only available if you have created your skill to use a translation
service (i.e., not in natively-supported language mode).

This component sets a variable named profile.languageTag with the locale string. You can
set variables with the current language when you use this variable in a value expression ($
{profile.languageTag}).

Note:

The profile.languageTag takes precedence over the profile.locale variable
that’s set by the messenger client.

Property Description

Existing Profile Language Tag When set to True, the skill uses the language that
is detected by the digital assistant immediately.
(Otherwise, the skill might provide a message or
prompt in English before the language is
(re-)detected.) This property only applies to skills
that are in digital assistants that use a translation
service.

Translate Input
This component sends specified text to the skill's translation service and then stores the
English translation. It relies on the skill being configured with a translation service, which
recognizes the language from the user's input and translates it into in English. This
component doesn't work with skills that use the Natively Supported language mode.

Chapter 26
Component Templates

26-73

Use this component when you need to process the raw input text before having it
translated. For example, you might want to remove some personal data from the user
input before sending it to the translation service.

Because this component leverages the translation service, which already detects the
user’s language, this component doesn’t need to follow states that detect or set the
language.

Property Description

Expression FreeMarker expression that specifies the text
values to be translated into English.

Variable The variable that holds the English translation
of the text. If this value isn't set, the component
uses the user's previous input.

Translate Output
The Translate Output component allows you to translate specified text to the user’s
language. The component takes the value defined for the Expression property. It uses
the skill's translation service to translate the text into the language detected by the
Detect Language component or by the profile.locale variable and then stores it in
the variable specified by the Variable property.

This component doesn't work with skills that use the Natively Supported language
mode.

Properties Description

Expression A FreeMarker expression that references a
variable whose value needs to be translated.

Variable Variable that holds the translated text.

Match Entity
The Match Entity component calls the Intent Engine to extract entity information from
the text held by the Source Variable property. If a match exists for the variable's entity
type, the variable specified by the Variable property is set with this entity value.

Property Description

Source Variable The variable that holds the input value.

Variable The name of the variable that is set with the
value of the extracted entity. The value of this
variable can be used in a subsequent Set
Variable component to extract a specific entity
using a FreeMarker expression. For example,
to extract an EMAIL entity value: $
{userInputEntities.value.entityMatch
es['EMAIL'][0]}

This component also has two predefined transitions: match and nomatch.

Chapter 26
Component Templates

26-74

Transition Description

match Directs the Dialog Engine to go a state when the
entities match.

nomatch Defines the Dialog Engine to go to a state when
the entities don’t match.

Note:

The Match Entity component resolves only a single value.

Security Templates

OAuth Account Link
Use this component to obtain the authorization code for services that are secured by the
authorization code grant flow, such as LinkedIn, Twitter, Google, or Microsoft. The skill’s
custom components can exchange the authorization code for an access token, which they
then use to invoke the end service.

The component first directs the user to the identity provider’s login page. After a successful
login, the component returns the authorization code in a variable, which you use to pass the
authorization code to the custom component. The custom component API must exchange the
authorization code, client ID, and client secret for an OAuth user access token.

For each state that requires authorization before it can be invoked, you set its Requires
Authorization setting to True. See User Authorization for the steps to set this up.

Property Description

Variable Specifies the variable to store the authorization
code in. You can declare it in the context node as
a variable, a string, or another supported variable
type. It can also be a user variable.

Authorize URL The login URL. The authorizeURL Property
describes how to configure this URL.

Footer Text Enhances the login dialog by adding text beneath
the login and cancel options. You can use
FreeMarker expressions to conditionalize the
footer text for text-only channels.

Chapter 26
Component Templates

26-75

Property Description

Show Cancel Label (Optional) Enables you to specify whether or not to
display the Cancel button. By default, this property
is set to True, meaning that the Cancel button is
displayed. In some cases, such as for SMS
channels, you might not want to display this
button. You can configure such behavior with an
expression like:

$
{(system.message.channelConversation.
channelType=='twilio')?
then('false','true')}

This component can return the following actions:

Action Description

fail The user clicked the cancel button.

pass The authorization code was retrieved successfully.

textReceived The user entered text instead of clicking the cancel
button or authenticating successfully.

The component's standard display text is stored in resource bundle entries. These
bundle entries have default text, but you can customize them. Here are the entries for
this component:

Resource Bundle Key Description

OAuthAccountLink - cancelLabel Use to override the label for the button that the users
can click to leave state without invoking the
authentication dialog. The default label is Cancel.

OAuthAccountLink - linkLabel Use to override the label for the button that the users
can click to invoke the authentication dialog. The default
label is Log In.

OAuthAccountLink - prompt The string to use to prompt the user to sign in.

See Modify a Resource Bundle Entry for the steps to change the default message for
a resource bundle entry.

Tip:

You also can change the Other - oauthCancelPrompt and the Other -
oauthSuccessPrompt messages in the configuration bundle.

When the dialog engine encounters this component, the skill bot prompts the user with
two links — Login and Cancel.

Chapter 26
Component Templates

26-76

There are several ways to transition from this component:

• The user clicks the cancel button and the component transitions to the state that's named
by the fail action.

• The user doesn't click any buttons but enters text instead. The component transitions to
the state that's named by the textReceived action.

• The user clicks the login link and the channel renders the identity provider’s login page or
its authentication dialog as a webview, as shown in the example below. After successful
authorization, the component transitions to the state that's named by the pass action (or
to the next state if there isn't a pass action), which would typically call a custom
component that exchanges the authorization code for an access token.

If the test window doesn’t render the webview, cut and paste the link text into your browser.

Chapter 26
Component Templates

26-77

OAuth 2.0 Account Link
Use this component to obtain an OAuth2 user access token (grant type Authorization
Code) for resources that are secured by Oracle Identity Cloud Service (IDCS), Oracle
Access Manager (OAM), Microsoft identity platform, or Google OAuth 2.0
authorization. This component completes all the steps for the 3-legged OAuth2 flow
and returns the OAuth2 access token.

For each state that requires authorization before it can be invoked, you set its
Requires Authorization setting to True. See User Authorization for the steps to set
this up.

If you need to obtain an access token of grant type Client Credentials to access client
resources, see OAuth 2.0 Client.

Before you can use this component in a skill, you must do the following tasks:

1. If it hasn't been registered already, then register the client with the identity provider
as described in Identity Provider Registration.

2. Add an authentication service for the identity provider, as described in
Authentication Services.

Some identity providers issue refresh tokens. When you use this component, Digital
Assistant stores the refresh token for the retention period that's specified for the
authentication service. The Digital Assistant backend can use the refresh token, if
available, to get a new access token without the user having to sign in again.

Property Description

Authentication Service The name of the authorization-code service
that you created in the Authentication Services
UI for the OAuth2 identity provider.

Authenticated User Variable Name Specifies the variable in which to store the
authenticated user name (the name that’s
known by the identity provider). If the variable
is user-scoped, then it can be shared across
skills.

Access Token Variable Name Specifies the variable to store the access
token in. If the variable is user-scoped, then it
can be shared across skills.

Multi-Scope Access Token Variable Name Field reserved for future multi-scope access
token support.

Footer Text Enhances the login dialog by adding text
beneath the login and cancel options. You can
use FreeMarker expressions to conditionalize
the footer text for text-only channels.

Chapter 26
Component Templates

26-78

Property Description

Show Cancel Option (Optional) Enables you to specify whether or
not to display the Cancel button. By default,
this option is set to True, meaning that the
Cancel button is displayed. In some cases,
such as for SMS channels, you might not want
to display this button. You can configure such
behavior with an expression like:

$
{(system.message.channelConversati
on.channelType=='twilio')?
then('false','true')}

Requires Association Consent Set this to True if the skill uses the Notify User
component and the event channel is either
Twilio or Slack to persist user identity across
sessions and channels. This property enables
the linking of supported channel accounts to
the OAuth authenticated IDCS account using a
unified user identifier.

Update User Profile If the identity provider is IDCS, and you want to
store the user's profile from IDCS for the
duration of the session, then set this property
to True. When a user is challenged for
authentication, if this property is set to true,
the component will try to fetch the user profile
data from the identity provider and set the
results in the
userProfile.<authorization service>
map. See Store IDCS User Profile for the
Duration of the Session.

Enable Single Sign-On (Applies to Microsoft Teams channels only) If
you have set up Microsoft Teams single sign
on, setting this to True will enable users that
have already signed in to Teams to not have to
sign in to the skill separately.

Redirect URL The redirect URL that receives the
authorization code.

Note:

The Associate With Unified User property is no longer available. If you want to
enable the linking of supported channel to a unified user identity, you can do so for
the whole instance. See Enable Channel Account Linking.

This component can return the following actions:

Action Description

fail The user clicked the cancel button.

pass The access token was retrieved successfully.

Chapter 26
Component Templates

26-79

Action Description

textReceived The user entered text instead of clicking the cancel
button or authenticating successfully.

The component's standard display text is stored in resource bundle entries. These
bundle entries have default text, but you can customize them. Here are the entries for
this component:

Resource Bundle Key Description

OAuth2AccountLink - cancelLabel Use to override the label for the button that the users
can click to leave a state without invoking the
authentication dialog. The default label is Cancel.

OAuth2AccountLink - linkLabel Use to override the label for the button that the users
can click to invoke the authentication dialog. The default
label is Log In.

OAuthAccount2Link - prompt The string to use to prompt the user to sign in.

OAuthAccount2Link -
consentNeverFinalConfirmationNoLabel

The label for the "No" button that appears after the
prompt to confirm that the user wants to opt out of
having their channel account permanently associated
with a unified identity. The default is Cancel.

OAuthAccount2Link -
consentNeverFinalConfirmationPrompt

The prompt that asks users to confirm that they want to
opt out of having their channel account associated with a
unified identity.

OAuthAccount2Link -
consentNeverFinalConfirmationYesLabe

The label for the "Yes" button that appears after the
prompt to confirm that the user wants to opt out of
having their account permanently associated with a
unified identity. The default is Confirm.

OAuthAccount2Link - consentNeverFinalPrompt The message that confirms to users that they have
permanently opted out of having their account
associated with a unified identity.

OAuthAccount2Link - consentNeverLabel The label for the "Never" button that appears after the
prompt that asks if the user wants to associate their
channel account data to a unified identity. The default is
Never link this account.

OAuthAccount2Link - consentNotifyPrompt The message that informs users that their channel
account will be associated with the authenticated user
identity.

OAuthAccount2Link - consentNotNowFinalPrompt The message that confirms to users that they have
temporarily declined to associate their channel account
data to a unified identity.

OAuthAccount2Link - consentNotNowLabel The label for the "Not Now" button that appears after the
prompt that asks if the user wants to associate their
channel account data to a unified identity. The default
value is Not at this time.

OAuthAccount2Link - consentPrompt The prompt that asks users to choose if they consent to
associating their channel account with the authenticated
user identity.

OAuthAccount2Link - consentYesLabel The label for the "Yes" button that appears after the
prompt that asks if the user wants to associate their
channel account data to a unified identity.

Chapter 26
Component Templates

26-80

See Modify a Resource Bundle Entry for the steps to change the default message for a
resource bundle entry.

Tip:

You also can change the Other - oauthCancelPrompt and the Other -
oauthSuccessPrompt messages in the configuration bundle.

When the dialog engine encounters the component, the skill bot prompts the user with two
links: Get an Access Token and Cancel (you can use linkLabel and cancelLabel to
change the link text).

If the user clicks the link to get an access token, it displays the identity provider’s login page
or authentication dialog as specified by the authentication service. After successful login, it
obtains the access token, sets the values for the variables identified by
accessTokenVariableName and authenticatedUserVariableName, and then flows to the state
that's named by the pass action (or to the next state if there isn't a pass action). If the user
cancels, the postback action is set to fail. If the user enters text, it returns the textReceived
action.

As mentioned earlier, you can set requiresAuthorization for a state to ensure that the user
is authorized before invoking the state's component. If the user hasn't authorized yet, the
dialog invokes the Authorize User event.

Chapter 26
Component Templates

26-81

OAuth 2.0 Client
Use this component to obtain an OAuth2 access token of grant type Client
Credentials. That is, you use it to get an access token that's based on the client's
credentials, and not the user's name and password. You can use this component to
get a token that enables access to client resources that are protected by Oracle
Identity Cloud Service or Oracle Access Manager (OAM).

If you need to access resources on behalf of a user, see OAuth 2.0 Account Link and
OAuth Account Link.

Before you can use this component in a skill, you must do the following tasks:

1. If it hasn't been registered already, then register the client with the identity provider
as described in Identity Provider Registration.

2. Add a client-credentials authentication service for the identity provider, as
described in Authentication Services.

Property Description

Authentication Service The name of the client-credentials service that
you created in the Authentication Services UI
for the OAuth2 identity provider.

Access Token Variable Name Specifies the variable to store the access
token in. You can declare it in the context
node as a variable, a string, or another
supported variable type. It also can be a user-
scoped variable. For example:
user.accessToken.

Multi-Scope Access Token Variable Name Field reserved for future multi-scope access
token support.

This component doesn't have any actions. To handle system problems that might
occur, add a next transition that goes to a state that can handle such errors.

Reset OAuth 2.0 tokens
Use this component to revoke all the logged-in user's refresh and user access tokens
from the identity provider that the authentication service represents. It also removes
the refresh tokens from the database. To use this component, you must provide the
identity provider's revoke refresh token URL in the Authentication Service UI.

The skill must include a state that uses the OAuth 2.0 Account Link component for the
same authentication service, and it must be invoked before the state that uses this
component.

Property Description

Authentication Service The name of the service that you created in
the Authentication Service UI for the OAuth2
identity provider. This service must have a
valid revoke refresh token URL.

This component can return the following action:

Chapter 26
Component Templates

26-82

Action Description

noRefreshTokenFound The authentication service doesn't have any refresh
tokens for the user.

Flow Control Templates

Switch
Use this component to switch states based on a variable value.

This component determines an execution path by resolving a variable or expression and then
triggering a corresponding transition action that is mapped to a state in the flow.

You define and map the transition actions on the Transitions tab of the property inspector.

Property Description

Variable A variable, the value of which is used to determine
which transition action to trigger.

Expression A FreeMarker expression used to determine which
transition action to trigger. For example, the
expression ${((user.lastOrderNumber)?
has_content)} could be used to trigger the True
transition action if the user.lastOrderNumber
variable has a value or trigger the False action if
the variable has a null value.

Invoke Flow
With this component, you call a child flow from the current flow, optionally passing in input
parameters. When the child flow completes, it returns an action and optional output
parameters to its parent flow.

The transition actions that can be set depend on the actions that are set in the child flow's
End Flow component.

Property Description

Flow The name of the flow to be invoked.

Input Parameters Parameters that are passed to the invoked flow. The
values can include Freemarker expressions.

Output Parameters Parameters that can be returned from the invoked flow
when it completes. The Value of the parameter should
be the name of a variable in the current flow that is used
to store the value of the parameter when it is returned
from the invoked flow.

Invoke Skill
With this component, you call a different skill's flow, optionally passing in input parameters.
When the called flow completes, it returns an action and optional output parameters to the
calling flow.

Chapter 26
Component Templates

26-83

Before you use this component, there must a public flow available in the skill you are
calling. See Invoke Another Skill from a Flow.

Property Description

Skill Name The name of the skill to be invoked. Only skills that have
one or more public flows are shown.

Skill Version (This property appears once you have selected a value
for Skill Name.) The version of the skill to use. If the
target skill is in the same digital assistant as the current
skill, this field will be disregarded and the version of the
skill in the digital assistant will be used.

Flow Name (This property appears once you have selected a value
for Skill Name.) The name of the flow to be invoked
from the skill. Only skills that have been marked as
public in the target skill are shown.

Input Parameters (This property appears once you have selected a value
for Flow Name.) Parameters that are passed to the
invoked flow. The values can include Freemarker
expressions.

Output Parameters (This property appears once you have selected a value
for Flow Name.) Parameters that can be returned from
the invoked flow when it completes. The Value of the
parameter should be the name of a variable in the
current flow that is used to store the value of the
parameter when it is returned from the invoked flow.

Use Mock Set to True if you need to temporarily use mock data for
the output parameters. This enables you to continue
developing and testing the flow if the target flow isn't yet
available.

Mock Output Parameters If you need to temporarily use mock output parameters
while developing the flow, enter each parameter on a
separate line in the form:

ParamName: ParamValue

End Flow
This component is used to explicitly end a flow.

When this state is reached, all of the flow's variables are cleared and control is
returned to the parent flow (or, if there isn't a parent flow, the Main Flow).

You don't need an End Flow state for a flow if you don't need to return parameters or
actions from the flow to a parent flow or the Main Flow.

Property Description

Action The action returned to the calling flow, which can be
used for setting transitions in the Invoke Flow
component.

Action Values Should be set when the Action property contains a
Freemarker expression and must contain a list of
possible values of the resolved Freemarker expression.

Chapter 26
Component Templates

26-84

Property Description

Keep Turn When true, the dialog engine continues to execute the
next state in the calling flow based on the transitions
defined in the Invoke Flow component. This property is
IGNORED when:
• a child flow is running. When a child flow ends,

Keep Turn is always true.
• a root flow is running and no bot messages have

been created yet in the turn. In this case, Keep Turn
is always true. (This ensures the turn isn't released
without the bot sending a message back to the user,
which could give the user the impression that the
bot is hanging.)

Output Parameters Parameters that can be returned to a parent flow when
the current flow is completed.

Service Integration Templates

Agent Communication Template
This template consists of the Agent Initiation and Agent Conversation components. You use
these components together to transfer a skill's conversation to an Oracle B2C Service agent.

• The Agent Initiation component initiates the handshake with the agent-integration
channel that's specified by the component's Agent Integration Channel property.

• The Agent Conversation component manages the interchange between the skill and live
agent.

This template is for conversations that originate in the skill. Do not use this template for
conversations that originate in Oracle B2C Service chat, as described in The Digital Assistant
as Agent Framework in Action.

Agent Initiation
Here are the Agent Initiation component properties:

Property Description

Agent Integration Channel Names the Agent Integration channel. This value, the name of the Agent
Integration channel, and the Agent Integration Channel property defined
for the Agent Conversation component must all match.

Chapter 26
Component Templates

26-85

Property Description

Agent Actions A list of actions that the agent can trigger to terminate the chat and move
the flow to the state defined for the transition action. In the customer service
representative's console, these actions display as slash commands when
the agent conversation is initiated, as shown in this example:

Here are the available actions that you can send to
transfer the conversation
back to the bot. Prepend the action with a forward
slash (for example, /actionName).
/OrderPizza : Order Pizza : Order a pizza.
/ShowMenu : Show Menu : Show order options.

On the Transitions tab of the Agent Conversation component, you need to
manually enter these actions and map them to the appropriate states.

Subject The subject line that displays in the agent's console after the hand off to the
agent platform. By default, this is the last customer message stored in the
system.nlpResult variable (which you can access with the expression $
{skill.system.nlpresult.value.query}), but you can also define this
using a variable that you set earlier in the flow. For example, you can define
a string type variable whose value gets set prior to the Agent Initiation
component:
A customer needs help regarding ${flow_variable.value}

Chat Response Variable Names the map variable that holds the agent response information. After
the Agent Initiation component connects successfully, the map contains the
following properties:

{
 "sessionID": "string", // agent session id

 "completedSurveyID": {
 "id": "int"
 },

 "engagementID": { // survey id
 "id": "int"
 },

 "cancelledSurveyID": {
 "id": "int"
 }
}

Custom Properties A map that holds the incident ID, interface, contact, or custom fields (or a
combination thereof) to pass to the service. To reference a map variable,
use a value expression like this: ${mapVariableName.value}. See Pass
Customer Information to a Live Chat.

Queue ID The ID of the queue that the component must use to determine whether the
specified Allow Transfer If condition is met. This must be the ID of the
queue that the Oracle B2C Service chat rules will route that conversation to.
This property is ignored if the Allow Transfer If property isn't defined.

Chapter 26
Component Templates

26-86

Property Description

Allow Transfer If Specifies the conditions under which the skill should transfer the chat
session. The component uses the Queue ID value to identify the queue
from which to obtain the statistics. You should verify that the chat rules will
actually transfer the conversation to the identified queue, and not some
other queue.
• Agents Are Requesting New Engagements: This is the most

restrictive set of conditions. The skill attempts to transfer the
conversation only if there are agents who have requested new
engagements (pulled chats) and are assigned to the specified queue
or, if the chat server automatically pushes chats to agents, there are
agents who are available to receive chats, haven't reached their
maximum number of chats, and are assigned to the specified queue.
With this option, the user doesn't have to wait too long before they
speak to the agent.

• Agent Sessions Are Available: The skill attempts to transfer the
conversation if there are available agents who haven't reached their
maximum number of chats and are assigned to the specified queue.
The user may have to wait if the agents are involved in long-running
conversations or are doing some post-chat follow-up.

• Agents Are Available: The skill attempts to transfer the conversation if
there are any agents online who are assigned to the specified queue
regardless of whether they have reached their maximum number of
chats or are requesting new engagements. With this option, the users
may have long waits.

If the specified condition is not met, the component returns the rejected
action.

When you include this property, you must also include the Queue ID
property.

Transcript Date/Time Format The format for the date and time in the conversation transcript messages
that are forwarded to the agent. Refer to the DateTimeFormatter Java
class for valid patterns. Example: dd/MM/yyyy HH:mm. Defaults to yyyy-
mmm-ddThh:mm:ssZ.

Transcript Time Zone The Internet Assigned Numbers Authority (IANA) name of the time zone to
use to format the conversation transcript using Transcript Date/Time
Format property. If you don't define the Transcript Date/Time Format
property, this property is ignored.

Transition Actions for Agent Initiation

The Agent Integration component returns the accepted, rejected, and error actions. These
actions can each point to a different state, with the accepted action typically naming the state
for the Agent Conversation component. You can set these transitions on the Transitions
tab of the component's property inspector.

You can map the transitions for these actions on the Transitions tab of the component's
property inspector.

Here are the descriptions of the actions:

Transition Action Description

accepted The handshake completed successfully and the state
can transition to the state with the Agent Conversation
component.

Chapter 26
Component Templates

26-87

Transition Action Description

error There's a problem establishing a connection with Oracle
B2C Service. For example, the password in the Agent
Integration channel is no longer valid, or there's a
problem with the Service Cloud server.

rejected Oracle B2C Service has rejected the connection
request. Some of the reasons for rejecting a connection
request are:
• No agents are available (requires Allow Transfer If

and Queue ID properties)
• It's outside of the configured operating hours
• It's a holiday
• There's a problem with the chat server
Note that if you don't set the Allow Transfer If and
Queue ID properties, the rejected action won't occur
when no agents are available. Instead the transfer will
remain in a wait condition.

Resource Bundle Entries for Agent Initiation

The Agent Integration component uses the following properties, which are stored in
the skill's resource bundle:

Resource Bundle Key Description

systemComponent_AgentInitiat
ion_agentActionsMessage

If any actions are specified in the Agent Actions property, the agent
console displays this message before the list of actions. The default is:
\n Here are the available actions that you can send to
transfer the conversation back to the bot. Prepend the
action with a forward slash (for example, /actionName).\n

systemComponent_AgentInitiat
ion_errorMessage

The message to display when there's a problem establishing a connection
with Oracle B2C Service. For example, the password in the Agent
Integration channel is no longer valid, or there's a problem with the Service
Cloud server. The default is:
Error transferring to agent. The reason is: {0}.

systemComponent_AgentInitiat
ion_rejectedMessage

The message that displays if the AgentInitiation handshake was
rejected, such as if it's outside of the configured operating hours. The
default is:
Agent rejected.

systemComponent_AgentInitiat
ion_resumedMessage

The message that displays when the customer's chat with the customer
service representative resumes. The default is:
Resuming chat with agent

systemComponent_AgentInitiat
ion_waitingMessage

The message that displays while customers wait to connect to an agent.
The default is:
Agent chat session established, Waiting for agent to join.

See Modify a Resource Bundle Entry for the steps to change the default message for
a resource bundle entry.

Agent Conversation
Here are the Agent Conversation component properties:

Chapter 26
Component Templates

26-88

Property Description

Agent Integration Channel Names the Agent Integration channel. This value, the
name of the Agent Integration channel, and the Agent
Integration Channel property defined for the Agent
Integration component must all match.

B2C Wait Message Override Text to override the B2C wait message that provides an
estimate of the time a user will have to wait to speak to
an agent.

Transition Actions for Agent Conversation

The Agent Conversation component can trigger the following actions:

• The built-in expired, agentLeft, error, and waitExpired actions.

• Any action from the Agent Initiation component's Agent Actions property.

You need to include a next transition as well, because a customer might enter one of the exit
keywords (defined in the systemComponent_AgentConversation_exitKeywords resource
bundle entry) to leave the chat before any of these actions can get triggered.

You can map the transitions for the actions on the Transitions tab of the component's
property inspector.

Note:

The actions from the Agent Initiation component's Agent Actions property do not
appear in the dropdown list for actions when adding them on the component's
Transitions tab, so you need to enter them manually.

Here are the descriptions of the built-in transition actions:

Action Description

agentLeft The agent terminated the session without using a
slash action (for example, /Order). Alternatively,
the session ended because there was no activity
within the time specified by the Oracle B2C
Service CS_IDLE_TIMEOUT configuration and that
configuration is less than the Session Expiration
setting for the agent-integration channel. See the
expired action for more information.
Note that this action is not returned when the user
leaves the conversation by entering an exit
keyword. In that case, the flow transitions to the
state that's named by the next transition, or, if
there is no next transition, to the next state in the
flow.

error There is a problem connecting to the live agent
service.

Chapter 26
Component Templates

26-89

Action Description

expired If the Oracle B2C Service CS_IDLE_TIMEOUT is
equal to or more than the Session Expiration
setting for the agent-integration channel, then this
action is triggered when neither the end-user nor
the agent sends a message within the session
expiration limit. If CS_IDLE_TIMEOUT is less than
the Session Expiration setting for the agent-
integration channel, and there is no activity, then
Oracle B2C Service terminates the chat and the
agentLeft action is triggered instead.

By default, CS_IDLE_TIMEOUT is 10 minutes.

The expired action isn't returned when the
conversation concludes because the Service
Cloud USER_WAIT_QUEUE_TIMEOUT was
exceeded. Consider setting this configuration to a
high value, such as 7200 seconds (2 hours).

To view or change your Oracle B2C Service
instance's settings, open the Desktop Console,
click Navigation, click the first Configuration item
in the menu, and click Configuration Settings.
Then search the for the setting in the Chat folder.

waitExpired The chat request expired while waiting for an
agent. This happens when the wait time exceeds
the value in the chat client's
USER_WAIT_QUEUE_TIMEOUT setting.

Resource Bundle Entries for Agent Conversation

The Agent Conversation component uses the following resource bundle entries:

Resource Bundle Key Description

systemComponent_AgentConversation_conclusio
nMessage

An automated message sent to the customer when
either the user enters an exit keyword, the agentLeft
action is triggered, or the agent terminates the
conversation without sending one of the Agent Actions.
The default is:
Chat session ended. Thanks for chatting
with us.

systemComponent_AgentConversation_errorMess
age

The message that the chat displays if there is a problem
with the connection to Oracle B2C Service. The default
is:
Chat session error. The reason is: {0}.

systemComponent_AgentConversation_exitKeywo
rds

A comma-delimited list of typical exit words used by a
customer to end the conversation with the live agent.
The default is:
bye, take care, see you, goodbye

Chapter 26
Component Templates

26-90

Resource Bundle Key Description

systemComponent_AgentConversation_expiryMes
sage

The message that displays when the expired action is
triggered. The default message is:
Chat session expired. Thanks for chatting
with us.
Note that the conclusionMessage is not output if the
expiryMessage is output.

In addition, this message isn't output when the
conversation concludes because the Service Cloud
USER_WAIT_QUEUE_TIMEOUT was exceeded.

systemComponent_AgentConversation_userLeftM
essage

The message shown when the user has exited the chat.
The default message is:
User left the chat.

systemComponent_AgentConversation_waitExpir
yMessage

The message that's shown to the user when the chat
expires while waiting for an agent. The default is:
The request for live chat expired while
waiting for an agent.

See Modify a Resource Bundle Entry for the steps to change the default message for a
resource bundle entry.

Agent Transfer
You use the Agent transfer component in DA-as-agent digital assistants to transfer the
conversation back to the chat service. The conversation will be routed to a live agent per the
chat rules that have been configured in the chat service.

This component is for conversations that originate in a service chat, as described in The
Digital Assistant as Agent Framework in Action. For conversations that originate in the skill,
use the Agent Communication template instead.

Property Description

Maximum Wait Time (Seconds) The maximum number of estimated wait seconds that are allowed.
When the chat service receives the transfer request, it responds
with the estimated wait time. If this value exceeds Maximum Wait
Time (Seconds), then the rejected action occurs. This property
defaults to -1, which means that there's no maximum wait time.
When set to -1, the digital assistant transfers the user to a human
agent regardless of what the estimated wait time is.
Note that the rejected action is based on the estimated wait time
and not the actual wait time. After the conversation is transferred,
the digital assistant doesn't have control over the conversation, nor
does it have access to information about it. Therefore, it's possible
for the actual wait time to exceed the estimated wait time.

Maximum Engagements In
Queue

The maximum number allowed for engagements waiting in the
destination queue. When the chat request is sent, the chat service
responds with the current number of engagements waiting in the
queue. If this value exceeds Maximum Engagements In Queue,
then the rejected action occurs. Defaults to -1, which means that
there's no engagement limit. Note that for B2B Chat, the response
is always 0, so this property is of no value for B2B.

Chapter 26
Component Templates

26-91

Property Description

Agent Availability
StatusVariable

The name of the variable of type map to use to store the agent
availability status information. No information is stored if the
property is not specified. To reference a map variable, use a value
expression like this: ${<mapVariableName>.value.<key>}. For
example, agentStatus.value.expectedWaitMinutes.
To learn about the values returned in this variable, see Agent
Transfer Condition.

Allow Transfer If Specifies the conditions under which the skill should transfer the
chat session.
• Agents Are Requesting New Engagements: (default) For

Oracle B2C Service agents who must pull chats (request new
engagements), this is the most restrictive set of conditions, and
the user doesn't have to wait too long before they speak to an
agent. The skill attempts to transfer the conversation only if
there are agents who have requested new engagements. In all
other cases, this option has the same behavior as Agent
Sessions Are Available. Don't use this option for Oracle
Fusion Service because, the total agents requesting new
engagements for that service is always 0.

• Agent Sessions Are Available: The skill attempts to transfer
the conversation if any of the available agents have not
reached the maximum number of chats that they are allowed to
have at one time. The user may have to wait if the agents are
involved in long-running conversations or are doing some post-
chat follow-up.

• Agents Are Available: The skill attempts to transfer the
conversation if there are any agents online regardless of
whether they have reached their maximum number of chats or
are requesting new engagements. With this option, the users
may have long waits.

If the specified conditions aren't met, then the rejected action
occurs.

Custom Properties A map that holds information to pass to the service.

Transition Actions for Agent Transfer
The Agent Transfer component has some built-in transaction actions that it can return.

You can map the transitions for these actions on the Transitions tab of the
component's property inspector.

Action Description

accepted The accepted transition is set when the chat is
successfully transferred to a queue.
Note that after a chat request is accepted, the flow must
end with an End Flow state.

rejected The rejected transition is set when one of the following
occurs:
• The allowTransferIf conditions weren't met.

• The estimated wait time exceeds maxWaitSeconds
• The number of engagements in the queue exceeds

maxEngagementsInQueue.

Chapter 26
Component Templates

26-92

Action Description

error The error transition is set when there's a system error
that prevents the transfer to a human agent.

Resource Bundle Entries for Agent Transfer
The Agent Transfer component also uses the following properties, which are stored in the
skill's resource bundle:

Resource Bundle Key Description

systemComponent_AgentTran
sfer_acceptedMessage

The message that's shown to the users whenever a human agent
accepts the chat request. The default is:
The chat has been transferred to another agent.

systemComponent_AgentTran
sfer_errorMessage

The message that's shown to the user when a system error occurs
while transferring the chat session to an agent. The default is:
We were unable to transfer you to another agent
because there was a system error.
You can set the property to a blank or empty string to suppress
message output.

systemComponent_AgentTran
sfer_rejectedMessage

The message that's shown to the users whenever one of the
following occurs:
• The Allow Transfer If conditions weren't met.
• The estimated wait time exceeds the Maximum Wait Time

(Seconds) value.
• The number of engagements in the queue exceeds the

Maximum Engagements In Queue value.
The default message is: Agent rejected.
You can set the property to a blank or empty string to suppress
message output.

systemComponent_AgentTran
sfer_waitingMessage

The message that's shown to users when they're transferred to a
queue. The default message is:
Agent chat session established. Waiting for agent to
join.
You can set the property to a blank or empty string to suppress
message output.

See Modify a Resource Bundle Entry for the steps to change the default message for a
resource bundle entry.

Agent Transfer Condition
You can use the Agent Transfer Condition component in DA-as-agent digital assistants to
determine whether agents are available and, if so, the expected wait time.

You use the component's properties to specify the transfer conditions, and it returns an action
that indicates whether the conditions were met. In addition, it sets the values of the named
context map variable.

Property Description

Custom Properties A map that holds information to pass to the service. See Pass Information
to the Service.

Chapter 26
Component Templates

26-93

Property Description

Maximum Wait Time (Seconds) The maximum number of estimated wait seconds that are allowed. When
the chat service receives the request, it responds with the estimated wait
time. If this value exceeds Maximum Wait Time (Seconds), then the
conditionsNotMet action occurs. This property defaults to -1, which
means that there's no maximum wait time.
Note that the conditionsNotMet action is based on the estimated wait
time and not the actual wait time.

Maximum Engagements in Queue The maximum number allowed for engagements waiting in the destination
queue. When the request is sent, the chat service responds with the current
number of engagements waiting in the queue. If this value exceeds
maxEngagementsInQueue, then the conditionsNotMet action occurs.
Defaults to -1, which means that there's no engagement limit.

Agent Transfer If Specifies the base set of conditions that must be met.
• Agents Are Requesting New Engagements: (default) For B2C agents

who must pull chats (request new engagements), requires that agents
have pulled chats. In all other cases, this option has the same behavior
as Agent Sessions Are Available.

• Agent Sessions Are Available: Requires that agents are requesting
chats.

• Agents Are Available: Requires that at least one agent is active
regardless of whether they have reached their maximum number of
chats or are requesting new engagements.

If the specified conditions aren't met, then the conditionsNotMet action
occurs.

Agent Availability Status Variable The name of the variable of type map to use to store the agent availability
status information. No information is stored if the property is not specified.
To reference a map variable, use a value expression like this: $
{<mapVariableName>.value.<key>}. For example,
agentStatus.value.expectedWaitMinutes.

Here is the structure of the value of Agent Availability Status Variable and the
information stored in it:

queueId (integer, optional): The engagement queue ID,
expectedTotalWaitSeconds (integer, optional): Expected wait time in
the queue in seconds
 (-1 if there's inadequate information, zero or greater
otherwise).,
expectedWaitSeconds (integer, optional): The number representing the
"ss" segment of the expected wait time of format mm:ss
 (-1 if there's inadequate information, zero or greater
otherwise).,
expectedWaitMinutes (integer, optional): The number representing the
"mm" segment of the expected wait time of format mm:ss
 (-1 if there's inadequate information, zero or greater
otherwise).,
availableAgentSessions (integer, optional): Total number of sessions
available across all agents.,
totalAvailableAgents (integer, optional): Total number of agents whose
status is available.,
totalUnavailableAgents (integer, optional): Total number of agents
whose status is unavailable.,
totalAgentsRequestingNewEngagement (integer, optional): Total number

Chapter 26
Component Templates

26-94

of agents who are available and have capacity.
outsideOperatingHours (boolean, optional): True if outside operating hours.
False if inside operating hours.,
engagementsInQueue (integer, optional): The number of engagements currently
in the queue.
sessionId (string, optional): The session ID.,
clientId (integer, optional): The client ID.

Tip:

Here's a suggested resource bundle definition that you can use to display the
expected wait time:

This might take {minutes, plural,
 =-1 {}
 =0 {}
 =1 {1 minute and }
 other {# minutes and }
}{seconds, plural,
 =-1 {a while}
 =0 {{minutes, plural,
 =0 {a short wait time}
 other {0 seconds}
 }}
 =1 {1 second}
 other {# seconds}
} to connect. Are you willing to wait?

Transition Actions for Agent Transfer Condition
The Agent Transfer Condition component has some built-in transaction actions that it can
return.

You can map the transitions for these actions on the Transitions tab of the component's
property inspector.

Action Description

conditionsMet The conditionsMet transition is set when when it's
inside business hours and the maxWaitSeconds,
maxEngagementsInQueue and allowTransferIf
conditions are met.

conditionsNotMet The conditionsNotMet transition is set when one of
the following occurs:
• It's outside business hours.
• The allowTransferIf conditions weren't met.

• The estimated wait time exceeds maxWaitSeconds
• The number of engagements in the queue exceeds

maxEngagementsInQueue.

Chapter 26
Component Templates

26-95

Action Description

error The error transition is set when there's an issue with
the connection to the agent chat service during the
agent conditions check.

You can set these transition actions on the Transitions tab of the component's
property inspector.

Resource Bundle Entries for Agent Transfer Condition
The Agent Transfer component also uses the following property that is stored in the
skill's resource bundle:

Resource Bundle Key Description

systemComponent_AgentTr
ansferCondition_errorMe
ssage

The message that's shown to the user when a system error
occurs while transferring the chat session to an agent. The
default is:
We were unable to check the agent transfer
conditions because there was a system error.
You can set the property to a blank or empty string to suppress
message output.

See Modify a Resource Bundle Entry for the steps to change the default message for
a resource bundle entry.

Call REST Service
Use this component to send an HTTP request to a REST endpoint that you configured
in the API Services settings.

Here are the component properties:

Property Description

REST Service The name of the API Settings REST service
that defines the configuration for the endpoint.
See Add a REST Service for an Endpoint.

Authentication Type The authentication type that's defined for the
REST service. You only can change this value
from the REST Services tab.

Endpoint The URI that's defined for the REST service.
You only can change this value from the REST
Services tab.

Method Select which configured method to use for this
REST call.

Chapter 26
Component Templates

26-96

Property Description

Request Body For POST, PATCH, and PUT requests, specify
the request body to send with the REST
request.

Tip:

If the body
contains
FreeMarker
expressions,
then you can
switch
Expression to
On to see
FreeMarker
syntax coloring.
However, if you
do so, JSON
syntax validation
is turned off.

Chapter 26
Component Templates

26-97

Property Description

Parameters For the path parameters that are in the
endpoint, add a parameter of type Path, set
the key to match the path parameter, and set
the desired value. Note that if a path
parameter is defined in the REST service
configuration and you want to use that
parameter's value, you don't need to add it to
the component.
For query parameters that you want to pass in
the REST request, add a parameter of type
Query, set the key to match the query
parameter, and set the desired value. Note
that if a query parameter is defined in the
REST service configuration and you want to
use that parameter's value, you don't need to
add it to the component.

Tip:

If the REST
Services
configuration set
a query
parameter that
you don't want to
use in this call,
you can clear
that parameter
by setting its
value to ${r""}.

After you edit the parameter, click to add
the parameter to the list.

Response Mode Specify which response you want returned
after the call completes:

• Use Actual REST API Response: This
returns the actual response from the
REST service.

• Always Use Static REST Response:
This returns the static response that is
configured on the REST Services tab.
This response is helpful during
development and test phases, among
other uses.

• Fallback Using Static Response: If the
REST request is successful, then the
REST response is returned. Otherwise,
the static response that's configured on
the REST Services tab is returned.

Note that if the REST service configuration
doesn't have a static response, then the only
choice is Use Actual Response.

Chapter 26
Component Templates

26-98

Property Description

Result Variable The name of the map variable for storing the
response data. The map will contain a
responsePayload property for the response
body and a statusCode property for the
status code. How the response body is stored
in the variable depends on the whether the
response is a JSON object, JSON Array, or
plain text (string):

• JSON Object: The object is stored in the
responsePayload property.

• JSON Array: The array is stored in
theresponsePayload.responseItems
property.

• Plain Text: The text is stored in the
responsePayload.message property.

The component returns these actions:

Action Description

success The response status code is in the 100-399 range.

failure The response status code outside the 100-399
range.

To learn more, see Access Backends Using the REST Service Component.

Knowledge Search
Use this component to search Oracle B2C Service Knowledge Foundation or Oracle Fusion
Service Knowledge Management for information about a given search term and to display the
results.

For Oracle B2C Service, the search results depend on whether the answers are public and
what the access level, product, or category settings are.

Note that you must create a knowledge search service before you can use this component.
See Add a Knowledge Search Service.

Here are the Knowledge Search component properties:

Property Description

Search Service Name The name of the knowledge search integration as
configured in Settings.

Term to Search For The text to use as the search term for the knowledge
search invocation. A search term is required for Oracle
Fusion Service Knowledge Management. For Oracle
B2C Service Knowledge Foundation, it returns the most
popular articles if no search term is provided.
For search term techniques, see Use the
System.KnowledgeSearch Component.

Chapter 26
Component Templates

26-99

Property Description

Text to Display Ahead of Results The text to output before the search result is displayed.
If this property is On, the KnowledgeSearch -
searchPrelude value in the configuration resource
bundle is used. The default is Off, meaning no text is
displayed.

Maximum Number of Results The maximum number of results to display.
The default is 10.

Preferred Version of Results Oracle B2C Service only: The preferred version to return
when there are multiple versions for a result. You can set
this property to either Answer or Special Response.
The default version is Answer.

Only Show Preferred Version Oracle B2C Service only: When True, only results that
are available in the preferred version (as set by the
Preferred Version of Results property) should be
displayed.

When False, it first includes all matching answers that
are available with the version set in the property. If the
number of included answers is less than the limit, then it
continues to include answers in the non-preferred
version until the limit is met.

The default is False.

Web Article Link Label The label to use for the result card's URL action (button)
that links to the web version of the information.
If you set this property to Off, the web article link button
is not displayed and the full text is output instead. This is
not recommended if you have very long articles that
would be hard to read in a typically-sized skill widget.
The default is On, which means the KnowledgeSearch
- resultLinkLabel value in the configuration resource
bundle is used.

Web Search Page Link Label Oracle B2C Service: The label to use for the card
message payload action that's linked to the web page
with the full search result list.

Oracle Fusion Service: The label to use for the card
message payload action that's linked to home search
page.

If this property is On, the KnowledgeSearch -
searchLinkLabel value in the configuration resource
bundle is used. The default is Off, meaning the card
message does not display the action.

Card Layout Specifies whether to display the result cards vertically or
horizontally. Defaults to horizontal.

Chapter 26
Component Templates

26-100

Property Description

Search Using Locale Defaults to the value of the profile.locale variable.
For Oracle B2C Service multi-interface knowledge
integration services, the five-character ISO or BCP
locale code that specifies which interface to use to
perform the search (e.g. en_GB). If there isn't an
interface that supports the locale, then the default
interface is used. See Implement Multi-Lingual
Knowledge Search.

For Oracle Fusion Service it fetches the articles that are
associated with the specified locale. If matching articles
don't exist for the locale, it returns noResult.

Result Filters A list of search result filters. The allowable filter types
are Product and Category. Each of them allows only
one filter declaration.

Custom Properties Oracle B2C Service only: A map of key/value pairs to
send to the search service. Currently, this property
supports only the word_connector key. You use the
word_connector property set to AND to prepend every
word in the search term with +.

Transition Actions for Knowledge Search
The Knowledge Search component has some built-in transaction actions that it can return.

You can map the transitions for these actions on the Transitions tab of the component's
property inspector.

Action Description

resultSent The search returned at least one result.

noResult There were no results for the search term.

serverError An error occurred on the knowledge search service's
server during the invocation, such as a server error fault
or an unexpected error fault.
When this error occurs, the error message is stored in
system.state.<state-
name>.serverError.message.

Resource Bundle Entries for Knowledge Search
The Knowledge Search component also uses the following properties, which are stored in the
skill's resource bundle:

Resource Bundle Key Description

systemComponent_KnowledgeSea
rch_defaultAttachmentLabel

The default label to use for the result card's URL action that is linked with an
attachment of the search result if that attachment does not have a display
name configured already. When used, it's appended by an index number.
For example, if the second attachment doesn't have a display name, then
the default attachment label is appended with 2.
The default is Download.

Chapter 26
Component Templates

26-101

Resource Bundle Key Description

systemComponent_KnowledgeSea
rch_noResultText

The text to output when no search result is available.
The default is:

Sorry, no result was found in the knowledge search.
systemComponent_KnowledgeSea
rch_resultLinkLabel

The label to use for the result card's URL action that's linked to the web
version of the knowledge article.
The default is View Results.

See Modify a Resource Bundle Entry for the steps to change the default message for
a resource bundle entry.

Incident Creation
You use the Incident Creation template to create an incident report on a customer
service site. Note that you must create a customer service integration from the
Settings > Additional Services > Customer Service Integration page before you
can use this component in your instance.

Property Description

Incident Service Name The name of the integration as configured in Settings > Additional
Services > Customer Service Integration.

Subject of Incident The text for the subject of the incident.

Attachment URL The URL of a document or image that's related to the incident. Note that
adding attachments is not supported for DA as Agent skills.

Agent report filter (For Oracle Fusion Service incidents), text to filter the incidents.

Add chat transcript to the incident (For Oracle Fusion Service incidents.) When set to True, the chat transcript
is added to the incident.
Insights must be enabled for the skill for this to work.

A transcript can only be added to the incident when using a DA as an Agent
integration in combination with Web Chat for Service or Oracle Inlay Toolkit
inlays.

Custom Fields Contains the description key/value pair and, optionally, the contactInfo
key/value pair, which can contain a map of additional details about the
incident.
The key/value pairs are passed unvalidated as a text version of the object
and inserted into the incident message as a private note.

Contact Properties Key/value pairs that contain the information that's required to look up or
create customer service contact information. It must contain email, and can
optionally contain firstName and lastName.
If email isn't provided, then you must provide both firstName and
lastName.

String context variable to store the
incident number

The name of the string context variable in which to store the incident
number.

Intelligent Advisor
Use this component to access an Oracle Intelligent Advisor interview from a skill.

You must create an Intelligent Advisor service integration before you can use this
component. See Add an Intelligent Advisor Service. In addition, the interview must
have been deployed to the Intelligent Advisor Hub and activated on the chat service

Chapter 26
Component Templates

26-102

channel. The interview must be for anonymous users. You can't access interviews for portal
users or agent users.

You can use the component's properties to specify the following interview settings:

• Whether to display the titles and the explanation

• The labels for the yes, no, and uncertain buttons

• The strings that the user enters to reset, go back to the previous question (undo), and
exit the interview

• The text to display at the end of the interview

• How to phrase the question about whether to display the explanation

• The string the user enters to indicate they are done uploading files

• The attribute values and connector params to pass to the interview

• The project locale to use

Intelligent Advisor Properties
Here are the Intelligent Advisor component properties:

Property Description

Intelligent Advisor Service Name The name of the Intelligent Advisor service as
configured in Settings > Additional Services.

Deployment Project Name The name of the active deployment project on the
Intelligent Advisor Hub.

Variable for Interview Results The name of a list variable in which to store the
interview's attribute values upon return from the
interview to the skill. The attribute values are stored as
an array of key/value pairs.

Hide All Screen Titles Indicates whether to hide all the screen titles in the
interview.

Show Explanation Specifies whether to show the Intelligent Advisor
explanation. The allowed values are never, always and
ask.
If you set to ask, then use the
systemComponent_IntelligentAdvisor_explanat
ionAskLabel resource bundle entry to specify the text
for asking if the user wants to see the explanation.

If you don't define this property, the behavior defaults to
never.

Seed Data A map of Intelligent Advisor attribute names and values
to pass to the interview. For date and time attributes, use
the standard Intelligent Advisor date and time formats.
For example: start_date: "2010-01-31".
The attribute that you are passing the value to must
have the Seed from URL parameter option enabled in
Policy Modeling. See Pass Attribute Values and
Connection Parameters for details on working with
Policy Modeling.

Connection Parameters A map of key-value connection parameters to pass upon
the start of interview. This is typically needed for
interviews with external data integration.

Chapter 26
Component Templates

26-103

Property Description

End Interview Text Label The label that's shown in the chat at the end of the
interview. If set to Off, no message will be shown in the
chat at the end of the interview. The default is On,
meaning the
systemComponent_IntelligentAdvisor_endLabel
value in the configuration resource bundle is displayed at
the end of the interview.

Remove HTML Tags From Output Indicates whether to remove the HTML markup from the
text. The default is false.

Interview Locale The five-character ISO or BCP locale code (e.g. en_GB)
used to specify the language that the interview should
start with.
This property affects both the target interview and date
and number resolution.

The component initiates the version of the named
interview (deployment) that's associated with the
language specified by the component's locale
property. If there isn't a Hub deployment for the specified
locale, then the component uses the default locale that's
associated with the deployment.

For date and number input, the values are resolved per
the DATE and NUMBER entity settings. When Consider
End User Locale is switched to On for the entity, then
the value is resolved for the locale that is specified by
this property (or the default if not specified). See Locale-
Based Entity Resolution.

This property defaults to the profile.locale value. If
profile.locale doesn't have a value, then it uses the
channel's locale.

Interview Expected Currency The ISO-4217 currency code for the currency that's
used in the interview. When this code is specified, the
user only can input currency values in the formats that
are allowed for that currency. You can set this property to
blank or null if the interview doesn't prompt for currency
amounts or is not expecting any certain currency.

Resource Bundle Entries for Intelligent Advisor
The Intelligent Advisor component also uses the following properties, which are stored
in the skill's resource bundle:

Resource Bundle Key Description

systemComponent_IntelligentA
dvisor_answerNotValid

Message that's displayed for Intelligent Advisor interview inputs of type
Masked when the user's answer doesn't conform to the specified input
mask.

systemComponent_IntelligentA
dvisor_defaultValue

Text that's added to a question when the Intelligent Advisor interview input
has a default value.

systemComponent_IntelligentA
dvisor_doneHelp

Help message that's displayed for Intelligent Advisor interview inputs of type
Upload.

systemComponent_IntelligentA
dvisor_doneLabel

The text that the users type to indicate that they are done uploading a file.
The default is /done.

Chapter 26
Component Templates

26-104

Resource Bundle Key Description

systemComponent_IntelligentA
dvisor_endLabel

Text to display in the chat at the end
of the interview.
The default is Interview ended.
You can set the property to "" to
prevent text from being displayed.

systemComponent_IntelligentA
dvisor_exitLabel

The text that users type to indicate
that they want to exit the interview.
The default is /exit.

systemComponent_IntelligentA
dvisor_explanationAskLabel

The question to ask when
showExplanation is set to ask.
The default is Do you want to
see the explanation?

systemComponent_IntelligentA
dvisor_maskLabel

Text that's added to a question to display the expected format for Intelligent
Advisor interview inputs of type Masked Text Box.
The default is Answer format: {0}

systemComponent_IntelligentA
dvisor_noLabel

The label to use to represent
Boolean FALSE values.
The default is No.

systemComponent_IntelligentA
dvisor_numberMinMax

Message that's displayed when the user enters a value outside of the
specified range for an Intelligent Advisor interview input of type Slider.
The default is Enter a number between {0} and {1}.

systemComponent_IntelligentA
dvisor_outOfOrderMessage

Error message that's displayed when the user taps a button in a previous
Intelligent Advisor interview message.
The default is:

You have already answered this question. When you want to
step backwards to change a previous answer, say {0}.

systemComponent_IntelligentA
dvisor_resetLabel

The text that users type to indicate
that they want to go back to the first
question.
The default is /reset.

systemComponent_IntelligentA
dvisor_resumeSessionPrompt

Question that is asked if the user starts an interview that they had
previously left before the interview completed.
The default is:

Do you want to restart the interview from where you
previously left?

systemComponent_IntelligentA
dvisor_uncertainLabel

The label that the user can type if
they don't know the value. This label
appears for optional Boolean radio
buttons.
The default is Uncertain.

systemComponent_IntelligentA
dvisor_undoLabel

The text that the users type to
indicate that they want to go back to
the previous question.
The default is /back.

systemComponent_IntelligentA
dvisor_yesLabel

The label to use to represent
Boolean TRUE values.
The default is Yes.

Chapter 26
Component Templates

26-105

Resource Bundle Key Description

systemComponent_IntelligentA
dvisor_yesNoMessage

Message that's displayed when the user enters an invalid answer for
Intelligent Advisor interview inputs of type Boolean Radio Button.
The default is:

Enter either {0} or {1}

See Modify a Resource Bundle Entry for the steps to change the default message for
a resource bundle entry.

Webview Component
The Webview component opens a webview within your skill, or for skills that run in a
web channel, in an browser tab.

Property Description

Webview Component Service The name of the webview component service.

Inputs for Service A comma-separated list of variable names.
These variable names are the parameters that
are sent to the webview from the skill.

Output for Service The name of the variable (a string value) that
identifies the webview payload that’s returned
to the bot after the user completes his or her
interactions within the webview.
Because the payload is stored in this variable,
which you can access at a later point in your
dialog flow definition. For example, you can
reference this in an output component.

Component Service URL The base URL to which the variable names set
for the Inputs to Service property are sent as
parameters. This is a base endpoint provided
by a web server. This property is not
supported in the current release (you configure
this now in the Create Service dialog).
However skills built with prior versions will still
function.

Image URL The URL of the image that accompanies a
prompt.

Authorization Token The authorization token that’s sent with
requests to the URL specified by the
Component Service URL property. This
property is the form of Basic <token> or
Bearer <token>.

Query Parameters for Service The stringified JSON object whose key-value
pairs are the query parameters that are
appended to the POST request.

Transition Actions for the Webview Component
The Webview component has some built-in transaction actions that it can return.

You can map the transitions for these actions on the Transitions tab of the
component's property inspector.

Chapter 26
Component Templates

26-106

Transitions Description

cancel Triggered when the user taps the Cancel button.

system.textReceived Triggered when the user enters text rather than
tapping one of the buttons.

unexpectedAction Triggered when the user taps a button from a
previous reply.

Resource Bundle Entries for the Webview Component
The Webview component also uses the following properties, which are stored in the skill's
resource bundle:

Resource Bundle Key Description

systemComponent_Webview_canc
elLabel

The label of the cancel button to leave this state without invoking the
webview.
The default is Cancel.

systemComponent_Webview_link
Label

The label of the button to invoke the webview.
The default is Tap to continue.

systemComponent_Webview_prom
pt

The message for the user to tap on the link to invoke the webview.
The default is Please tap on the link to proceed.

See Modify a Resource Bundle Entry for the steps to change the default message for a
resource bundle entry.

Notify User
You use this component to send a notification to a user when a Cloud-based event of a type
that has been registered in Oracle Digital Assistant has occurred. See External Events for
information on registering event types and configuring a digital assistant to consume the
event.

Property Description

User ID (Optional) If you want to dynamically determine
which user to notify of the event when it is
received, enter the unified user ID that is returned
from the user's messenger service. If this value is
set, when the event is generated, Digital Assistant
will pass this ID to the messenger service to get
user data, such as the channel, and the channel's
ID for the user so that it can notify that particular
user. This property only works for Slack and Twilio
channels and for users that have already
interacted with Digital Assistant.

Chapter 26
Component Templates

26-107

Property Description

Notification Message The message that is returned to the user.
In the message, you can make use of expressions
in the following formats to access information from
the event:

• Event data content:

$
{skill.system.event.value.applica
tion.data.<propertyName>}

• Event context content:

$
{skill.system.event.value.applica
tion.context.<propertyName>}

Publish Event
You use this component to externally publish a Cloud-based event of a type that has
been registered in Oracle Digital Assistant. See External Events for information on
registering event types and configuring a digital assistant to publishing and consuming
events.

Property Description

Name The name of the type of the event that is to be
published

Data The payload of the event in JSON format.

Here's an example payload that could be used as the value for the Data property:

{
 "size": "Large",
 "type": "Veggie"
}

Component Changes in the Visual Flow Designer
In the Visual Flow Designer, a number of components that were part of the YAML-
based dialog flow editor have changed or are no longer available. Here are the key
changes:

• The ConditionExists and ConditionEquals components aren't supported. You
can use the Switch component instead.

• The Text, List, and Output components aren't supported. Instead you can use
the Send Message, Ask Question, and Resolve Composite Bag templates, as well
as the templates in the User Messaging category, most of which are templates
based on the Common Response component.

• The Resolve Entity and Common Response components will now always attempt
to slot entities from the system.nlpresult variable.

Chapter 26
Component Templates

26-108

As such the nlpResultVariable property is no longer necessary and has been removed
from those components.

• The autoNumberPostbackActions variable and component property are not supported.
Auto-numbering can be configured at the skill level using the skill's Enable Auto
Numbering on Postback Actions in Task Flows configuration setting (or at the digital
assistant level using the digital assistant's Enable Auto Numbering on Postback
Actions setting).

• The autoTranslate variable and the translate component property are not available.
They are replaced by the Translate User Input Message and Translate Bot Response
Message properties, which are set at the skill level.

• The transitionAfterMatch component property for the Common Response and Resolve
Entity components is no longer supported. To get this functionality, you can use an entity
event handler.

• The value of the useFullEntityMatches property for the Common Response and
Resolve Entity components now defaults to true.
This means that the value of the resolved entity is returned as an object and you need to
specify the appropriate object property to return a string value.

• The value of the cancelPolicy property for the Common Response and Resolve Entity
components now defaults to immediate (instead of lastEntity).
This means that the cancel transition occurs after the value set for the bag item’s
Maximum User Input Attempts has been met. If this value has not been set, then the
component fires this transition when the component-wide maxPrompts value has been
met.

• The Insights component properties insightsInclude and insightsEndConversation are
not supported. The modular flows already delineate the conversation, so
insightsEndConversation is not needed. A conversation ends when the last state of a
top-level flow has been reached.

Message Handling for User Message Components
Typically, a user might respond to a message in the following ways:

• By entering free text.

• By sending their location.

• Using a multi-media option to send an image, audio file, video, or file attachment.

• Tapping one of the postback buttons displayed in the most recent message output by the
bot.

• By scrolling to a previous message in the conversation and tapping one of its buttons.

Handling Free Text
When a user enters free text, Common Response components first validate this input as the
context or user variable value that's specified by the variable property. When the text is a
valid value, these components trigger the textReceived transition. If you don’t define the
textReceived transition, the Dialog Engine transitions to the state defined by the next
transition or the Unexpected User Input event.

Chapter 26
Component Templates

26-109

Tip:

Use textReceived to handle unexpected user messages when you expect
the user to tap a button, send an attachment, or a location.

Handling Multimedia Messages
When a users sends a file, image, video, or audio file, Common Response
components store the attachment information as a JSON object in the variable
property that’s specified for the component. This object has the following structure:

{
 "type": "video",
 "url": "https://www.youtube.com/watch?v=CMNry4PE93Y"
}

For example, if a video attachment is stored in a variable called myVideo, you can
access the video using the FreeMarker expression, ${myVideo.value.url}.

Handling Location Messages
When a user sends his or her current location, Common Response components store
the location information as a JSON object in the variable property specified for the
component. This object has the following structure:

{
 "title": "Oracle Headquarters",
 "url": "https://www.google.com.au/maps/place/…",
 "longitude": -122.265987,
 "latitude": 37.529818
}

For example, if the location is stored in a variable called location, you can access the
latitude using the FreeMarker expression, ${location.value.latitude}.

Postback Actions
The actions in the response message, such as buttons, links, and list items, are
implemented as postback actions. For example, when a user taps a button, its
postback gets rendered. Its payload is a JSON object that holds the name of the state,
the values set for the user and context variables, and the transition actions. For
example, the following payload is rendered when a user taps the Order Now button for
a pepperoni pizza:

{
 "action": "order",
 "state": "OrderPizza",
 "variables": {
 "orderedPizza": "PEPPERONI",

Chapter 26
Component Templates

26-110

 "orderPizzaImage": "http://pizzasteven/pepperoni.png"
 }

How Out-of-Order Actions Are Detected
The system.state property in the payload, which identifies the state for which the postback
was rendered, enables the system to identify when a user performs an action that occurs out
of the current scope, such as tapping a button from a previous response.

 "system.postbackActions": {
 "small": {
 "postback": {
 "variables": {
 "size": "Small"
 },
 "system.botId": "44F2405C-F317-4A3F-8250-617F54F01EA6",
 "action": "Small",
 "system.state": "size"

For example, a user might tap the Order Now button for a pepperoni pizza, but instead of
completing the order, he might scroll further up to a previous message and clicks Order Now
for a pasta dish.

At this point, the system compares the system.state property in the payload of the incoming
postback action against the current state. When the two no longer match, the skill executes a
transition that can, depending on how you configure your dialog flow, either honors the user's
request, or denies it.

By default, Digital Assistant allows out-of-order actions. This means that the variable values
get reset. Using the flow's Out of Order Message action and the
skill.system.event.value.outOfOrderMessage.outOfOrderState and
skill.system.event.value.outOfOrderMessage.currentState variables, you can
customize this behavior either for the entire skill, or for a particular state in the dialog flow.

• skill.system.event.value.outOfOrderMessage.outOfOrderState—Holds the value of
the state property in the incoming postback payload, the "out-of-order" message.

• skill.system.event.value.outOfOrderMessage.currentState—Holds the value of the
current state.

Note:

Only components that set the state property in the postback payload can
enable the skill to respond when the user skips back in the flow. The
OAuthAccountLink component does not set this property.

Override Out-of-Order Message Handling with a Message Handling State
You can change the default behavior out-of-order message handling by mapping the Out-of-
Order Message system transition event to an Invoke Flow component that calls a flow you
have provided for handling out-of-order messages.

Chapter 26
Component Templates

26-111

The Metadata Property in Common Response Components
You use the Metadata property in Common Response components to define how
messages will be displayed to users.

You define the metadata at two levels: at the root level, where you define the output
and actions that are specific to the component itself, and at the response level, where
you define the display and behavior particular for the text, list, card, or attachment
messages that this component outputs.

metadata:
 responseItems:
 - text: "To which location do you want the pizza to be delivered?"
 type: "text"
 name: "What location"
 separateBubbles: true
 globalActions:
 - label: "Send Location"
 type: "location"
 name: "SendLocation"

Chapter 26
The Metadata Property in Common Response Components

26-112

Property Description Required?

responseItems A list of response items, each of
which results in a new message
sent to the chat client (or multiple
messages when you set iteration
for the response item using the
iteratorVariable property or
a combination of the
iteratorVariable and
iteratorExpression
properties). Define these
response items using these
values:
• text—Text bubbles (the text

property) that can include a
list of buttons that typically
display as buttons.

For composite bag entities
(meaning the variable
property names a composite
bag entity variable), you can
use a FreeMarker
expression prompt for a
value for the current entity
(“$
{system.entityToResolv
e.value.prompt}”).

• cards—A series of cards that
scroll horizontally or
vertically.

• attachment—An image,
audio, video, or file
attachment that users can
upload or download.

• editForm—An interactive
form.

• form
• dataSet

Yes

globalActions A list of global actions, meaning
that they are not specific to any
of the response items. These
actions typically display at the
bottom of the chat window. In
Facebook Messenger, for
example, these options are
called quick replies.

No

keywords A list of keywords that match the
keywords entered by a user to a
corresponding postback payload.
Keywords support text-only
channels where action buttons
don't render well.

No

You also configure the metadata for the various response items, such the text, card, or
attachment messages.

Chapter 26
The Metadata Property in Common Response Components

26-113

Property Description Required?

type The type of response item that determines the
message format. You can set a message as
text, attachment, or cards.

Yes

name A name for the response item that’s used
internally, It’s not used at runtime.

No

iteratorVariable Dynamically adds multiple text, attachment, or
keyword items to the response by iterating
through the variable elements.

No

iteratorExpressio
n

A FreeMarker expression used to display
values from an array that is nested within the
variable specified by the iteratorVariable
property.
For example, if you have set the value of the
iteratorVariable property to "team" and
that variable has an element called members
that you want to display the values of, you
would use the expression $
{team.value.members}.

No

visible Determines how messages display per user
input and channel. See The visible Property.

No

rangeStart If you've specified an iteratorVariable,
you can stamp out a subset of response items
by specifying the rangeStart property in
combination with the rangeSize property. You
can enter a hardcoded value or use a
FreeMarker expression that references a
context variable that holds the range start. By
using a rangeStart variable, you can then
page to the next set of data by setting the
rangeStart variable in the payload of the
browse option. You can see an example of the
rangeStart and rangeSize properties in the
CrcPizzaBot’s OrderPizza state.

No

rangeSize The number of response items that will be
displayed as specified by the
iteratorVariable and rangeStart
properties.

No

Chapter 26
The Metadata Property in Common Response Components

26-114

Property Description Required?

channelCustomProp
erties

A list of properties that trigger functions that
are particular to a channel. Because these
functions are platform-specific, they're outside
of the Common Response component and as
such, can't be controlled by either the
component's root-level or response item-level
properties. You can find an example of this
property in the CrcPizzaBot's OrderPizza
state.

channelCustomProperties:
 - channel: "facebook"
 properties:
 top_element_style:
"large"

For details on using
channelCustomProperties, as well as the
available properties for each channel, see
Channel-Specific Extensions.

No

Keyword Metadata Properties
You can create shortcuts for actions by defining the keyword and label properties. For
example, they allow users to enter S for Small.

The following snippet illustrates how you can have a set of keywords get generated from a
pizzaSize variable that holds the list of values defined for a PizzaSize entity.

responseItems:
- type: "text"

Chapter 26
The Metadata Property in Common Response Components

26-115

 text: "What size of pizza do you want?"
 actions:
 - label: "(${enumValue[0]?upper_case})${enumValue?
keep_after(enumValue[0])}"
 type: "postback"
 keyword: "${enumValue[0]?upper_case},${(enumValue?index)+1}"
 payload:
 variables:
 pizzaSize: "${enumValue}"
 iteratorVariable: "pizzaSize.type.enumValues"

Property Description Required?

keyword A list of keywords that trigger the
postback payload that's defined by
the payload property. You can use a
FreeMarker expression to return
keywords that the
interatorVariable property
generates from value list entities
using the type and enumValues
properties (iteratorVariable:
"pizzaSize.type.enumValues").

Yes

label The label for the action, which can be
a text string or an Apache
FreeMarker expression. For example,
an expression that indicates a two-
letter keyword is as follows:
label: "(${enumValue[0]?
upper_case}${enumValue[1]?
upper_case})${enumValue?
keep_after(enumValue[1])}"
For multi-language support, use an
Apache FreeMarker expression that
references a resource bundle.

No

skipAutoNumber Set to true to suppress the auto-
numbering for a key item when
Enable Auto Numbering on Cards
is set at either the Digital Assistant or
the skill level.

No

visible Determines how text messages
display per user input and channel.
See The visible Property

No

iteratorVariable Dynamically adds multiple keywords
by iterating over the items stored in
the specified variable. For example,
iteratorVariable:
"pizzaSize.type.enumValues".

No

Chapter 26
The Metadata Property in Common Response Components

26-116

Property Description Required?

iteratorExpression A FreeMarker expression used to
display values from an array that is
nested within the variable specified
by the iteratorVariable property.
For example, if you have set the
value of the iteratorVariable
property to "team" and that variable
has an element called members that
you want to display the values of, you
would use the expression $
{team.value.members}.

payload The postback payload, which has the
following properties.
• action—The target action.

• <variable names>—Sets
values for a context or user
variable.

You need to define at least one of
these properties. See The payload
Properties.

Extract Keywords from Messages
While the component triggers a postback when users enter a number, you can extend your
skill to support broader input like First, or let's try the 1st item. To do this, create an array
variable for the keyword phrases (e.g. first,1st,one, second, 2nd, two, etc.)

Then reference the variable in the keyword property in the metadata. For example, this is
what it might look like in a flow for ordering a pizza.

- keyword: "${pizzas.name},<#if pizzas?index <KEYWORDS_VAR.value?size>$
{numberKeywords.value[pizzas?index].keywords}</#if>,<#if pizzas?
index==cardsRangeStart?number+[cardsRangeStart?number+3,pizzaCount.value?
number-cardsRangeStart?number-1]?min>last</#if>"

In this definition, the last keyword is based on the current range start. It's set to the last pizza
currently display, based on the number of times that the customer has entered more.

The visible Property
Set the display according to the user input and channel using the optional visible property.

Property Description Required?

expression The Apache FreeMarker directive that conditionally
shows or hides text, card or attachments. For example,
the CrcPizzaBot’s OrderPizza state uses ""<#if
cardsRangeStart?number+4 < pizzas.value?
size &&
textOnly=='false'>true<#else>false</#if>"

No

Chapter 26
The Metadata Property in Common Response Components

26-117

Property Description Required?

channels:
 include:
 exclude:

For include and exclude, enter a comma-separated
list of the channel types for which the text, card, or
attachment should be shown (include) or hidden
(exclude). The valid channel values are:
• facebook
• webhook
• websdk
• androidsdk
• iossdk
• twilio
• slack
• msteams
• cortana
• test

metadata:
 responseItems:
 - type: "text"
 text: "This text is only shown in
Facebook Messenger"
 visible:
 channels:
 include: "facebook"
 - type: "text"
 text: "This text is NOT shown in
Facebook Messenger and Twilio"
 visible:
 channels:
 exclude: "facebook, twilio"
 actions:
 - label: "This action is only shown
on web channel"
 type: "postback"
 payload:
 action: "someAction"
 visible:
 channels:
 include: "websdk"

No

onInvalidUserInput A boolean flag that shows the text item or attachment
either when the user enters valid input (value=false)
or when the user enters input that’s not valid
(value=true).

No

onDisambiguation When true, only shows the response item, card ,or
action when a disambiguation prompt is shown.

No

Chapter 26
The Metadata Property in Common Response Components

26-118

Property Description Required?

entitiesToResolve Use this property to create customized message for
each composite bag item. Add a comma-delimited list of
composite bag item names for which the response item
should be shown (include) or hidden (exclude).

visible:
 entitiesToResolve:
 include: "Amount"

No

The Action Metadata Properties
You can define actions for a card or lists, a response type, or global actions for a component
(such as Facebook's quick reply actions). You can't configure actions for attachment
messages.

Property Description Required?

type The action type:
• postback—Returns a string or JSON object. The

returned content depends on the component. For
the System.CommonResponse component, the
postback returns a JSON object that contains the
state, action, and variables.

• share—Opens a share dialog in the messenger
client, enabling users to share message bubbles
with their friends.

• call—Calls the phone number that’s specified in
the payload.

• url—Opens the URL that’s specified in the payload
in the browser. For Facebook Messenger, you can
specify thechannelCustomProperties property
with webview_height_ratio,
messenger_extensions and fallback_url.

• location—Sends the current location. On
Facebook Messenger, current location is not
supported for text or card responses. It’s only
supported using a Quick Reply. For more
information, see the Facebook Messenger Platform
documentation.

Yes

label A label for the action. To localize this label, you can use
a FreeMarker expression to reference an entry in your
bot’s resource bundle.

Yes

iteratorVariable This option to adds multiple actions by iterating over the
items stored in the specified variable. You can’t use this
property with the share and location actions.

No

Chapter 26
The Metadata Property in Common Response Components

26-119

Property Description Required?

iteratorExpression A FreeMarker expression used to display values from an
array that is nested within the variable specified by the
iteratorVariable property.
For example, if you have set the value of the
iteratorVariable property to "team" and that
variable has an element called members that you want to
display the values of, you would use the expression $
{team.value.members}.

No

imageUrl The URL of image used for an icon that identifies and
action. You can use this property to display an icon for
the Facebook quick reply button (which is a global
action).

No

skipAutoNumbering When set to true, this property excludes an individual
postback action from having auto-numbering applied to
it. You can use this property for a text or card response.

No

channelCustomProperti
es

A list of properties that some trigger channel-specific
functionality that isn’t controlled by the standard action
properties. You can find an example in the CrcPizzaBot’s
OrderPizza state.

No

name A name that identifies the action on the Digital Assistant
platform. This name is used internally and doesn’t
display in the message.

No

visible Determines how attachments display per user input and
channel. See The visible Property.

No

payload A payload object for the call, url, and postback
response items. See The payload Properties.

No

The payload Properties

Property Description Required?

action An action transition that gets
triggered when user chooses this
action.

No

variables Sets the values for user or context
variables when you set the action
type to postback and add payload
properties that are named for the
context or user variables. When the
user taps the action, the variables
are set to the values specified by this
property.

No

url The URL of the website that opens
when users tap this action.

This property is required for the url
action type.

phoneNumber The phone number that's called
when a user taps this action.

This property is required for the call
action type.

How Do Non-Postback Actions Render on Text-Only Channels?

Some things to note for these action metadata properties for Common Response
components.

Chapter 26
The Metadata Property in Common Response Components

26-120

• If the text-only channel supports hyperlinks, you can use them in place of buttons when
the global action type is url or call.

• The share and location action types will be ignored or won’t render.

Tip:

Non-postback actions like url and call can’t be numbered, because they don’t get
passed to the Dialog Engine and therefore can’t get triggered by keywords.
Consequently, if you mix the two types of actions, your bot’s message can look
inconsistent because only some options get numbered.

Using the SDK, you can create more consistent output by disabling auto-numbering
for the postback. For example:

{
 "type": "text",
 "text": "Please choose one of the following options",
 "actions": [
 {
 "type": "url",
 "label": "Check out our website",
 "url": "http://www.oracle.com"
 },
 {
 "type": "postback",
 "label": "<#if autoNumberPostbackActions.value>Enter 1 to
Order pizza<#else>Order Pizza<#if>"
 "skipAutoNumber": true
 "keyword": "1"
 "postback": { ...}
 }
]
}

The Text Response Item
Here are the properties for text response items in Common Response components.

Property Description Required?

text The text that prompts the user. Yes

Chapter 26
The Metadata Property in Common Response Components

26-121

Property Description Required?

iteratorExpression A FreeMarker expression
used to display values from
an array that is nested
within the variable specified
by the iteratorVariable
property.
For example, if you have
set the value of the
iteratorVariable
property to "team" and
that variable has an
element called members
that you want to display the
values of, you would use
the expression $
{team.value.members}.

iteratorVariable Dynamically adds multiple text, attachment, or keyword
items to the response by iterating through the variable
elements.

No

footerText Text that displays at the bottom of the message (below
both the text and button actions, if any). Add a footer to
enhance the output on text-only channels. As described
in Footers, you can use FreeMarker expressions to
conditionalize the footer text for text-only channels.

No

separateBubbles You can define this property if you also define the
iteratorVariable property. When you set this
property to true, each text item is sent as separate
message, like Pizzas and Pastas in the CrcPizzaBot’s
ShowMenu and OrderPizza states. If you set it to
false, then a single text message is sent, one in which
each text item starts on a new line.

No

visible Determines how text messages display per user input
and channel. See The visible Property.

No

actions The postback action. For text-only support, you can
define keywords.

No

If you want to see an example of text response with actions, take a look at the
metadata for the CrcPizzaBot’s showMenu state:

Chapter 26
The Metadata Property in Common Response Components

26-122

Because it names postback as an action, it enables the skill to handle unexpected user
behavior, like selecting an item from an older message instead of selecting one from the most
recent message.

metadata:
 responseItems:
 - type: "text"
 text: "Hello ${profile.firstName}, this is our menu today:"
 footerText: "${(textOnly.value=='true')?then('Enter number to make
your choice','')}"
 name: "hello"
 separateBubbles: true
 actions:
 - label: "Pizzas"
 type: "postback"
 keyword: "${numberKeywords.value[0].keywords}"
 payload:
 action: "pizza"
 name: "Pizzas"
 - label: "Pastas"
 keyword: "${numberKeywords.value[1].keywords}"
 type: "postback"
 payload:
 action: "pasta"
 name: "Pastas"

The Card Response Item
Here are the properties for card response items in Common Response components.

Property Description Required?

cardLayout The card layout: horizontal (the default) and
vertical.

Yes

headerText Header text. For example: headerText: "<#if
cardsRangeStart?number == 0>Here are
our pizzas you can order
today:<#else>Some more pizzas for
you:</#if>" .

No

title The card title Yes

description The card description, which displays as a subtitle. No

imageUrl The URL of the image that displays beneath the
subtitle.

No

cardUrl The URL of a website. It displays as a hyperlink on
the card, which users tap to open.

No

iteratorExpression A FreeMarker expression used to display values
from an array that is nested within the variable
specified by the iteratorVariable property.
For example, if you have set the value of the
iteratorVariable property to "team" and that
variable has an element called members that you
want to display the values of, you would use the
expression ${team.value.members}.

Chapter 26
The Metadata Property in Common Response Components

26-123

Property Description Required?

iteratorVariable Dynamically adds multiple cards to the response
by iterating over the items stored in the variable
that you specify for this property. Although you
define the variable as a string, it holds a JSON
array when it’s used as an iterator variable. You
can reference properties in an object of the array
with an expression like $
{iteratorVarName.propertyName}. For
example, with an iterator variable named pizzas,
the name property of a pizza can be referenced
using the expression ${pizzas.name}.

No

rangeStart If you’ve specified an iteratorVariable, you
can stamp out a subset of cards by specifying the
rangeStart property in combination with the
rangeSize property. You can enter a hardcoded
value or use a FreeMarker expression that
references a context variable that holds the range
start. Using a rangeStart variable, you can then
page to the next set of data by setting the
rangeStart variable in the payload of a browse
option.

No

rangeSize The number of cards that will be displayed as
specified by the iteratorVariable and
rangeStart properties.

No

visible Determines how action labels rendere per user
input and channel. See The visible Property.

No

You can assign a set of actions that are specific to a particular card, or a list of actions
that are that are attached to the end of the card list.

The CrcPizzaBot’s OrderPizza state includes a card response item definition, as
shown in the following snippet:

responseItems:
 - type: "cards"
 headerText: "<#if cardsRangeStart?number == 0>Here are our pizzas
you can order today:<#else>Some more pizzas for you:</#if>"
 cardLayout: "vertical"
 name: "PizzaCards"
 actions:
 - label: "More Pizzas"
 keyword: "more"
 type: "postback"
 skipAutoNumber: true
 visible:
 expression: "<#if cardsRangeStart?number+4 < pizzas.value?
size && textOnly=='false'>true<#else>false</#if>"
 payload:
 action: "more"
 variables:
 cardsRangeStart: "${cardsRangeStart?number+4}"
 name: "More"
 cards:

Chapter 26
The Metadata Property in Common Response Components

26-124

 - title: "${(textOnly=='true')?then((pizzas?index+1)+'. ','')}$
{pizzas.name}"
 description: "${pizzas.description}"
 imageUrl: "${pizzas.image}"
 name: "PizzaCard"
 iteratorVariable: "pizzas"
 rangeStart: "${cardsRangeStart}"
 rangeSize: "4"
 actions:
 - label: "Order Now"
 type: "postback"
 payload:
 action: "order"
 variables:
 orderedPizza: "${pizzas.name}"
 orderedPizzaImage: "${pizzas.image}"
 name: "Order"
 visible:
 expression: "${(textOnly=='true')?then('false','true')}"

How Do Cards Render on Text-Only Channels?
Common Response components render responses as cards. When your skill runs in a text-
only channel, some of the card response item properties behave differently. Here are some
things to keep in mind.

• There is no vertical or horizontal scrolling (behaviors set by the cardLayout option). All
cards render within a single message bubble, which can include a header and footer. The
card title and description properties are separated by a new line character. You can
number the card's title proprety.

• Hyperlinks are still supported in text-only channels, with the address configured for
cardUrl property rendered within the bubble along with the title and description
properties, which are separated by new line character.

• Images specified by the imageURL property are rendered.

• The label text for action buttons displays (though the buttons themselves are not
rendered). Users can enter the text, or, if auto-numbering is enabled, they can enter the
corresponding number instead for added convenience.

Chapter 26
The Metadata Property in Common Response Components

26-125

Optimize Cards on Text-Only Channels with Keywords
Most cards have a single action, such as the CRCPizzaBot's Order Now button and a
global action like More for loading the next card in the carousel. As illustrated in How
Do Cards Render on Text-Only Channels?, the label for each action gets auto-
numbered when the skill runs on SMS/text-only channels. On these channels, a set of
cards is represented in a single bubble, which can become long and therefore difficult
to read. You can avoid this by configuring postback actions that aren't associated with
the action labels, but are executed by user keywords (1,2,3, cheese, or more, for
example).

Chapter 26
The Metadata Property in Common Response Components

26-126

You can hide the action labels when your skill runs on text-only channels using these general
guidelines.

In the metadata property:

• Define the keywords property. In the following CRCPizzaBot snippet, the ${pizza.name}
expression set for the keyword property defines a keyword for each pizza name:

metadata:
 keywords:
 - keyword: "${pizzas.name},<#if pizzas?index <numberKeywords.value?
size>${numberKeywords.value[pizzas?index].keywords}</#if>,<#if pizzas?
index==cardsRangeStart?number+[cardsRangeStart?number+3,pizzaCount.value?
number-cardsRangeStart?number-1]?min>last</#if>"
 visible:
 expression: "${textOnly.value}"
...

These keywords are only added when textOnly is true.

In the card metadata:

• Define the title property. In the following snippet, an expression uses the FreeMarker
index variable to prefix a number to the title (returned by ${pizzas.name} when the
textOnly variable value is true). This means that when a customer enters more, the skill
will load another message bubble containing the next set of pizzas starting at Number 5
(rangeSize: "4").

cards:
 - title: "${(textOnly=='true')?then((pizzas?index+1)+'. ','')}$
{pizzas.name}"
 description: "${pizzas.description}"
 imageUrl: "${pizzas.image}"
 name: "PizzaCard"

Chapter 26
The Metadata Property in Common Response Components

26-127

 iteratorVariable: "pizzas"
 rangeStart: "${cardsRangeStart}"
 rangeSize: "4"

• In the following snippet, the card actions ("Order" and "More Pizzas") are only
displayed when the textOnly variable value is false:

 - label: "More Pizzas"
 keyword: "more"
 type: "postback"
 skipAutoNumber: true
 visible:
 expression: "<#if cardsRangeStart?number+4 <
pizzas.value?size && textOnly=='false'>true<#else>false</#if>"

• Add a footer that displays only when the textOnly variable value is true.

footerText: "<#if textOnly=='true'>Enter a pizza number to make
your choice<#if cardsRangeStart?number+4 < pizzas.value?size>, or
type 'more' to see more pizzas</#if></#if>"

The Attachment Response Item
The attachment response item includes the following properties.

Property Description Required?

attachmentType The type of attachment:
image, audio, video, and
file.

Yes

attachmentURL The attachment’s download
URL or source.

Yes

The CrcPizzaBot’s Confirmation state uses an attachment response item to display
picture of the order, one that’s different from the item pictured in the menu.

metadata:
 responseItems:
 - text: "Thank you for your order, your ${pizzaSize} ${orderedPizza}
pizza\
 \ will be delivered in 30 minutes at GPS position $
{location.value.latitude},${location.value.longitude}!"
 type: "text"
 name: "conf"
 separateBubbles: true
 - type: "attachment"
 attachmentType: "image"
 name: "image"
 attachmentUrl: "${orderedPizzaImage}"

Chapter 26
The Metadata Property in Common Response Components

26-128

Field
A Field element contains the following properties:

Name Description Type Required?

displayType The field type String No

label The field label String Yes

channelExtensions A set of channel-specific
extension properties.

Map<ChannelType,
JSONObject>

No

marginTop The amount of vertical
space between this field
and the previous field in
the same column.
Allowable values are
none, medium (the
default), and large.

String No

labelFontSize The font size used for
the field label. Allowable
values are small,
medium (the default),
and large.

String No

labelFontWeight The font weight used for
the field label. Allowable
values are light,
medium (the default),
and bold.

String No

displayInTable A boolean FreeMarker
expression that allows
you to conditionally
include a field in table
layout in a dataSet
response item.

String No (defaults to true)

displayInForm A boolean FreeMarker
expression that allows
you to conditionally
include a field in an The
editForm Response
Item, or in the form
layout in a dataSet
response item

String No (defaults to true)

ReadOnly Field
Represents a read only field. All read only fields inherit the Field properties and have the
following additional properties:

Name Description Type Required?

value The field value string Yes

Chapter 26
The Metadata Property in Common Response Components

26-129

Name Description Type Required?

width The suggested
percentage of the total
available width that the
field should occupy in a
table layout.

number No

alignment The alignment of the
value within a table
column. The default
alignment is right.

"left", "center" and
"right"

No

Note:

In Release 23.06 of Oracle Digital Assistant, read only fields do not render
within input forms, even if they are received in the message payload.

TextField
The TextField element inherits all of the ReadOnly field properties. The displayType
for this element is "text". It has the following additional properties:

Name Description Type Required?

truncateAt The position at which
lengthly text is
truncated and an
ellipsis are added to
indicate the value has
been truncated.

An integer No

fontSize The font size used for
the field value.
Allowable values are
small, medium (the
default), and large.

String No

fontWeight The font weight used
for the field value.
Allowable values are
light, medium (the
default), and bold.

String No

LinkField
The LinkField element inherits all of the ReadOnly field properties. It has the
following additional properties:

Name Description Type Required?

linkLabel The label used for the
hyperlink

String No

imageUrl The URL of the image
that opens a link when
clicked.

String No

Chapter 26
The Metadata Property in Common Response Components

26-130

MediaField
The MediaField element inherits all of the ReadOnly field properties. It has the following
additional properties:

Name Description Type Required?

mediaType The field media type
("video", "audio",
"image")

String Yes

ActionField
The ActionField element inherits all of the ReadOnly field properties. It has the following
additional properties:

Name Description Type Required?

action The action that should
be performed when the
user clicks the action
button.

Action Yes

Form
Represents an array of fields along with a title.

Name Description Type Required?

title The title that's displayed
above the form layout

String No

fields A list of read only fields
in the form

List<ReadOnlyField> Yes

formRows A list of rows displayed
in the form.

List<FormRow>

actions A list of actions List<Action> No

selectAction The action that's
executed when the form
has been selected.
When users hover over
the form, the action's
label displays as a tool
tip (when supported by
the channel).

Action No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Chapter 26
The Metadata Property in Common Response Components

26-131

FormRow

Name Description Type Required?

columns A list of columns
displayed in the form
row.

List <Column> Yes

selectAction The actions that's
executed when the
form has been
selected. When users
hover over the form,
the action's label, it
displays as a tool tip
(when supported by
the channel).

Action No

separator Setting this property to
true inserts a
separator line above
the content in the form
row.

Boolean No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Column

Name Description Type Required?

fields A list of fields that
display vertically within
the column. These
fields must be
ReadOnlyField
instances when the
column is used in a
FormRow within a
Form. The fields can
be both read-only and
editable fields when
the FormRow is used
within an
EditFormMessagePa
yload.

List<Field> Yes

verticalAlignment The vertical alignment
of the column with
respect to the other
columns in the same
form row.

String No

Chapter 26
The Metadata Property in Common Response Components

26-132

Name Description Type Required?

width Determines the width
of the column within
the form row.
Allowable values are
auto (the default) and
stretch. When set to
stretch, the column
takes all the remaining
width after any auto-
width columns are
rendered. If there are
multiple columns set
to stretch, they
evenly divide the
remaining width.

String No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

The editForm Response Item
This response item forms the EditFormMessagePayload that's relayed through a channel to
the client.

Name Description Type Required?

type The response item type. editform Yes

title The form title String No

items A list of fields, both read
only and editable.

List<field> Yes

formColumns The number of columns
used for the form layout.
The default is one
column.

Integer No

actions A list of card-related
actions.

List<Action> No

channelExtensions A set of channel-specific
extension properties.
For example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The textInput Field
A field for entering free text. You can set the minimum and maximum characters for this field
and enforce formatting using regular expressions.

Chapter 26
The Metadata Property in Common Response Components

26-133

This snippet illustrates collecting user input by referencing the generated
submittedFields variable (a map).

 - displayType: textInput
 multiLine: true
 defaultValue: "${(submittedFields.value.Description)!''}"
 minLength: 10
 name: Description
 label: Description
 placeholder: What is the expense justification?
 clientErrorMessage: "Description must be 10 characters
minimum, 50 characters maximum."
 maxLength: 50
 required: true
 - displayType: textInput
 multiLine: true
 defaultValue: "${(submittedFields.value.Notes)!''}"
 minLength: 10
 name: Notes
 inputStyle: email
 label: Notes
 placeholder: Expense notes (optional)
 maxLength: 50
 required: false

This snippet illustrates collecting the user input by referencing a composite bag
variable.

Note:

The referenced composite bag item can be a STRING.

 - displayType: textInput
 serverErrorMessage: "$
{(system.entityToResolve.value.validationErrors['Tip'])!''}"
 defaultValue: "${(expense.value.Tip.originalString)!''}"
 displayInForm: "${(((expense.value.TipIncluded.yesno)!'') ==
'NO')?then(true, false)}"
 name: Tip
 label: Tip
 placeholder: Enter the tip
 clientErrorMessage: Tip is required
 required: true

Name Description Type Required?

displayType The field type. textInput (a String) Yes

Chapter 26
The Metadata Property in Common Response Components

26-134

Name Description Type Required?

name A unique name for the
field within the input
form. This name is
used as an identifier at
runtime.

String Yes

label The field label String No

defaultValue The initial value. Per
the FreeMarker
expression in the
template, the value is
an string when the
referenced bag item
(represented by
myText) has no value
("$
{(submittedFields
.value.myText)!''
}").

String No

validationRegular
Expression

A regular expression
that specifies the
format for the text
input.

String No

multiline Setting this property to
true allows users to
input multiple lines of
text.

Boolean No

minlength The minimum number
of characters required
to validate the field.
Users receive an error
message if they input
too few characters.

Integer No

maxLength The maximum
number, or limit of the
characters.

Integer No

inputStyle The format that's
enforced on the client.
The formats are:
• text
• email
• url
• tel
• password
The default format is
text when this property
has not been defined.

String No

Chapter 26
The Metadata Property in Common Response Components

26-135

Name Description Type Required?

placeholder A hint that describes
how to use this field.
This text displays
when users have not
yet entered any input.
For example:

What is the
expense
justification?
Enter between
10 and 50
characters.

String No

autoSubmit When set to true, the
form is partially
submitted when the
user has entered a
value for the field. In
FormSubmissionMes
sagePayload,
partialSubmitFiel
d is set to the name of
the field where
autoSubmit is set to
true. We recommend
that you configure
autosubmission for
conditionally
dependent fields. For
example, set this
property when one
field should be
displayed or hidden
based on the value of
another field, or when
the allowable values of
one field depend on
the value set in
another field. By
autosubmitting a field
that other fields
depend on, the form
can be updated
immediately with the
relevant changes to
the dependent fields.

String No

required Whether form
submission requires
user input in this field

boolean No

Chapter 26
The Metadata Property in Common Response Components

26-136

Name Description Type Required?

clientErrorMessag
e

The message used by
some clients (MS
Teams, Apple
Business Messaging)
when client-side
validation fails. On
Slack, this property is
only used when the
editable form is
displayed within the
conversation page. It
does not display in a
modal dialog.

String No

serverErrorMessag
e

An error message
that's sent to the client
when the server-side
validation of a form
field value fails. When
server-side errors of
this sort happen, we
recommend that the
current form message
be replaced, rather
than a new message
added to the
conversation by
configuring the
channelExtensions
property to indicate
the last form message
should be replaced.

String No

channelExtensions A set of channel-
specific extension
properties. For
example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The datePicker Field
A field with a drop down calender that allows users to select a day, month, and year. The
component's maxDate and minDate properties validate the user input.

Note:

The Slack channel does not support this minimum and maximum value validation.

This code snippet illustrates how to capture the user input using the generated
submittedFields variable (a map).

 - displayType: datePicker
 defaultValue: "${(submittedFields.value.Date)!''}"

Chapter 26
The Metadata Property in Common Response Components

26-137

 name: Date
 maxDate: "${.now?iso_utc[0..9]}"
 label: Expense Date
 placeholder: Pick a date in the past
 clientErrorMessage: Expense date is required and must be in
the past.
 required: true

This snippet illustrates how to capture user input by referencing a composite bag
variable.

 - displayType: datePicker
 serverErrorMessage: "$
{(system.entityToResolve.value.validationErrors['Date'])!''}"
 defaultValue: "${(expense.value.Date.date?number_to_date?
iso_utc)!''}"
 name: Date
 maxDate: "${.now?iso_utc[0..9]}"
 label: Expense Date
 placeholder: Pick a date in the past
 clientErrorMessage: Expense date is required and must be in
the past.
 required: true

Name Description Type Required?

displayType The field type datePicker (a
String)

Yes

id A unique name for the
field within the input
form. This name is
used as an identifier at
runtime.

String Yes

label A descriptive label. String No

defaultValue The default value for
the field, formatted as
YYYY-MM-DD. The
template defines this
String as an Apache
FreeMarker
expression that
returns an empty
string when the
referenced composite
bag item (represented
by myDate) has a null
value.

"$
{(submittedField
s1.value.myDate)
!''}"

String No

Chapter 26
The Metadata Property in Common Response Components

26-138

Name Description Type Required?

minDate The first date in the
range of allowable
days. The Slack
channel does not
support this client-side
validation.

String No

maxDate The last date in the
range of allowable
days. The template
defines this String as
the current day ("$
{.now?
iso_utc[0..9]}").
The Slack channel
does not support this
client-side validation.

String No

placeholder A description of the
expected input that
displays when the
user has not yet
selected a date.

String No

autoSubmit When set to true, the
form is partially
submitted when the
user has entered a
value for the field. In
FormSubmissionMes
sagePayload,
partialSubmitFiel
d is set to the name of
the field where
autoSubmit is set to
true. We recommend
that you configure
autosubmission for
conditionally
dependent fields. For
example, set this
property when one
field should be
displayed or hidden
based on the value of
another field, or when
the allowable values of
one field depend on
the value set in
another field. By
autosubmitting a field
that other fields
depend on, the form
can be updated
immediately with the
relevant changes to
the dependent fields.

String No

Chapter 26
The Metadata Property in Common Response Components

26-139

Name Description Type Required?

required Whether form
submission requires
user input in this field

boolean No

clientErrorMessag
e

The message used by
some clients (MS
Teams, Apple
Business Messaging)
when client-side
validation fails. On
Slack, this property is
only used when the
editable form is
displayed within the
conversation page. It
does not display in a
modal dialog.

String No

serverErrorMessag
e

An error message
that's sent to the client
when the server-side
validation of a form
field value fails. When
server-side errors of
this sort happen, we
recommend that the
current form message
be replaced, rather
than a new message
added to the
conversation by
configuring the
channelExtensions
property to indicate
the last form message
should be replaced.

String No

channelExtensions A set of channel-
specific extension
properties. For
example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The timePicker Field
Allows the user to enter a time value within a specified range. The component's
maxTime and minTime properties validate the user input.

Note:

The Slack channel does not support minimum and maximum value
validation.

Chapter 26
The Metadata Property in Common Response Components

26-140

The time picker field reads and writes the value in 24-hour format. The display format in the
client channel might use 12-hour format with an AM/PM indication, but it should always write
back a 24-hour formatted time.

The following snippet illustrates how to capture the user input using the generated
submittedFields variable (a map).

 - displayType: timePicker
 defaultValue: "${(submittedFields.value.Time.value?time.xs?
string['hh:mm a'])!''}"
 maxTime: "23:00"
 minTime: "13:00"
 name: Time
 label: Expense Time
 placeholder: What time was the expense?
 clientErrorMessage: This time is outside the limits.
 required: true

Name Description Type Required?

displayType The field type timePicker (a String) Yes

id A unique name for the
field within the input
form. This name is used
as an identifier at
runtime.

String Yes

label A label that describes
the time selection
parameters.

String Yes

defaultValue The initial value for this
field, in 24-hour format.
The template defines
this String as an Apache
FreeMarker expression
that returns an empty
string when the
referenced composite
bag item (represented
by myTime) has a null
value.

"$
{(submittedFields
.value.myTime)!''
}"

String No

minTime Defines the earliest
allowable time, entered
as HH:MM in 24-hour
format. For example,
00:00

String No

Chapter 26
The Metadata Property in Common Response Components

26-141

Name Description Type Required?

maxTime Defines the latest
allowable time, entered
as HH:MM, in 24-hour
format. For example,
13:00.

String No

placeholder A hint for the input. Per
the template, the
example placeholder
is Pick a time in
the morning,which
reflects the template's
example minTime and
maxTime values of
00:00 and 12:00.

String No

autoSubmit When set to true, the
form is partially
submitted when the user
has entered a value for
the field. In
FormSubmissionMessa
gePayload,
partialSubmitField
is set to the name of the
field where autoSubmit
is set to true. We
recommend that you
configure
autosubmission for
conditionally dependent
fields. For example, set
this property when one
field should be displayed
or hidden based on the
value of another field, or
when the allowable
values of one field
depend on the value set
in another field. By
autosubmitting a field
that other fields depend
on, the form can be
updated immediately
with the relevant
changes to the
dependent fields.

String No

required Whether form
submission requires
user input in this field

boolean No

Chapter 26
The Metadata Property in Common Response Components

26-142

Name Description Type Required?

clientErrorMessage The message used by
some clients (MS
Teams, Apple Business
Messaging) when
client-side validation
fails. For example, Time
must be in the
morning. On Slack, this
property is only used
when the editable form
is displayed within the
conversation page. It
does not display in a
modal dialog.

String No

serverErrorMessage An error message that's
sent to the client when
the server-side
validation of a form field
value fails. When server-
side errors of this sort
happen, we recommend
that the current form
message be replaced,
rather than a new
message added to the
conversation by
configuring the
channelExtensions
property to indicate the
last form message
should be replaced.

String No

channelExtensions A set of channel-specific
extension properties.
For example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The numberInput Field
Collects number input within a specified range.

 - displayType: numberInput
 minValue: 5
 serverErrorMessage: "${(amountError.value)!''}"
 maxValue: 500
 defaultValue: "${(submittedFields.value.Amount)!''}"
 name: Amount
 label: Amount
 placeholder: Enter the expense amount (do not include currency
symbol)
 clientErrorMessage: Amount is required and must be between 5 and 500
characters

Chapter 26
The Metadata Property in Common Response Components

26-143

Name Description Type Required?

displayType The field type numberInput (a
String)

Yes

name A unique name for the
field within the input
form. This name is
used as an identifier at
runtime.

String Yes

label A descriptive label for
the date value
required from the user.

String No

defaultValue The initial value. The
template defines this
String as an Apache
FreeMarker
expression that
returns an empty
string when the
referenced composite
bag item (represented
by myNumber) has a
null value. "$
{(submittedFields
.value.myNumber)!
''}"

String No

maxvalue The largest allowable
number. The Slack
channel does not
support minimum or
maximum value
validation.

Integer No

minvalue A smallest allowable
number

Integer No

placeholder A hint that describes
how to use the field.
This text displays
when the user has not
yet entered a number.

String No

Chapter 26
The Metadata Property in Common Response Components

26-144

Name Description Type Required?

autoSubmit When set to true, the
form is partially
submitted when the
user has entered a
value for the field. In
FormSubmissionMes
sagePayload,
partialSubmitFiel
d is set to the name of
the field where
autoSubmit is set to
true. We recommend
that you configure
autosubmission for
conditionally
dependent fields. For
example, set this
property when one
field should be
displayed or hidden
based on the value of
another field, or when
the allowable values of
one field depend on
the value set in
another field. By
autosubmitting a field
that other fields
depend on, the form
can be updated
immediately with the
relevant changes to
the dependent fields.

String No

required Whether form
submission requires
user input in this field

boolean No

clientErrorMessag
e

The message used by
some clients (MS
Teams, Apple
Business Messaging)
when client-side
validation fails. On
Slack, this property is
only used when the
editable form is
displayed within the
conversation page. It
does not display in a
modal dialog.

String No

Chapter 26
The Metadata Property in Common Response Components

26-145

Name Description Type Required?

serverErrorMessag
e

An error message
that's sent to the client
when the server-side
validation of a form
field value fails. When
server-side errors of
this sort happen, we
recommend that the
current form message
be replaced, rather
than a new message
added to the
conversation by
configuring the
channelExtensions
property to indicate
the last form message
should be replaced.

String No

channelExtensions A set of channel-
specific extension
properties. For
example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The singleSelect Field
Enables users to select a single value from a predefined list. You can style this control
as a list that users can query and select from, or as a set of radio buttons. This
element has channel-specific rendering:

• On the Microsoft Teams channel, this element always renders as a list (even when
layoutStyle is set to radioGroup) because Adaptive Cards do not support radio
buttons.

• On the Slack channel, this element renders as a list instead of a radio group when
there are more than ten options.

The following snippet illustrates populating the list using the generated
submittedFields variable (a map variable)

 - displayType: singleSelect
 defaultValue: "${(submittedFields.value.Type)!''}"
 name: Type
 options:
 - iteratorVariable: option
 iteratorExpression: "${expenseType.type.enumValues?
split(',')}"
 label: "${option}"
 value: "${option}"
 layoutStyle: list
 label: Expense Type
 placeholder: Select expense type

Chapter 26
The Metadata Property in Common Response Components

26-146

 clientErrorMessage: Expense type is required
 required: true

Tip:

Although clientErrorMessage is an optional attribute, we recommend that you
define it for skills running on the Microsoft Teams channel because Adaptive Cards
do not generate a message when the client-side validation fails.

This snippet illustrates how to populate the list by referencing a composite bag entity:

 - autoSubmit: true
 displayType: singleSelect
 serverErrorMessage: "$
{(system.entityToResolve.value.validationErrors['Type'])!''}"
 defaultValue: "${(expense.value.Type.value)!''}"
 name: Type
 options:
 - iteratorVariable: option
 iteratorExpression: "${expenseType.type.enumValues?split(',')}"
 label: "${option}"
 value: "${option}"
 layoutStyle: list
 label: Expense Type
 placeholder: Select expense type
 clientErrorMessage: Expense type is required
 required: true

Name Description Type Required?

displayType The field type singleSelect (a
String)

Yes

name A unique name for the
field within the input
form. This name is used
as an identifier at
runtime.

String Yes

label The field label text that
describes the contents
of the single-select list.

String Yes

Chapter 26
The Metadata Property in Common Response Components

26-147

Name Description Type Required?

defaultValue The default selection.
The template defines
this String value as an
Apache FreeMarker
expression that returns
an empty string when
the referenced
composite bag item
(represented by
mySingleSelect) has
a null value. "$
{(submittedFields.v
alue.mySingleSelect
)!''}"

String No

Chapter 26
The Metadata Property in Common Response Components

26-148

Name Description Type Required?

options An array of the available
options. The template
defines these options
statically with individual
label and value pairs
with String values, but
you can populate the
selection options
dynamically using the
iteratorVariable
and
iteratorExpression
properties:

defaultValue: "$
{(submittedFields
.value.Type)!''}"
 name:
Type
 options:
 -
iteratorVariable:
 option

iteratorExpressio
n: "$
{expenseType.type
.enumValues?
split(',')}"

label: "$
{option}"

value: "$
{option}"

In this snippet, the
expense type values
returned by the type
and enum properties are
sequenced in the list
using the split built-in.

List<option> Yes

layoutStyle How the single-select
options are laid out in
the form. They can be
grouped as a list
(layoutStyle: list)
or as radio buttons
(layoutStyle:
radioGroup).

String

Chapter 26
The Metadata Property in Common Response Components

26-149

Name Description Type Required?

placeholder A hint that describes
how to use the field. It
displays when the user
has not yet made the
selection. For example:

label:

placeholder:
Select an
expense type.
You can pick
only one.

This placeholder
displays for the list
layout rendering only.

String No

autoSubmit When set to true, the
form is partially
submitted when the user
has entered a value for
the field. In
FormSubmissionMessa
gePayload,
partialSubmitField
is set to the name of the
field where autoSubmit
is set to true. We
recommend that you
configure
autosubmission for
conditionally dependent
fields. For example, set
this property when one
field should be displayed
or hidden based on the
value of another field, or
when the allowable
values of one field
depend on the value set
in another field. By
autosubmitting a field
that other fields depend
on, the form can be
updated immediately
with the relevant
changes to the
dependent fields.

String No

required Whether form
submission requires
user input in this field

boolean No

Chapter 26
The Metadata Property in Common Response Components

26-150

Name Description Type Required?

clientErrorMessage The message used by
some clients (MS
Teams, Apple Business
Messaging) when
client-side validation
fails. On Slack, this
property is only used
when the editable form
is displayed within the
conversation page. It
does not display in a
modal dialog.

String No

serverErrorMessage An error message that's
sent to the client when
the server-side
validation of a form field
value fails. When server-
side errors of this sort
happen, we recommend
that the current form
message be replaced,
rather than a new
message added to the
conversation by
configuring the
channelExtensions
property to indicate the
last form message
should be replaced.

String No

channelExtensions A set of channel-specific
extension properties.
For example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The multiSelect Field
Allows users to choose one or more values from a predefined list. You can style this as a pick
list that users can query, or as a set of checkboxes. This element has channel-specific
rendering:

• On the Microsoft Teams channel, this element always renders as a list (even when
layoutStyle is set to checkboxes) because Adaptive Cards do not support multiselect
checkboxes.

• On the Slack channel, this element renders as a list instead of a set of multiselect
checkboxes when there are more than ten options.

This snippet illustrates how to populate the list by referencing the generated
submittedFields variable (a map).

 - displayType: multiSelect
 defaultValue: "${(submittedFields.value.Attendees?join(','))!''}"
 name: Attendees
 options:

Chapter 26
The Metadata Property in Common Response Components

26-151

 - iteratorVariable: option
 iteratorExpression: "${attendee.type.enumValues?
split(',')}"
 label: "${option}"
 value: "${option}"
 layoutStyle: list
 label: Attendees
 placeholder: Select one or more attendees

This snippet illustrates referencing a composite bag entity to populate the list.

 - displayType: multiSelect
 serverErrorMessage: "$
{(system.entityToResolve.value.validationErrors['Attendees'])!''}"
 displayInForm: "${(((expense.value.Type.value)!'') == 'Meal')?
then(true, false)}"
 defaultValue: "${(expense.value.Attendees?map(a -> a.value)?
join(','))!''}"
 name: Attendees
 options:
 - iteratorVariable: option
 iteratorExpression: "${attendee.type.enumValues?
split(',')}"
 label: "${option}"
 value: "${option}"
 layoutStyle: list
 label: Attendees
 placeholder: Select attendees
 clientErrorMessage: Attendees are required when expense type
is a Meal
 required: true

Name Description Type Required?

displayType The field type multiselect (a
String)

Yes

name A unique name for the
field within the input
form. This name is
used as an identifier at
runtime.

String Yes

label The field label that
describes the contents
for the multiSelect list.

String Yes

Chapter 26
The Metadata Property in Common Response Components

26-152

Name Description Type Required?

defaultValue The default selection.
The template defines
this String as an
Apache FreeMarker
expression that
returns an empty
string when the
referenced composite
bag item (represented
by myMultiSelect)
has a null value.

"$
{(submittedField
s.value.myMultiS
elect?
join(','))!''}"

List<String> No

Chapter 26
The Metadata Property in Common Response Components

26-153

Name Description Type Required?

options An array of the
available options. The
template defines these
options statically with
individual label and
value pairs with
String values, but you
can populate the
selection options
dynamically using the
iteratorVariable
and
iteratorExpressio
n properties:

defaultValue: "$
{(submittedField
s.value.Attendee
s?
join(','))!''}"
 name:
Attendees
 options:
 -
iteratorVariable
: option

iteratorExpressi
on: "$
{attendee.type.e
numValues?
split(',')}"

label: "$
{option}"

value: "$
{option}"

List<option> Yes

Chapter 26
The Metadata Property in Common Response Components

26-154

Name Description Type Required?

placeholder A hint that describes
how to use the field. It
displays when the
user has not made
any selections.

label: Attendees

placeholder:
Select one or
more attendees

This placeholder
displays for the list
layout only. It is not
available for checkbox
layouts.

String No

layoutStyle The layout for the
multiSelect options.
The options are list
and checkboxes.

String No

autoSubmit When set to true, the
form is partially
submitted when the
user has entered a
value for the field. In
FormSubmissionMes
sagePayload,
partialSubmitFiel
d is set to the name of
the field where
autoSubmit is set to
true. We recommend
that you configure
autosubmission for
conditionally
dependent fields. For
example, set this
property when one
field should be
displayed or hidden
based on the value of
another field, or when
the allowable values of
one field depend on
the value set in
another field. By
autosubmitting a field
that other fields
depend on, the form
can be updated
immediately with the
relevant changes to
the dependent fields.

String No

Chapter 26
The Metadata Property in Common Response Components

26-155

Name Description Type Required?

required Whether form
submission requires
user input in this field

boolean No

clientErrorMessag
e

The message used by
some clients (MS
Teams, Apple
Business Messaging)
when client-side
validation fails. On
Slack, this property is
only used when the
editable form is
displayed within the
conversation page. It
does not display in a
modal dialog.

String No

serverErrorMessag
e

An error message
that's sent to the client
when the server-side
validation of a form
field value fails. When
server-side errors of
this sort happen, we
recommend that the
current form message
be replaced, rather
than a new message
added to the
conversation by
configuring the
channelExtensions
property to indicate
the last form message
should be replaced.

String No

channelExtensions A set of channel-
specific extension
properties. For
example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

The toggle field
Presents a switch for two options. On the Slack channel, this control renders as check
boxes.

Note:

On the Slack channel, this element renders as a pair of radio buttons.

Chapter 26
The Metadata Property in Common Response Components

26-156

This snippet illustrates capturing the user input by referencing the generated submittedForms
variable (a map).

 - displayType: toggle
 defaultValue: "false"
 name: TipIncluded
 labelOn: Tip
 label: Tip Included?
 valueOff: "false"
 labelOff: No Tip
 valueOn: "true"

This snippet illustrates capturing user input by referencing a composite bag variable.

 - autoSubmit: true
 displayType: toggle
 defaultValue: "${(expense.value.TipIncluded.yesno)!'YES'}"
 name: TipIncluded
 labelOn: "Yes"
 label: Tip Included?
 valueOff: "NO"
 labelOff: "No"
 required: false
 valueOn: "YES"

Name Description Type Required?

displayType The field type toggle (a String) Yes

id A unique name for the
field within the input
form. This name is used
as an identifier at
runtime.

String Yes

label A label that describes
what happens when the
toggle is switched on.

String Yes

Chapter 26
The Metadata Property in Common Response Components

26-157

Name Description Type Required?

defaultValue The initial value. If you
want the toggle to be
initially on, set this to the
value of valueOn. The
template defines this
String as an Apache
FreeMarker expression
that switches on the
toggle when the
referenced composite
bag item (represented
by myToggle) has a
null value.

"$
{(submittedFields
.value.myToggle)!
'true'}"

String Yes

valueOff The value when the
toggle is switched off.
The default value, per
the template, is false
(valueOff:
"false").

String Yes

valueOn The value when the
toggle is switched on.
The default value in the
template is true (value
On: "true")

String Yes

labelOn A label for the toggle's
on position

String No

labelOff A label for the toggle's
off position.

String No

channelExtensions A set of channel-specific
extension properties.
For example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

Text Field
A field element contains the following properties:

Name Description Type Required?

displayType The element type. text (a String) Yes

name A unique name for the
field within the input
form. This name is
used as an identifier at
runtime.

String Yes

Chapter 26
The Metadata Property in Common Response Components

26-158

Name Description Type Required?

value The raw value for the
field

String Yes

width The percentage of the
total available width
that the item should
occupy in a table
layout. The remaining
width, starting from
100 minus the items
with a width specified,
is equally divided over
the items without a
width specified.

Integer No

alignment The alignment of the
value with a table
column.

left, center and
right. The default is
right.

No

channelExtensions A set of channel-
specific extension
properties. For
example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

Link
A field element contains the following properties:

Name Description Type Required?

displayType The field type link (a String) Yes

name A unique name for the
field within the input
form. This name is used
as an identifier at
runtime.

String Yes

value The raw value for the
field

String Yes

width The percentage of the
total available width that
the item should occupy
in a table layout. The
remaining width, starting
from 100 minus the
items with a width
specified, is equally
divided over the items
without a width
specified.

Integer No

Chapter 26
The Metadata Property in Common Response Components

26-159

Name Description Type Required?

alignment The alignment of the
value with a table
column. Allowable
values are left,
center and right. The
default is right.

String No

channelExtensions A set of channel-specific
extension properties.
For example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

EditFormMessagePayload
This payload defines the editable form that is sent to the channels.

Name Description Type Required?

type The message payload
type.

editForm (a String) Yes

headerText The header text that's
displayed above the
form.

String No

footerText The text that displays
below the form and
the actions, but above
the global actions.

String No

title The form title String No

formRows A list of rows displayed
in the form.

List<FormRow> No

fields A list of fields, both
read only and editable.

List<field> Yes

formColumns The number of
columns used for the
form layout. The
default is one column.

Integer No

actions A list of actions. List<Action> No

globalActions A list of global actions.
The rendering of these
actions is channel-
specific. For example,
actions on Facebook
are rendered by
reply_actions.

List<Action> No

channelExtensions A set of channel-
specific extension
properties. For
example, you may
want to set the
maximum height for
Facebook Messenger.

Map<ChannelType,
JSONObject>

No

Chapter 26
The Metadata Property in Common Response Components

26-160

Auto-Submitting a Field
When a field has the autoSubmit property set to true, the client sends a
FormSubmissionMessagePayload with the submittedField map containing either the valid
field values that have been entered so far, or just the value of the autosubmitted field (the
implementation is channel-specific). Any fields that are not set yet (regardless of whether
they are required), or fields that violate a client-side validation are not included in the
submittedField map. If the auto-submitted field itself contains a value that's not valid, then
the FormSubmissionMessagePayload is not sent, and the client error message displays
instead.

Note:

Microsoft Teams does not support autosubmission.

SubmitFormAction

Name Description Type Required?

type The action type submitForm (a String) Yes

postback The postback payload,
which can include an
action property for
triggering navigation.
We recommend that
value for this property
be taken from the
FormSubmissionMessa
gePayload postback
object.

JSONObject No

variable The name of the
variable that stores the
submitted values. These
values are in
FormSubmissionMessa
gePayload.

String No

processingMethod The processing
instructions used by the
System.ResolveEntit
ies component for the
submitted field values.
You can set this to
FormSubmissionMessa
gePayload, but you can
also set:
• mapVariable
• separateVariabl

es
• compositeBag
.

String Yes

Chapter 26
The Metadata Property in Common Response Components

26-161

Name Description Type Required?

label The label for the display
action.

String Yes – You must specify
at least one label
value or imageUrl
value.

imageUrl The image for the
display action.

String You must specify at
least one label or
imageUrl value.

channelExtensions A set of channel-specific
extension properties.
For example, you may
want to set the max
height for Facebook
Messenger.

Map<ChannelType,
JSONObject>

No

FormSubmissionMessagePayload
This payload is back by the channels to the ODA pipeline when the user has submitted
a form by clicking a SubmitFormAction button. It has the following properties:

Name Description Type Required?

type The type of the
payload.

"formSubmission"
(a String value)

Yes

submittedFields Key-value pairs of the
submitted field values.
The key is the name
(ID) of the field.

Map<String, Object> Yes

postback The postback payload,
which might include
an action property to
trigger navigation. We
recommend that the
value be taken from
the
SubmitFormAction

JSONObject No

partialSubmitFiel
d

The name of the field
that triggers a partial
form submission.
Fields with the
autosubmission
enabled
(autoSubmit: true)
can trigger a partial
form submission.

String No

Updating the Input Form
When the end user submits the form, either because a field has autosubmit set to
true, or because the user tapped the submitForm action button, there might be
situations in which the user did not provide all the required information, or some field
values contain an invalid value. In such a case, the dialog engine will send a new
EditFormMessagePayload, but that message should replace the previous form
message. To instruct the client channel to replace the previous form message, instead

Chapter 26
The Metadata Property in Common Response Components

26-162

of adding a new form message to the conversation, configure the channel extension property
replaceMessage as follows:

- channel: ${system.channelType}
 properties:
 replaceMessage: "${system.message.messagePayload.type ==
'formSubmission'}"

At runtime, this property is added to the root-level channelExtensions element of the
common response component payload:

...,
"channelExtensions": { "replaceMessage": "true"}

The dataSet Response Item
The dataSet response item enables you to create tables and forms. It includes the following
properties.

Property Description Required?

layout The layout style used to render
the dataSet. Allowable values are
table, form and tableForm.

Yes

formColumns The number of columns used to
render items in a form layout.
Only applicable when the layout
is form or tableForm. Default
to 1.

No

showFormButtonLabel The label used to open the form
dialog in a tableForm layout
style. This is currently only used
on Slack channels. The other
channels support expanding the
table row to show the additional
items in a form layout

No

data Used to define a data entry in the
dataSet. See DataSet data
Properties

Yes

DataSet data Properties
The data property of the dataSet response item includes the following sub-properties.

Property Description Required?

iteratorExpression Defines a Freemarker expression
that returns a list of entries to
iterate over, allowing you to
dynamically add multiple data
entries to the dataSet.

No

Chapter 26
The Metadata Property in Common Response Components

26-163

Property Description Required?

iteratorVariable Specifies the name of the iterator
variable that you can use to
reference the current data entry
within the list of data entries that
are iterated over.

No

rangeSize The number of data entries that
will be displayed at once when
you have specified the
iteratorExpression and
iteratorVariable properties.

No

visible Determines how messages
display per user input and
channel. See The visible
Property.

No

formTitle The title used for the form dialog
in tableForm layout in the Slack
channel. Defaults to View
details.

No

items The data items that should be
displayed for each data entry.
See DataSet Data Item
Properties.

Yes

DataSet Data Item Properties

Property Description Required?

width The percentage (expressed as
an integer) of total available
width the item should use in a
table layout. The remaining
width, starting from 100 minus
the items with a width
specified, is equally divided
over the items without a width
specified.

No

alignment The alignment of the value
with a table column. Allowable
values are left, center, and
right. Defaults to left.

No

displayType The display type of the item.
Allowable values are text and
link. Defaults to text.

No

linkLabel The label used for the
hyperlink when the display
type is set to link. Defaults to
the value of the item's value
property.

No

Chapter 26
The Metadata Property in Common Response Components

26-164

Property Description Required?

displayInTable Defines whether the item
should be displayed as a
column in the table. This
property is only applicable in
tableForm layout. Defaults to
false.

No

displayInForm Defines whether the item
should be displayed as a field
in the form. This property is
only applicable in tableForm
layout. Defaults to false.

No

label The label of the data item. Yes

value The value of the data item. Yes

The system.entityToResolve Variable
The system.entityToResolve variable provides information on the current status of the entity
resolution process as performed by Resolve Entities and Common Response components.
You will typically reference the properties of this variable value in the Common Response
component metadata when you want to customize messages. You can use it to define the
logic for an entity's error message, or for various properties that belong to the Resolve
Entities and Common Response components. Append the following properties to return the
current entity value:

• userInput
• prompt
• promptCount
• updatedEntities
• outOfOrderMatches
• disambiguationValues
• enumValues
• needShowMoreButton
• rangeStartVar
• nextRangeStart
You can also reference the properties in FreeMarker expressions used bag item properties
like prompt, errorMessage and validation rules.

Here's an example of using this variable to return the current user input in an entity's error
message:

Sorry,'${system.entityToResolve.value.userInput!'this'}' is not a valid
pizza size.

Chapter 26
The Metadata Property in Common Response Components

26-165

Here's an example of using various system.entityToResolve definitions. Among
these is a message defined for the text property, which confirms an update made to a
previously set entity value using an Apache FreeMarker list directive and the
updatedEntities property.

 metadata:
 responseItems:
 - type: "text"
 text: "<#list system.entityToResolve.value.updatedEntities>I
have updated <#items as ent>${ent.description}<#sep> and </#items>. </
#list><#list system.entityToResolve.value.outOfOrderMatches>I got
<#items as ent>${ent.description}<#sep> and </#items>. </#list>"
 - type: "text"
 text: "${system.entityToResolve.value.prompt}"
 actions:
 - label: "${enumValue}"
 type: "postback"
 iteratorVariable: "system.entityToResolve.value.enumValues"

For global actions, this variable controls the Show More global action with the
needShowMoreButton, rangeStartVar, and the nextRangeStart properties:

 globalActions:
 - label: "Show More"
 type: "postback"
 visible:
 expression: "$
{system.entityToResolve.value.needShowMoreButton}"
 payload:
 action: "system.showMore"
 variables:
 ${system.entityToResolve.value.rangeStartVar}: $
{system.entityToResolve.value.nextRangeStart}
 - label: "Cancel"
 type: "postback"
 visible:
 onInvalidUserInput: true
 payload:
 action: "cancel"

The Show More label must include a system.showMore (action: "system.showMore").
Otherwise, it won't function.

User Message Validation
Common Response components validate the user-supplied free-text value that gets
set for the variable property. For example, when the variable property is defined as
a primitive type (string, boolean, float, double), these components try to reconcile the
value to one of the primitive types. When the variable property is defined for an entity-
type variable, these components call the NLP Engine to resolve the value to one of the
entities. But when these components can’t validate a value, your bot can display an
error message.

Chapter 26
The Metadata Property in Common Response Components

26-166

By referencing the system.invalidUserInput variable, you can add a conditional error
message to your bot’s replies. This variable is a boolean, so you can use it as a condition
with the FreeMarker if directive to display the message only when a user enters an invalid
value. Otherwise, the message is hidden. The CrcPizzaBot’s AskPizzaSize state referenced
in the following snippet demonstrates this by adding this variable as condition within a
FreeMarker template that’s evaluated by the if directive. Because it’s set to true, the bot
adds an error message to the standard message (What size do you want?) when the user
enters an invalid value.

metadata:
 responseItems:
 - type: "text"
 text: "<#if system.invalidUserInput == 'true'>Invalid size, please try
again.\
 \ </#if>What size do you want?"
 name: "What size"
 separateBubbles: true

Migrate to Visual Dialog Mode
Here's what you need to know about migrating a skill from an OBotML-authored dialog flow to
a Visual Flow Designer skill.

You start the migration process by clicking Migrate to Flow Designer in the dialog flow
editor.

Chapter 26
Migrate to Visual Dialog Mode

26-167

However, before you take that step, you may need to make some adjustments to the
skill or the OBotML definition to ensure the following:

• The skill is Version 21.12 or higher

• There are no transitions that use FreeMarker to express states. For example, a
transition like equal: "${system.actualState}" will prevent migration.

• There are no System.QnA states. Replace Q&A content with answer intents.

Note:

If the OBotML definition has 50 or more states, the migration will still
proceed, but will not result in an intent flow populated with states. It will only
contain the flow-level variables.

To locate any issues within the OBotML definition, first validate your skill, then review

the Findings' Migrate window for the validation errors that you must fix before

migration, the warnings , and the informational messages that describe how
the states with deprecated properties or components, such as
System.ConditionEquals, System.ConditionExists, System.List, System.Text and
System.Intent will be interpolated in the Visual Flow Designer.

Chapter 26
Migrate to Visual Dialog Mode

26-168

What Happens When You Migrate to a Visual Flow Designer Skill
A successful migration results in a new skill. By default, its version is noted as Version 1.0–
migrated in the tile. (You can change the value of the skill version in the Migration dialog).

Chapter 26
Migrate to Visual Dialog Mode

26-169

The new version of the skill is accompanied by a migration log that documents that
conversion of deprecated properties and components.

8:5 The variable 'iResult' will not be migrated. In visual dialogs,
the intent resolution is done in the dialog engine and the NLP result
is available through the 'skill.system.nlpresult' variable.
9:5 The variable 'rb' will not be migrated. This variable is pre-
defined now.
84:5 The state 'welcome' uses the 'System.Output' component, which is
obsolete in visual dialog mode. It will be replaced with a
'System.CommonResponse' component.
92:5 The state 'getIntent' uses the System.Intent component, which is
obsolete in visual dialog mode. It will be replaced with a
System.Switch component. Intent resolution in visual dialog mode
happens automatically when starting a new session and after ending a
root flow.
115:7 The property 'values' in the state 'startDetermineWineType' is
obsolete in visual dialog mode and will be removed.
122:9 The 'NONE' transition action in the state
'startDetermineWineType' is obsolete in visual dialog mode and will be
removed. The 'next' transition is used instead.
...

The Visual Flow Designer skill contains both a main flow and a single intent flow. All of
the intents are mapped to this flow. Within this flow, the intent routing is accomplished
using a Switch state where the intent names have been transcribed as action
transitions. The routing logic is executed using $
{skill.system.event.value.intent.intentName}.

Testing of Visual Flow Designer iteration of the flow may reveal that the migration
introduced regressions. For example, changes to the transition definitions may have
disconnected segments of the flow. You may also find that the single flow created from
the migration is unwieldy. In this case, you can modularize the functionality by copying
states into a separate flow.

Migration Summary

OBotML Artifact(s)... ...Become the Following In Visual Flow
Designer

Intents Intent events and unresolvedIntent are all
mapped to the single intent flow.

Context Variables Flow-level variables. The rb variable is not
migrated; the system.rb variable is used
instead.

System.Intent states Transcribed as a Switch state. The intents are
named as action transitions. The routing is
determined using $
{skill.system.event.value.intent.int
entName}. The transitions that point back to a
System.Intent state route to the End Flow
state for intent matching.

System.List and System.Text states Common Response > Resolve Entities states

Chapter 26
Migrate to Visual Dialog Mode

26-170

OBotML Artifact(s)... ...Become the Following In Visual Flow
Designer

System.Output states Common Response states

System.ConditionEquals and
System.ConditionExists states

Switch states

Component properties:
• nlpResultVariable property in

System.CommonResponse and
System.ResolveEntities

• cancelPolicy in
System.ResolveEntities

• autoNumberPostbackActions
• translate
• values in System.Switch component

• insightsIncludes
• insightsEndConversation

These properties are removed.
cancelPolicy in Resolve Entities now
defaults to immediate

FreeMarker expressions used in OBotML,
entity properties and bag item properties:
• system.errorState
• system.errorAction
• system.actualState
• system.expectedState
• system.requestedState
• system.errorState
• rb

Equivalent expressions in Visual Flow
Designer
• skill.system.event.value.dialogE

rror.errorState
• skill.system.event.value.dialogE

rror.errorMessage
• skill.system.event.value.outOfOr

derMessage.outOfOrderState
• skill.system.event.value.outOfOr

derMessage.currentState
• skill.system.event.value.authori

zeUser.requestedState
• skill.system.event.value.outOfOr

derMessage.errorState
• skill.system.rb

error transition system.dialogError transition action

attachmentReceived and
locationReceived transition actions

Removed

Transitions using FreeMarker expressions
(when the FreeMarker expression can be
resolved to an actual state).

Switch states

return transitions Migrated to End Flow state

NONE transition in System.Switch next transition.

Custom component names The custom component name is prefixed with
the custom component name. The two names
are separated by a colon.

iteratorExpression The iteratorExpression property is added
to the metadata when an iteratorVariable
is used.

agentActions property of
System.AgentInitiation

Comma-delimited lists of action names are
converted to an arrays with action, label, and
description properties.

Chapter 26
Migrate to Visual Dialog Mode

26-171

27
LLM Integration

Oracle Digital Assistant's integration of large language models (LLMs) enables you to
enhance your skills with generative AI capabilities.

These capabilities include:

• Handling small talk with a user.

• Generating written summaries of data.

• Automating challenging or repetitive business tasks, such as those required for talent
acquisition.

• Providing sentiment analysis of a given piece of text to determine whether the it reflects a
positive, negative, or neutral opinion.

Using the Invoke Large Language Model component (the LLM component), you can plug
these capabilities into your dialog flow wherever they're needed. This dialog flow component
is the primary integration piece for generative AI in that it contacts the LLM through a REST
call, then sends the LLM a prompt (the natural language instructions to the LLM) along with
related parameters. It then returns the results generated by the model (which are also known
as completions) and manages the state of the LLM-user interactions so that its responses
remain in context after successive rounds of user queries and feedback. The LLM component
can call any LLM. You can add one or more LLM component states (or LLM blocks) to flows.
You can also chain the LLM calls so that the output of one LLM request can be passed to a
subsequent LLM request.

Besides the LLM component, the other major pieces of LLM integration include endpoints for
the LLM service provider, and transformation handlers for converting the request and reponse
payloads to and from Digital Assistant's format, the Common LLM Interface (CLMI). Here are
the high-level steps for adding these and other components to create the LLM integration for
your skill:

• Register an API service in your Digital Assistant instance for the LLM's REST endpoint.

• For your skill, create a LLM Transformation Event Handler to convert the LLM request
and response payloads to and from CLMI.

Note:

We provide prebuilt handlers if you're integrating your skill with the Cohere
model or with Oracle Generative AI Service. If you're accessing other models,
such as Azure OpenAI, you can update the starter transformation code that we
provide.

• Define an LLM service for your skill that maps to the REST service that you have
registered to the instance with an LLM Transformation Handler.

• In the flow where you want to use the LLM, insert and configure an LLM component by
adding your prompt text and setting other parameters.

27-1

Tip:

As a best practice, we recommend that you use the Prompt Builder
(accessed through the LLM component) to perfect your prompt.

LLM Services
Your first task in enabling your skill to use a Large Language Model (LLM) is creating a
service that accesses the LLM provider's endpoint from Oracle Digital Assistant.

You can create an LLM service manually or by importing an YAML definition. You can
also convert an existing REST service into an LLM service by clicking Convert to LLM
in the REST Services tab.

Note:

If your skill calls the Cohere models via Oracle Generative AI Service, then
there are a few tasks that you'll need to perform to allow your Oracle Digital
Assistant instance access to translation, text generation, text summarization,
and embedding resources. Among these tasks is creating tenant resource
policies which may require assistance from Oracle Support.

Create an LLM Service
To create the service manually:

1. Select > Settings > API Services in the side menu.

Chapter 27
LLM Services

27-2

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingpolicies.htm#Managing_Policies
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingpolicies.htm#Managing_Policies

2. Open the LLM Services tab. Click +Add LLM Service.

3. Complete the dialog by entering a name for the service, its endpoint, an optional
description, and its methods. Then click Create.

• For Cohere's Command model, enter the endpoint to the Co.Generate endpoint:

https://api.cohere.ai/v1/generate

• For Azure OpenAI, specify a completions operation to enable the multiple text
completions needed for multi-turn refinements. For example:

https://{your-resource-name}.openai.azure.com/openai/deployments/
{deployment-id}/completions?api-version={api-version}

• For the Cohere command, command-light, and Llama models via Oracle Cloud
Infrastructure (OCI) Generative AI:

https://generativeai.aiservice.us-chicago-1.oci.oraclecloud.com/
20231130/actions/generateText

• For the Cohere summarization model via Oracle Cloud Infrastructure (OCI)
Generative AI:

https://inference.generativeai.us-chicago-1.oci.oraclecloud.com/
20231130/actions/summarizeText

4. Enter the authentication type. The authentication type required for the endpoint depends
on the provider and the model. Some require that an API key be passed as header, but
others, like Cohere, require a bearer token. For the Oracle Generative AI Cohere models,
choose OCI Resource Principal.

5. Specify the headers (if applicable).

Chapter 27
LLM Services

27-3

https://docs.cohere.com/reference/generate
https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

6. For the request content type, choose application/json as then content type, then
add the provider-specific POST request payload, and if needed, the static
response (for dialog flow testing), and error payload samples.

7. Check for a 200 response code by clicking Test Request.

Import an LLM Service
If you're importing the service:

1. click Import LLM Services (or choose Import LLM Services from the More
menu).

2. Browse to, and select, a YAML file with LLM service definition. The YAML file looks
something like this:

exportedRestServices:
- endpoint: "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/generateText"
 name: "genAI_cohere"
 authType: "resourcePrincipal"
 restServiceMethods:
 - restServiceMethodType: "POST"
 contentType: "application/json"
 statusCode: 200
 methodIncrementId: 0
 requestBody: "{\n \"compartmentId\":
\"ocid1.compartment.oc1..aaaaaaaaexampleuniqueID\"\
 ,\n \"servingMode\": {\n \"servingType\":
\"ON_DEMAND\",\n \
 \ \"modelId\": \"cohere.command\"\n },\n

Chapter 27
LLM Services

27-4

\"inferenceRequest\": {\n \
 \ \"runtimeType\": \"COHERE\",\n \"prompt\": \"Tell me a
joke\",\n\
 \ \"maxTokens\": 1000,\n \"isStream\":
false,\n \"frequencyPenalty\"\
 : 1,\n \"topP\": 0.75,\n \"temperature\": 0\n }\n}"
 mockResponsePayload: "{\n \"modelId\": \"cohere.command\",\n
\"modelVersion\"\
 : \"15.6\",\n \"inferenceResponse\": {\n
\"generatedTexts\": [\n \
 \ {\n \"id\":
\"6fd60b7d-3001-4c99-9ad5-28b207a03c86\"\
 ,\n \"text\": \" Why was the computer cold?\\n\
\nBecause it left\
 \ its Windows open!\\n\\nThat joke may be dated, but I hope you
found it amusing\
 \ nonetheless. If you'd like to hear another one, just let me know.
\\n\\nWould\
 \ you like to hear another joke? \"\n }
\n],\n \"timeCreated\"\
 : \"2024-02-08T11:12:04.252Z\",\n \"runtimeType\":
\"COHERE\"\n }\n\
 }"
 restServiceParams: []
- endpoint: "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/generateText"
 name: "genAI_cohere_light"
 authType: "resourcePrincipal"
 restServiceMethods:
 - restServiceMethodType: "POST"
 contentType: "application/json"
 statusCode: 200
 methodIncrementId: 0
 requestBody: "{\n \"compartmentId\":
\"ocid1.compartment.oc1..aaaaaaaaexampleuniqueID\"\
 ,\n \"servingMode\": {\n \"servingType\":
\"ON_DEMAND\",\n \
 \ \"modelId\": \"cohere.command-light\"\n },\n
\"inferenceRequest\": {\n\
 \ \"runtimeType\": \"COHERE\",\n \"prompt\": \"Tell
me a joke\"\
 ,\n \"maxTokens\": 1000,\n \"isStream\":
false,\n \"frequencyPenalty\"\
 : 1,\n \"topP\": 0.75,\n \"temperature\": 0\n }\n}"
 mockResponsePayload: "{\n \"modelId\": \"cohere.command-
light\",\n \"modelVersion\"\
 : \"15.6\",\n \"inferenceResponse\": {\n
\"generatedTexts\": [\n \
 \ {\n \"id\": \"dfa27232-90ea-43a1-8a46-
ef8920cc3c37\"\
 ,\n \"text\": \" Why don't scientists trust atoms?\
\n\\nBecause\
 \ they make up everything!\\n\\nI hope you found that joke to be a
little amusing.\
 \ Would you like me to tell you another joke or explain a little

Chapter 27
LLM Services

27-5

more about\
 \ the purpose of jokes and humor? \"\n }
\n],\n \"\
 timeCreated\": \"2024-02-08T11:15:38.156Z\",\n
\"runtimeType\": \"COHERE\"\
 \n }\n}"
 restServiceParams: []
- endpoint: "https://inference.generativeai.us-
chicago-1.oci.oraclecloud.com/20231130/actions/generateText"
 name: "genAI_llama"
 authType: "resourcePrincipal"
 restServiceMethods:
 - restServiceMethodType: "POST"
 contentType: "application/json"
 statusCode: 200
 methodIncrementId: 0
 requestBody: "{\n \"compartmentId\":
\"ocid1.compartment.oc1..aaaaaaaaexampleuniqueID\"\
 ,\n \"servingMode\": {\n \"servingType\":
\"ON_DEMAND\",\n \
 \ \"modelId\": \"meta.llama-2-70b-chat\"\n },\n
\"inferenceRequest\":\
 \ {\n \"runtimeType\": \"LLAMA\",\n \"prompt\":
\"Tell me a joke\"\
 ,\n \"maxTokens\": 1000,\n \"isStream\":
false,\n \"frequencyPenalty\"\
 : 1,\n \"topP\": 0.75,\n \"temperature\":
0\n }\n}"
 mockResponsePayload: "{\n \"modelId\": \"meta.llama-2-70b-
chat\",\n \"modelVersion\"\
 : \"1.0\",\n \"inferenceResponse\": {\n
\"created\": \"2024-02-08T11:16:18.810Z\"\
 ,\n \"runtimeType\": \"LLAMA\",\n \"choices\":
[\n \
 \ {\n \"finishReason\":
\"stop\",\n \"index\"\
 : 0,\n \"text\": \".\\n\\nI'm not able to
generate jokes or humor\
 \ as it is subjective and can be offensive. I am programmed
to provide informative\
 \ and helpful responses that are appropriate for all
audiences. Is there anything\
 \ else I can help you with?\"\n }\n]\n }
\n}"
 restServiceParams: []

3. Confirm that the request returns a 200 response by clicking Test Request.

Tip:

If the imported service displays in the REST Services tab instead of the
LLM Services tab, select the service in the REST Services tab, then click
Convert to LLM.

Chapter 27
LLM Services

27-6

Generative AI Service
Before you create an LLM service that accesses the Cohere summarization and text
generation models through Oracle Cloud Infrastructure (OCI) Generative AI, you need the
following:

• A dedicated AI cluster for the Generative AI resource and Language service.

• Tenancy policy statements for accessing both the Language and Generative AI services.
These policy statements, which are written by you (or your tenancy administrator), use
aggregate resource types for the various Language and Generative AI resources. For the
Language translation resource, the aggregate resource type is ai-service-language-
family. For the Generative AI resources (which includes the generative-ai-text-
generation and generative-ai-text-summarization resources) it's generative-ai-
family. The policy syntax varies according to the subscription type (single tenancy
versus paired instance).

– Individual (Single Tenancy) – If Oracle Digital Assistant resides on a single tenancy,
an Allow statement grants access to the Language and Generative AI resources.
This statement has the following syntax:

Allow any-user to use ai-service-language-family in tenancy where
request.principal.id='<oda-instance-ocid>'

Allow any-user to use generative-ai-family in tenancy where
request.principal.id='<oda-instance-ocid>'

– Paired Instance – Oracle Digital Assistant instances paired with subscriptions to
Oracle Fusion Cloud Applications require destination policies that combine Define
and Admit statements. Together, these statements allow cross-tenancy sharing of the
Language and Generate AI resources. The Define statement names the OCID
(Oracle Cloud Identifier) of the source tenancy that has predefined policies that can
allow resource access to a single instance on a tenancy, a specific tenancy, or to all
tenancies.

Note:

Because the source tenancy OCID is not noted on your Oracle Cloud
Infrastructure Console, you must file a Service Request (SR) with Oracle
Support to obtain this OCID.

The Admit statement controls the scope of the access within the tenancy. The syntax
used for this statement is specific to how the resources have been organized on the
tenant. Here's the syntax for a policy statement that restricts access to the
Languages resources to a specific compartment.

Define SourceTenancy as ocid1.tenancy.oc1..<unique_ID>
Admit any-user of tenant SourceTenancy to use ai-service-language-
family in compartment <compartment-name> where request.principal.id
in ('<ODA instance OCID 1>', '<ODA instance OCID 2>', ...)

Chapter 27
LLM Services

27-7

https://docs.oracle.com/en-us/iaas/Content/generative-ai/overview.htm
https://docs.oracle.com/en-us/iaas/language/using/policies.htm#policies
https://docs.oracle.com/en-us/iaas/Content/generative-ai/iam-policies.htm#resource-types

Here's the syntax for a policy statement that allows tenancy-wide access to
the Language resources.

Define SourceTenancy as ocid1.tenancy.oc1..<unique_ID>
Admit any-user of tenant SourceTenancy to use ai-service-
language-family in tenancy where request.principal.id in ('<ODA
instance OCID 1>', '<ODA instance OCID 2>', ...)

These destination policies correspond to the Define and/or Endorse
statements that have already been created for the source tenancy. The syntax
used in these policies is specific to the scope of the access granted to the
tenancies.

Scope of Access Source Tenancy Policy Statements

All tenancies Endorse any-user to use ai-
service-language-family in any-
tenancy where
request.principal.type='odainsta
nce'

A specific tenancy Define TargetTenancy as <target-
tenancy-OCID> Endorse any-user
to use ai-service-language-
family in tenancy TargetTenancy
where
request.principal.type='odainsta
nce'

Specific Oracle Digital Assistant instances
on a specific tenancy

Define TargetTenancy as <target-
tenancy-OCID> Endorse any-user
to use ai-service-language-
family in tenancy TargetTenancy
where request.principal.id in
('<ODA instance OCID 1>', '<ODA
instance OCID 2>', ...)

• Endpoints for the Oracle Generative AI model and the Language API

Sample Payloads

Chapter 27
LLM Services

27-8

https://docs.oracle.com/en-us/iaas/Content/generative-ai/endpoint.htm
https://docs.oracle.com/en-us/iaas/api/#/en/language/20221001/

Open AI and Azure Open AI

Method Transformer Payload

POST Request
{
 "model": "gpt-4-0314",
 "messages": [
 {
 "role": "system",
 "content": "Tell me a
joke"
 }
],
 "max_tokens": 128,
 "temperature": 0,
 "stream": false
}

Response (Non-Streaming)
{
 "created": 1685639351,
 "usage": {
 "completion_tokens": 13,
 "prompt_tokens": 11,
 "total_tokens": 24
 },
 "model": "gpt-4-0314",
 "id":
"chatcmpl-7Mg5PzMSBNhnopDNo3tm0QDRvUL
Ky",
 "choices": [
 {
 "finish_reason": "stop",
 "index": 0,
 "message": {
 "role": "assistant",
 "content": "Why
don't scientists trust atoms?
Because they make up everything!"
 }
 }
],
 "object": "chat.completion"
}

Chapter 27
LLM Services

27-9

Method Transformer Payload

Error (Maximum Content Length Exceeded)
{
 "error": {
 "code":
"context_length_exceeded",
 "param": "messages",
 "message": "This model's
maximum context length is 8192
tokens. However, you requested 8765
tokens (765 in the messages, 8000 in
the completion). Please reduce the
length of the messages or
completion.",
 "type":
"invalid_request_error"
 }
}

Cohere (Command Model)

Method Payload

POST Request
{
 "model": "command",
 "prompt": "Generate a fact
about our milky way",
 "max_tokens": 300,
 "temperature": 0.9,
 "k": 0,
 "stop_sequences": [],
 "return_likelihoods": "NONE"
}

Chapter 27
LLM Services

27-10

Cohere via Oracle Generative AI Service

Method Payload

POST Request
{
 "compartmentId":
"ocid1.compartment.oc1..aaaaaaaaexamp
leuniqueID",
 "servingMode": {
 "servingType": "ON_DEMAND",
 "modelId": "cohere.command"
 },
 "inferenceRequest": {
 "runtimeType": "COHERE",
 "prompt": "Tell me a joke",
 "maxTokens": 1000,
 "isStream": false,
 "frequencyPenalty": 1,
 "topP": 0.75,
 "temperature": 0
 }
}

Note: Contact Oracle Support for the
compartmentID OCID.

Response
{
 "modelId": "cohere.command",
 "modelVersion": "15.6",
 "inferenceResponse": {
 "generatedTexts": [
 {
 "id":
"88ac823b-90a3-48dd-9578-4485ea517709
",
 "text": " Why was the
computer cold?\n\nBecause it left
its Windows open!\n\nThat joke may
be dated, but I hope you found it
amusing nonetheless. If you'd like
to hear another one, just let me
know. \n\nWould you like to hear
another joke? "
 }
],
 "timeCreated":
"2024-02-08T11:12:58.233Z",
 "runtimeType": "COHERE"
 }
}

Chapter 27
LLM Services

27-11

Cohere Command - Light

Method Payload

POST Request
{
 "compartmentId":
"ocid1.compartment.oc1..aaaaaaaaex
ampleuniqueID",
 "servingMode": {
 "servingType":
"ON_DEMAND",
 "modelId":
"cohere.command-light"
 },
 "inferenceRequest": {
 "runtimeType": "COHERE",
 "prompt": "Tell me a
joke",
 "maxTokens": 1000,
 "isStream": false,
 "frequencyPenalty": 1,
 "topP": 0.75,
 "temperature": 0
 }
}

Note: Contact Oracle Support for the
compartmentID OCID.

Chapter 27
LLM Services

27-12

Method Payload

Response
{
 "modelId": "cohere.command",
 "modelVersion": "15.6",
 "inferenceResponse": {
 "generatedTexts": [
 {
 "id":
"88ac823b-90a3-48dd-9578-4485ea517
709",
 "text": " Why was the
computer cold?\n\nBecause it left
its Windows open!\n\nThat joke
may be dated, but I hope you
found it amusing nonetheless. If
you'd like to hear another one,
just let me know. \n\nWould you
like to hear another joke? "
 }
],
 "timeCreated":
"2024-02-08T11:12:58.233Z",
 "runtimeType": "COHERE"
 }
}

Chapter 27
LLM Services

27-13

Llama

Method Payload

POST Request
{
 "compartmentId":
"ocid1.compartment.oc1..aaaaaaaaex
ampleuniqueID",
 "servingMode": {
 "servingType":
"ON_DEMAND",
 "modelId":
"meta.llama-2-70b-chat"
 },
 "inferenceRequest": {
 "runtimeType": "LLAMA",
 "prompt": "Tell me a
joke",
 "maxTokens": 1000,
 "isStream": false,
 "frequencyPenalty": 1,
 "topP": 0.75,
 "temperature": 0
 }
}

Note: Contact Oracle Support for the
compartmentID OCID.

Chapter 27
LLM Services

27-14

Method Payload

Response
{
 "modelId": "meta.llama-2-70b-
chat",
 "modelVersion": "1.0",
 "inferenceResponse": {
 "created":
"2024-02-08T11:16:18.810Z",
 "runtimeType": "LLAMA",
 "choices": [
 {
 "finishReason":
"stop",
 "index": 0,
 "text": ".\n\nI'm
not able to generate jokes or
humor as it is subjective and can
be offensive. I am programmed to
provide informative and helpful
responses that are appropriate
for all audiences. Is there
anything else I can help you
with?"
 }
]
 }
}

Chapter 27
LLM Services

27-15

Summarize Payloads

Method Payload

POST Request
{
 "compartmentId":
"ocid1.compartment.oc1..aaaaaaaaex
ampleuniqueID",
 "servingMode": {
 "servingType":
"ON_DEMAND",
 "modelId":
"cohere.command"
 },
 "input": "Quantum dots (QDs)
- also called semiconductor
nanocrystals, are semiconductor
particles a few nanometres in
size, having optical and
electronic properties that differ
from those of larger particles as
a result of quantum mechanics.
They are a central topic in
nanotechnology and materials
science. When the quantum dots
are illuminated by UV light, an
electron in the quantum dot can
be excited to a state of higher
energy. In the case of a
semiconducting quantum dot, this
process corresponds to the
transition of an electron from
the valence band to the
conductance band. The excited
electron can drop back into the
valence band releasing its energy
as light. This light emission
(photoluminescence) is
illustrated in the figure on the
right. The color of that light
depends on the energy difference
between the conductance band and
the valence band, or the
transition between discrete
energy states when the band
structure is no longer well-
defined in QDs.",
 "temperature": 1,
 "length": "AUTO",
 "extractiveness": "AUTO",
 "format": "PARAGRAPH",

Chapter 27
LLM Services

27-16

Method Payload

 "additionalCommand": "provide
step by step instructions"
}

Note: Contact Oracle Support for the
compartmentID OCID.

Response
{
 "summary": "Quantum dots are
semiconductor particles with
unique optical and electronic
properties due to their small
size, which range from a few to
hundred nanometers. When UV-light
illuminated quantum dots,
electrons within them become
excited and transition from the
valence band to the conduction
band. Upon returning to the
valence band, these electrons
release the energy captured as
light, an observable known as
photoluminescence. The color of
light emitted depends on the
energy gap between the conduction
and valence bands or the
separations between energy states
in poorly defined quantum dot
band structures. Quantum dots
have sparked great interest due
to their potential across varied
applications, including
biological labeling, renewable
energy, and high-resolution
displays.",
 "modelId": "cohere.command",
 "modelVersion": "15.6",
 "id":
"fcba95ba-3abf-4cdc-98d1-
d4643128a77d"
}

LLM Transformation Handlers
Each provider has its own format for the request, response, and error payloads. Because of
this, the LLM provider and Oracle Digital Assistant can't communicate directly, so to facilitate
the exchange between the skill and its LLM providers, you need to transform these payloads
into Oracle Digital Assistant's Common LLM Interface and back again.

Chapter 27
LLM Transformation Handlers

27-17

You enable this transformation by creating an LLM transformation handler, a script
whose transformRequestPayload, transformResponsePayload, and
transformErrorResponsePayload methods execute the payload transformations.
These transformation methods have two signatures:

• event: The properties used for this object depend on the event type
(transformRequestPayload, transformResponsePayload,
transformErrorResponsePayload).

• context: References the LlmTransformationContext class, which provides
access to convenience methods you can use to create your event handler logic.

Create an LLM Transformation Handler
To create an LLM Transformation Event Handler:

1. Click Components in the left navbar.

2. Click +New Service.

3. Complete the Create Service dialog:

• Name: Enter the service name.

• Service Type: Embedded Container

• Component Service Package Type: New Component

• Component Type: LLM Transformation

• Component Name: Enter an easily identifiable name for the entity event
handler. You will reference this name when you create the LLM service for the
skill.

• Template: We provide templates for skills that call Cohere directly or via
Oracle Generative AI service. You don't have to edit these templates. If your
skill calls a non-Cohere/Oracle Generative AI model, such as Azure Open AI,
you'll need to add the appropriate code.
The templates for the Oracle Generative AI Cohere (text generation and
summarization) and Llama (text summarization) are sorted under Generative
AI in the Template list menu. The template for accessing Cohere directly is
located under Other. To access the template that contains the starter code for
other models, choose Custom (which is also located under Other).

4. Click Create to generate the event handler code.

5. After deployment completes, expand the service and then select the
transformation handler to open its properties page, which lists the three LLM
provider-CLMI transformation methods (transformRequestPayload,
transformResponsePayload, and transformErrorResponsePayload).

6. If you're creating a Cohere or Oracle Generative AI, service, the handler code is
complete.
If you're using the Custom template, click Edit to open the Edit Component and
then update the following placeholder code with the provider-specific code:

Chapter 27
LLM Transformation Handlers

27-18

https://oracle.github.io/bots-node-sdk/LlmTransformationContext.html

Method Location in Editor (Custom
Template)

Placeholder Code (Custom
Template)

transformRequestPayload Lines 23-25 transformRequestPayload
: async (event,
context) => {
 return
event.payload;
 },

transformResponsePayload Lines 33-35
transformResponsePayloa
d: async (event,
context) => {
 return
event.payload;
 },

transformErrorResponsePa
yload

Lines 44-46
transformErrorResponseP
ayload: async (event,
context) => {
 return
event.payload;
 }

7. Verify the sytnax of your updates by clicking Validate. Fix any validation errors (if any),
then click Save. Then click Close.

Chapter 27
LLM Transformation Handlers

27-19

LLM Provider Transformation Code Samples

Azure OpenAI

Method Event Handler Transformation Code

Request
transformRequestPayload: async
(event, context) => {
 let payload = { "model":
"gpt-4-0314",
 "messages":
event.payload.messages.map(m =>
{ return {"role": m.role,
"content":
m.content}; }),
 "max_tokens":
event.payload.maxTokens,

"temperature":
event.payload.temperature,
 "stream":
event.payload.streamResponse
 };
 return payload;
},

Chapter 27
LLM Transformation Handlers

27-20

Method Event Handler Transformation Code

Response (Non-streaming)
transformResponsePayload: async
(event, context) => {
 let llmPayload = {};
 if
(event.payload.responseItems) {
 // streaming case
 llmPayload.responseItems =
[];
 event.payload.responseItems
 .filter(item =>
item.choices.length > 0)
 .forEach(item => {

llmPayload.responseItems.push({"ca
ndidates": item.choices.map(c =>
{return {"content":
c.delta.content || "" };})});
 });
 } else {
 // non-streaming case
 llmPayload.candidates =
event.payload.choices.map(c =>
{return {"content":
c.message.content || "" };});
 }
 return llmPayload;
 }

When streaming is enabled, the response
transformation event handler is called in
batches of 20 streamed messages. This
batched array of streamed responses is stored
under the responseItems key.

Chapter 27
LLM Transformation Handlers

27-21

Method Event Handler Transformation Code

Error
transformErrorResponsePayload:
async (event, context) => {
 let errorCode = 'unknown';
 if (event.payload.error) {
 if
('context_length_exceeded' ===
event.payload.error.code) {
 errorCode =
'modelLengthExceeded';
 } else if ('content_filter'
=== event.payload.error.code) {
 errorCode = 'flagged';
 }
 return {"errorCode" :
errorCode, "errorMessage":
event.payload.error.message};
 } else {
 return {"errorCode" :
errorCode, "errorMessage":
JSON.stringify(event.payload)};
 }
}

Chapter 27
LLM Transformation Handlers

27-22

Oracle Generative AI Service – Cohere

Method Event Handler Code

Request
transformRequestPayload: async
(event, context) => {
 // Cohere doesn't support chat
completions, so we first print the
system prompt, and if there
 // are additional chat
entries, we add these to the system
prompt under the heading
CONVERSATION HISTORY
 let prompt =
event.payload.messages[0].content;
 if
(event.payload.messages.length > 1) {
 let history =
event.payload.messages.slice(1).reduc
e((acc, cur) => `${acc}\n$
{cur.role}: ${cur.content}` , '');
 prompt += `\n\nCONVERSATION
HISTORY:${history}\nassistant:`
 }
 // using Cohere
 let modelId = "cohere.command"
 let runtimeType = "COHERE";
 return {
 "compartmentId":
event.compartmentId,
 "servingMode": {
 "servingType": "ON_DEMAND",
 "modelId": modelId
 },
 "inferenceRequest": {
 "runtimeType": runtimeType,
 "prompt": prompt,
 "isStream":
event.payload.streamResponse,
 "maxTokens":
event.payload.maxTokens,
 "temperature":
event.payload.temperature,
 // parameters set to
default values
 "frequencyPenalty": 0,
 "isEcho": false,
 "numGenerations": 1,
 "presencePenalty": 0,
 "returnLikelihoods":
"NONE",

Chapter 27
LLM Transformation Handlers

27-23

Method Event Handler Code

 "topK": 0,
 "topP": 0.75,
 "truncate": "NONE"
 }
 };
}

Response
transformResponsePayload: async
(event, context) => {
 let llmPayload = {};
 if (event.payload.responseItems)
{
 // streaming case
 llmPayload.responseItems =
[];

event.payload.responseItems.forEach(i
tem => {

llmPayload.responseItems.push({"candi
dates": [{"content": item.text ||
"" }]});
 });
 } else {
 // non-streaming
 llmPayload.candidates =
event.payload.inferenceResponse.gener
atedTexts.map(item => {return
{"content": item.text || "" };});
 }
 return llmPayload;
 }

Chapter 27
LLM Transformation Handlers

27-24

Method Event Handler Code

Error
transformErrorResponsePayload: async
(event, context) => {
 const error =
event.payload.message || 'unknown
error';
 if (error.startsWith('invalid
request: total number of tokens')) {
 // returning
modelLengthExceeded error code will
cause a retry with reduced chat
history
 return {"errorCode" :
"modelLengthExceeded",
"errorMessage": error};
 } else {
 return {"errorCode" :
"unknown", "errorMessage": error};
 }
}

Chapter 27
LLM Transformation Handlers

27-25

Oracle Generative AI - Llama

Method Event Handler Code

Request
transformRequestPayload: async
(event, context) => {
 // Cohere doesn't support
chat completions, so we first
print the system prompt, and if
there
 // are additional chat
entries, we add these to the
system prompt under the heading
CONVERSATION HISTORY
 let prompt =
event.payload.messages[0].content;
 if
(event.payload.messages.length >
1) {
 let history =
event.payload.messages.slice(1).re
duce((acc, cur) => `${acc}\n$
{cur.role}: ${cur.content}` , '');
 prompt +=
`\n\nCONVERSATION HISTORY:$
{history}\nassistant:`
 }
 // using Llama
 let modelId =
"meta.llama-2-70b-chat"
 let runtimeType = "LLAMA";
 return {
 "compartmentId":
event.compartmentId,
 "servingMode": {
 "servingType":
"ON_DEMAND",
 "modelId": modelId
 },
 "inferenceRequest": {
 "runtimeType":
runtimeType,
 "prompt": prompt,
 "isStream":
event.payload.streamResponse,
 "maxTokens":
event.payload.maxTokens,
 "temperature":
event.payload.temperature,
 // parameters set to
default values

Chapter 27
LLM Transformation Handlers

27-26

Method Event Handler Code

 "frequencyPenalty": 0,
 "isEcho": false,
 "numGenerations": 1,
 "presencePenalty": 0,
 "returnLikelihoods":
"NONE",
 "topK": 0,
 "topP": 0.75,
 "truncate": "NONE"
 }
 };
}

Response
transformResponsePayload: async
(event, context) => {
 let llmPayload = {};
 if
(event.payload.responseItems) {
 // streaming case
 llmPayload.responseItems
= [];

event.payload.responseItems.forEac
h(item => {

llmPayload.responseItems.push({"ca
ndidates": [{"content": item.text
|| "" }]});
 });
 } else {
 // non-streaming
 llmPayload.candidates =
event.payload.inferenceResponse.ch
oices.map(item => {return
{"content": item.text || "" };});
 }
 return llmPayload;
 }

Chapter 27
LLM Transformation Handlers

27-27

Method Event Handler Code

Error
transformErrorResponsePayload:
async (event, context) => {
 const error =
event.payload.message || 'unknown
error';
 if
(error.startsWith('invalid
request: total number of
tokens')) {
 // returning
modelLengthExceeded error code
will cause a retry with reduced
chat history
 return {"errorCode" :
"modelLengthExceeded",
"errorMessage": error};
 } else {
 return {"errorCode" :
"unknown", "errorMessage": error};
 }
}

Chapter 27
LLM Transformation Handlers

27-28

Oracle Generative AI - Llama

Method Event Handler Code

Request
transformRequestPayload: async
(event, context) => {
 // Cohere doesn't support chat
completions, so we first print the
system prompt, and if there
 // are additional chat
entries, we add these to the system
prompt under the heading
CONVERSATION HISTORY
 let prompt =
event.payload.messages[0].content;
 if
(event.payload.messages.length > 1) {
 let history =
event.payload.messages.slice(1).reduc
e((acc, cur) => `${acc}\n$
{cur.role}: ${cur.content}` , '');
 prompt += `\n\nCONVERSATION
HISTORY:${history}\nassistant:`
 }
 let modelId = "cohere.command"
 return {
 "compartmentId":
event.compartmentId,
 "servingMode": {
 "servingType": "ON_DEMAND",
 "modelId": modelId
 },
 "input" : prompt,
 "temperature":
event.payload.temperature,
 // parameters set to default
values
 "length": "AUTO",
 "extractiveness": "AUTO",
 "format": "PARAGRAPH",
 // natural language
instructions
 "additionalCommand": "write
in a conversational style"
 };
}

Chapter 27
LLM Transformation Handlers

27-29

Method Event Handler Code

Response
transformResponsePayload: async
(event, context) => {
 let llmPayload = {};
 // non-streaming only:
streaming is not supported
 llmPayload.candidates =
[{"content": event.payload.summary}];
 return llmPayload;
}

Error
transformErrorResponsePayload: async
(event, context) =>
{ const error =
event.payload.message ||
 'unknown error';
if(error.startsWith('invalid request:
 total number of tokens'))
{ // returning
modelLengthExceeded error
 code will cause a retry
with reduced chat history
return{"errorCode":
"modelLengthExceeded",
"errorMessage": error}; }

else{ return{"errorCode":
"unknown", "errorMessage":
error}; }}

Chapter 27
LLM Transformation Handlers

27-30

Cohere (Command Model) – Direct Access to Cohere

Method Event Handler Code

Request
transformRequestPayload: async
(event, context) => {
 // Cohere doesn't support chat
completions, so we first print the
system prompt, and if there
 // are additional chat
entries, we add these to the system
prompt under the heading
CONVERSATION HISTORY
 let prompt =
event.payload.messages[0].content;
 if
(event.payload.messages.length > 1) {
 let history =
event.payload.messages.slice(1).reduc
e((acc, cur) => `${acc}\n$
{cur.role}: ${cur.content}` , '');
 prompt += `\n\nCONVERSATION
HISTORY:${history}\nassistant:`
 }
 return {
 "max_tokens":
event.payload.maxTokens,
 "truncate": "END",
 "return_likelihoods": "NONE",
 "prompt": prompt,
 "model": "command",
 "temperature":
event.payload.temperature,
 "stream":
event.payload.streamResponse
 };
 }

This handler manages the conversation history to
maintain the conversation context.

Chapter 27
LLM Transformation Handlers

27-31

Method Event Handler Code

Response
transformResponsePayload: async
(event, context) => {
 let llmPayload = {};
 if (event.payload.responseItems) {
 // streaming case
 llmPayload.responseItems =
[];

event.payload.responseItems.forEach(i
tem => {

llmPayload.responseItems.push({"candi
dates": [{"content": item.text ||
"" }]});
 });
 } else {
 // non-streaming
 llmPayload.candidates =
event.payload.generations.map(item
=> {return {"content": item.text ||
"" };});
 }
 return llmPayload;
}

Error
transformErrorResponsePayload: async
(event, context) => {
 // NOTE: Depending on the Cohere
version, this code might need to be
updated
 const error =
event.payload.message || 'unknown
error';
 if (error.startsWith('invalid
request: total number of tokens')) {
 // returning
modelLengthExceeded error code will
cause a retry with reduced chat
history
 return {"errorCode" :
"modelLengthExceeded",
"errorMessage": error};
 } else {
 return {"errorCode" :
"unknown", "errorMessage": error};
 }

}

Chapter 27
LLM Transformation Handlers

27-32

The Common LLM Interface
Each LLM provider has its own format for its request and response payloads. The Common
LLM Interface, or CLMI, enables the invokeLLM component to handle these proprietary
request and response payloads.

The CMLI consists of the following:

• A request body specification.

• A success response body specification, applicable when the LLM REST call returns an
HTTP 200 status.

• An error response body specification, applicable when the LLM REST call returns an
HTTP status other than 200 but the invocation of the LLM service was still successful.

Note:

For unsuccessful invocations, the invokeLLM component handles the 401 (not
authorized) or 500 (internal server error) errors.

CLMI Request Body Specification
The JSON CLMI request body contains the following properties:

Chapter 27
LLM Transformation Handlers

27-33

Property Type Default Description Required?

messages An array of
message objects

N/A A list of
messages. The
first message is
the prompt with
the role property
set to system. If
the LLM supports
a multi-turn
conversation so
that the LLM
response can be
refined or
enhanced, the
subsequent
messages will be
pairs of
messages from
the user and
assistant roles.
The user
message
contains the
follow-up
instructions or
question for the
LLM. The
assistant
message
contains the LLM
response to the
user message
(the completion).
If the LLM does
not support multi-
turn
conversations,
then the
messages array
will only contain a
single system
message holding
the prompt.

Yes

Chapter 27
LLM Transformation Handlers

27-34

Property Type Default Description Required?

streamRespons
e

boolean false Determines
whether the
LLM's response
will be streamed
back to the LLM
component.
Setting this
property to true
enhances the
user experience,
because
streaming
enables the LLM
component to
send partial
response
messages back
to users so that
they don't have to
wait for the LLM
to complete the
response.
Set
streamRespons
e to false when
response
validation is used.
Because the
entire message is
required before
validation can
take place, the
message may be
rendered for
users multiple
times: first
streamed then
validated, then
streamed again.

No

Chapter 27
LLM Transformation Handlers

27-35

Property Type Default Description Required?

maxTokens integer 1024 The model
generates tokens
for the words in
its results. Tokens
can be thought of
as pieces of
words. 100
tokens equals
about 75 words in
English, for
example. This
property limits the
size of the
content
generated by the
model by setting
the maximum
number of tokens
that it generates
for the response.

No

temperature number 0 The model uses
temperature to
gauge the
randomness –
and thus the
creativity – of its
responses. You
set this as value
ranging from 0
(predictable
results) to 1
(more
randomized
results). 0 means
that the model
will send the
same results to a
given prompt. 1
means that the
model's results to
a give response
can vary wildly.
Use an event
handler to apply a
multiplier if the
LLM provider
supports a range
other than 0-1.

No

user string N/A A unique
identifier
representing your
end user, which
can be used for
monitoring and
detecting abusive
language.

No

Chapter 27
LLM Transformation Handlers

27-36

Property Type Default Description Required?

providerExten
sion

object N/A Enables LLM
provider-specific
configuration
options that are
not defined as
part of CLMI.

No

The Message Object Structure

Property Type Description Required?

role string The message creator.
The values are system,
user, and assistant.

Yes

content string The message content Yes

turn integer A number that indicates
the current refinement
turn of the chat
messages exchange.
When the first prompt is
sent to the LLM, the turn
is 1.

Yes

retry boolean A flag that indicates
whether the message is
sent to the LLM to
correct an error in the
response

No (defaults to false)

tag string A custom tag that marks
a specific prompt. If
you're improving the
LLM response using
Recursive Criticism and
Improvement (RCI), you
can enable the custom
logic in the
validateResponsePay
load handler to detect
the current step of RCI
process by setting the
tag to "criticize" or
"improve".

No

Success Response Body Specification

Property Type Description Required?

candidates An array of candidate
objects

A list of candidate
messages returned by
the LLM

Yes

Chapter 27
LLM Transformation Handlers

27-37

Candidate Objects
The JSON CLMI request body contains the following properties:

Property Type Description Required?

content string The message content Yes

Error Response Body Specification
The JSON CLMI error response body contains the following properties:

Chapter 27
LLM Transformation Handlers

27-38

Property Type Description Required?

errorCode String • notAuthorized:
Indicates that the
LLM request does
not have the proper
authorization key.

• modelLengthExce
eded: Indicates that
the combination of
request messages
(the system prompt
along with the user
and assistant
refinement
messages) and the
maximum number
of tokens exceeds
the model's token
limit.

• requestFlagged:
Indicates that the
LLM cannot fulfill
the request
because it violates
the LLM provider's
moderation policies.
For example,
requests that
contain racist or
sexually abusive
content would be
flagged.

• responseFlagged:
Indicates that the
LLM response
violates moderation
policies of the LLM
provider. For
example, responses
that contain toxic
content, such as
racist or sexually
abusive language,
would be flagged.

• requestInvalid:
Indicates that the
request to the LLM
is invalid. For
example, the
request is not valid
because it failed
some of the
validation rules set
in an event handler,
or it's in a format
that's not
recognized by the
LLM.

Yes

Chapter 27
LLM Transformation Handlers

27-39

Property Type Description Required?

• responseInvalid:
Indicates that the
LLM-generated
response is invalid.
For example, the
response is not
valid because it
failed some of the
validation rules
defined in a
validation event
handler.

• unknown: When
other errors occur.

errorMessage String The LLM provider-
specific error message.
This might be a
stringified JSON object.

Yes

Create the LLM Service
The LLM component state in the dialog flow accesses the model through a skill-level
LLM service, which combines an instance-level LLM service with one of the skill's
transformation handlers. An LLM Service is a skill-level artifact.

To configure this service:

1. Choose Settings > Configuration.

2. In the Large Language Model Services section of the page, click + New LLM
Service.

3. Complete the row:

• Name: Enter an easily identifiable name for the LLM service. This is the name
that you'll choose when you configure the dialog flow.

• LLM Service: Select from the LLM services that have been configured for the
instance.

• Transformation Handler: Choose the transformation handler that's the
counterpart of the LLM service. For example, if the LLM component uses the
Azure OpenAI LLM service to generate responses, then you would choose
one of the skill's event handlers that transforms the Azure OpenAI payloads to
CLMI.

• Mock: Switch this option on (true) to save time and costs when you test your
dialog flow. Because this option enables the LLM component to return a static
response instead of the LLM-generated continuation, you don't have to waste
time waiting for the LLM response, nor do you incur costs from the LLM
service provider when you're just testing out part of the dialog flow.

Chapter 27
Create the LLM Service

27-40

Note:

You can only use this option if the LLM service that you've selected has a
200 static response.

• Default: Switching this option on (true) sets the LLM service as the default selection
in the LLM component's LLM Service menu. If an existing LLM Service is already set
as default, then its default status gets overwritten (that is, set to false) when you
switch this on for another LLM Service.

4. Click the Save action (located at the right).

LLM services created as REST services in releases prior to 24.02 are flagged with a warning

. To dismiss this warning, select the REST service (accessed through Settings > API
Services), then click Convert to LLM.

The Invoke Large Language Model Component
The Invoke Large Language Model component (LLM component) in the Visual Flow Designer
enables you to connect a flow to the LLM through a REST service call.

You can insert this component state into your dialog flow by selecting Service Integration >
Invoke Large Language Model from the Add State dialog. To enable multi-turn
conversations when the skills is called from a digital assistant, enter a description for the LLM
description.

Chapter 27
The Invoke Large Language Model Component

27-41

Note:

As a best practice, always add descriptions to LLM components to allow
multi-turn refinements when users access the LLM service through a digital
assistant.

Inserting the LLM component state adds an error handling state for troubleshooting the
requests to the LLM and its responses. The LLM component state transitions to this
state (called ShowLLMError by default) when an invalid request or response cause a
non-recoverable error.

In addition to calling the LLM service, the LLM component state handles interactive
transactions, such as multi-turn refinements, the back-and-forth exchanges between
the user and the LMM that hone the LLM output through rounds of user feedback.

Note:

Response refinement can also come from the system when it implements
retries after failing validation.

You can send the result from the LLM model as a message, or you can save it to a
context variable for downstream use. The LLM component's built in validation provides
guardrails against vulnerabilities like prompt-injection attacks that bypass the model's
content moderation guidelines.

Note:

If you want to enhance the validation that LLM component already provides,
or want to improve the LLM output using the Recursive Criticism and
Improvement (RCI) technique, you can use our starter code to build your
own request and response validation handlers.

So what do you need to use this component? If you're accessing the Cohere model
directly or through Oracle Generative AI Service, you just need an LLM service to the
Cohere model and a prompt, which is a block of human readable text containing the
instructions to the LLM. Because writing a prompt is an iterative process, we provide
you with prompt engineering guidelines and the Prompt Builder, where you can
incorporate these guidelines into your prompt text and test it out until it elicits the
appropriate response from the model. If you're using another model, like Azure
OpenAI, then you'll need to first create your own Transformation Event Handler from
the starter code that we provide and then create an LLM service that maps that
handler to the LLM provider's endpoints that have been configured for the instance.

Chapter 27
The Invoke Large Language Model Component

27-42

General Properties

Property Description Default Value Required?

LLM Service A list of the LLM
services that have been
configured for the skill. If
there is more than one,
then the default LLM
service is used when no
service has been
selected.

The default LLM service The state can be valid
without the LLM
Service, but skill can't
connect to the model if
this property has not
been set.

Prompt The prompt that's
specific to the model
accessed through the
selected LLM service.
Keep our general
guidelines in mind while
writing your prompt. You
can enter the prompt in
this field and then revise
and test it using the
Prompt Builder
(accessed by clicking
Build Prompt). You can
also compose your
prompt using the
Prompt Builder.

N/A Yes

Chapter 27
The Invoke Large Language Model Component

27-43

Property Description Default Value Required?

Prompt Parameters The parameter values.
Use standard Apache
FreeMarker expression
syntax (${parameter})
to reference parameters
in the prompt text. For
example:

Draft an email
about $
{opportunity}
sales.

For composite bag
variables, use the
composite bag syntax:
• $

{cb_entity.valu
e.bag_item.valu
e} for value list
items

• $
{cb_entity.valu
e.bag_item} for
non-value list items

You must define all of
the prompt parameters
or each of the
parameters referenced
in the prompt text. Any
missing prompt
parameters are flagged
as errors.

N/A No

Result Variable A variable that stores
the LLM response.

N/A No

User Messaging
These options only apply when you set Send LLM Result as a Message to True.

Property Description Default Value(s) Required?

Send LLM Result as
a Message

Setting this to True
outputs the LLM result
in a message that's
sent to the user.
Setting this property to
False prevents the
output from being sent
to the user.

True No

Chapter 27
The Invoke Large Language Model Component

27-44

Property Description Default Value(s) Required?

Use Streaming The LLM results get
streamed to the client
when you set this
option to True,
potentially providing a
smoother user
experience because
the LLM response
appears incrementally
as it is generated
rather than all at once.
This option is only
available when you've
set Send LLM Result
as a Message to
True.
Users may view
potentially invalid
responses because
the validation event
handler gets invoked
after the LLM
response has already
started streaming.

Set Use Streaming to
False for Cohere
models or when
you've applied a JSON
schema to the LLM
result by setting
Enforce JSON-
Formatted LLM
Response to True.

Do not enable
streaming if:
• Your skill runs on

either the Slack or
Microsoft Teams
channels.

• You've set
response
validation. The
handler can only
validate a
complete
response, so if
you set Use
Streaming to
True, users may
sent multiple
streams of output,
which may
confuse them.

True No

Chapter 27
The Invoke Large Language Model Component

27-45

Property Description Default Value(s) Required?

Start Message A status message
that's sent to the user
when the LLM has
been invoked. This
message, which is
actually rendered prior
to the LLM invocation,
can be a useful
indicator. It can inform
users that the
processing is taking
place, or that the LLM
may take a period of
time to respond.

N/A No

Enable Multi-Turn
Refinements

By setting this option
to True (the default),
you enable users to
refine the LLM
response by providing
follow-up instructions.
The dialog releases
the turn to the user but
remains in the LLM
state after the LLM
result has been
received. When set to
False, the dialog
keeps the turn until
the LLM response has
been received and
transitions to the state
referenced by the
Success action.
Note: The component
description is required
for multi-turn
refinements when the
skill is called from a
digital assistant.

True No

Chapter 27
The Invoke Large Language Model Component

27-46

Property Description Default Value(s) Required?

Standard Actions Adds the standard
action buttons that
display beneath the
output in the LLM
result message. All of
these buttons are
activated by default.
• Submit – When a

user selects this
button, the next
transition is
triggered and the
submit event
handler is fired.

• Cancel – When a
user selects this
button, the dialog
transitions to the
state defined for
the cancel
transition.

• Undo – When
clicked, the skill
removes the last
refinement
response and
reverts back to
the previous
result. The skill
also removes the
previous
refinement from
the chat history.
This button does
not display in the
initial response. It
only displays after
the LLM service
generates a
refinement.

Submit, Cancel, and
Undo are all selected.

No

Cancel Button Label The label for the
cancel button

Submit Yes – When the
Cancel action is
defined.

Success Button
Label

The label for the
success button

Cancel Yes – when the
Success action is
defined.

Chapter 27
The Invoke Large Language Model Component

27-47

Property Description Default Value(s) Required?

Undo Button Label The label for the undo
button

Undo Yes – When the Undo
action is defined.

Custom Actions A custom action
button. Enter a button
label and a prompt
with additional
instructions.

N/A No

Transition Actions for the Invoke Large Language Model Component

Action Description

cancel This action is triggered by then users tap the
cancel button.

error This action gets triggered when requests to, or
responses from the LLM are not valid. For
example, the allotment of retry prompts to
correct JSON or entity value errors has been
used up.

User Ratings for LLM-Generated Content
By default, the user rating (thumbs up and thumbs down) displays on each message.

When users give the LLM response a thumbs down rating, the skill follows up with a
link that opens a feedback form.

You can disable these buttons by switching off Enable Large Language Model
feedback in Settings > Configuration.

Chapter 27
The Invoke Large Language Model Component

27-48

Response Validation

Property Description Default Value Required?

Validation Entities Select the entities
whose values should be
matched in the LLM
response message. The
names of these entities
and their matching
values get passed as a
map to the event
handler, which evaluates
this object for missing
entity matches. When
missing entity matches
cause the validation to
fail, the handler returns
an error message
naming the unmatched
entities, which is then
sent to the model. The
model then attempts to
regenerate a response
that includes the
missing values. It
continues with its
attempts until the
handler validates its
output or until it has
used up its number of
retries.
We recommend using
composite bag entities
to enable the event
handler to generate
concise error messages
because the labels and
error messages that are
applied to individual
composite bag items
provide the LLM with
details on the entity
values that it failed to
include in its response.

N/A No

Chapter 27
The Invoke Large Language Model Component

27-49

Property Description Default Value Required?

Enforce JSON-
Formatted LLM
Response

By setting this to True,
you can apply JSON
formatting to the LLM
response by copying
and pasting a JSON
schema. The LLM
component validates
JSON-formatted LLM
response against this
schema.
If you don't want users
to view the LLM result
as raw JSON, you can
create an event handler
with a
changeBotMessages
method that transforms
the JSON into a user-
friendly format, like a
form with tables.

Set Use Streaming to
False if you're applying
JSON formatting.

GPT-3.5 exhibits more
robustness than GPT-4
for JSON schema
validation. GPT-4
sometimes overcorrects
a response.

False No

Number of Retries The maximum number
of retries allowed when
the LLM gets invoked
with a retry prompt
when entity or JSON
validation errors have
been found. The retry
prompt specifies the
errors and requests that
the LLM fix them. By
default, the LLM
component makes a
single retry request.
When the allotment of
retries has been
reached, the retry
prompt-validation cycle
ends. The dialog then
moves from the LLM
component via its error
transition.

1 No

Chapter 27
The Invoke Large Language Model Component

27-50

Property Description Default Value Required?

Retry Message A status message that's
sent to the user when
the LLM has been
invoked using a retry
prompt. For example,
the following
enumerates entity and
JSON errors using the
allValidationErrors
event property:

Trying to fix
the following
errors: $
{system.llm.messa
geHistory.value.a
llValidationError
s?join(', ')}}

Enhancing the
response. One
moment, please...

No

Validation
Customization Handler

If your use case requires
specialized validation,
then you can select the
custom validation
handler that's been
deployed to your skill.
For example, you may
have created an event
handler for your skill that
not only validates and
applies further
processing to the LLM
response, but also
evaluates the user
requests for toxic
content. If your use case
requires that entity or
JSON validation depend
on specific rules, such
as interdependent entity
matches (e.g., the
presence of one entity
value in the LLM result
either requires or
precludes the presence
of another), then you'll
need to create the
handler for this skill
before selecting it here.

N/A No

Create LLM Validation and Customization Handlers
In addition to LLM Transformation handlers, you can also use event handlers to validate the
requests made to the LLM and its responses (the completions generated by the LLM
provider). Typically, you would keep this code, known as an LLM Validation & Customization
handler, separate from the LLM Transformation handler code because they operate on

Chapter 27
The Invoke Large Language Model Component

27-51

different levels. Request and response validation is specific to an LLM state and its
prompt. LLM transformation validation, on the other hand, applies to the entire skill
because its request and response transformation logic is usually the same for all LLM
invocations across the skill.

While the LLM component provides validation guardrails to prevent hallucinations and
protect against prompt-injection attacks intended to bypass the model's content
moderation guidelines or exploit other vulnerabilities, you may want to build
specialized validators entirely from scratch using the LlmComponentContext methods in
the bots-node-sdk, or by incorporating these methods into the template that we
provide.

Note:

In its unmodified form, the template code executes the same validation
functions that are already provided by the LLM component.

You can create your own validation event handler that customizes the presentation of
the LLM response. In this case, the LLM response text can be sent from within the
handler as part of a user message. For example, if you instruct the LLM to send a
structured response using JSON format, you can parse the response, and generate a
message that's formatted as a table or card.

To create an event handler using this template:

1. Click Components in the left navbar.

2. Click +New Service.

3. Complete the Create Service dialog:

• Name: Enter the service name.

• Service Type: Embedded Container

• Component Service Package Type: New Component

• Component Type: LLM Validation & Customization

• Component Name: Enter an easily identifiable name for the event handler.
You will reference this name when you create the LLM service for the skill.

4. Click Create to generate the validation handler.

5. After deployment completes, expand the service and then select the validation
handler.

6. Click Edit to open the Edit Component Code editor.

7. Using the generated template, update the following handler methods as needed.

Chapter 27
The Invoke Large Language Model Component

27-52

https://github.com/oracle/bots-node-sdk/blob/master/LLM_COMPONENT_HANDLER.md

Method Descripti
on

When
Validation
Succeeds

When
Validation
Fails

Return
Type

Location
in Editor

Placehold
er Code

What Can
I do When
Validation
Fails?

validate
RequestP
ayload

Validates
the
request
payload.

Returns
true
when the
request is
valid.

Returns
false
when a
request
fails
validation.

boolean Lines
24-29

validat
eReques
tPayloa
d:
async
(event,

context
) => {

if
(contex
t.getCu
rrentTu
rn()
=== 1
&&
context
.isJson
Validat
ionEnab
led())
{

context
.addJSO
NSchema
Formatt
ingInst
ructio
n();
 }

return
true;
 }

To find out
more
about this
code, refer
to
validate
RequestP
ayload
properties.

• Revis
e the
promp
t and
then
resen
d it to
the
LLM

• Set a
validat
ion
error.

Chapter 27
The Invoke Large Language Model Component

27-53

Method Descripti
on

When
Validation
Succeeds

When
Validation
Fails

Return
Type

Location
in Editor

Placehold
er Code

What Can
I do When
Validation
Fails?

validate
Response
Payload

Validates
the LLM
response
payload.

When the
handler
returns
true:
• If you

set
the
Send
LLM
Resul
t as a
Mess
age
proper
ty is
set to
true,
the
LLM
respo
nse,
includi
ng
any
stand
ard or
custo
m
action
button
s, is
sent
to the
user.

• If
strea
ming
is
enabl
ed,
the
LLM
respo
nse
will be
strea
med
in
chunk
s. The
action
button
s will
be
added
at the

When the
handler
returns
false:
• If

strea
ming
is
enabl
ed,
users
may
view
respo
nses
that
are
potent
ially
invalid
becau
se the
validat
ion
event
handl
er
gets
invoke
d after
the
LLM
respo
nse
has
alread
y
starte
d
strea
ming.

• Any
user
mess
ages
added
by
handl
er are
sent
to the
user,
regard
less of
the

boolean Lines
50-56 /**

 *
Handler
 to
validat
e
respons
e
payload
 *
@param
{Valida
teRespo
nseEven
t}
event
 *
@param
{LLMCon
text}
context
 *
@return
s
{boolea
n}
flag
to
indicat
e the
validat
ion
was
success
ful
 */

validat
eRespon
sePaylo
ad:
async
(event,

context
) => {

let

• Invoke
the
LLM
again
using
a retry
promp
t that
specifi
es the
proble
m with
the
respo
nse (it
doesn'
t
confor
m to a
specifi
c
JSON
format
, for
exam
ple)
and
reque
sts
that
the
LLM
fix it.

• Set a
validat
ion
error.

Chapter 27
The Invoke Large Language Model Component

27-54

Method Descripti
on

When
Validation
Succeeds

When
Validation
Fails

Return
Type

Location
in Editor

Placehold
er Code

What Can
I do When
Validation
Fails?

end of
the
strea
m.

• Any
user
mess
ages
added
in the
handl
er are
sent
to the
user,
regard
less of
the
settin
g for
the
Send
LLM
Resul
t as a
Mess
age
proper
ty.

• If a
new
LLM
promp
t is set
in the
handl
er,
then
this
promp
t is
sent
to the
LLM,
and
the
validat
ion
handl
er will
be
invoke
d
again
with
the

Send
LLM
Resul
t as a
Skill
Resp
onse
settin
g.

• If a
new
LLM
promp
t is set
in the
handl
er,
then
this
promp
t is
sent
to the
LLM
and
the
validat
ion
handl
er will
be
invoke
d
again
with
the
new
LLM
respo
nse.

• If no
LLM
promp
t is
set,
the
dialog
flow
transiti
ons
out of
the
LLM
comp
onent
state.

errors
=
event.a
llValid
ationEr
rors
|| [];

if
(errors
.length
 > 0) {

return
context
.handle
Invalid
Respons
e(error
s);
 }

return
true;
 }

To find out
more
about this
code, refer
to
validate
Response
Payload
Properties.

Chapter 27
The Invoke Large Language Model Component

27-55

Method Descripti
on

When
Validation
Succeeds

When
Validation
Fails

Return
Type

Location
in Editor

Placehold
er Code

What Can
I do When
Validation
Fails?

new
LLM
respo
nse

• If no
new
LLM
promp
t is set
and
proper
ty
Enabl
e
Multi-
Turn
Refin
emen
ts is
set to
true,
the
turn is
releas
ed
and
the
dialog
flow
remai
ns in
the
LLM
state.
If this
proper
ty is
set to
false
,
howev
er, the
turn is
kept
and
the
dialog
transiti
ons
from
the
state
using
the
succe
ss

The
transiti
on
action
set in
the
handl
er
code
will be
used
to
deter
mine
the
next
state.
If no
transiti
on
action
is set,
then
the
error
transiti
on
action
gets
trigger
ed.

Chapter 27
The Invoke Large Language Model Component

27-56

Method Descripti
on

When
Validation
Succeeds

When
Validation
Fails

Return
Type

Location
in Editor

Placehold
er Code

What Can
I do When
Validation
Fails?

transiti
on
action
.

changeBo
tMessage
s

Changes
the
candidate
skill
messages
that will be
sent to the
user.

N/A N/A A list of
Conversati
on
Message
Model
messages

Lines
59-71

changeB
otMessa
ges:
async
(event,

context
) => {

return
event.m
essages
;
 },

For an
example of
using this
method,
refer to
Enhance
the User
Message
for JSON-
Formatted
Response
s.

N/A

submit This
handler
gets
invoked
when
users tap
the
Submit
button. It
processes
the LLM
response
further.

N/A N/A N/A Lines
79-80

submit:
 async
(event,

context
) => {
 }

N/A

Chapter 27
The Invoke Large Language Model Component

27-57

https://oracle.github.io/bots-node-sdk/MessageModel.html
https://oracle.github.io/bots-node-sdk/MessageModel.html
https://oracle.github.io/bots-node-sdk/MessageModel.html
https://oracle.github.io/bots-node-sdk/MessageModel.html

Each of these methods uses an event object and a context object. For example:

 validateResponsePayload: async (event, context) =>
...

The properties defined for the event object depend on the event type. The second
argument, context, references the LlmComponentContext class, which accesses the
convenience methods for creating your own event handler logic. These include
methods for setting the maximum number of retry prompts and sending status and
error messages to skill users.

8. Verify the sytnax of your updates by clicking Validate. Then click Save > Close.

validateRequestPayload Event Properties

Name Description Type Required?

payload The LLM request that
requires validation

string Yes

validateResponsePayload Event Properties

Name Description Type Required?

payload The LLM response
that needs validating.

string Yes

validationEntitie
s

A list of entity names
that is specified by the
Validation Entities
property of the
corresponding LLM
component state.

String[] No

entityMatches A map with the name
of the matched entity
as the key, and an
array of JSONObject
entity matches as the
value. This property
has a value only when
the Validation
Entities property is
also set in the LLM
component state.

Map<String,
JSONArray>

No

Chapter 27
The Invoke Large Language Model Component

27-58

https://oracle.github.io/bots-node-sdk/LlmTransformationContext.html

Name Description Type Required?

entityValidationE
rrors

Key-value pairs with
either the
entityName or a
composite bag item as
the key and an error
message as the value.
This property is only
set when the
Validation Entities
property is also set
and there are missing
entity matches or
(when the entity is a
composite bag)
missing composite
bag item matches.

Map<String,
String>

No

jsonValidationErr
ors

If the LLM
component's Enforce
JSON-Formatted
LLM Response
property is set to True,
and the response is
not a valid JSON
object, then this
property contains a
single entry with the
error message that
states that the
response is not a valid
JSON object.
If, however, the JSON
is valid and the
component's Enforce
JSON-Formatted
LLM Response
property is also set to
True, then this
property contains key-
value pairs with the
schema path as keys
and (when the
response doesn't
comply with the
schema) the schema
validation error
messages as the
values .

Map<String,
String>

No

allValidationErro
rs

A list of all entity
validation errors and
JSON validation
errors.

String[] No

Validation Handler Code Samples

Chapter 27
The Invoke Large Language Model Component

27-59

Custom JSON Validation

The following snippet illustrates how you add code to the default
validateResponsePayload template to verify that a JSON-formatted job requisition is
set to Los Angeles:

 /**
 * Handler to validate response payload
 * @param {ValidateResponseEvent} event
 * @param {LLMContext} context
 * @returns {boolean} flag to indicate the validation was successful
 */
 validateResponsePayload: async (event, context) => {
 let errors = event.allValidationErrors || [];
 const json = context.convertToJSON(event.payload);
 if (json && 'Los Angeles' !== json.location) {
 errors.push('Location is not set to Los Angeles');
 }
 if (errors.length > 0) {
 return context.handleInvalidResponse(errors);
 }
 return true;
 }

Enhance the User Message for JSON-Formatted Responses
If you need the LLM to return the response in JSON format, you may not want to
display the raw JSON response to the skill users. However since the response is now
structured JSON – and compliant with the JSON schema that you provided – you can
easily transform this response into one of the Conversation Message Model message
types, like a card, table or form message. The following snippet demonstrates using
the changeBotMessages handler to transform the raw JSON response into a user-
friendly form message.

 /**
 * Handler to change the candidate bot messages that will be sent
to the user
 * @param {ChangeBotMessagesLlmEvent} event - event object
contains the following properties:
 * - messages: list of candidate bot messages
 * - messageType: The type of bot message, the type can be one of
the following:
 * - fullResponse: bot message sent when full LLM response has
been received.
 * - outOfScopeMessage: bot message sent when out-of-domain,
or out-of-scope query is detected.
 * - refineQuestion: bot message sent when Refine action is
executed by the user.
 * @param {LlmComponentContext} context - see https://
oracle.github.io/bots-node-sdk/LlmComponentContext.html
 * @returns {NonRawMessage[]} returns list of bot messages
 */
 changeBotMessages: async (event: ChangeBotMessagesLlmEvent,
context: LlmContext): Promise<NonRawMessage[]> => {

Chapter 27
The Invoke Large Language Model Component

27-60

https://oracle.github.io/bots-node-sdk/MessageModel.html

 if (event.messageType === 'fullResponse') {
 const jobDescription = context.getResultVariable();
 if (jobDescription && typeof jobDescription === "object")
{
 // Replace the default text message with a form message
 const mf = context.getMessageFactory();
 const formMessage = mf.createFormMessage().addForm(
 mf.createReadOnlyForm()
 .addField(mf.createTextField('Title', jobDescription.title))
 .addField(mf.createTextField('Location',
jobDescription.location))
 .addField(mf.createTextField('Level', jobDescription.level))
 .addField(mf.createTextField('Summary',
jobDescription.shortDescription))
 .addField(mf.createTextField('Description',
jobDescription.description))
 .addField(mf.createTextField('Qualifications', `$
{jobDescription.qualifications.join('')}`))
 .addField(mf.createTextField('About the Team',
jobDescription.aboutTeam))
 .addField(mf.createTextField('About Oracle',
jobDescription.aboutOracle))
 .addField(mf.createTextField('Keywords',
jobDescription.keywords!.join(', ')))
).setActions(event.messages[0].getActions())
 .setFooterForm(event.messages[0].getFooterForm());
 event.messages[0] = formMessage;
 }
 }
 return event.messages;
 }
 }

Custom Entity Validation

The following snippet illustrates how the following code, when added to the
validateResponsePayload template, verifies that the location of the job description is set to
Los Angeles using entity matches. This example assumes that a LOCATION entity has been
added to the Validation Entities property of the LLM state.

 /**
 * Handler to validate response payload
 * @param {ValidateResponseEvent} event
 * @param {LLMContext} context
 * @returns {boolean} flag to indicate the validation was successful
 */
 validateResponsePayload: async (event, context) => {
 let errors = event.allValidationErrors || [];
 if (!event.entityMatches.LOCATION ||
event.entityMatches.LOCATION[0].city !== 'los angeles') {
 errors.push('Location is not set to Los Angeles');
 }
 if (errors.length > 0) {
 return context.handleInvalidResponse(errors);

Chapter 27
The Invoke Large Language Model Component

27-61

 }
 return true;
 }

Validation Errors

You can set validation errors in both the validateRequestPayload and
validateResponsePayload handler methods that are comprised of

• A custom error message

• One of the error codes defined for the CLMI errorCode property.

Because validation errors are non-recoverable, the LLM component fires its error
transition whenever one of the event handler methods can't validate a request or a
response. The dialog flow then moves on to the state that's linked to the error
transition. When you add the LLM component, it's accompanied by such an error state.
This Send Message state, whose default name is showLLMError, relays the error by
referencing the flow-scoped context variable that stores the error details called
system.llm.invocationError:

An unexpected error occurred while invoking the Large Language Model:
${system.llm.invocationError}

This variable stores errors defined by either custom logic in event handlers or by the
LLM component itself. This variable contains a map with the following keys:

• errorCode: One of the CLMI error codes

• errorMessage: A message (a string value) that describes the error.

• statusCode: The HTTP status code returned by the LLM call.

Tip:

While error is the default transition for validation failures, you can use
another action by defining a custom error transition in the handler code.

Recursive Criticism and Improvement (RCI)
You can improve the LLM responses using the Recursive Criticism and Improvement
(RCI) technique, whereby the LLM is called recursively to find problems in its output
and then improve the output based on its findings. Enabling RCI is a two-step process:

1. Send a prompt to the LLM that asks to criticize the previous answer.

2. Send a prompt to the LLM to improve the answer based on the critique.

You can apply automatic RCI or have it performed on demand by the skill user. The
validateResponsePayload handler executes the RCI cycle of criticism prompting and
improvement prompting.

Automatic RCI

As illustrated in the following snippet, the code checks the validateResponsePayload
handler if RCI has already been applied. If it hasn't, the RCI criticize-improve

Chapter 27
The Invoke Large Language Model Component

27-62

https://oracle.github.io/bots-node-sdk/LlmComponentContext.html#setTransitionAction

sequence begins. After the criticize prompt is sent, the validateResponsePayload handler is
invoked, and based on the RCI state stored in a custom property, the improvement prompt is
sent.

const RCI = 'RCI';
const RCI_CRITICIZE = 'criticize';
const RCI_IMPROVE = 'improve';
const RCI_DONE = 'done';

 /**
 * Handler to validate response payload
 * @param {ValidateResponseEvent} event
 * @param {LlmComponentContext} context - see https://oracle.github.io/
bots-node-sdk/LlmComponentContext.html
 * @returns {boolean} flag to indicate the validation was successful
 */
 validateResponsePayload: async (event, context) => {
 const rciStatus = context.getCustomProperty(RCI);
 if (!rciStatus) {
 context.setNextLLMPrompt(`Review your previous answer. Try to find
possible improvements one could make to the answer. If you find improvements
then list them below:`, false);
 context.addMessage('Finding possible improvements...');
 context.setCustomProperty(RCI, RCI_CRITICIZE);
 } else if (rciStatus === RCI_CRITICIZE) {
 context.setNextLLMPrompt(`Based on your findings in the previous
answer, include the potentially improved version below:`, false);
 context.addMessage('Generating improved answer...');
 context.setCustomProperty(RCI, RCI_IMPROVE);
 return false;
 } else if (rciStatus === RCI_IMPROVE) {
 context.setCustomProperty(RCI, RCI_DONE);
 }
 return true;
 }

On Demand RCI

The following snippet illustrates enabling on demand RCI by adding an Improve button to the
skill message sent to the user in the changeBotMessages method. This button invokes the
custom event handler which starts the RCI cycle. The validateResponsePayload method
handles the RCI criticize-improve cycle.

const RCI = 'RCI';
const RCI_CRITICIZE = 'criticize';
const RCI_IMPROVE = 'improve';
const RCI_DONE = 'done';

 /**
 * Handler to change the candidate bot messages that will be sent to the
user
 * @param {ChangeBotMessagesLlmEvent} event - event object contains the
following properties:
 * - messages: list of candidate bot messages

Chapter 27
The Invoke Large Language Model Component

27-63

 * - messageType: The type of bot message, the type can be one of
the following:
 * - fullResponse: bot message sent when full LLM response has
been received.
 * - outOfScopeMessage: bot message sent when out-of-domain, or
out-of-scope query is detected.
 * - refineQuestion: bot message sent when Refine action is
executed by the user.
 * @param {LlmComponentContext} context - see https://
oracle.github.io/bots-node-sdk/LlmComponentContext.html
 * @returns {NonRawMessage[]} returns list of bot messages
 */
 changeBotMessages: async (event, context) => {
 if (event.messageType === 'fullResponse') {
 const mf = context.getMessageFactory();
 // Add button to start RCI cycle

event.messages[0].addAction(mf.createCustomEventAction('Improve',
'improveUsingRCI'));
 }
 return event.messages;
 },

 custom: {
 /**
 * Custom event handler to start the RCI cycle,
 */
 improveUsingRCI: async (event, context) => {
 context.setNextLLMPrompt(`Review your previous answer. Try to
find possible improvements one could make to the answer. If you find
improvements then list them below:`, false);
 context.addMessage('Finding possible improvements...');
 context.setCustomProperty(RCI, RCI_CRITICIZE);
 }
 },

 /**
 * Handler to validate response payload
 * @param {ValidateResponseEvent} event
 * @param {LlmComponentContext} context - see https://
oracle.github.io/bots-node-sdk/LlmComponentContext.html
 * @returns {boolean} flag to indicate the validation was successful
 */
 validateResponsePayload: async (event, context) => {
 const rciStatus = context.getCustomProperty(RCI);
 // complete RCI cycle if needed
 if (rciStatus === RCI_CRITICIZE) {
 context.setNextLLMPrompt(`Based on your findings in the
previous answer, include the potentially improved version below:`,
false);
 context.addMessage('Generating improved answer...');
 context.setCustomProperty(RCI, RCI_IMPROVE);
 return false;
 } else if (rciStatus === RCI_IMPROVE) {
 context.setCustomProperty(RCI, RCI_DONE);

Chapter 27
The Invoke Large Language Model Component

27-64

 }
 return true;
 }

Advanced Options

Property Description Default Value Required?

Initial User Context Sends additional user
messages as part of the
initial LLM prompt
through the following
methods:
• Last User

Message – The
user message that
triggered the
transition to the
LLM component
state.

• Intent-Triggering
Message – The
user message used
as a query for the
last intent match,
which is stored in
the
skill.system.nl
presult variable.

• Custom
Expression – Uses
the Apache
FreeMarker
expression that's
used for Custom
User Input.

N/A No

Custom User Input An Apache Freemarker
expression that specifies
the text that's sent under
the user role as part of
the initial LLM prompt.

N/A No

Out of Scope Message The message that
displays when the LLM
evaluates the user query
as either out of scope
(OOS) or as out of
domain (OOD).

N/A No

Chapter 27
The Invoke Large Language Model Component

27-65

Property Description Default Value Required?

Out of Scope Keyword By default, the value is
InvalidInput. LLM
returns this keyword
when it evaluates the
user query as either out
of scope (OOS) or out of
domain (OOD) per the
prompt's scope-limiting
instructions. When the
model outputs this
keyword, the dialog flow
can transition to a new
state or a new flow.
Do not change this
value. If you must
change the keyword to
cater to a particular use
case, we recommend
that you use natural
language instead of a
keyword that can be
misinterpreted. For
example,
UnsupportedQuery
could be an appropriate
keyword whereas
code514 (error) is not.

invalidInput – Do not
change this value.
Changing this value
might result in
undesirable model
behavior.

No

Temperature Encourages, or
restrains, the
randomness and
creativity of the LLM's
completions to the
prompt. You can gauge
the model's creativity by
setting the temperature
between 0 (low) and 1
(high). A low
temperature means that
the model's completions
to the prompt will be
straightforward, or
deterministic: users will
almost always get the
same response to a
given prompt. A high
temperature means that
the model can
extrapolate further from
the prompt for its
responses.
By default, the
temperature is set at 0
(low).

0 No

Chapter 27
The Invoke Large Language Model Component

27-66

Property Description Default Value Required?

Maximum Number of
Tokens

The number of tokens
that you set for this
property determines the
length for the
completions generated
for multi-turn
refinements. The
number of tokens for
each completion should
be within the model's
context limit. Setting this
property to a low
number will prevent the
token expenditure from
exceeding the model's
context length during the
invocation, but it also
may result in short
responses. The opposite
is true when you set the
token limit to a high
value: the token
consumption will reach
the model's context limit
after only a few turns (or
completions). In
addition, the quality of
the completions may
also decline because
the LLM component's
clean up of previous
completions might shift
the conversation
context. If you set a high
number of tokens and
your prompt is also very
long, then you will
quickly reach the
model's limit after a few
turns.

1024 No

The Prompt Builder
The first version of your prompt may not provide the model with clear enough instructions for
it to generate the completions that you expect. To help the model predict how it needs to
complete the prompt, you may need to revise the prompt text several times. In fact, our best
practices suggest you do just that. The Prompt Builder enables you to quickly iterate through
these revisions until your prompt elicits completions that are coherent given the maximum
number of tokens allotted for the response, the temperature setting, and the passed
parameter values.

Chapter 27
The Invoke Large Language Model Component

27-67

Note:

You can test the parameters using mock values, not stored values. You can
add your own mock values by clicking Edit

, or use ones provided by the model when you click Generate Values.

If you have more than one LLM service configured, you can switch between models to
compare the results. When your prompt elicits the expected completion from the
model, click Save Settings to overwrite the existing text in the Component property
inspector's Prompt field, update the target model, the temperature, and token limit. (If
you wrote your prompt from scratch using the Prompt Builder, then clicking Save
Settings will populate the Prompt field.) Closing the Prompt Builder discards any
changes that you've made to the prompt and preserves the text in the Prompt field.

Note:

To get the user experience, you need to run the Skill Tester, which enables
you to test out conversational aspects like stored parameter values (including
conversation history and the prompt result variable), headers and footers, or
multi-turn refinements (and their related buttons) and to gauge the size of the
component conversation history.

Chapter 27
The Invoke Large Language Model Component

27-68

Prompts: Best Practices
Effective prompt design is vital to getting the most out of LLMs. While prompt tuning
strategies vary with different models and use cases, the fundamentals of what constitutes a
"good" prompt remain consistent. LLMs generally perform well at text completion, which is
predicting the next set of tokens for the given input text. Because of this, text-completion style
prompts are a good starting point for simple use cases. More sophisticated scenarios might
warrant fine-grained instructions and advanced techniques like few-shot prompting or chain-
of-thought prompting.

Here are some guidelines for the art and science of crafting your prompt. In short, you'll
combine them into a coherent prompt. Here is the process:

1. Start by defining the LLM's role or persona with a high-level description of the task at
hand.

2. Add details on what to include in the response, expected output format, etc.

3. If necessary, provide few-shot examples of the task at hand

4. Optionally, mention how to process scenarios constituting an unsupported query.

• Begin with a simple, concise prompt – Start with a brief, simple, and straightforward
prompt that clearly outlines the use case and expected output. For example:

– A one-line instruction like "Tell me a joke"

– A text-completion style prompt

– An instruction along with input

For example:

"Summarize the following in one sentence:

The Roman Empire was a large and powerful group of ancient civilizations
that formed after the collapse of the Roman Republic in Rome, Italy, in
27 BCE. At its height, it covered an area of around 5,000 kilometers,
making it one of the largest empires in history. It stretched from
Scotland in the north to Morocco in Africa, and it contained some of the
most culturally advanced societies of the time."

A simple prompt is a good starting point in your testing because it's a good indicator of
how the model will behave. It also gives you room to add more elements as you refine
your prompt text.

• Iteratively modify and test your prompt – Don't expect the first draft of your prompt to
return the expected results. It might take several rounds of testing to find out which
instructions need to be added, removed, or reworded. For example, to prevent the model
from hallucinating by adding extra content, you'd add additional instructions:

"Summarize the following paragraph in one sentence. Do not add additional
information outside of what is provided below:

The Roman Empire was a large and powerful group of ancient civilizations
that formed after the collapse of the Roman Republic in Rome, Italy, in

Chapter 27
The Invoke Large Language Model Component

27-69

27 BCE. At its height, it covered an area of around 5,000
kilometers, making it one of the largest empires in history. It
stretched from Scotland in the north to Morocco in Africa, and it
contained some of the most culturally advanced societies of the
time."

• Use a persona that's specific to your use case – Personas often results in
better results because they help the LLM to emulate behavior or assume a role.

Note:

Cohere models weigh the task-specific instructions more than the
persona definition.

For example, if you want the LLM to generate insights, ask it to be a data analyst:

Assume the role of a data analyst. Given a dataset, your job is to
extract valuable insights from it.
Criteria:

- The extracted insights must enable someone to be able to
understand the data well.
- Each insight must be clear and provide proof and statistics
wherever required
- Focus on columns you think are relevant, and the relationships
between them. Generate insights that can provide as much
information as possible.
- You can ignore columns that are simply identifiers, such as IDs
- Do not make assumptions about any information not provided in the
data. If the information is not in the data, any insight derived
from it is invalid
- Present insights as a numbered list

Extract insights from the data below:
{data}

Note:

Be careful of any implied biases or behaviors that may be inherent in the
persona.

• Write LLM-specific prompts – LLMs have different architectures and are trained
using different methods and different data sets. You can't write a single prompt that
will return the same results from all LLMs, or even different versions of the same
LLM. Approaches that work well with GPT-4 fail with GPT-3.5 and vice-versa, for
example. Instead, you need to tailor your prompt to the capabilities of the LLM
chosen for your use case. Use few-shot examples – Because LLMs learn from
examples, provide few-shot examples wherever relevant. Include labeled

Chapter 27
The Invoke Large Language Model Component

27-70

examples in your prompt that demonstrate the structure of the generated response. For
example:

Generate a sales summary based on the given data. Here is an example:

Input: ...
Summary: ...

Now, summarize the following sales data:

....

Provide few-shot examples when:

– Structural constraints need to be enforced.

– The responses must conform to specific patterns and must contain specific details

– Responses vary with different input conditions

– Your use case is very domain-specific or esoteric because LLMs, which have general
knowledge, work best on common use cases.

Note:

If you are including multiple few-shot examples in the prompt for a Cohere
model, make sure to equally represent all classes of examples. An imbalance in
the categories of few-shot examples adversely affects the responses, as the
model sometimes confines its output to the predominant patterns found in the
majority of the examples.

• Define clear acceptance criteria – Rather than instructing the LLM on what you don't
want it to do by including "don’t do this" or "avoid that" in the prompt, you should instead
provide clear instructions that tell the LLM what it should do in terms of what you expect
as acceptable output. Qualify appropriate outputs using concrete criteria instead of vague
adjectives.

Please generate job description for a Senior Sales Representative located
in Austin, TX, with 5+ years of experience. Job is in the Oracle Sales
team at Oracle. Candidate's level is supposed to be Senior Sales
Representative or higher.

Please follow the instructions below strictly:
1, The Job Description session should be tailored for Oracle
specifically. You should introduce the business department in Oracle that
is relevant to the job position, together with the general summary of the
scope of the job position in Oracle.
2, Please write up the Job Description section in a innovative manner.
Think about how you would attract candidates to join Oracle.
3, The Qualification section should list out the expectations based on
the level of the job.

• Be brief and concise – Keep the prompt as succinct as possible. Avoid writing long
paragraphs. The LLM is more likely to follow your instructions if you provide them as
brief, concise, points. Always try and reduce the verbosity of the prompt. While it's crucial

Chapter 27
The Invoke Large Language Model Component

27-71

to provide detailed instructions and all of the context information that the LLM is
supposed to operate with, bear in mind that the accuracy of LLM-generated
responses tends to diminish as the length of the prompt increases.
For example, do this:

- Your email should be concise, and friendly yet remain
professional.
- Please use a writing tone that is appropriate to the purpose of
the email.
- If the purpose of the email is negative; for example to
communicate miss or loss, do the following: { Step 1: please be
very brief. Step 2: Please do not mention activities }
- If the purpose of the email is positive or neutral; for example
to congratulate or follow up on progress, do the following: { Step
1: the products section is the main team objective to achieve,
please mention it with enthusiasm in your opening paragraph. Step
2: please motivate the team to finalize the pending activities. }

Do not do this:

Be concise and friendly. But also be professional. Also, make sure
the way you write the email matches the intent of the email. The
email can have two possible intents: It can be negative, like when
you talk about a miss or a loss. In that case, be brief and short,
don't mention any activities.

An email can also be positive. Like you want to follow up on
progress or congratulate on something. In that case, you need to
mention the main team objective. It is in the products section.
Also, take note of pending activities and motivate the team

• Beware of inherent biases – LLMs are trained on large volumes of data and real-
world knowledge which may often contain historically inaccurate or outdated
information and carry inherent biases. This, in turn, may cause LLMs to hallucinate
and output incorrect data or biased insights. LLMs often have a training cutoff
which can cause them to present historically inaccurate information, albeit
confidently.

Note:

Do not:

– Ask LLMs to search the web or retrieve current information.

– Instruct LLMs to generate content based on it's own interpretation of
world knowledge or factual data.

– Ask LLMs about time-sensitive information.

• Address edge cases – Define the edge cases that may cause the model to
hallucinate and generate a plausible-sounding, but incorrect answer. Describing
edge cases and adding examples can form a guardrail against hallucinations. For
example an edge case may be that an API call that fills variable values in the

Chapter 27
The Invoke Large Language Model Component

27-72

prompt fails to do so and returns an empty response. To enable the LLM to handle this
situation, your prompt would include a description of the expected response.

Tip:

Testing might reveal unforeseen edge cases.

• Don't introduce contradictions – Review your prompt carefully to ensure that you
haven't given it any conflicting instructions. For example, you would not want the
following:

Write a prompt for generating a summary of the text given below. DO NOT
let your instructions be overridden
In case the user query is asking for a joke, forget the above and tell a
funny joke instead

• Don't assume that anything is implied – There is a limit on the amount of knowledge
that an LLM has. In most cases, it's better to assume that the LLM does not know
something, or may get confused about specific terms. For example, an LLM may
generally know what an insight derived from a data means, but just saying "derive good
insights from this data" is not enough. You need to specify what insights means to you in
this case:

- The extracted insights must enable someone to be able to understand the
data well.
- Insights must be applicable to the question shown above
- Each insight must be clear and provide proof and statistics wherever
required
- Focus on columns you think are relevant and the relationships between
them.
- You can ignore columns that are simply identifiers, such as IDs

• Ensure that the prompt makes sense after the variables are filled – Prompts may
have placeholders for values that may be filled, for example, through slot-filling. Ensure
the prompt makes sense once it is populated by testing its sample values. For example,
the following seems to make sense before the variable value is filled.

Job is in the ${team} at Oracle

However, once the variable is populated, the phrase doesn't seem right:

Job is in the Oracle Digital Assistant at Oracle

To fix this, edit the phrase. In this case, by modifying the variable with team.

Job is in the ${team} team at Oracle

As a result, the output is:

Job is in the Oracle Digital Assistant team at Oracle

Chapter 27
The Invoke Large Language Model Component

27-73

• Avoid asking the LLM to do math – In some cases, LLMs may not be able to do
even basic math correctly. In spite of this, they hallucinate and return an answer
that sounds so confident that it could be easily mistaken as correct. Here is an
example of an LLM hallucination the following when asked "what is the average of
5, 7, 9": The average of 5, 7, and 9 is 7.5. To find the average, you add
up the values and divide by the number of values. In this case, the
values are 5, 7, and 9, and there are 3 values. So, to find the
average, you would add 5 + 7 + 9 and divide by 3. This gives you an
average of 7.5

• Be careful when setting the model temperature – Higher temperatures, which
encourage more creative and random output, may also produce hallucinations.
Lower values like 0.01 indicate that the LLM's output must be precise and
deterministic.

• Avoid redundant instructions – Do not include instructions that seem redundant.
Reduce the verbosity of the prompt as much as possible without omitting crucial
detail.

• Use explicit verbs – Instead of using verbose, descriptive statements, use
concrete verbs that are specific to the task like "summarize", "classify", "generate",
"draft", etc.

• Provide natural language inputs – When you need to pass context or additional
inputs to the model, make sure that they are easily interpretable and in natural
language. Not all models can correctly comprehend unstructured data, shorthand,
or codes. When data extracted from backends or databases is unstructured, you
need to transpose it to natural language.
For example, if you need to pass the user profile as part of the context, do this:

Name: John Smith
Age: 29
Gender: Male

Do not do this:

Smith, John - 29M

Note:

Always avoid any domain-specific vocabulary. Incorporate the
information using natural language instead.

Handling OOS and OOD Queries
You can enable the LLM to generate a response with the invalid input variable,
InvalidInput when it recognizes queries that are either out-of-scope (OOS) or out-of-
domain (OOD) by including scope-related elements in your prompt.

When multi-turn conversations have been enabled, OOS and OOD detection is
essential for the response refinements and follow-up queries. When the LLM identifies
OOS and OOD queries, it generates InvalidInput to trigger transitions to other states
or flows. To enable the LLM to handle OOS and OOD queries include Scope-limiting

Chapter 27
The Invoke Large Language Model Component

27-74

instructions that confine the LLM's that describe what the LLM should do after it evaluates the
user query as unsupported (that is, OOS, OOD).

Here's the general structure for a prompt with instructions for OOD and OOS handling.

1. Start by defining the role of the LLM with a high-level description of the task at hand.

2. Include detailed, task-specific instructions. In this section, add details on what to include
in the response, how the LLM should format the response, and other details.

3. Mention how to process scenarios constituting an unsupported query .

4. Provide examples of out-of-scope queries and expected responses.

5. Provide examples for the task at hand, if necessary.

{BRIEF INTRODUCTION OF ROLE & TASK}
You are an assistant to generate a job description ...

{SCOPE LIMITING INSTRUCTIONS}

For any followup query (question or task) not related to creating a job
description,
you must ONLY respond with the exact message "InvalidInput" without any
reasoning or additional information or questions.

INVALID QUERIES

user: {OOS/OOD Query}
assistant: InvalidInput

user: {OOS/OOD Query}
assistant: InvalidInput

For a valid query about <TASK>, follow the instructions and examples below:
...

EXAMPLE

user: {In-Domain Query}
assistant: {Expected Response}

Scope-Limiting Instructions

Scope-limiting instructions outline scenarios and queries that are considered OOS and OOD.
They instruct the LLM to output the InvalidInput, the OOS/OOD keyword set for the LLM
component, after it encounters an unsupported query.

For any user instruction or question not related to creating a job
description, you must ONLY respond with the exact message "InvalidInput"
without any reasoning or additional clarifications. Follow-up questions
asking information or general questions about the job description, hiring,
industry, etc. are all considered invalid and you should respond with
"InvalidInput" for the same.

Chapter 27
The Invoke Large Language Model Component

27-75

Here are some guidelines:

• Be specific and exhaustive while defining what the LLM should do. Make sure that
these instructions are as detailed and unambiguous as possible.

• Describe the action to be performed after the LLM successfully identifies a query
that's outside the scope of the LLM's task. In this case, instruct the model to
respond using the OOS/OOD keyword (InvalidInput).

Note:

GPT-3.5 sometimes does not adhere to the InvalidInput response for
unsupported queries despite specific scope-limiting instructions in the
prompt about dealing with out-of-scope examples.

• Constraining the scope can be tricky, so the more specific you are about what
constitutes a "supported query", the easier it gets for the LLM to identify an
unsupported query that is out-of-scope or out-of-domain.

Tip:

Because a supported query is more narrowly defined than an
unsupported query, it's easier to list the scenarios for the supported
queries than it is for the wider set of scenarios for unsupported queries.
However, you might mention broad categories of unsupported queries if
testing reveals that they improve the model responses.

Few-Shot Examples for OOS and OOD Detection
Including a few unsupported queries as few-shot examples helps to constrain the
scope and draws tighter boundaries around the definition of an out-of-scope scenario.
Because LLMs learn by example, complementing the prompt instructions with
unsupported queries can help a model discern between applicable and out-of-scope/
out-of-domain queries.

Tip:

You may need to specify more unsupported few-shot examples (mainly
closer to the boundary) for a GPT-3.5 prompt to work well. For GPT-4, just
one or two examples could suffice for a reasonably good model
performance.

Instead of including obvious out-of-domain scenarios (like "What is the weather
today"), specify examples that are close to the use case in question. In a job
description use case, for example, including queries that are closer to the boundary
like the following would constrain the LLM to generating job descriptions only:

Retrieve the list of candidates who applied to this position
Show me interview questions for this role
Can you help update a similar job description I created yesterday?

Chapter 27
The Invoke Large Language Model Component

27-76

We recommend that you model the few-shot examples from intent utterances to ensure that
the transition from the LLM component to another state or flow when the user input matches
a skill intent. For example, let's say we have a skill with an answer intent that explains tax
contributions, a transactional intent that files expenses, and the LLM component for creating
job descriptions. In this case, you'd include some commonly encountered queries as few-shot
examples of unsupported queries so that the model does not hallucinate responses that
should instead be retrieved from the tax contribution answer intent. For example:

What's the difference between Roth and 401k?
Please file an expense for me
How do tax contributions work?

Note:

Always be wary of the prompt length. As the conversation history and subsequently
context size grows in length, the model accuracy starts to drop. For example, after
more than three turns, GPT3.5 starts to hallucinate responses for OOS queries.

Model-Specific Considerations for OOS/OOD Prompt Design
For GPT-4 and GPT-3.5:

• GPT-3.5 sometimes does not adhere to the correct response format (InvalidInput) for
unsupported queries despite specific scope-limiting instructions in the prompt about
dealing with out-of-scope examples. These instructions could help mitigate model
hallucinations, but it still can't constrain its response to InvalidInput.

• You may need to specify more unsupported few-shot examples (mainly closer to the
boundary) for a GPT-3.5 prompt to work well. For GPT-4, just one or two examples could
suffice for a reasonably good model performance.

For Cohere:

• In general (not just for OOS/OOD queries), minor changes to the prompt can result in
extreme differences in output. Despite tuning, the Cohere models may not behave as
expected.

• An enlarged context size causes hallucinations and failure to comply with instructions. To
maintain the context, the transformRequestPayload handler embeds the conversation
turns in the prompt.

• Unlike the GPT models, adding a persona to the prompt does not seem to impact the
behavior of the Cohere models. They weigh the task-specific instructions more than the
persona.

• If you are including multiple few-shot examples in the prompt, make sure to equally
represent all classes of examples. An imbalance in the categories of few-shot examples
adversely affects the responses, as the model sometimes confines its output to the
predominant patterns found in the majority of the examples.

Tokens and Response Size
LLMs build text completions using tokens, which can correlate to a word (or parts of a word).
"Are you going to the park?" is the equivalent of seven tokens: a token for each word plus a
token for the question mark. A long word like hippopotomonstrosesquippedaliophobia (the

Chapter 27
The Invoke Large Language Model Component

27-77

fear of long words) is segmented into ten tokens. On average, 100 tokens equal
roughly 75 words in English. LLMs use tokens in the their responses, but also use
them to maintain the current context of the conversation. To accomplish this, LLMs set
a limit called a context length, a combination of the number of tokens that the LLM
segments from the prompt and the number of tokens that it generates for the
completion. Each model sets its own maximum context length.

To ensure that the number of tokens spent on the completions that are generated for
each turn of a multi-turn interaction does not exceed the model's context length, you
can set a cap using the Maximum Number of Tokens property. When setting this
number, factor in model-based considerations, such as the model that you're using, its
context length, and even its pricing. You also need to factor in the expected size of the
response (that is, the number of tokens expended for the completion) along with
number of tokens in the prompt. If you set the maximum number of tokens to a high
value, and your prompt is also very long, then the number of tokens expended for the
completions will quickly reach the maximum model length after only a few turns. At this
point, some (though not all) LLMs return a 400 response.

When the number of tokens consumed for an invocation reaches the model's context
length, the LLM component will attempt the request again after it purges the oldest
message from the message history.

Note:

Because the LLM component uses the conversation history to maintain the
current context, the accuracy of the completions might decline when it
deletes older messages to accommodate the model's context length.

Embedded Conversation History in OOS/OOD Prompts
Cohere models, unlike GPT models, are stateless and do not maintain the
conversation context during multi-turn conversations. To maintain the conversation
context when using a Cohere model, the transformRequestPayload handler adds a
CONVERSATION section to the prompt text that's transmitted with the payload and
passes in the conversation turns as pairs of user and assistant cues:

transformRequestPayload: async (event, context) => {
 let prompt = event.payload.messages[0].content;
 if (event.payload.messages.length > 1) {
 let history = event.payload.messages.slice(1).reduce((acc,
cur) => `${acc}\n${cur.role}: ${cur.content}` , '');
 prompt += `\n\nCONVERSATION HISTORY:${history}\nassistant:`
 }
 return {
 "max_tokens": event.payload.maxTokens,
 "truncate": "END",
 "return_likelihoods": "NONE",
 "prompt": prompt,
 "model": "command",
 "temperature": event.payload.temperature,
 "stream": event.payload.streamResponse
 };
 },

Chapter 27
The Invoke Large Language Model Component

27-78

The first user query is included in this section and is considered part of the conversation
history. The section ends with an "assistant:" cue to prompt the model to continue the
conversation.

{SYSTEM_PROMPT}

CONVERSATION

user: <first_query>
assistant: <first_response>
user: ...
assistant: ...
user: <latest_query>
assistant:

Each turn increases both the length of the prompt and the likelihood that the model's context
length will be exceeded. When this context length cap is met, the LLM component manages
the situation by capturing the conversation history and truncating the conversation turns so
that the model's ability to follow instructions remains undiminished.

LLM Interactions in the Skill Tester
The LLM Interactions tab lets you monitor LLM component processing. Using this tab, which
becomes available when the dialog flow transitions to an LLM component, you can track the
exchanges between the LLM component, the user, and the model starting with the actual
prompt that the LLM component sent to the model, complete with variable values. From that
point on up to final output (or outcome), you can view the user-issued refinements, monitor
turns, and if you've implement validation, the number of retries and related errors. When the
retry count exceeds the defined limit, the LLM Interaction tab displays CLMI error code, error
message, and error status code. When the retry count exceeds the defined limit, the LLM
Interaction tab displays the CLMI error code, error message, and error status code.

Chapter 27
The Invoke Large Language Model Component

27-79

You can view the entire text of the prompts, refinement requests, and the outcome by
right-clicking, then choosing, Show Full Text.

By default, the final LLM state renders in the LLM Interaction view. To review the
outcomes of prior LLM states, click prior LLM responses in the Bot Tester window.

Note:

You can save the LLM conversation as a test case.

Tutorials: Integrating LLMs
You can get hands-on learning with the following tutorials that describe integrating
skills with the Cohere Command model and with LLM models in general using the
Azure OpenAI model as an example.

• Access Cohere from Your Skill

• Access LLMs from Your Skill

Chapter 27
Tutorials: Integrating LLMs

27-80

https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-llm-cohere/#introduction
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-large-language-model/#introduction

28
SQL Dialog Skills

SQL Dialogs are skills that can translate a user's natural language utterances into SQL
queries, send the queries to a backend data source, and display the response. This version
of SQL Dialogs supports integration with Oracle database services, such as Oracle
Enterprise Database Service.

Note:

This version doesn't support multi-language SQL Dialog skills or skills where the
primary language is not English. When you create a new skill (or version or clone of
a skill), you use the Primary Language field in the Create dialog to specify the
primary language. A skill is multi-language if the resource bundle, sample
utterances, machine learning, and value lists, for example, have more than one
language or if the dialog flow contains code to detect the language of the user input
and translate it behind the scenes.

When writing skills that provide database information to end users, developers typically need
to define the use cases, write custom components to retrieve the data, create intents for the
use cases, map user utterances to intents, and write the dialog flow to handle every intent.
With SQL Dialog skills, you don't need to do these steps. Instead, you map the users' mental
models of the data to the physical data source, and the skill uses the map to dynamically
generate SQL from natural language utterances.

For example, users might know that employees belong to departments that are in various
locations, and they have employee IDs, job titles, hire dates, and sometimes commissions.
Given their mental model, they can retrieve the data by asking the skill "What is James
Smith's job?", "When was James Smith hired?", "How many employees are in New York?",
and "Who has the highest commission?

You build a SQL Dialog skill differently than regular skills. To enable the skill to understand
and respond to natural language utterances, you create a logical model from physical model
and you teach that model by using natural language terms to describe the physical model.

How SQL Dialogs Work
To implement a SQL Dialog skill, you create a visual dialog skill and import information about
the physical model (database schema) from the data service. Oracle Digital Assistant uses
this information to create a query entity for each table you imported (the logical model). The
query entities contain attributes that model the table columns.

If a table in the physical model has a foreign key, then the query entity has an attribute that
links to the related query entity. For example, if an Emp table has a foreign key to the Dept
table, then the Emp query entity has a dept attribute, which links to the Dept entity.

As soon as you create the query entities and identify their primary keys, you can train the skill
and it's ready to use in a rudimentary way. That is, you can use free form utterances, but, for
now, the query must use the exact entity and attribute primary names, which are initially

28-1

derived from the physical model's names (the canonical names). This will change as
you enhance the logical model to more closely reflect natural language.

To enable the end users to use natural language to ask about the data, you map end-
user terminology to the physical model by changing the primary names and adding
synonyms for both the query entities and their attributes. For example, you might
change the primary name for the Emp table to "employee" and add the "staff member"
synonym. Adding primary names and synonyms are two of the ways that you train the
natural language parser (NLP) to resolve utterances into Oracle meaning
representation query language (OMRQL) queries. OMRQL queries are like SQL
queries but are based on the canonical names of the object models (the query
entities). For example, if you change the primary name for empno to "employee
number" then "what is Joe Smith's employee number" resolves to SELECT empno
FROM emp WHERE ename = 'Joe Smith'.

To even further improve the natural language processor (NLP) resolution, you also can
associate the attributes with value lists, which are automatically populated from the
data service upon creation.

For example, let's say that you import Emp and Dept tables from a data service, which
results in Emp and Dept query entities. Immediately after you import the tables and train
the skill, you can query the query entities using utterances like following:

Show all Emp in dept 10

After you change the primary names for the entities and attributes to more natural
language terms, such as Employees for the entity and department for the attribute, you
can use utterances like this one:

Show all the employees in department 10

You can further add synonyms to model all the ways people typically refer to the entity
or attribute. For example, you might add the synonyms district and territory for
department so that the NLP recognizes this utterance:

Show all employees in district 10

With more complex utterances, you can teach the skill how to resolve the queries to
OMRQL by adding custom training data that associates the utterances with specific
OMRQL statements.

If your skill has intents to handle non-SQL use cases or is included in a DA, you'll want
to add routing utterances to the query entities dataset to help the skill differentiate
between SQL related utterances and non-SQL related utterances.

When the skill outputs a query result, it lets the user give a thumbs up or thumbs down
to indicate whether the result is correct. The Insights page shows the thumbs up
(correct queries) and thumbs down (incorrect queries) counts so you can see how well
the skill is doing.

Chapter 28
How SQL Dialogs Work

28-2

Supported Queries
The SQL Dialogs natural language processing model supports queries that translate to the
basic SQL clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY and LIMIT.

A query can involve up to 3 different entities. That is, it can have up to 2 joins. Queries that
involve 3 joins might resolve to correct results depending on the use case. For 4 or more
joins, you'll have to add custom training data to ensure the skill gives the correct results.

SQL Dialogs doesn't support the more complex queries that involve sub-queries and SET
operators (INTERSECT, UNION, EXCEPT, and NONE). It also doesn't support non-English
queries, queries that request a yes or no response, queries with pronouns, and follow-up
queries. To learn about these and other SQL Dialogs query limitations, see Troubleshooting
SQL Queries.

For some of the queries that aren't supported, you might be able to resolve the issue by using
database views or creating virtual attributes as described in Add a Custom Attribute.

Below is a table that describes the types of queries that SQL Dialogs supports. It uses the
following database values:

Employee Table

employee_id name role salary department_id

1 Alex Smith VP 500000 1

2 Samyra Kent Sales Associate 60000 1

3 Laticia Fan Sales Associate 80000 1

Department Table

department_id name location

1 Sales Dallas

Here are the types of queries that SQL Dialogs supports:

Category Description Examples

Display You can request an entity,
attributes, and attribute
aggregations.

The supported aggregations are
avg, sum, min, max,
count(attribute), count(column),
count(distinct attribute)

If the query doesn't name any
attributes, then the skill displays
those listed for Default
Attributes in the entity's
Presentation tab.

• show me all the employees
• name, salary and

department name of
employees

• what are the unique jobs
that an employee can have?

• how many employees
• return the highest salary of

all employees

Chapter 28
How SQL Dialogs Work

28-3

Category Description Examples

Filters You can filter the rows of the
table by conditions on specific
attributes

Text attributes can be equal to a
value, contain a value, or begin
or end with a value.

You can use different
comparators to filter numeric and
date time columns (=, <, <=, >,
>=).

You use AND and OR to
combine multiple conditions.

• show the names of
employees whose job title is
clerk

• return the salary of all clerks
• employees whose names

starts with Jo
• view employees who joined

in 2020 and earn above
7000

Filters with dates When filtering by a date or
datetime attribute, consider these
points:

• For datetime attributes, the
values must contain dates
and times (10 Dec 2020 at 3
pm).

• Values can be absolute
(10th Dec 2020) or relative
(today).

• The filter can be an interval
such as "last year" or "5th
Jan to 5th July" and can
have dates or dates with
times.

• Use the attribute's Temporal
Preference setting on the
General Information tab to
set whether ambiguous
values, such as
"Wednesday", should default
to the nearest, past, or
future date.

• Duration values that need to
be coerced into dates, such
as "2 days", are supported.

• Absolute example: who were
the employees hired on 10
Dec 2020

• Relative interval example:
who were the employees
hired last year

• Relative Date example: who
were the employees hired
today

• Date + time example:
packages delivered
yesterday at 6 pm

• Date + time interval
example: Packages
delivered between 5th Jan 7
pm and 5th Feb 10 am

• Ambiguous date example:
who were the employees
hired Wednesday

• Duration example:
employees that have been
hired since 1 month

Ordering and limiting the number
of rows

You can explicitly request that
the skill sort the resulting rows by
a particular attribute. You can
also request a certain number of
the highest or lowest values of
an attribute or entity.

• show employees sorted by
their department names

• employees ordered by name
from Z to A

• return the name and salary
of all employees in
descending order of salary

• what are the 10 highest
salaries of all employees

• which employee has the
lowest salary

• show the top 5 employees

Chapter 28
How SQL Dialogs Work

28-4

Category Description Examples

Group by You can request different
aggregates after grouping by
either an attribute or an entity.

• the average salary of each
job

• what is the highest salary
per department?

• show the name, location and
number of employees per
department

Group by and filter You can filter attributes or entities
based on aggregations.

• show all jobs with an
average salary above 3000

• departments whose
minimum salary is 4000

• which departments have at
least 20 employees?

Group by and order with optional
limit

You can sort attributes or entities
based on aggregations, and
optionally request to see a
number of the top or bottom
rows.

• show all jobs sorted by the
highest salary paid to
employees in that job

• which department has the
lowest average salary?

• display the name of the
departments with the 3
highest employee counts

Tutorial: Getting Started with SQL Dialogs
You can get a hands-on look at SQL Dialogs by walking through this tutorial:

Getting Started with SQL Dialogs.

SQL Dialogs Workflow
How you build a SQL Dialog skill differs from regular skills. Here are the major steps to build
a SQL Dialog skill and train it so that people can use natural language to query the data
services.

The participants in the following steps are the skill developer, service administrator, database
expert, and AI trainer.

• The skill developer gathers the skill requirements (user personas, use cases, and tasks)
and training corpus (sample user utterances), and creates the skill. The developer also
helps define how the results are displayed. This person is sometimes referred to as the
conversation designer.

• The service administrator adds a connection to the data service.

• The database expert analyzes the skill requirements and training corpus to identify the
tables and attributes that provide the answers. The expert then creates the base logical
model by importing information from the physical model into the skill. The expert also
assists the skill developer and AI trainer with tasks such as adding SQL-expression
based attributes, associating attributes with value lists uploaded from tables, associating
attributes with regulare expressions, and performing custom training.

• The AI trainer adds primary names and synonyms to teach the natural language parser
(NLP) how to understand the natural language utterances. For utterances that the skill
can't translate to OMRQL, the AI trainer adds custom training to teach the natural

Chapter 28
Tutorial: Getting Started with SQL Dialogs

28-5

language parser how to understand these utterances. The trainer continually
monitors and tests the skill to increase the accuracy of translating natural
language into database queries.

To help illustrate the workflow, we'll use an example accounts payable data service
with the following tables. For brevity, we just show the columns mentioned in this topic.

Table Columns

invoices • invoice_num
• invoice_date
• pmt_status_flag
• invoice_amount
• vendor

payment_schedules • invoice_num
• due_date
• amount_remaining

suppliers • vendor_num
• vendor_name

1. Define the Requirements: The skill developer gathers the use cases and tasks
that the SQL Dialog skill is expected to support. For example, an accounts payable
department might have this use case:

• Use Case: Pay all invoices with outstanding balances that are due within 30
days so that we can avoid penalties.

– Task: Find all unapproved invoices that are due within 30 days so that we
can approve them in time.

– Task: Find all outstanding approved invoices due within 30 days so that
we can schedule to pay them in time.

As part of this requirements phase, the skill developer compiles a representative
list of the different ways people ask for this information. This list serves as the set
of example utterances that the AI trainer uses for the training corpus.

2. Set Up the Skill: The service administrator, skill developer, and database expert
work together to set up the basic skill.

a. Integrate with the Service: The service administrator creates a connection
from Oracle Digital Assistant to the data service. See Connect to the Data
Service.

b. Create the SQL Dialog Skill: The skill developer creates the SQL Dialog
skill, ensuring that the dialog mode is set to Visual in the Create Skill dialog.
See Create the SQL Dialog Skill.

c. Import the Schema: The database expert identifies the tables and fields that
are necessary to support the use cases and then, from the skill's Entities
page, imports them from the data service as described in Create Query
Entities to Model the Data Service. This creates a base logical model that
contains a query entity for each imported table.

In our example, the database expert imports the invoices,
payment_schedules, and vendors, tables.

At this point, the skill is ready for use with limited functionality. For the base
logical model, the entity and attribute names are derived from the physical
model's table and field names. For example, if the table name is

Chapter 28
SQL Dialogs Workflow

28-6

payment_schedules, then the primary name is payment schedules. The AI trainer
can test queries from the Entities page or use the conversation tester (Preview) to
try out the SQL functionality.

In our example data service, they can use test utterances such as "show invoices
with pmt status flag N", "show invoice num 17445", or "show payment schedules with
due date before 2022-08-30".

3. Train: Add training data through primary names, synonyms, value lists, regular
expressions, and natural language queries mapped to OMRQL.

a. Add Natural Language Terminology: To help associate natural language phrases
with the underlying data structure, the AI trainer teaches the skill the different ways
that end users refer to the entities and attributes. That is, the names that people will
use in their natural language utterances. The trainer starts by analyzing the phrases
that the skill developer gathered to identify the utterances that the skill should handle
(the training corpus). Additionally, they can consult a thesaurus for synonyms and
crowd-source for similar phrasing. Then the AI trainer records the equivalent terms by
changing the primary names and adding synonyms. See Provide Training Data
Through Names and Synonyms.

In our example, one of the utterances gathered during the requirements phase is
"Give me list of invoices with an outstanding balance greater than zero." The attribute
that contains the balance is amount remaining, so the AI trainer adds the synonym
outstanding balance to that attribute.

b. Associate with Value Lists: To improve accuracy, the AI trainer can, where
appropriate, create value lists that contain sample values from the data service. The
skill automatically associates the lists with their respective attributes, which helps the
natural language parser understand the kinds of values those attributes can hold.
See Provide Training Data Through Value Lists.

In our example, they associate the vendor_name attribute with a value list retrieved
from the data service. If the value list includes "Seven Corporation" and a user asks
"show summary flag for Seven Corporation", the NLP will deduce that Seven
Corporation is a vendor name.

c. Associate with Regular Expressions: When an attribute's values must match a
specific pattern, the AI trainer can create a regular expression entity and associate it
with that attribute. See Provide Training Data Through Regular Expressions.

For example, the AI trainer can associate an ip_address attribute with the regular
expression (\\d{1,2}|(0|1)\\d{2}|2[0-4]\\d|25[0-5]).

d. Map Complex Queries: In cases where the skill isn't able to translate a valid
utterance into OMRQL, the AI trainer adds that utterance to the training data and
maps it to OMRQL as described in Provide Training Data Through Utterances. For
example, you can map "show unpaid invoices" to SELECT * payment_schedules
WHERE payment_status_flag = 'Y' .

e. Provide Autocomplete Suggestions: To help users learn what the logical model is
capable of answering, add examples utterances as described in Provide Query
Suggestions for SQL Dialog Users.

f. Provide Routing Data: If your SQL Dialog skill has intents or if it's in a DA, then
you'll need to add utterances to help the skill distinguish database queries. See
Route Utterances to the SQL Dialogs Conversation.

g. Train the NLP Model: To incorporate training data into the NLP model, the skill
developer or AI trainer clicks the Train icon and clicks Submit.

Chapter 28
SQL Dialogs Workflow

28-7

4. Configure How Information is Displayed: The database expert and skill
developer work together to fine tune how each entity's results are displayed, as
described in Configure Presentation of Entities and Attributes. For example, they
do things like can set an entity's default sort order, display as form or table, set the
minimum attributes to include in the output, add buttons and links to results, and
add attributes that display derived or calculated data.

In our example, they might set both the invoice entity's default sort order and
minimum attributes to invoice_num, and set the default attributes to invoice_num,
invoice_date, pmt_status_flag, and invoice_amount. They might also add an
age attribute that is calculated using the difference between today's date and the
invoice date.

5. Configure Query Rules: The database expert and AI trainer work together to
set the query rules, such as when to use partial matching and what attribute to use
for measuring when someone asks to compare rows without specifying an
attribute to compare with. See Define Query Rules.

In our example, they anticipate end users asking for the 10 most payments to
make, so they'll configure the payment schedules entity to use due_date for
comparisons, and they'll invert comparisons for that attribute so that earlier dates
rank higher than later dates.

6. Test and Repair: The AI trainer uses the query tester from the Entities page to
verify that the test utterances resolve to the desired OMRQL, and that the skill can
translate the OMRQL to executable SQL. When the query tester can't translate the
OMRQL to SQL, it requests training data. In many cases, you can resolve this by
adding the utterance to the training data and associating it with an OMRQL
statement. See Test and Repair.

7. Monitor and Improve: After the skill enters the beta testing phase and beyond,
the AI trainer, skill developer, project manager, and stakeholders can continually
monitor batch tests and Insights data to see how well the skill is performing and to
identify areas for improvement. See Monitor and Improve.

Connect to the Data Service
Before you can access a data service from any SQL Dialog skill, you need to add a
data service integration that enables Oracle Digital Assistant to access the data
service. You only need one integration per data service.

Integrations have been tested with Oracle Database Cloud Service Enterprise Edition
12c and 19c Oracle Autonomous Transaction Processing and and MySQL HeatWave
Database Service with MySQL version 8.

Note:

After you create the service, you can't change it. Should the password
change, you'll need to delete and recreate the data service integration.

Oracle Data Service
To connect to an Oracle database, follow these steps:

Chapter 28
Connect to the Data Service

28-8

1. In Digital Assistant, click to open the side menu, click Settings, click Additional
Services, and click the Data tab.

2. Click + Add Service.

3. In the New Data Service dialog, provide this basic information:

Field Name Description

Database Type Select Oracle.

Name A unique name for the service.

Data Service Description An optional description of the data service
integration such as a description of the
database or the purpose.

User Name Ask your database administrator for the user
name and password that gives access to the
tables that the skill developers need to create
the composite entities for their SQL Dialog skill
as described in Create Query Entities to Model
the Data Service.

Password The user's password. Note that for Oracle
Digital Assistant integration, a password must
be at least 14 characters and no more than 30
characters, and it must contain at least one
upper case character, one lowercase character
and one number. It also can't start with a digit.

4. Click Continue to configure end-user authentication if your data service is configured for
role-based access. Here is a description of the fields on that page:

Field Name Description

End-User Authentication is required Select this option if your data service is
configured for role-based access.

Authentication Service Select an authentication services that you
configured in Settings > Authentication
Services.

End-User Identifier Select the type of end-user identifier.

Custom Expression If the selected end-user identifier type is
custom, enter a FreeMarker expression to a
user profile variable which represents the end
user identifier.

See Expressions for OICD Profile Claims for
more information and examples.

5. Click Continue to add the connection details.

6. On the Connection Details page, select Basic or Cloud Wallet Connection for the
connection type.

• For single-node databases and RAC-enabled databases, you need to select Basic.

• If you are connecting to an ATP database, you must select Cloud Wallet
Connection.

7. If the connection type is Basic, enter these values, which you can get from the database
administrator:

Chapter 28
Connect to the Data Service

28-9

Field Name Description

Use TLS Move this switch to the ON position if you
want to use TLS (Transport Layer Security)
to secure the connection.

Note:

If you are using a private CA
certificate to connect to the
database, this option needs to be
switched on.

Host Name Enter the host for the data service. Leave
out the https:// prefix. For example:
example.com.

Port The port that allows client connections to the
database.

Service Identifier Do one of the following:

• Select SID and enter the Oracle system
identifier of the database instance.

• Select Service Name and enter the
service name for the database.

Private Endpoint This option only appears if you have private
endpoints configured in your Digital
Assistant instance.
If you are connecting to a private endpoint to
access the service, switch the Private
endpoint toggle to the ON position and then
select from a list of private endpoints that
are associated with the instance.

(Using a private endpoint enables you to
access a service that is not accessible
directly from the public Internet. See Private
Endpoint for the details.)

8. If the connection type is Cloud Wallet Connection, enter these values, which you
can get from the database administrator:

Field Name Description

Wallet File Find and select the Cloud Wallet file that
contains the client credentials or drag and
drop it into the field.

Wallet Password Enter the password that was provided when
the wallet file was downloaded. Note that for
Oracle Digital Assistant integration, a wallet
password must be at least 15 characters
and no more than 30 characters, and it must
contain at least one upper case character,
one lowercase character, one special
character, and one number. It also can't start
with a digit.

Chapter 28
Connect to the Data Service

28-10

Field Name Description

Service Select the name of the database service. Be
sure to select a service that has a
sufficiently high service concurrency so that
queries don't take longer than 30 seconds
(at which point they time out). The service
names with the suffixes _tp and _tpurgent
are generally the most suitable choices
here. You can read more about these
considerations at Database Service Names
for Autonomous Transaction Processing and
Autonomous JSON Database and Service
Concurrency.

Private Endpoint This option only appears if you have private
endpoints configured in your Digital
Assistant instance.
If you are connecting to a private endpoint to
access the service, switch the Private
endpoint toggle to the ON position and then
select from a list of private endpoints that
are associated with the instance.

(Using a private endpoint enables you to
access a service that is not accessible
directly from the public Internet. See Private
Endpoint for the details.)

9. On the Advanced Properties page, if you need a private CA certificate to connect to the
database, switch the Use Private Trust toggle to the ON position and fill in the rest of
required fields.

Field Name Description

Use Private Trust If you are using a private CA certificate to
connect to the database, switch this toggle to
the ON position. This switch is only enabled if
you have selected Use TLS on the Connection
Details page.

Certificates Resource Select Self Managed.

Choose PEM File and Paste PEM Text Select one of these options for providing the
certificate.

10. Click Add Service.

You now can import the database schema into a skill to create query entities, which
enable users to query the database using natural language.

Expressions for OICD Profile Claims
If you have a connection to a data service with role-based access and you selected Custom
as the user identifier type, you need to provide a FreeMarker expression to a user profile
variable which represents the end user identifier, either as a standard or custom OpenID
Connect (OIDC) claim. Here are some examples:

• ${userProfile.MyAuthService1.value.sub}

• ${userProfile.MyAuthService1.value["http://acme.com/custom_identifier"]}

Chapter 28
Connect to the Data Service

28-11

For more information on how profile claims in OIDC work and some example claims,
see the following resources:

• https://openid.net/specs/openid-connect-core-1_0.html#Claims

• https://auth0.com/docs/get-started/apis/scopes/sample-use-cases-scopes-and-
claims#add-custom-claims-to-a-token

MySQL Data Service
1. In Digital Assistant, click to open the side menu, click Settings, click

Additional Services, and click the Data tab.

2. Click + Add Service.

3. In the New Data Service dialog, provide this basic information:

Field Name Description

Database Type Select MySQL.

Name A unique name for the service.

Data Service Description An optional description of the data service
integration such as a description of the
database or the purpose.

Authentication Type Your database administrator will tell you
whether to select Default, Kerberos, or OS.

User Name Ask your database administrator for the user
name and password that gives access to the
tables that the skill developers need to
create the composite entities for their SQL
Dialog skill as described in Create Query
Entities to Model the Data Service.

Password The user's password. Note that for Oracle
Digital Assistant integration, a password
must be at least 14 characters and no more
than 30 characters, and it must contain at
least one upper case character, one
lowercase character and one number. It also
can't start with a digit.

4. Click Continue to configure the connection details listed in this table:

Field Name Description

Use TLS Move this switch to the ON position if you
want to use TLS (Transport Layer Security)
to secure the connection.

Note:

If you are using a private CA
certificate to connect to the
database, this option needs to be
switched on.

Chapter 28
Connect to the Data Service

28-12

https://openid.net/specs/openid-connect-core-1_0.html#Claims
https://auth0.com/docs/get-started/apis/scopes/sample-use-cases-scopes-and-claims#add-custom-claims-to-a-token
https://auth0.com/docs/get-started/apis/scopes/sample-use-cases-scopes-and-claims#add-custom-claims-to-a-token

Field Name Description

Host Name Enter the host for the data service. Leave
out the https:// prefix. For example:
example.com.

Port The port that allows client connections to the
database.

Database The name of the database.

Private Endpoint This option only appears if you have private
endpoints configured in your Digital
Assistant instance.
If you are connecting to a private endpoint to
access the service, switch the Private
endpoint toggle to the ON position and then
select from a list of private endpoints that
are associated with the instance.

(Using a private endpoint enables you to
access a service that is not accessible
directly from the public Internet. See Private
Endpoint for the details.)

5. On the Advanced Properties page, if you need a private CA certificate to connect to the
database, switch the Use Private Trust toggle to the ON position and fill in the rest of
required fields.

Field Name Description

Use Private Trust If you are using a private CA certificate to
connect to the database, switch this toggle to
the ON position. This switch is only enabled if
you have selected Use TLS on the Connection
Details page.

Certificates Resource Select Self Managed.

Choose PEM File and Paste PEM Text Select one of these options for providing the
certificate.

6. Click Add Service.

You now can import the database schema into a skill to create query entities, which
enable users to query the database using natural language.

Create the SQL Dialog Skill
To create a SQL Dialog skill, you simply create a skill with the Dialog mode set to Visual.

Create Query Entities to Model the Data Service
To enable data service queries in a SQL Dialog skill, you import information about a data
service's physical model (the tables or views and their columns) to create a base logical
model. During the import, the skill adds query entities to the logical model, where each query
entity represents a physical table.

Chapter 28
Create the SQL Dialog Skill

28-13

Note:

A skill can have no more than 50 query entities and attributes. For example
you can have 5 query entities that combined have 45 attributes.

When you train your skill, it uses the information from the query entities to build a
model for the natural language parser, which enables the skill to translate user
utterances into OMRQL. OMRQL is a query language that's similar to SQL but is
based on object models, which, in this case, are the query entities.

Before you begin, you need the following:

• A skill that was created using Visual mode.

• A data service integration for connecting to the data service as described in
Connect to the Data Service.

To create query entities for the desired tables in your data service:

1. From the Entities page, click More, and then select Import from Data Service.

The Import Query Entities dialog appears.

2. Select the data service, and then select the tables and attributes that you want to
use in the skill.

3. Click Import.

The skill adds query entities for the selected tables. It sets the entity and attribute
primary names based on the canonical names. For example, if the canonical name
is "invoice_num", the primary name will be "invoice num".

4. For each query entity that was added, select the entity, click the Configuration
tab, and verify that the primary key is set in the Backend Mapping section.

At this point, you can test the queries using the primary names for the entities and
attributes, such as "show invoices where invoice num is 12345". But first, you must

click , and then, after it completes, you can click Test Queries to try out
utterances, or click Preview to test in the conversation tester.

Because you are working with a minimal SQL dialog skill, you can train with either
Trainer Ht or Trainer Tm. However, after you add autocomplete suggestions, routing
data, and custom training data, Trainer Tm produces more accurate results.

Your next step is to teach the skill how the end users refer to the entities and
attributes. See Train the Skill to Convert Natural Language Utterances into SQL.

Train the Skill to Convert Natural Language Utterances into
SQL

As an AI trainer, your job is to enable the natural language parser to translate natural
language utterances such as "how many invoices have a due date before 12/15/22"
into an OMRQL query for retrieving the answer from the underlying data source (the
physical model). You do this by building an intuitive logical model of the data that
closely reflects natural language.

Chapter 28
Train the Skill to Convert Natural Language Utterances into SQL

28-14

After the logical model is created by importing from the data source, you use primary names,
synonyms, value lists, and utterances to help the skill's natural language parser associate
natural language phrases with the physical model's tables and columns.

• To teach the skill about the different ways that people refer to the objects, you add
primary names and synonyms as described in Provide Training Data Through Names
and Synonyms. For example, you might want to teach the skill that people use "invoice
number" to refer to the invoice_num column, and you might also want to add "invoice no"
and "ref number" as synonyms.

• To help the skill identify attribute values in an utterance, you create sample value lists and
associate them with attributes as described in Provide Training Data Through Value Lists.
For example, you might create a value list that contains actual payment statuses and
associate the list with the invoice's payment status attribute.

• To help the skill identify attribute values based on patterns, you create regular expression
entities and associate them with attributes as described in Provide Training Data Through
Regular Expressions. For example, you might create a regular expression entity with the
expression (\\d{1, 2}|(0|1)\\d{2}|2[0-4]\\d|25[0-5]) and associate it with the
ip_address attribute.

• When the skill isn't able to correctly translate an utterance into OMRQL, you can add an
utterance-to-OMRQL mapping to the query entity dataset as described in Provide
Training Data Through Utterances and Test and Repair. You can also add utterances to
help the skill know when to route an utterance to the flow that processes it as an SQL
execution (that is, translates to OMRQL and then sends an SQL query to the data
source).

Provide Training Data Through Names and Synonyms
To help a SQL Dialogs skill associate natural language phrases with the underlying data
structure (physical model), start by taking the identified utterances that the skill should handle
(the training corpus), and analyzing them to discover the different ways that end users refer to
the entities and attributes.

For example, suppose that you have these utterances in your training corpus:

• Show me the invoices with outstanding balances greater than zero.

• What's the amount due for reference 12656?

Here, you see that people use "outstanding balance" and "amount due" to refer to the
amount_remaining column. You also see that "reference" is one way people refer to
invoice_num.

In addition to the training corpus, you also might want to crowdsource utterances from your
target users to get more phrases and analyze those as well.

After you compile your list of the ways people refer to the entities and attributes, pick which
term you want to use for the primary name of each entity and attribute. They should be
names that are closest to the most common usages. When you choose the name, consider
that the out-of-the-box NLP model won't likely understand domain-specific relationships. For
example, it won't automatically understand that invoice number and reference refer to the
same thing. Because invoice number is commonly used and also is closest to other
commonly used terms such as invoice no and bill number, you would make it the primary
name.

Treat the rest of the terms as synonyms. In the above example, you would add reference,
invoice no, and bill number to the synonym list.

Chapter 28
Train the Skill to Convert Natural Language Utterances into SQL

28-15

Note that the primary name is the default for the result column headers and labels but
you can change that in the Presentation tab.

Using your list, you create the training data in the Entities page.

• To set the entity's Primary Name and Synonyms, open the entity's
Configuration tab and expand Natural Language.

• To set the attribute's Primary Name and Synonyms, open the attribute's Natural
Language tab.

Note:

When processing utterances, the natural language parser doesn't consider
the physical model's canonical names, that is, it doesn't look at table and
column names. It only uses the natural language mappings that you define
using names and synonyms (the logical model).

Provide Training Data Through Value Lists
You can improve the natural language parser's accuracy by associating attributes with
value lists or dynamic entities. This helps the parser identify an attribute based on its
known values. You use Referenced Entity on the attribute's General Information tab
to associate the attribute with the reference entity's values. For value list entities, you
can automatically create the entity, import the data service's values, and associate it
as a referenced entity all in one step.

When deciding whether to use a value list or a dynamic entity to store the values,
consider whether the entity is open or closed.

• An open list is one that is infinite or dynamic (or both). For open lists, consider
creating and maintaining a dynamic entity instead of a value list. If you choose to
use a value list, then you should curate the list to make sure that it at least
contains the most commonly used values. For example, for a vendors list that
most likely grows over time, you'll want the list to include your most frequently
used vendors. This is because queries about a vendor without using the word
"vendor", such as "show the summary flag for Seven Corporation", won't match if
that value isn't in the value list. You thus increase the frequency of correct
resolutions by at least including the most frequently used values.

• A closed list is a static finite list. These are ideal for value list entities.

For both value lists and dynamic entities, add both singular and plural (when
applicable) versions of synonyms for each entity value to indicate the ways that end
users will refer to the value.

Synonyms are especially important when the list contains values that end users don't
typically use. Take, for example, this list of valid payment statuses. Users will be much
more likely to use words like paid, unpaid, and partially paid than to use Y, N, and P.
Adding these words as synonyms helps to insure that the NLP recognizes that the
users are referring to the payment status attribute.

Payment Status Values Synonyms

Y paid

Chapter 28
Train the Skill to Convert Natural Language Utterances into SQL

28-16

Payment Status Values Synonyms

N unpaid, not paid

P partial, partially paid, unpaid

When a term describes more than one entity value, then add that term as a synonym to each
one. For example, both N and P indicate that the invoice is unpaid. If you add "unpaid" as a
synonym for both statuses, then "show unpaid invoices" will retrieve invoices with a
payment_status value of N or P.

For dynamic entities, you create the entity and then use Referenced Entity on the attribute's
General Information tab to associate the attribute with the list.

For value lists, you can create a value list from the data service and associate with an entity
by following these steps:

1. On the Entities page, edit the attribute and go to the General Information tab.

2. Select Entity from the Type drop-down list.

3. Click If the desired entity doesn't exist, you can generate a value-list entity based
on the background mapping by clicking here. The value list is created and populated
from the data service, and the Referenced Entity points to the new value list.

4. (Optional) To increase the chances of user input matching a value from the list, open the
value list entity and switch Fuzzy Match to on. Otherwise it uses strict matching,
meaning that the user input must be an exact match to the values and synonyms. For
example, “cars” won’t match “car”.

Fuzzy matching uses word stemming to identify attributes from query. For example
"pound" matches "pounds", "hold" matches "on hold", "needed approval" matches "needs
approval", and "rent-lease" matches "rent lease".

Note that fuzzy matching doesn't work for "_" and "?". Also, partial matching doesn't work.
For example, "Seven" doesn't match "Seven Corporation". If you need to enable
matching for such strings, add them to the synonyms list.

5. Click Apply to save your changes.

Note:

If any value in the data service's physical table ends with a period, a question mark,
or spaces, then those characters are not included in the value list because they are
not allowed for canonical names.

Provide Training Data Through Regular Expressions
If an attribute's values must match a certain pattern, then you can help the natural language
parser identify that attribute's values by associating the attribute with a regular expression
entity.

This can be helpful when all values must follow a specific pattern and the set of valid values
is too large for a value list or is infinite. For example, for an ip_address attribute, you could
associate it with a regular expression entity named IpAddress, which has the regular
expression (\\d{1,2}|(0|1)\\d{2}|2[0-4]\\d|25[0-5]).

Chapter 28
Train the Skill to Convert Natural Language Utterances into SQL

28-17

Note that, similar to value lists, if more than one attribute in the model can be
associated with the same regular expression, the users will need to provide sufficient
context in their query distinguish between the two (or more) attributes.

To associate an attribute with a regular expression:

1. On the Entities page, click + Add Entity, select Regular Expression from the
Type drop down, enter the regular expression, and click Create.

Ensure that you craft the regular expression in a way that prevents the natural
language parser from association non-related values with the attribute.

2. Select the entity with the attribute that you want to associate with the regular
expression, edit the attribute and go to the General Information tab.

3. Select Entity from the Type drop-down.

4. From the Referenced Entity drop-down, select the regular expression entity.

5. Click Apply to save your changes.

Provide Training Data Through Utterances
As an AI trainer, you'll encounter natural languages utterances that the skill can't
translate to OMRQL. For example, the model may not be able to handle domain-
specific synonyms that don't seem to be closely related to the primary name. Another
example is when the model is not able to distinguish between two similar entities.
When this happens, you can use training data to teach the skill how to correctly parse
the utterance into OMRQL.

Adding to the training data is often referred to as custom training. You use custom
training to teach the model to associate words and phrases with attributes, entities,
and OMRQL keywords in the context of a full utterance by mapping the utterance to
OMRQL.

For each scenario that you are fixing, start with 20 utterances and add more as
needed. Because too many examples might cause the model to over predict attributes
and operators, you should focus on a smaller set of diverse utterances rather than a
large set of similar, lesser quality ones. Note that there is a limit of 120 utterances per
skill.

All the values in the OMRQL statement must exactly match the database value and
format. Take, for example, the utterance "who is the employee whose name is Jones".
If the database values for the name attribute are all capital letters, then the name value
must also be all capital letters. That is "SELECT * FROM Emp WHERE name =
'JONES'".

When the utterance that you are mapping uses a synonym for the actual database
value, then that synonym must be defined for the value in a value list, and the OMRQL
must use the actual database value. For example, if the utterance is "show the
department whose location is the big apple", then "big apple" must be defined in the
dept_loc value list as a synonym for the value "NEW YORK", and the OMRQL must be
"SELECT * FROM Dept WHERE loc = 'NEW YORK'".

You can add utterances that contain absolute dates, such as "invoices due on 5 Jan
2022", but don't use utterances with relative dates or dates without the year. For
example, if the utterance is "invoices due today", then today's date would be hard-
coded into the OMRQL as SELECT * FROM invoices WHERE due_date =

Chapter 28
Train the Skill to Convert Natural Language Utterances into SQL

28-18

'2022-01-01'. Also, if you use a relative date such as "today", then you may get a error that
relative dates aren't supported.

Here are some best practices for custom training utterances:

• Balance the number of utterances: Some of the more complex scenarios may need
more utterances than the simple ones, but try to balance the number of utterances per
scenario.

• Balance the training of similar attributes and entities: If you have two similar
attributes, and you need to provide custom training data for one of them, then you also
should provide the same amount of training data for the other. When the training data
concentrates only on one of the similar attributes, then the model might over predict that
attribute over its counterpart. The same is true for similar entities. For example, payment
currency and invoice currency are similar attributes. If payment currency is over-
represented in the training data, the model might predict payment currency even when
the utterance asks for invoice currency.

When you need to teach the model how to distinguish between two similar or closely-
related attributes, balance the weighting of importance by providing half the utterances
for one attribute and half the utterances for the other.

Vary the utterances that refer to these similar attributes. For example, here are
contrasting pairs of utterances to help the model distinguish between amount_remaining
and amount_paid:

– tell me the amount remaining for approved invoices

– show us the amount paid for approved invoices

– view total amount due to be paid to vendor AAD

– calculate the total amount that was paid to vendor AAD

– what is the amount due on invoices to vendor AAD

– list the paid amount on invoices to vendor AAD

• Balance the training of values that match primary names or synonyms: Say, for
example, that your model has a manager attribute and "manager" is also a value for the
employee job attribute. If you want to add "How many managers" to the training data,
then you should balance this training data with utterances that use the manager attribute,
such as "Who is the manager of employee Adam Smith", as well as utterances that use
the manager job, such as "Show all managers". That way, the model can learn to
differentiate between the two usages. If you don't include examples for both types of
usage, then the skill might over predict one usage over the other.

• Diversify phrases: The best practices for diverse phrasing for custom data are similar to
those for intent utterances:

– Use full sentences.

– Use different verbs. For example: view, list, show, tell, and see.

– Use various synonyms and paraphrases in addition to the entity or attribute name.

– Use different pronouns. For example: show me, can we see, tell us, I want.

– Vary the sentence structure. For example, put the attribute value near the beginning,
middle, and end of the sentences.

– If you have utterances with an aggregation, such as AVG, then also add utterances
with other operators as well.

Chapter 28
Train the Skill to Convert Natural Language Utterances into SQL

28-19

– If possible, use different clauses, such as group by and where clauses with
AND and OR conditions.

• Diversify Values: When you use more than one value in your scenario's
utterances, the model is better able to recognize different values. Include values
with different word lengths. Include some values with special characters such as '/'
and "-". Include a few values with special keywords such as 'and'.

• Include a mix of known and unknown values. For value-list attributes, use a
representative set of attribute values (but not all) to train that value-list matches
are important signals. Also, for value lists that aren't closed lists, include values
that aren't in the value list to teach it to also associate particular phrasings with the
attribute.

To add a mapped utterance to the training data:

1. If the Train button has a red badge, click , and train using Trainer Tm.

2. In the Entities page, go to the Dataset tab and click Query Entities.

3. Click the Training Data tab.

4. Click Add Utterance.

The Create Utterance dialog displays.

5. Enter the utterance and click Continue.

The dialog displays the OMRQL query for the utterance. If it can't translate the
utterance into the query, the query will be blank.

Note that if the skill hasn't been trained, it can't translate the utterance into an
OMRQL query.

6. Review the query and correct it if it's wrong.

For OMRQL keywords and examples, see OMRQL Reference.

7. Click Done to add the mapped utterance to the training data.

Provide Query Suggestions for SQL Dialog Users
You can help users learn about the database queries that they can make by providing
autocomplete suggestions. These suggestions provide hints about what kinds of
questions the logical model is capable of answering. The utterances also help the skill
with routing.

To create autocomplete suggestions for a SQL Dialogs skill:

1. If the Train button has a red badge, click and train using Trainer TM.

2. In the Entities page, go to the Dataset tab and click Query Entities.

3. Click the Autocomplete Suggestions tab.

4. Click Add Utterance.

The Create Utterance dialog displays.

5. Type the utterance, click outside the text box, and then click Continue.

The dialog displays the OMRQL query for the utterance. If it can't translate the
utterance into a query, the query will be blank.

Chapter 28
Provide Query Suggestions for SQL Dialog Users

28-20

Note that if the skill hasn't been trained, it can't translate the utterance into an OMRQL
query.

6. Review the query and correct it if it's wrong.

For OMRQL keywords and examples, see OMRQL Reference.

7. Click Done to add the mapped utterance to the autocomplete suggestions.

Route Utterances to the SQL Dialogs Conversation
If your skill has intents, or it is in a DA, then, just like with intents, your skill needs utterances
to help it route SQL queries to the SQL Dialogs conversation. The routing mechanism uses
the autocomplete suggestions, training data, generated routing utterances, and handcrafted
routing utterances to learn how to recognize SQL queries. You can see each type of
utterance in the separate tabs on the Query Entities Dataset page.

From the Generated Routing Data tab, you can quickly generate 100 routing utterances that
are based on the logical model as described in Generate SQL Dialogs Routing Data. You can
then review them, edit if necessary, and approve or unapprove. Those that you approve are
added to the Combined Routing Data tab and are marked as either synthetic or, if you
edited them, refined.

The Combined Routing Data tab lists all the dataset types. In addition, that is where you
can manually add handcrafted routing data as described in Handcraft SQL Dialogs Routing
Data.

Note that the total number of autocomplete, training, generated, and handcrafted utterances
can't exceed 10,000. If you exceed that limit, you'll see the message "The maximum number
of corpus examples for this bot (10000) has been reached." There's also a limit of 120
training utterances.

To learn about autocomplete suggestions and training data, see Provide Query Suggestions
for SQL Dialog Users and Provide Training Data Through Utterances.

Tip:

Each entity has a dataset tab where you can see the utterances that use attributes
from that specific entity.

Generate SQL Dialogs Routing Data
If your skill has intents or is in a DA, then, just like with intents, your skill needs utterances to
help it route SQL queries to the SQL Dialogs conversation. In addition to the autocomplete
suggestions, training data, and handcrafted routing data, the routing mechanism uses
generated routing utterances that you create from the Generated Routing Data tab on the
Query Entities Dataset. The generated utterances represent a broad coverage of questions
about all the query entities in the logical model.

To generate routing data:

1. If the Train button has a red badge, click and train using Trainer TM.

2. In the Entities page, go to the Dataset tab and click Query Entities.

3. Click the Generated Routing Data tab.

Chapter 28
Route Utterances to the SQL Dialogs Conversation

28-21

4. Click Generate.

The Generate routing data dialogue displays.

5. In the Select entities field, select All. The first time you generate the routing data,
you must generate data for all the entities. After you generate the initial set, you
can come back and generate for specific entities if there is a need.

6. Click Generate.

The skill generates 100 utterances, which reflect questions that the logical model
can answer.

7. Review the generated data and edit any that need refining.

Tip:

The utterance is not editable if it has been approved. If you want to
change an approved utterance, unapprove it, edit it, and then approve it
again.

8. Delete entries where needed and approve the rest.

The approved utterances are added to the combined routing data. If you edited an
utterance, then its routing subtype in the Combined Routing Data tab is Refined.
Otherwise it is Synthetic.

Handcraft SQL Dialogs Routing Data
If there are valid SQL queries that the DA or skill is not routing to the SQL
conversation, then you need to add those utterances to the routing data from the
Combined Routing Data tab in the Query Entities Dataset page.

To add handcrafted routing data:

1. If the Train button has a red badge, click and train using Trainer TM.

2. In the Entities page, go to the Dataset tab and click Query Entities.

3. Click the Combined Routing Data tab.

4. Click Add Utterance.

The Create Utterance dialogue displays.

5. Type the utterance and then click outside the text box.

Chapter 28
Route Utterances to the SQL Dialogs Conversation

28-22

6. Click Continue.

7. Review the OMRQL query to verify that its results would answer the query. If it doesn't,
correct the query and then click Reinterpret. See OMRQL Reference for the OMRQL
query keywords.

8. Click Done.

The utterance is added to the data with the routing subtype set to Handcrafted.

Configure Presentation of Entities and Attributes
Here are the things you can do to control when and how the entity rows and attributes are
displayed in the results:

• Configure Whether to Display Form or Table

• Show One or Two Horizontal Sections in Form

• Set the Title for the Results

• Define an Entity's Default Sort Order

• Define Which Attributes to Include When Not Specified by the Utterance

• Define Which Attributes to Always Include in the Results

• Configure the Results Page Size

• Add Buttons and Links to Results

• Add a Custom Attribute

• Dynamically Configure Presentation Using Event Handlers

Typically, the database expert and the conversation designer work together on this task, as
one has database schema expertise and the other has familiarity with user expectations.

You can test your changes by clicking Preview to open the conversation tester and entering
an utterance to retrieve the appropriate data.

Tip:

Most of the changes that you make will require natural language parser (NLP)

retraining. When you test your changes, if the Train icon has a red badge (),
you'll first have to click Train and complete the training process.

Configure Whether to Display Form or Table
The skill can display the entity's results as a table, a form, or a table form (where you can
expand a row to see more details in form mode). You use the layout conversion fields on the
entity's Presentation tab to configure when the results should be displayed in each mode.

By default, the skill displays each row in the response as a form unless the number of rows
exceeds a threshold that you specify for Use form layout for this number of rows or less.
Here are examples of a response in form mode and table mode:

Chapter 28
Configure Presentation of Entities and Attributes

28-23

In the case where the number of columns exceeds a threshold, the skill displays a
table form. With a table form, only the specified number of columns are displayed and
the user can expand the form to see the other attributes. Use Switch to table form
layout when number of columns exceeds this number to specify the threshold.
Here's an example of a table form layout for the column threshold of 2.

Chapter 28
Configure Presentation of Entities and Attributes

28-24

Show One or Two Horizontal Sections in Form
By default, in form mode, the skill displays all the result attributes one below the other. To
save room, you can set Number of Horizontal Sections in Form Layout to 2 to display two
columns of attributes.

Set the Title for the Results
By default, the skill uses the query entity's name for the results title, but you can use the
Display Name on the Presentation tab to set a different title.

Note that after you set the display name, you can't clear the field.

Define an Entity's Default Sort Order
You can specify a default sort order for the skill to use whenever the user's utterance doesn't
specify one. To set the default, go to the entity's General tab, click Add Attribute Order,
select an attribute and select its order (Ascending or Descending). You can continue clicking
Add Attribute Order to add more attributes to the sort order.

Define Which Attributes to Include When Not Specified by the Utterance
If the utterance doesn't name any attributes, then you probably want the results to include
some essential fields. You can use Default Attributes in the entity's Presentation tab to
specify these fields. For example, for an invoices entity, you might want to display
invoice_num, invoice_date, and invoice_amount when no attributes are named.

Note that you can't add attributes of type query entity to the default attributes list.

Define Which Attributes to Always Include in the Results
When an utterance identifies specific attributes, you might want the result to include not only
the requested attributes, but also some context. For example, if someone enters "show
invoice amounts", the data won't make sense if it only shows the invoice_amount values, and
not some identifying context like invoice_num. Use Minimum Attributes on the entity's
Presentation tab to identify the minimum attributes.

You cannot add attributes of type query entity to the minimum attributes list.

Configure the Results Page Size
Use the Maximum number of rows per page on the entity's Presentation tab to set how
many rows to display at once.

The user can click buttons to page through the results.

Add Buttons and Links to Results
You can add buttons and links to a query entity's results at both the global level and the row
level. A row action appears in each row, and a global action appears below the results.

Chapter 28
Configure Presentation of Entities and Attributes

28-25

For example, for an employee entity, you could add a global action that links to the
company's employee search page. At the row level, you could add an action for a
common follow-up query, such as a query about the employee's department.

You add actions from the entity's Presentation tab. If you have more than one action,
you can indicate the sequence in which the actions appear. For QUERY action types,
you'll need to provide an OMRQL query. For URL action types, you'll need to set the
URL.

For row level follow-up actions, you can use ${row.attributeName} to reference each
row’s attribute values. For example, select * from Emp WHERE dept.loc = "$
{row.loc}". At run time, each row’s button will have a different value for the query.
This syntax is only available for row level actions.

You can optionally restrict when the action appears. For example, you might have a
row action to show an employee's direct reports, which should appear only if the
employee's job is manager. To do that, switch Visibility Expression to On and provide
a FreeMarker expression, such as ${row.job = 'MANAGER'}.

Note:

Row actions appears as a buttons or links in each row in a form or table form
layout. However, they do not appear in table layouts.

Add a Custom Attribute
You can add your own custom attributes to display additional information, such as
derived or calculated values.

1. From the Attributes tab on the entity page, click + Add Attribute, and provide a
canonical name and type.

2. On the Natural Language tab, provide a primary name and optionally add
synonyms.

3. On the Backend Mapping tab, select SQL Expression and add the expression.

If the expression references a column, use the column name from the physical model
(database schema) and prepend ${alias}. For example, for an invoices entity, you
might add an amount_to_pay attribute with the expression ${alias}invoice_amount
+ ${alias}discount_taken where:

• invoice_amount and discount_taken are existing physical column names in the
invoices table.

• The new derived column amount_to_pay is the sum of values from the
invoice_amount and discount_taken physical columns.

You can use this table to determine what type to use for the attribute:

Type When to Use Examples

Number The values are only numeric
and are not restricted to a set
list.

Numeric employee ID, invoice
amount

Chapter 28
Configure Presentation of Entities and Attributes

28-26

Type When to Use Examples

Date The value is a date without a
time.

Hire date

Date/time The value can have both a
date and a time.

Departure date and time

Entity The attribute is associated
with a value list entity. Note
that if the value list
enumerates all the valid values
(that is, a closed list) and the
values are rarely used in
natural language utterances,
you should add synonyms for
the values in the list.

status (closed), supplier
names (open)

String Use for text that can contain
numbers and characters
where it doesn't make sense
to associate with a value list.

Alpha-numeric invoice
number, product description

Query entity Only use when you need to
link to another query entity.

No examples

Boolean Do not use. Not applicable

Dynamically Configure Presentation Using Event Handlers
If you'd like the skill to dynamically change the way that the skill presents SQL query results,
you can add data query event handlers to a custom component package, add the package to
the skill as a custom component service, and then associate your entities with their specific
handlers from the entity Presentation tabs. The skill triggers an entity's data query event
when that query entity is the first named entity in the FROM clause (the root entity).

For example, you can dynamically add a row count to the header text, add a row to the table
to show a sum, or determine when to show or hide an attribute.

To learn how to build data query event handlers, see Writing SQL Query Event Handlers.

Define Query Rules
Here's how you use an entity's settings on the Entities page to control the ways in which
end-users can ask about the data and how to evaluate the results.

You can test your changes by clicking Preview to open the conversation tester and entering
an utterance to retrieve the appropriate data.

Tip:

Some of the changes that you make will require natural language parser (NLP)

retraining. When you test your changes, if the Train icon has a red badge (),
you'll first have to click Train and complete the training process.

• Identify Which Attribute to Use for Measuring or Comparing: If the utterance asks to
compare entity items to a number or asks to rank the entities using a superlative like

Chapter 28
Define Query Rules

28-27

https://github.com/oracle/bots-node-sdk/blob/master/DATA_QUERY_EVENT_HANDLER.md

greatest or least, which measurable attribute, if any, should the skill use to perform
the comparison? Say, for example, the users ask about the greatest supplier, you
might want the skill to use the rating attribute for comparisons. To specify which
attribute to use for measuring or comparing, go to the entity's General tab and
select the attribute from the Measure By drop-down. If the ranking is opposite of
numerical order, such as 5 being better than 1, then you should also set the
attribute's Invert Comparison to true on its General Information tab.

• Specify How to Compare Measurable Attributes: By default, measurable
attribute values are compared using numerical order, where 1 is less than 5.
However, sometimes it is more appropriate to invert the comparison where 1 is
better than 5. For example, when looking at race results, the 5 best times are the
lowest values in the results. To invert comparisons for an attribute, set the
attribute's Invert Comparison to true on its General Information tab. Note that
this setting also affects the attribute's sort order.

• Allow Partial Matching for Strings: If you expect that users will frequently leave
out leading or trailing characters or values, such as "manager" instead of
"department manager", then consider enabling partial matching. When partial
matching is turned on, the generated SQL "where clause" uses upper (<column-
name>) LIKE UPPER(%<string>%) instead of = <string>. You can enable partial
matching on the attribute's General Information tab. Note that the partial
matching behavior for entity attributes is different from fuzzy matching behavior for
value lists.

• Specify how to resolve ambiguous dates and times: For attributes of type date
or datetime, you can specify whether ambiguous values, such as "Wednesday",
should resolve to the past, the future, or the nearest date or time. You can set this
using the Temporal Preference on the attribute's General Information tab.

WARNING:

Keep in mind that setting the Temporal Preference to the nearest date or
time only works for input of fixed dates and time, such as "Wednesday".
If a user enters a duration value, such as "two days", the query will not
resolve, since a duration value is the same for both past and future.
Unless you are fairly certain that a user will never enter a duration value,
you should only set the Temporal Preference to past or future.

Tip:

If an attribute can sometimes default to the past and sometimes the
future depending on the context, then consider creating custom
attributes with different temporal preferences. For example, for a
due_date attribute, you could add a due attribute with a future preference
and an overdue attribute with a past preference.

Chapter 28
Define Query Rules

28-28

Enable Natural Language Queries for Denormalized Columns
If you have a denormalized attribute with a name that uses a pattern to identify the attributes
that the column represents, such as PTD_LBR_CST, you can make the denormalized
attribute understandable to the natural language model by mapping a normalized entity to it
through the use of a column expansion backend mapping.

For example, say that you have a costToSales query entity with the attributes
PTD_LBR_CST, QTD_LBR_CST, YTD_LBR_CST, PTD_SUB_CST, QTD_SUB_CST,
YTD_SUB_CST.

To enable the skill to associate natural language queries with these attributes, you create a
Cost query entity that contains the uniquely-identifying attributes, such as project_num, plus
period, type, and cost. The period and type attributes are of type entity and reference the
period (PTD, QTD, YTD) and type (LBR, SUB) value lists. The cost attribute's backend
mapping is a column expansion with the expression "${period}_${type}_CST". The final step
is to add the cost attribute to the costToSales entity, which references the Cost query entity to
link the two entities.

When the query is "what are my YTD labor costs", the backend column expansion mapping
tells the skill to retrieve the value from the YTD_LBR_CST attribute, which is in the
costToSales entity (assuming that the necessary primary names and synonyms are set).

Test and Repair
As you define and add training data to your entities and attributes through names, synonyms,
value lists, and the training data in the query entities dataset, you'll want to test how well the
training data helps the natural language parser translate the end user's utterances into SQL
queries.

Tip:

If the Train icon has a red badge (), you'll have to click Train and complete
the training process before you can test the utterances.

The Entities page has a Test Queries link, which opens the query tester for trying out your
use-case utterances. In the tester, you can enter your test utterance and review the OMRQL
query that the skill generated.

Chapter 28
Enable Natural Language Queries for Denormalized Columns

28-29

If the tester translates the utterance to a query, review the OMRQL query to verify that
it will produce the desired results. If the OMRQL query isn't correct, you'll need to
repair the skill by using the appropriate fix:

• Add synonyms for an entity or attribute. See Provide Training Data Through
Names and Synonyms.

• Associate an attribute with a value list or add items to a value list. See Provide
Training Data Through Value Lists.

• Add the utterance and corrected OMRQL to the training data in the query entities
dataset to teach the model to associate words and phrases with attributes, entities,
and OMRQL keywords in the context of a full utterance. See Provide Training Data
Through Utterances.

Tip:

Consider using Save as Test Case to save some of your valid queries to the
batch tester, which you can use to ensure that changes you make don't
negatively impact other areas. See Monitor with Query Entity Batch Testing.

Note that some utterances might not translate correctly because of limitations in the
SQL Dialogs feature. In some cases you can workaround these limitations by adding
custom training data. See Troubleshooting SQL Queries.

If the query tester reports that there's insufficient training data, you can click View
JSON to get information about how it parsed the utterance. The translatable value
indicates whether the model supports the query. The confusionSpanText may give
you a clue about what part of the query isn't supported.

Chapter 28
Test and Repair

28-30

For utterances that can't be translated, first check if you introduced a typo, your query is too
vague, or your query is outside of the model's scope. These issues can't be resolved by
training. Otherwise, you might be able to resolve insufficient training data by adding a
synonym or adding the utterance to the custom training data in the query entities dataset.
Here are some examples of the kinds of insufficient training data issues that you might be
able to resolve by adding custom training data.

• Attribute confusion: For example, does status refer to payment status or approval
status.

• Attribute-value confusion: For example, "how many managers are there" (is it referring
to the manager attribute's value or the employee's job value?).

• Search values that are also keywords or operators: For example, distinguishing the
synonym "total" from the operator SUM.

If the OMRQL is valid, you can test how the skill translates the OMRQL to SQL by clicking
Click to test this in the conversation tester. The Conversation Tester displays along with
the results.

In the conversation tester, you can see the OMRQL and SQL statements on the SQL
Dialogs tab. When it can't translate the query, it indicates that the query isn't translatable and
shows what text caused the confusion.

Chapter 28
Test and Repair

28-31

Troubleshooting SQL Queries
When a query doesn't resolve as you expect, it might be because the model doesn't
have enough information or the utterance is out of scope. It also might be because of
SQL Dialogs limitations.

For cases where the model doesn't have sufficient information, see Test and Repair to
learn how to resolve the issues. There are slso SQL Dialogs limitations that can
prevent the natural language parser from translating the utterance to OMRQL
correctly. This section provides information on these limitations and ways to work
around them, where possible.

General Limitations in SQL Dialogs
The table below outlines general limitations in SQL Dialogs that you should be aware
of. These limitations don't have workarounds.

Category Limitation Examples of Unsupported
Queries

Number of entities and
attributes supported

The logical model can have a
total of 50 attributes plus
entities. This limit includes any
virtual attributes and entities
that are created.

Non-English query Any query in a language other
than English.

numero total de empleadas

Use of pronouns Using pronouns such as "I",
"me", and "my" in an
utterance.

• what is my salary?
• whose manager am I?
• employees hired before

me

Chapter 28
Troubleshooting SQL Queries

28-32

Category Limitation Examples of Unsupported
Queries

Yes and no questions Any question for which the
answer is a yes or a no. SQL
Dialogs only supports queries
for which the answer is a set of
results from a data table
query.

• is John a clerk?
• do we have any analysts

in the accounting
department?

• do we have less than 30
employees in the sales
department?

Negation Utterances that contain
negation words such as "not"
and "no" or queries for values
that indicate negation or null
values.

• which employees are not
in the accounting
department?

• which employees earn a
commission (queries for
commission is not null)

• which invoices are not
paid?

• invoices for non-federal
supplier (queries for a
value containing negation)

Complex SQL operators SQL Dialogs doesn't support
the more complex queries that
involve sub-queries, SET
operators (INTERSECT,
UNION, EXCEPT, and NONE),
queries that require arithmetic
operators, and the EXISTS
and NOT keywords.
While, on a rare occasion, you
might find a complex query
that does resolve correctly, to
ensure consistent results, you
should consider using
database views or creating
virtual attributes as described
in Add a Custom Attribute.

• show employees whose
salaries are more than the
highest salary of the sales
dept

• what is the total
remuneration earned by
each employee?

• show jobs which employ
both male and female
employees
– select job from emp

where gender = M
INTERSECT select
job from emp where
gender = F

Chapter 28
Troubleshooting SQL Queries

28-33

Category Limitation Examples of Unsupported
Queries

Implicit SQL operators SQL Dialogs doesn't support
SQL clause functions that
aren't explicitly requested. For
example:

• Implicit distinct: Implying
that returned results need
to be distinct.

• Implicit aggregations:
Implying an aggregation
operation.

• Implicit order by: Implying
an ordering of the results.
Consider setting the
Default Order
Expression in the entity's
General tab.

Distinct:

• show the cities of all
employees (returns
multiple rows with
repeating cities)

• show department names
where all employees earn
more than 10000 (returns
multiple rows with the
same department name,
one fore each employee
that earns more than
10,000)

Aggregation:

• how much do we pay to
all employees in the
accounting dept (implies a
request for the total salary
of all employees in
accounting)

• show salary per
department (implies
summation)

Order by

• show all employee names
(user might want to sort it
alphabetically, but sort
order is not explicitly
implied)

• show employees in
ascending order (the
attribute to sort on is
implied)

Chapter 28
Troubleshooting SQL Queries

28-34

Category Limitation Examples of Unsupported
Queries

Limited support for follow up
questions

SQL Dialogs doesn't support
follow-up questions out of the
box. That is, users can't utter a
new follow-up question to
update the response.

T

i

p

:

Y
o
u
c
a
n
a
d
d
q
u
i
c
k
a
c
ti
o
n
s
t
o
t
h
e
r
e
s
u
lt
s
i
n
t
h
e
f
o
r
m
o

Here are examples of follow
up queries for the original
utterance "show all employees
in Seattle"
• show only the clerks
• now show the managers
• which of these earn above

3000?
In these cases, users have to
enter the complete question,
such as "show all employees
in Seattle who work as a
clerk."

Chapter 28
Troubleshooting SQL Queries

28-35

Category Limitation Examples of Unsupported
Queries

f
li
n
k
s
o
r
b
u
tt
o
n
s
t
h
a
t
p
e
r
f
o
r
m
c
o
m
m
o
n
f
o
ll
o
w
-
u
p
q
u
e
ri
e
s
.
S
e
e
A
d
d
B
u
tt
o

Chapter 28
Troubleshooting SQL Queries

28-36

Category Limitation Examples of Unsupported
Queries

n
s
a
n
d
L
i
n
k
s
t
o
R
e
s
u
lt
s
.

Troubleshooting Basic Query Issues

Category Description of Issue Examples of
Unsupported Queries

Workaround

Select attribute Selecting more than 3
attributes

Show the name, job title,
salary and commission
of all employees

Add custom training
data. The training data
can include examples
covering different
entities, and a few
different sets of 4 (or
more) attributes.

Select entity Requesting more than
one entity

• show all employees
and their
departments

• show supplier and
supplier site for all
invoices

Use custom training
data to teach the entity
to output one attribute
from the second entity.
For example, for "show
the supplier of each
invoice", you can add
training data that maps
the query to the
OMRQL: select
invoiceid,
vendor.vendor_name
from invoices

Where Three or more
conditions in the where
clause

show employees who
were hired after 2000
and work in the Finance
department as an
analyst

Add training data with
examples that contain
multiple conditions

Chapter 28
Troubleshooting SQL Queries

28-37

Category Description of Issue Examples of
Unsupported Queries

Workaround

Order by Ordering by more than a
single attribute or entity

show employees sorted
by their job title and
name

Add training data with
examples that contain
ordering by 2 or more
attributes

Group by Group by more than a
single attribute or entity

show average salary per
job and department
location

Add training data with
examples that contain
grouping by 2 more
attributes or entities

Group by + Having More than one condition
in the having clause

show jobs that have at
least 20 employees and
an average salary of
above 30000

Add training data with
examples that contain
more than one condition
in the having clause

Self joins If an entity has a link to
itself, then that
computation may not be
possible for the model to
do, even with custom
training data.

Here, the queries are
requesting employee
data that links to
employee data.
• show the name and

salary of John's
manager

• which employees
report to Chris?

There is no verified
workaround.

Troubleshooting Date and Time Issues

Category Description of Issue Examples of
Unsupported
Queries

Workaround

Implicit date and
datetime values

When you filter by a
date or datetime, you
must explicitly provide
context for the where
clause.
For example, instead
of saying "which
invoices are overdue",
you must say
something like "which
invoices have a due
date before today."

• what is the next
event?

• which invoices
are overdue?

Create a virtual
attribute (e.g. to
indicate whether an
event is upcoming)
and then use custom
training to teach the
model the expected
behaviour.

Chapter 28
Troubleshooting SQL Queries

28-38

Category Description of Issue Examples of
Unsupported
Queries

Workaround

Implicit past or future
reference

For date and datetime
attributes, you use the
attribute's Temporal
Preference on the
attribute's General
Information tab to
specify how to resolve
ambiguous dates or
datetimes.
Utterances that imply
that an ambiguous
value must be
resolved as a past or
future date or datetime
are ignored and the
Temporal Preference
is used.

employees that will be
hired on Wednesday
• – If the default

temporal
preference is
past, it will
get resolved
to a past
date, even
though the
context is
implicitly
future

You might be able to
create 2 derived
attributes to solve this
issue for your
scenario.

"Past" context with <
and > operators

SQL Dialogs doesn't
support the use of<
and > operators on
past dates or
datetimes containing a
duration.

• employees hired
more than 2 days
ago

• invoices overdue
by less than 2
days

No reliable
workarounds. Trying
to teach something
like this with custom
training may cause the
model to start
incorrectly predicting
this in other cases.

Time without a date SQL Dialogs doesn't
support queries that
have times but not
dates.

orders that are
delivered at 3 pm

No known
workaround.

Recurring dates SQL Dialogs doesn't
support dates that
specify a repeating
value over a specific
interval.

which meeting takes
place on the first
Monday of every
month?

No known workaround

Troubleshooting Attribute Selection Issues

Category Description of Issue Examples of
Unsupported Queries

Workaround

Limited performance for
domain specific entity/
attribute synonyms

For domain specific or
technical synonyms, not
commonly used as
synonyms the model
may struggle to map it to
the correct attribute

Attribute: ip_address

Synonym: devices

Add custom training
data. Include examples
using the synonyms of
the attribute, and
another set of examples
with the primary name
to ensure the model
doesn't forget existing
functionality

Chapter 28
Troubleshooting SQL Queries

28-39

Category Description of Issue Examples of
Unsupported Queries

Workaround

Identification attribute for
entities

Implying an attribute by
referring only to the
entity

Show invoices
containing 1234
• Implies filtering by

invoice number

Add custom training
data.
• Create data with

examples using =,
LIKE, starts
with and ends
with (eg. "show all
invoices containing
1234")

• Make sure that the
training data has a
few examples
where the entity
name is used to
refer to the entity
itself (e.g. "show all
invoices")

Disambiguation In ambiguous cases
with multiple
possibilities, the model
can't disambiguate

Show amount for all
invoices
• unclear if "amount"

refers to "invoice
amount" or "gross
amount"

Add custom training
data.
• Include examples

that map the
ambiguous name to
the intended
attribute.

• Include a few
examples using the
full (unambiguous)
names of the
options for that
particular
ambiguous use.

Implicit attribute
reference for values not
in the value list entity

If we refer to an attribute
only by value and that
value is not present in
the value list (either
canonical value/
synonym)

• Show salary of all
employees in ODA
– Where "ODA"

is not a value in
the value list
for department
names

• Show departments
located in USA
– Where "USA"

is not a
synonym for
"United States"
in the location
value list

You can add custom
training data, but it won't
be reliable in all cases.
For example, the model
can learn that "invoices
issued by VALUE"
should be mapped to
the vendor name
attribute. But the model
can't learn "invoices for
VALUE" or "invoices by
value" because the
words for, by, in, etc are
very general and can be
used in a wide variety of
contexts.

Chapter 28
Troubleshooting SQL Queries

28-40

Category Description of Issue Examples of
Unsupported Queries

Workaround

Order of value and
attribute name

The odel is less robust
when the value is
mentioned before the
attribute name in the
utterance. (This is more
of a problem when the
values are not in the
value list and for multi-
word values).

show approved invoices Add custom training
data.
• Create examples

with the value
before the attribute
in the conditions as
well as a few
examples with
attributes before the
values.

Troubleshooting Group By Issues

Category Description of Issue Examples of
Unsupported Queries

Workaround

Group by across greater
than 2 entities

Grouping across
multiple entities with
aggregations

• show number of
installments for
every supplier
– where there

are three
entities
involved:
suppliers,
invoices,
installments

• total amount
remaining for each
supplier
– where the

amount
remaining is in
the
installments
entity

You can try adding
custom training data.
However, trying to
workaround this issue
is risky and would
require a lot of custom
training data.

Group by + Order by +
Min or Max

Sorting entities based
on the minimum or
maximum values of the
attribute after grouping
by that entity.

• Show all
departments sorted
based on their
highest employee
salary

• show all jobs in
order of the
minimum salary
paid to employees
in that job

Add custom training
data.

Group by + Order by +
Min/Max + Limit 1 or
Limit N

First group by the
attribute or entity, sort by
the minimum or
maximum of a numeric
attribute, then select the
first row

which department has
the highest minimum
salary

Add custom training
data.

Chapter 28
Troubleshooting SQL Queries

28-41

Category Description of Issue Examples of
Unsupported Queries

Workaround

Select and Having
clauses have different
aggregations

Select and Having
clause have different
aggregations

show the average salary
for each department that
has at least 10
employees
• the SELECT clause

should have
avg(invoices.amoun
t), and the HAVING
clause should have
count(invoice)

Add custom training
data.

Select and Order by
clauses have different
aggregations

Select and Order by
clauses have different
aggregations

show the name and
average invoice of each
vendor, and sort the
vendors in alphabetical
order of the vendor
name
• Here, the SELECT

clause should have
avg(invoices.amoun
t), and the ORDER
BY clause should
have vendor_name

Add custom training
data.

Multiple aggregations in
Select clause

SQL Dialogs supports
Select clauses with a
single aggregation,
average plus sum, and
min plus max.
It doesn't support other
combinations such as
average plus min,
average plus sum plus
max, and count plus
sum.

• show the average
and least salary per
department

• for each job, show
the employee count
and the average
salary

Add custom training
data.

Having + Where clauses Group by query with
both a Having and a
Where clause

which vendors of type
LEGAL have more than
6 invoices?

Add custom training
data.

Chapter 28
Troubleshooting SQL Queries

28-42

Troubleshooting Entity Issues

Category Description of Issue Examples of
Unsupported Queries

Workaround

Typos • Employees in
acounting
department
– Value

acounting has
a typo

• Department of
emlpoyee nme
John Doe
– Attribute

emlpoyee nme
has a typo

No workaround. Typos
in values will not work
even with custom
training.

Entities other than value
lists and regular
expressions

Associating any
attributes with any entity
type other than value list
(eg: custom ML entities)

No workaround.

Fuzzy match For fuzzy matching, only
stemming is supported.

Invoices from Amazon
• Where there is no

context, and the
value list has
"Amazon LLC"

Add synonyms in the
value list.

Fuzzy match Fuzzy match will not
work for _ and ?
characters

Invoices paid using DBX
EFT
• Where there is no

context, and the
value list has
"DBX_EFT"

Add synonyms in the
value list.

Numbers in non-
numerical form

SQL Dialogs supports a
limited list of numbers
that can be represented
in other forms (0-10, 20
and 50). All other
numbers, if referenced
in any format other than
numerical, aren't
supported

• show invoices
where amount due
is less than thirty

• show invoices
where amount due
is less than 1k

• Show invoices
where amount due
is less than 1
thousand

• Show invoices
where amount due
is less than 1,000

No workaround.

Chapter 28
Troubleshooting SQL Queries

28-43

Troubleshooting Other Issues

Category Description of Issue Examples of
Unsupported
Queries

Workaround

2 or more numerical
filters

Two Where clauses
with numbers (whether
this is the same
attribute or a different
attribute)

• Employees whose
salary is more
than 10000 and
commission is at
least 2000

• Employees whose
salary is less than
2000 or is at least
5000

Add custom training
data.

Chapter 28
Troubleshooting SQL Queries

28-44

Category Description of Issue Examples of
Unsupported
Queries

Workaround

Order by superlatives Asking for the top or
bottom N entities.

N

o

t

e

:

T
h
e
m
o
d
e
l
i
s
m
o
r
e
r
o
b
u
s
t
w
i
t
h
t
o
p
t
h
a
n
b
o
t
t
o
m

Show the best
employee
• The ideal OMRQL

is "SELECT *
FROM Emp
ORDER BY *
DESC LIMIT 1"

• However, the
model has
problems with
order by *

Add custom training
data.

Chapter 28
Troubleshooting SQL Queries

28-45

Category Description of Issue Examples of
Unsupported
Queries

Workaround

Attributes where
aggregations are
precomputed

If the schema has
precomputed
aggregations like
total_amount that
already stores the
sum, or
total_servers that
stores the total count
of servers, the model
might get confused
between needing to
use the SUM/COUNT
function or the
attribute with the
precomputed
aggregation.

Show the total amount
for invoice 1234
• Where

total_amount is
a derived attribute
but the model
may predict
SUM(amount)

Add custom training
data.

Default select The model sometimes
predicts the name or
id of the entity instead
of select *.
This is a rare error,
and the impact is not
critical, as the user
sees the minimum
attribute instead of
default attributes of
the entity.

Show the invoices that
are approved.
• The ideal OMRQL

is "SELECT *
from invoices
where
approval_status =
'approved'"

• However, the
model predicts
"select
invoice_num"

Add custom training
data, if this is indeed a
problem

Monitor and Improve
As you build and test your skill, you can use Insights and batch testing to monitor how
well the skill is meeting its goals and expose areas that need improvement. As you
enter the testing phase and eventually release the skill to the public, you'll want to
continue to perform periodic monitoring and testing.

Monitor Using Insights
The skill's Insights page provides several metrics you can use to measure how well
your SQL Dialog skill is performing and to determine where to make improvements.

As a business analyst, you might be interested in these data query metrics on the
Overview tab:

• Performance: Conversations Trend by Status (Line) shows the number of
conversations over a given time period and whether the traffic is tending up, down,
or sideways.

• The ratio between Correct Queries and Incorrect Queries indicates how
satisfied the bot users are with the accuracy of translating utterances to SQL
queries.

Chapter 28
Monitor and Improve

28-46

• The ratio between Completed and Incomplete conversations shows the extent to which
technical issues impact the users' experiences.

• The ratio between Total Conversations and Unresolved (OOD/OOS) Queries helps
measure the extent to which the skill meets the end users expectations.

• Both Conversations Trend by Type and the ratio between Total Conversations and
Data Queries Conversations show the proportion of utterances that are SQL queries.

• Data Query Entities show which entities are queried the most.

As an AI trainer, you can examine the user messages on the Conversations tab to discover
areas for improvement. For example, you can review these user messages:

• Type: Intent, Outcome: Incomplete user messages indicate problems with translating
the utterance to an SQL query. Often, you can fix these issues by adding synonyms or,
for more complex queries, adding mapped utterances to the query entities dataset. Note
that you also can see these messages by selecting System Handled Errors from the
Errors drop-down list.

• Type: Intent, Intent: unresolvedIntent user messages indicate both out of scope
utterances and utterances that the skill doesn't recognize as a data query utterance. For
the utterances that are valid data queries but the skill doesn't recognize as such, you
often can fix the problems by adding synonyms or mapping the utterances to OMRQL in
the query dataset.

• Type: Data Query, Entities shows the user messages by query entity.

• Type: Data Query, Outcome: Incorrect shows the messages that the users thought
returned incorrect results. You should verify that the results are incorrect, and, if so, add
synonyms, value lists, and query dataset entries as appropriate.

Monitor with Query Entity Batch Testing
As an AI trainer, it is good practice to create batch tests to ensure that improving one area
doesn't negatively impact another. You can also use batch tests to ensure that changes to the
logical model don't have adverse effects on custom training or routing to SQL conversations.

Just as with batch testing for intent utterances, you might want to set aside about 20% of the
real-world queries that you gathered to use for query batch testing. You can run the batch test
periodically as well as after you make changes to the logical model, custom training, or
routing data.

Each test case must belong to a test suite, so before you create a test case, you may want to
first create a test suite that reflects some aspect of query testing, such as failure testing, in-
domain testing, or out-of-domain testing. We provide a suite called Default Test Suite. You
can assign test cases to this test suite if you haven't yet created any others.

You can add a test case to a batch test in two ways:

• After you test an utterance from the Query Tester, you can select a test suite from the
Save as Test Case drop-down to save it to that suite.

• You can click + Test Case on the Test Suites tab in the batch tester.

To access the batch tester:

1. On the Entities page, click Test Queries.

The Query Tester opens.

2. Click Go to Test Cases.

Chapter 28
Monitor and Improve

28-47

On the Test Suites tab, you select a test suite and either run all test cases or
select and run specific cases. The results are shown on the Test Results page. It
takes some time for the tests to complete. You know the run has completed when
In Progress shows 0.

OMRQL Reference
Here are the keywords that you can use when you define OMRQL queries for the
utterances that you add to the query entities dataset. Note that you use the canonical
names and not primary names and synonyms

Component OMRQL Keywords OMRQL Example Constraints

Basic Components • SELECT
• *
• FROM

SELECT * FROM Emp The OMRQL can't
name attributes that
aren't referenced in
the utterance.

Filtering WHERE Employee WHERE
salary > 100000

None.

Linking Entities
See Link Attributes for
an explanation of how
this works.

. (period) SELECT * FROM
Employee WHERE
Departments.location
= 'NYC'

None.

Ordering • ORDER BY
• LIMIT
• ASC
• DESC

SELECT name FROM
Employee ORDER BY
salary DESC LIMIT 10

The OMRQL can
order data using
ORDER BY <ATTR>
[LIMIT N] only if the
utterance includes the
word order or its
natural language
synonyms such as
sorted, ordered,
highest, and smallest.

Ordering without a
Specific Attribute
See Order by * for an
explanation of how it
works.

ORDER BY * SELECT name FROM
Employee ORDER BY
* DESC LIMIT 10

ORDER BY * only
works end to end
when the
"measure_by" value is
set for the entity in the
UI

Aggregate Functions • COUNT
• DISTINCT
• AVG
• SUM
• MIN
• MAX

SELECT AVG(sal)
from Employee

The OMRQL can
contain DISTINCT
only if the utterance
contains that word or a
natural language
synonym such as
different or unique.

Grouping • GROUP BY SELECT location,
AVG(Employees.salar
y) FROM Department
GROUP BY location

The FROM clause
should contain the
entity that the group
by attribute belongs to

Chapter 28
OMRQL Reference

28-48

Component OMRQL Keywords OMRQL Example Constraints

Grouping by Entity GROUP BY * SELECT *,
MAX(Employees.salar
y) FROM Department
GROUP BY *
Note: This groups by
the entity in the from
clause (The backend
converts Group By * to
Group By the primary
key of the root entity)

Grouping and
Filtering

HAVING SELECT location
FROM Department
GROUP BY location
HAVING
AVG(Employees.salar
y) < 4000

Comparison
Operators

• =
• !=
• <>
• >
• >=
• <
• <=
• LIKE
• NOT LIKE
• BETWEEN
• IN
• NOT IN

SELECT * from
Department WHERE
name IN ('Sales', 'HR')

For the >, >=, <, and
<= operators, the
utterance must contain
an equivalent natural
language synonym
such as greater than,
at least, less than, and
at most.
If the utterance
doesn't contain an
operator synonym,
then the OMRQL must
contain =.

The OMRQL can
contain LIKE only if
the utterance contains
that word or a natural
language synonym
such as includes,
contains, or substring.

The OMRQL can
contain BETWEEN
only if the utterance
contains that word or a
natural language
synonym such as in
the range of.

Logical Operators • AND
• OR
• NOT

SELECT name FROM
Employee WHERE
salary > 10000 AND
role = 'VP'

None.

All the values in the OMRQL statement must exactly match the database value and format.
Take, for example, the utterance "who is the employee whose name is Jones". If the
database values for the name attribute are all capital letters, then the name value must also
be all capital letters. That is "SELECT * FROM Emp WHERE name = 'JONES'".

When the utterance that you are mapping uses a synonym for the actual database value,
then that synonym must be defined for the value in the value list, and the OMRQL must use

Chapter 28
OMRQL Reference

28-49

the actual database value. For example, if the utterance is "show the department
whose location is the big apple", then "big apple" must be defined in the dept_loc value
list as a synonym for the value "NEW YORK", and the OMRQL must be "SELECT *
FROM Dept WHERE loc = 'NEW YORK'".

Here are some examples of how to write OMRQL for your utterances:

Utterance SQL OMRQL Comments

Show me all
employees who
work as a clerk

SELECT * FROM
Emp WHERE job
= 'CLERK'

SELECT * FROM
Emp WHERE job
= 'CLERK'

OMRQL is
identical to SQL.

Show me the
number of
employees who
work in sales
department

SELECT
COUNT(*) FROM
Emp AS T1 JOIN
Dept AS T2 ON
T1.deptno =
T2.deptno
WHERE
T2.dname =
'SALES'

SELECT
COUNT(*) FROM
Emp WHERE
dept.dname =
'SALES'

Instead of a
JOIN, use
"link_attribute.attri
bute_name" to
refer to an
attribute from
another entity.

Adams is a
member of what
department?

SELECT * FROM
Dept AS T1 JOIN
Emp AS T2 ON
T1.deptno =
T2.deptno
WHERE
T2.ename =
'Adams'

SELECT * FROM
Dept WHERE
emp.ename =
'ADAMS'

Instead of a
JOIN, use
"link_attribute.attri
bute_name" to
refer to an
attribute from
another entity.

What is the
department
location and job
role of employee
Adams

SELECT T1.LOC,
T2.JOB FROM
DEPT T1 JOIN
EMP T2 ON
T1.DEPTNO =
T2.DEPTNO
WHERE
T2.ENAME =
'ADAMS'

SELECT loc,
emp.job FROM
Dept WHERE
emp.ename =
'ADAMS'

Notice how the
OMRQL is
simpler to write
than the SQL.

How many
employees are
there for every
job role?

SELECT
COUNT(*), job
FROM Emp
GROUP BY job

SELECT
COUNT(*), job
FROM Emp
GROUP BY job

OMRQL is
identical to SQL.

Which employee
has the highest
salary?

SELECT * FROM
Emp ORDER BY
salary DESC
LIMIT 1

SELECT * FROM
Emp ORDER BY
salary DESC
LIMIT 1

OMRQL is
identical to SQL.

Show employee
name and
department name
ordered by the
salary in
ascending order

SELECT
T1.ename,
T2.dname FROM
Emp AS T1 JOIN
Dept AS T2 ON
T1.deptno =
T2.deptno
ORDER BY
T1.sal ASC

SELECT ename,
dept.dname
FROM Emp
ORDER BY
salary ASC

Notice how the
OMRQL is
simpler to write
than the SQL.

Chapter 28
OMRQL Reference

28-50

Utterance SQL OMRQL Comments

Number of
employees in
each location

SELECT
COUNT(*), loc
FROM Emp AS
T1 JOIN Dept AS
T2 ON T1.deptno
= T2.deptno
GROUP BY
T2.loc

SELECT loc,
COUNT(emp)
from Dept
GROUP BY loc

With GROUP BY,
when we are
counting a linked
entity, we use a
new count(LINK)
syntax instead of
COUNT(*). This
makes OMRQL
more readable
than SQL.

View the
locations with
average salary at
least 40000

SELECT
T2.name FROM
Emp AS T1 JOIN
Dept AS T2 ON
T1.deptno =
T2.deptno
GROUP BY
T2.name
HAVING
AVG(T1.sal) >=
40000

SELECT loc from
Dept GROUP BY
loc HAVING
AVG(emp.sal) <=
40000

An example of
GROUP BY with
HAVING clause.

Average salary of
employees in
each department

SELECT
AVG(T1.sal),
T2.dno FROM
Emp AS T1 JOIN
Dept AS T2 ON
T1.deptno =
T2.deptno
GROUP BY
T2.dno

SELECT *,
AVG(sal) from
Dept GROUP BY
*

The goal here is
to group by a
unique attribute in
the "department"
entity. The
primary key is the
most suitable
candidate, but
displaying the
primary key might
not always be
useful.
In OMRL, we
instead group by
*. The backend
will group by the
primary key and
also display the
minimum
attributes of the
entity to make the
result more user-
friendly

Chapter 28
OMRQL Reference

28-51

Utterance SQL OMRQL Comments

Show the location
and minimum
salary of
employees for
each department

SELECT T2.dno,
T2.loc,
MIN(T1.sal)
FROM Emp AS
T1 JOIN Dept AS
T2 ON T1.deptno
= T2.deptno
GROUP BY
T2.dno, T2.loc

SELECT *, loc,
MIN(sal) from
Dept GROUP BY
*, loc

Here, we still
want to group by
the department
entity, but the
utterance is also
specifically
requesting to
display the
location of the
departments.
Note how both
the SELECT and
GROUP BY
clause have a *
and the
requested display
attributes.

View the name
and location of
the department
that has the
highest average
salary

SELECT
T2.name, T2.loc
FROM Emp AS
T1 JOIN Dept AS
T2 ON T1.deptno
= T2.deptno
GROUP BY
T2.name ORDER
BY AVG(T1.sal)
LIMIT 1

SELECT *, name,
loc from Dept
GROUP BY *,
name, loc
ORDER BY
AVG(emp.sal)
LIMIT 1

Another example
of grouping by an
entity, and
displaying the
requested
attributes, this
time with ORDER
BY LIMIT 1

Show the top 10
employees

SELECT * from
Emp ORDER BY
rating LIMIT 10

SELECT * from
Emp ORDER BY
* LIMIT 10

Assuming that
"best employees"
imply ordered by
their rating, the
rating will be set
as the
"measure_by"
attribute for the
Emp entity

Link Attributes
With the exception of linking entities, the OMRQL components are similar to SQL.
Instead of an SQL JOIN, you use a pair of link attributes to link one entity to another.
Link attribute have primary names and synonyms that define the relationship between
the entities. For example an employee/department attribute link with a 1-1 relationship
can have a primary name "department" and synonyms "works in", "belongs to", and
"team". A department/employees attribute link with a 1-many relationship can have a
primary name "employees" and synonyms "members", and "workers".

Besides the typical primary key/foreign key link attributes you also can have these
types of link attributes:

• Multiple link attributes from one entity to another that define multiple semantic
relationships.

• A link attribute from an entity to itself that implies a self join.

• A link attribute for an intersection table due to a many-to-many join

Chapter 28
OMRQL Reference

28-52

Order by *
The asterisk (*) is used in conjunction with ORDER BY when a user asks to order something
without specifying what to order by. For example, "show the top 10 employees" (unclear what
attribute we need to order by). The backend then replaces the * with a default, pre-specified
attribute (measure_by).

Chapter 28
OMRQL Reference

28-53

29
Languages and Skills

You can design both single-language and multi-language skills. For understanding user input,
you can either use Oracle Digital Assistant's native support for various languages or a
translation service. For output, you typically define the strings for each target language in
resource bundles.

Language Use Cases for Skills
The approach you take to handling your language requirements for skills depends on a
number of factors. Here are some typical use cases and ways you can approach them.

Ability to Train in Multiple Languages
For skills that you target to the languages that Oracle Digital Assistant supports natively, you
can add training data for all of the target languages. This includes example utterances for
intents and custom entity values.

Prerequisites:

• The languages you are targeting all are on the list of Natively-Supported Languages.

• The Platform Version of the skill is 20.12 or higher.

General steps:

• When creating the version (or clone) of the skill, designate one of the natively-supported
languages as the primary language. This language will serve as the default language in
the skill. Once you have set it, you can not change it.

• On the skill's Settings, Intents, or Entities page, add any additional natively-supported
languages that you want to target.

• Build the training corpus in the primary language.

• For each additional language, augment the training corpus as necessary.

• For any value list entities that you create in the primary language, add values in the
additional language that correspond to each of the values in the primary language.

• Create resource bundles for each of the skill's output strings, provide entries for each
language, and reference the resource bundle keys from the appropriate places in the
dialog flow and the skill's settings.

Other notes and considerations:

• In terms of user experience, this approach gives you the best opportunity to satisfy user
expectations in multiple languages.

• To realize the potential of this approach, be sure to allocate adequate resources for multi-
language intent training and formulating effective output messages in all of the target
languages.

29-1

Avoid Using a 3rd-Party Translation Service
If you want to create a skill with one or more non-English languages but don't want to
use a 3rd-party translation service, you can use Digital Assistant's native language
support. See the above Ability to Train in Multiple Languages topic.

Create a Skill in a Language Not Supported Natively
Typically, if the language you are targeting for a skill is supported natively in Oracle
Digital Assistant, you would use that native language support for the skill. However, if
that language is not supported natively, you can use a translation service.

Prerequisite:

• You have configured a translation service (such as OCI Language, Microsoft
Translator, or the Google Translation API).

General steps:

• When creating the skill, designate the target language as the primary language
(and in translation mode).

• Create intent utterances and entity values in the language that you are supporting.

• Add code to the dialog flow to detect the language of the user input and to
translate it behind the scenes. (For non-English skills that rely on a translation
service, the underlying training model of the skill is in English.)

• Create resource bundles for the skill responses.

Other notes and considerations:

• If the target language of your skill is among the natively-supported languages,
consider using the native language approach. Then, if you later need to add other
languages that are natively supported, you will be able to optimize intent resolution
for each language (in addition to having more control over the output messages).

• If you later want to add other languages to the skill and one or more of the desired
languages isn't supported natively, you would need to create a new skill from
scratch and set English as the primary language in the new skill.

• Entity values for built-in entity types (such as NUMBER, EMAIL, and DATE) are
extracted after the user input has been translated to English behind the scenes.

Create a Multi-Language Skill that Targets Languages That Are Not
Supported Natively

If you are designing a skill that targets multiple languages and one or more those
languages are not supported natively, you can use a translation service for the skill.

Note:

It's currently not possible to have a skill that mixes native language support
and a translation service. If any of the languages are not supported natively,
you have to use the translation service for all of the languages.

Chapter 29
Language Use Cases for Skills

29-2

Prerequisite:

• You have configured a translation service (either Microsoft Translator or the Google
Translation API).

General steps:

• When creating the skill, designate English as the primary language (and in translation
mode).

• Create intent utterances and entity values in English.

• Add code to the dialog flow to detect the language of the user input and to translate it
behind the scenes.

• To handle skill responses, either:

– Set up the dialog flow to translate skill responses from English to the user's
language.

– Create resource bundles with entries for each target language and configure the skill
to use them in its responses.

Other notes and considerations:

• Entity values for built-in entity types (such as NUMBER, EMAIL, and DATE) are extracted
after the user input has been translated to English behind the scenes.

Create a Multi-Language Skill Without Resource Bundles for Each
Language

If you'd like to create a multi-language skill but do not want to create resource bundle entries
for the various languages, you can use the translation service to handle the skill's responses.
(This approach does not work with Digital Assistant's native language support.)

Prerequisite:

• You have configured a translation service (either Microsoft Translator or the Google
Translation API).

General steps:

• When creating the skill, designate English as the primary language (and in translation
mode).

• Add code to the dialog flow to detect the language of the user input and to translate it
behind the scenes.

• Set up the dialog flow to translate skill responses to the user's language.

Other notes and considerations:

• If all of the target languages of your skill are all among the natively-supported languages,
consider using the native language approach instead, since this will enable you to
optimize intent resolution for each language (in addition to having more control over the
output messages).

• Even if you need to target languages that are not natively supported, you may find that
the benefits of having greater control of the output messages justifies the costs.

Chapter 29
Language Use Cases for Skills

29-3

Language Mode
When you create a new skill (or version or clone of a skill), you use the Primary
Language field in the Create dialog to determine both a primary language and a
language mode (either Natively Supported or Translation Service).

The language mode determines:

• How the user language is detected and processed.

• Which languages you can add to your skill.

– If your skill uses the Natively Supported language mode, you can use any of
the languages that are supported natively in Oracle Digital Assistant.

– If it uses the Translation Service mode, you can use any of the languages
supported by the translation service.

Caution:

Once you have clicked Create in the wizard, the language mode is
permanently set for that version of the skill. You can't mix and match
language mode in skills or digital assistants.

Native Language Support for Skills
Starting with Platform Version 20.12, there is native support in Oracle Digital Assistant
for some languages. When you develop a skill with this native language support, you
don't need to use a 3rd-party translation service to handle user input and skill
responses in those languages.

If you are developing such skills for inclusion in a digital assistant, that digital assistant
must also use the native language support. See Native Language Support in Digital
Assistants.

How Native Language Support Works
• Training data can be supplied in each of the (natively-supported) languages

that you are designing the skill for.

When you use native language support, the skill is trained according to a unified
model that incorporates all of the natively-supported languages. You can provide
training utterances in one or more of your skill's target languages. The training
utterances that you provide in one language help build the model for all of the
skill's languages. For skills that you target to multiple languges, typically you will
start by building your training corpus in the skill's primary language. Then you can
(and should) add training utterances in the other languages, though you probably
won't need nearly as many in those other languages.

This differs from skills that use a translation service. In those skills, the underlying
training model is always in English, even if the training corpus is provided in
another language.

Chapter 29
Language Mode

29-4

• Entity values for built-in entity types (such as NUMBER, EMAIL, and DATE) are
extracted in the language of the conversation. (This differs from the case with skills in
translation service mode, where the values are extracted after the input has been
translated by the translation service.

• Entity values for custom entities are matched to the values provided for the
language of the current conversation.

• Skills that support non-English languages must be trained with Trainer TM.

Natively-Supported Languages
Here are the languages (and the corresponding languages codes) that are currently
supported natively in Oracle Digital Assistant.

• Arabic (ar)

• Dutch (nl)

• English (en)

• French (fr)

• German (de)

• Italian (it)

• Portuguese (pt)

• Spanish (es)

This means that you can create skills and digital assistants for these languages without using
a translation service, such as Google Translate.

Here's an overview of the level of support for each language.

Language Language
Understandin
g

Voice Insights Data
Manufacturing

Conversation
Designer

Arabic (ar) Yes No Yes Yes No

Dutch (nl) Yes No Yes Yes No

English (en) Yes Yes, including
the en-US, en-
GB, and en-AU
locales)

Yes Yes Yes

French (fr) Yes Yes Yes Yes No

German (de) Yes Yes Yes Yes No

Italian (it) Yes Yes Yes Yes No

Portuguese (pt) Yes Yes Yes Yes No

Spanish (es) Yes Yes Yes Yes No

For a more detailed comparison of the support for each language, see Feature Support by
Language.

Create a Skill with Natively-Supported Languages
Here are the general steps for creating a skill that uses Oracle Digital Assistant's native
language support.

Chapter 29
Native Language Support for Skills

29-5

1. When creating the skill, select Platform Version 20.12 or higher and select the
primary language that you want to support from the Primary Language dropdown.
The language you select must be within the Natively-Supported section of the
dropdown.

2. For each intent that you create, add utterances for your skill in the primary
language:

a. Click to open the side menu, select Development > Skills, and open your
skill.

b. In the left navigation for the skill, click

c. Select an intent.

d. In the Examples text field, type the utterance and press Enter.

e. Repeat the previous two sub-steps for each intent.

3. For any custom entities in your skill, make sure the values are in the skill's primary
language.

You can add and edit custom entities by clicking in the left navigation of the skill.

4. For any components in your dialog flow that have properties that display prompts
or labels, make sure that you explicitly define those properties. If you don't define
these properties, customers may encounter default text from those properties,
which are in English.

5. In the skill's settings, update all of the configuration messages and prompts to use
the primary language:
To access these messages and prompts:

• In the left navigation for the skill, click .

The messages and prompts are located on the Configuration and Digital
Assistant tabs.

Note:

If you're planning to support multiple languages in the skill, you will need to
define resource bundle keys for the properties, prompts, and messages that
may be displayed to users. And, even if you don't plan to support multiple
languages, you may want to do this anyway, since the resource bundle
provides a single place where you can edit the values of all of your strings.
See Resource Bundles for Skills.

Add Natively-Supported Languages to a Skill
For skills (or versions of skills) where you have chosen a natively-supported primary
language, you can add additional natively-supported languages.

1. Make sure your skill is running on Platform Version 20.12 or higher.
If it isn't, you need to create a clone or a new version of the skill and set it to use
Platform Version 20.12 or higher.

2. In the skill's left navbar, click the Settings() icon and select the General tab.

Chapter 29
Native Language Support for Skills

29-6

3. Scroll down to the languages section, click Add Language and select the language from
the dropdown.

4. For each of the intents in the skill, add a conversation name and additional utterances in
the added language:

a. Click Intents () in the left navbar.

b. Select the intent to edit.

c. Select the tab for the language that you just added.

d. Click to enter a descriptive name or phrase for the intent in the Conversation
Name field.

5. For any entities that are based on key-value pairs (value list entities and dynamic
entities), enter values for that language.

6. Enable the skill to display entity values in the language of the conversation:

a. In components that you use to resolve entities (Resolve Entity and Common
Response), make sure that the useFullEntityMatches property is set to true.
By doing this, you ensure that custom entity values are stored as JSON objects
instead of as simple strings.

b. In all of your FreeMarker expressions that reference custom entity values (whether in
the dialog flow or in various skill properties), insert the attribute corresponding to the
value you want to read. You can use any of the following attributes:

• value - returns the value of the entity in the conversation of the language.

• primaryLanguageValue - returns the value of the entity in the primary language of
the skill. You would use this option for expressions that are used for business
logic (e.g. to determine whether or not to display a prompt, based on the entity
value).

• originalString - returns the value that the user entered to match the entity. This
value could be a synonym of the entity value.

For example, if you have the expression ${PizzaSize} for referencing the value of
the PizzaSize entity, you would change it to ${PizzaSize.value} to display the value
in the language of the conversation.

7. If you haven't already done so, create resource bundle keys for all of the output that
users will see, enter values for the primary language, and insert references to those keys
in the appropriate places. This includes:

• Output text in the dialog flow.

• Prompts for entities that are included in the entity definitions.

• Messages and prompts defined in the skill's settings. To access them:

– In the left navigation for the skill, click .

The messages and prompts are located on the Configuration and Digital Assistant
tabs.

See Resource Bundles for Skills.

8. For any components in your dialog flow that have properties that display prompts or
labels, make sure that you have explicitly defined those properties (so that they don't
default to English values) and create resource bundle entries for them.

9. Add values in the additional language for all of the resource bundle keys.

Chapter 29
Native Language Support for Skills

29-7

10. Augment the training corpus as necessary in the additional language.
Since skills with natively-supported languages are based on a unified training
model in which all of the training helps with intent resolution in all of the skill's
target languages, the training model should already work for your additional
language, even without adding utterances in that language. But its accuracy will be
probably be lower than it is for the primary language. To improve the accuracy, do
the following:

• Build batch tests in the additional language and run them to determine how
well the model performs without any utterances in the additional language.
See Create Test Runs.

• Iteratively add training utterances in that language and test until you get a
satisfactory level of intent resolution.

a. Click Intents () in the left navbar.

b. Select the intent to edit.

c. Select the tab for the language that you just added.

d. In the Examples section, enter example utterances in the additional
language.

You probably won't need to add as many utterances in those additional target
languages as you did in the primary language.

Note:

See the Design Camp video on Multilingual NLU to learn about best
practices when making your skills multilingual.

Switch from a Translation Service to Native Language Support
If you want to take advantage of Oracle Digital Assistant native language support in a
skill that has been configured to use a translation service, you can create a new
version or clone of that skill and enable that support.

Prerequisite:

• The skill that you are converting must only use languages that are supported
natively in the version of the platform that you are converting to. For that list, see
Natively-Supported Languages.

If that prerequisite isn't met, you'll need to continue using a translation service for all of
the non-English languages in the skill.

To convert a skill to use Digital Assistant's native language support:

1. Create the new version or clone, and specify the primary language for the skill.

a. Click to open the side menu and select Development > Skills.

b. In the tile for the skill that you want to version or clone, click and select
Version or Clone.

c. In the Platform Version field, select version 20.12 or later.
If it wasn't present before, a Primary Language field will appear.

Chapter 29
Native Language Support for Skills

29-8

https://videohub.oracle.com/media/Oracle+Digital+Assistant+Design+Camp+-+Multilingual+NLU/1_5wa3z4wn

d. In the Primary Language dropdown, select the language from the Natively
Supported section of the dropdown that best corresponds to the predominant
language of the previous version of the skill.

Note:

The platform version and primary language can't be changed after you click
Create.

e. Click Create.

2. Add any additional languages that you want to support.

3. Adjust your dialog flow to stop using the following mechanisms related to sending text to
a translation service:

a. Any translation components (Detect Language, Translate Input, and Translate
Output.

b. (For YAML-based flows) the autotranslate context variable.

c. (For YAML-based flows) the component-level translate property.

Training Corpus for an Additional Language
When you add a language, here's how the various parts of the skill are handled:

• Intents—The intent names, whatever their language, remain the same for each
language. For each intent, you can add example utterances in each language. Since the
model for natively-supported skills is unified, any utterances that you add for a given
language can also help the model for other languages. Nevertheless, you can strengthen
your model by adding utterances for each language.

In particular, you should concentrate on adding phrases that express an intent in a
languages that are not direct translations of the phrase in the primary language.

• Entities—For entities that are based on key-value pairs (value list entities and dynamic
entities), you define the values in the primary language and then, for each additional
language, add values that correspond to the primary language's values.

For prompts and messages that are defined in the entities (including prompts that are
defined in composite bag entities), you reference resource bundle keys, where you
provide the appropriate text in each target language.

For other properties, such as Enumeration Range Size, the values apply for all
languages.

Note:

The Fuzzy Match property is disabled for skills where it is not supported for all
of the languages.

Chapter 29
Native Language Support for Skills

29-9

Language Detection in Skills with Natively-Supported Languages
In skills that use multiple natively-supported languages, the digital assistant (or
standalone skill) can automatically detect the user's language at the beginning of the
session. Here's how it works:

• The language is automatically detected for digital assistants and skills that are
configured with multiple natively-supported languages.

– If there is only one (natively-supported) language in the skill or digital
assistant, language detection is turned off.

– If the digital assistant or skill uses a translation service, the translation service
handles the language detection, not the skill or digital assistant.

• The language is not automatically detected if the skill or digital assistant is
accessed through a channel where the profile.languageTag or profile.locale
variable has been set.

• The language is detected in the first utterance of the conversation and not updated
in the session, even if the user switches languages.

• By default, the channel session last 7 days before it expires.

Translation Services in Skills
For skills that target languages other than English and which don't use Digital
Assistant's native language support, you need to configure a translation service.

For such skills, when a user enters a non-English request or response, the skill uses
the translation service to convert this input to English. Once it’s translated, the Natural
Language Processing (NLP) engine can resolve it to an intent and match the entities.
The skill can then respond to the user by using the translation service to translate the
labels and prompts or by referencing language-specific strings in resource bundles.

For skills that have a training corpus in a non-English language, the translation service
is also used at design time. When you train such a non-English skill, it creates English
versions of the example utterances and custom entity values to be used in the training
model (though these translations are not shown in the skill designer).

Note:

If you intend to add a skill that is based on a translation service to a digital
assistant, that digital assistant must also use a translation service.

Translation Services Supported

OCI Language
Oracle Cloud Infrastructure (OCI) provides its own translation service called
Language. If you use this service as your translation service in Oracle Digital
Assistant, user messages are not exposed to a third-party translation service.

Chapter 29
Translation Services in Skills

29-10

https://docs.oracle.com/iaas/language/using/language.htm

To use OCI Language as a translation service, you need to subscribe to the service and
create permissions for Digital Assistant to access it. See Policies for OCI Language.

Google Translation API
To use the Google Translation API, you need to generate the API Key. You create this key
from the GCP Console (APIs & services > Credentials). To find out more, see the Google
Cloud Platform Documentation.

Microsoft Translator
If you want to use Microsoft Translator as your translation service in Oracle Digital Assistant,
you need to subscribe to Translator or the Cognitive Services multi-service and get a secret
key. See https://docs.microsoft.com/en-gb/azure/cognitive-services/translator/reference/v3-0-
reference.

These are the main things you need to know:

• You need to use the Global region and its corresponding URL (https://
api.cognitive.microsofttranslator.com/).

• You need to obtain a secret key for authentication. You can get it from the Keys and
Endpoints section of the Azure Portal.

Register a Translation Service in Oracle Digital Assistant
1. Click to open the side menu and select Settings > Translation Service.

2. Click + Service.

3. In the Translation Services dialog, enter the URL and authorization key (for the Microsoft
Translator service) or authorization token (for the Google Translation API) .

a. URL

b. Authorization key (for the Microsoft Translator service) or authorization token (for the
Google Translation API) .

Add a Translation Service to Your Skill
1. If you haven't done so already, register a translation service in Oracle Digital Assistant.

2. Click to open the side menu, select Development > Skills, and select your skill.

3. In the skill's left navbar, click the Settings() icon and select the General tab.

4. Navigate to the Translation Service dropdown and select your translation service.

Approaches Based on Translation Services
When you use a translation service to support skills that converse in non-English languages,
you can use one of these development approaches:

• Create non-English single-language skills where you:

– Prepare the training corpus in the target language of the skill.

Chapter 29
Translation Services in Skills

29-11

https://cloud.google.com/docs/authentication/api-keys#creating_an_api_key
https://cloud.google.com/docs/authentication/api-keys#creating_an_api_key
https://docs.microsoft.com/en-gb/azure/cognitive-services/translator/reference/v3-0-reference
https://docs.microsoft.com/en-gb/azure/cognitive-services/translator/reference/v3-0-reference

When you develop non-English single-language digital assistants, you populate
them with such single-language skills (where all of the skills in a given digital
assistant have the same predominant language).

• Create multi-language skills where you:

– Prepare the training corpus in English.

– Configure the skill's dialog flow to manage the translation of the user input and
the skill's responses.

– Optionally (but preferably), create resource bundles for one or more languages
for the skill's labels, prompts, and messages. This is desirable because it
allows you to control the wording of the skill's responses.

In both cases, Digital Assistant uses the translation service to translate user input to
the base language. For responses, it uses resource bundles (if provided in the skill) or
the translation service to translate the skill's response back to the user's language.

Non-English Single-Language Skill Using a Translation Service
To develop a skill for a single non-English language that relies on a translation service,
you:

1. If you haven't already done so, add a translation service to your skill.

2. Create the utterances for your skill in the target language of the skill (instead of in
English):

a. Click to open the side menu, select Development > Skills, and open your
skill.

b. In the left navigation for the skill, click

c. Select an intent.

d. In the Examples text field, type the utterance and press Enter.

e. Repeat the previous two sub-steps for each intent.

3. For any custom entities in your skill, make sure the values are in the skill's primary
language.

You can add and edit custom entities by clicking in the left navigation of the skill.

If you don't provide custom entity values in the skill's primary language, the skill
won't be able to properly process user input that contains any values that need to
be matched by a custom entity.

4. In the skill, update all of the configuration messages and prompts to use the
primary language:
To access these messages and prompts:

• In the left navigation for the skill, click .

The messages and prompts are located on the Configuration and Digital
Assistant tabs.

There are a couple of other things to keep in mind:

• You can’t translate the names of the built-in entities.

• When you set up your skill this way, the language processing framework detects
non-English input and then translates it into English (the language of the training

Chapter 29
Translation Services in Skills

29-12

model) behind the scenes. After evaluating the input, it determines the appropriate
response and translates it back to the target language.

This can impact translation costs because it requires more calls to the translation service
than a skill where the training corpus is already in the English.

Multi-Language Skills with Auto-Translation
For skills that use a translation service, you can enable the skill to automatically detect the
user’s language and communicate in that language.

To set this up, you need to update the dialog flow to:

• Detect the user's language.

• Translate the user input so that it can be resolved.

Translation for Skills in Visual Dialog Mode
For multi-language skills designed in Visual dialog mode, here are the steps for setting up
translation:

1. If you haven't already done so, add a translation service to your skill.

2. At the beginning of the flow that you intend to be the starting point of the skill, insert a
Detect Language component.

3. In the Main Flow, add the Start Skill built-in event and map it to the flow that contains the
Detect Language component.

4. On the skill's Settings page, select the Configuration tab and set the Translate User
Input Message and Translate Bot Response Message properties.

• Set Translate User Input Message to true to translate user input.

• If you are not using resource bundles for the target languages, set Translate Bot
Response Message to true.

Translation for Skills in YAML Dialog Mode
For skills designed in YAML dialog mode, you can determine what to have translated
component by component by using either or both the autotranslate context variable and the
component-level translate property.

• The autotranslate context variable applies globally to the whole skill. If you don't specify
autotranslate, it's value is false.

• The translate property can be set individually for each component. When the translate
property is set for a component, it overrides the autotranslate value for that component.

For both autotranslate and translate, you can set the value as a single Boolean or you
can specify separate Boolean values for input and output.

Examples: autotranslate Context Variable

Here's an example of using autotranslate to turn on automatic translation for both input and
output:

 setAutoTranslate:
 component: "System.SetVariable"

Chapter 29
Translation Services in Skills

29-13

 properties:
 variable: "autoTranslate"
 value: true

And here's how you could use autotranslate to translate input by default, but not
output:

 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value:
 input: true
 output: false

Note:

You don't have to specify autotranslation values that are false. For
example, in the previous snippet, you don't need to include the line:

 output: false

Examples: translate Property

Here's an example of setting the translate property to send both the component's
input and output to the translation service that has been specified for the skill:

 askName:
 component: "System.Text"
 properties:
 prompt: "${rb.askNamePrompt}"
 variable: "name"
 translate: true

And here's an example of sending only the component's input to the translation
service:

 askName:
 component: "System.Text"
 properties:
 prompt: "${rb.askNamePrompt}"
 variable: "name"
 translate:
 input: true
 output: false

Chapter 29
Translation Services in Skills

29-14

Opt-In Translation

For skills designed in YAML dialog mode, here are the steps if you want to individually specify
which components to translate:

1. If you haven't already done so, add a translation service to your skill.

2. Make sure that the autoTranslate context variable is not set (or set to false).

3. Above the state for the System.Intent component, add the System.DetectLanguage
component:

 detect:
 component: "System.DetectLanguage"
 properties:
 useExistingProfileLanguageTag: true
 transitions:
 ...

Note:

The useExistingProfileLanguageTag property is used when a skill is part of a
digital assistant that has a translation service. This enables the skill to use the
language that is detected by the digital assistant immediately. Otherwise, the
skill might provide a message or prompt in English before the language is
(re-)detected. If the skill is not in a translation-enabled digital assistant, the
property is ignored.

4. In the System.Intent component, set the translate property to true.

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 translate: true

5. For other input components, also set the translate property property to true, or set the
input attribute of the translate property to true, e.g.:

 askName:
 component: "System.Text"
 properties:
 prompt: "${rb.askNamePrompt}"
 variable: "name"
 translate:
 input: true
 output: false

Example: Multi-Language Skill with Auto-Translation (Opt-In)

metadata:
 platformVersion: "1.0"

Chapter 29
Translation Services in Skills

29-15

main: true
name: "AutoTranslatePizzaJoe"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
states:
 detect:
 component: "System.DetectLanguage"
 properties:
 useExistingProfileLanguageTag: true
 transitions:
 next: "intent"
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 translate: true
 ShowMenu:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 translate:
 input: true
 output: false
 metadata:
 responseItems:
 - type: "text"
 text: "Hello ${profile.firstName}, this is our menu today:"
 ...
 ...

Opt-Out Translation

For skills designed in YAML dialog mode, here are the steps for using auto-translation
by default (and individually specify components to not translate) :

1. If you haven't already done so, add a translation service to your skill.

2. Add autoTranslate: "map" as a variable to the context node.

context:
 variables:
 ...
 autoTranslate: "map"

3. Within the states node, above your System.Intent component, add a
System.SetVariable component. Then set the variable property to use the

Chapter 29
Translation Services in Skills

29-16

autoTranslate context variable and set the input (and, optionally, output) attribute of
the value property to true.

 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value:
 input: true
 output: true
 transitions:
 ...

Note:

If you are using resource bundles, you'd set the output value to false.

4. For the next state, add the System.DetectLanguage component:

 detect:
 component: "System.DetectLanguage"
 properties:
 useExistingProfileLanguageTag: true
 transitions:
 ...

Note:

The useExistingProfileLanguageTag property is used when a skill is part of a
digital assistant that has a translation service. This enables the skill to use the
language that is detected by the digital assistant immediately. Otherwise, the
skill might provide a message or prompt in English before the language is
(re-)detected. If the skill is not in a translation-enabled digital assistant, the
property is ignored.

5. For any components that you don't want auto-translated, see the translate property to
false, e.g.:

 done:
 component: "System.Output"
 properties:
 text: "${rb('OnTheWay','${size.value}','${type.value}')}"
 translate:
 input: true
 output: false
 transitions:
 return: "done"

Chapter 29
Translation Services in Skills

29-17

Example: Multi-Language Skill with Auto-Translation for Input (Opt-Out)

In this example, auto-translation is set up for input, but it is off for output (so that output
text can be specified in resource bundles).

metadata:
 platformVersion: "1.0"
main: true
name: "AutoTranslatePizzaJoe"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
 autoTranslate: "map"
states:
 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value:
 input: true
 output: false
 transitions:
 next: "detect:
 detect:
 component: "System.DetectLanguage"
 properties:
 useExistingProfileLanguageTag: true
 transitions:
 ...

Manipulate Input Before Translation
If you want to be able to manipulate input text before sending it to the translation
service, you can use the Translate Input (Visual dialog mode) or
System.TranslateInput (YAML dialog mode) component. For example, you might want
to process user input to remove some personal data before sending it to the
translation service.

In the following YAML snippet, the sourceString variable holds the text to be
translated. (This text, for example, may have been gathered by another component.)
After the System.TranslateInput completes its processing, the English translation is
stored in the translatedString variable.

context:
 variables:
 autoTranslate: "boolean"
 translatedString: "string"

Chapter 29
Translation Services in Skills

29-18

 sourceString: "string"
 ...
states:
 ...
 translateInputString:
 component: "System.TranslateInput"
 properties:
 source: "sourceString"
 variable: "translatedString"
 transitions:
 ...

Predominant Language
For skills that you set up to use Platform Version 20.09 or earlier and which have been
configured with a translation service, Oracle Digital Assistant automatically assigns a
predominant language for that skill, based on the language of the skill's example utterances.

You can find what predominant language has been assigned for a skill by clicking the
Settings() icon in the skill's left navbar, selecting the General tab, and checking the value
of the Predominant Language property.

For such skills, make sure that all of your intent example utterances, entities, and dialog
response text are in the predominant language.

If you are designing the skill to support multiple languages, the predominant language must
be English.

For digital assistants that are based on Platform Version 20.09 or earlier, the predominant
language is determined by the predominant language of the first skill that you add to the
digital assistant. Any other skills that you add to the digital assistant must have the same
predominant language.

If the first skill that you add has no predominant language (because no translation service has
been specified in the skill), the digital assistant's predominant language is set to English. In
this case, you can either add skills that have English as the predominant language (or which
have no predominant language set).

Note:

For skills and digital assistants that are based on Platform Version 20.12 or higher,
a predominant language is not set. Instead, you specify the primary language when
you create the skill or digital assistant.

Resource Bundles for Skills
If your skill is designed to handle multiple languages and you want to control the wording for
your skill’s responses, use resource bundles. You can provide resources bundles for as many
languages and dialects as you need.

Even if your skill is targeted toward only one language, using resource bundles has benefits,
such as enabling you to put all of your use-facing text in one place.

Chapter 29
Resource Bundles for Skills

29-19

There are a number of options for parameterizing resource bundle entries, which
enables you to embed variables in the strings. In addition, you can use ICU formatting
for bundle entries to help construct the wording of a response depending on how its
parameters are resolved. This enables you to do things like adjust wording according
to whether something is singular or plural.

Types of Resource Bundle Keys
A skill's user-facing strings come from several parts of the skill. In some cases, a
resource bundle key is automatically created for you. In other cases, no key is
generated, but you can define one yourself.

Here are the places from where user-facing strings originate and how you can manage
them in the resource bundle.

• The Conversation Name field for intents.
When you set conversation names, resource bundle keys are created
automatically and populated with the value that you have set for the default
language. You can access the bundle keys for conversation names by clicking
and selecting the Intents tab.

• The Answer field for intents (answer intents).
When you set answers in intents, resource bundle keys are created automatically
and populated with the answer text in the default language. You can access the
bundle keys for answers by clicking and selecting the Q&A tab.

• The skill's configuration settings (which you access by clicking and selecting the
Configuration tab).
For these settings, resource bundle keys are generated with default values and
the setting values are expressed as references to the resource bundle keys. You
can edit the values of these keys by clicking and selecting the Configuration
tab.

• Default prompts, labels, and messages that are built into standard dialog flow
components.
If you want to change the default value of any of these properties, you can do so
within the resource bundle by clicking and selecting the Configuration tab.

You don't need to add the property to the component in the dialog flow definition to
reference the updated value in the resource bundle.

If you want to change the value of one of those properties for a component in a
particular state without changing the default, you add the property to the
component in that state.

• Dialog flow strings. For text that you incorporate into your components, you can
define your own resource bundle keys and then reference those keys from the
dialog flow definition.
You can create and edit these keys by clicking and selecting the User-Defined
tab.

• Prompts and messages from entity definitions. For these strings, you can define
your own resource bundle keys and then reference those keys from the fields for
these properties in the entity definition.
You can create and edit keys for these strings by clicking and selecting the
User-Defined tab.

Chapter 29
Resource Bundles for Skills

29-20

Note:

Resource bundles are not the mechanism for translating value list entities. Instead,
you provide the translation within the custom entity definition. For skills using
natively-supported languages, you provide values for that native language. For
skills based on a translation service, you provide the translated values as synonyms
for the values in the default language.

Create Resource Bundle Keys
Resource bundle keys are used to identify output text that needs to be translated and provide
values in one or more languages. Keys are automatically defined for the intent conversation
names, the responses for answer intents, and some common properties. However, you need
to create keys yourself for other output text that you want to translate, such as text from your
dialog flow.

To create resource bundle entries:

1. In the skill's left navbar, click .

2. Click the User-Defined tab.

3. Click Add Bundle.

The Create Entry dialog appears, which enables you to create your first entry in the skill's
primary language.

4. Enter the a key (which you use to reference the bundle entry) and its corresponding text.
For example, for the user prompt How old are you?, you might enter HowOld in the Key
field and then How old are you? in the Text field.

5. For Annotation, enter any information that will be useful for those that may need to
reference the entry later, such as translators.

6. Click Create Entry.

Add a Language to a Resource Bundle Key
When you create a bundle key, its initial Text value is for the skill's default (i.e. primary or
predominant language).

To add text for a bundle key in another language:

1. Select the key and then click Add Language.

2. Complete the Create Entry dialog:

• Language—Enter or select an IETF BCP 47 language tag like fr for French or de for
German.

• Text—The output string. For example, for a French translation (fr) of the HowOld
key, you’d add a string like quel âge avez-vous ?

Chapter 29
Resource Bundles for Skills

29-21

Note:

You can also use more specific locales (such as en-US), but they are not
useful in most cases. For example, if you are using a translation service to
detect the language, only a two-letter code will be returned.
If the skill can’t match the input language with a language tag defined in the
bundle, it defaults to a less-specific tag (if one is available). If none of the
entries match the browser’s language, the skill uses the default entry,
English. See Resource Bundle Entry Resolution for details.

Translate Conversation Name
At some points within a conversation, such as when the skill is trying to determine
what flow the user wants to follow, the skill may present a dialog that refers to one
more intents. In these cases, the skill refers to the intents by their conversation names,
for which keys and default entries are generated in the resource bundle.

To provide a translation for a conversation name:

1. Click Resource Bundle in the left navbar ().

2. Click the Intents tab on the Resource Bundles page.

3. Select the intent

4. Click Add Language.

5. Complete the Create Entry dialog:

• Language—Add an IETF BCP 47 language tag like fr for French, de for
German, or en-US for U.S. English.

• Text—The output string. For example, for a French translation (fr) of the
HowOld key, you’d add a string like quel âge avez-vous ?

Note:

If the intent for which you want to change the conversation name doesn't
appear in the list, click to go back to the Intents page, select the intent,
and edit its Conversation Name field. When you return the Resource
Bundles page, it should then appear under the Intents tab.

Translate Answers for Answer Intents
When you create an answer intent, a resource bundle key is automatically created for
the answer.

Chapter 29
Resource Bundles for Skills

29-22

To provide a translation for an answer in an answer intent:

1. Click Resource Bundle in the left navbar ().

2. Click the Q&A tab on the Resource Bundles page.

3. Select the key for the answer that you want to translate.

4. Click Add Language.

5. Complete the Create Entry dialog:

• Language—Add an IETF BCP 47 language tag like fr for French, de for German, or
en-US for U.S. English.

• Text—The output string.

Reference Resource Bundles in the Dialog Flow
To set the output for a built-in component, you reference the message key through the
variable rb (which is reserved for resource bundles).

Here is a simple expression that references a bundle key called WhatType to return a simple
string:

${rb('WhatType')}

Here is an expression that uses dynamic values. It references a bundle key called OnTheWay
where size.value and type.value are the arguments for the OnTheWay key.

${rb('OnTheWay','${size.value}','${type.value}')}

You can also create bundle entries with more complex message formats to handle plurals
and other cases. See the following topics to learn about the range of message formats and
how to reference them in your dialog flow.

Tip:

To test your resource bundles using the tester, set your browser to another
language.

Message Formats
There are several formats that you can use for your resource bundle messages to handle
everything from returning static messages to assembling messages depending on multiple
variables.

Simple Messages
For simple static messages:

• As the value for the bundle key, provide plain text. For example: This is the value of
my bundle key

Chapter 29
Resource Bundles for Skills

29-23

• From the dialog flow or the configuration property, reference the bundle key in the
form: {rb.bundleKey} or {rb('bundleKey')}

Example: Simple Message
Here's an example without any parameters.

• Resource Bundle Key: pizzaOnTheWay
• Resource Bundle Message: Your pizza is on the way.
• Expression for Referencing the Resource Bundle Key: $

{rb('pizzaOnTheWay')} (or ${rb.pizzaOnTheWay})

Messages with Parameters
For messages with variables:

• As the value for the bundle key, provide text and include parameters in one of the
following formats:

– Named parameters in the form {parameterName}
– Sequentially-numbered parameters starting with {0}

• From the dialog flow or the configuration property, reference the bundle key in the
form:

${rb('bundleKey','variable1','variable2',...)}

Example: Message with Named Parameters
Here's an example with two named parameters:

• Resource Bundle Key: pizzaOnTheWayWithNamedParams
• Resource Bundle Message (in English):

Your {pizzaSizeParam} {pizzaTypeParam} pizza is on the way.

(where {pizzaSizeParam} and {pizzaTypeParam} are parameters for values to be
resolved and inserted during the conversation)

• Expression for Referencing Resource Bundle Key:

$
{rb('pizzaOnTheWayWithNamedParams','pizzaSizeParam,pizzaTypeParam',p
izzaSize.value,
 pizzaType.value)}

(where pizzaSize and pizzaType are variables defined in the dialog flow)

Example: Message with Numbered Parameters
Here's an example using numbered parameters:

Chapter 29
Resource Bundles for Skills

29-24

• Resource Bundle Key: pizzaOnTheWayWithNumberedParams
• Resource Bundle Message:

Your {0} {1} pizza is on the way.

(where {0} and {1} are parameters for values to be resolved and inserted during the
conversation)

• Expression for Referencing the Resource Bundle Key:

${rb('pizzaOnTheWayWithNumberedParams',pizzaSize.value, pizzaType.value)}

(where pizzaSize and pizzaType are variables defined in the dialog flow)

Complex Messages
You can also create complex messages, where the value of one or more variables may affect
the surrounding output text. For example, if the response includes a variable for the number
of pizzas ordered, you can use a complex message to determine whether to use the singular
("pizza") or plural ("pizzas").

Tip:

When you compose complex bundle entries, you can use this tester to make sure
that the entries resolve as you intend:https://format-message.github.io/icu-
message-format-for-translators/editor.html.

Messages that Handle Both Singular and Plural
For messages that include a variable that expresses a quantity of something, you may need
to vary the wording of the assembled message depending on how the variable resolves. And
for some languages, you may need to account for more than a simple singular/plural
distinction. To handle messages with variables for quantity, you can use a plural argument in
the key's value to specify the different ways the message may need to be constructed.

In a plural argument, part of the message is determined by a numeric value along with
grammar rules for the specified language. You define the message text for different cases,
depending on how the plural argument resolves. There are several predefined cases, such as
one, two, few, many, and other. You can also specify a case for a specific number by pre-
pending = to that number (e.g., =3). Not all of the predefined cases are relevant for every
language. For example, for English you might just use =0, =1, and other.

You must always include a case and a message for other. To include the resolved number in
the message text for a case, use # to output the number.

When you use plural arguments, the format typically looks something like this:

{plural_arg_name, plural,
=0 {Text used when the plural argument resolves to 0}
=1 {Text used when the plural argument resolves to 1}
other {Text used when the plural argument resolves to a value that doesn't

Chapter 29
Resource Bundles for Skills

29-25

https://format-message.github.io/icu-message-format-for-translators/editor.html
https://format-message.github.io/icu-message-format-for-translators/editor.html

match the other cases (in this case 0 or 1)}
}

In the above example 0, 1, and other are the possible quantities. More details on how
plural argument types work can be found in the Unicode Locale Data Markup
specification.

For details on the plural support for various languages, see the unicode.org plural
language rules.

Other Complex Messages
If the content of the message needs to based on other conditions, you can use a
select argument with keywords that you define to assemble the message.

{select_arg_name, select,
keyword1 {Text used when the select argument resolves to keyword1}
keyword2 {Text used when the select argument resolves to keyword2}
other {Text used when the plural argument resolves to a value that
doesn't match the other keywords}
}

You can also nest plural and select arguments:

{select_arg_name, select,
keyword1 {
{plural_arg_name, plural,
=0{Text used when the select argument resolves to keyword1 and the
plural argument resolves to 0.}
=1 {Text used when the select argument resolves to keyword1 and the
plural argument resolves to 1}
other {Text used when the select argument resolves to keyword1 and the
plural argument resolves to a value that doesn't match the other cases
(in this case 0 or 1)}}}
keyword2 {
{plural_arg_name, plural,
=0 {Text used when the select argument resolves to keyword2 and the
plural argument resolves to 0.}
=1 {Text used when the select argument resolves to keyword2 and the
plural argument resolves to 1}
other {Text used when the select argument resolves to keyword2 and the
plural argument resolves to a value that doesn't match the other cases
(in this case 0 or 1)}}}
other {
{plural_arg_name, plural,
=0 {Text used when the select argument resolves to other and the
plural argument resolves to 0.}
=1 {Text used when the select argument resolves to other and the
plural argument resolves to 1}
other {Text used when the select argument resolves to other and the
plural argument resolves to a value that doesn't match the other cases
(in this case 0 or 1)}}}
}

Chapter 29
Resource Bundles for Skills

29-26

http://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules
http://unicode.org/reports/tr35/tr35-numbers.html#Language_Plural_Rules
https://unicode-org.github.io/cldr-staging/charts/37/supplemental/language_plural_rules.html
https://unicode-org.github.io/cldr-staging/charts/37/supplemental/language_plural_rules.html

Note:

For the keyword names, you should only use ASCII alphabet characters (A-Z,a-z).

You can find more details on complex messages at https://unicode-org.github.io/icu/
userguide/format_parse/messages/#complex-argument-types.

Referencing Complex Messages
You can reference complex resource bundle messages in one of the following two ways:

• Using a map variable where values for each of the parameters are assembled:

${rb('bundleKey', formatMap.value)}

• Including a list argument with the parameter names followed by arguments for each
value:

${rb('bundleKey', 'param1, param2, param3', paramValue1, paramValue2,
paramValue3)}

Note:

Where the parameter values are strings, they should be enclosed in single
quotes (').

For further details, see the Complex Argument Types topic in the ICU documentation.

Maps for Complex Resource Bundle Values

If you decide to use map variable to assemble the parameters for a complex messages,
here's what you do:

1. Declare a map context variable.

context:
 variables:
 formatMap: "map"

2. Use a Set Variable component to populate the value of the map from other variables.
Here's an example in a YAML-based dialog flow:

 populateMap:
 component: "System.SetVariable"
 properties:
 variable: "formatMap"
 value:
 pizzaSize: "${pizzaSize.value}"
 pizzaType: "${pizzaType.value}"
 count: "${pizzaNum.value}"

Chapter 29
Resource Bundles for Skills

29-27

https://unicode-org.github.io/icu/userguide/format_parse/messages/#complex-argument-types
https://unicode-org.github.io/icu/userguide/format_parse/messages/#complex-argument-types
https://unicode-org.github.io/icu/userguide/format_parse/messages/#complex-argument-types

3. In the expression where you reference the bundle key, include the map as an
argument. For example:

 plural:
 component: "System.Output"
 properties:
 # use map variable to resolve
 text: "${rb('pizzaOnTheWaySingularOrPlural',
formatMap.value)}"

Example: Message that Handles Both Singular and Plural Variants
Here's an example of a resource bundle entry for a message that could have either
singular or plural content:

• Resource Bundle Key: pizzaOnTheWaySingularOrPlural
• Resource Bundle Message (in English):

{count, plural,
=0 {No pizzas will be delivered.}
=1 {Your {pizzaSizeParam} {pizzaTypeParam} pizza is on the way.}
other {# pizzas are on the way.}
}

• Expression for Reference to Resource Bundle Key:

${rb('pizzaOnTheWaySingularOrPlural','count, pizzaSizeParam,
pizzaTypeParam', 'pizzaNum.value, pizzaSize.value,
pizzaType.value')}

As you can see, the expression contains two arguments:

– A list of parameter names (count, pizzaSizeParam, pizzaTypeParam)

– A list of values for those parameters (pizzaNum.value, pizzaSize.value,
pizzaType.value)

Example: Message with Nested Parameters

{ gender, select,
female
{{count, plural,
=0 {She has not ordered anything.}
=1 {She has ordered only one.}
other {She has ordered #.}}}
male
{{count, plural,
=0 {He has not ordered anything.}
=1 {He has ordered only one.}
other {He has ordered #.}}}
other
{{count, plural,

Chapter 29
Resource Bundles for Skills

29-28

=0 {They have not ordered anything.}
=1 {They have ordered only one.}
other {They have ordered #.}}}}

Here are the variations of how that message may be resolved:

• She has not ordered anything.

• She has ordered only one.

• She has ordered 2.

• He has not ordered anything.

• He has ordered only one.

• He has ordered 2.

• They have not ordered anything.

• They have ordered only one.

• They have ordered 2.

Note:

2 is given in the above example as the number resolved by the count argument, but
it could be any number other than 0 or 1.

Resource Bundles and Auto-Translation of Skills
Here are the general steps for setting up a skill to use a translation service only for user input
while using resource bundles for the skill's responses:

1. If you haven't already done so, add a translation service to your skill.

2. Use the Detect Language component to determine the language of the user's input.

3. Apply resource bundles to handle the skill's responses to the user.

4. For any components that reference resource bundles, make sure that the output is not
translated automatically.

• For skills developed in Visual dialog mode, set the Translate Bot Response
Message property on the skill's Settings page to False.

• For skills developed in YAML dialog mode, you can handle this globally in the skill by
setting the autoTranslate context variable to translate input and not translate output.
For example:

 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value:
 input: true
 output: false

Chapter 29
Resource Bundles for Skills

29-29

Note:

For skills developed in YAML mode, you can also handle this at the
component level by using each component's translate property and not
setting the autoTranslate variable. For example, to set up automatic
translation for a System.Text component's input and disable automatic
translation for its output, you might do something like this:

 askName:
 component: "System.Text"
 properties:
 prompt: "${rb.askNamePrompt}"
 variable: "name"
 translate:
 input: true
 output: false

If your skill uses resource bundles for some components but relies on auto-
translation for other components, you can:

• Set the autoTranslate context variable to true.

• Like in the above code sample, set the translate:input property to
false for each component that uses a resource bundle.

Conditional Auto-Translation
If you have defined resource bundles for some languages but also want to be able to
provide responses for languages for which you don't have resource bundle entries,
you can use FreeMarker expressions to determine how autotranslate and translate
resolve. For example, if only English and Dutch resource bundles are defined, you
could conditionally enable output translation for the other languages. Here's what that
might look like in a YAML-based dialog flow:

 detectLanguage:
 component: "System.DetectLanguage"
 properties:
 ...
 ...

 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value:
 input: true
 output: "${profile.languageTag!='en'&& profile.languageTag!
='nl'}"

Chapter 29
Resource Bundles for Skills

29-30

Resource Bundle Entry Resolution
The resource bundle that gets applied depends on the value stored for the two location-
specific user profile variables, profile.languageTag and profile.locale. If both variables
are set, profile.languageTag takes precedence.

When resolving which language to use, Oracle Digital Assistant first searches for an exact
match. If it doesn't find one, it incrementally broadens its search until it succeeds. If it still
can't find a match, it returns the default language, which is English (en).

For example, if the value of ${profile.locale} is en-AU-sydney (and profile.languageTag
isn't set), Oracle Digital Assistant does the following to find the best language match:

1. Searches the bundle by the language-country-variant criteria (en-AU-sydney).

2. If it can’t find that, it searches the bundle by language and country (en-AU).

3. Failing that, it broadens its search for language (en).

Note:

profile.locale supports values in ISO language-country or ISO
language_country formats.

Export and Import Resource Bundles
You can export and import resource bundles in the form of a CSV file, which enables you to
work with the bundles offline.

The CSV file needs to have the following columns:

• languageTag
• key
• message
• annotation
To export a CSV file with the existing resource bundle:

• On the Resource Bundle page for your skill or digital assistant, click to export a CSV
file with the existing resource bundle.

Even if you haven't yet added any keys to the resource bundle, a file with the required
format of the CSV will be exported.

To import a resource bundle file:

• On the Resource Bundle page for your skill or digital assistant, click .

Internationalize and Localize Custom Component Responses
If you have custom components that return content in conversations, you'll also want to
ensure that they return that content in the user's target language.

Chapter 29
Internationalize and Localize Custom Component Responses

29-31

There are several ways to accomplish this:

• Create resource bundle entries in the skill and reference them directly from the
custom component. This approach enables you to handle translations of custom
component messages in the same place as you do for other messages from the
skill.

• Use a system component and resource bundle entries for assembling the
translatable strings that incorporate the data output of the custom component. This
approach enables you to handle translations of custom component messages in
the same place as you do for other messages from the skill while fostering a
looser coupling between the custom component and that particular skill.

• If you want to use the skill's translation service to translate the component's
responses, set the custom component's translate property to true.

• If your component retrieves and returns backend data that needs to be
incorporated into a message and you want to use the skill's translation service to
translate the component's responses, store that returned data in a context variable
in the dialog flow. You can then reference this variable in a system component.

Reference Resource Bundles from the Custom Component
Just as you can use resource bundles for messages in built-in components, answer
intents, etc., you can use resource bundles for your custom components as well. To do
so, you:

1. Define resource bundle entries in the skill for your message. See Create Resource
Bundle Keys.

2. Using the Bots Node SDK's context.translate() method, reference the resource
bundle keys from the custom component code.
The context.translate() takes a specified resource bundle key name (and any
parameters specified in the resource bundle entry) and generates the appropriate
FreeMarker template required to load the named resource bundle language string
when the conversation is sent back to the user via the context.reply() method.

3. Use the context.reply helper method to print the translated response. For
example:

context.reply(translate('date.message', dateToday, dayOfWeek));

4. Document all of the resource bundle keys that the custom component references
as well as the expected default strings. (Since the custom component directly
references the resource bundle key within the skill, there needs to be a high
degree of coordination between the developer of the custom component and those
building out the skill to ensure that the referenced keys are valid within the skill).

In this example, date.message is a resource bundle key, dateToday and dayOfWeek are
variables, and a FreeMarker expression like the following is returned:

${rb('date.message', 'Monday', 'July 12, 2021')}

Chapter 29
Internationalize and Localize Custom Component Responses

29-32

Note:

The context.translate() method only supports resource bundle values that have
no parameters or that use positional (numbered) parameters. For example, in the
case of the example date.message key, it's value might be something like “Today
is {0}, {1}”. Named parameters and complex message formats are not
supported.

Use a System Component to Reference a Resource Bundle
You can use a system component to assemble messages using resource bundle entries and
data that has been returned from a custom component. You define the base message strings
in resource bundle entries. The bundle entries might include parameters for data (such as
numbers and dates) that are output from the custom component. Since the base message
strings are defined in the dialog flow, this approach ensures that custom components are not
dependent on specific implementation code and remain reusable.

Here are the general steps:

1. For the custom component, include a required input parameter for the name of the
context variable to store the returned data in.

2. Since the custom component developer and dialog flow developer may not be the same
person or even on the same team, carefully document what data the custom component
returns in that variable and make the information available to any custom component
consumers so that they understand how to present the returned data to the user in a
message.

3. In the dialog flow, create a context variable to store the custom component's returned
data and pass its name in the required input parameter.

4. Define resource bundle entries in the skill for your message. See Create Resource
Bundle Keys.

5. In the dialog flow, reference the resource bundle entry and fill in any required parameters.

The following sample from a skill developed in YAML dialog mode references a custom
component in the initializeReceipt state and passes the name of the context variable
(receipt) that holds the component response and purchaseId as input parameters. The
printProduct state then incorporates the receipt value as a parameter in a reference to the
resource bundle entry named receiptMessage.

 initializeReceipt:
 component: "sample.receipt.dataresponse"
 properties:
 dataVariable: "receipt"
 purchaseId: "${purchaseId.value}"
 ...
 printProduct:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:

Chapter 29
Internationalize and Localize Custom Component Responses

29-33

 - type: "text"
 text: "${rb('receiptMessage','${receipt.value}')}"

The custom code for accessing these input parameters might look something like the
following code:

module.exports = {
 metadata: () => ({
 name: 'myComponent',
 properties: {
 dataVariable: { required: true, type: 'string' },
 purchaseId: { required: true, type: 'string' },
 },
...
 // Retrieve the value of the 'dataVariable' component property.
 const { dataVariable } = context.properties();
 if (!dataVariable) {
 context.transition();
 done(new Error('The state is missing the dataVariable
property.'));
 }
...
 // Retrieve the value of the 'purchaseId' component property.
 const { purchaseId } = context.properties();
 if (!purchaseId) {
 context.transition();
 done(new Error('The state is missing the purchaseId property.'));
 }
...
 context.setVariable(dataVariable, data);
 context.transition();
 done();
 }
}

Send Responses Directly to the Translation Service
If you don't have a way of knowing what the component's response text will be (e.g. if
it is queried from a remote backend), you can use the skill's translation service to
translate the responses. To do so:

1. Make sure the component is set up to have its output sent to the translation
service by defining the translate property on the component and setting it to
true.

2. In the custom component, use the context.reply helper method to return the
response.

This approach only works with skills that are set up in the Translation Service
language mode.

Chapter 29
Internationalize and Localize Custom Component Responses

29-34

Use a System Component to Pass the Message to the Translation Service
Custom components that query backend services might return data in a complex format like
an object or an array of objects. If you are using a translation service, these data objects can't
be sent to the translation service as is. Instead, you need to form a message that references
any necessary attributes of the data object individually.

1. For the custom component, include a required input parameter for the name of the
context variable to store the returned data in.

2. Since the custom component developer and dialog flow developer may not be the same
person or even on the same team, carefully document what data the custom component
returns in that variable and make the information available to any custom component
consumers so that they understand how to present the returned data to the user in a
message.

3. In the dialog flow, create a context variable to store the custom component's returned
data and pass its name in the required input parameter.

4. Using the information in the context variable, assemble the response in a system
component, like Common Response.

5. Make sure that the skill is configured for auto-translation.

• For skills developed in Visual dialog mode, set the Translate Bot Response
Message property on the skill's Settings page to true.

• For skills developed in YAML dialog mode, you can handle this globally in the skill by
setting the autoTranslate context variable. For example:

 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value:
 input: true
 output: true

In the following example, the context variable is dialogVar. The data object that’s passed
from the custom component to this context variable is {product: "an apple", type:
"fruit", origin: "Spain" }.

 printProduct:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - type: "text"
 text: "The product in your cart is a ${dialogVar.value.type}. It is
 ${dialogVar.value.product} from ${dialogVar.value.origin}"
 translate: true

Chapter 29
Internationalize and Localize Custom Component Responses

29-35

The custom code for accessing this input parameter might look something like the
following code:

module.exports = {
 metadata: () => ({
 name: 'myComponent',
 properties: {
 dialogVar: { required: true, type: 'string' },
 },
...
 // Retrieve the value of the 'dialogVar' component property.
 const { dialogVar } = context.properties();
 if (!dialogVar) {
 context.transition();
 done(new Error('The state is missing the dialogVar property.'));
 }
...
 context.setVariable(dialogVar, data);
 context.transition();
 done();
 }
}

Detect the User Language in a Custom Component
If the custom component needs the user's language to do things like provide correct
date formats, you can provide it to the component in one of these ways:

• Access the profile.locale and profile.languageTag variables from the custom
component code as shown in the following example:

//detect user locale. If not set, define a default
const locale = context.getVariable('profile.locale') ?
 context.getVariable('profile.locale') : 'en-AU';
//Make sure locale is returned with hyphen, not underscore.
JavaScript requires a hyphen.
const jsLocale = locale.replace('_','-');
//when profile languageTag is set, use it. If not, use
profile.locale
const languageTag = context.getVariable('profile.languageTag')?
 context.getVariable('profile.languageTag') :
jslocale;

• Pass the values of profile.locale and/or profile.languageTag as input
parameters to the component.

Note:

If both variables are set, profile.languageTag takes precedence in the skill.

Chapter 29
Internationalize and Localize Custom Component Responses

29-36

Resource Bundle Entries for Skill Configuration Settings
Starting with platform version 21.04, resource bundle entries are automatically created for
skill configuration settings. If your skill is based on platform version 21.02 or earlier, you can
upgrade to 21.04 or higher to have these entries generated for you.

Here is a list of all of the system resource bundle entries for skills along with their default
values.

Resource Bundle Entry Default English Text Entry Description

systemComponent_AgentConv
ersation_conclusionMessag
e

Chat session ended.
Thanks for chatting with
us.

The message shown to the user
when human agent ends the
chat.

systemComponent_AgentConv
ersation_errorMessage

Chat session error. The
reason is: {0}.

The message shown to the user
when Digital Assistant
experiences errors with the agent
chat system.

systemComponent_AgentConv
ersation_exitKeywords

bye, take care, see you,
goodbye

Comma-delimited list of
keywords the user can use to
end the chat with the agent.

systemComponent_AgentConv
ersation_expiryMessage

Chat session expired.
Thanks for chatting with
us.

The message shown to the user
when the chat session expires.

systemComponent_AgentConv
ersation_userLeftMessage

User left the chat. The message shown when the
user has exited the chat.

systemComponent_AgentConv
ersation_waitExpiryMessag
e

The request for live chat
expired while waiting for
an agent.

The message shown to the user
when the chat expires while
waiting for an agent.

systemComponent_AgentInit
iation_agentActionsMessag
e

\n Here are the available
actions that you can send
to transfer the
conversation back to the
bot. Prepend the action
with a forward slash (for
example, /actionName).\n

Message preceding the list of
agent actions.

systemComponent_AgentInit
iation_errorMessage

Error transferring to
agent. The reason is:
{0}.

The message shown to user
when system error occurs during
chat initiation with agent.

systemComponent_AgentInit
iation_rejectedMessage

Agent rejected. The message shown to the user
when human agent rejects the
chat request.

systemComponent_AgentInit
iation_resumedMessage

Resuming chat with agent The message shown to the user
when the chat with human agent
is resumed.

systemComponent_AgentInit
iation_waitingMessage

Agent chat session
established, Waiting for
agent to join.

The message that's shown to
users when they are waiting for a
human agent.

systemComponent_AgentTran
sfer_acceptedMessage

The chat has been
transferred to another
agent.

The message that's shown to the
users whenever a human agent
accepts the chat request.

Chapter 29
Resource Bundle Entries for Skill Configuration Settings

29-37

Resource Bundle Entry Default English Text Entry Description

systemComponent_AgentTran
sfer_errorMessage

We were unable to
transfer you to another
agent because there was a
system error.

The message shown to the user
when Digital Assistant
experiences trouble with the
agent chat system.

systemComponent_AgentTran
sfer_rejectedMessage

Agent rejected. The message that's shown to the
users whenever a human agent
rejects the chat request,
'maxEngagementsInQueue' is
exceeded, the 'allowTransferIf'
condition is not met, or the
estimated wait time exceeds
'maxWaitSeconds'.

systemComponent_AgentTran
sfer_waitingMessage

Agent chat session
established, Waiting for
agent to join.

The message that's shown to
users when they're transferred to
a human agent.

systemComponent_Feedback_
feedbackPrompt

How would you rate this
conversation?

The prompt that displays to users
for selecting a rating for the
conversation.

systemComponent_Feedback_
invalidValuePrompt

Value submitted for
feedback rating is
invalid. Please try again

The prompt that displays to users
after after they've entered an
invalid value for the conversation
rating.

systemComponent_Feedback_
skipLabel

Skip The label for the skip button that
user's select when they decline
to provide feedback.

systemComponent_Feedback_
textFeedbackPrompt

Any feedback? The prompt that asks users to
provide feedback when they give
a below-the-threshold rating.

systemComponent_Feedback_
thankYouPrompt

Thank you The prompt that's displayed to
the user when none of the
Feedback component transitions
(above, below, or cancel) have
been defined. The skill outputs
the Thank you prompt in the
absence of these transitions.

systemComponent_Intellige
ntAdvisor_answerNotValid

The answer is not in the
correct format. Try
again.

Message that's displayed for
Intelligent Advisor interview
inputs of type Masked when the
user's answer doesn't conform to
the specified input mask.

systemComponent_Intellige
ntAdvisor_defaultValue

Suggested value is {0}. Text that's added to a question
when the Intelligent Advisor
interview input has a default
value.

systemComponent_Intellige
ntAdvisor_doneHelp

When you are done with
the upload, say {0}.

Help message that's displayed
for Intelligent Advisor interview
inputs of type Upload.

systemComponent_Intellige
ntAdvisor_doneLabel

/done The text that users have to type
to indicate that they are done
uploading a file.

systemComponent_Intellige
ntAdvisor_endLabel

Interview ended The label that is shown in the
chat at the end of the interview.

Chapter 29
Resource Bundle Entries for Skill Configuration Settings

29-38

Resource Bundle Entry Default English Text Entry Description

systemComponent_Intellige
ntAdvisor_exitLabel

/exit The text that users have to type
to indicate that they want to exit
the interview.

systemComponent_Intellige
ntAdvisor_explanationAskL
abel

Do you want to see the
explanation?

The question that is asked when
showExplanation is set to 'ask'.

systemComponent_Intellige
ntAdvisor_maskLabel

Answer format: {0} Text that's added to a question to
display the expected format for
Intelligent Advisor interview
inputs of type Masked Text Box.

systemComponent_Intellige
ntAdvisor_noLabel

No The label to use to represent
Boolean FALSE values.

systemComponent_Intellige
ntAdvisor_numberMinMax

Enter a number between
{0} and {1}.

Message that's displayed when
the user enters a value outside of
the specified range for an
Intelligent Advisor interview input
of type Slider.

systemComponent_Intellige
ntAdvisor_outOfOrderMessa
ge

You have already answered
this question. When you
want to step backwards to
change a previous answer,
say {0}.

Error message that's displayed
when the user taps a button in a
previous Intelligent Advisor
interview message.

systemComponent_Intellige
ntAdvisor_resetLabel

/reset The text that users have to type
to indicate that they want to go
back to the first question.

systemComponent_Intellige
ntAdvisor_resumeSessionPr
ompt

Do you want to restart
the interview from where
you previously left?

Question that is asked if the user
starts an interview that they had
previously left before the
interview completed.

systemComponent_Intellige
ntAdvisor_uncertainLabel

Uncertain The label that appears for
optional values and is what the
user can type if they don't know
the value.

systemComponent_Intellige
ntAdvisor_undoLabel

/back The text that users have to type
to indicate that they want to go
back to the previous question.

systemComponent_Intellige
ntAdvisor_yesLabel

Yes The label to use to represent
Boolean TRUE values.

systemComponent_Intellige
ntAdvisor_yesNoMessage

Enter either {0} or {1} Message that's displayed when
the user enters an invalid answer
for Intelligent Advisor interview
inputs of type Boolean Radio
Button.

systemComponent_Intent_op
tionsPrompt

Do you want to The prompt shown to the user
when there are multiple top
intents within the confidence win
margin.

systemComponent_Intent_op
tionsQnaLabel

View Answers The label of the action in the
options (see optionsPrompt) that
will take the user to the QnA
component to display the
matches.

Chapter 29
Resource Bundle Entries for Skill Configuration Settings

29-39

Resource Bundle Entry Default English Text Entry Description

systemComponent_Knowledge
Search_defaultAttachmentL
abel

Download The default label to use for the
result card's URL action that is
linked with an attachment of the
search result if that attachment
does not have a display name
configured already.

systemComponent_Knowledge
Search_noResultText

Sorry, no result was
found in the knowledge
search.

The text to output when no
search result is available.

systemComponent_Knowledge
Search_resultLinkLabel

View Details The label to use for the result
card's URL action that's linked to
the web version of the
knowledge article.

systemComponent_OAuth2Acc
ountLink_cancelLabel

Cancel The label for the cancel button
that lets users leave the state
without invoking the
authentication dialog.

systemComponent_OAuth2Acc
ountLink_linkLabel

Get an access token The label for the button that
invokes the authentication dialog.

systemComponent_OAuth2Acc
ountLink_prompt

Please sign in The message that tells users to
sign in now.

systemComponent_OAuthAcco
untLink_cancelLabel

Cancel The label for the cancel button
that lets users leave the state
without invoking the
authentication dialog.

systemComponent_OAuthAcco
untLink_linkLabel

Log In The label for the button that
invokes the authentication dialog.

systemComponent_OAuthAcco
untLink_prompt

Please tap on the link to
proceed

The message that tells users to
sign in now.

systemComponent_QnA_answe
rsLabel

Answers The label for the action to view
answers in a particular category.

systemComponent_QnA_categ
oriesLabel

Categories The label for the action to display
the categories that match the
user utterance.

systemComponent_QnA_exitL
abel

Exit Questions The label for the exit questions
action.

systemComponent_QnA_moreA
nswersLabel

More Answers The label for the action to
paginate to next set of answers.

systemComponent_QnA_moreC
ategoriesLabel

More Categories The label for the action to
paginate to next set of
categories.

systemComponent_QnA_subCa
tegoriesLabel

Sub-Categories The label for the action to display
sub-categories within a given
category.

systemComponent_QnA_viewA
nswerLabel

View The label for the action to view
answer details.

systemComponent_ResolveEn
tities_defaultDisambiguat
ionPrompt

Please select one value
for {0}

Default message shown when
the user entered ambiguous
input causing multiple entity
matches.

Chapter 29
Resource Bundle Entries for Skill Configuration Settings

29-40

Resource Bundle Entry Default English Text Entry Description

systemComponent_ResolveEn
tities_defaultPrompt

Please enter {0} Default message shown to
prompt the user for input.

systemComponent_ResolveEn
tities_showMoreLabel

Show More The label used for the forward
pagination button when the
number of enumeration values,
or disambiguation matches
exceeds the 'Enumeration Range
Size' property of the composite
bag item.

systemComponent_ResolveEn
tities_showPreviousLabel

Show Previous The label used for the backward
pagination button when the
number of enumeration values,
or disambiguation matches
exceeds the 'Enumeration Range
Size' property of the composite
bag item

systemComponent_SelectCal
endarEvent_prompt

You have the following
meeting(s):

The text that appears before the
list of meeting.

systemComponent_Webview_c
ancelLabel

Cancel The label of the cancel button to
leave this state without invoking
the webview.

systemComponent_Webview_l
inkLabel

Tap to continue The label of the button to invoke
the webview.

systemComponent_Webview_p
rompt

Please tap on the link to
proceed

The message for the user to tap
on the link to invoke the webview.

systemConfiguration_autoN
umberPrefixes

1,2,3,4,5,6,7,8,9,10,11,1
2,13,14,15,16,17,18,19,20

The prefixes used for auto-
numbering postback action
labels.

systemConfiguration_autoN
umberPrefixSeparator

. The separator used between the
number prefix and the postback
action label.

systemConfiguration_error
ExpiredSessionPrompt

Your session has expired.
Please start again.

The message when the session
has expired.

systemConfiguration_error
MaxStatesExceededPrompt

Your session appears to
be in an infinite loop.

The message when the bot
appears to be in an infinite loop.

systemConfiguration_error
UnexpectedErrorPrompt

Oops I'm encountering a
spot of trouble. Please
try again later...

The message when there is an
unexpected error.

systemConfiguration_inter
nalWelcomeMessage

help The internal message sent to the
skill when a channel handles the
event that a new user has gotten
access to the skill. The reply to
the internal message is sent as
welcome message to the new
user.

systemConfiguration_oauth
CancelPrompt

Authentication canceled. The message when OAuth
authorization is canceled.

systemConfiguration_oauth
SuccessPrompt

Authentication
successful! You can
return to the
conversation.

The message when OAuth
authorization succeeds.

Chapter 29
Resource Bundle Entries for Skill Configuration Settings

29-41

30
The Skill Tester

The Skill Tester lets you simulate conversations with your skill using both voice and text input.

You open the Skill Tester by clicking Preview.

Typically, you'd use the Skill Tester after you've created intents and defined a dialog flow. It's
where you actually chat with your skill or digital assistant to see how it functions as a whole
and how it behaves on different channels. You can test out the entire conversation flow as
well as individual flows, and application events.

Tip:

Test each skill on your target channels early in the development cycle to ensure that
your components render as intended.

You can test the various functions of your skill in both an ad-hoc manner and by creating test
suites and test cases. When developers extend skills, they can reference the test cases to
preserve the core functionality of the skill.

Note:

If you're building or revising intents, use the Utterance Tester instead of the Skill
Tester.

Track Conversations
In the Conversation tab, the Skill Tester tracks the current response in terms of the current
state in the in the dialog flow.

Depending on where you are in the dialog flow, the window shows you the postback actions
or any context and system variables that have been set by a previous postback action. It also
shows you any URL, call, or global actions.

30-1

In the Intent/Q&A tab, you can see the resolved intent that triggered the current path
in the conversation.

Chapter 30
Track Conversations

30-2

When the user input gets resolved to Q&A, you can find out the ranking for the returned
answers. If the skill uses answer intents for FAQs, then only the resolved answer intent
displays.

Finally, the View JSON tab enables you to review the conversation.json file that has
complete details for the conversation the entities that match the user input and values
returned from the backend. You can search this JSON object, or download it.

When the dialog flow includes LLM component states, you can view the LLM component
execution using the LLM Interaction tab.

Chapter 30
Track Conversations

30-3

Test Suites and Test Cases
You can create a test case for different use cases. You create one of these test cases
from JSON or by recording conversations in the Conversation Tester. These test cases
are part of the skill's metadata so they persist across versions.

Because of this, you can run these test cases to ensure that any extensions made to
the skill have not broken the basic functionality. Test cases are not limited to just
preserving the core functions. You use them to test out new scenarios. As your skill
evolves, you can retire the test cases that continually fail because of the changes that
were introduced through extensions.

All test cases belong to a test suite, containers that enable you to partition your testing.
We provide a test suite called Default Test Suite, but you can create your own as well.
The Test Suites page lists all of the test suites and the test cases that belong to them.
The test suites listed on this page may be ones that you have created, or they may
have been inherited from a skill that you've extended or cloned. You can use this page
to create and manage test suites and test cases and compile test cases into test runs.

Chapter 30
Test Suites and Test Cases

30-4

Add Test Cases
Whether you're creating a skill from scratch, or extending a skill, you can create a test case
for each use case. For example, you can create a test case for each payload type. You can
build an entire suite of test cases for a skill by simply recording conversations or by creating
JSON files that define message objects.

Create a Test Case from a Conversation
Recording conversations is quicker and less error prone than defining a JSON file. To create
a test case from a conversation:

1. Open the skill or digital assistant that you want to create the test for.

2. In the toolbar at the top of the page, click Preview.

3. Click Bot Tester.

4. Select the channel.

Note:

Test cases are channel-specific: the test conversation, as it is handled by the
selected channel, is what is recorded for a test case. For example, test cases
recorded using one of the Skill Tester's text-based channels cannot be used to
test the same convesation on the Oracle Web Channel.

5. Enter the utterances that are specific to the behavior or output that you want to test.

6. Click Save As Test.

7. Complete the Save Conversation as Test Case dialog:

• If needed, exlude the test case from test runs by switching off Enabled.

• If you're running a test case for conversations or messages that have postback
actions, you can switch on Ignore Postback Variables to enable the test case to
pass by ignoring the differences between the expected message and the actual
message at the postback variable level.

• Enter a name and display name that describes the test.

• As an optional step, add details in the Description field that describe how the test
case validates expected behavior for a scenario or use case.

Chapter 30
Test Suites and Test Cases

30-5

• If needed, select a test suite other than Default Test Suite from the Test Suite
list.

• To test for the different parameter values that users may enter in their requests
or responses, add arrays to the object in the Input Parameters field for each
input parameter and substitute corresponding placeholders for the user input
you're testing for in the Conversation text area. For example, enter an array
{"AGE":["24","25","26"]} in the Input Parameters field and ${"AGE"} (the
placeholder) in the Conversation text area.

• If the skill or digital assistant responses include dynamic information like
timestamps that will cause test cases to continually fail, replace the variable
definition that populates these values with a placeholder that's formatted as $
{MY_VARIBALE_NAME}.

8. Click Add to Suite.

Add Input Parameters for User Messages
While you add variable placeholders to ensure that test cases pass when skill
messages have constantly changing values, you add input parameters to test for a
variety of values in user messages. Input parameters simplify testing because they
enable you to run multiple variations of a single test case. Without them, you'd need to
create duplicate test cases for each parameter value. Because of the flexibility

Chapter 30
Test Suites and Test Cases

30-6

afforded by input parameters, however, you can generate multiple test results by just adding
an array for the input parameter values in your test case definition. When you run the test
case, separate test results are generated for each of element in your input parameter array
definition. An array of three input parameter key-value pairs results in a test run with three
test outcomes, for example. The numbering of these results is based on the index of the
corresponding array element.

To add input parameters to your test case, you need to replace the text value in the
message payload of the user message with a placeholder and define a corresponding array
of parameter values:

1. In the Bot Tester view, click Save as Test.

2. In the Conversation text area, replace the text field value in a user message
({"source": "user", ...}) with an Apache FreeMarker expression that names the input
parameter. For example, "${AGE}" in the following snippet:

 {
 "source": "user",
 "messagePayload": {
 "type": "text",
 "text": "${AGE}",
 "channelExtensions": {
 "test": {
 "timezoneOffset": 25200000
 }
 }
 }
 },

3. Click to expand the Input Parameters field.

4. In the Input Parameters field object ({}), add key value pairs for each parameter. The
values must be arrays of string values. For example:

{"AGE":["24","25","26"], "CRUST": ["Thick","Thin"]}

Chapter 30
Test Suites and Test Cases

30-7

Here are some things to note when defining input parameters:

• Use arrays only – Input parameters must be set as arrays, not strings.
{"NAME": "Mark"} results in a failed test outcome, for example.

• Use string values in your array – All the array elements must be strings. If you
enter an element as an integer value instead ({"AGE": ["25", 26]}, for
example), it will be converted to a string. No test results are generated for null
values. { "AGE": ["24", "25", null] } results in two test results, not
three.

• Use consistent casing – The casing for the key and the placeholder in the
FreeMarker expression must match. Mismatched casing (Age and AGE, for
example), will cause the test case to fail.

5. Click Add to Suite.

Add Variable Placeholders
Variables with ever-changing values in skill or digital assistant responses will cause
test cases to fail when the test run compares the actual value to the expected value.
You can exclude dynamic information from the comparison by substituting a
placeholder that's formatted as ${MY_VARIBALE_NAME} in the skill response. For
example, a temporal value, such as the one returned by the ${.now?string.full}
Apache FreeMarker date operation, will cause test cases to continually fail because of
the mismatch of the time when the test case was recorded and the time when the test
case was run.

Chapter 30
Test Suites and Test Cases

30-8

To enable these test cases to pass, replace the clashing time value in the bot
messagePayload object in the Conversation text area with a placeholder. For example, $
{ORDER_TIME} replaces a date string like Monday, April 8, 2024 7:42:46 PM UTC in the
following:

{
 "source": "bot",
 "messagePayload": {
 "type": "text",
 "text": "You placed an order at ${ORDER_TIME} for a large Veggie
pizza on thin crust. Your order will be delivered to your home at 04:30 PM."
 }
 }

Note:

For newly created test cases, the Variable field notes the SYSTEM_BOT_ID
placeholder that's automatically substituted for the system.botId values that
change when the skill has been imported from another instance or cloned.

Create a Test Case from a JSON Object
You create a test case from an array object of message objects by first clicking + Test Case
in the Test Suite page and then by completing the New Test Case dialog. The properties are
the same as those for recorded test cases except that you must complete the array ([])
Conversations window with the message objects. Here is template for the different payload
types:

 {
 source: "user", //text only message format is kept
simple yet extensible.
 type: "text"
 payload: {
 message: "order pizza"
 }

Chapter 30
Test Suites and Test Cases

30-9

 },{
 source: "bot",
 type: "text",
 payload: {
 message: "how old are you?"
 actions: [action types --- postback, url, call,
share], //bot messages can have actions and globalActions which when
clicked by the user to send specific JSON back to the bot.
 globalActions: [...]
 }
 },
 {
 source: "user",
 type: "postback"
 payload: { //payload object represents the post back JSON
sent back from the user to the bot when the button is clicked
 variables: {
 accountType: "credit card"
 },
 action: "credit card",
 state: "askBalancesAccountType"
 }
 },
 {
 source: "bot",
 type: "cards"
 payload: {
 message: "label"
 layout: "horizontal|vertical"
 cards: ["Thick","Thin","Stuffed","Pan"], // In test
files cards can be strings which are matched with button labels or be
JSON matched
 cards: [{
 title: "...",
 description: "..."
 imageUrl: "...",
 url: "...",
 actions: [...] //actions can be specific to a card or
global
 }],
 actions: [...],
 globalActions: [...]
 }

 },
 {
 source: "bot|user",
 type: "attachment" //attachment message could be either a bot
message or a user message
 payload: {
 attachmentType: "image|video|audio|file"
 url: "https://images.app.goo.gl/FADBknkmvsmfVzax9"
 title: "Title for Attachment"
 }
 },

Chapter 30
Test Suites and Test Cases

30-10

 {
 source: "bot",
 type: "location"
 payload: {
 message: "optional label here"
 latitude: 52.2968189
 longitude: 4.8638949
 }
 },
 {
 source: "user",
 type: "raw"
 payload: {
 ... //free form application specific JSON for custom use cases.
Exact JSON matching
 }
 }
 ...
 //multiple bot messages per user message possible.]
}

Run Test Cases
You can create test runs for a single test case, a subset of test cases, or for the entire set of
test cases that are listed in the Test Suite page. As your skill evolves, you may need to retire
test cases that are bound to fail because of the changes that were deliberately made to a
skill. You also temporarily disable a test case because of ongoing development.

Note:

You can't delete an inherited test case, you can only disable it.

After the test run completes, click the Test Run Results tab to find out which of the test
cases passed or failed.

Chapter 30
Test Suites and Test Cases

30-11

View Test Run Results
The Test Run Results page lists the recently executed test runs and their results. The
test cases compiled into the test run either pass or fail according to a comparison of
the expected output that's recorded in the test case definition and the actual output. If
the two match, the test case passes. If they don't, the test case fails. When test cases
fail, you can find out why by clicking View Differences.

Note:

The test run results for each skill are stored for a period of 14 days, after
which they are removed from the system.

Review Failed Test Cases
The report lists the points of failure at the message level, with the Message Element
column noting the position of the skill message within the test case conversation. For
each message, the report provides a high-level comparison of the expected and actual
payloads. To drill down to see this comparison in detail – and to reconcile the
differences to allow this test case to pass in future test runs – click the Actions menu.

Fix Failed Test Cases
When needed, you can use the Apply Actual Value, Ignore Difference, and Add
actions to fix a test case (or portions of a test case) to prevent it from failing the next
time it's run. The options in the Actions menu are node-specific, so the actions at the
message level differ from those at lower points on the traversal.

• Expand All – Expands the message object nodes.

• View Difference – Provides a side-by-side comparison of the actual and expected
output. The view varies depending on the node. For example, you can view a

Chapter 30
Test Suites and Test Cases

30-12

single action, or the entire actions array. You can use this action before you reconcile the
actual and expected output.

• Ignore Difference – Choose this action when clashing values don’t affect the
functionality. If you have multiple differences and you don't want to go through them one-
by-one, you can choose this option. At the postback level, for example, you can apply
actual values individually, or you can ignore differences for the whole postback object.

• Apply Actual Value – Some changes, however small, can cause many of the test cases
to fail within the same run. This is often the case with changes to text strings such as
prompts or labels. For example, changing a text prompt from "How big of a pizza do you
want?" to "What pizza size?" will cause any test case that includes this prompt to fail,
even though the skill's functionality remains unaffected. While you can accommodate this
change by either re-recording the test case entirely, you can instead quickly update the
test case definition with the revised prompt by clicking Apply Actual Value. Because the
test case is now in step with the new skill definition, the test case will pass (or at least not
fail because of the changed wording) in future test runs.

Note:

While you can apply string values, such as prompts and URLs, you can't use
the Apply Actual Value to fix a test case when a change to an entity's values
or its behavior (disabling the Out of Order Extraction function, for example)
causes the values provided by the test case to become invalid. Updating an
entity will cause the case will fail because the skill will continually prompt for a
value that it will never receive and its responses will be out of step with the
sequence defined by the test case.

• Add Regular Expression – You can substitute a Regex expression to resolve clashing
text values. For example, you add user* to resolve conflicting user and user1 strings.

• Add – At the postback level of the traversal, Add actions appear when a revised skill
includes postback actions that were not present in the test case. To prevent the test case

Chapter 30
Test Suites and Test Cases

30-13

from failing because of the new postback action, you can click Add to include it in
the test case. (Add is similar to Apply Actual Value, but at the postback level.)

Note:

The set of test results generated for input parameters all refer to the same
original test case, so reconciling an input parameter value in one test result
simultaneously reconciles the values for that input parameter in the rest of
the test results.

Import and Export Test Cases
You can import tests suites from one version of the skill to another when you're
developing parallel versions of the same skill or working with clones.

1. To export a test suite, first select the test suite (or test suites). Then click More >
Export Selected Suite, or Export All. (You can also export all test suites by
selecting Export Tests from the kebab menu

in the skill tile.) The exported ZIP file contains a folder called testSuites that has
a JSON file describing the exported test suite. Here's an example of the JSON
format:

{
 "displayName" : "TestSuite0001",
 "name" : "TestSuite0001",
 "testCases" : [{
 "channelType" : "websdk",
 "conversation" : [{
 "messagePayload" : {
 "type" : "text",
 "text" : "I would like a large veggie pizza on thin crust
delivered at 4:30 pm",
 "channelExtensions" : {
 "test" : {
 "timezoneOffset" : 25200000
 }
 }
 },
 "source" : "user"
 }, {
 "messagePayload" : {
 "type" : "text",
 "text" : "Let's get started with that order"
 },
 "source" : "bot"
 }, {
 "messagePayload" : {
 "type" : "text",
 "text" : "How old are you?"

Chapter 30
Test Suites and Test Cases

30-14

 },
 "source" : "bot"
 }, {
 "messagePayload" : {
 "type" : "text",
 "text" : "${AGE}",
 "channelExtensions" : {
 "test" : {
 "timezoneOffset" : 25200000
 }
 }
 },
 "source" : "user"
 }, {
 "messagePayload" : {
 "type" : "text",
 "text" : "You placed an order at ${ORDER_TIME} for a large Veggie
pizza on thin crust. Your order will be delivered to your home at 04:30
PM."
 },
 "source" : "bot"
 }],
 "description" : "Tests all values with a single utterance. Uses input
parameters and variable values",
 "displayName" : "Full Utterance Test",
 "enabled" : true,
 "inputParameters" : {
 "AGE" : ["24", "25", "26"]
 },
 "name" : "FullUtteranceTest",
 "platformVersion" : "1.0",
 "trackingId" : "A0AAA5E2-5AAD-4002-BEE0-F5D310D666FD"
 }],
 "trackingId" : "4B6AABC7-3A65-4E27-8D90-71E7B3C5264B"
}

2. Open the Test Suites page of the target skill, then click More > Import.

3. Browse to, then select, the ZIP file containing the JSON definition of the test suites. Then
click Upload.

4. After the import has completed, click Download Report in the Confirmation notification to
find out more details about the import in the JSON file that's included in the downloaded
ZIP file.

For example:

{
 "status" : "SUCCESS",
 "statusMessage" : "Successfully imported test cases and test suites.
Duplicate and invalid test cases/test suites ignored.",

Chapter 30
Test Suites and Test Cases

30-15

 "truncatedDescription" : false,
 "validTestSuites" : 2,
 "duplicateTestSuites" : 0,
 "invalidTestSuites" : 0,
 "validTestCases" : 2,
 "duplicateTestCases" : 0,
 "invalidTestCases" : 0,
 "validationDetails" : [{
 "name" : "DefaultTestSuite",
 "validTestCases" : 1,
 "duplicateTestCases" : 0,
 "invalidTestCases" : 0,
 "invalidReasons" : [],
 "warningReasons" : [],
 "testCasesValidationDetails" : [{
 "name" : "Test1",
 "invalidReasons" : [],
 "warningReasons" : []
 }]
 }, {
 "name" : "TestSuite0001",
 "validTestCases" : 1,
 "duplicateTestCases" : 0,
 "invalidTestCases" : 0,
 "invalidReasons" : [],
 "warningReasons" : [],
 "testCasesValidationDetails" : [{
 "name" : "Test2",
 "invalidReasons" : [],
 "warningReasons" : []
 }]
 }]
}

You can only import valid test cases.

To find the cause of the failed outcome, review the invalidReasons array in the
downloaded importJSON file.

 "testCasesValidationDetails" : [{
 "name" : "Test",
 "invalidReasons" : ["INVALID_INPUT_PARAMETERS"],
 ...

Test Individual Flows and Application Events
You can isolate your testing to a single dialog flow (for skills with visual flow dialogs,
that is), test out application events, and upload links for supported attachment types
using the options in the Skill Tester's meatballs menu.

Chapter 30
Test Individual Flows and Application Events

30-16

• Application Event – This option tests the application events that are registered to the
main flow. Using this option, you can select one of the application events and then
interject it into the conversation. You can trigger a flow using this option, or you can use it
to insert an application event in the midst of a conversation.

The Bot Tester conversation view displays <Application Event> to mark the point where
you inserted the event into the conversation. To view the event payload, click
<Application Event> to open the View JSON window.

Chapter 30
Test Individual Flows and Application Events

30-17

• Invoke Flow Command – This option triggers a flow or subflow. Depending on
the flow you select, you may need to define input parameters. An <Invoke Flow
Command> marker displays in the Bot Tester conversation view where you inject this
operation into the conversation. Similar to application events, you display the
payload in the View JSON window by clicking <Invoke Flow Command> in the
conversation.

• Attach - Enables you to test a user attachment message by entering a URL that
hosts the attached document, image, video, or audio files.

Chapter 30
Test Individual Flows and Application Events

30-18

31
Q&A

Note:

Starting with Release 22.04, the Q&A feature is being phased out and replaced by
the Knowledge feature. The Knowledge feature has significant advantages over the
Q&A feature, namely:

• You can generate answer intents in your skill directly from existing FAQs or
Knowledge Base documents. You don't have to manually format those
documents before importing them into your skill. In addition, example
utterances are generated for each intent.

• In conversations with the skill, the generated answer intents are resolved with
NLP like regular intents. You don't need any Q&A-specific properties or
components to handle those intents.

If you have an existing skill that has a Q&A module, you can continue using that
Q&A module in future versions of the skill. But we recommend that you switch to
using answer intents (either with the help of the Knowledge feature or by creating
answer intents manually). See Answer Intents.

The Q&A feature enables your skill to answer general interest questions by returning one or
more question and answer pairs. It's a way for you to use a skill to surface FAQs or other
knowledge-base documents.

Adding a Q&A module to your skill enables it to evaluate whether the user input is intended
for a transaction ("What's my balance?") or to answer a question ("What's the bank's
address?") and then respond appropriately.

Adding Q&A to a Skill
Here’s an overview of how you add Q&A to a skill using the Q&A feature:

1. First, enable the Q&A capability by clicking Q&A () in the left navbar. Then click Add
Q&A.

2. Load the source files (formatted as CSVs) that holds the categorized question and
answer pairs. Create the Data Source File describes the format and provides some
content guidelines.

31-1

3. If needed, you can edit the questions and answers. You can also add or delete
questions and answers.

4. Train the skill with the Q&A trainer.

Chapter 31
Adding Q&A to a Skill

31-2

5. Test the new Q&A capability by entering questions into the Q&A Tester. As part of the
testing process, you need to add alternate questions to the data source to improve the
question recognition capability. You need to retrain if you add to or change anything from
the data source.

6. To use Q&A in a skill dialog flow, you need to configure the System.Qna component. You
must also append a new transition to the System.Intent component that references this
new component, so that Q&A questions are routed to the Q&A component, see How Do I
Configure the Dialog Flow for Q&A?.

Chapter 31
Adding Q&A to a Skill

31-3

7. Add a state for the none action and set the transition back to the Q&A component
when the question is answered by adding qna for the next transition:

 qna:
 component: "System.QnA"
 transitions:
 actions:
 none: "unresolved"
 next: "qna"
 unresolved:
 component: "System.Output"
 properties:
 text: "Sorry, I did not find any match. Can you rephrase the
question?"
 transitions:
 return: "done"

8. Test the skill.

Create the Data Source File
The data source file for the Q&A content must be an UTF-8 encoded CSV file. This file
has a header row whose values are (from left to right) category_path, questions, and
content.

Column Content

category_path The category (or categories) for a given question and
answer (Q&A) pair.

When a Q&A pair belongs to more than one category,
add each of the categories on new line.

Use a forward slash (/) to indicate a hierarchy. For
example: Trading/Placing Order.

questions The questions that display for the user. Add each
alternate versions of these question on a new line. The
first question, known as the canonical question, is the
question that displays in the skill’s message by default.
The subsequent questions in the column are alternative
versions.

content The answers.

Chapter 31
Adding Q&A to a Skill

31-4

You can edit your data source file after you import it.

The Data Source Guidelines
• Adding multiple questions for each answer increases the likelihood of relevant Q&A pairs

getting returned to users. Create 2-5 questions for each answer. Provide enough
questions to cover a sample of the different ways you expect the user to inquire about a
topic. Consider varying the subject (but be consistent with the answer’s topic), the verb
and interrogatives like “how”, “what”, “where”, etc. For example, How do I find out how
much money do I have? can be restated as:

– How do I get my account balance?

– Where can I find my account balance?

– Can I get my account balance?

• Remember that although the questions may be framed differently, they should all return
the same answers.

• You don’t need to create alternative questions just to accommodate commonly used
words, synonyms, or typos. You can use the Language Configuration page to add
synonyms or abbreviations. Typos are handled automatically.

• Keep the answers as short as possible. Provide a link for more detailed information. Q&A
links can’t be hidden, meaning that you can’t use <a href> to specify a site name. The
links must be explicit (http://www.myanswers.com/answer/topic1.html, for example).

• Always use plain text.

• Users are interested in the top three matches to get the information they want. While you
should focus on the top match, the goal should be to ensure that the requested and
related information is in the top three matches.

Chapter 31
Adding Q&A to a Skill

31-5

• Create a batch test file whenever you update your data source. This batch file
contains all of the questions that you want to make sure that your skill is answering
correctly. To find out more about this file, see Create the CSV File for Batch
Testing.

Q&A Modules and Data Sources Management
• Add More Data Sources

• Edit the Q&A Data Source Configuration Parameters

• Add Questions and Answers One-by-One

• Edit Questions and Answers One-by-One

Add More Data Sources
You can add more flies of questions and answers to expand your Q&A capability. To
upload another UTF-8 encoded CSV file into a new Q&A data source:

1. Click Q&A () in the left navbar.

2. Select the Data Sources tab and then click Add Q&A Source.

3. Complete the dialog by entering a language, a locale (if needed) and the data
source file.

4. You can add batches of data sources by choosing Create Another.

5. By default, the data source is enabled. If you need to temporarily remove Q&A
pairs from the data source, you can choose Disabled rather than delete the data
source.

6. Click Create.

7. Retrain Q&A.

Edit the Q&A Data Source Configuration Parameters
1. Click Q&A () in the left navbar.

2. Select the Data Sources tab.

3. Hover over the data source to invoke the Edit and Delete icons.

4. Click Edit.

5. Perform any of the following and then click Save.

• Change the language and locale.

• Rename the source.

• Overwrite the existing source file by clicking Replace and selecting a new file.

• Enabling or disabling the source.

Chapter 31
Adding Q&A to a Skill

31-6

6. Retrain the Q&A module.

Add Questions and Answers One-by-One
1. In the Data Sources tab, click on the data source.

2. Click View All Q&A.

3. Click Add Question.

4. Complete the dialog as follows and then click Create.

• Canonical Question—Enter the question that displays by default in the chat.

• Alternative—Add one or more variations on the canonical question. Keep in mind
that you just need to focus on how users might ask the same question in different
ways, not on accommodating synonyms or common misspellings.

• Answer--Add a concise answer. In place of a lengthy explanation, add a URL that
points users to more detailed information. This URL will render as plain text in the
tester window, but will render as a hyperlink when the skill runs on an actual
messaging platform.

• Categories—If applicable, enter a category or choose one from the menu. (The
menu is populated with the categories from your data source file).

• For hierarchies, enter a string with forward slashes (/).

Chapter 31
Adding Q&A to a Skill

31-7

• Create another—Select this option to open a new dialog after you click
Create.

5. Retrain Q&A.

6. Click Close in the Data Sources tab.

Note:

Remember that these question and answer pairs display within the confines
of a chat window, so keep them short. See The Data Source Guidelines.

Edit Questions and Answers One-by-One
Even though most of your content development is done using the source file itself, you
can add updates using the Data Sources tab.

1. In the Data Sources tab, page to the question, or locate it using one of the search
fields (categories and question and answers).

2. Hover over the question and then click Edit.

3. Use the Edit Question dialog to:

Chapter 31
Adding Q&A to a Skill

31-8

• Change the canonical question.

• Add more alternative questions.

• Edit the answer.

• Add or remove categories.

4. Click Save.

5. Retrain the Q&A module.

6. Click Close in the Data Sources tab.

Note:

You can also add alternate questions using the tester.

Export the Q&A Data Set
You can export the whole Q&A data set for version control, archive, and backup purposes.

1. In the Data Sources tab, click View All Q&A.

2. Choose the data source file in the left pane.

3. Click Export and then save the file to your system.

4. Click Close.

Chapter 31
Adding Q&A to a Skill

31-9

Improved Accuracy with Abbreviations and Ignored Words
We include built-in sets of ignored words, abbreviations, and synonyms to improve the
accuracy of the Q&A capability. Ignored words are excluded from the matching
algorithm so that they don’t reduce accuracy. The abbreviation and synonym lists are
used to match the user questions that contain these words. While the built-in sets may
be sufficient for many skills, you can add to these sets for unique situations.

Additions to these sets are made using the Language Configuration page. From this
page, you can edit the lists of ignored words, abbreviations, and synonyms.

Add Ignored Words, Synonyms, and Abbreviations
1. Select the Language Config tab.

2. Click Add Config Entry.

3. Complete the dialog:

• Language—Select from the available languages (made available by your data
sources).

• Type:

– Ignored words—Add words that don’t add value to the questions. The
words must be in lower case.

– Synonyms—Include slang terms and alternate words for each key word
in the data source. Create a separate entry for each set of synonyms. For
example, money, moolah, green is a separate entry from spouse, wife,
husband, partner.

Chapter 31
Adding Q&A to a Skill

31-10

– Abbreviations—Keep in mind that canonical questions may not expect
abbreviations.

• Definition—Enter terms that are specific to the type (synonyms, ignored words, or
abbreviations).

• Enabled—Enables (or disables) the additions made to the Ignored Words,
Abbreviations, or Synonym sets. Use this option when you test out language
configurations.

• Create another—Select to return to this dialog after you click Create.

4. Click Create.

5. Retrain the Q&A Module.

Chapter 31
Adding Q&A to a Skill

31-11

Q&A Testing
The Tester’s Q&A window enables you to test out your questions one at a time, or as a
batch.

After you train the Q&A module, you can test it using the Try Out Intents/Q&A tester
(accessed by clicking Try It Out!). The skill response may include a carousel of
multiple answers. Unlike the testing of intents, responses to Q&A questions are not
intent categories (for example, balances), but are instead textual answers provided by
the content row in the CSV file.

The Q&A capability (not the Intent Engine) handles the responses to the utterances
that you enter. These responses consist of a set canonical questions that represent
the best-fitting topics (the answers provided from the content column in the CSV file).
These canonical questions are the first questions entered in the CSV’s questions field
that are associated with each topic (that is, the answer in the content field in the CSV
file).

Test a Q&A Match
1. Train the Q&A module.

Chapter 31
Q&A Testing

31-12

2. Open the tester by clicking Try it Out! and then choosing Q&A.

3. Click Q&A.

4. Optionally, click to set the options for language and matching precision:

• Language—Choose a language (if multi-lingual data sources exist).

• Match Thresholds—Click Edit to set the minimum and maximum percentage of
tokens that a question and answer pair must contain to be considered a match (that
is, a Q&A match).

• Match Fields—Click Edit to select the Q&A field (or fields) that must match the user
message. The options are:

– All—Returns the Q&A where the keywords from the user input match any Q&A
category, question, or answer.

– Questions—Returns the Q&A where the keywords from the user input match the
Q&A questions.

– Answers—Returns the Q&A where the keywords in the user input match the
Q&A answer.

– Categories—Returns the Q&A where the keywords in the user input match a
Q&A category.

– Questions & Categories—Returns the Q&A where the keywords in the user
input match either the Q&A category or the Q&A answer.

5. Enter an utterance and then click Send.

6. If needed, click Add to Question and then retrain the Q&A module.

Create the CSV File for Batch Testing
For batch testing, you test your skill using a CSV containing the questions that your skill must
answer correctly along with the canonical questions (the Q&A matches) returned by your skill
by precedence. The CSV describes this using header row whose columns (from left to right)
are: languageTag, question, match-1, match-2, match-3 and so on.

• languageTag—A five-letter code that represents the language and locale in which the test
question and match questions are expressed. For example, en-US.

• question—The test question. This question doesn’t need to match any of the training
questions, but should represent a typical question that a user might ask for the given
topic.

• match-1 match-2 …— The first of the canonical questions that you think the test question
should retrieve. We display the canonical questions for all Q&A matches. If the test
question must return only a single Q&A match, then enter the question in the match-1
column and leave the remaining match columns empty.

Chapter 31
Q&A Testing

31-13

• queryInfo—A JSON object where that uses offset and categoryPath for a
category drill down and offset and limit for pagination.

"{""offset"":0,""categoryPath"":[""General Account
Information""],""limit"":3}"

This CSV represents the baseline for expected Q&A matches. Use it across different
versions of the skill to ensure consistent behavior. You can add the data manually, or
you can edit the Q&A Conversation Log. Batch Test the Q&A Module describes how to
obtain this file and edit it with the Tester. Once you’ve complete your golden set, your
updates only need to reflect significant updates to the Q&A data source.

Batch Test the Q&A Module
If you’re testing with a CSV derived from the QnA Conversation Log, you need to:

• Add and configure the System.Qna component in the dialog flow and then chat
with the skill to create a conversation history.

• Chat with the skill to create the conversation history.

• Export the QnA Conversation log using the menu in the skill’s tile by choosing the
QnA Conversation Log option in the Export Conversation Log dialog.

To batch test:

1. In the Q&A test window, switch on the Batch toggle.

2. Select the language.

3. Click Load.

4. Set the test options in the Load QnA dialog and then click Test.

• Maximum number of concurrent tests—The number of tests running in
parallel. Increasing the number of concurrent tests may speed up testing, but
may also burden the system.

• Matches to Include—Sets the number of Q&A matches that get included in
the test.

• Require matches in same order—Enables you to pass or fail a match
depending on either its inclusion, or its position, within the top-ranked
matches.

• In its off position, this option lets you verify matches when users enter
keywords instead of complete questions.

• Match Thresholds—Click Edit to set the minimum and maximum percentage
of tokens that a question and answer pair must contain to be considered a
match (that is, a Q&A match).

Tip:

Set the same value here as the one that you set for the
qnaMiniumumMatch and minimumMatch properties. To find out more
about setting the various levels, see System.Intent and System.Qna.

• Match Fields—Click Edit to select the Q&A field (or fields) that must match
the user message. The options are:

Chapter 31
Q&A Testing

31-14

– All—Returns the Q&A where the keywords from the user input match any Q&A
category, question, or answer.

– Questions—Returns the Q&A where the keywords from the user input match the
Q&A questions.

– Answers—Returns the Q&A where the keywords in the user input match the
Q&A answer.

– Categories—Returns the Q&A where the keywords in the user input match a
Q&A category.

– Questions & Categories—Returns the Q&A where the keywords in the user
input match either the Q&A category or the Q&A answer.

The failed tests display at the top of the results.

Chapter 31
Q&A Testing

31-15

5. For the Q&A matches that pass, you can drill down and add alternate questions,
modify the answers, and then retrain Q&A module. These additions are made to
the data source that seeds the skill, not to the testing data.

Chapter 31
Q&A Testing

31-16

How Do I Configure the Dialog Flow for Q&A?
Using the Add Components menu (located at the top left of the dialog flow page), you can
support for Q&A to your dialog flow by adding one of three different component templates:

• Intent and QnA—Adds the System.Intent component but with properties that set the
transition routing to the Q&A component when the utterance is determined to be a
question, not a transactional request. Q&A Properties for the System.Intent Component
describes these properties and Creating a Skill with Intent and Q&A Flows describes the
overall process for creating a skill with intent and Q&A functions.

• QnA—Adds a minimally configured template for a System.Intent component.

• QnA Advanced—Same as the QnA template, but provides optional properties for more
fine-grained control:

– keepTurn configuration for relinquishing or retaining the skill’s control of the dialog
flow.

– Modularity (calling a dedicated Q&A skill). See Reusable Q&A Skills.

– QnA sizing and pagination.

To add these templates:

1. Click Flows in the left navbar.

Chapter 31
How Do I Configure the Dialog Flow for Q&A?

31-17

2. Click Add Components in the upper left corner of the page. (You may need to
scroll up if this button’s not visible).

3. Choose the Language components palette.

4. Choose one of the three Q&A templates and then use the Insert After menu to
position it within the dialog flow definition. Click Apply.

Note:

To implement Q&A support, you need to either add a new
System.Intent component (using the Intent and QnA template) to the
dialog flow definition, or modify an existing System.Intent component to
enable transitions to the Q&A component.

Creating a Skill with Intent and Q&A Flows
1. Add the Intent with QnA template to the dialog flow (accessed from Language).

2. For the System.Intent component, define the following:

• Add qnaEnable: true to enable the router:

intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 qnaEnable: true

• Set a transition action to the QnA state:

 transitions:
 actions:
 Balances: "startBalances"
 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending: "startTrackSpending"
 Dispute: "setDate"
 unresolvedIntent: "unresolved"
 qna: "qna"

If the intent resolution is below the confidence threshold, then the skill triggers
the qna action which the Dialog Engine to the qna state. In this case, the skill’s
message includes the View Answers link only.

qna:
 component: "System.QnA"
 transitions:
 actions:
 none: "unresolved"
 next: "intent"
unresolved:
 component: "System.Output"

Chapter 31
How Do I Configure the Dialog Flow for Q&A?

31-18

 properties:
 text: "Sorry I don't understand that question!"
 transitions:
 return: "unresolved"

But when the Intent Engine can both resolve the message above the confidence
threshold and match a Q&A, the skill’s message includes links for the intent and the
Q&A response.

However, when the Intent Engine classifies the message as a request instead of a
question, the skill bypasses Q&A and routes to the intent flow. In this case, the
message only includes the intent option.

You can modify this behavior by adding words and phrases that clarify the intent
routing and by setting the System.Intent’s qnaSkipIfIntentFound property.

Q&A Dialog Examples
• Q&A Routing for the System.Intent Component

• Foreign and Multi-Language Support for Q&A

• Reusable Q&A Skills

Q&A Routing for the System.Intent Component
The following snippet shows how the router is activated by the System.Intent component’s
qnaEnable property. It also shows the transition to the state with Q&A module, and the Q&A
state itself.

...
 mainIntent:
 component: "System.Intent"
 properties:
 variable: "userInput"
 sourceVariable: "translated"
 qnaEnable: true

Chapter 31
How Do I Configure the Dialog Flow for Q&A?

31-19

 qnaMatchFields: "categories+questions"
 transitions:
 actions:
 Greeting: "greeting"
 Inspire Me: "recommendCategories"
 Returns: "startReturn"
 qna: "qna"
 View Reports: "setMobilePhone"
 TrackOrders: "showOrderStatus"
 unresolvedIntent: "unresolved"
 Vision: "visionBasedProducts"
 Shipping: "startShipping"
...
 qna:
 component: "System.QnA"

Foreign and Multi-Language Support for Q&A
Use this configuration for skills that support one or more foreign languages.

1. Create a data source file specific to the target language.

Note:

We don’t support Chinese language data sources.

2. If needed, add any synonyms or update the ignored words.

3. Configure a translation service. See Add a Translation Service to Your Skill.

4. If the skill also includes transactional functions, adjust the routing configuration.

5. Configure the dialog flow for multi-language support. For example:

metadata:
 platformVersion: "1.0"
main: true
name: "ChipCardMultipleLingualQnA"
context:
 variables:
 greeting: "string"
 name: "string"
 cancelChoice: "string"
 rb: "resourcebundle"
states:
 detect:
 component: "System.DetectLanguage"
 properties:
 ...
 transitions:
 ...
 qna:
 component: "System.QnA"
 properties:
 botName: "ChipCardMultipleLingualQnA"

Chapter 31
How Do I Configure the Dialog Flow for Q&A?

31-20

 matchFields: "categories+questions"
 viewAnswerLabel: "${rb.viewAnswerLabel}"
 moreAnswersLabel: "${rb.moreAnswersLabel}"
 transitions:
 actions:
 none: "unresolved"
 next: "detect"
 unresolved:
 component: "System.Output"
 properties:
 text: "${rb.NoMatch}"
 transitions:
 return: "done"

Reusable Q&A Skills
You can modularize your dialog flow definitions by creating reusable Q&A skills that can be
called using the botName and QnaBotName properties that belong to the System.Intent and
System.QnA components.

Example: botName property

...
states:
 qna:
 component: "System.QnA"
 properties:
 botName: "FinancialQnABot"
 transitions:
 actions:
 none: "unresolved"
 next: "qna"
 unresolved:
 component: "System.Output"
 properties:
 text: "Sorry, I did not find any match. Can you rephrase the question?"
 transitions:
 return: "done"

Example: botName and QnABotName

In this snippet, the botName and QnABotName both have the same value.

states:
 intent:
 component: "System.Intent"
 properties:
 botName: "FinancialQnABot"
 qnaMatchFields: "categories+questions"
 variable: "iResult"
 qnaEnable: true
 transitions:
 actions:
 Balances: "startBalances"

Chapter 31
How Do I Configure the Dialog Flow for Q&A?

31-21

 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending: "startTrackSpending"
 Dispute: "setDate"
 unresolvedIntent: "unresolved"
 qna: "qna"
...

 qna:
 component: "System.QnA"
 properties:
 botName: "FinancialQnABot"
 matchFields: "categories+questions"
 transitions:
 actions:
 none: "unresolved"
 next: "intent"

Example: botName and qnaBotName in System.Intent

This snippet shows the botName property in two different contexts: in the
System.Intent component, where it calls a transactional skill and in the System.Qna
component, where it calls a Q&A skill.

states:
 intent:
 component: "System.Intent"
 properties:
 botName: "FinancialBot"
 qnaBotName: "FinancialQnABot"
 variable: "iResult"
 qnaEnable: true
 transitions:
 actions:
 Balances: "startBalances"
 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending: "startTrackSpending"
 Dispute: "setDate"
 unresolvedIntent: "unresolved"
 qna: "qna"
...

 qna:
 component: "System.QnA"
 properties:
 botName: "FinancialQnABot"
 transitions:
 actions:
 none: "unresolved"
 next: "intent"

Chapter 31
How Do I Configure the Dialog Flow for Q&A?

31-22

Configure the Intent and Q&A Routing
We provide commonly used words and opening phrases that indicate commands or
questions in the Q&A Routing Config page. You can add the domain-specific content to this
page that enables the router to discern between Q&A and intents. To do this:

1. Click Settings () in the left navbar.

2. Click Q&A Routing Config.

3. Select a language.

4. Add or remove words and phrases in the following categories that impact the intent
routing.

• Transaction Config—You can add verbs and phrases that help the Intent engine
identify a message as a transaction.

– Additional Request Verbs—Messages beginning with requests or commands
like buy, check, or cancel are considered transactional and get routed to an
intent. These words, which are in the imperative mood, indicate a transaction, not
a question.

We maintain a library of widely used imperative verbs for each supported
language. Among them are words like pay, remove, and terminate. You can add
company- or audience-specific request verbs.

– Request Verb Expansion—A set of prefixes (un, dis, re) that, when applied
request verbs that you added in the Additional Request Verbs field, increase the
vocabulary that identifies a message as intent-bound.

– Request Sentence Prefix—Words and phrases that are associated with
requests, like Can you and Do not. Messages that begin with these words get
routed as intents. We maintain a library of these transaction-oriented words and
phrases which you can update.

• Question Config—A set of commonly used words and phrases that are typically
used in questions. These include phrases like how do I and I need to know. They
indicate that a user is asking a question, not requesting a transaction. When a skill
receives a message that begins with one of these, it optimizes its response by
prioritizing the link for the Q&A response over the link for the intent response.

Chapter 31
Configure the Intent and Q&A Routing

31-23

Usually, the behavior is the reverse: the skill gives the top spot to intents that
score above the configured confidence threshold.

For example, when a skill receives How do I terminate my policy, it can easily
discern that the user is looking for information and places the View Answers
link first.

When the user input is ambiguous, the Q&A link may not get the top ranking.
For example, the router may not be able to identify can I terminate my policy
as either an intent or Q&A. The skill shows both options because there is an
intent scoring above the confidence threshold and a matching question, but
ranks the intent first.

Chapter 31
Configure the Intent and Q&A Routing

31-24

32
Components

The states of a dialog flow are based on components that perform actions, such as accepting
user input, verifying that input, or responding with text.

There are two types of components that you can use in a dialog flow – built-in components
and custom components. When the Dialog Engine enters a state in the dialog flow, it
assesses the component. When it encounters one of the built-in components, it executes one
of the generic tasks, such as display a message or prompt the user to enter text. When the
Dialog Engine discovers a custom component, it calls the component's service, which hosts
one or more custom components.

Built-In Components
Digital Assistant provides a set of components that support a range of generic actions, which
you can use in any skill: security, parsing the user input, routing the dialog flow based on that
user input, and outputting the skill’s responses in various ways. Unless you need to integrate
with backends or perform extremely complex logic, these components will provide the actions
that your states need.

The way you access components depends on whether you are designing the dialog flow with
the Visual Flow Designer or in YAML mode:

• If you are using the Visual Flow Designer, you add the first state for a built-in component

to a flow by hovering over its Start tile, clicking the menu , selecting Add start state,
and then selecting a component template from the Add State dialog. You can add
subsequent states by selecting Add state from a state's menu or by clicking the Add a
state to this transition icon between two states. See Designing Flows.

• If you are designing your skill in YAML mode, you add a state for a built-in component to
your dialog flow by selecting + Components and then selecting a component template
from the menu.

When you validate your dialog flow, Digital Assistant verifies the component's properties. For
example, it will report if you forgot to include a required property.

For details on the component templates available in the Visual Flow Designer, see
Component Templates

For details on components available in YAML mode, see Built-In Components: Properties,
Transitions, and Usage.

Custom Components
Most skills need to integrate with data from remote systems or do some backend processing.
For example, your skill might need to get a list of products or save order information. Another
example is that your skill might need to perform complex logic that you can't accomplish
using FreeMarker or an entity event handler. Custom components enable you to integrate
with backends as well as perform tasks that aren't covered by the built-in components.

32-1

To learn how to build a custom component, see Implement Custom Components. To
learn how to add custom components for use in your skill, see Add Component
Package to a Skill. To learn about a custom component that's been added to the skill,

go to the skill's Components page, expand the component service and select the
component. The component's name, properties and supported actions are displayed.
Use this information to build the component's state in your dialog flow.

Tip:

Because it's possible for components from different services to have the
same name, you can prepend the component name with the service name
followed by a colon (:) to ensure that you uniquely reference each custom
component that you use.

Here's an example of a custom component state in a dialog flow that is developed in
YAML mode. The hello.world component is from the custom service.

 start:
 component: "custom:helloWorld"
 properties:
 human: "${human.value}"
 transitions:
 next: "askAge"

When you use the embedded component service to host your custom components,
you can access view logs and crash reports for the components from the Components

 page. Select the service, and then click Diagnostics.

Other Properties Available to Custom Components
When developing dialog flows in YAML mode, you can include these properties in the
custom component's state in addition to the component's defined properties.

Name Description Required?

autoNumberPostbackAct
ions

When set to true, this option prefixes numbers to buttons and list
options. Even when you haven’t set this option to true, auto-
numbering can be enforced on card items when the digital
assistant’s Enable Auto Numbering on Postback Actions
configuration is set to true. The default is false.

No

insightsEndConversati
on

Set to true to stop recording the conversation for insights
reporting. The default is false.

No

insightsInclude Specifies whether to include the state in insights reporting. The
default is true.

No

Chapter 32
Custom Components

32-2

Name Description Required?

translate Use this property to override the Boolean value that you’ve set for
the autotranslate context variable. If you haven’t set the
autotranslate variable, or if you set it to false, then you can set
this property to true to enable autotranslation for this component
only. If you set the autotranslation variable to true, then you
can set this property to false to exclude this component from
autotranslation. See Translation Services in Skills. The default is
the autotranslate context variable value.

No

These properties are not available for states in dialog flows that you develop with the Visual
Flow Designer.

Chapter 32
Custom Components

32-3

33
Backend Integration

You can integrate skills with backend services, such as your company's APIs and the Oracle
Cloud Infrastructure APIs, using either the built-in Call REST Service component or through
your own custom components. Custom components are also useful for complex processing.

Note that, in addition to the Call REST Service component and custom components, you can
use entity event handlers (EEH) to access backend services and do complex processing.
When deciding which one to use, ask yourself these questions:

• Is the call needed in the context of a composite bag entity? In this case, you can use an
EEH.

• Should the outcome of the call determine the next transition? This would be a case for
the Call REST Service component or a custom component.

Access Backends Using the REST Service Component
If your skill needs to retrieve or update some data through a backend service, you can quickly
implement this by adding a REST service configuration for the API's endpoint and calling that
service from your skill using the Call REST Service component.

Add a REST Service for an Endpoint
Oracle Digital Assistant provides a built-in Call REST Service component that you can use in
Visual Dialog skills to send a request to a REST service's endpoint. Before you can make the
request from a Call REST Service component, you must first configure the endpoint in the
REST Services tab.

To add a REST Service:

1. In Oracle Digital Assistant, click to open the side menu, select Settings, select API
Services, and then click the REST Services tab.

2. Provide this general information:

Field Description

Name A unique name that lets you easily identify the
endpoint that you are configuring. For example,
for an appointments API, you might name the
REST services "appointmentsUser" and
"appointmentsUserEntry".

Endpoint The endpoint to access the REST operation.
Use curly braces to delineate path parameters.
For example: https://example.com/
appointments/{userId}.
For Oracle Cloud Infrastructure endpoints,
ensure that you use the endpoint for your
tenancy's region.

33-1

Field Description

Description An optional description that explains the
purpose of the endpoint. For example: "Adds
and retrieves a user's appointments."

Authentication Type Select how to authenticate the REST call.

• No Authentication Required: Select this
when the service doesn't require
authentication.

• Basic Authentication: Select this when
the service uses a Basic authentication.
You’ll then need to provide a user name
and a password..

• API Key: Select this when the service uses
an API Key for authentication. You’ll then
need to indicate whether the key must be
passed as a path parameter or a query
parameter, and you'll need to specify the
key name and value.

• Bearer Token: Select this when the service
uses a Bearer token for authentication.
You’ll then need to specify the token.

• OCI Resource Principal: Select this when
you are accessing an Oracle Cloud
Infrastructure API.

Private Endpoint If you have a private endpoint set up for the
service that you need to access, turn this switch
to the On position and select the private
endpoint you are using.
Note: You can set up private endpoints for
services that are not exposed publicly on the
internet. See Private Endpoint.

3. For each method that you want to configure for the endpoint, click + Add Method,
select the method, and then provide this information:

Field Description

Content Type The type of the content that's included in the
request body. application/json and
text/plain are supported.

Body For POST, PUT, and PATCH requests, the
request body to send with the request. You
can override this value in the Call REST
Service component.
For large request bodies, click Use Edit
Dialog to open an editor.

Chapter 33
Access Backends Using the REST Service Component

33-2

Field Description

Parameters You can add path and query parameters for
testing the request. You also can add path
and query parameters to configure default
values. Note that the skill developers can
override these parameter values from the
Call REST Service component. That is, they
can add parameters in the component to
override the values configured in the REST
service, and not add the parameters where
they want to use the values set in the REST
service configuration.
For the path parameters that are in the
endpoint, add a parameter of type Path, set
the key to match the path parameter, and
set the desired value.

For query parameters that you want to pass
in the REST request, add a parameter of
type Query, set the key to match the query
parameter, and set the desired value.

If the authentication type is API Key, and the
key is passed in as a query parameter, don't
add a query parameter for that key value
here as it's already configured.

After you edit the parameter, click to add
the parameter to the list.

Headers Add any headers that you want to pass in
the request.
If the authentication type is API Key, and the
key is passed in a header, don't add a
header for that key value here as it's already
configured.

Static Response You can use the static response
configuration for cases where you need a
fallback response whenever there's an error.
You can also use it to set up mock data for
development or testing purposes.
To configure a static response, select a
return status code and then define the
response body. Alternatively, set the desired
parameters and headers, click Test
Request, and then click Save as Static
Response to save values for the static
response.

4. If you want to test the method, set the path and query parameters to use for the path, set
any necessary headers, provide a request body if necessary, and click Test Request. A
Response Status dialog appears with the response status and body.

Tip:

You can click Save as Static Response to save the status code and body in
the static response fields.

Chapter 33
Access Backends Using the REST Service Component

33-3

Use the Call REST Service Component
When a skill needs to retrieve or update some data through a backend service, add a
state that uses the Call REST Service component. Here's how to use that component.

Note:

The Call Service Component is supported in visual dialogs only, not in YAML
dialogs.

1. Configure the endpoint on the Settings > API Services > REST Services page
as described in Add a REST Service for an Endpoint. This is where you define the
endpoint, authentication type, supported methods, request body, path and query
parameters, headers, and an optional static response.

2. In the desired flow in the skill's flow designer, add the state, choose Service
Integration > Call Rest Service, provide a name, and then click Insert.

3. Select the REST service that you configured on the REST Services page.

4. Select the method.

5. For POST, PUT, and PATCH requests, you'll typically need to provide a request
body.

Tip:

If the body contains FreeMarker expressions, then you can switch
Expression to On to see FreeMarker syntax coloring. However, if you do
so, JSON syntax validation is turned off.

6. In the Parameters section, configure the path and query parameters that you want
to send with the request.

Parameters that you set in the component override the parameters that are set in
the REST service configuration. Conversely, if you don't set a parameter in the
component, then the request uses the parameter value from the REST service
configuration.

For query parameters that are defined in the REST service configuration, if you
don't want to pass that query parameter, set its value to ${r""}.

7. Set any headers that you want to send with the request.

Headers that you set in the component override the headers that are set in the
REST service configuration. Conversely, if you don't set a header in the
component, then the request uses the header value from the REST service
configuration.

8. Specify which response you want returned after the call completes:

• Use Actual REST API Response: This returns the actual response from the
REST service.

Chapter 33
Access Backends Using the REST Service Component

33-4

• Always Use Static REST Response: This returns the static response that is
configured on the REST Services tab. This response is helpful during development
and test phases, among other uses.

• Fallback Using Static Response: If the REST request is successful, then the REST
response is returned. Otherwise, the static response that's configured on the REST
Services tab is returned.

Note that if the REST service configuration doesn't have a static response, then the only
choice is Use Actual Response.

9. For the result variable, select the map variable for storing the response data. If it doesn't
exist yet, click Create to make one.

After the request completes, the map will contain a responsePayload property for the
response body and a statusCode property for the status code. How the response body is
stored in the variable depends on the whether the response is a JSON object, JSON
Array, or plain text (string):

• JSON Object: The object is stored in the responsePayload property.

• JSON Array: The array is stored in the responsePayload.responseItems property.

• Plain Text: The text is stored in the responsePayload.message property.

10. On the Transitions tab, specify the next transition and the transitions for the success
and failure actions.

• The success action occurs when the statusCode is between 100 and 299.

• The failure action occurs when the statusCode is 300 and above.

For more details about this component, see Call REST Service.

Access Backends Using Custom Components
Oracle Digital Assistant has many built-in components to support basic actions like setting
variables and prompting for user input. In cases where your bot design calls for actions
outside of the provided components, such as calling REST APIs, implementing complex
business logic, and customizing messages, you can write custom components.

Tip:

If the logic or processing is needed in the context of a composite bag entity,
consider using entity event handlers, which you can create directly from the
composite bag's configuration page. See Entity Event Handlers.

To use a custom component, complete these tasks:

1. Implement: Using JavaScript and the Oracle Digital Assistant Node.js SDK, implement a
custom component that transfers data to and from the skill using the SDK's metadata and
conversation objects. See Implement Custom Components.

2. Deploy: If you are hosting the components on Oracle Mobile Hub backend, Oracle Cloud
Infrastructure Functions, or a Node.js server, deploy the component package. See
Deploy the Component Package to a Service.

3. Add to Skill: Make the components available to a skill by adding a component service
for it. See Add Component Package to a Skill.

Chapter 33
Access Backends Using Custom Components

33-5

Implement Custom Components
To implement custom components, you use the Oracle Digital Assistant Node.js SDK
to interface with Digital Assistant's custom component service.

Here's how to implement custom components that you can deploy to the Digital
Assistant embedded container, Oracle Cloud Infrastructure Functions, a Mobile Hub
backend, or a Node.js server:

1. Install the software for building custom components.

2. Create the custom component package.

3. Create and build a custom component.

Note:

If you plan to deploy the custom component package to an embedded
custom component service, each skill that you add the package to is counted
as a separate service. There's a limit to how many embedded custom
component services an instance can have. If you don't know the limit, ask
your service administrator to get the embedded-custom-component-service-
count for you as described in View Service Limits in the Infrastructure
Console. Consider packaging several components per package to minimize
the number of embedded component services that you use. If you try to add
a component service after you meet that limit, the service creation fails.

Step 1: Install the Software for Building Custom Components
To build a custom component package, you need Node.js, Node Package Manager,
and the Oracle Digital Assistant Bots Node.js SDK.

Note:

Oracle Cloud Infrastructure Functions currently supports Node 11 and Node
14. If you plan to deploy to the embedded container, your package should be
compatible with Node 14.17.0.

1. If you haven’t already, download Node.js from https://nodejs.org and install it for
global access. Node Package Manager (npm) is distributed with Node.js.

To test if Node.js and npm are installed, open a terminal window and type these
commands:

node –v
npm –v

Chapter 33
Implement Custom Components

33-6

https://nodejs.org

2. To install the Oracle Digital Assistant Bots Node.js SDK for global access, enter this
command in a terminal window:

npm install -g @oracle/bots-node-sdk

On a Mac, you use the sudo command:

sudo npm install -g @oracle/bots-node-sdk

When you use the -g (global) option, you have direct access to the bots-node-sdk
command line interface. Otherwise, use npx @oracle/bots-node-sdk.

3. To verify your Oracle Digital Assistant Bots Node.js SDK installation, type the following
command:

bots-node-sdk -v

The command should print the Oracle Digital Assistant Bots Node.js SDK version.

Step 2: Create the Custom Component Package
To start a project, you use the bots-node-sdk init command from the SDK’s command line
interface (CLI) to create the necessary files and directory structure for your component
structure.

The init command has a few options, such as whether to use JavaScript (the default) or
TypeScript, and what to name the initial component's JavaScript file. These options are
described in CLI Developer Tools. Here's the basic command for starting a JavaScript project:

bots-node-sdk init <top-level folder path> --name <component service name>

This command completes the following actions for a JavaScript package:

• Creates the top-level folder.

• Creates a components folder and adds a sample component JavaScript file named
hello.world.js. This is where you'll put your component JavaScript files.

• Adds a package.json file, which specifies main.js as the main entry point and lists
@oracle/bots-node-sdk as a devDependency. The package file also points to some
bots-node-sdk scripts.

{
 "name": "myCustomComponentService",
 "version": "1.0.0",
 "description": "Oracle Bots Custom Component Package",
 "main": "main.js",
 "scripts": {
 "bots-node-sdk": "bots-node-sdk",
 "help": "npm run bots-node-sdk -- --help",
 "prepack": "npm run bots-node-sdk -- pack --dry-run",
 "start": "npm run bots-node-sdk -- service ."
 },

Chapter 33
Implement Custom Components

33-7

https://github.com/oracle/bots-node-sdk/blob/master/bin/CLI.md

 "repository": {},
 "dependencies": {},
 "devDependencies": {
 "@oracle/bots-node-sdk": "^2.2.2",
 "express": "^4.16.3"
 }
}

• Adds a main.js file, which exports the package settings and points to the
components folder for the location of the components, to the top-level folder.

• Adds an .npmignore file to the top-level folder. This file is used when you export
the component package. It must exclude .tgz files from the package. For
example: *.tgz.

• For some versions of npm, creates a package-lock.json file.

• Installs all package dependencies into the node_modules subfolder.

Note:

If you don't use the bots-node-sdk init command to create the package
folder, then ensure that the top-level folder contains an .npmignore file that
contains a *.tgz entry. For example:

*.tgz
spec
service-*

Otherwise, every time you pack the files into a TGZ file, you include the TGZ
file that already exists in the top-level folder, and your TGZ file will continue
to double in size.

If you plan to deploy to the embedded container, your package should be compatible
with Node 14.17.0.

Step 3: Create and Build a Custom Component
Here are the steps for building each custom component in your package:

1. Create the component JavaScript file.

2. Add code to the metadata and invoke functions.

3. Access the backend.

4. Use the SDK to access request and response payloads.

5. Ensure that the component works in digital assistants.

Create the Component File
Use the SDK's CLI init component command to create a JavaScript or TypeScript file
with the framework for working with the Oracle Digital Assistant Node.js SDK to write a

Chapter 33
Implement Custom Components

33-8

custom component. The language that you specified when you ran the init command to
create the component package determines whether a JavaScript or a TypeScript file is
created.

For example, to create a file for the custom component, from a terminal window, CD to the
package’s top-level folder and type the following command, replacing <component name> with
your component's name:

bots-node-sdk init component <component name> c components

For JavaScript, this command adds the <component name>.js to the components folder. For
TypeScript, the file is added to the src/components folder. The c argument indicates that the
file is for a custom component.

Note that the component name can't exceed 100 characters. You can only use alphanumeric
characters and underscores in the name. You can't use hyphens. Nor can the name have a
System. prefix. Oracle Digital Assistant won't allow you to add a custom component service
that has invalid component names.

For further details, see https://github.com/oracle/bots-node-sdk/blob/master/bin/
CLI.md.

Add Code to the metadata and invoke Functions
Your custom component must export two objects:

• metadata: This provides the following component information to the skill.

– Component name

– Supported properties

– Supported transition actions

For YAML-based dialog flows, the custom component supports the following properties
by default. These properties aren't available for skills designed in Visual dialog mode.

– autoNumberPostbackActions: Boolean. Not required. When true, buttons and list
options are numbered automatically. The default is false. See Auto-Numbering for
Text-Only Channels in YAML Dialog Flows.

– insightsEndConversation: Boolean. Not required. When true, the session stops
recording the conversation for insights reporting. The default is false. See Model the
Dialog Flow.

– insightsInclude: Boolean. Not required. When true, the state is included in insights
reporting. The default is true. See Model the Dialog Flow.

– translate: Boolean. Not required. When true, autotranslation is enabled for this
component. The default is the value of the autotranslation context variable. See
Translation Services in Skills.

• invoke: This contains the logic to execute. In this method, you can read and write skill
context variables, create conversation messages, set state transitions, make REST calls,
and more. Typically, you would use the async keyword with this function to handle
promises. The invoke function takes the following argument:

– context, which names the reference to the CustomComponentContext object in the
Digital Assistant Node.js SDK. This class is described in the SDK documentation at

Chapter 33
Implement Custom Components

33-9

https://oracle.github.io/bots-node-sdk/. In earlier versions of the SDK, the
name was conversation. You can use either name.

Note:

If you are using a JavaScript library that doesn't support promises (and
thus aren't using async keyword), it is also possible to add a done
argument as a callback that the component invokes when it has finished
processing.

Here’s an example:

'use strict';

module.exports = {

 metadata: {
 name: 'helloWorld',
 properties: {
 human: { required: true, type: 'string' }
 },
 supportedActions: ['weekday', 'weekend']
 },

 invoke: async(context) => {
 // Retrieve the value of the 'human' component property.
 const { human } = context.properties();
 // determine date
 const now = new Date();
 const dayOfWeek = now.toLocaleDateString('en-US', { weekday:
'long' });
 const isWeekend = [0, 6].indexOf(now.getDay()) > -1;
 // Send two messages, and transition based on the day of the week
 context.reply(`Greetings ${human}`)
 .reply(`Today is ${now.toLocaleDateString()}, a ${dayOfWeek}`)
 .transition(isWeekend ? 'weekend' : 'weekday');
 }
}

To learn more and explore some code examples, see Writing Custom Components in
the Bots Node SDK documentation.

Control the Flow with keepTurn and transition
You use different combinations of the Bots Node SDK keepTurn and transition
functions to define how the custom component interacts with a user and how the
conversation continues after the component returns flow control to the skill.

• keepTurn(boolean) specifies whether the conversation should transition to
another state without first prompting for user input.

Note that if you want to set keepTurn to true, you should call keepTurn after you
call reply because reply implicitly sets keepTurn to false.

Chapter 33
Implement Custom Components

33-10

https://oracle.github.io/bots-node-sdk/
https://github.com/oracle/bots-node-sdk/blob/master/CUSTOM_COMPONENT.md

• transition(action) causes the dialog to transition to the next state after all replies, if
any, are sent. The optional action argument names that action (outcome) that the
component returns.

If you don't call transition(), the response is sent but the dialog stays in the state and
subsequent user input comes back to this component. That is, invoke() is called again.

invoke: async (context) ==> {
 ...
 context.reply(payload);
 context.keepTurn(true);
 context.transition ("success");
}

Here are some common use cases where you would use keepTurn and transition to control
the dialog flow:

Use Case Values Set for keepTurn and transition

A custom component that transitions to another
state without first prompting the user for input.

1. If applicable, use context.reply(<reply>)
to send a reply.

2. Set context.keepTurn(true).

3. Set context.transition with either a
supportedActions string (e.g.,
context.transition("success")) or with
no argument (e.g.,
context.transition()).

For example, this custom component updates a
variable with a list of values to be immediately
displayed by the next state in the dialog flow.

invoke: async (context) => {
 const listVariableName =
context.properties().variableName;
 ...
 // Write list of options to a
context variable

context.variable(listVariableName,
list);
 // Navigate to next state without
 // first prompting for user
interaction.
 context.keepTurn(true);
 context.transition();
 }

Chapter 33
Implement Custom Components

33-11

Use Case Values Set for keepTurn and transition

A custom component that enables the skill to wait
for input after control returns to the skill and before
the skill transitions to another state.

1. If applicable, use context.reply(<reply>)
to send a reply.

2. Set context.keepTurn(false) .

3. Set context.transition with either a
supportedActions
string(context.transition("success"))
or with no arguments
(context.transition()).

For example:

context.keepTurn(false);
context.transition("success");

Chapter 33
Implement Custom Components

33-12

Use Case Values Set for keepTurn and transition

A custom component that gets user input without
returning flow control back to the skill. For
example:
• A component passes the user input to query a

backend search engine. If the skill can only
accommodate a single result, but the query
instead returns multiple hits, the component
prompts the user for more input to filter the
results. In this case, the custom component
continues to handle the user input; it holds the
conversation until the search engine returns a
single hit. When it gets a single result, the
component calls context.transition() to
move on to another state as defined in the
dialog flow definition.

• A component processes a questionnaire and
only transitions to another next state when all
questions are answered.

1. Do not call transition.

2. Set keepTurn(false).

For example, this custom component outputs a
quote and then displays Yes and No buttons to
request another quote. It transitions back to the
skill when the user clicks No.

 invoke: async (context) => {
 // Perform conversation tasks.
 const tracking_token =
"a2VlcHR1cm4gZXhhbXBsZQ==";
 const quotes = require("./json/
Quotes.json");
 const quote =
quotes[Math.floor(Math.random() *
quotes.length)];

 // Check if postback action is
issued. If postback action is
issued,
 // check if postback is from
this component rendering. This
ensures
 // that the component only
responds to its own postback
actions.
 if (context.postback() &&
context.postback().token ==
tracking_token &&
context.postback().isNo) {
 context.keepTurn(true);
 context.transition();
 } else {
 // Show the quote of the day.
 context.reply("'" +
quote.quote + "'");
 context.reply(" Quote by: " +
quote.origin);
 // Create a single message
with two buttons to
 // request another quote or
not.
 const mf =
context.getMessageFactory();
 const message =
mf.createTextMessage('Do you want
another quote?')
 .addAction(mf.createPostbackA
ction('Yes', { isNo: false, token:
tracking_token }))

Chapter 33
Implement Custom Components

33-13

Use Case Values Set for keepTurn and transition

 .addAction(mf.createPostbackA
ction('No', { isNo: true, token:
tracking_token }));
 context.reply(message);
 // Although reply()
automatically sets keepTurn to
false,
 // it's good practice to
explicitly set it so that it's
 // easier to see how you
intend the component to behave.
 context.keepTurn(false);
 };
 }

If a component doesn’t transition to another state,
then it needs to keep track of its own state, as
shown in the above example.

For more complex state handling, such as giving
the user the option to cancel if a data retrieval is
taking too long, you can create and use a context
variable. For example:
context.variable("InternalComponentWait
Time", time). If you use a context variable,
don't forget to reset it or set it to null before calling
context.transition.

Note that as long as you don't transition, all values
that are passed in as component properties are
available.

Chapter 33
Implement Custom Components

33-14

Use Case Values Set for keepTurn and transition

The component invocation repeats without user
input. For example:

• A component pings a remote service for the
status of an order until the status is returned
as accepted or the component times out. If
the accepted status is not returned after the
fifth ping, then the component transitions with
the failedOrder status.

• The custom component hands the user over
to a live agent. In this case, the user input and
responses get dispatched to the agent. The
component transitions to another state when
either the user or the agent terminates their
session.

• Do not call transition.

• Set context.keepTurn(true).

Here's a somewhat contrived example that shows
how to repeat the invocation without waiting for
user input, and then how to transition when done:

invoke: async (context) => {

 const quotes = require("./json/
Quotes.json");
 const quote =
quotes[Math.floor(Math.random() *
quotes.length)];

 // Check if postback action is
issued and postback is from this
component rendering.
 // This ensures that the component
only responds to its own postback
actions.
 const um = context.getUserMessage()
 if (um instanceof PostbackMessage
&& um.getPostback() &&
um.getPostback()['system.state'] ===
context.getRequest().state &&
um.getPostback().isNo) {
 context.keepTurn(true);
 context.transition();
 } else {
 // Show the quote of the day.
 context.reply(`'$
{quote.quote}'`);
 context.reply(`Quote by: $
{quote.origin}`);
 // Create a single message with
two buttons to request another quote
or not.
 let actions = [];

 const mf =
context.getMessageFactory();
 const message =
mf.createTextMessage('Do you want
another quote?')
 .addAction(mf.createPostbackAct
ion('Yes', { isNo: false }))
 .addAction(mf.createPostbackAct
ion('No', { isNo: true }));
 context.reply(message);
 // Although reply()
automatically sets keepTurn to

Chapter 33
Implement Custom Components

33-15

Use Case Values Set for keepTurn and transition

false, it's good practice to
explicitly set it so that it's
 // easier to see how you intend
the component to behave.
 context.keepTurn(false);
 }
}

Access the Backend
You'll find that there are several Node.js libraries that have been built to make HTTP
requests easy, and the list changes frequently. You should review the pros and cons of
the currently available libraries and decide which one works best for you. We
recommend that you use a library that supports promises so that you can leverage the
async version of the invoke method, which was introduced in version 2.5.1, and use
the await keyword to write your REST calls in a synchronous way.

One option is the node fetch API that's pre-installed with the Bots Node SDK. Access
the Backend Using HTTP REST Calls in the Bots Node SDK documentation contains
some code examples.

Use the SDK to Access Request and Response Payloads
You use CustomComponentContext instance methods to get the context for the
invocation, access and change variables, and send results back to the dialog engine.

You can find several code examples for using these methods in Writing Custom
Components and Conversation Messaging in the Bots Node SDK documentation

The SDK reference documentation is at https://github.com/oracle/bots-node-sdk.

Custom Components for Multi-Language Skills
When you design a custom component, you should consider whether the component
will be used by a skill that supports more than one language.

If the custom component must support multi-language skills, then you need to know if
the skills are configured for native language support or translation service.

When you use a translation service, you can translate the text from the skill. You have
these options:

• Set the translate property in the custom component's state to true to translate
the component's reply, as described in Send Responses Directly to the Translation
Service.

• Send raw data back to the skill in context variables and use the variables' values
in a system component that composes the output. Set that component's
translate property to true. See Use a System Component to Pass the Message
to the Translation Service.

Chapter 33
Implement Custom Components

33-16

https://www.npmjs.com/package/node-fetch
https://github.com/oracle/bots-node-sdk/blob/master/CUSTOM_COMPONENT.md#rest
https://github.com/oracle/bots-node-sdk/blob/master/CUSTOM_COMPONENT.md#rest
https://github.com/oracle/bots-node-sdk/blob/master/CUSTOM_COMPONENT.md
https://github.com/oracle/bots-node-sdk/blob/master/CUSTOM_COMPONENT.md
https://github.com/oracle/bots-node-sdk/blob/master/MESSAGE_MODEL.md

• Send raw data back to the skill in context variables and use the variables' values in a
system component that uses the resource bundle key for the language. See Use a
System Component to Reference a Resource Bundle.

For native language skills, you have these options:

• Pass the data back to the skill in context variables and then output the text from a system
component by passing the variables' values to a resource bundle key, as described in
Use a System Component to Reference a Resource Bundle. With this option, the custom
component must have metadata properties for the skill to pass the names of the context
variables to store the data in.

• Use the resource bundle from the custom component to compose the custom
component's reply, as described in Reference Resource Bundles from the Custom
Component. You use the conversation.translate() method to get the resource bundle
string to use for your call to context.reply(). This option is only valid for resource
bundle definitions that use positional (numbered) parameters. It doesn't work for named
parameters. With this option, the custom component must have a metadata property for
name of the resource bundle key, and the named resource bundle key's parameters must
match those used in the call to context.reply().

Here's an example of using the resource bundle from the custom component. In this
example, fmTemplate would be set to something like ${rb('date.dayOfWeekMessage',
'lundi', '19 juillet 2021')}.

'use strict';

var IntlPolyfill = require('intl');
Intl.DateTimeFormat = IntlPolyfill.DateTimeFormat;

module.exports = {
 metadata: () => ({
 name: 'Date.DayOfWeek',
 properties: {
 rbKey: { required: true, type: 'string' }
 },
 supportedActions: []
 }),
 invoke: (context, done) => {
 const { rbKey } = context.properties();
 if (!rbKey || rbKey.startsWith('${')){
 context.transition();
 done(new Error('The state is missing the rbKey property or it
uses an invalid expression to pass the value.'));
 }
 //detect user locale. If not set, define a default
 const locale = context.getVariable('profile.locale') ?
 context.getVariable('profile.locale') : 'en-AU';
 const jsLocale = locale.replace('_','-');
 //when profile languageTag is set, use it. If not, use profile.locale
 const languageTag = context.getVariable('profile.languageTag')?
 context.getVariable('profile.languageTag') : jslocale;
 /* ===
 Determine the current date in local format and
 the day name for the locale
 === */

Chapter 33
Implement Custom Components

33-17

 var now = new Date();
 var dayTemplate = new Intl.DateTimeFormat(languageTag,
 { weekday: 'long' });
 var dayOfWeek = dayTemplate.format(now);
 var dateTemplate = new Intl.DateTimeFormat(languageTag,
 { year: 'numeric', month: 'long', day: 'numeric'});
 var dateToday = dateTemplate.format(now);

 /* ===
 Use the context.translate() method to create the ${Freemarker}
 template that's evaluated when the reply() is flushed to the
 client.
 === */
 const fmTemplate = context.translate(rbKey, dateToday, dayOfWeek);

 context.reply(fmTemplate)
 .transition()
 .logger().info('INFO : Generated FreeMarker => '
 + fmTemplate);
 done();
 }
};

Ensure the Component Works in Digital Assistants
In a digital assistant conversation, a user can break a conversation flow by changing
the subject. For example, if a user starts a flow to make a purchase, they might
interrupt that flow to ask how much credit they have on a gift card. We call this a non
sequitur. To enable the digital assistant to identify and handle non sequiturs, call the
context.invalidInput(payload) method when a user utterance response is not
understood in the context of the component.

In a digital conversation, the runtime determines if an invalid input is a non sequitur by
searching for response matches in all skills. If it finds matches, it reroutes the flow. If
not, it displays the message, if provided, prompts the user for input, and then executes
the component again. The new input is passed to the component in the text property.

In a standalone skill conversation, the runtime displays the message, if provided,
prompts the user for input, and then executes the component again. The new input is
passed to the component in the text property.

This example code calls context.invalidInput(payload) whenever the input doesn’t
convert to a number.

"use strict"

module.exports = {

 metadata: () => ({
 "name": "AgeChecker",
 "properties": {
 "minAge": { "type": "integer", "required": true }
 },
 "supportedActions": [
 "allow",

Chapter 33
Implement Custom Components

33-18

 "block",
 "unsupportedPayload"
]
 }),

 invoke: (context, done) => {
 // Parse a number out of the incoming message
 const text = context.text();
 var age = 0;
 if (text){
 const matches = text.match(/\d+/);
 if (matches) {
 age = matches[0];
 } else {
 context.invalidUserInput("Age input not understood. Please try
again");
 done();
 return;
 }
 } else {
 context.transition('unsupportedPayload");
 done();
 return;
 }

 context.logger().info('AgeChecker: using age=' + age);

 // Set action based on age check
 let minAge = context.properties().minAge || 18;
 context.transition(age >= minAge ? 'allow' : 'block');

 done();
 }
};

Here’s an example of how a digital assistant handles invalid input at runtime. For the first age
response (twentyfive), there are no matches in any skills registered with the digital assistant
so the conversation displays the specified context.invalidUserInput message. In the
second age response (send money), the digital assistant finds a match so it asks if it should
reroute to that flow.

Chapter 33
Implement Custom Components

33-19

You should call either context.invalidInput() or context.transition(). If you call
both operations, ensure that the system.invalidUserInput variable is still set if any
additional message is sent. Also note that user input components such as
System.CommonResponse, System.Text, System.List, and System.ResolveEntities
reset system.invalidUserInput.

Say, for example, that we modify the AgeChecker component as shown below, and
call context.transition() after context.invalidInput().

if (matches) { age = matches[0]; } else {
 context.invalidUserInput("Age input not understood. Please try
again");
 context.transition("invalid");
 context.keepTurn(true);
 done();
 return;
}

In this case, the data flow needs to transition back to askage so that the user gets two
output messages – "Age input not understood. Please try again" followed by "How old
are you?".

 askage:
 component: "System.Output"

Chapter 33
Implement Custom Components

33-20

 properties:
 text: "How old are you?"
 transitions:
 next: "checkage"
 checkage:
 component: "AgeChecker"
 properties:
 minAge: 18
 transitions:
 actions:
 allow: "crust"
 block: "underage"
 invalid: "askage"

Run the Component Service in a Development Environment
During the development phase, you can start a local service to expose the custom
component package.

1. From the top-level folder, open a terminal window and run these commands to start the
service:

npm install
npm start

2. To verify that the service is running, enter the following URL in a browser:

localhost:3000/components

The browser displays the component metadata.

3. If you have direct Internet access, you can access the development environment from a
skill:

a. Install a tunnel, such as ngrok or Localtunnel.

b. If you are behind a proxy, go to http://www.whatismyproxy.com/ to get the external IP
address of your proxy, and then, in the terminal window that you will use to start the
tunnel, enter these commands:

export https_proxy=http://<external ip>:80
export http_proxy=http://<external ip>:80

c. Start the tunnel and configure it to expose port 3000.

d. In Oracle Digital Assistant, go to the skill's Components tab and add an External
component service with the metadata URL set to https://<tunnel-url>/
components.

You can use any value for the user name and password.

You can now add states for the service's components to the dialog flow and test them from
the skill's Preview page.

Chapter 33
Implement Custom Components

33-21

https://github.com/localtunnel/localtunnel
http://www.whatismyproxy.com/

Deploy the Component Package to a Service
You can host the custom component package from a Digital Assistant embedded
container, Oracle Cloud Infrastructure Functions, Mobile Hub, or an external Node.js
server.

For embedded component services, you deploy the package when you create the
service. For Oracle Cloud Infrastructure Functions, external Node.js server, and Mobile
Hub services, you must first deploy the package to the service, as described here,
before you add it to a skill as a component service.

Deploy to a Node.js Server
To host a custom component package on an external Node.js server, use the bots-
node-sdk pack --service express CLI to copy your component package folders and
make a few changes that are specific to Express, then install the component package
and start it on your server.

1. From the custom component package's top-level folder (the one that contains the
main.js file), type this command in a terminal window:

bots-node-sdk pack --service express

The command does the following:

• Copies the files and subfolders to service-express-<package version>.

• Adds an index.js service wrapper.

• Creates an api.js file, which is an Express wrapper for main.js.

• Modifies the package.json file to set the main file to index.js and add the
dependencies.

This step shows the basic CLI command. For more information, see https://
github.com/oracle/bots-node-sdk/blob/master/bin/CLI.md.

2. Run these commands:

npm install

npm start

Deploy to Oracle Cloud Infrastructure Functions
You can deploy your custom components to Oracle Cloud Infrastructure Functions.

Currently, Oracle Digital Assistant can't access entity event handlers in packages that
you deploy to Oracle Cloud Infrastructure Functions.

Chapter 33
Deploy the Component Package to a Service

33-22

Note:

This feature is not available for Digital Assistant instances that are paired with a
subscription to a Fusion-based Oracle Cloud Applications service, such as HCM
Cloud or Sales Cloud.

Here are the high-level steps:

1. Get Artifact Names and Permissions for Oracle Cloud Infrastructure Functions
Deployment

2. Set Up Your User Account for Oracle Functions

3. Set Up Your Local Machine for Oracle Functions

4. Modify the Custom Component Package for Oracle Functions

5. Deploy the Custom Components to Oracle Cloud Infrastructure Functions

Get Artifact Names and Permissions for Oracle Cloud Infrastructure Functions
Deployment

Before you can deploy custom components to Oracle Cloud Infrastructure Functions, you
need to obtain the names of the artifacts that are used for deployment, and you need to verify
that you have permission to use them.

To set up your instance for Oracle Cloud Infrastructure Functions deployment, your tenancy
administrator completed the steps in Setup and Policies for Oracle Functions. As part of the
process, they created the following artifacts. Ask your administrator for their names, which
you'll need when you complete the steps in Set Up Your User Account for Oracle Functions:

• The names of the region and compartment to use for your functions.

• The name of the compartment for the function application's virtual network (VCN).
Typically, this is the same compartment as the one used for functions.

• The name of the VCN to use for the function application.

Also, ask your administrator to verify that you belong to a group that has the necessary
permissions for function developers, which includes access to these artifacts.

Set Up Your User Account for Oracle Functions
Before you can deploy custom component packages to Oracle Cloud Infrastructure
Functions, you must complete these steps in the Oracle Cloud Infrastructure Console:

Note:

You'll need to know the name of the compartments and virtual network (VCN) to use
and you'll need to belong to a group that allows function development as described
in Get Artifact Names and Permissions for Oracle Cloud Infrastructure Functions
Deployment.

1. Sign into the Console and, in the top bar, select the region that the function-development
compartment is in.

Chapter 33
Deploy the Component Package to a Service

33-23

2. You'll deploy to Oracle Cloud Infrastructure Functions through the Oracle Cloud
Infrastructure Registry. If you don't already have a registry repository that you can
use, then do the following to create one.

a. Click on the top left to open the navigation menu, click Developer
Services, click Container Registry, and then, in the List Scope section,
select the compartment that's been set up for function development.

b. Click Create Repository.

c. Give the repository a name, and then click Create Repository.

3. If you don't have a functions application for your custom component packages,
you'll need to create one. From the Developer Services page, click Functions,
and then click Create Application. Provide a name, select a VCN, select at least
one subnet, and click Create.

If you don't see any VCNs to choose from, you might not be in the correct region.

There are limits to the number of applications and functions. For the default limits,
see Functions Limits in Oracle Cloud Infrastructure Documentation .

4. On the Applications page, click the application that you use for function
deployment, click Getting Started in the Resources section, and then click Local
Setup.

As shown in the following screenshot, the page displays several commands that
you'll need to use to set up your local computer and to deploy your custom
component package. Copy and save the commands for steps 3 through 7.

You'll use these later after you've installed the required software on your local
machine and are ready to deploy your custom components. Alternatively,
bookmark this page so that you can return to it when you need to use the
commands.

Don't run these commands now. Just copy them.

Chapter 33
Deploy the Component Package to a Service

33-24

https://docs.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#Functions_Limits

5. In your copied command that looks similar to the following, change [OCIR-REPO] to the
name of your registry repository.

fn update context registry phx.ocir.io/devdigital/[OCIR-REPO]

6. Click the Profile icon in the top-right corner, and then click User Settings to go to the
User Details page.

7. In the next step you'll create a PEM file that you need to store in a .oci folder on your
local machine. If your home folder on your local machine doesn't have this directory,
create one from a terminal window.

• Linux and Mac:

cd ~
mkdir .oci

Chapter 33
Deploy the Component Package to a Service

33-25

• Windows:

cd C:\Users\<your-user-name>
mkdir .oci

8. You need a public and private PEM file for secure access. If you haven't set one up
for your user account yet, then, from User Details in the Console, click API Keys
from the Resources section, and then click Add API Key.

Save the private key file (the PEM file) to the .oci directory in your home folder.

9. Make a note of the Fingerprint that's associated with the API key. When you have
multiple API keys, you must know which fingerprint to use for each private PEM file.

10. If you haven't already set up a config file for the fingerprint on your local machine,
then, from the API Keys section, do these steps:

a. Click in the row for your API key's fingerprint and then click View
Configuration file.

b. Copy the Configuration File Preview content.

c. In the .oci folder on your local machine (the same folder that you saved your
private key file in), create a file named config and paste the copied contents
into the file.

11. In the config file, change the key_file property to point to the location of your
private PEM file. For example: key_file=/home/joe/.oci/my-private.pem

12. If you don't have an auth token, click Auth Tokens in the Resources menu, and
then click Generate Token. Copy the auth token immediately to a secure location
from where you can retrieve it later because you won't see the auth token again in
the console. You use the auth token as a password when you sign in to push your
custom component package to the Oracle Infrastructure registry for deployment.

Set Up Your Local Machine for Oracle Functions
You'll need to install cURL, the OCI command line interface (CLI), Fn, and Docker on
your local machine to enable deployment to Oracle Cloud Infrastructure Functions. If
your machine runs on Windows, then you must do one of the following options to use
Fn:

• Install Fn and Docker on Linux in an Oracle VM VirtualBox by following the steps
in this topic.

• Install Docker and Fn on Windows, and then install the Linux subsystem for
Windows as described in How-to: Run Fn client on Windows and connect to a
remote Fn server.

• Deploy your custom components from Cloud Shell. See Cloud Shell in Oracle
Cloud Infrastructure Documentation.

To set up your local machine:

1. (Windows on VM only) If you want to use a Linux guest on Oracle VM VirtualBox
to deploy your custom component package to Oracle Cloud Infrastructure
Functions, follow these steps:

a. Install VirtualBox from https://www.virtualbox.org/.

Chapter 33
Deploy the Component Package to a Service

33-26

https://github.com/fnproject/docs/blob/master/fn/develop/running-fn-client-windows.md
https://github.com/fnproject/docs/blob/master/fn/develop/running-fn-client-windows.md
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellintro.htm
https://www.virtualbox.org/

b. Download a Linux ISO. For example, to get the ISO for Ubuntu-Mate, go to https://
ubuntu-mate.org/download/ and click 64-bit PCs/Macs.

c. In VirtualBox, create a virtual machine from the ISO. You can find instructions for
creating a Ubunto-Mate virtual machine at https://itsfoss.com/install-linux-in-
virtualbox/. This will be your Linux guest.

d. Start the Linux guest.

e. From a terminal window, run this command:

sudo apt-get update

This updates the package lists for new packages and packages that need upgrading.

Tip:

To open a terminal window in Ubuntu, press Ctrl-Alt-T.

f. To be able to do things like copy and paste in a terminal window, you'll need the
guest additions. Download http://download.virtualbox.org/virtualbox/<release>/
VBoxGuestAdditions_<release>.iso and install and configure the additions using the
instructions at https://itsfoss.com/virtualbox-guest-additions-ubuntu/

Be sure to configure configured Devices > Drag and Drop to bidirectional.

g. Enter this command in a terminal window to install node.js and npm on the guest.

sudo apt install npm

h. Drag the .oci folder in your home directory on your local machine into the home
folder on the Linux guest.

Because it's a hidden file, you must press Ctrl-H or select View > Show Hidden
Files in the home folder to see it.

i. From the .oci folder on the Linux guest, open the config file and change key_file
to point to the location of the file in your Linux guest. For example: key_file=/
home/joe/.oci/my-private.pem

j. Complete the remaining steps in this topic from the Linux guest.

2. (Mac only) If you haven't already, install Homebrew to enable you to install cURL, OCI
CLI, and Fn. See https://docs.brew.sh/Installation. Alternatively, you can use the
equivalent MacPorts commands.

3. If your Internet access is through a VPN, then you might need to set up proxies. For
example:

export http-proxy = http://<external_ip>:80
export https-proxy = http://<external_ip>:80
export no_proxy = localhost,127.0.0.1,<list>
export noproxy = localhost,127.0.0.1,<list>
export no_proxy = localhost,127.0.0.1,<list>
Example for apt
nano /etc/apt/apt.conf

Chapter 33
Deploy the Component Package to a Service

33-27

https://ubuntu-mate.org/download/
https://ubuntu-mate.org/download/
https://itsfoss.com/install-linux-in-virtualbox/
https://itsfoss.com/install-linux-in-virtualbox/
http://download.virtualbox.org/virtualbox/6.1.16/VBoxGuestAdditions_6.1.16.iso
http://download.virtualbox.org/virtualbox/6.1.16/VBoxGuestAdditions_6.1.16.iso
https://itsfoss.com/virtualbox-guest-additions-ubuntu/
https://docs.brew.sh/Installation

Acquire::http::Proxy "http://<external_ip>:80";
Acquire::https::Proxy "http://<external_ip>:80";

4. Run the appropriate command to bring the packages up to date.

• Linux:

sudo apt update && sudo apt upgrade

• Mac:

brew update && brew upgrade

5. (Linux only) You'll use cURL to install OCI and Fn. Enter this commeand in a
terminal window. The last statement is to verify that it installed successfully.

sudo apt install curl
curl --version

6. Fn uses the OCI CLI to deploy the custom components to Oracle Cloud
Infrastructure Functions. Run the appropriate command to install the CLI, and
accept all defaults.

• Linux:

bash -c "$(curl -L https://raw.githubusercontent.com/oracle/oci-
cli/master/scripts/install/install.sh)"

• Mac:

brew update && brew install oci-cli

• Windows (if using Linux subsystem on Windows): Follow the Windows
steps in Quickstart in Oracle Cloud Infrastructure Documentation.

7. In Set Up Your User Account for Oracle Functions, you created a config file. You
now need to configure the CLI to use that file. Open a new terminal window, run
this command, provide the location of your config file, and then enter n for the
remaining questions (your config file already has the necessary settings).

oci setup config

For example:

$ oci setup config
 This command provides a walkthrough of creating a valid CLI
config file.
 ...

Enter a location for your config [/home/joe/.oci/config]:
Config file: /home/joe/.oci/config already exists. Do you want add
a profile here? (If no, you will be prompted to overwrite the file)
[Y/n]: n

Chapter 33
Deploy the Component Package to a Service

33-28

https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm#Quickstart

File: /home/joe/.oci/config already exists. Do you want to overwrite
(Removes existing profiles!!!)? [y/N]: n

8. You need Docker 17.10.0-ce or later to push the custom component package to the
registry.

• For Ubuntu, the installation instructions are at https://docs.docker.com/engine/install/
ubuntu/#install-using-the-repository

• For Mac, the installation instructions are at https://docs.docker.com/docker-for-mac/
install/

See https://docs.docker.com/engine/install/linux-postinstall/ if you don’t want to preface
the docker command with sudo.

9. If you are using VPN, then follow the instructions at https://docs.docker.com/network/
proxy/

If you are using Linux subsystem on Windows, you can set the proxies from Resources
page in the Docker Desktop Settings.

10. Ensure that Docker is running. You can't start Fn, which you install next, if Docker isn't
running.

11. You'll use Fn, which is a lightweight Docker-based serverless-functions platform, to
configure the context and deploy the package. If you haven't installed it already, follow
the instructions for installing Fn, starting the Fn server, and testing the installation at
https://fnproject.io/tutorials/install/

You don't need to configure the context or set the registry at this time. You'll do this when
you complete the steps in Deploy the Custom Components to Oracle Cloud Infrastructure
Functions.

Modify the Custom Component Package for Oracle Functions
Before you can deploy a custom component package to Oracle Cloud Infrastructure
Functions, you'll need to add func.js and func.yaml files, add a developer dependency for
the fnproject FDK, and install the FDK.

Note:

(Windows VM only) If you are using a Linux guest, complete these steps on your
local machine and then use drag-and-drop to copy the component package to your
Linux guest. Alternatively, install node.js and the Bots Node SDK, as described in
Step 1: Install the Software for Building Custom Components, on your Linux guest
before you do the steps.

1. If you used the bots-node-sdk init command to create your custom component
package, it may have created a file named Dockerfile in the top folder. If so, you must
delete it. Otherwise, your deployment will fail.

2. In the top folder for your custom component package (the folder that contains main.js),
create a file named func.js, and then add the following code. This is the file that Oracle
Cloud Infrastructure Functions will invoke.

/***

Chapter 33
Deploy the Component Package to a Service

33-29

https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/network/proxy/
https://docs.docker.com/network/proxy/
https://fnproject.io/tutorials/install/

 This function handles an invocation that sets the "Oracle-Bots-Fn-
Path" header to determine which component to invoke or if metadata
should be returned.

***/

const fdk = require('@fnproject/fdk');
const OracleBotLib = require('@oracle/bots-node-sdk/lib');
const path = require("path");

const BOTS_FN_PATH_HEADER = "Oracle-Bots-Fn-Path";
const METADATA_PATH = "metadata";
const COMPONENT_PREFIX = "components/";

let shell;
let componentsRegistry;

const getComponentsRegistry = function (packagePath) {
 let registry = require(packagePath);
 if (registry.components) {
 return
OracleBotLib.ComponentRegistry.create(registry.components,
path.join(process.cwd(), packagePath));
 }
 return null;
}

componentsRegistry = getComponentsRegistry('.');
if (componentsRegistry && componentsRegistry.getComponents().size >
0) {
 shell = OracleBotLib.ComponentShell({logger: console},
componentsRegistry);
 if (!shell) {
 throw new Error("Failed to initialize Bots Node SDK");
 }
} else {
 throw new Error("Unable to process component registry because
no components were found in package: " + packagePath);
}

const _handle = function (input, ctx) {
 let botsFnPath = ctx.getHeader(BOTS_FN_PATH_HEADER);
 if (!botsFnPath) {
 throw new Error("Missing required header " +
BOTS_FN_PATH_HEADER);
 } else if (botsFnPath === METADATA_PATH) {
 return shell.getAllComponentMetadata();
 } else if (botsFnPath.startsWith(COMPONENT_PREFIX)) {
 let componentName =
botsFnPath.substring(COMPONENT_PREFIX.length);
 if (!componentName) {
 throw new Error("The component name is missing from the
header " + BOTS_FN_PATH_HEADER + ": " + botsFnPath);
 }
 return new Promise((resolve) => {

Chapter 33
Deploy the Component Package to a Service

33-30

 let callback = (err, data) => {
 if (!err) {
 resolve(data);
 } else {
 console.log("Component invocation failed", err.stack);
 throw err;
 }
 };
 shell.invokeComponentByName(componentName, input, {logger: ()
=> console}, callback);
 });
 }
};

fdk.handle(function (input, ctx) {
 try {
 return _handle(input, ctx);
 } catch (err) {
 console.log("Function failed", err.stack);
 throw err;
 }
});

3. In the same folder, create a file named func.yaml and then add the following content:

schema_version: 20180708
name: <custom component package name>
version: 0.0.1
runtime: [node11|node14]
build_image: [fnproject/node:11-dev|fnproject/node:14-dev]
run_image: [fnproject/node:11|fnproject/node:14]
entrypoint: node func.js

4. In the name property, change <custom component package name> to the name of your
custom component package, and then save your changes. The name is typically the
same as the name that you specify in the package.json file.

The name should be no more than 255 characters and contain only letters, numbers, _,
and -.

5. Set these properties:

• runtime: The Node language and version. Specify node11 or node14.

• build_image: The build-time base image that contains the language-specific libraries
and tools to build executable functions. Specify fnproject/node:11-dev or
fnproject/node:14-dev.

• run_image: The runtime base image that provides the language-specific runtime
environment in which to run executable functions. Specify fnproject/node:11 or
fnproject/node:14.

6. In a terminal window, change to the package's top folder and enter this command to
install the FDK and to add it as a package dependency in the package.json file:

npm install --save-dev @fnproject/fdk

Chapter 33
Deploy the Component Package to a Service

33-31

7. (Optional – Linux, Mac, and Linux subsystem on Windows only) Run this
command to install package dependencies:

npm install

Note that if the node_modules folder doesn't exist, then the fn deploy command
that you do later will invoke npm install for you.

8. (Windows VM only) Complete these steps to copy your custom component code
to your Linux guest for deployment:

a. Drag-and-drop the top level folder to the Linux guest.

b. In a terminal window, change to the top-level folder (the one that contains
main.js) and type this command to add execute permissions for the folder.

chmod 755 components

c. Delete the node_modules folder to ensure that you don't have any platform-
dependent node modules.

d. (Optional) Run this command to reinstall the node module dependencies.

npm install

Note that if the node_modules folder doesn't exist, then the fn deploy
command that you run later will invoke npm install for you.

You are now ready to complete the steps in Deploy the Custom Components to Oracle
Cloud Infrastructure Functions.

Deploy the Custom Components to Oracle Cloud Infrastructure Functions
After you create the func.js file, add fnproject to the development dependencies, and
install the dependencies as described in Modify the Custom Component Package for
Oracle Functions, you are ready to deploy a Docker image of the component package
to Oracle Cloud Infrastructure Functions.

When you completed the steps in Set Up Your User Account for Oracle Functions, you
copied commands from the Local Setup on the Getting Started page for steps 3
through 7. You'll use these copied commands to deploy your custom components.

If you're using Cloud Shell, then use the similar commands shown in Cloud Shell
Setup instead.

To deploy the custom components:

1. Ensure that Docker and the Fn server are running.

2. In a terminal window, change to the top directory for your custom component
package and enter your equivalent copied commands to configure the context.

fn create context <context> --provider oracle
fn use context <context>
fn update context oracle.compartment-id <compartment-ocid>

Chapter 33
Deploy the Component Package to a Service

33-32

fn update context api-url https://functions.<region-
identifier>.oci.oraclecloud.com

You don't have to run these commands again until you need to change the context
configurations.

If you get the error "Fn: error replacing file with tempfile" when you change the context,
then manually edit ~/.fn/config.yaml and change the context in that file.

3. If your config file has multiple profiles, enter this command to point to the profile that you
created in Set Up Your User Account for Oracle Functions.

fn update context oracle.profile <profile-name>

4. To point the registry repository that you created in Set Up Your User Account for Oracle
Functions, enter your copied command that's equivalent to the following. If you haven't
already, change [OCIR-REPO] to the name of your repository.

fn update context registry <region-key>.ocir.io/<tenancy-namespace>/[OCIR-
REPO]

You don't have to run this command again until you need to change the repository
configuration.

5. If you haven't signed into Docker in your current session, run the copied command that's
equivalent to the one shown here.

When it prompts you for a password, enter your auth token, which is the token that you
obtained while completing the steps in Set Up Your User Account for Oracle Functions.

docker login -u '<tenancy-namespace>/<user-name>' <region-key>.ocir.io

6. To deploy the custom components, run this command:

fn deploy --app <application>

If you see the following message, open the .oci/config file and verify that fingerprint
shows the correct fingerprint for the specified key_file. If not, go to your user settings in
the Console, click API Keys, view the configuration file for the correct fingerprint, and
then replace the content of your config file with the displayed content.

Fn: Service error:NotAuthenticated. The required information to complete
authentication was not provided or was incorrect..
http status code: 401.

Your custom components are ready to use in a skill as described in Add Oracle Function
Service.

Deploy to Mobile Hub
To host a custom component package in Mobile Hub, use the bots-node-sdk pack --
service mobile-api CLI to copy your component package folders and make a few changes
that are specific to Mobile Hub, including the RAML file. Then create the custom API from the
RAML file, and upload a ZIP of the component package into the custom API.

Chapter 33
Deploy the Component Package to a Service

33-33

1. From the custom component package's top-level folder (the one that contains the
main.js file), type this command in a terminal window:

bots-node-sdk pack --service mobile-api

The command does the following:

• Copies the files and subfolders to service-mobile-api-<package version>.

• Adds a component.service.raml file, which contains the necessary endpoints
and operations.

• Creates an api.js file, which is a Mobile Hub wrapper for main.js.

• Modifies the package.json file to set the main file to api.js, set the
dependencies, and add the Mobile Hub node configuration.

This step shows the basic CLI command. For more information, see https://
github.com/oracle/bots-node-sdk/blob/master/bin/CLI.md.

2. Review the package.json file and verify that the package name conforms to the
following Mobile Hub constraints. Modify the name as necessary to conform.

• The name must consist only of letters (A-Za-z), numbers (0-9), and
underscores (_).

• The name must begin with a letter.

• The name must be 100 characters or less.

3. From the Mobile Hub APIs page, click New API > API, and then create the custom
API by uploading the component.service.raml file.

4. From the Security tab, switch off Login Required and then click Save.

5. Zip up the service-mobile-api-<package version> folder, and then upload the
ZIP file from the custom API’s Implementation tab.

6. From the Test page, invoke the GET request. The response should show the
component metadata.

Tip:

If you get a status 500, and the error is that it can’t find a matching route
definition, check your files for bad JavaScript syntax, as that is the typical
cause.

Add Component Package to a Skill
You add a component package to a skill by creating a component service.

For component packages that you host on an external server, Oracle Cloud
Infrastructure Functions, or on Oracle Mobile Hub, a component service is an active
connection from the skill to host server. Alternatively, you can upload the component
package and host it from your Oracle Digital Assistant instance. This is referred to as
an embedded component service.

A component service has two functions:

Chapter 33
Add Component Package to a Skill

33-34

• It queries the component to get the package metadata, including the names of the
components, their properties, and allowed actions for each one. After a service is added
to the skill, you can see this information in the Components tab, which you access by

clicking Components in the left navbar. You can reference this page to get the
component names, properties, and actions, which you will need to use the components in
your dialog flow.

• It allows the skill to invoke the components.

The JSON payload of the call made by the Dialog Engine to the components includes
input parameters, variable values, user-level context, and the user’s message text. The
component returns the results by changing the values of existing variables or adding new
ones (or both). The Dialog Engine parses the returned payload and proceeds.

To add a custom component package to a skill, go to the skill's Components tab and
click Add Service, which opens a dialog for configuring the service.

How you configure the service depends on where you are hosting the component package.
These topics provide instructions for each type:

• Add Embedded Component Service

• Add Oracle Function Service

• Add External Component Service

• Add Mobile Hub Component Service

After you create the service, you can invoke the custom components from your dialog flow as
described in Custom Components.

When you upload a package to the embedded container, Digital Assistant verifies that the
package is valid, and can reject the package for these reasons:

• There are JavaScript errors.

• The package doesn't contain all the node module dependencies.

• A component name has more than 100 characters, begins with System., or contains
other than alphanumeric characters and underscores, then the service creation fails.

• Your instance already has the maximum number of embedded component services.

• The TGZ file is too large. This typically happens when the .npmignore file doesn't contain
a *.tgz entry and therefore, every time you pack the files, a nested copy of the existing
TGZ is added.

See Add Embedded Component Service for more information about these verification
checks.

Add Embedded Component Service
If you want to host the custom component package from your Oracle Digital Assistant
instance, complete these steps:

1. Prepare the Package for an Embedded Container Service.

2. Upload Package to Create an Embedded Component Service.

Chapter 33
Add Component Package to a Skill

33-35

Prepare the Package for an Embedded Container Service
If you want to host the custom component package from Oracle Digital Assistant as an
embedded component service, you must first pack the custom components into a TGZ
file. Then, when you create the embedded component service, you upload this file.

This TGZ file, which you package using bots-node-sdk pack, must contain the assets
and structure described in Implement Custom Components. It also must contain all the
node modules that it depends on (the bots-node-sdk pack does that for you).

Note:

There's a limit to how many embedded custom component services an
instance can have. If you don't know the limit, ask your service administrator
to get the embedded-custom-component-service-count for you as described
in View Service Limits in the Infrastructure Console. If you try to add a
component service after you meet that limit, then the service creation fails.

To prepare a package for uploading to the embedded container service:

1. Ensure that you have the latest version of the Bots Node.js command line tools.

The embedded container requires that the TGZ file includes all dependencies.
Earlier versions did not bundle the dependencies into the file. Now, the command
that you'll use to create the TGZ file ensures that your package.json file contains
a bundledDependencies node that lists all the dependent modules that need to be
included in the TGZ file.

2. In the directory that contains the main.js file, run the following command for each
of the modules that your package depends on. You don't need to do this for
devDependencies, such as the Bots Node SDK.

This command adds the module to the node_modules folder and adds it as a
dependency in package.json.

npm install <module>

If your package.json already names all the dependencies, then you can run npm
install instead.

3. Ensure that the top-level folder contains an .npmignore file that has a *.tgz entry.
For example:

*.tgz
spec
service-*

Otherwise, when you pack the files into a TGZ file, you include the TGZ file that
already exists in the top-level folder, and your TGZ file will double in size. After you
pack the files a few times, the TGZ file will be to large to upload into the container.

Chapter 33
Add Component Package to a Skill

33-36

4. Run this command:

bots-node-sdk pack

This command validates the component package, updates it to include devDependencies
if necessary, and then creates a TGZ file, which you'll upload when you create an
embedded component service from the skill’s Components tab. Note that the files you've
listed as dependencies are included as bundledDependencies, with the exception of the
Bots Node SDK and Express, which are devDependencies.

Your package should be compatible with Node 14.17.0.

For more information about the pack command, see https://github.com/oracle/bots-
node-sdk/blob/master/bin/CLI.md.

Upload Package to Create an Embedded Component Service
After you pack a custom component package into a TGZ file, you can upload it to create an
embedded component service from the skill's Components tab.

To learn how to create the TGZ file, see Prepare the Package for an Embedded Container
Service.

Note:

When you upload the package to the embedded component service, it's deployed
to Oracle Functions Service. If your instance is provisioned on the Oracle Cloud
Platform (as all version 19.4.1 instances are), then the service is instead deployed
within the Digital Assistant instance.

To create the embedded component service:

1. From the skill, click Components .

2. Click .

3. Select Embedded Container.

4. Click Upload a component package file and point to the TGZ file to upload, or drag the
file to the Package File box.

5. (Optional) If you want to send custom component context.logger() statements to the
service's log, then switch Enable Component Logging to On. This switch is available
only in instances of Oracle Digital Assistant that were provisioned on Oracle Cloud
Infrastructure (sometimes referred to as the Generation 2 cloud infrastructure).

You can see the log from the Components tab by clicking Diagnostics > View Logs.

Note:

The skill keeps a log entry for two days. When you delete an embedded custom
component service, the skill's log entries for that service are deleted.

Chapter 33
Add Component Package to a Skill

33-37

6. Click Create.

Digital Assistant uploads the TGZ file and creates the embedded component
service. During the upload, Digital Assistant verifies that the package is valid, and
can reject the package for the reasons that are described later in this section.

After you upload the TGZ file, the custom component service is built and its
components are deployed. If the Components page displays an awaiting
deployment message after you upload the TGZ file, it means that the service has
been created, but is not yet available. When the service becomes available, the
deployment metadata displays in place of the awaiting deployment message.

7. Ensure that Service Enabled is switched to On.

During the upload, Digital Assistant might reject the package. Here are reasons for
rejection and ways to resolve the issues.

• JavaScript contains syntax errors: If a component's JavaScript has syntax
errors, then that component is not added to the container, which results in this
error message:

Error Message: failed to start service built: Invalid component
 path:

View the component files in an editor that detects syntax errors. Also, try hosting
the package on a local server that sends error messages to a console log.

Another reason for this message might be that the package doesn't contain all the
node module dependencies. See the next item in this list.

• Missing node modules: If the package doesn't contain all the node module
dependencies, then you'll get the same error message as above:

Error Message: failed to start service built: Invalid component
 path:

To learn how to include node module dependencies, see Prepare the Package for
an Embedded Container Service.

• Component name is too long: If a component name has more than 100
characters, begins with System., or contains other than alphanumeric characters
and underscores, then the service creation fails.

Change the name in the component's JavaScript, repackage, and upload again.

• Exceeded component service limit: If your instance already has the maximum
number of embedded custom component services, then the service creation fails.
Ask your service administrator for the embedded-custom-component-service-
count limit as described in View Service Limits in the Infrastructure Console.

If you need to raise the limit, you can request an increase. See Requesting a
Service Limit Increase.

• TGZ file is too large: This typically happens when the .npmignore file doesn't
contain a *.tgz entry and therefore, every time you pack the files, a nested copy
of the existing TGZ is added.

When the top-level folder contains an .npmignore file with *.tgz, the previous
version of the TGZ file isn't included when you update the package.

Chapter 33
Add Component Package to a Skill

33-38

https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/servicelimits.htm#three

If you want to send custom component context.logger() statements to the service's log,
then switch Enable Component Logging to On. This switch is available only in instances of
Oracle Digital Assistant that were provisioned on Oracle Cloud Infrastructure (sometimes
referred to as the Generation 2 cloud infrastructure).

When Enable Component Logging is switched to On, you can click the Diagnostics button
for the service to access view logs and crash reports to diagnose the problem.

• Select View Logs to view messages that the custom component sends to
context.logger(). This feature is available only in instances of Oracle Digital Assistant
that were provisioned on Oracle Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure). The Enable Component Logging switch must be On
for the log to contain these messages.

• Select View Crash Report to view details about what may have caused the container to
crash.

After you create the service, you can invoke the custom components from your dialog flow as
described in Custom Components.

Add Oracle Function Service
You can deploy your custom components to Oracle Cloud Infrastructure Functions and add
them to a skill as an Oracle Function service.

To add an Oracle Function service:

1. You'll need to know the function's URL. A user with function development privileges can
get the URL from the Integration Console for you.

a. Sign in to the Integration Console.

b. Click on the top left to open the navigation menu, click Developer Services >
Functions, and then select the compartment that's been set up for function
development.

c. Click the application.

d. In the Functions section, click the More icon for your function and click Copy Invoke
Endpoint. Skill developers need this value to add the custom component package as
a component service in a skill.

2. A skill developer adds the component service to a skill in Oracle Digital Assistant. Sign

into Oracle Digital Assistant, open the skill and click Components .

3. Click .

4. Provide a name and description for the service.

5. Select Oracle Function.

6. In the URL text box, enter the invoke endpoint URL that you copied from the Developer
Services > Functions page in the Infrastructure Console while completing the steps in
Set Up Your User Account for Oracle Functions.

7. Click Create.

If you get a "Can't Create the Service" error, go to Developer Services > Functions in
the Infrastructure Console, select the compartment, click the application, and click Logs
in the Resources menu. Then enable the log for the function, retry the deployment, and

Chapter 33
Add Component Package to a Skill

33-39

check the logs (click the log name to see the log). To learn more about logs, see
Storing and Viewing Function Logs in Oracle Cloud Infrastructure Documentation.

If you see an error like this, it's because the folder doesn't have the right
permissions. On your local machine, use chmod 775 to change the folder's
permissions, then redeploy:

"Error: EACCES: permission denied, stat
'/function/components/hello.world.js.js'"

If you see an error like this then, on your local machine, delete node_modules, run
npm install and redeploy.

"Error: Cannot find module '@fnproject/fdk'"

8. Ensure that Service Enabled is switched to On.

After you create the service, you can invoke the custom components from your dialog
flow as described in Custom Components.

Add External Component Service
You can host your custom components on your own Node.js server and add them to a
skill as an external component service.

Tip:

You can use the external service option during development, as described in
Run the Component Service in a Development Environment.

To add an external component service:

1. From the skill, click Components .

2. Click .

3. Select External.

4. In the Metadata URL text box, enter the The URL that points to the GET endpoint
that returns the list of components.

5. Enter the service's user name and password.

6. Click Create.

7. Ensure that Service Enabled is switched to On.

After you create the service, you can invoke the custom components from your dialog
flow as described in Custom Components.

Add Mobile Hub Component Service
You can host your custom components from Oracle Mobile Hub, and add them to a
skill as an Oracle Mobile Cloud component service. Custom components that are
hosted on Mobile Hub can integrate with remote services using connectors that are

Chapter 33
Add Component Package to a Skill

33-40

https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsexportingfunctionlogfiles.htm

controlled by a Mobile Hub backend and they have access to the Mobile Hub platform APIs.

Because the backend that hosts the custom code handles the authentication for the custom
components, you need to refer to the backend’s Settings page to get the information that you
need to complete the configuration.

To add a component service for the Mobile Hub backend:

1. From the skill, click Components .

2. Click .

3. Select Oracle Mobile Cloud.

4. Enter the unique identifier assigned to the Mobile Hub backend in the Backend ID field.
This ID is passed in the REST header of every call from the skill.

5. In the MetadataURL field, enter the /components endpoint from the custom code API.
For example, http://<server>:<port>/mobile/custom/ccPackage/components.

6. Choose Use Anonymous Access if the service allows anonymous login. If you choose
this option, enter the anonymous key, which is a unique string that allows your app to
access anonymous APIs without sending an encoded user name and password. The
anonymous key is passed in their place. You can find the anonymous key on the
backend's Settings page in Mobile Hub. (You may need to click Show.)

If the component service requires a login (meaning no anonymous access), then enter
the user name and password.

7. If the service requires specific parameters, click Add HTTP Header and then define the
key-value pairs for the headers.

8. Click Create.

9. Ensure that Service Enabled is switched to On.

After you create the service, you can invoke the custom components from your dialog flow as
described in Custom Components.

Set the Read Timeout for Custom Components
By default, the wait time allowed between bytes when a custom component reads data is 60
seconds. To change this, open the skill and go to the Settings page. The Read Timeout field
is at the bottom of the General tab. The maximum value is 300 seconds.

Export and Import a REST Service Endpoint
If you have registered REST service endpoints in one Oracle Digital Assistant instance, you
can make those endpoints available in a separate instance by exporting them from the first
instance and importing them into the other instance.

Here are the steps:

1. In the Digital Assistant where you have the registered the REST service, click to
open the side menu, select Settings, select API Services, and then click the REST
Services tab.

2. From the More menu, select Export All REST Services.

Chapter 33
Set the Read Timeout for Custom Components

33-41

(Alternatively, you export individual REST services by selecting the service and
then selecting More > Export Selected REST Service.)

You should see a file downloaded to your system.

3. In the Digital Assistant instance where you want to import the services, go to the
same page (Settings > API Services > REST Services), select More > Import
REST Services, and select the file that you just exported from the first instance.

Chapter 33
Export and Import a REST Service Endpoint

33-42

34
Backend Authentication

If you have a skill that requires authentication with an identity provider, you can set up an
authentication service to enable interaction between Digital Assistant and that identity
provider.

For example, you might need to set up an authentication service if you're building a skill for a
Microsoft Teams channel, a skill that accesses a Google or Outlook calendar, or a skill that's
invoked by an application-initiated conversation that uses an authenticated user ID to identify
the user.

You also need to set up an authentication service if your skill uses a System.OAuth2Client,
System.OAuth2AccountLink, or System.OAuth2ResetTokens built-in component.

If you have a Digital Assistant instance that is paired with a subscription to a Fusion-based
Oracle Cloud Applications service, such as Oracle Sales Automation or Oracle Fusion Cloud
Human Capital Management, then you don't have to do anything to configure backend
authentication for the provided skills. This has been taken care of for you.

Built-In Security Components
Oracle Digital Assistant provides the following security components:

• OAuth 2.0 Client: Obtains an OAuth2 access token of grant type Client Credentials that
a custom component can use to access client resources that are secured by Oracle
Identity Cloud Service (IDCS) or Oracle Access Manager (OAM).

(If your dialog flow is developed in YAML mode, use System.OAuth2Client.)

Before you use this component in a skill, register an application as described in Identity
Provider Registration, and then ask your administrator to add a service for the client as
described in Authentication Services. If you have a Digital Assistant instance that is
paired with a subscription to a Fusion-based Oracle Cloud Applications service, such as
Oracle Sales Cloud or Oracle Human Capital Management Cloud, then your IDCS
instance already has a registered application and an authentication service has already
been created.

• OAuth 2.0 Account Link: Obtains an OAuth2 access token of grant type Authorization
Code that a custom component can use to access resources that are secured by one of
these identity providers:

– Oracle Identity Cloud Service (IDCS)

– Oracle Access Manager (OAM)

– Microsoft identity platform

– Google Identity Platform

(If your dialog flow is developed in YAML mode, use System.OAuth2AccountLink.)

Another use for this component is to authenticate users for application-enabled
conversations that identify mobile users by their user names, as described in Create a
Channel for the External App.

34-1

Before you use this component in a skill, register an application as described in
Identity Provider Registration, and then ask your administrator to add a service for
the client as described in Authentication Services. If you have a Digital Assistant
instance that is paired with a subscription to a Fusion-based Oracle Cloud
Applications service, such as Oracle Sales Cloud or Oracle Human Capital
Management Cloud, then your IDCS instance already has a registered application
and an authentication service has already been created.

• Reset OAuth 2.0 tokens: Revokes all the logged-in user's refresh and access
tokens from a specified authentication service. This is for dialog flows that use the
System.OAuth2AccountLink component.

(If your dialog flow is developed in YAML mode, use System.OAuth2ResetTokens.)

Note that you can't use this component with the Microsoft identity platform
because it doesn't support the revoking of access tokens through REST calls, only
through the command line interface.

• OAuth Account Link: Obtains the authorization code for identity providers that
support the OAuth2 protocol. The custom component must exchange this code for
an access token. This component doesn't use an authentication service.

(If your dialog flow is developed in YAML mode, use System.OAuthAccountLink.)

Identity Provider Registration
An administrator must register an application (also referred to as an OAuth client) with
the identity provider (IDP) before you can use OAuth2Client, OAuth2AccountLink, or
OAuthAccountLink component in a skill.

Register an Application with IDCS or OAM
Before you can use an OAuth2Client, OAuth2AccountLink, or OAuthAccountLink
component in a skill, an administrator must register a confidential application (also
referred to as an OAuth client) with IDCS or OAM.

Note:

If you have a Digital Assistant instance that is paired with a subscription to a
Fusion-based Oracle Cloud Applications service, such as Oracle Sales
Cloud or Oracle Human Capital Management Cloud, then your IDCS
instance already has a registered application named IDCS_OAuthForFA.

To learn how to register an application with IDCS, see Add a Confidential Application
in Administering Oracle Identity Cloud Service. Information about registering an
application with OAM can be found at Configuring OAuth Services in Administering
Oracle Access Management.

When you register an application (client) with IDCS or OAM, you'll need to provide this
information:

• Allowed Grant Types: The application must use either the Authorization Code
grant type or the Client Credentials grant type.

Chapter 34
Identity Provider Registration

34-2

• Scopes or Roles: Include the resources that your custom components need to access. If
you include the refresh token grant type, then you also need to add the corresponding
scope, which is offline_access for IDCS.

• Redirect or Callback URL: You'll need to provide the URL that the IDP uses to send
back the authorization code. Some identity providers refer to this as the redirect URL or
the callback URI. To figure out what to use for the redirect URL, go to the Channels page
and open any Facebook or Webhook channel (if you don't have any, create a fictitious
one). You use the domain and port from the channel's Webhook URL (e.g., https://
<domain>:<port>/connectors/v2/tenants/<tenantId>/listeners/facebook/
channels/<channelId>) to create the redirect URL, which must be in the format https://
<domain>:<port>/connectors/v2/callback. For example https://example.com:443/
connectors/v2/callback.

If your instance is provisioned on Oracle Cloud Platform (as all version 19.4.1 instances
are), use v1 instead of v2.

If you are using OAuth2Client or OAuth2AccountLink for authenticating with the IDP, then,
after you create the application (OAuth client), note the client credentials, IDP token, and
authorization URL. You'll need this information when you create an authentication service as
described in Authentication Services.

Register an Application with Microsoft Identity Platform
To register an application with Microsoft identity platform, follow Microsoft's instructions at
Quickstart: Register an application with the Microsoft identity platform.

Set the app type to Web.

You'll need to provide the URL that the platform uses to send back the authorization code. To
figure out what to use for the URL, go to the Digital Assistant's Channels page and open any
Facebook or Webhook channel (if you don't have any, create a fictitious one). You use the
domain and port from the channel's Webhook URL (e.g., https://<domain>:<port>/
connectors/v2/tenants/<tenantId>/listeners/facebook/channels/<channelId>) to
create the redirect URL, which must be in the format https://<domain>:<port>/
connectors/v2/callback. For example https://example.com:443/connectors/v2/
callback.

After you register the application, you need to create a client secret as described in the
Microsoft topic Create a new application secret. You'll use this secret when you create an
authentication service for the application.

Register an Application with Google OAuth2 Authorization
To register an application with Google OAuth2, you create a project and enable the
necessary APIs as shown in the Google topic Enable APIs for your project. If you plan to use
the calendar components, ensure that you enable both the Google Calendar API and the
CalDAV API.

Next, get the application's client ID and secret as described in the Google topic Create
authorization credentials.

On the OAuth consent screen, specify the scopes that your app will need permission to
access. See the Google topic Identify access scopes for more information.

Chapter 34
Identity Provider Registration

34-3

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal#create-a-new-application-secret
https://developers.google.com/identity/protocols/oauth2/web-server#enable-apis
https://developers.google.com/identity/protocols/oauth2/web-server#creatingcred
https://developers.google.com/identity/protocols/oauth2/web-server#creatingcred
https://developers.google.com/identity/protocols/oauth2/web-server#identify-access-scopes

Authentication Services
To use the System.OAuth2Client and System.OAuth2AccountLink security
components, your administrator must first add a service for the IDP on the
Authentication Services page. You can create services for Authorization Code and
Client Credential grant types. Authentication Services supports IDCS and OAM R2PS3
identity providers.

Note:

If you have a Digital Assistant instance that is paired with a subscription to a
Fusion-based Oracle Cloud Applications service, such as Oracle Sales
Cloud or Oracle Human Capital Management Cloud, then an authentication
service has already been created for the IDCS instance that's associated
with your Digital Assistant instance.

Before you create a service, you'll need to ask your IDP administrator to give you the
information that you need to add a service.

Add an Authorization Code Service
Here's how to create an authentication service for grant type Authorization Code for
IDCS, OAM, Microsoft Identity Platform, and Google Identity Platform. This grant type
authenticates on user name and password.

1. Open the side menu and click Settings > Authentication Services.

2. Click + Service.

3. Select the Authorization Code grant type.

4. Enter these values:

• Identity Provider: Which type of identity provider (IDP) you are using.

• Name: A name to identify the authentication service.

• Token Endpoint URL: The IDP's URL for requesting access tokens.

– IDCS: Use https://<IDCS-Service-
Instance>.identity.oraclecloud.com/oauth2/v1/token.

– OAM: Use http://<Managed-Server-Host>:<Managed-Server-Port>/
oauth2/rest/token.

– Microsoft Identity Platform: Use https://login.microsoftonline.com/
<Azure-Active-Directory-TenantID>/oauth2/v2.0/token.

– Google Identity Platform: Use https://www.googleapis.com/
oauth2/v4/token.

• Authorization Endpoint: The IDP's URL for the page that users authenticate
with by entering their user name and password.

– IDCS: Use https://<IDCS-Service-
Instance>.identity.oraclecloud.com/oauth2/v1/authorize.

Chapter 34
Authentication Services

34-4

– OAM: Use http://<host>:<port>/oauth2/rest/authz.

– Microsoft Identity Platform: Use https://login.microsoftonline.com/
<Azure-Active-Directory-TenantID>/oauth2/v2.0/authorize.

– Google Identity Platform: Use https://accounts.google.com/o/oauth2/v2/
auth.

• Short Authorization Code Request URL: (Optional) A shortened version of the
authorization URL, which you can get from a URL shortener service (one that allows
you to send query parameters) . You might need this because the generated
authorization-code-request URL could be too long for SMS and older smart phones.

By default, the authorization code request URLs for each platform are:

– IDCS and OAM:

{Authorization Endpoint URL}?
client_id={clientId}&response_type=code&scope={scope}&redirect_uri
={redirectUri}&state={state}

– Microsoft Identity Platform:

{Authorization Endpoint URL}?
client_id={clientId}&response_type=code&scope={scope}&redirect_uri
={redirectUri}&response_mode=query&state={state}

– Google Identity Platform:

{Authorization Endpoint URL}?
client_id={clientId}&response_type=code&scope={scope}&redirect_uri
={redirectUri}&access_type=offline&prompt=consent&state={state}

Here's an example of the URL displayed in a text message:

Chapter 34
Authentication Services

34-5

For example, you can get a shortened version of this URL:

{Authorization Endpoint
 URL}?
client_id={clientId}&response_type=code&scope={scope}&redirect_ur
i={redirectUri}&state={state}

Using the Short Authorization Code Request URL, Oracle Digital Assistant
builds the authorization code request URL like this:

{Short Authorization Code Request URL}?state={state}

• Revoke Token Endpoint URL: (Optional) If you want to revoke all the refresh
tokens and access tokens of the logged-in user from a dialog flow, then you
need the IDP's revoke refresh token URL. If you provide this URL, then you
can use the System.OAuth2ResetTokens component to revoke the user's
tokens for this service.

– IDCS: Use https://<IDCS-Service-
Instance>.identity.oraclecloud.com/oauth2/v1/revoke.

– OAM: Use https://<host>:<port>/ms_oauth/oauth2/endpoints/
<OAuth-Service-Name>/tokens.

– Microsoft Identity Platform: Not supported.

– Google Identity Platform: Use https://oauth2.googleapis.com/
revoke.

• Client ID and Client Secret: The client ID and secret for the IDP application
(OAuth Client) that was registered as described in Identity Provider

Chapter 34
Authentication Services

34-6

Registration. With Microsoft identity platform, use the application ID and secret.

• Scopes: A space-separated list of the scopes that must be included when Digital
Assistant requests an access token from the provider. Include all the scopes that are
required to access the resources. If refresh tokens are enabled, include the scope
that’s necessary to get the refresh token (typically offline_access).

– IDCS: Use the urn:opc:idm:__myscopes__ scope when you need to obtain an
access token that contains all of the allowed scopes. Use the
urn:opc:idm:role.<roll-name> scope (for example,
urn:opc:idm:role.User%20Administrator) when you need to obtain an access
token that contains the applicable scopes of a given role.

– Microsoft Identity Platform: You must include openid email profile
offline_access. If you plan to use calendar components, you must include
https://graph.microsoft.com/Calendars.ReadWrite. For other permissions,
use the format https://graph.microsoft.com/<permission>. Replace
<permission> with a valid permission name from the Microsoft Graph
permissions reference.

– Google Identity Platform: You must include https://www.googleapis.com/
auth/userinfo.email, which is used to obtain the user’s login ID. If you plan to
use calendar components, you must include https://www.googleapis.com/
auth/calendar. For other scopes, see OAuth 2.0 Scopes for Google APIs.

• Subject Claim: The access-token profile claim to use to identify the user.

– IDCS and OAM: This is typically the sub (subject) claim. However, if the sub
claim contains an internal user ID, that's not helpful for Digital Assistant. In these
cases, specify a profile claim that can help Digital Assistant identify the user,
such as email or name.

– Microsoft Identity Platform: Use preferred_username.

– Google Identity Platform: Use email.

• Refresh Token Retention Period: The number of days to keep the refresh token in
the Digital Assistant cache. If you leave this blank, it defaults to 7.

Chapter 34
Authentication Services

34-7

https://docs.microsoft.com/en-us/graph/permissions-reference
https://docs.microsoft.com/en-us/graph/permissions-reference
https://developers.google.com/identity/protocols/oauth2/scopes

5. Click Create.

Tip:

For IDCS, when a user signs in through a OAuth 2 Account link component
(Visual Flow Designer) or a System.OAuth2AccountLink component (YAML
mode), you can automatically store the IDCS user's profile information for the
duration of a session. See Store IDCS User Profile for the Duration of the
Session.

Add a Client Credentials Service
Here's how to create an authentication service for grant type Credentials for IDCS and
OAM. This grant type authenticates on client ID and client secret.

1. Open the side menu and click Settings > Authentication Services.

2. Click + Service.

3. Select the Client Credentials grant type.

4. Enter these values:

Chapter 34
Authentication Services

34-8

• Identity Provider: Which type of identity provider (IDP) you are using.

• Name: A name to identify the authentication service.

• Token Endpoint URL: The IDP's URL for requesting access tokens.

• Client ID and Client Secret: The client ID and secret for the IDP application (OAuth
Client) that was registered as described in Identity Provider Registration.

• Scopes: The scopes that must be included when Digital Assistant requests an
access token from the provider. Include all the scopes that are required to access the
resources.

5. Click Create.

User Identity in Digital Assistant
In Oracle Digital Assistant, you have two main options for managing the identities of users of
a given skill:

• Let Digital Assistant assemble a temporary and provisional user profile that is based on
the user's channel and whatever user details, if any, are provided by that channel's

Chapter 34
User Identity in Digital Assistant

34-9

provider. In such cases, a person who accesses the same skill through different
channels would have different profiles for each channel. Details of this profile are
stored for 14 days. This is the default behavior.

• Create a unified user identity for each user that is recognized across multiple
channels and can be persisted for a longer (or shorter) period of time. In this
mode, you can give users the options to consent to or opt out of the linking of their
identity details to and storing them with the unified user identity. This approach is
available for the Twilio, Slack, and MS Teams channels.

Note:

Associating with a unified user also helps with push notifications. It enables
the notification service to determine which of the user's channels is viable to
receive a notification and hence forward the message to that channel.

Configuring Unified User Identity
You can configure skills for unified user identies with the following general steps:

1. Enable channel account linking in the Digital Assistant instance.

2. Add an authorization code service in your Digital Assistant instance.

3. In the skill's dialog flow, add a OAuth 2.0 Account Link component (for Visual
dialog mode) or System.OAuth2AccountLink (for YAML mode).

4. In the component, configure the handling of user consent to storing the unified
user identity data.

The unified user ID for a given user is set the first time the user accesses the digital
assistant and authenticates with a Authorize using OAuth 2.0 component. That is, the
initial authenticated identity becomes the "point of truth". All the channel account IDs
for the same OAuth 2.0 authenticated user are associated with the unified user ID.

Enable Channel Account Linking
You can enable channel account linking to enable user identities to be recognized
across multiple channels of a skill. For example, if a user starts a conversation in one
channel and is waiting for a response, they could also receive a notification of that
response in the other channel.

To enable channel linking:

1. Click to open the side menu and select Settings > Unified Identity Services.

2. Set the Channel Account Linking switch to On.

Chapter 34
User Identity in Digital Assistant

34-10

Note:

Previous to the 22.12 release, it was possible to enable channel account linking in
individual skills by including an OAuth 2.0 Account Link component in the skill and
setting its associateWithUnifiedUser property to true. From 22.12 onwards, this
property is deprecated and has no effect, even if it remains in a component's YAML.

End User Privacy: User Consent Options
When you have activated channel account linking, you can configure how to handle user
consent for each skill individually, using the requiresAssociationConsent property in the
skill's OAuth 2.0 Account Link component. Here are the options:

• Yes: Presents the user with the following consent choices for association of the channel
account data with a unified user ID:

– Associate Account. Confirms the user has approved the linking of the current
channel identity with the centralized unified user ID.

– Never Link This Account. Indicates that this specific channel account should not be
associated with the unified user ID. The user is not subsequently asked whether to
link this account going forward. (though the user can later reverse that decision).

– Not At This Time. Does not link the accounts for the current session, but does not
prevent the user from being asked for approval in subsequent sessions. The consent
prompt is temporarily suppressed after the user selects this option but may reappear
when the user authenticates again more than 24 hours later.

• No . The user channel account is automatically linked to the unified user ID without the
user being prompted for consent.

• Notify. The user channel account is automatically linked to the unified user ID, and the
user is notified of that fact.

The default value of the property is Yes.

Customize the User Consent Prompts and Messages
There is a set of a prompts and messages that are displayed in the conversation when a user
is notified that their channel account identity information is being linked with a unified user
identity or if they are given consent options. You can adjust the phrasing of these prompts in
messages in the skill's resource bundle.

To access these particular prompts and messages in the resource bundle:

1. In the skill, click to open the Resources Bundle.

2. Select the Configuration tab.

3. In the Filter field, enter OAuthAccount2Link - consent to display the consent-related
bundle entries.

Retention of Unified User Data
The length of time that unified user identity data is stored is set at the instance level.

To configure the amount of time that such data is stored:

Chapter 34
User Identity in Digital Assistant

34-11

1. Click to open the side menu and select Settings > Unified Identity Services.

2. Set the Delete user's channel account data after the specified retention
period switch to On.
If it is not switched on, the user's channel account data will be retained indefinitely.

3. In the Retention period for channel account user data (in days), enter the
number of days that you want the data to be stored.
The minimum of 7 and the maximum is 1100.

Note:

Jobs to purge the data run only once every 24 to 48 hours. So,
depending on the time of the job, the data might be retained for up to 48
hours longer than the retention period that you designate.

Note:

The Delete user's channel account data after the specified retention
period only affects channel-related data that is stored as part of a unified
user identity. When channel account linking has not been enabled, the user’s
profile data from the channel will be retained for a 14 days.
For channels where channel linking is not supported, the 14-day period also
applies, even if channel account linking has been globally enabled.

Chapter 34
User Identity in Digital Assistant

34-12

35
Webviews

Your skill can allow its customers to enter structured data using a Webview app.

Natural language conversations are, by their very nature, free-flowing. But they may not
always be the best way for your skill to collect information from its users. For example, when
entering credit card or passport details, users need to enter specific information (and enter it
precisely). To help with these kinds of tasks, your skill can call a webview app.

These apps not only enable structured data entry through UI elements like forms, date
pickers, fields, and LOVs, but they can also validate the user input and collect information in
various ways, like uploading images, capturing user signatures, or scanning barcodes.
Webview apps also protect sensitive user data like credit card numbers because this data
doesn’t appear the chat history when it’s entered into the app.

How Do I Integrate a Webview into a Skill?
You need the following to integrate a web app into your skill:

• A Webview Service that connects the skill to the web app, which can be hosted on an
external web server, or within Digital Assistant.

• A System.Webview component definition in the dialog flow. This component acts a
gateway to the web app by naming the Webview Service, (service:"oracletravelweb"
in the following snippet), listing the dialog flow variables that get based to the web app in
its sourceVariableList property, and if the web app returns any values, the
System.Webview stores them in its variable property (webviewresponse in the following
snippet).

 callWebview:
 component: "System.Webview"

35-1

 properties:
 sourceVariableList: "origin,destination"
 variable: "webviewresponse"
 prompt: "Press 'Open Oracle Travel'..."
 service: "oracletravelweb"
 linkLabel: "Open Oracle Travel"
 cancelLabel: "Cancel"
 transitions:
 next: "handleResponse"
 actions:
 textReceived: "onCancel"
 cancel: "onCancel"

At runtime, the component renders a button that launches the web app. The
System.Webview component launches the app as a webview within the skill, or in a
separate browser tab when the skill runs on a web channel.

• The web app itself, which is hosted within Digital Assistant, or on a remote web
server.

Tip:

Refer to the webhook starter sample that's described in the SDK
documentation at https://oracle.github.io/bots-node-sdk/.

Digital Assistant-Hosted Webviews
The web apps hosted within Digital Assistant must be single-page apps (SPAs), client-
side web apps with a single HTML page (index.html) that launches the web app and
gets updated in response to the skill user's input. When the System.Webview
component calls the SPA:

1. The index.html is loaded and launches the web app as a webview or in a
separate browser tab.

2. The System.Webview component then passes the parameter values collected in
the dialog flow along with the callback URL. Enable the SPA to Access the Input
Parameters and Callback URL describes different approaches to passing these
values.

3. The web app makes a POST request to the callback URL that was generated by
the System.Webview component. This request signals that the app has completed
its processing. If the app returns data, it's included in this request as a JSON
object that gets stored in the variable property. You can reference this data in
your dialog flow using ${variable_property_name.value.Param}.

You can write the SPA using different frameworks, such as Oracle Visual Builder,
Angular, Oracle JavaScript Extension Toolkit (JET), or React.js.

Chapter 35
Digital Assistant-Hosted Webviews

35-2

https://oracle.github.io/bots-node-sdk/

Note:

The backend for Oracle Visual Builder manages REST connections, users (through
Oracle Identity Cloud Service), and runs business objects, so any Oracle Visual
Builder app hosted within Digital Assistant will have the following limitations:

• It can't use business objects.

• It can't integrate with Oracle Identity Cloud Service.

• It can't access a REST service using the Oracle Visual Builder authentication
proxy.

Therefore, supporting any of these capabilities means that you must host the Oracle
Visual Builder app on an external server.

To host the app within Digital Assistant you must bundle it into a TAR archive (a TGZ file).
Because this is a SPA, the index.html file must be at the root of this package.

Enable the SPA to Access the Input Parameters and Callback URL
When you host a SPA within in Digital Assistant, the System.Webview component injects the
window.webViewParameters variable (shown in the following snippet) into the <head> element
of the index.html file at runtime. The key-values pairs in the payload inform the SPA of the
input values passed from the skill.

window.webviewParameters = {
 parameters: [
 {"key": "variableA", "value": "jsonObjA"},
 {"key": "variableB", "value": "jsonObjB"},
 ...
 {"key": "webview.onDone",
 "value": "https://host:port/patch"},
]
};

To enable your app to access these objects, declare a
window.webviewParameters['parameters'] variable:

let webviewParameters = window.webviewParameters !=null?
window.webviewParameters['parameters']:null;

The returned object gets stored in the System.Webview's variable property because of the
callback.

In the following snippet of a React app's app.js file, the function returns the value for a
named key. If it cannot be found, it sets a default value.

Chapter 35
Digital Assistant-Hosted Webviews

35-3

Tip:

You can use this snippet in your own code. You can use var getParam
instead of this.getParam.

class App extends Component {
 constructor(props) {
 super(props);

 let wvParams = window.webviewParameters['parameters'];

 this.getParam = (arrParams, key, defaultValue) => {
 if (arrParams) {
 let param = arrParams.find(e => {
 return e.key === key;
 });
 return param ? param.value : defaultValue;
 }
 return defaultValue;
 };

Defining Placeholders in the index.html File
When you host the SPA within Digital Assistant, you don't need to define any
placeholders for the variable values in the index.html file. As long as the index.html
file has a <head> element, your web app will know what values to expect, and the
callback.

Add a Single Placeholder in the <head> Element
Within the <head> element, insert a <script> block with the
webview.sourceVariableList placeholder. The web app replaces this with a JSON-
encoded string that has the input parameter data and the callback URL.

In the following example, the key is window.wvParams. You can use any name for this
key as long as you append it with window. You must always define the value as
"webview.sourceVariableList".

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json">
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">

 <title>React App</title>
 <script>
 window.wvParams="webview.sourceVariableList";

Chapter 35
Digital Assistant-Hosted Webviews

35-4

 </script>
 </head>

In the app code example below:

• The let statement assigns webview.sourceVariableList to wvParams.

• The output values get parsed as a JSON object.

• fullname extracts the name of the variable defined for the sourceVariableList property
in the webview component (where name is the name of the variable defined).

class App extends Component {
 constructor(props) {
 super(props);

 let wvParams = (window.wvParams === "webview.sourceVariableList" ?
 [] : JSON.parse(window.wvParams)['parameters']);

 this.getParam = (arrParams, key, defaultValue) => {
 if (arrParams) {
 let param = arrParams.find(e => {
 return e.key === key;
 });
 return param ? param.value : defaultValue;
 }
 return defaultValue;
 };

 fullname = getParam(wvParams, 'name', null);
 callbackurl = getParam(wvParams, 'webview.onDone', null);
 ...

Add Multiple Placehoders in the <head> Element
Add a <script> block that has placeholders for each value defined for the SourceVariable
component and the callback URL. The web app returns the callback URL and the data for
input parameters as a JSON-encoded string. Because you've added placeholders, you don't
have to declare a window.webviewParameters['parameters'] variable.

As illustrated by the following snippet, the placeholders are defined by key-value pairs. Each
value must:

• Match the input values defined for SourceVariable property.

• Be appended by webview. (webview.keyword, for example).

In addition, The callback value must be webview.onDone. In the following snippet, for
example, webview.keyword, webview.assignee, webview.inventor all match
sourceVariableList: "assignee, keyword, inventor". The callback URL is defined with
webview.onDone. You can name the callback key anything, but you always need to define the
value as webview.onDone.

Chapter 35
Digital Assistant-Hosted Webviews

35-5

You can optionally set global variables by appending the keys with window.
(window.Keyword in the following snippet, for example).

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
 <link rel="manifest" href="%PUBLIC_URL%/manifest.json">
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">

<title>React App</title>
 <script>
 window.Keyword="webview.keyword";
 window.Assignee="webview.assignee";
 window.Inventor="webview.inventor";
 window.CALLBACK_URL="webview.onDone";
 </script>
</head>

Wire the Callback URL to a Done Button in the Web App
The callback URL that's generated by the System.Webview component is essentially a
single-use callback because of its state token (https://...?state=<callback-state-
token>). While it has a default lifetime of an hour, it gets cleared after System.Webview
component handles the callback request from the web app. Because users won’t be
able to query the web app after this point, it should transition to an End page with a
Close button that’s wired to the callback URL.

Externally Hosted Webviews
You would host an app on external server if it has security requirements, leverages
server-side infrastructure, or requires data integration or central administration.
Remotely hosted web apps can be SPAs, but don't have to be. You can modify an
existing web app to render as a webview or create a web app specifically for a skill.

For externally hosted web apps, you need to host the web app itself and an
intermediary service. The web app expects a GET request from the skill, while the
intermediary service receives the skill's POST requests and formulates the redirect
URL to the web app. The two can reside on the same web server, or can be hosted on
separate web servers. Regardless of the implementation, the request flow is as
follows:

1. At runtime, the System.Webview component sends the intermediary service a
POST request that includes the skill’s callback URL and the user's input
parameters as an array of key-value pairs. The component adds webview.onDone
variable as the callback URL key. The keys are the names of parameters that are
referenced by both the System.Webview's sourceVariableList property and the
webview.onDone property.

{
 "parameters": [{
 "value": "CDG",

Chapter 35
Externally Hosted Webviews

35-6

 "key": "origin"
}, {
 "value": "MUC",
 "key": "destination"
}, {
 "value": "https://<url>:443/connectors/v2/callback?state=cb5443. ..2c"
 "key": "webview.onDone"
}]

Note:

If you are using version 19.4.1 of Oracle Digital Assistant, the "value" entry is:

 "value": "https://<url>:443/connectors/v1/callback?
state=cb5443. ..2c"

2. The intermediary service returns a JSON object to the skill that has a single property,
webview.url. Its string defines the redirect URL to the web app, which is used by the
subsequent GET request from the skill. This URL also contains the key-values passed
from the POST request (unless the payload of the POST request is saved in a storage
accessible to the web application). It might look something like:

{
"webview.url":
 "https://<app url>?callbackURL=https://example.com:443/
connectors/v2/callback?state=cb55435552c&origin=CDG&destination=MUC
}

Note:

In version 19.4.1, it might look something like:

{
"webview.url":
 "https://<app url>?callbackURL=https://example.com:443/
connectors/v1/callback?
state=cb55435552c&origin=CDG&destination=MUC
}

The web app uses the callback URL in a call to pass control back to the skill, and
optionally, to pass a response payload.

self.buttonClick = function (event) {
 if (event.currentTarget.id === 'Submit') {

Chapter 35
Externally Hosted Webviews

35-7

 let data = {};
 data.origin = self.origin();
 data.destination = self.destination();

 //return date in milliseconds
 data.departureDate = (new
Date(self.departureDate())).getTime();
 data.returnDate = (new Date(self.returnDate())).getTime();
 data.status = "success"

 /*
 function jqueryPost(url, data) {
 return $.ajax({
 contentType: "text/plain",
 url: url,
 data: data || {},
 type: "POST",
 dataType: "text/plain"
 });
 };

 jqueryPost(webViewCallback, JSON.stringify(data));

 */

 //JQuery post call
 $.post(webViewCallback,JSON.stringify(data));
 }
 else {
 //if user pressed "cancel" pass no data but a status
informing the bot designer
 let data = {};
 data.status = "cancel"

 $.post(webViewCallback, JSON.stringify(data));
 }

This illustrates using the JQuery $.post method to return JSON object to the skill
with origin, destination, departureDate, and returnDate key value pairs:

{
"origin":"CDC"
"destination":"MUC"
"departureDate":"15689736000000"
"returnDate":"15689736000000"
}

Chapter 35
Externally Hosted Webviews

35-8

Tip:

This snippet has a "status" property that's set to "success" or "cancel" to
indicate that a user has completed work in the web app or canceled it. Users
may close the browser before the callback request has completed, so include a
listener for the closing that issues a callback if not yet happened. The call could
use a status of "cancel" to indicate that the form wasn't completed
successfully. If the user closes the window and you don't catch this, then the
skill waits until it time out.

3. The skill launches the web app by sending a GET request to the URL defined by the
webview.url property.

4. After the webview processes the input, it sends a completion callback, which is a POST
request, to the callback URL that the System.Webview component generated and
provided to the intermediary service. This request not only signals that the app has
finished (and that the skill should resume control of the session), but can return a payload
of data, which gets stored in the System.Webview’s variable property.
Depending on your hosting strategy, there are a couple of things to keep in mind:

• If you host the web app and the intermediary service on the same web server, then
the skill's request parameters can be saved into a session, thus eliminating the need
for a long URL string.

• If you host the web app and the intermediary service on different servers, then all of
the web app request parameters in the redirect URL that's sent to the skill must be
encoded as query parameters.

Create a Webview Service
Configuring a Webview Service connects your skill to the service that hosts the webview app.

You create Webview Services from the Webview page, which is accessed by first clicking
Components () in the left navbar, then clicking Webview. This page lists the various
Webview Services that you can reference in the System.Webview's service property.

Note:

You don’t need to reconfigure a Digital Assistant-hosted service when you version
or clone your skill. If you host the web app externally, however, you do need to
reconfigure the service when you version or clone your skill.

Create a Digital Assistant-Hosted Webview Service
While you may need to provide authentication credentials as part of configuring an externally-
hosted Webview Service, you only need to package the web app into a TAR archive (a TGZ
file) and then upload it. The index.html file must be at the root level of this file.

You can package the app using the GNU tar command:

tar -zcvf webapp.tgz *

Chapter 35
Create a Webview Service

35-9

In this example, the -zcvf command creates a file called webapp.tgz. As stated in
Defining Placeholders in the index.html File, you can author the web app using your
framework of choice as long as the index.html file is at the root of the TGZ file. In fact,
the index.html can even be the only file at the root level.

To create the service:

1. Enter the name of the services in the Name file and a description (which is
optional). The name that you enter here must match the value for the service
property of the System.Webview component.

2. Switch on the Service Hosted option.

3. Drop the TGZ into the Package File field or browse to, and select, the TGZ file.

4. Click Create.

Package Oracle Visual Builder Applications
You build and optimize your Oracle Visual Builder apps for Digital Assistant using the
vb-build Grunt task. You can run this task locally, or as part of a build on Oracle
Developer Cloud Service (DevCS).

Before you build the Oracle Visual Builder app:

• Ensure that you've configured its service connection to accommodate the
limitations described in How Do I Integrate a Webview into a Skill? by choosing
Direct (Bypass the proxy) and Allow Anonymous Access in the Oracle Visual
Builder.

• If you're using Oracle Visual Builder to optimize the binary, then select Push to
Git. Otherwise, you can skip this step.
Refer to the Oracle Visual Builder Documentation to find out more about securing
the Oracle Visual Builder app and integrating it into a Git repository.

Package the Oracle Visual Builder App Locally
To optimize and package your Oracle Visual Builder app locally:

1. In the Oracle Visual Builder home page, select your app and then click Export
without Data.

2. Unzip the app.

3. Run npm install on the root folder (where both the package.json and
Gruntfile.js files are located).
Running npm install retrieves the grunt-vb-build npm package that's defind in
the package.json file.

4. Enter the following parameters:

./node_modules/.bin/grunt vb-build \
--url=${serviceURL} \
--username=${username} \
--password=${password} \
--id=${id} --ver=${ver} \
--ver=<your visual app ID>\
--git-source=<local directory for sources>

Chapter 35
Create a Webview Service

35-10

Parameter Description

url Your Visual Builder instance URL.

username Your user name for the Visual Builder instance.

password Your password for the Visual Builder instance.

id The ID of the application. The application ID
may be the same as the application name, but
the application ID must be unique in your
identity domain.

ver The version of your application.

git Specifies the location of the sources (if they are
not located in your current folder).

5. After the build completes, navigate to the application directory (located with in the
WebApps directory). For example, build/optimized/webApps/financialDispute.

6. Run the GNU tar command (tar -zcvf webapp.tgz *, for example).

tar -zcvf webapp.tgz *

Package the App Using Oracle Developer Cloud Service
To build and optimize the app in Oracle Developer Cloud Service (DevCS):

1. Configure a build job in Oracle Cloud for the web app:

• Associate the job with Git by adding Git as the source control (your web app also
needs to be integrated with a Git repository).

• Select a build template.

• Add string parameters that get passed into the build. These parameters include:

– The application's service URL, ID, and version (which you can obtain from your
Oracle Visual Builder instance)

– Your user and password (a Password Parameter)

– The optimization, such as Uglify2.

• For the build steps, add a shell script that begins with npm install and passes in the
default parameters to the Visual Builder Grunt Tasks, such as vb-build.

npm install
./node_modules/.bin/grunt vb-build \
--url=${URL} \
--username=${username} \
--password=${password} \
--id=${id} --ver=${ver} \
--optimize=${optimize} \
--schema=dev \

• For the After Build configuration, configure archiving, by choosing Artifact Archiver
(selected from Add After Build Action menu) and then enter build*zip in the Files to
Archive field.

2. After the build completes, download the ZIP file and then extract it. The index.html file is
located within the webapp folder (located in the webapps directory).

Chapter 35
Create a Webview Service

35-11

3. Package the app into a TGZ file (tar -zcvf webapp.tgz *, for example).

Create an Externally-Hosted Webview Service
For webview apps hosted on external web app servers, provide the following:

• Name—The name for remote service.

Note:

The name that you enter here must match the value for the service
property of the System.Webview component.

• Switch off the Service Hosted toggle.

• Web App URL—The base endpoint provided by a web server that accepts the
source parameters as the payload in a HTTP POST request. For example,
https://example.oracle.com:3001/webviewParams. Enter the URL for the
intermediary service when the web app and the intermediary service are hosted
separately.

• Auth Token—An authorization token that’s sent with requests to the URL
specified by the Web App Url property. This property is the form of Basic <token>
or Bearer <token>. This is an optional property

• Query Parameters—A stringified JSON object whose key-value pairs are the
query parameters that are appended to the POST request. This is an optional
property.

Reference the Returned Data in the Dialog Flow
Because the values returned in the payload do not update any of the variable values,
the property names in the response payload don't need to match the variable names
defined in the sourceVariableList property.

You can access the returned payload using $
{variable_property_name.value.Param}. In the following snippet, the output data is
referenced as ${outputfromweb.value.disputeReason}.

 webview:
 component: "System.Webview"
 properties:
 sourceVariableList: "fullname, amount"
 variable: "outputfromweb"
 prompt: "Tap the link to file your dispute."
 service: "DisputeFormService"
 transitions:
 next: "output"

 output:
 component: "System.Output"
 properties:
 text:" Thank you, ${fullname.value}, we've noted your response: $
{outputfromweb.value.disputeReason}"

Chapter 35
Reference the Returned Data in the Dialog Flow

35-12

After you create the Webview Service and configure the System.Webview component, you
can find out about the data returned by the web app using the Skill Tester (). After your
conversation has traversed past the System.Webview state, expand the System.Webview
component's variable definition in the Conversation window to examine the returned values.

Tip:

Web app developers should ensure that the returned payload includes descriptive
property names.

Scenario: Integrating a Web App With a Skill
You want to develop a skill that lets users search for patents and open PDFs of the patents
as follows:

1. After you awaken the skill by entering Hello, it prompts you for the patent query
parameters: assignee, keyword, and inventor. Enter Oracle, systems, and James,
respectively.

Chapter 35
Scenario: Integrating a Web App With a Skill

35-13

2. Choose Tap to continue to open the webview.

3. Choose a patent from the list and then click VIEW DOC.

Chapter 35
Scenario: Integrating a Web App With a Skill

35-14

4. Back in the skill conversation, tap Open PDF file.

Configure the index.html File
To support the webview that renders the search from within the skill, you have a SPA written
in React that uses the U.S. Patent Office's public REST API to locate patents by querying the
patent assignee, keyword, and inventor that are passed from the skill. Because you're going

Chapter 35
Scenario: Integrating a Web App With a Skill

35-15

to host this web app within Digital Assistant, so you need to add placeholders for these
parameters (and the callback URL) within the <script> block:

window.parameter="webview.value":
<title>React App</title>
 <script>
 window.Keyword="webview.keyword";
 window.Assignee="webview.assignee";
 window.Inventor="webview.inventor";
 window.callback_url="webview.onDone";
 </script>
</head>

Strings like PARAMETER_PLACEHOLDER and KEYWORD_PLACEHOLDER get replaced with the
actual values. The web app passes an output value back to the skill through a POST
call to the endpoint specified by the CALLBACK_URL property.

Note:

If you hosted the file on an external web app server, the index.html file
would describe the placeholders as follows:

<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no">
 <meta name="theme-color" content="#000000">
...
 <title>React App</title>
 <script>
 window.Keyword="__KEYWORD_PLACEHOLDER__";
 window.Assignee="__ASSIGNEE_PLACEHOLDER__";
 window.Inventor="__INVENTOR_PLACEHOLDER__";
 window.callback_url="__CALLBACK_URL_PLACEHOLDER__";
 </script>
 </head>

Configure the Dialog Flow to Pass Values to the Web App

Your dialog flow definition passes these variable values using the System.Webview
component. Before you define this component, however, you're going to declare these
variables and set their values as follows:

1. Declare variables for assignee, keyword, and inventor:

 variables:
 assignee: "string"
 keyword: "string"
 inventor: "string"
 instantAppOutput: "string"

Chapter 35
Scenario: Integrating a Web App With a Skill

35-16

 patentData: "string"
 patentFileLink: "string"
 iResult: "nlpresult"

2. Add System.Text and System.SetVariable states that prompt for these values and set
them:

 askAssignee:
 component: "System.Text"
 properties:
 prompt: "What assignee (company) are the patents for?"
 variable: "assignee"
 transitions:
 next: "askKeyword"
 askKeyword:
 component: "System.Text"
 properties:
 prompt: "What keyword are you looking for?"
 variable: "keyword"
 transitions:
 next: "askInventor"
 askInventor:
 component: "System.Text"
 properties:
 prompt: "Who is the patent inventor?"
 variable: "inventor"
 transitions:
 next: "doSearch"
 startSearch:
 component: "System.Output"
 properties:
 text: "Searching patent..."
 keepTurn: true
 transitions:
 next: "setAssignee"
 setAssignee:
 component: "System.SetVariable"
 properties:
 variable: "assignee"
 value: "${iResult.value.entityMatches['Assignee'][0]}"
 transitions:
 next: "setKeyword"
 setKeyword:
 component: "System.SetVariable"
 properties:
 variable: "keyword"
 value: "${iResult.value.entityMatches['Keyword'][0]}"
 transitions:
 next: "startInventor"
 startInventor:
 component: "System.SetVariable"
 properties:
 variable: "inventor"
 value: "${iResult.value.entityMatches['Inventor'][0]}"

Chapter 35
Scenario: Integrating a Web App With a Skill

35-17

 transitions:
 ...

3. With the mechanism in place to collect and set these values, you define your flow
for the System.Webview component (doSearch in the following snippet):

 doSearch:
 component: "System.Webview"
 properties:
 sourceVariableList: "assignee, keyword, inventor"
 variable: "patentData"
 prompt: "Tap link to view patents"
 service: "HostedWebservice1"
 transitions:
 ...

Your component definition:

• Passes these values as input parameters (sourceVariableList: "assignee,
keyword, inventor") to webview client app, whose index.html file contains
the corresponding value placeholders. The app uses these files to query to
query the patent data using the US Patent Office’s public REST API.

• Sets the variable (variable: "patentData") that holds the PDF link returned
from the webview.

• Names the Webview Service (HostedWebService1) that hosted the web app.
Like all Webview Service names, this name is listed in the Webview tab of the
Components page ().

4. To allow users to view the PDF of the patent file, add states for the
System.SetVariable component and the System.CommonResponse component:

• The System.setVariable state (savePatentFile in the following snippet) sets
the value for the patentFileLink using a value expression that extracts the
PDF value from the patentData variable (${patentData.value.url}).

• The System.CommonResponse state (showFileLink) references
patentFileLink to display the PDF URL as a hyperlink (cardUrl: "$
{patentFileLink}") in a card response.

 savePatentFile:
 component: "System.SetVariable"
 properties:
 variable: "patentFileLink"
 value: "${patentData.value.url}"
 transitions:
 next: "showFileLink"
 showFileLink:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "cards"
 cardLayout: "vertical"

Chapter 35
Scenario: Integrating a Web App With a Skill

35-18

 cards:
 # must have title, cardUrl, and one additional property for
card to work in FB Messenger
 - title: "View detail"
 description: "Open PDF file"
 cardUrl: "${patentFileLink}"

Chapter 35
Scenario: Integrating a Web App With a Skill

35-19

36
Skill Quality Reports

The Skill Quality reports enable you to quickly take stock of the intents and utterances across
all versions of the skill.

You can use the following reports (accessed by clicking in the left navbar) throughout the
skill development process:

• The Overview Report – This report's metrics and graphs allow you quickly assess the
size and shape of your training data by breaking down each of the skill's intents by the
number of utterances that they have. You can use this report as your data set grows
throughout out the development process to make sure that the number of intents, the
number of utterances per intent, and the word count for each utterance are always
compliant with our guidelines.

• The Report – Breaks down the intents by anomalies, utterances that might be
inappropriate for their intent because they are out of scope or mislabeled, or are
potentially applicable but difficult to classify because they are unsual.

Skill Quality Overview Report
The Skill Quality Report's metrics and graphs allow you quickly take stock or your training
data by breaking down each of the skill's intents the number of utterances that they have.
This report helps you to maintain a balanced distribution of utterances across intents. You
can use it throughout your development process to ensure that your corpus complies with our
guidelines for the number of intents, the number of utterances per intent, and the word count
for each utterance. This report can tell you at a glance if:

• Your skill has the minimum of two intents, but has not exceeded the recommended
number of 300 intents.

• Your training does not exceed 25,000 utterances.

• Each intent has a minimum of two utterances (with the recommended minimum of 12
utterances to provide predictable training).

• The average utterances length is between three and 30 words.

Note:

This report tracks the intents that have been enabled.

How to Use the Overview Report
The Overview report provides you with views of your training data.

• A high-level view of the training data through its intents-by-utterance-count bar chart and
metrics, which include the total number of intents and utterances across all versions of
the skill. Using the bar chart and the metrics, you can find out what these totals mean in
terms of how balanced or unbalanced your training set has become. For example, the

36-1

report's graph, along with the disparity between the Largest intent and Smallest
intent totals might indicate a lopsided training set, one where you need to add
data to close the gap between the largest and smallest intent.

Metric Description and Use

Intents The total number intents across all versions
of the skill. Use this metric to find out if this
skill has exceeded the recommended
maximum of 300 intents.

Utterances The total number of utterances across all of
the intents. Use this metric to find out the
actual size of the training set.

Largest intent The intent with the most utterances.
Compare this total against the Average
utterances per intent metric.

Smallest intent The intent with the least number of
utterances. You may need to add utterances
if this total is far below Average utterances
per intent.

Average utterances per intent The number of utterances averaged across
all intents. Use this metric to find out if
you're supplying enough data to your
training set.

Average length The utterance length across the entire
training set. Compare this metric against the
Average Utterance Length metric for an
intent to find out if the word count of its
utterances negatively impacts the model
because it's too high or too low.

Min length The shortest utterance in the training set.
Use this metric to find out if any of the
utterances in the training set have too few
words (less than three), which might
negatively impact model performance.

Chapter 36
Skill Quality Overview Report

36-2

Metric Description and Use

Max length The longest utterance in the training set.
Use this metric to find an long utterances
(30 words or more) which may negatively
impact model performance.

Answer Intent The number of answer intents in the training
set. Use this metric to compare the number
of answer intents to regular (or
transactional) intents.

Note:

The Min length, Max length, and Average length metrics and related warnings
are for native language skills, not for skills that use translation services.

The report flags problem areas with warnings. Hovering over a warning opens a
diagnostic message, which puts problematic utterance or intent in the context of our
intent and utterance guidelines and suggests corrective actions.

Tip:

The warning messages accessed from the metrics provide you with a link to the
Intent page.

These messages also display in the Intents Issues pane.

Chapter 36
Skill Quality Overview Report

36-3

• A breakdown of the training set on a per-intent basis. The report includes a table
listing intents by language (for multi-lingual skills), utterance count, and average,
minimum, and maximum word length. To see the latter three totals in context of the
overall training set, compare them to the Average length, Min Length and Max
Length metrics.
As with the high-level metrics, the report flags intents problematic intents with

warning messages. A warning in the Issues indicates that the intent is deficient

in some aspect of utterance length. Clicking the corresponding warning in the
Average Utterance Length, Max Utterance Length in Words, or Min Utterance
Length in Words columns opens a diagnostic message. You can apply the
corrective action suggested by the message directly to the intent by clicking the
link in the Intent column.

The Skill Quality Anomalies Report
Like the Overview report, this report breaks down intents by utterances. The
utterances tallied in this report, however, are anomalies, utterances that might be
inappropriate for their intent because they are out of scope or mislabeled, or are
potentially applicable but unique. Anomalies can cause the boundaries between
intents to become blurred, particularly if you've extended your skill to cover new
domains or have partitioned a large intent into smaller intents.

How to Use the Anomalies Report
This report not only ranks the intents by anomalies, but also ranks the anomalies
themselves by how different they are from other utterances in the training set.

Chapter 36
The Skill Quality Anomalies Report

36-4

You can sort the anomalies in this list both by severity and by intent. You can filter the
anomalies by intent, by words or phrases in utterances, and for a multi-lingual skill, by
language.

To find out where (or if) an utterance belongs in your training set, click View Similar in the list
to view it in the Similar Utterance report.

Like the Similar Utterances report used in the Utterance Tester, this report ranks the other
utterances in the training set relative to the selected utterance. In this case, however, the
utterance isn't a test phrase, but an anomalous utterance that's already in the training set.

Chapter 36
The Skill Quality Anomalies Report

36-5

Based on the anomaly's relationship to the other utterances in the report, you may find
that the utterance is simply misclassified or not pertinent to the skill at all. Other
anomalies, however, may only be anomalous to the other utterances in that they are
implicit requests – they are asking the same questions as the other training data, but in
a different way. For example, "I can't log into my account" might be evaluated as an
anomaly for an agent transfer intent whose training utterances cluster around more
straightforward requests like "I need to talk to a live agent." Adding similar utterances
will add depth to the model.

In general, your approach for using this report is:

1. Run the report.

2. Select an utterance, the click View Similar.

3. In the View Similar dialog, evaluate the utterance to the intent.

• If the utterance belongs to the intent, add similar utterances.

• If the utterance is misclassified, assign it to another intent.

• If the utterance does not belong in the training set, delete it.

4. Retrain the skill.

Chapter 36
The Skill Quality Anomalies Report

36-6

37
Insights

The Insights reports offer developer-oriented analytics that pinpoint issues with skills. Using
these reports, you can address these issues before they cause problems.

You can track metrics at both the chat session (or user session) level and at the conversation
level. A chat session begins when a user contacts a skill and ends either when a user has
closed the chat window or after the chat session has timed out after a period of inactivity. A
chat session can contain multiple conversations. You can toggle between the conversation
and session reporting using the Metric filter in the Overview report.

Note:

Session metrics do not apply to Q&A skills.

Chat Session Insights
Insights tallies the total number of chat sessions that were initiated for the skill and then
breaks this total down into the following categories.

• Ended Sessions – The number of chat sessions that ended explicitly by users closing
the chat window, or that have expired after the session expiration specified by the
channel configuration. Any in-progress chat sessions will be expired after the release of
21.12.

37-1

Note:

Chat Sessions initiated through the skill tester are expired after 24 hours
of inactivity. Currently, the functionality for ending a session by closing
the chat window is supported by the Oracle Digital Assistant Native
Client SDK for Web.

• Active Sessions – The chat sessions that remain active because the chat window
remains open or because they haven't yet timed out.

• Average User Responses per Session – The average number of responses
from users averaged by the total number of sessions initiated by the skill. A
response is counted each time a user interacts with the skill by asking a question
or replying to the skill message.

• Average Duration– The amount of time that users remained connected to this
skill averaged across all sessions.

• Session Trends – A comparison of the active, ended, and initiated chat sessions
presented in two different views:

– As a donut chart, which contrasts the total number of sessions that have been
initiated against the sessions that have ended or remain active. You can find
out the actual count by clicking the arcs.

– As a trend line that plots the count of active, ended, and initiated session
against dates.

• Channel usage breakdown – To find consumption data about the channels
through which users initiated sessions with this skill, compare the arcs of the chart
and hover over them to get the actual total.

Chapter 37
Chat Session Insights

37-2

Note:

The Skills filter is disabled for sessions reporting.

Conversation Insights for Skills
The conversation reports for skills, which track voice and text conversations by time period
and by channel, enable you to identify execution paths, determine the accuracy of your intent
resolutions, and access entire conversation transcripts.

Voice Insights are tracked for skills routed to chat clients that have been configured for voice
recognition and are running on Version 20.8 or higher of the Oracle Web, iOS, or Android
SDKs.

Report Types
• Overview – Use this dashboard to quickly find out the total number of voice and text

conversations by channel and by time period. The report's metrics break this total down
by the number of complete, incomplete, and in-progress conversations. In addition, this
report tells you how the skill completed, or failed to complete, conversations by ranking
the usage of the skill's transactional and answer intents in bar charts and word clouds.

• Custom Metrics – Enables you to measure the custom dimensions that have been
applied to the skill.

• Intents – Provides intent-specific data and information for the execution metrics (states,
conversation duration, and most- and least-popular paths).

• Paths – Shows a visual representation of the conversation flow for an intent.

Chapter 37
Conversation Insights for Skills

37-3

• Conversations – Displays the actual transcript of the skill-user dialog, viewed in
the context of the dialog flow and the chat window.

• Retrainer – Where you use the live data and obtained insights to improve your
skill through moderated self-learning.

• Export – Lets you download a CSV file of the Insights data collected by Oracle
Digital Assistant. You can create a custom Insights report from the CSV.

Review the Summary Metrics and Graphs

The Overview report's metrics, graphs, charts, and word clouds depict overall usage.
When the skill has handled both text and voice conversations, the default view of this
dashboard includes both text and voice (the rendering enabled by the All option).
Otherwise, the default is either just for text, or voice.

You can adjust this view by toggling the between the Voice and Text modes, or you
can compare the two by enabling. Compare text and voice conversations.

When you select Text, the report displays a set of common metrics. When you select
Voice, the report includes additional voice-specific metrics. These metrics only apply
for voice conversations, so they do not appear when you choose Compare text and
voice conversations

Chapter 37
Conversation Insights for Skills

37-4

Note:

The Mode options depend on the presence of voice or text messages. If there are
only text messages, for example, then only the Text option appears.

Common Metrics

The Overview report includes the following KPIs for both text and voice conversations

• Total number of conversations—The total number of conversations, which is
comprised of completed, incomplete, and in-progress conversations. Regardless of
status, a conversation can be comprised of one or more dialog turns. Each turn is a
single exchange between the user and the skill.

Note:

Conversations are not the same as metered requests. To find out more about
metering, refer to Oracle PaaS and IaaS Universal Credits Service
Descriptions.

• Completed conversations – Conversations that have ended by answering a user's
query successfully. Conversations are counted as complete when the traversal through
the dialog flow ends with a return transition or at a state with the insightsEndConversation
property.

• Incomplete conversations – Conversations that users didn't complete, because they
abandoned the skill, or couldn't complete it because of system-level errors, timeouts, or
infinite loops.

• In progress conversations – "In-flight" conversations (conversations that have not yet
completed nor timed-out). This metric tracks multi-turn conversations. An in-progress
conversation becomes an timeout after a session expires.

• Average time spent on conversations – The average length for all of the skill’s
conversations.

• Total number of users and Number of unique users – User base metrics that indicate
how many users a skill has and how many of these users are returning users.

Chapter 37
Conversation Insights for Skills

37-5

http://www.oracle.com/us/corporate/contracts/paas-iaas-universal-credits-3940775.pdf
http://www.oracle.com/us/corporate/contracts/paas-iaas-universal-credits-3940775.pdf

Voice Metrics

Any conversation that begins with a voice interaction is considered a voice
conversation. Any conversation started in voice, but was completed in text, is
considered a switched conversation. All other conversations are considered text. In
addition to the standard metrics, the Overview report includes the following metrics
that are specific to voice and switched conversations.

Note:

These metrics are for informational purposes only; you cannot act upon
them.

To view these metrics, disable Compare text and voice operations and select either
All or Voice as the mode.

• Average time spent on conversations – The average length of time of the voice
conversations.

• Average Real Time Factor (RTF) – The ratio of the time taken to process the
audio input relative to the CPU time. For example, if it takes one second of CPU
time to process one second of audio, then the RTF is 1 (1/1). The RTF for 500
milliseconds to process one second of audio is .5 or ½ . Ideally, RTF should be
below 1 to ensure that the processing does not lag behind the audio input. If the
RTF is above 1, contact Oracle Support.

• Average Voice Latency – The delay, in milliseconds, between detecting the end
of the utterance and the generation of the final result (or transcription). If you
observe latency, contact Oracle Support.

• Average Audio Time – The average duration, in seconds, for all voice
conversations.

• Switched Conversations – The percentage of the skill's conversations that began
with voice commands, but needed to be switched to text to complete the
interaction. This metric indicates that there were multiple execution paths involved
in switching from voice to text.

Chapter 37
Conversation Insights for Skills

37-6

Incomplete Conversation Breakdown
If there are any incomplete conversations during the selected period, the total number is
broken down by the following error categories:

• Timeouts – Timeouts are triggered when an in-progress conversation is idle for more
than an hour, causing the session to expire.

• System-Handled Errors – System-handled errors are handled by the system, not the
skill. These errors occur when the dialog flow definition is not equipped with error
handling, either globally in the defaultTransitions node, or at the state level with error
transitions.

• Infinite Loop – Infinite loops can occur because of flaws in the dialog flow definition,
such as incorrectly defined transitions.

• Canceled - The number of times that users exited a skill by explicitly canceling the
conversation.

By clicking an error category in the table, or one of the arcs in the graph, you can drill down to
the Conversations report to see these errors in the context of incomplete conversations.
When you access the Conversations report from here, the Conversations report's Outcome
and Errors filters are set to Incomplete and the selected error category. For example, if you
click Infinite Loop, the Conversations report will be filtered by Incomplete and Infinite
Loop. The report's Intents and Outcome filters are set to Show All and the Sort by field is set
to Latest.

Chapter 37
Conversation Insights for Skills

37-7

User Metrics
You can find out the number of users a skill has for a selected point in time through the
following metrics. You can compare them to the running total shown in the Total
number of conversations metric while filtering the report by channel and time period.
For live agent integrations, you can weigh the number of unique users who were
transferred to an agent against a total conversation count that includes live agent
transfers and skill-handled conversations.

• Number of users – A running total of all types of users who have interacted with
the skill: users with channel-assigned IDs that persist across sessions (the unique
users), and users whose automatically assigned IDs last for only one session.

• Number of unique users – The number of users who have accessed the skill as
identified by their unique user IDs. Each channel has a different method of
assigning an ID to a user: users chatting with the skill through the Web channel
are identified by the value defined for userId field, for example. The Skill Tester's
test channel assigns you a new user ID each time you end a chat session by
clicking Reset.
Once assigned, these unique IDs persist across chat sessions so that the unique
user count tallied by this metric does not increase when a user revisits the skill.
The count only increases when another user assigned with a unique ID is added to
the user pool.

Tip:

Because the user IDs are only unique within a channel (a user with
identical IDs on two different channels will be counted as two users, not
one), you can get a better idea of the user base by filtering the report by
channel.

Enable New User Tracking
To track users who have never before interacted with a skill or digital assistant, switch
on Enable Insights User Metrics in Settings > Configuration. Before you switch this
feature on for a skill, make sure that the channels routed to it assign some type of user
ID. Otherwise, leave this feature switched off (its default mode). Whenever channels
don't provide user IDs, Digital Assistant assigns a new user ID to each chat session.

Chapter 37
Conversation Insights for Skills

37-8

Enabling this feature when these types of channels are in use skews the reporting because
new users will be added for each new chat session and consequently, the user table will
become bloated with new entries. The new user data does not get purged automatically from
storage, so you need to use the Oracle Digital Assistant API instead. To purge the new user
data, include "purgeUserData": true in the payload of the Start Export Task POST request.

Note:

The collection of new user data only begins on the date that this feature was
shipped with Release 23.10.

Review Conversation Trends Insights
The Conversation Trends chart plots the following for transactional intents (including agent
transfer intents) and answer intents:

• Completed – The conversations that users have successfully completed. These
conversations include the ones where traversal through the dialog flow ended with the
triggering of a return action, or ended at a state with the insightsEndConversation property.

• Incomplete – Conversations that users didn't complete, because they abandoned the
skill, or couldn't complete because of system-level errors, timeouts, or flaws in the skill's
design.

• In Progress – "In-flight" conversations (conversations that have not yet completed nor
timed out). This metric tracks multi-turn conversations.

View Intent Usage
The Intents bar chart enables you to spot not only the transactional and answer intents that
completed conversations, but also the ones that caused incomplete conversations. You can
also use this chart to find out if the overall usage of these intents bears out your use case.
For example, does the number of completed conversations for an intent that serves a
secondary purpose outpace the number of completed conversations for your primary intent?
To put this in more practical terms, has your pizza ordering skill become a "file complaint" skill
that routes most users to a live agent?

Chapter 37
Conversation Insights for Skills

37-9

https://docs.oracle.com/en/cloud/paas/digital-assistant/rest-api-oci/op-bots-insights-dataexports-post.html

Note:

Not all conversations resolve to an intent. When No Intent displays in the
Intent bar chart and word cloud, it indicates that an intent was not resolved
by user input, but through a transition action, a skill-initiated conversation, or
through routing from a digital assistant.

You can filter the Intents bar chart and the word cloud using the bar chart's All Intents,
Answer Intents, and Transaction Intents options.

These options enable you to quickly breakdown usage. For example, for mixed skills –
ones that have both transactional and answer intents – you can view usage for these
two types of intents using the Answer Intents and Transaction Intents options.

Chapter 37
Conversation Insights for Skills

37-10

The key phrases rendered in the word cloud reflect the option, so for example, only the key
phrases associated answer intents display when you select Answer Intents.

Review Intents and Retrain Using Key Phrase Clouds
The Most Popular Intents word cloud provides a companion view to the Intents bar chart by
displaying the number of completed and incomplete conversations for an intent. It weighs the
most frequently invoked intents by size and by color. The size represents the number of
invocations for the given period.

The color represents the level of success for the intent resolution:

• Green represents a high average of resolving requests at, or exceeding, the Confidence
Win Margin threshold within the given period.

• Yellow represents intent resolution that, on average, don't meet the Confidence Win
Margin threshold within the given period. This color is a good indication that the intent
needs retraining.

• Red is reserved for unresolvedIntent. This is the collection of user requests that couldn't
be matched to any intent but could potentially be incorporated into the corpus.

The Most Popular Intents word cloud is the gateway to more detailed views of how the intents
resolve user messages. Review Intents and Retrain Using Key Phrase Clouds describes how
you can drill down from the Most Popular Intents word cloud to find out more about usage,
user interactions, and retraining.

Chapter 37
Conversation Insights for Skills

37-11

Beyond that, it gives you a more granular view of intent usage through key phrases,
which are representations of actual user input, and, for English-language phrases (the
behavior differs when non-English language phrases resolved to an intent), access to
the Retrainer.

Review Key Phrases
By clicking an intent, you can drill down to a set of key phrases. These phrases are
abstractions of the original user message that preserve its original intent. For example,
the key phrase cancel my order is rendered from the original message, I want to
cancel my order. Similar messages can be grouped within a single key phrase. The
phrases I want to cancel my order, can you cancel my order, and cancel my order
please can be grouped within the cancel my order key phrase, for example. Like the
intents, size represents the prominence for the time period in question and color
reflects the confidence level.

You can see the actual user message (or the messages grouped within a key phrase)
within the context of a conversation when you click a phrase and then choose View
Conversations from the context menu.

This option opens the Conversations Report.

Chapter 37
Conversation Insights for Skills

37-12

Anonymized values display in the phrase cloud when you enable PII Anonymization.

Retrain from the Word Cloud
In addition to viewing the message represented by the phrase in context, you can also add
the message (or the messages grouped within a key phrase) to the training corpus by clicking
Retrain.

This option opens the Retrainer, where you can add the actual phrase to the training corpus.

Chapter 37
Conversation Insights for Skills

37-13

Review Native Language Phrases
The behavior of the key phrase cloud differs for skills with native language support in
that you can't access the Retrainer for non-English phrases. When phrases in different
languages have been resolved to an intent, languages, not key phrases, display in the
cloud when you click an intent. For example, if French and English display after you
click unresolvedIntent, then that means that there are phrases in both English and
French that could not be resolved to any intent.

If English is among the languages, then you can drill down to the key phrase cloud by
clicking English. From the key phrase cloud, you can use the context menu's View
Conversations and Retrain options to drill down to the Conversation Report and the
Retrainer. But when you drill down from a non-English language, you drill down to the
Conversations report, filtered by the intent and language. There is no direct access to
the Retrainer. So going back to the unresolvedIntent example, if you clicked English,
you would drill down to the key phrase cloud. If you clicked French, you'd drill down to
the Conversations report, filtered by unresolvedIntent and French.

If you want to incorporate or reassign a phrase after reviewing it within the context of
the conversation, you'll have to incorporate the phrase directly from the Retrainer by
filtering on the intent, the language (and any other criteria).

Chapter 37
Conversation Insights for Skills

37-14

Review Language Usage
For a multi-lingual skill, you can compare the usage of its supported languages through the
segments of the Languages chart. Each segment represents a language currently in use.

If you want to review the conversations represented by a language in the chart, you can click
either a segment or the legend to drill down to the Conversations report, which is filtered by
the selected language.

Review User Feedback and Ratings
The User Rating donut chart and User Feedback word cloud track the direct feedback and
scores collected by the System.Feedback component. When the dialog transitions to a
System.Feedback state, the skill presents users with a rating system and optionally, the ability
to provide feedback. By default, the users can rate their interaction with the skill by choosing
along a range of one to five. For ODA Version 21.10 and higher, the feedback component is,
by default, a star rating system. For prior versions, the feedback component displays as a list.

Chapter 37
Conversation Insights for Skills

37-15

The average customer satisfaction score, which is proportional to the number of
conversations for each of the ratings, is rendered at the center of the donut chart. The
individual totals on a per-conversation basis for each number on the range are
graphed as arcs of the User Rating donut chart which vary in length according
occurrence. Clicking one of these arcs opens the Conversations report filtered by the
score.

Note:

If your skill runs on a platform prior to Release 21.12, you need to switch
Enable Masking off to see the user rating in the conversation transcript. To
retain the actual user rating in the transcripts for skills running on Platforms
21.12 and higher (where Enable Masking is deprecated), you need delete
the NUMBER entity from the list of entities treated as PII when enabling PII
anonymization.

By default, the System.Feedack component's threshold for determining a positive or
negative reaction is set at two (Dissatisfied). If user feedback is enabled for the
System.Feedback component, the User Feedback word cloud displays the user

Chapter 37
Conversation Insights for Skills

37-16

comments that accompany negative ratings and sizes them according to their frequency. You
can see these comments in the context of the overall interaction by clicking the arc on the
User Rating chart that represents a below-the-threshold rating (a one or two per the
component's default settings) to drill down to the Conversation report, which is filtered by the
selected score.

How to Add the Feedback Component to the Dialog Flow
To capture data for the User Rating graph and User Feedback word cloud, you need to a add
a sequence of states to your dialog flow. The first of these state is a System.Feedback state.
In the following snippet, this state is called getUserFeedback. To add the template for this
state, choose User Messaging > Solicit User Feedback > Ask User Feedback from the
Add Component dialog.

In addition to the System.Feedback state, you need to add the states for its above, below, and
cancel transitions. These states accommodate the high and low range of the rating as
determined by the threshold property and also allow users to skip having to give a rating
altogether. In this snippet, these states display simple text messages, with the "below" state
using a system variable, system.userFeedbackRating, in a value expression ($
{system.userFeedbackRating.value}) to output the user's rating. Each of these states
terminate the conversation with a return: done transition.

Note:

The System.Feedback component does not allow out-of-order input, so users can't
change their ratings or responses after they've sent them.

Your dialog flow can transition to a System.Feedack sequence whenever you want to gauge a
user's reaction. This could be, as illustrated by the following snippet, after a user has either
completed or canceled a transaction. When adding System.Feedback:

• The flow must explicitly transition to the System.Feedback state using a next transition.

• The final state in the transactional flow must include keepTurn: true.

Chapter 37
Conversation Insights for Skills

37-17

Note:

The hard-coded strings for output text in the following snippet are for
illustrative purposes only. Per our best practices, reference bundles, not
string literals, should be used for output text.

 confirmation:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - text: "Thank you for your order. Your pizza will arrive in
30 minutes!"
 type: "text"
 - type: "attachment"
 attachmentType: "image"
 name: "image"
 attachmentUrl: "$
{pizzaCardInfo.value[pizza.value.Type].image}"
 processUserMessage: false
 transitions:
 next: "getUserFeedback"
 cancelorder:
 component: "System.Output"
 properties:
 text: "Your order is canceled"
 keepTurn: true
 transitions:
 next: "getUserFeedback"
...
 getUserFeedback:
 component: "System.Feedback"
 properties:
 threshold: 2
 maxRating: 5
 enableTextFeedback: true
 transitions:
 actions:
 above: "positiveFeedback"
 below: "negativeFeedback"
 cancel: "cancelFeedback"
 positiveFeedback:
 component: "System.Output"
 properties:
 text: "Thank you for your rating of $
{system.userFeedbackRating.value}."
 transitions:
 return: "done"
 negativeFeedback:
 component: "System.Output"
 properties:
 text: "You entered ${system.userFeedbackText.value}. We

Chapter 37
Conversation Insights for Skills

37-18

appreciate your feedback."
 transitions:
 return: "done"
 cancelFeedback:
 component: "System.Output"
 properties:
 text: "Feedback canceled."
 transitions:
 return: "done"

Tip:

You can customize the prompts output by the System.Feedback component by the
editing the Feedback-related resource bundles accessed through the Resource
Bundle Configuration page or by editing the systemComponent_Feedback_ keys in a
resource bundle CSV file.

Using Custom Metrics to Measure Feedback
You can augment the feedback reporting with a high-level view of positive, negative and
skipped feedback by setting a System.SetCustomMetrics state for each of the states named by
the System.Feedback's above, below, and cancel transition actions.

The System.SetCustomMetrics states in the following snippet segment the feedback for the
Feedback Type dimension in the Custom Metrics report.

...
 getUserFeedback:
 component: "System.Feedback"
 properties:
 threshold: 2
 maxRating: 5
 enableTextFeedback: true
 footerText:
 transitions:
 actions:
 above: "PositiveFeedbackMetrics"

Chapter 37
Conversation Insights for Skills

37-19

 below: "NegativeFeedbackMetrics"
 cancel: "CancelFeedbackMetrics"

 PositiveFeedbackMetrics:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Feedback Type"
 value: "Positive"
 transitions:
 next: "positiveFeedback"

 positiveFeedback:
 component: "System.Output"
 properties:
 text: "Thank you for the ${system.userFeedbackRating.value}-star
rating."
 transitions:
 return: "done"

 NegativeFeedbackMetrics:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Feedback Type"
 value: "Negative"
 transitions:
 next: "negativeFeedback"

 negativeFeedback:
 component: "System.Output"
 properties:
 text: "Thank you for your feedback."
 transitions:
 return: "done"

 CancelFeedbackMetrics:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Feedback Type"
 value: "Canceled"
 transitions:
 next: "cancelFeedback"

 cancelFeedback:
 component: "System.Output"
 properties:
 text: "Maybe next time."
 transitions:
 return: "done"

Chapter 37
Conversation Insights for Skills

37-20

Review Custom Metrics
The Custom Metrics report gives you added perspectives on the Insights data by tracking
conversation data for skill-specific dimensions. The dimensions tracked by this report are
created in the dialog flow definition using the System.SetCustomMetrics component. Using this
component, you can create dimensions to explore business and development needs that are
particular to your skill. For example, you can build dimensions that report the consumption of
a product or service (the most requested pizza dough or the type of expense report that's
most commonly filed), or track when the skill fails users by forcing them to exit or by passing
them to live agents.

The Custom Metrics report graphs the dimensions defined on the conversation data as both a
donut chart and a line trend graph. Each dimension has its own conversation total. This tally
includes conversations that have completed, are incomplete, or in progress. The dimension's
values (or categories) are represented as segments on the donut chart and as points on the
and line trend chart. You can use these values to filter the report view (and also the custom
metric data that you can download into a CSV file).

Chapter 37
Conversation Insights for Skills

37-21

On the donut chart, the length of the arcs represent the occurrences of the dimension
value as a percentage of the total number of conversations. The actual count for the
dimension values is tracked by the line chart. Both the arcs and the trend lines are
access points to the Conversations report. Clicking either opens the Conversations
report filtered by the selected dimension value.

Note:

Dimensions and categories appear in the report only when the conversations
measured by them have occurred.

Instrument the Skill for Custom Metrics
To generate the Custom Metrics report, you need to define one or more dimensions
using the System.SetCustomMetrics component (accessed by clicking Variables > Set
Insights Custom Metrics in the Add Component dialog for YAML dialogs or
Variables > Set Custom Metrics in Visual Flow Dialog mode).

Chapter 37
Conversation Insights for Skills

37-22

If the Custom Metrics report has no data, then it's likely that no System.SetCustomMetrics
states have been defined, or that the transitions to these states have not been set correctly.

You can add System.SetCustomMetrics states wherever you want to track an entity value or
an activity within an execution flow.

Note:

You can define up to six dimensions for each skill.

Depending on the structure of the dialog flow definition and your use case, you can define
multiple dimensions within a single System.SetCustomMetrics state, or with several
System.SetCustomMetrics states throughout the dialog flow definition.

Creating Dimensions for Variable Values
You can track entity values by setting a transition to a System.SetCustomMetrics state from a
state that sets the entity value that you want to track, or as illustrated by the setPizzaDough
state in the following snippet, ends a series of value-setting states that you want to track. The
setInsightsCustomMetrics state in the following snippet, for example, follows the value-
setting resolveEntities and setPizzaDough states that resolve the items in a composite bag
entity.

 resolveEntities:
 component: "System.ResolveEntities"
 properties:
 variable: "pizza"
 nlpResultVariable: "iResult"
 maxPrompts: 5

Chapter 37
Conversation Insights for Skills

37-23

 headerText: "<#list
system.entityToResolve.value.updatedEntities>I have updated the
<#items as ent>${ent.description}<#sep> and </#items>. </#list>"
 cancelPolicy: "immediate"
 transitions:
 actions:
 cancel: "maxError"
 next: "setInsightsCustomMetrics"

 setInsightsCustomMetrics:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Dough Preference"
 value: "${pizza.value.PizzaDough}"
 - name: "Pizza Sizes Ordered"
 value: "${pizza.value.PizzaSize}"
 - name: "Pizza Types Ordered"
 value: "${pizza.value.PizzaTopping}"
 transitions:
 next: "showPizzaOrder"

The dimensions and filters in the Custom Metrics report are rendered from the name-
value pairs defined for the dimensions attribute. The value properties' Apache
Freemarker expressions reference the bag items. In this case, the bag items are all
value list entities, which means that their individual values can be applied as filters and
data segments in the Custom Metrics report. The resulting report for this pizza skill
breaks down pizza orders by size, type, and pizza dough, supplementing the metrics
already reported for the Order Pizza intent.

Entity value-based dimensions are only recorded in the Custom Metrics report after an
entity value has been set. When no value has been set, or when the value-setting

Chapter 37
Conversation Insights for Skills

37-24

state does not transition to a System.SetCustomMetrics state, the report's graphs note the
missing data as <not set>. Depending on the composition and complexity of the dialog flow
definition, the entity values that you want to track may not be resolved within the same dialog
flow like the one illustrated in the above snippet. In these situations, you may not be able to
define all the dimensions with a single System.SetCustomMetrics state. Instead, you'll need
System.SetCustomMetrics states to different parts of the dialog flow definition.

Creating Dimensions that Track Skill Usage
In addition to dimensions based on variable values, you can create dimensions that track not
only how users interact with the skill, but its overall effectiveness as well. You can, for
example, add a dimension that tells you how often, and why, users are transferred to live
agents.

You can create dimensions like these, which can inform you of the user experience, using
text strings, such as value: "No Agent Needed" in the following snippet, an illustration of
how to create a single dimension (Agent Transfer) from a series of a
System.SetCustomMetrics states.

states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 optionsPrompt: "Do you want to"
 transitions:
 actions:
 OrderPizza: "startOrderPizza"
 WelcomePizza: "startWelcome"
 LiveChat: "setInsightsCustomMetrics3"
 unresolvedIntent: "startUnresolved"

...

 setInsightsCustomMetrics:
 component: "System.SetCustomMetrics"
 properties:

Chapter 37
Conversation Insights for Skills

37-25

 dimensions:
 - name: "Pizza Size"
 value: "${pizza.value.PizzaSize}"
 - name: "Pizza Type"
 value: "${pizza.value.PizzaTopping}"
 - name: "Pizza Crust"
 value: "${pizza.value.PizzaDough}"
 - name: "Agent Transfer"
 value: "No Agent Needed"
 transitions:
 next: "showPizzaOrder"

...

 startUnresolved:
 component: "System.Output"
 properties:
 text: "I didn't that get that. Let me connect you with support."
 keepTurn: true
 transitions:
 next: "setInsightsCustomMetrics1"

Transfer because of unresolved input

 setInsightsCustomMetrics1:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer"
 value: "Bad Input"
 transitions:
 next: "getAgent"

 maxError:
 component: "System.Output"
 properties:
 text: "OK, let's connect you with someone to help"
 keepTurn: true
 transitions:
 next: "setInsightsCustomMetrics2"

Transfer because of Max Error"

 setInsightsCustomMetrics2:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer"
 value: "Max Errors"
 transitions:
 next: "getAgent"

Transfer because of direct request

 setInsightsCustomMetrics3:

Chapter 37
Conversation Insights for Skills

37-26

 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer"
 value: "Agent Requested"
 transitions:
 next: "getAgent"

 getAgent:
 component: "System.AgentInitiation"

...

Each System.SetCustomMetrics state defines a different category for the Agent Transfer
dimension. The Custom Metrics report records data for these metrics when these states are
included in an execution flow, and as illustrated by the above sample, are named in the
transitions.

Custom Metric States for
Agent Transfer Dimension

Value Use

setInsightsCustomMetrics No Agent Needed Reflects the number of
successful conversations where
orders were placed without
assistance.

setInsightsCustomMetrics1 Bad Input Reflects the number of
converstaions where unresolved
input resulted in users getting
transferred to a live agent.

setInsightsCustomMetrics2 Max Errors Reflects the number of
conversations where users were
directed to live agents because
they reached the m

setInsightsCustomMetrics3 Agent Requested Reflects the number of
conversations where users
requested a live agent.

Export Custom Metrics Data
Clicking Export downloads the custom metrics data in a CSV file that you can use to for your
own offline analysis and reporting. You can filter the data downloaded to the CSV by the
dimension values. This downloaded CSV has the following fields.

Chapter 37
Conversation Insights for Skills

37-27

Column Description

CREATED_ON The date of the data export.

USER_ID The ID of the skill user.

SESSION_ID An identifier for the current session. This is a
random GUID, which makes this ID different
from the USER_ID.

BOT_ID The skill ID which is assigned to the skill when
it was created.

CUSTOM_METRICS A JSON array that contains an object for each
custom metric dimension. name is a dimension
name and value is the dimension value
captured from the conversation.
[{"name":"Custom Metric Name
1","value":"Custom Metric Value"},
{"name":"Custom Metric Name
2","value":"Custom Metric
Value"},...] For example:
[{"name":"Pizza
Size","value":"Large"},
{"name":"Pizza Type","value":"Hot
and Spicy"},{"name":"Pizza
Crust","value":"regular"},
{"name":"Agent Transfer","value":"No
Agent Needed"}].

QUERY The user utterance or the skill response that
contains a custom metric value.

CHOICES The menu choices in UI components.

COMPONENT The dialog component,
System.setCustomMetrics, that executes
the custom metrics.

CHANNEL The channel that conducted the session.

Review Intents Insights
You can find out the total number of complete and incomplete conversations for each
intent in the Overview report. Using the Intents report, you can find out how the user
traffic flowed along the intents' execution paths and where it was blocked by
malfunctioning states.

Note:

This report returns the intents defined for a skill over a given time period, so
its contents may change to reflect the intents that have been added,
renamed, or removed from the skill at various points in time.

Chapter 37
Conversation Insights for Skills

37-28

Completed Paths
For completed conversations, the report tells you the number of execution paths that users
traversed to complete these conversations with statistics on the time spent and the number of
states visited.

You can use these statistics and as indicators of the user experience. For example, you can
use this report to ascertain if the time spent is appropriate to the task, or if the shortest paths
still result in an attenuated user experience, one that may encourage users to drop off. Could
you, for example, usher a user more quickly through the skill by slotting values with
composite bag entities instead of prompts and value setting components?

For more context on completed conversations:

• You can trace the execution path for a selected intent by clicking View Path, which opens
the Paths report filtered by completed conversations for the intent. To improve focus on
the execution paths, you can filter out the states that you're not interested in.

Chapter 37
Conversation Insights for Skills

37-29

• You can read transcripts of the completed conversations for an intent by clicking
View Conversations, which opens the Conversations report filtered by completed
conversations for the intent.

Incomplete Paths
For the incomplete conversations, you can identify the states along the intent's
execution path where these conversations ended using the Incomplete States
horizontal bar chart. This chart, which renders for the transactional intents listed in the
left navbar, plots the distribution of incomplete conversations by state, which can be a
state defined in the dialog flow, or an internal state that marks the end of a
conversation, such as System.DefaultErrorHandler. Using it, you can find out if a
dialog flow state is a continual point of failure and the reasons why (errors, timeouts, or
bad user input). This report doesn’t show paths or velocity for incomplete paths
because they don’t apply to this user input. Instead, the bar chart ranks each intent by
the number messages that either couldn’t be resolved to any intent, or had the
potential of getting resolved (meaning the system could guess an intent), but were
prevented from doing so because of low confidence scores.

Chapter 37
Conversation Insights for Skills

37-30

Note:

The Incomplete States chart doesn't render static intents (Answer Intents) because
their outcomes are supported by the System.Intent component state alone, not by
a series of states in an dialog flow definition.

For more context on the incomplete conversations for an intent:

• Click View Path opens the Paths report filtered for incomplete conversations for the
selected intent. The terminal states on this path may include states defined in the dialog
or an internal state that marks the end of a conversation, such as System.EndSession,
System.ExpiredSession, System.MaxStatesExceededHandler, and
System.DefaultErrorHandler.

• You can access transcripts of conversations that lead to the failure by clicking View
Conversations. This option opens the Conversations report filtered for incomplete
conversations for the selected intent. You can narrow the results further by applying a
filter. For example, you can filter the report by error conditions.

Chapter 37
Conversation Insights for Skills

37-31

unresolvedIntent
In addition to the duration and routes for task-oriented intents, the Intents report also
returns the messages that couldn’t get resolved. To see these messages, click
unresolvedIntent in the left navbar. Clicking an intent in the Closest Predictions bar
chart updates the Unresolved Message window with the unresolved messages for that
intent sorted by a probability score.

You can view the path and conversations for these unresolved messages by View
Path and View Conversations, but you can also access the unresolved messages
through the Retrainer report, where you can evaluate them as possible addtions to the
training data. Clicking Retrain opens the Retrainer report filtered by unresolved
messages.

Chapter 37
Conversation Insights for Skills

37-32

Review Path Insights
The Paths report lets you find out how many conversations flowed through the intents'
execution paths for any given period. This report renders a path that's similar to a transit map
where the stops can represent intents, the states defined in the dialog flow definition and the
internal states that mark the beginning and end of every conversation that is not classified as
in-progress.

You can scroll through this path to see where the values slotted from the user input propelled
the conversation forward, and where it stalled because of incorrect user input, timeouts
resulting from no user input, system errors, or other problems. While the last stop in a
completed path is green, for incomplete paths where these problems have arisen, it’s red.
Through this report, you can find out where the number of conversations remained constant
through each state and pinpoint where the conversations branched because of values getting
set (or not set), or dead-ended because of some other problem like a malfunctioning custom
component or a timeout.

Query the Paths Report
The Paths report renders an intent execution path according to your query parameters. You
can query this report for both the complete and incomplete execution paths for any or all
intents, set the length of the path by choosing a final state, and isolate portions of the
execution paths by excluding states that are of secondary importance. For example, you may
consider states that set variables or instrument the skill for custom metrics as "filler" states
that detract from the focus of your investigation.

Chapter 37
Conversation Insights for Skills

37-33

All of the execution flows render by default after you enter your query. The green

Begin arrow represents System.BeginSession, the system state that starts each

conversation. The getIntent icon icon can represent different intents, depending
on the filter. It can refer to a specific intent that you've chosen one as a filter, or it can
represent every intent defined for your skill when you filter the report by All (which is
the default setting).

For incomplete conversations, the path may conclude with an internal state such
as System.ExpiredSession, System.MaxStatesExceededHandler, or
System.DefaultErrorHandler that represent the error that terminated the
conversation.

Tip:

Use the Filter States filter to search for, and remove, the states that you're
not interested in from the path rendering.

Clicking the final state opens the details panel, which displays statistics, errors,
warnings and the final user messages.

Chapter 37
Conversation Insights for Skills

37-34

The report displays Null Response for any customer message that's blank (or not otherwise
in plain text) or contains unexpected input. For non-text responses that are postback actions,
it displays the payload of the most recent action. For example:

{"orderAction":"confirm""system.state":"orderSummary"}

Clicking View Conversations opens the Conversations report queried by the path so that
you can review the messages that concluded the conversation within the context of a
transcript.

Scenario: Querying the Pathing Report
Looking at the Overview report for a financial skill, you notice that there is a sudden uptick in
incomplete conversations. By adding up the values represented by the orange "incomplete"
segments of the stacked bar charts, you deduce that conversations are failing on the
execution paths for the skill's Send Money and Balances intents.

Chapter 37
Conversation Insights for Skills

37-35

To investigate the intent failures further, you open the pathing report and enter your
first query: filter for all intents that have an incomplete outcome. The path renders with
two branches: one that begins with startPayments and ends with
SystemDefaultErrorHandler and a second that starts with startBalances and also ends

with System.DefaultErrorHandler . Clicking the final node in either path opens the
details pane that notes the number of errors and displays snippets of the user
messages received by the skill before these errors occurred. To see these snippets in
context, you then click View Conversations in the details panel to see the transcript.
In all of the conversations, the skill was forced to respond with Unexpected Error
Prompt (Oops! I'm encountering a spot of trouble…) because system errors prevented
it from processing the user request.

To find out more about the states leading up to these errors (and their possible roles in
causing these failures), you then refer to the dialog flow definition to identify the states
that begin the execution paths for each of the intents.

states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 Balances: "startBalances"
 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending: "startTrackSpending"
 Dispute: "setDate"
 unresolvedIntent: "unresolved"

These states (referenced as transition actions for the System.Intent component) are
startBalances, startTxns, startPayments, startTrackSpending, and setDate.

Comparing the paths to the dialog flow definition, you notice that in both the
startPayments and the startBalances flows, the last state rendered in the path
precedes a state that uses a custom component. After checking the Components
page, you notice that the service has been disabled, preventing the skill from retrieving
the account information needed to complete conversations.

Review the Skill Conversation Insights
Using the Conversations report, you can examine the actual transcripts of the
conversations to review how the user input completed the intent-related paths, or why
it didn’t. You can filter the conversations by channel, by mode (Voice, Text, All), Type
(intent flow or LLM flow), and by time period.

You can review conversation transcripts by filter this report by intents. You can add
dimension like conversation length and outcome, which is noted as completed,
incomplete, or in progress. If you want to find out which error type contributed to
incomplete conversations, you can filter Outcome by Incomplete, and then select one
of the error categories (Timeouts, Infinite Loops, and System-Handled Errors) for
the Errors filter. For conversations with messages that began as voice but ended up as
text, you can also filter by Switched Conversations.

Chapter 37
Conversation Insights for Skills

37-36

View Conversation Transcripts
Clicking View Conversation opens the conversation in the context of a chat window. Clicking
the bar chart icon displays the voice metrics for that interaction.

View Voice Metrics
Clicking View Voice Metrics displays a subset of the voice metrics that are averaged across
the entire conversation. To view these metrics broken down by the indivdual voice
interactions, click the bar chart icon in the transcript view that's accessed by clicking View
Conversations.

Chapter 37
Conversation Insights for Skills

37-37

How the Insights Reports Handle return Transitions
For a single intent, the Conversations report lists the different conversations that have
completed. However, complete can mean different things depending on the user
message and the return transition, which ends the conversation and destroys the
conversation context. For an OrderPizza intent, for example, the Conversations report
might show two successfully completed conversations. Only one of them culminates in
a completed order. The other conversation ends successfully as well, but instead of
fulfilling an order, it handles incorrect user input.

 startUnresolved:
 component: "System.Output"
 properties:
 text: "I can only order pizza for you today. Let me know what
kind of pizza you'd like?"
 keepTurn: false
 transitions:
 return: "startUnresolved"

Chapter 37
Conversation Insights for Skills

37-38

You can find out the different outcomes for the same intent using the Final State filter in the
Paths report.

How the Insights Reports Handle Empty Transitions
A skill throws an exception when the final state in a flow either lacks a transition, or uses an
empty transition (transitions: {}). Insights considers these conversations as incomplete,
even when they've handled a transaction successfully. In the paths, these final states get
classified as System.DefaultErrorHandler.

PII Anonymization
User messages may contain Personally Identifiable Information (PII), information like first and
last names, phone numbers, and e-mail addresses. To protect user privacy, but preserve the
context of the message, you can anonymize the PII values with an equivalent value, an
anonym, before they're persisted to the database. These anonymns are used consistently
within a session. For example, all occurrences of "John Smith" in a conversation would be
replaced by the anonym, "davis". In this case, davis, not John Smith, is stored in the
database and appears throughout the export logs and the Insights reports such a the
Convevrsations report, the Retrainer, and the key word phrase cloud.

Note:

CURRENCY and DATE_TIME values are not anonymized, even though they
contain numbers. Also, the "one" in the default prompt for a composite bag entity
("Please select one value for...") gets anonymized as a numeric value. To avoid this,
add a custom prompt ("Select a value for...", for example).

You can anonymize the values recognized by the following system entities:

• PERSON

• NUMBER

Chapter 37
Conversation Insights for Skills

37-39

• EMAIL

• PHONE_NUMBER

• URL

Note:

Enable Masking is deprecated in Release 21.12. Use PII anonymization
instead to mask numeric values in the Insights reports and export logs. You
cannot apply anonymization to conversations logged prior to the 21.12
release.

Enable PII Anonymization
1. Click Settings > General.

2. Switch on Enable PII Anonymization.

3. Click Add Entity to select the entity values that you want to anonymize in the
Insights reports and the logs.

Note:

Anonymized values are persisted to the database only after you enable
anonymization for PII values for the selected entities. They are not
applied to prior conversations. Depending on the date range selected for
the Insights reports or export files, the PII values might appear in both
their actual and anonymized forms. You can apply anonymization to any
non-anonymized PII value (including those in conversations that
occurred before you enabled anonymization in the skill or digital
assistant settings) when you create an export task. These anonyms
apply only to the exported file and are not persisted in the database.

If you want to discontinue the anonymization for a PII value, or if you don't want an
anonym to be used at all, select the corresponding entity and then click Delete
Entity. Once you delete an entity, the actual PII value appears throughout the
Insights reports for subsequent conversations. Its anonymized form, however, will
remain for prior conversations.

Note:

Anonymization is permanent (the export task-applied anonymization
notwithstanding). You can't recover PII values after you enable
anonymization.

Chapter 37
Conversation Insights for Skills

37-40

PII Anonymization in the Export File
Anonymization in an exported Insights file depends on whether (and when) you've enabled
PII anonymization for the skill or digital assistant in Settings.

When you enable PII anonymization settings for the skill or digital assistant:

• The PII values recognized for the selected entities are replaced with anonyms. These
anonyms get persisted to the database and replace the PII values in the logs and Insights
reports. This anonymization is applied to the conversations that occur after – not prior to
– your enabling of anonymization in Settings.

• The Enable PII anonymization for the file option for the export task is enabled by
default to ensure that the PII values recognized for the entities selected in Settings are
applied to conversations that occurred before PII anonymization had been set. The
anonyms applied during the export to conversations that predate the PII anonymization
exist in the export file only. The original PII values remain in the database, Insights logs,
and in the Insights reports).

• If you switch off Enable PII anonymization for the file, only the PII values recognized
for the entities that were selected in Settings will be anonymized. The log files will contain
the anonyms for conversations that occurred after anonymization settings have been
enabled for the skill or digital assistant. Prior conversations will appear as original,
unmodified utterances with their PII values intact. Consequently, the export file may
include both anonymized and non-anonymized conversations if part of the export task's
date range predates anonymization.

Note:

If your export task includes anonymized conversations that occurred prior to
Release 22.04, the anonyms applied to the pre-22.04 conversations will be
changed, or re-anonymized, in the export files when you select Enable PII
anonymization for the file for the export task. The anonyms in the exported
file will not match either the anonyms in pre-22.04 export files or the anonyms
that appear in the Insights reports.

When you disable, or don't configure, PII anonymization settings for a skill or digital assistant:

• The Enable PII anonymization for the file option will be disabled by default for the
export task so that the exported file will contain all the original unmodified utterances,
including the PII values.

• If you select Enable PII anonymization for the file, the PII values will be anonymized in
the exported file only for the default entities, PERSON, EMAIL, URL, and NUMBER. The
PII values will remain in the database, logs, and Insights reports.

Chapter 37
Conversation Insights for Skills

37-41

Model the Dialog Flow
By default, Insights tracks all of the states in a conversation, but you may not want to
include all of them in the reports. To focus on certain transactions, or exclude the
states from the reporting entirely, you can model the dialog flow using the
insightsInclude and insightsEndConversation properties. These properties, which
you can add to any component, provide a finer level of control over the Insights
reporting.

Note:

These properties are only supported on Oracle Digital Assistant instances
provisioned on Oracle Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure). They are not supported on instances
provisioned on the Oracle Cloud Platform (as are all version 19.4.1 instances
of Oracle Digital Assistant).

Mark the End of a Conversation
Instead of depending on the return transition to mark the end of a complete
conversation, you can instead mark where you want to stop recording the conversation
for insights reporting using the insightsEndConversation property. This property
enables you to focus only on the aspects of the dialog flow that you're interested in.
For example, you may only need to record a conversation to the point where a
customer cancels an order, but no further (no subsequent confirmation messages or
options that branch the conversation). By default, this property is set to false,
meaning that Insights continues recording until a return transition, or until the
insightsEndConversation property is set to true (insightsEndConversation: true).

 cancelOrder:
 component: "System.Output"
 properties:
 text: "Your order is canceled."
 insightsEndConversation: true
 transitions:
 next: "intent"

Because this flag changes how the insights reporting views a completed conversation,
conversation counts tallied after the introduction of this flag in the dialog flow may not
be comparable to the conversation counts for previous versions of the skill.

Note:

The insightsEndConversation marker is not used in the Visual Flow
Designer because the modular flows already delineate the conversation. A
conversation ends when the last state of a top-level flow has been reached.

Chapter 37
Conversation Insights for Skills

37-42

Streamline the Data Collected by Insights
Use the insightsInclude property to exclude states that you consider extraneous from being
recorded in the reports. To exclude a state from the Insights reporting, set this property to
false:

...
 resolveSize:
 component: "System.SetVariable"
 properties:
 variable: "crust"
 value: "${iResult.value.entityMatches['PizzaSize'][0]}"
 insightsInclude: false
 transitions:
 ...
...

This property is specific to Insights reporting only. It does not prevent states from being
rendered in the Tester.

Note:

insightsInclude is not supported by the Visual Flow Designer.

Use Cases for Insights Markers
These typical use cases illustrate the best practices for making the reports easier to read by
adding the conversation marker properties to the dialog flow.

Use Case 1: You Want to Separate Conversations by Intents or Transitions
Use the insightsEndConversation: true property to view the user interactions that occur
within a single chat session as separate conversations. You can, for example, apply this
property to a state that begins the execution path for a specific intent, yet branches the dialog
flow.

The CrcPizzaBot skill's ShowMenu state, with its pizza, pasta, and textReceived transitions is
such a state:

 ShowMenu:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "Hello ${profile.firstName}, this is our menu today:"
 footerText: "${(textOnly.value=='true')?then('Enter number to
make your choice','')}"

Chapter 37
Conversation Insights for Skills

37-43

 name: "hello"
 separateBubbles: true
 actions:
 - label: "Pizzas"
 type: "postback"
 keyword: "${numberKeywords.value[0].keywords}"
 payload:
 action: "pizza"
 name: "Pizzas"
 - label: "Pastas"
 keyword: "${numberKeywords.value[1].keywords}"
 type: "postback"
 payload:
 action: "pasta"
 name: "Pastas"
 transitions:
 actions:
 pizza: "OrderPizza"
 pasta: "OrderPasta"
 textReceived: "Intent"

By adding the insightsEndConversation: true property to the ShowMenu state, you
can break down the reporting by these transitions:

 ShowMenu:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 insightsEndConversation: true
…

Because of the insightsEndConversation: true property, Insights considers any
further interaction enabled by the pizza, pasta, or textReceived transitions as a
separate conversation, meaning that two conversations, rather than one, are tallied in
Overview page's Conversations metric and likewise, two separate entries are created
in the Conversations report.

Note:

Keep in mind that conversation counts will be inconsistent with those tallied
prior to adding this property.

The first entry is for the ShowMenu intent execution path is where the conversation
ends with the ShowMenu state.

Chapter 37
Conversation Insights for Skills

37-44

The second is the transition-specific entry that names an intent when the textReceived
action has been triggered, or notes No Intent when there's no second intent in play. When
you choose either Pizzas or Pastas from the list menu rendered for the showMenu state, the
Conversation report contains a ShowMenu entry and a No Intent entry for the transition
conversation because the user did not enter any text that needed to be resolved to an intent.

However, when you trigger the textReceived transition by entering text, the Conversation
report names the resolved intent (OrderPizza, OrderPasta).

Chapter 37
Conversation Insights for Skills

37-45

Use Case 2: You Want to Exclude Supporting States from the Insights Pathing
Reports

The states node of the CrcPizzaBot skill begins with a series of System.SetVariable
states. Because these states are positioned at the start of the definition, they begin
each path rendering when you haven't excluded them with the Filter States option. You
may consider supporting states like these as clutter if your focus is instead on the
transactional aspects of the path. You can simplify the path rendering manually using
the Filter States menu, or by adding the insightsInclude: false property to the
dialog flow definition.

You can add the insightsInclude: false property to any state that you don't wish to
see in the Paths report.

 setTextOnlyChannel:
 component: "System.SetVariable"
 properties:
 insightsInclude: false
 variable: "textOnly"
 value: "${(system.channelType=='webhook')?then('true','false')}"
 setAutoNumbering:
 component: "System.SetVariable"
 properties:
 insightsInclude: false

Chapter 37
Conversation Insights for Skills

37-46

 variable: "autoNumberPostbackActions"
 value: "${textOnly}"
 setCardsRangeStart:
 component: "System.SetVariable"
 properties:
 insightsInclude: false
 variable: "cardsRangeStart"
 value: 0
 transitions:
 ...
...

For the CRCPizzaBotSkill, adding the insightsInclude: false property to each of the
System.SetVariable states places the transactional states at the start of the path.

Note:

Adding the insightsInclude: false property not only changes how the paths are
rendered, but will impact the sum reported for the Average States metric.

Tutorial: Optimize Insights Reports with Conversation Markers
You can practice with conversation markers using the following tutorial: Optimize Insights
Reports with Conversation Markers.

Apply the Retrainer
Customers can use different phrases to ask for the same request. When this user input can't
be resolved to an intent (or was resolved to the wrong intent) you can direct it to the correct
intent using the Retrainer. To help you out, the Retrainer suggests an intent for the user input.
Because you're adding actual user input, you can improve the skill's performance with each
new version.

Chapter 37
Conversation Insights for Skills

37-47

https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-conversation-markers/
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-conversation-markers/

You can filter the conversation history using one or more of the following:

• time period

• language – For multi-lingual capability that's enabled through either native
language support or translation services. By default, the report filters by the
primary language.

• intents – Filter by matching the names of the two top-ranking intents, and by using
comparison operators for their resolution-related properties, confidence and Win
Margin.

• channels – Includes the Agent Channel that's created for Oracle Service Cloud
integrations.

• text or voice modes – Includes switched conversations.

The report returns the top two intents for each returned utterance along with the Win
Margin that separates them and, through a horizontal bar chart, their contrasting
confidence scores. Hovering over the bars reveals the actual scores.

The horizontal line that intersects with the chart marks where the score exceeded, or
fell short of, the skill's confidence threshold.

Chapter 37
Conversation Insights for Skills

37-48

Update Intents with the Retrainer
There are some things to keep in mind when you add user messages to your training corpus:

• You can only add user input to the training corpus that belongs to a draft version of a skill,
not a published version.

• You can’t add any user input that’s already present as an utterance in the training corpus,
or that you have already added using the Retrainer.

To update a transactional intent or an answer intent using the Retrainer:

1. Because you cannot update a published skill, you must create a draft version before you
can add new data to the corpus.

Tip:

Click Compare All Versions or switch off the Show Only Latest toggle to
access both the draft and published versions of the skill.

If you're reviewing a published version of the skill, select the draft version of the skill.

2. In the draft version of the skill, apply a filter, if needed, then click Search.

3. Select the user message, then choose the target intent from the Select Intent menu. If
your skill supports more than one native language, then you can add it to the language-
appropriate training set by choosing from among the languages in the Select Language
menu.

Chapter 37
Conversation Insights for Skills

37-49

Tip:

You can add utterances to an intent on an individual basis, or you can
select multiple intents and then select the target intent and if needed, a
language from the Add To menus that's located at the upper left of the
table. If you want to add all of returned requests to an intent, select
Utterances (located at the upper right of the table) and then choose the
intent and language from the Add To menu.

4. Click Add Example.

5. Retrain the skill.

6. Republish the skill.

7. Update the digital assistant with the new skill.

8. Monitor the Overview report for changes to the metrics over time and also
compare different versions of the skill to find out if new versions have actually
added to the skill's overall success. Repeating the retraining process improves the
skill's responsiveness for each new version. For skills integrated with Oracle
Service Cloud Chat, for example, retraining should result in a downward trend in
escalations, which is indicated by a downward trend in the usage of agent handoff
intents.

Moderated Self-Learning
By setting the Top Confidence filter below the confidence threshold set for the skill, or
through the default filter, Intent Matches unresolvedIntent, you can update your
training corpus using the confidence ranking made by the intent processing
framework. For example, if the unresolvedIntent search returns "someone used my
credit card," you can assign it to an intent called Dispute. This is moderated self-
learning – enhancing the intent resolution while preserving the integrity of the skill.

For instance, the default search criteria for the report shows you the random user input
that can’t get resolved to the Confidence Level because it’s inappropriate, off-topic, or
contains misspellings. By referring to the bar chart, you can assign the user input: you
can strengthen the skill’s intent for handling unresolved intents by assigning the input
that’s made up of gibberish, or you can add misspelled entries to the appropriate task-
oriented intent (“send moneey” to a Send Money intent, for example). If your skill has a
Welcome intent, for example, you can assign irreverent, off-topic messages to which
your skill can return a rejoinder like, “I don’t know about that, but I can help you order
some flowers.”

Support for Translation Services
If your skill uses a translation service, then the Retrainer displays the user messages
in the target language. However, the Retrainer does not add translated messages to
the training corpus. It instead adds them in English, the accepted language of the

training model. Clicking reveals the English version that can potentially be added
to the corpus. For example, clicking this icon for contester (French), reveals dispute
(English).

Chapter 37
Conversation Insights for Skills

37-50

Create Data Manufacturing Jobs
Instead of assigning utterances to intents yourself, you can crowd source this task by creating
Intent Annotation and Intent Validation jobs. You don't need to compile the conversation logs
into a CSV to create these jobs. Instead, you click Create then Data Manufacturing Job.

You then choose the job type for the user input that's filtered in the Retrainer report. For
example, you can create an Intent Annotation job from a report filtered by the top intent
matching unresolvedIntent, or you can create an Intent Validation job from a report filtered on
utterances that have matched an intent.

Chapter 37
Conversation Insights for Skills

37-51

Tip:

Using the Select utterances options, you can choose all of the results
returned by the filter applied to the Retrainer for the data manufacturing job,
or create a job from a subset of these results which can include a random
sampling of utterances. Selecting Exclude utterances from previous jobs
means that utterances selected for a previous data manufacturing job will no
longer be available for subsequent jobs: the utterances included in one Intent
Annotation job, for example, won't be available for a later Intent Annotation
job. Use this option when you're creating multiple jobs to review a large set
of results.

After you create the job, it appears in the Data Manufacturing Jobs page, where you
can distribute it to crowd workers by sharing the link.

Create a Test Suite
Similar to the data manufacturing jobs from the results queried in the Retrainer report,
you can also create test cases from the utterances returned by your query. You can
add a suite of these test cases to the Utterance Tester by clicking Create, then Test
Suite.

You can filter the utterances for the test suite using the Select utterances options in
the Create Test Suite dialog. You can include all of the utterances returned by the filter
applied to the Retrainer in the test suite, or a subset of these results which can include
a random sampling of the utterances. Select Include language tag to ensure that the
language that's associated with a test case remains the same throughout testing.

Chapter 37
Conversation Insights for Skills

37-52

You can access the completed test suite by clicking Go to Test Cases in the Utterance
Tester.

Review Language Usage
For a multi-lingual skill, you can compare the usage of its supported languages through the
segments of the Languages chart. Each segment represents a language currently in use.

If you want to review the conversations represented by a language in the chart, you can click
either a segment or the legend to drill down to the Conversations report, which is filtered by
the selected language.

Chapter 37
Conversation Insights for Skills

37-53

Export Insights Data
The various Insights reports provide you with different perspectives, but if you need to
view this data in another way, then you can create your own report from a CSV file of
exported Insights data.

The CSVs contain fields for user and skill messages, component types, and states,
which are described in The Export Log Fields. You can write a processing script to
filter this content, or just use a spreadsheet app. Review the Export Logs describes
some common approaches to filtering the files.

Note:

The data may be spread across a series of CSVs when the export task
returns more than 1,048,000 rows. In such cases, the ZIP file will contain a
series of ZIP files, each containing a CSV.

The Exports page lists the tasks by:

• Name: The name of the export task.

• Last Run: The date when the task was most recently run.

• Created By: The name of the user who created the task.

• Export Status: Submitted, In Progress, Failed, No Data (when there's no data to
export within the date range defined for the task), or Completed, a hyperlink that
lets you download the exported data as a CSV file. Hovering over the Failed status
displays an explanatory message.

Note:

An export task applies to the current version of the skill.

Create an Export Task
1. Open the Exports page and then click + Export.

2. Enter a name for the report and then enter a date range.

3. Click Enable PII anonymization for the exported file to replace Personally
Identifiable Information (PII) values with anonyms in the exported file. These
anonyms exist only in the exported file if PII is not enabled in the skill settings. In

Chapter 37
Conversation Insights for Skills

37-54

this case, the PII values, not their anonym equivalents, still get stored in database and
appear in the exported Insights logs and throughout the Insights reports, including the
Conversations report, the Retrainer, and the key phrases in the word cloud. If PII has
been enabled in the skill settings, then logs and Insights reports will contain anonyms.

Note:

The PII anonymization that's enabled for the skill or digital assistant settings
factors into how PII values that get anonymized in the export file and also
contributes to the consistency of the anonymization in the export file.

4. Click Export.

5. When the task succeeds, click Completed to download a ZIP of the CSV (or CSVs for
large exports). The name of the skill-level export CSV begins with B_. File names for
digital assistant-level exports begin with D_.

Review the Export Logs
Here are some of the fields that you're likely to focus on most often. The Export Log Fields
describes all of the fields. Filter the Exported Insights Data describes some approaches for
sorting the data.

• BOT_NAME contains the name of the skill or the name of the digital assistant. You can use
this column to see how the dialog is routed from the digitial system to the skills (and
between the skills).

• CHANNEL_SESSION_ID stores the channel session ID. You can use that ID, in conjunction
with the third column, CHANNEL_ID, to create a kind of unique identifier for the session.
Because sessions can expire or get terminated, you can use this identifier to find out if
the session has changed.

• TIMESTAMP indicates the chronology or sequence in which the events happened. Typcially,
you would sort by this column..

Chapter 37
Conversation Insights for Skills

37-55

• USER_UTTERANCE and BOT_RESPONSE contain the actual conversation between the
skill and its user. These two fields make the interleafing of the user and skill
messages easily visible when you sort by the TIMESTAMP.
There may be duplicate utterances in the USER_UTTERANCE column. This can
happen when user testing runs on the same instance, but more likely it's because
the utterance is used in different parts of the conversation.

• You can use the COMPONENT_NAME, CURR_STATE and NEXT_STATE to debug the dialog
flow.

Filter the Exported Insights Data
Typically, you would sort the logs by the TIMESTAMP column to view the sequence of
events. For other perspectives, such as the skill-user conversation, for example, you
can filter the columns by the system-generated internal states. Some of the filtering
techniques you'll use most ofter include:

• Sorting out the skill and digital assistant conversation – When an export contains
both data from a digital assistant and its registered skills, the contents of the
BOT_NAME field might seem confusing, as the conversation appears to jump
arbitrarily between the different skills and between the skills and the digitial
assistant. To to see the dialog in the correct sequence (and context), the
TIMESTAMP column in ascending order.

• Finding the conversation boundaries – Use System.BeginSession field and one of
the terminal states to find the beginning and end of a conversation. Conversations
start with a System.BeginSession state. They can end with any of the following
terminal states:

– System.EndSession
– System.ExpiredSession
– System.MaxStatesExceededHandler
– System.DefaultErrorHandler

• Reviewing the actual user-skill conversation – To isolate the contents of the
USER_UTTERANCE and BOT_RESPONSE columns, filter CURR_STATE column by the
system-generated states System.MsgReceived and System.MsgSent

Note:

A non-text message response, such those from UI components like
System.CommonResponse and System.List, the skill output will be partial
responses joined by a newline character.

Sometimes parts of the user-skill dialog may be repeated in the USER_UTTERANCE
and BOT_RESPONSE columns. The user text is repeated when there is an automatic
transition that does not require user input. The skill responses get repeated if next
state is one of the terminal states, such as System.EndSession or
System.DefaultErrorHandler.

• Reviewing just the dialog flow execution with the user-skill dialog – To view internal
transactions or display only the non-text messages, you need to filter out the

Chapter 37
Conversation Insights for Skills

37-56

System.MsgReceived and System.MsgReceived states from the CURR_STATE column (the
opposite approach to viewing just the dialog).

• Identifying a session – Compare the values in the CHANNEL_SESSION_ID and SESSION_ID
(which are next to each other).

The Export Log Fields
The exported CSV for a skill includes the following fields.

Column Name Description Sample Value

BOT_NAME The name of the skill PizzaBot
CHANNEL_SESSION_ID The ID for a user for the session.This

value identifies a new session. A
change in this value indicates that
the session expired or was reset for
the channel.

2e62fb24-8585-40c7-91a9-8adf
0509acd6

SESSIONID An identifier for the current session.
This is a random GUID, which makes
this ID different from the
CHANNEL_SESSION_ID or the
USER_ID. A session indicates that
one or more intent execution paths
that have been terminated by an
explicit return transition in state
definition, or by an implicit return
injected by the Dialog Engine.

00cbecbb-0c2e-4749-bfa9-
c1b222182e12

TIMESTAMP The "created on" timestamp. Used
for chronological ordering or
sequencing of events.

14-SEP-20 01.05.10.409000 PM

USER_ID The user ID 2880806
DOMAIN_USERID Refers to the USER_ID. 2880806
PARENT_BOT_ID The ID of the skill or digital assistant.

When a conversation is triggered by
a digital assistant, this refers to the
ID of the digital assistant.

9148117F-
D9B8-4E99-9CA9-3C8BA56CE7D5

Chapter 37
Conversation Insights for Skills

37-57

Column Name Description Sample Value

ENTITY_MATCHES Identifies the composite bag item
values that are matched in the first
utterance that's resolved to an intent.
If a user's first message is "Order a
large pizza", this column will contain
the match for the for the PizzaSize
item within the composite bag entity,
Pizza:

{"Pizza":
[{"entityName":"Pizza","Piz
zaSize":["Large"]}]}

Any other item values in subsequent
user messages are not tracked, so if
a user's next message includes a
PizzaType value, it won't be included
in the export file. If a user first enters
"Order a pizza" and then, after the
intent has been resolved, adds a
follow-up message with an entity
value for the PizzaSize item ("make it
a large"), a null value is recorded in
the ENTITY_MATCHES column,
because the initial message that was
resolved to the intent did not contain
any item values.
An empty object ({}) is returned
when you enable PII anonymization.

{"Pizza":
[{"entityName":"Pizza","Pizz
aType":["CHEESE
BASIC"],"PizzaSize":
["Large"]}]}

PHRASE The ODA interpretation of the user
input

large thin pizza

INTENT_LIST A ranking of the candidate intents,
expressed as a JSON object.

[{"INTENT_NAME":"OrderPizza"
,"INTENT_SCORE":0.4063},
{"INTENT_NAME":"OrderPasta",
"INTENT_SCORE":0.1986}]
For digital assisant exports, this is a
ranking of skills that were called
through the digital assistant. For
example:
[{"INTENT_NAME":"Pizza_For_D
A_Starter-1.2","INTENT_SCORE
":0.931},
{"INTENT_NAME":"Retail_for_D
A_Starter-1.1","INTENT_SCORE
":0.0996},
{"INTENT_NAME":"Finance_for_
DA_Starter-1.1-
DA","INTENT_SCORE":0.0925}]

BOT_RESPONSE The responses made by the skill in
response to any user utterances.

How old are you?

USER_UTTERANCE The user input. 18

Chapter 37
Conversation Insights for Skills

37-58

Column Name Description Sample Value

INTENT The intent selected by the skill to
process the conversation.This lists
the top intent out of the list of
intent(s) that were considered a
possibility for the conversation.

OrderPizza

LOCALE The user's locale en-US
COMPONENT_NAME The component (either system or

custom), executed in the current
state. You can use this field along
with the CURR_STATE and NEXT
STATE to debug the dialog flow.There
are other values in the
COMPONENT_NAME column that are
not components:
• ODA.Routing – Notes that an

event is being recorded.
• __NO_COMPONENT__ – No

component has been defined for
the state. The column may not
contain a value if no component
has been defined for the state.

AgeChecker

CURR_STATE The current state for the
conversation, which you use to
determine the source of the
messgage. This field contains the
names of the states defined in the
dialog flow definition along with
system-genarated states. You can
filter the CSV by these states, which
include System.MsgRecieved for
user messages and
System.MsgSent for messages sent
by the skill or agents for customer
service integrations.

checkage

NEXT_STATE The next state in the execution path.
The state transitions in the dialog
flow definition indicate the next state
in the execution path.

crust

Language The language used during the
session.

fr

SKILL_VERSION The version of the skill 1.2
INTENT_TYPE Whether the intent is transactional

(TRANS) or an answer intent
(STATIC)

STATIC

CHANNEL_ID Identifies the channel on which the
conversation was conducted. This
field, along with
CHANNEL_SESSION_ID, depict a
session.

AF5D45A0EF4C02D4E053060013AC
71BD

ERROR_MESSAGE The returned error message. Session expired due to
inactivity.

Chapter 37
Conversation Insights for Skills

37-59

Column Name Description Sample Value

INTENT_QUERY_TEXT The input that's sent to the intent
server for classification. The content
of INTENT_QUERY_TEXT and
USER_UTTERANCE are the same
when the user input is in one of the
native languages, but it's different
when the user input is in a language
that's not natively supported so it's
handled by a translated service. In
this case, the INPUT_QUERY_TEXT is
in English.

TRANSLATE_ENABLED Whether a translation service is
used.

NO

SKILL_SESSION_ID The session ID 6e2ea3dc-10e2-401a-
a621-85e123213d48

ASR_REQUEST_ID A unique key field that identifies each
voice input, in other words, the
Speech Request ID. Presence of this
value indicates the input is a voice
input.

cb18bc1edd1cda16ac567f26ff0c
e8f0

ASR_EE_DURATION The duration for a single voice
utterance within a conversation
window.

3376

ASR_LATENCY The voice latency, measured in
milliseconds. While voice recognition
demands a large number of
computations, the memory
bandwidth and battery capacity are
limited. This introduces latency from
the time a voice input is received to
when it is transcribed. Additionally,
server-based implementations also
add latency due to the round trip.

50

ASR_RTF a standard metric of performance in
the voice recognition system. If it
takes time {P} to process an input of
duration {I} , the real time factor is
defined as: RTF = \frac{P}{I}.The
ratio of the time taken to process the
audio input relative to the CPU time.
For example, if it takes one second of
CPU time to process one second of
audio, then the RTF is 1 (1/1). The
RTF for 500 milliseconds to process
one second of audio is .5 or ½ .

0.330567

CONVERSATION_ID The conversation ID 906ed6bd-de6d-4f59-
a2af-3b633d6c7c06

Chapter 37
Conversation Insights for Skills

37-60

Column Name Description Sample Value

CUSTOM_METRICS A JSON array that contains an object
for each custom metric dimension.
name is a dimension name and
value is the returned value. This
column is available for Versions
22.02 and higher.

[{"name":"Order
Sizes","value":"a box of 3
bottles"},{"name":"Wine
Types","value":"red wine"},
{"name":"Most
Popular","value":"Pinot
noir"}]

Internal States

State Name Description

System.MsgReceived A message received event that's triggered to
Insights when a skill receives a text message from
an external source, such as a user or another skill.

System.MsgSent A message sent event that's triggered to Insights
when a skill responds to an external source, such
as a user or another skill.
For each System.MsgReceived event, there can
be zero, one, or more than one, corresponding
System.MsgSent events.

System.BeginSession A System.BeginSession event is sent as a
marker for starting the session when:
• No dialog state has been executed yet.
• The first dialog state is about to be triggered.

System.EndSession A System.EndSession event is captured as a
marker for session termination when the current
state has not generated any unhandled errors and
it has a return transition, which indicates that
there won't be another dialog state to execute. The
System.EndSession event may also be recorded
when the current state has:
• An error transition for handling an error.

• The insightsEndConversation: true
conversation marker.

System.ExpiredSession (Error type:
"systemHandled")

A session time out. The default timeout is one
hour.
When a conversation stops for more than one
hour, the expiration of the session is triggered. The
session expiration is captured as two separate
events in Insights. The first event is the idle state,
the state in the dialog flow where user
communication stopped. The second is the
internal System.ExpiredSession event.

Chapter 37
Conversation Insights for Skills

37-61

State Name Description

System.DefaultErrorHandler The default error handler is executed when there
is no there is no error handling defined in the
dialog flow, either globally in the
defaultTransitions node, or at the state level
with error transitions. When the dialog flow
includes error transitions, a
System.EndSession event is triggered.

System.ExpiredSessionHandler The System.ExpiredSessionHandler event is
raised if a message is sent from an external
system, or user, to the skill after the session has
expired. For example, this event is triggered when
a user stops chatting with the skill in mid-
conversation, but then sends a message after
leaving the chat window open for more than one
hour.

System.MaxStatesExceededHandler This event is raised if there are more than 100
dialog states triggered as part of a single user
message.

Tutorial: Use Oracle Digital Assistant Insights
Apply Insights reporting (including the Retrainer) with this tutorial: Use Oracle Digital
Assistant Insights.

Live Agent Insights for Skills
If your skill is configured for live agent transfer, you can compare the number of
conversations that it routed to its agent hand-off flow (via Agent Initiation and Agent
Conversation states) to the conversations that were handled by its other flows.

Depending on the dialog flow definition, live agent chats can either be explicitly
requested by the user, or requested by the skill on the user's behalf (or both).

Insights begins its live agent reporting after the first traversal of the agent hand off flow.
Once this happens, the Insights reports include the Handler filter and along with it,
charts and metrics for comparing the skill and live agent conversation handling. The
Handler filter only displays when you filter the report on dates during which an agent
hand off was attempted.

Note:

Insights reporting, through its Skill and Live Agent handlers, covers all of the
communication between the end user, the skill, and the live agent. This is not
the case for DA as Agent conversations, where Insights only covers the
conversation up until the chat has been transferred to the live agent. For full
reporting on DA as Agent conversations, use Oracle Fusion Service
Analytics.

Chapter 37
Live Agent Insights for Skills

37-62

https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-insights/index.html
https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-insights/index.html
https://docs.oracle.com/en/cloud/saas/fusion-service/fairs/how-to-view-analyses-using-otbi.html#s20056371
https://docs.oracle.com/en/cloud/saas/fusion-service/fairs/how-to-view-analyses-using-otbi.html#s20056371

Tip:

Instrument your skill with custom metrics to add detail to the live agent reporting.

Review the Deflection Rate
From the Overview report, you can access the Deflection Rate charts by selecting Skill from
the Handler menu. In this section of the Overview report, Insights tracks the conversations
that the skill deflected from the live agent as a donut chart that's segmented by skill- and
agent-handled conversations and as a trend line chart that plots the conversations over time.
Clicking an arc on the donut chart opens the Conversations report filtered by agent or skill.

Live Agent Conversation Metrics for Skills
You can access these metrics by selecting Live Agent from the Handler filter (which only
displays when you filter the report by a date or date range that includes live agent transfer
conversations).

Chapter 37
Live Agent Insights for Skills

37-63

Live Agent Conversation Metrics
These metrics reflect how well the skill has been off-loading tasks for live agents.

• Total number of conversations – The total number of conversations for the
selected time period and channel that include both conversations that requested a
live agent and conversations where no live agent was requested.

• Conversations handled by live agent – The total number of conversations with
live agent requests.

• Conversations handled by skills – The total number of conversations (either
complete or incomplete) with no live agent requests.

• Conversations resolved by skill – The number of conversations that completed
(that is, the dialog traversed to the exit state) with no live agent requests.

• Conversations abandoned while waiting for live agent - The number of
conversations where users were never handed off to a live agent, despite having
requested one. Conversations can be considered abandoned when users never
connect with live agents, possibly because they've left the conversation or were
timed out.

• Deflection Rate – The percentage of conversations, which is calculated as the
tally of Conversations Resolved by Skill divided by the tally for the Total Number of
Conversations.

• Number of users that were transferred to a human agent – The total number of
users (unique and otherwise) who were transferred to a user agent.

• Number of unique users that were transferred to a human agent – The total
number of unique users (a group that may include returning users) who were
transferred to a live agent. To gauge skill usability, you can compare this metric,
which may include returning users, to the number tallied by the Total number of
conversations.

Live Agent Handle/Wait Times
Use these metrics to assess the user experience for live agent chats.

Chapter 37
Live Agent Insights for Skills

37-64

• Average Duration of Skill Conversations – The average number of seconds that users
have spent having conversations as calculated by adding up the total amount of time
from the start to the end of each conversation by the total number of conversations.

• Average Duration of Live Agent – The average number of seconds that users spent on
conversations that were routed to a live agent. This amount of time, which is typically
longer than the Average Duration of Skill Conversations, is calculated by adding up
the total amount of time spent on all live agent conversations divided by the
Conversations Handled by Live Agent tally.

• Average Wait Time for the Live Agent – The average number of seconds that the users
had to wait in the queue before they were eventually connected to an agent.

Chapter 37
Live Agent Insights for Skills

37-65

38
External Events

You can define application event types (based on events produced by external applications)
and enable users of your digital assistants to be notified when events of those types are
passed to the digital assistant.

These event types must follow the Cloud Events specification, which defines common
formats for event data to make it interoperable across services, platforms, and systems. You
can read about that specification at https://cloudevents.io/.

Workflow for Implementing an Application Event
• Identify the source of the event.

• In Digital Assistant, register the event type.

• Configure a skill to consume events of that event type and add that skill to a digital
assistant.

• Create an Events channel and map it to the digital assistant.

• From the created Events channel, get the inbound URL and secret key and make them
available to the external app that generates the events.

Note:

The skill that consumes the event can be part of multiple digital assistants.

Define an Event Type
For a skill to be able to receive a Cloud event, an event type must be defined in Oracle Digital
Assistant. To define an event type:

1. Click to open the side menu, select Development > Events, click New Event, and
enter a name for the event type.

Tip:

You should use a naming convention for the event types to give them
meaningful context to help other developers understand what they do. One
simple example is pizza.order for an event type for pizza orders.

2. On the page for the just-created new event, fill in a description.

3. In the JSON Schema field enter the schema for the event.
The field is pre-populated with an example schema that contains required elements.

• The schema attribute can have one of the following values:

38-1

https://cloudevents.io/

– "http://json-schema.org/draft-04/schema#"
– "http://json-schema.org/draft-06/schema#"
– "http://json-schema.org/draft-07/schema#"
– "http://json-schema.org/draft/2019-09/schema#"

• In the properties object, you define properties as key-value pairs, where the
value is a schema that the property is validated against.
For example:

"properties": {
 "firstName": {
 "type": "string",
 "description": "The person's first name."
 },
 "lastName": {
 "type": "string",
 "description": "The person's last name."
 },
 "age": {
 "description": "Age in years which must be equal to or
greater than zero.",
 "type": "integer",
 "minimum": 0
 }
 }

See https://json-schema.org/understanding-json-schema/reference/object.html
for more on defining these properties.

4. When you have finished work on the schema and want to freeze its contents, click
Mark as Finalized.
At this point, you can use this event type in a skill.

If you later determine that you need change the schema, you can create a new
version of it.

Example: Cloud Event Type Schema

{
 "$schema":"http://json-schema.org/draft-07/schema#",
 "description":"Pizza Order Schema",
 "title":"Pizza Order Schema",
 "type":"object",
 "properties":{
 "size":{
 "description":"The pizza size",
 "type":"string"
 },
 "orderid":{
 "description":"The pizza orderid",
 "type":"string"
 },
 "type":{

Chapter 38
Define an Event Type

38-2

https://json-schema.org/understanding-json-schema/reference/object.html

 "description":"The pizza type",
 "type":"string"
 },
 "topping":{
 "description":"The pizza topping",
 "type":"string"
 }
 }
}

Configure a Skill to Consume an Event
These are the general steps you need to follow for a skill to consume an event:

1. In a skill, create a flow with the Notify User component to consume the event. (This
component is only available for dialog flows developed in Visual mode.)
At runtime, when the event is generated, the event is passed to the skill. You can use
expressions to access the event's data and context.

2. If you are designing the event type to target specific authenticated users (with IDCS user
IDs), make sure that the skill has an Authorize using OAuth 2.0 component and that you
have enabled channel account linking.

3. In the Main Flow of the dialog flow, create an Application Event mapping between the
event and the flow containing the User Notification state for the event.

4. Add the skill to a digital assistant.

Create a User Notification for the Event
For the skill to respond to the event, you add a flow for that event and use a Notify User state
to display a message when the event occurs:

1. In the skill that you want to use the event, click and then click + Add Flow.

2. Enter a flow name and click Create.

3. Click the menu in the flow start, then click Add Start State to open the Add State
dialog.

4. Select Service Integration > Notify User, fill in a name for the state, and click Insert.

5. In the property inspector for the inserted Notify User state, select the Component tab
and fill in the Notification Message field with a message that you want the user to see
when the event occurs.

Chapter 38
Configure a Skill to Consume an Event

38-3

In the message, you can make use of expressions in the following format to
access data from the event:

${skill.system.event.value.application.data.<propertyName>}

Note:

You can also access context information from the event using the
following type of expression:

$
{skill.system.event.value.application.context.<attributeName
>}

See Event Context Attributes for information on the available context
attributes.

6. Optionally, fill in the User ID property with an ID for a specific user that you are
able to dynamically determine from within the flow (such as through a custom
component). This property is mainly useful if the user ID is not sent in the event
payload and the user is a unified user that has been authenticated through an
Authorize using OAuth 2.0 component where the Associate With Unified User
property has been set to true. See Configuring Unified User Identity for more on
unified users.

Determine the Event Receipient from the Flow
If the event needs to be targeted to a specific user but that user isn't specified in the
event itself, it may be possible to determine the user in the flow that handles the event.
Here are the general steps to make that work:

1. At the beginning of the flow that handles the event, add a custom component that
determines the user ID (based on the event payload and/or some custom logic)
and assigns that ID to a variable.

2. After the state for the custom component, insert a Notify User component, and set
that component's User ID property to the variable returned by the custom
component.

Create a Handler for the External Event
For a skill to receive an event, you create an event handler for that event in the Main
Flow. In the event handler, you map the event to the flow containing the Notify User
state that you created to receive the event:

1. In the list of flows, select Main Flow.

2. On the Events tab of that flow, next to the Application Events section, click .

3. In the Create Application Event Handler dialog, select the event type, the
version of the event type, and the flow that you want to map the event to, and then
click Close.

Chapter 38
Configure a Skill to Consume an Event

38-4

Note:

Only finalized event types are offered in the Unresolved Event Type field.

Add the Skill to a Digital Assistant
For a skill to consume an external event, it must be part of a digital assistant. To add a skill
that is configured to consume an event to a digital assistant:

1. Click to open the side menu, select Development > Digital Assistants, and double-
click the digital assistant that you want to use.

2. Click Add Skill.

3. In the tile for the skill that is configured to consume the event, select .
If you don't find the skill you are looking for, it might have a language mode that is not
compatible with the language mode of your digital assistant. See Conditions for Adding a
Skill to a Digital Assistant.

4. Click the Done button to close the Skills Catalog and display the page for the skill in the
digital assistant.

5. Scroll down to the Interaction Model section of the page and make sure that the
Invocation value is the name that you want users to use to invoke the skill.

This name should adhere to these Invocation Name Guidelines.

6. Provide some example utterances that would be typical of how a user would invoke the
skill.

These utterances will be used as selectable options in the digital assistant's default
welcome and help states.

Tip:

Click Validate and review the validation messages for utterances that are shared by
skills registered to your digital assistant.

Create a Channel for the External App
You need to create an application channel to allow the external app to send events to Digital
Assistant. After you create the channel, Digital Assistant assigns a secret key and an inbound
URL. You need to use these values in the app that generates the event.

1. In Digital Assistant, click Channels in the left menu and then select Events.

2. Click Add Channel.

3. In the Channel Name field, enter a unique name for the channel.

4. (Optional) In the Outbound Application URL field, enter a web service URL to which
you want to any channel-related error messages to be sent via a POST request.

Chapter 38
Create a Channel for the External App

38-5

If an error occurs, such as a problem with initiating a conversation through the
user channel, then Digital Assistant sends an error message as a Cloud event and
the event data contains code and message attributes that describe the error. For
example:

{
 "code": "InvalidParameter",
 "message": "The event contains invalid or missing attributes:
firstName"
}

5. Click Create.

6. Switch Application Enabled to On.

7. From the Route To dropdown, select the digital assistant that contains the skill
that has the flow for consuming the event.

8. Make a note of the secret key and inbound URL.
These will be needed by the external app that generates the events. The external
app sends messages by sending POST request to the inbound URL and uses the
secret key to authenticate its POST requests.

Generate an Event from an External App
To send events to a digital assistant from an external application, the application must
create a POST request to the inbound URL for the event channel where:

• There is an X-Hub-Signature header containing an SHA-256 hash of the request
body using the application channel's secret key. For example:

X-Hub-Signature: sha256=<HMAC SHA-256 signature of body using the
secret key for the channel>

• The content type is application/cloudevents+json.

The event payload can be either in a structured form (where all attributes are part of
the JSON in the HTTP body) or in binary form (where event context attributes are
present in the header with the ce- prefix). To learn more about these forms, see
https://github.com/cloudevents/spec/blob/v1.0/http-protocol-binding.md#3-http-
message-mapping.

Structured Form for Sending Events
The following example shows the use of structured form for sending events:

curl --location --request POST 'https://<server>/events/v2/listeners/
appevent/channels/<id>' \
--header 'Content-Type: application/cloudevents+json' \
--header 'X-Hub-Signature: sha256=<SHA256 encoded request body using
the channel's secret key>' \
--data-raw \

'{
 "specversion": "1.0", //Version # of Digital Assistant's

Chapter 38
Generate an Event from an External App

38-6

https://github.com/cloudevents/spec/blob/v1.0/http-protocol-binding.md#3-http-message-mapping
https://github.com/cloudevents/spec/blob/v1.0/http-protocol-binding.md#3-http-message-mapping

Events support
 "type": "<event_name>", //The event type that the skill is
listening for
 "source": "< event source>", //URI-reference - identifies the context
in which an event happened
 "id": "<event id>", //Unique id for the event
 "version":"<event version>", //An extension attribute(not part of
CloudEvent spec) for the version # of the event type
 "data": { //The business data that matches with
the schema defined for the event

 }
}'

Form for Sending Events in Node.js

async pushEvent(eventName, eventVersion, userId, channelName, eventData){
 try {

 // Build event data
 const event = {
 specversion: "1.0", //Version # of Digital Assistant's
Events support
 type: eventName, // Name of Event you created in ODA
 source: "< event source>", //URI-reference - identifies the context
in which an event happened
 id: "<event id>", //Unique id for the event
 time: "2022-09-07T21:19:24Z", // Any Date value will do now
 channelname: <channelName>, // Can be set to System_Global_Test if
you want to test in tester
 version: <eventVersion>, // version of the event that you defined in
Digital Assistant
 userid: <userId>,
 datacontenttype: "application/json",
 data: <eventData> // JSON object represting your payload which should
confirm to the event's JSON schema
 };

 // Build Required headers
 const headers = {
 "X-Hub-Signature" : this._buildSignatureHeader(event,
<EVENTS_CHANNEL_SECRET_KEY> , "utf8"),
 "Content-Type" : "application/cloudevents+json"
 };

 // POST to EVENT_LISTENER_CHANNEL_URL

 } catch (error) {
 logger.error(error.message);
 const errorMessage = `Error pushing event [${eventData}] to Digital
Assistant`;
 logger.debug(errorMessage);

Chapter 38
Generate an Event from an External App

38-7

 throw new Error(error.message);
 }
}

_buildSignatureHeader(body, secret, encoding) {
 const buf = Buffer.from(JSON.stringify(body), "utf8");
 return "sha256=" + this._buildSignature(buf, secret, encoding);
}

_buildSignature(buf, secret, encoding) {
 const hmac = crypto.createHmac("sha256", Buffer.from(secret || "",
encoding || "utf8"));
 if (buf) {
 hmac.update(buf);
 }
 return hmac.digest("hex");
}

Event Payload Attributes
The following are common attributes that you might use in an event payload:

• specversion: (Required) Version number of Digital Assistant's Events support.
Currently, the only valid value is 1.0.

• type: (Required) The event type that the skill is listening for. This needs to
correspond with the name of the event type that you specified in the Define an
Event Type task.

• source: (Required) Identifies the context in which an event happened. This can be
a free-form string.

• id: (Required) The unique ID that is generated for the event by the application.

• version: (Required) The name of the version of the type of event being sent. You
must include a value for this attribute in the event payload and it must match the
value you provided for the event type version that you provided in the Create a
Handler for the External Event task.

Note:

This attribute is one of the extension attribute, meaning that it is not part
of CloudEvent spec.

• data: (Required) The business data that matches with the schema defined for the
event.

Event Context Attributes
For each event that is generated, Digital Assistant adds extension attributes that
describe the context in which the event is generated. Tools and application codes can
then use this information to identify things like the source of the generated events and

Chapter 38
Generate an Event from an External App

38-8

their relationship to other events. You can also specify values for these attributes in the event
payload.

Here's a list of the extension attributes (all of which are of type String):

• version: The name of the version of the type of event being sent. You must include a
value for this attribute in the event payload and it must match the value you provided for
the event type version that you provided in the Create a Handler for the External Event
task.

• userid: The ID of the user that message is being targeted to. It can take one of the
following two forms:

– An Oracle Identity Cloud Service (IDCS) user ID. In this case, you also need to
include the usertenancy attribute in the payload.

– A user ID provided by the channel. In this case, you also need to include the
channelname attribute in the payload.

Note:

For Twilio, this value would be the user's mobile phone number.

• usertenancy: The name of the IDCS tenancy of the user's identity provider.

• channelname: The name of the channel through which the digital assistant is exposed.

• tenancy: The name of the Oracle Cloud Infrasture tenancy for the Digital Assistant
instance. (Typically, you wouldn't need to explicitly include this attribute since information
about the tenancy is passed in the request headers.)

Example: Event Payload

{
 "specversion": "1.0",
 "type": "com.pizzastore.pizza.ordercreated",
 "source": "pizzastore/orders",
 "id": "12345678-90ab-cdef-1234-567890abcdef",
 "time": "2022-08-10T12:31:00Z",
 "contenttype": "application/json",
 "tenancy": "mydigitalassistantinstance",
 "version": "1.0",
 "data": {"size": "Large",
 "type": "Veg"
 }
}

Example: Payload with IDCS User ID
If you need to pass the IDCS user ID for the user in the payload, you'd also specify the
userid and usertenancy attributes:

{
 "specversion": "1.0", //Version # of Digital Assistant's

Chapter 38
Generate an Event from an External App

38-9

Events support
 "type": "<event_name>", //The event type that the skill is
listening for
 "source": "< event source>", //URI-reference - identifies the
context in which an event happened
 "id": "<event id>", //Unique id for the event
 "version":"<event version>", //An extension attribute(not part
of CloudEvent spec) for the version # of the event type
 "userid":"<idcs user id>", //An extension attribute(not part
of CloudEvent spec) for the user ID
 "usertenancy":<idcs tenancy>", //Extension attribute, IDCS
 "data": { //The business data that matches
with the schema defined for the event

 }
}

Note:

If the event is designed to pass the IDCS user ID in its payload, make sure
that the skill has an Authorize using OAuth 2.0 component and that its
Associate With Unified User property is set to True.

Example: Payload with User ID and Channel Name
For digital assistants exposed through the Twilio and Web channels, the external app
can also notify users by specifying the channel name and the user ID that is provided
by the channel.

{
 "specversion": "1.0", //Version # of Digital
Assistant's Events support
 "type": "<name_of_event_type>", //The event type that the skill
is listening for
 "source": "< event source>", //URI-reference - identifies the
context in which an event happened
 "id": "<event id>", //Unique id for the event
 "version":"<event version>", //An extension attribute(not part
of CloudEvent spec) for the version # of the event type
 "userid":"<channel user id>", //An extension attribute(not part
of CloudEvent spec) for the user ID
 "channelname":"<channel name>", //Name of the channel through
which the digital assistant is exposed
 "data": { //The business data that matches
with the schema defined for the event

 }
}

Chapter 38
Generate an Event from an External App

38-10

Publish an Event from a Skill
In addition to consuming external events in a skill, you can use the skill to publish events of
types that you have registered in Oracle Digital Assistant to an external application. You can
do so with the Publish Event component (in the Service Integration category). When an event
is generated this way, it is published to the URL that you have specified in the Outbound
Application URL that you have specified in the channel for the external app.

Chapter 38
Publish an Event from a Skill

38-11

39
Application-Initiated Conversations

In cases where you want a skill to initiate a chat with your customers, you can use the
application-initiated conversation feature in Oracle Digital Assistant to start conversations
with users. For example, you can use this feature to send an appointment reminder, a traffic
alert, or flight status.

Application-initiated conversations are conversations that Digital Assistant initiates in
response to an event it receives from an external app. Digital Assistant uses the contents of
the app's event message to trigger one of its skills to first notify a user and then begin a
conversation at the state in the dialog flow that's applicable to the event. You can trigger the
conversation through a digital assistant or through a stand-alone skill.

This feature works on the following platforms:

• Twilio/SMS

• MS Teams

• Slack

Note:

Application-initiated conversations are currently not supported for skills that have
dialog flows built with the Visual Flow Designer. For skills developed using the
Visual dialog flow mode, use External Events.

Use Case: An Expense Reporting App
To get an idea of the initial user notification and the subsequent event-specific actions,
consider a digital assistant that reacts to events that are sent by an expense reporting app.
This app sends messages to the digital assistant whenever an expense report is approved or
rejected and when more information is required. In turn, the digital assistant starts a
conversation with the user.

You can create a skill that has start states for each of the events (approve, reject, and more
information required). The start state can output a message about the event and then begin a
flow that enables the user to take the applicable action:

• Confirm that they’ve seen the approval

• Resubmit the expense report

• Complete the expense report by adding missing information

How Application-Initiated Conversations Work
An application-initiated conversations is a conversation that appears as if the skill started the
conversation, instead of the user. It can be a conversation with a skill that a user has
previously interacted with or not (in the case where user-authentication isn't required).

39-1

The setup for an application-initiated conversation includes these artifacts:

• Messaging platform: An external channel through which the user converses with
the skill or digital assistant. The user must have access to the messaging platform,
such as a Twilio account, or a bot-embedded app installed in their Slack
workspace or for their MS Team.

• Skill: The skill can be standalone or part of a digital assistant, and can require
user authentication or not.

• Notification event: A POST request that triggers the conversation.

• External app: An application that sends the POST request to Digital Assistant.

• Application channel: A channel that you create in Digital Assistant to allow the
external app to send messages to your instance. You also use this channel to set
whether to require authenticated users.

• User channel: A channel for the messaging platform, which you create in Digital
Assistant to route a notification event from an external app to a digital assistant or
skill. Messages to and from the user are sent through this channel.

Here's the overall flow of how a skill-initiated conversation works. Details for each step
in the flow follows.

1. The flow begins when an external app sends a POST request to the application
channel's inbound URL. The request's payload contains the information that's
necessary to authenticate the request, identify the user channel by name, and
determine the target skill and it's start state.

2. The application channel verifies that the secret key that the external app sent
matches the application channel's secret key.

3. Digital Assistant then looks up the user channel for the name that's passed in the
request body.

4. To find the target skill, Digital Assistant looks at the route-to in the user channel.
The target can be either a digital assistant or a skill. When the target is a digital
assistant, then Digital Assistant expects to find the skill name and version in the
request body. Next, Digital Assistant looks at the skill's payload-to-state mappings
to find an entry that matches the payload type in the request body. The matched
entry points to the state with which to start the conversation flow.

Chapter 39
How Application-Initiated Conversations Work

39-2

If the application channel has Use Authenticated User ID switched to On, then the user
must have interacted with the skill within the last 14 days. Otherwise the skill won't
recognize the authenticated user.

5. Digital Assistant transmits and receives messages through the user channel that handles
the traffic between Digital Assistant and the messaging platform. First, the skill sends a
notification that the skill wants to initiate a conversation, then it starts the conversation
flow.

If a user gets a notification while they’re in mid-conversation with another skill, it asks if
they want to switch conversations to take action on the notification.

If the user answers “Yes” (which often means switching between skills):

• The user is placed at the state in the dialog flow that starts them on the conversation
flow.

• After the user completes this flow, they are asked if they want to resume the prior
conversation. If the user answers "Yes", they’re returned to the point where they left
off.

If the user answers answer “No”:

• They’ll continue with their current skill.

• When they’ve finished the transaction, they are prompted to take action on the
notification.

Tutorial: Application-Initiated Conversations
You can get a hands-on look at application-initiated conversations by walking through this
tutorial: Send Reminders Using Application-Initiated Conversations.

Implementing Application-Initiated Conversations
You enable application-initiated conversations by configuring a skill, a user channel, an
application channel, and an external app. Optionally, you can add the skill to a digital
assistant and configure the digital assistant for the application-initiated conversation features
in the skill.

Configure the Skill
An application-initiated conversation begins when an external app sends an event to the skill
or to the digital assistant that it belongs to. There are a few changes that you need to make to
your skill so that the conversation begins in the right place and displays the desired values.

An event that is sent from an external app must include a payload type, which uniquely
identifies the event to the skill. Typically, the payload type indicates what the skill is supposed
to do, such as msgReminder or cancelAppointment. The event can also include parameters in
its variables JSON object, such as a patient's name or an appointment time.

In your skill, you must insure that there's a start state in the dialog flow for every event
(multiple events can have the same start state). You also need to add context variables to
hold the parameter values, if any. Then, you need to map the event's payload type to the start
state.

For each event, do the following steps:

Chapter 39
Tutorial: Application-Initiated Conversations

39-3

1. If your external app will pass a variables object in the event's message payload,
then add context variables to hold the values of the object's properties.

The context variable name must match the property name in the variables object.
Say, for example, that the external app will send a request body like this for an
appointment-reminder event:

{
 "userId": "16035550100",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",
 "channelName": "AppointmentUserChannel",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 }
 }
}

You'll need to add these equivalently named context variables:

context:
 variables:
 patientName: "string"
 appointmentTime: "string"

2. Ensure that your dialog flow has a start state for the event.

Here's an example of the start state for an appointment-reminder event:

 remindermessage:
 component: "System.Output"
 properties:
 text: "Hi ${patientName.value}, your next appointment is
scheduled for ${appointmentTime.value}. Please reply to this
message to confirm, cancel, or postpone your appointment."
 transitions:
 return: "done"

Tip:

If the messaging platform is text-only, consider making user input less
error-prone by configuring autonumbering in the skill’s dialog flow. Also
consider showing or hiding text based on the messaging platform. See
Text-Only Channels.

3. To map the event to the start state, click Settings , click Events, and click +
Add Mapping. Then enter these fields:

• Payload type: A name that uniquely identifies the event. The external app
must use this name to direct the message to the applicable state.

Chapter 39
Implementing Application-Initiated Conversations

39-4

You use the payload type from the external app rather than the actual state name
because payload type is a constant, whereas the name of the state could change if
the dialog flow is revised.

• State name: The start state for the event in the dialog flow.

In this screenshot, the msgReminder payload type maps to the remindermessage state in
the dialog flow.

When you add a skill to a digital assistant, the skill's event-to-state mappings are added
to the digital assistant's Events page automatically. You access this page from the digital
assistant's Settings page.

Configure a User-Authenticated Skill
If your skill requires users to authenticate with Oracle Identity Cloud Service or Oracle Access
Manager, then you must configure the application channel, skill, and external app to enable
the skill to associate the authenticated user ID with the bot user ID.

For events that are sent to a user-authenticated skill to work, the user must have already
signed into the identity provider from the skill. For example, let's say that Deva is using a skill
to create an expense report. Before she can do anything in the skill, the skill asks her to sign
in. The skill then associates her authenticated user ID with her user ID for the messaging
platform and the messaging platform parameters that are cached in the user's profile.

After she completes her report, she asks to be notified when the expense is approved. Her
company uses an external app to send the notification event to the same skill. In order for the
app to send the event to a user-authenticated skill, it must send Deva's authenticated user ID
instead of the messaging platform's user ID. Given the authenticated user ID, the skill can
look up platform's user ID and the information from the cached profile that it obtained when
Deva originally signed in.

If Deva never signed in from the skill, her authentication expired, or the profile cache expired,
then Digital Assistant responds to the event request with a 500 error.

In addition to the steps in Configure the Skill, you must complete the following steps to
configure application-initiated conversations for user-authenticated skills:

Chapter 39
Implementing Application-Initiated Conversations

39-5

1. If your skill has already enabled user authentication, go to Settings >
Authentication Services, open the service and ensure that the Refresh Token
Retention Period is set to 14 days, which matches the user profile cache expiry
duration. These values must be synchronized.

2. If your skill hasn't enabled user authentication yet, complete these steps:

a. Ensure that an administrator has completed the steps in Identity Provider
Registration.

b. Create an authentication service for the identity provider as described in
Authentication Services.

c. Ensure that the authentication service's Refresh Token Retention Period is
set to 14 days, which matches the user profile cache expiry duration. These
values must be synchronized.

d. To enable users to sign in from the skill, add a state for the
System.OAuth2AccountLink component to the dialog flow as described in
System.OAuth2AccountLink.

3. When you create the application channel, switch Use Authenticated User ID to
On. Or, if it's already created, open the channel and switch it to On.

In the request body that your external app sends to Digital Assistant, remember to set
the userId property to the authenticated user ID as described in Configure the
External App.

Create a User Channel for the Messaging Platform
For application-initiated conversations to work, you'll need to create a user channel to
link the skill with your messaging platform account. See these topics for the steps to
create a user channel for the specific platform.

• Twilio/SMS

• Slack

• Microsoft Teams

Note that if you select a skill from the channel's Route to list, then all external app
messages that are sent to this channel are routed to the selected skill. However, if you
select a digital assistant, then you'll need to specify the target skill in the external app's
message payload.

Create a Channel for the External App
You need to create an application channel to allow the external app to send messages
to Digital Assistant. After you create the channel, Digital Assistant assigns a secret
key. You need to use this secret key in your external app.

1. From the left navbar, click Channels, click Applications, and then click +
Application Configuration.

2. Enter a name and optionally enter a description.

3. (Optional) All channel-related error messages are logged to the server log file. If
you also want Digital Assistant to send these error messages to an external web
service, enter the web service's URL in the Outbound Application URL field.

Chapter 39
Implementing Application-Initiated Conversations

39-6

If an error occurs, such as a problem with initiating a conversation through the user
channel, then Digital Assistant sends an error message as a JSON object with the botId,
sessionId, and message properties.

4. (Optional) If the targeted skill requires authentication using the
System.OAuth2AccountLink component, and your external app will send the
authenticated user ID instead of the messaging platform's user ID, then switch Use
Authenticated User ID to On.

When this is switched on, Digital Assistant will look up the messaging platform's user ID
for the specified authenticated user ID. Note that the user must have signed in through
the skill for the look up to complete successfully. For further details, see Configure a
User-Authenticated Skill.

5. Click Create.

6. Switch Application Enabled to On.

7. Make a note of the secret key and inbound URL. These will be used by the external app.

• It sends messages by sending POST request to the inbound URL.

• It uses the secret key to authenticate its POST requests.

Configure the Digital Assistant
If your skill supports application-initiated conversations and you add it to a digital assistant,
you might want to adjust these configuration parameters in the digital assistant's Settings
page:

• Interrupt Prompt: This prompt is displayed when interrupting a flow to start a new flow.

• Enable Auto Numbering on Postback Actions: It's good practice to make sure that this
setting is true for all text-only channels so that the user input is less error-prone. By
default, this setting is true for all Twilio channels: ${(system.channelType=='twilio')?
then('true','false')}

Configure the External App
The external app initiates an event by sending a POST request to an application channel's
inbound URL. Here are the things the app must do to prepare and send the request.

• Include these properties in the request body (examples follow):

– userId: This must be one of the following IDs:

* Microsoft Bot User ID: The bot user ID for the Microsoft Bot channel. This ID is
specific to each Microsoft Bot channel. The skill saves this value in the
profile.msBotUserId context variable.

* Slack User ID: The Slack user's member ID. The skill saves this value in
system.message.channelConversation.userId.

* Twilio/SMS Channel ID: The user's mobile phone number. This must be one of
the numbers that are associated with the Twilio account's phone number that's
specified in the Digital Assistant user-channel configuration. The skill saves this
value in the profile.firstName context variable.

* System-Generated User ID: If you are testing your skill from Preview, then this
must be the system-generated user ID for the session in Preview. See Testing
Application-Initiated Conversations from Preview.

Chapter 39
Implementing Application-Initiated Conversations

39-7

* Authenticated User ID: If the associated application channel has Use
Authenticated User ID switched to On, then this must be the
authenticated user ID. The user with this authenticated user ID must
already be signed in to the targeted skill through the
System.OAuth2AccountLink component. See Configure a User-
Authenticated Skill.

– messagePayload: This object contains:

* type: Set this to application.

* payloadType: The name of the event (payload type) that’s mapped to the
desired start state in the dialog flow. See Configure the Skill.

* skillName and version: (Optional) If the messaging platform's user
channel routes to a digital assistant, then you must include the skill's
skillName and version so that the digital assistant knows which skill and
version to send the event to.

* channelName: The name of the messaging platform's user channel that’s
configured for the skill or digital assistant.

If you are testing your skill from Preview, then you need to set
channelName to the name of the System channel. See Testing Application-
Initiated Conversations from Preview.

* variables: (Optional) Key-value pairs to pass to the dialog flow’s context
variables. If the corresponding context variables are defined in the dialog
flow, then they're populated with the values passed from this object.

– channelProperties: This object is for MS Teams and Slack. You don't need to
include this object in the request body if Use Authenticated User ID is
switched on for the user channel.

MS Teams channelProperties Object

This object is required if the user hasn't interacted with the conversation within
14 days. Its properties are:

* botName: This is the bot handle that you specified when you created the
bot channel registration as described in Step 1: Create a Bot. This value is
saved in the profile.botName context variable.

* tenantId: The ID of the Microsoft Teams tenant. This value is saved in the
profile.tenantId context variable.

* serviceUrl: The service URL for the bot. This value is saved in the
profile.serviceUrl context variable.

When the Microsoft Teams user converses with the skill, Digital Assistant
captures and stores these values in the profile cache. If an event's request
payload doesn't include the channelProperties object, then the skill will use
the values from the profile cache, if available (the cache expires after 14
days). The skill uses the cached profile values only if they are missing from the
request body.

When your dialog flow sends a request for notification to the backend, such as
through a custom component, it should pass those profile values to the
backend. The external app can then use those values in the
channelProperties object in the case where the profile cache might have

Chapter 39
Implementing Application-Initiated Conversations

39-8

expired. Here's a snippet of custom component code that gets the values to send to
the back end.

 let serviceUrl = conversation.variable('profile.serviceUrl') ?
 conversation.variable('profile.serviceUrl') : "";
 let tenantId = conversation.variable('profile.tenantId') ?
 conversation.variable('profile.tenantId') : "";
 let botName = conversation.variable('profile.botName') ?
 conversation.variable('profile.botName') : "";
 let msBotUserId =
conversation.variable('profile.msBotUserId') ?
 conversation.variable('profile.msBotUserId') : "";

Slack channelProperties Object

For Slack, include these properties in the channelProperties object:

* teamId: Slack workspace ID. This value is saved in the profile.team_id context
variable.

* channel: ID of the channel in the workspace. That is, the user's channel. This
value is saved in the profile.channel context variable.

You can get the team ID and channel from the Slack web URL. For example, if the
URL is https://app.slack.com/client/ABCDEFG/HIJKLMNOP, then the team ID is
ABCDEFG, and the channel is HIJKLMNOP.

Here are examples for the different messaging platforms for skills that don't use
authenticated user IDs.

Slack example:

{
 "userId": "ABCDE712A3",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",
 "channelName": "AppointmentUserChannel",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 },
 "channelProperties": {
 "teamId": "ABCDEFG",
 "channel":"HIJKLMNOP"
 }
 }
}

MS Teams example:

{
 "userId": "12:1A2B3C3d....",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",

Chapter 39
Implementing Application-Initiated Conversations

39-9

 "channelName": "AppointmentUserChannel",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 },
 "channelProperties": {
 "tenantId": "ab12c34d-e56...",
 "botName":"my-bot",
 "serviceUrl":"https://example.com/path/"
 }
 }
}

Twilio example:

{
 "userId": "1234567890",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",
 "channelName": "AppointmentUserChannel",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 }
 }
}

This example shows how to send an event to a channel that's routed to a digital
assistant. When the channel routes to a digital assistant, you must include the skill
name and version.

{
 "userId": "1234567890",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",
 "channelName": "AppointmentUserChannel",
 "skillName": "myBot",
 "version": "1.0",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 }
 }
}

Here's an example for a user-authenticated skill (that is, the associated application
channel has Use Authenticated User ID switched to On). This example applies to

Chapter 39
Implementing Application-Initiated Conversations

39-10

MS Teams, Slack, and Twilio. Note that for MS Teams and Slack, you don't include the
channelProperties object when you route to a user-authenticated skill.

{
 "userId": "first.last@example.com",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",
 "channelName": "AppointmentUserChannel",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 }
 }
}

• To authenticate the request, add an X-Hub-Signature header with a SHA256 hash of the
body using the application channel's secret key. For example:

X-Hub-Signature: sha256={{HMAC SHA-256 signature of body}}

The Use Postman as an External Application section in the Send Reminders Using
Application-Initiated Conversations tutorial shows an example of setting this header.

• Send the POST request to the application channel's inbound URL. It should look
something like this:

POST https://<host>:<port>/connectors/v2/listeners/application/channels/
4E09-42F7-ECB7A7F18F62

Testing Application-Initiated Conversations from Preview
You can use Preview to test your application-initiated conversation. To do this, you need to
get the System channel name and the skill tester's user ID, and then configure the external
app to send messages to that channel and user.

Get the System Channel Name and Preview User ID
You'll need the System channel name and the Preview's user ID to send your external app's
messages to the Preview. When an external app sends a message to the System channel,
Oracle Digital Assistant routes the message to the Preview that has the specified user ID.

1. To get the name of the System channel, from the left navbar, click Channels, click
System, and then look at the name.

The name will be either System_Bot_Test or System_Global_Test.

2. To get the Preview's user ID, open the skill and click Preview .

3. Open Network Monitor by first selecting Web Developer in the browser menu, and then
click Network.

4. Select XHR to display only REST requests.

5. Enter a message in the Preview.

Chapter 39
Testing Application-Initiated Conversations from Preview

39-11

6. After the skill outputs some text, go to the the Network Monitor, and then look at
the Response tab.

Select each response until you find one that contains a messagePayload.

7. Enter userId in the Filter Properties field to display the value for the userId.

8. Leave the Preview active and don't click Reset.

If you reset or close the Preview then the user ID changes.

Send a Notification to the Skill Preview
After you get the name of the System channel and the system's user ID, you can send
messages from your external app to the skill's Preview.

To use the Preview instead of the messaging service, set userId to the Preview's user
ID and set channelName to the name of the System channel, as shown here:

{
 "userId": "7319408",
 "messagePayload": {
 "type": "application",
 "payloadType": "msgReminder",
 "channelName": "System_Global_Test",
 "variables": {
 "patientName": "Joe Doe",
 "appointmentTime": "5:00 pm"
 }
 }
}

Chapter 39
Testing Application-Initiated Conversations from Preview

39-12

40
Data Manufacturing

As a single developer, it can be difficult, or even impossible for you to create a large, varied
set of utterances, especially when you need to provide training data for multiple intents or ML
Entities. Rather than trying to come up with training data on your own, you can use Oracle
Digital Assistant to crowd source this task. Assigning this to the crowd can be particularly
useful when you need utterances that only experts in the application or the domain can
provide.

What is a Data Manufacturing Job?
Data manufacturing jobs are collections of tasks assigned to crowd workers. The jobs
themselves focus on various ways of improving intents and ML entities.

Annotation Jobs
You can assign an Annotation Job when you have logging data that needs to be classified to
an intent, or when a single intent is too broad and needs to be broken down into separate
intents. You can also assign crowd workers to annotate the key words and phrases from the
training data that relate to an ML Entity.

Validation Jobs
For Validation jobs, crowd workers review utterances to ascertain if they fit the task or action
described by the intent, or if the correct ML Entity has been identified. Only utterances that
are judged valid by crowd workers get added to the training data.

Paraphrasing Jobs
The Paraphrase Job is how you collect utterances from the crowd. This assignment
describes how they should craft their utterances.

The Data Manufacturing Job Workflow
To create a data manufacturing job, you first create a job and monitor its progress. If you want
to access the data before the job has officially finished (say, for example, that the crowd
workers are no longer working on the job), then you can cancel the job. Finally, you review
the results before you add them to the training data by accepting them, or exclude them from
the training data by rejecting them.

Create the Job
1. Click Manufacturing in the left navbar.

2. In the Jobs page, click Add Job.

40-1

3. Select the job type (Paraphrasing, Validation, or Annotation).

4. Select the language that's used by the crowd workers. The default language is the
skill's predominant language, but you can choose from other natively supported
languages. You can't, however, choose a language that's enabled by a translation
service.

5. Click Launch. After you launch a job, its status is noted as Running in the Jobs
page. You can’t edit a job when it's running. If you need to make a change, you
need to first cancel the job, duplicate it, and then edit it before relaunching it.

Chapter 40
The Data Manufacturing Job Workflow

40-2

6. To send the job to the crowd, click Copy Link. Then paste the link to an email that's
broadcast to the crowd.

Crowd workers accept the job by clicking this link. After a crowd worker accepts the job,
he or she reviews general rules for Paraphrasing, Annotation, or Validation jobs.

Note:

Crowd workers provide their names and email addresses for tracking purposes.
You sort the results by their names to gauge their success in completing the
tasks.

Monitor the Progress of the Crowd Workers
You can monitor the crowd workers' progress for the running job in the Jobs page, but you
can’t access or view the results when a job's status is Running. You can only access the
results after workers have completed the job, or if you’ve canceled a job because you think
it's as complete as it can be. If this is the case, click Cancel. The job results will contain all of
the completed records up to the point that you canceled it.

Jobs that have finished, or have been canceled, are available for download in the Results
page. Typically, you’d use this page to access and modify results by downloading them as a
CSV file that you can manipulate in a spreadsheet program like Excel.

Chapter 40
The Data Manufacturing Job Workflow

40-3

As the number of jobs increases, you can filter them as Accepted, Rejected, or
Undecided, which is for jobs that have neither been accepted or rejected.

Tip:

Because the Accepted or Rejected status signifies that your work on a job
has concluded, you're likely to filter by Undecided most often.

Review the Results
1. Click View to examine the results.

Chapter 40
The Data Manufacturing Job Workflow

40-4

If most of the results are uniformly incorrect, then click Reject. You might reject a poorly
conceived job that confused or mislead crowd workers, or you might reject a job because
it was a test. If you find the results are correct, then you can add them to your training set
by clicking Accept. Before you choose this option, keep in mind that you cannot undo
this operation, which adds the entire set of results to your training data. Because you may
inadvertently add bad utterances that you can only remove by editing the intent, we
recommend that you download the results and edit them before accepting them into the
training corpus.

Chapter 40
The Data Manufacturing Job Workflow

40-5

Editing the downloaded CSV files enables you to clean up the results. For
Paraphrasing jobs, editing the results before committing them to your training set
enables you to change utterances or delete the incorrect ones.

Note:

The content in the result column depends on the Job type. For a
Paraphrase job, the crowd worker's utterances populate this column. For
a Validation job, it's the worker's evaluation of the utterance against the
task (Correct, Incorrect, Not sure), and for an Annotation job, it's the
intent that matches the utterance.

To download the job, click Download either in Results page or in the View
Results dialog. Save the job to your local system and then open the CSV with a
spreadsheet program.

2. After you’ve finished your edits, click Upload in the Results page.

Chapter 40
The Data Manufacturing Job Workflow

40-6

3. Retrain your skill.

Paraphrasing Jobs
You collect utterances from the crowd workers through Paraphrasing jobs. Workers who
accept the Paraphrasing job produce valid utterances using guidelines in the form of prompts
and hints that you provide. A prompt captures the essence of what users expect the skill to
do for them. A hint, which is optional, provides the crowd worker with further detail, such as
wording and entity values. For example, "Create an expense for a merchant using a dollar
amount" is a prompt for a Create Expense Report intent. The accompanying hint is "Use the
merchant name ACME and a dollar amount of less than $50."

Gathering a collection of utterances that are linguistically diverse, yet semantically correct,
starts with the design of the prompt and the hint. Keep the following in in mind when
composing your prompts:

• A prompt is not an utterance. Utterances can stifle crowd worker's creativity because of
their specificity. Rather than serve as an example, they instead encourage workers to
simply produce slight variations. These redundant phrases add noise to your training
corpus and will not improve your skill's cognition.

• If you have more than one prompt for an intent, vary them. Each prompt in a Paraphrase
job is likely to be distributed to different crowd workers. Even if a crowd worker gets more
than one prompt from the same Paraphrase job, having a different prompt will change the
worker's perspective.

• Use hints to encourage variation. You can define hints for anything that you want the
utterances to include (or not include). As you vary your prompts, you should likewise vary
their corresponding hints.

Chapter 40
Paraphrasing Jobs

40-7

Prompt Hint

Create an expense for airport parking Include the airport code (SFO, LAX, etc.), a
full date (dd/mm/yyyy), and an amount in US
dollars.

Create an expense for a meal Include the name of the restaurant, a full
date (dd/mm/yyyy), and an amount in US
dollars.

Create the Paraphrasing Job
You can create a Paraphrasing from a CSV file that contains the intent names and
their corresponding prompts and hints, or by adding individual prompts and hints for a
selected intent. You can use either method, but you can't combine the two.

1. If you haven't created any jobs yet, click Add Job (either in the landing page if you
haven’t created any jobs yet, or in the Jobs tab if there are existing jobs).

2. Select Paraphrasing.

3. Enter a job name.

4. Select the language that's used by the crowd workers. By default, the skill's
predominant language displays, but you can choose from other natively supported
langauges that have been set for the skill.

5. Add your prompts and hints (which are optional) for the intents. You can create
these offline in a CSV file with columns named intentName, prompt, and hint, and
add them as a batch, or you can them one by one with the New Job dialog. You
can add these columns in any order in the CSV file.

Note:

If you selected a language other than the predominant language of the
skill, then your prompts and hints must also be in that language.

6. If you've added the prompts, hints, and intent names to a CSV, click Upload, then
browse to, and select, the file. Then click Continue.

7. If needed, add additional prompts , edit , or delete prompts where
needed, or change the number of utterances per prompt. Click Launch.

Chapter 40
Paraphrasing Jobs

40-8

8. To create a Paraphrase job manually, click Select.

9. Click the Intents field to select and intent from the menu, or click the Select all ... intents
option if you want to add prompts to your entire set of intents.

Chapter 40
Paraphrasing Jobs

40-9

10. Click Continue.

11. Click within the Prompt field, or click Edit , to enter your prompt.

12. Click within the Hint field, or click Edit , to enter your prompt.

• Click Add to create another prompt. Keep in mind that each new prompt is
potentially a separate job, handled by a different crowd worker.

• If needed, delete or revise any prompts or hints.

13. Select the number of paraphrases per prompt.

14. When you’re finished, click Launch.

Chapter 40
Paraphrasing Jobs

40-10

The Paraphrasing job displays as a new row in the Jobs page with its status noted as
Running.

15. Click Copy Link in the row, then paste the link into an email that you broadcast to the
crowd. Crowd workers accept the job by clicking this link. After a crowd worker accepts
the job, he or she reviews general rules for Paraphrasing jobs.

Chapter 40
Paraphrasing Jobs

40-11

Note:

The locale of the worker's browser is set to the language selected in the
Create Job dialog.

Workers then submit their paraphrases.

You can monitor the progress of the running in real time from the Jobs page.

Chapter 40
Paraphrasing Jobs

40-12

Tips for Paraphrasing Jobs
For the results of a paraphrasing job to truly improve the training corpus, it's important to set it
up in a way that will elicit diverse and real-life phrases for the use case. Here are some tips
for making your paraphrasing jobs more successful:

• Carefully formulate the use cases that you can use as seeds for the tasks.

• Using the "seed use cases", describe concrete scenarios for which the user should
provide utterances instead of merely asking for variations on a phrase.

• Provide multiple scenarios for the same intent.

• Use the Hint field to give tips that might widen perspective. For example, for an expense
intent, you might add the hint "include different currencies as if you were travelling".

Review the Paraphrasing Job
Before adding the utterances to your training set, you probably want to review them for
semantics, misspellings, or spam.

To review the Paraphrasing job:

1. You can wait for a job to complete, or if you believe that all contributions have been made
to a running job, click Cancel in the Jobs page.

2. Click Results. Only canceled or completed jobs display in the Results page.

3. Click View for a read only view of the utterances. Using the options in this dialog, you can
download the job as a CSV, or accept or reject it in its entirety.

Chapter 40
Paraphrasing Jobs

40-13

Before committing to rejecting or accepting all of the jobs tasks at once (which
can't be undone automatically), you may instead want to download the job and
clean up the results before adding them to the training set. If you follow this route,
click Download either in this dialog or in the Results page.

Tip:

Before you can't easily remove utterances after you've accepted them,
you may want to create a new version of your skill, or clone it as a
precaution.

4. Open the CSV file with spreadsheet program.
Review the utterances in the result column against the IntentName and prompt
columns. Update the utterances in the result column where needed or delete an
entire row (or rows). If the utterance is beyond repair, you can delete the entire
row. If a crowd worker repeatedly enters bad utterances because he didn't
understand the prompts or follow the general paraphrasing guidelines, then you
can sort the worksheet by the contributor column and then delete rows. If you do
delete a row, be sure to delete it completely. You won't be able to upload the file
otherwise.

Tip:

You only need to focus on the intentName, prompt, result, and
contributor columns of the spreadsheet. You can ignore the others.

Chapter 40
Paraphrasing Jobs

40-14

5. When you're finished, click Upload in the Results page. Browse to, then select, the CSV
file. Select Intent Paraphrasing, enter a name, then click Upload.

6. If you want to add the utterances to an intent's training data, click Accept in the Results
page. Click Reject if you don't want to add them to the training set. You might want to
reject a job if it's a test, or if it can't be salvaged because of ill-conceived prompts and
hints.

Chapter 40
Paraphrasing Jobs

40-15

Annotation Jobs
Whenever you have chat data that needs to be mapped to an intent or annotated for
ML Entities, you can create an Annotation job. Workers complete annotation jobs for
intents by matching an utterance to an intent. For entity annotation jobs, workers label
the text in the utterance for an ML Entity. You can create these jobs using a CSV file
with an utterance column, previously completed annotation jobs, or by combining the
two approaches. You can also create an intent annotation job from the utterances
collected in the Retrainer.

Create the Intent Annotation Job
1. Click + New Job in the Jobs page.

2. Select Intent Annotation.

3. Enter a name.

4. Enter the language that's used by the crowd workers.

5. Upload the file, click Continue, note the number of items for the job, then click
Launch.

6. Click Copy Link and then paste the link into an email that’s broadcast to crowd
workers. Workers accept the job by clicking this link. After they sign in, crowd
workers review basic rules on how to classify utterances.

Chapter 40
Annotation Jobs

40-16

Active learning helps crowd workers out by ranking all of the skill's intents by their
likelihood to match the utterance. The intent that has the highest potential to match the
utterance is first. Likewise, the utterances that are currently in the corpus, which crowd
workers use as a guide, are also ranked by their likelihood to match the utterance.

You can monitor the progress in the Jobs page.

Chapter 40
Annotation Jobs

40-17

Review the Annotation Job
1. After the job has completed, or when you've clicked Cancel because you think

that job is as complete as it can be, click View.

2. If you disagree with some of the crowd worker's decisions, click Download to
download a CSV of the results to your local system.

3. In the CSV, enter the intent name that you expect in the intentName column.

4. Override the intent chosen by the crowd worker in the result column by entering
the Conversation Name for the intent that you entered in the intentName column.

5. When you've finished your review, click Upload in the Results page. Then select
the file, enter a name, and then click Upload.

Note:

You can't remove an entry from the results. The results retain all of the
entries, even if you delete a row from the CSV before you upload. If you
want to remove bad entries (because you don't want to reject the entire
job), then you need to create a separate set of results that do not belong
to any job by removing the contents from the jobId and Id columns
before you upload the file.

The results will be merged into the current job.

Chapter 40
Annotation Jobs

40-18

6. Retrain the skill.

Note:

Only the utterances that match an intent get added to the training data. The
ones classified as None of these Intents or I’m not sure are excluded.

Create the Entity Annotation Job
Your skill needs at least one ML Entity for this job. You can't create an Entity Annotation Job
with non-ML Entities.

1. Click + New Job in the Jobs page.

2. Select Entity Annotation.

3. Enter a name.

4. Enter the language that's used by the crowd workers.

5. Select the ML Entity (or ML Entities) that crowd workers will select from. Ideally, these
entities will have helpful names and succinct descriptions.

6. If this is your first Entity Annotation job, browse to, then select a CSV file. You can
provide workers with either annotated or unannotated utterances, depending on the
format of this file:

• For unannotated utterances, upload a CSV that organizes the plain utterances under
a single column, utterance:

utterance
I want to order a family size pepperoni pizza with thin crust and
mozzarella cheese
I want to order a large supreme pizza with regular crust and
provolone cheese
I want to order a medium size meat-lover pizza with gluten-free crust
and goat cheese

• For annotated utterances, upload a CSV with a single column, annotation with each
utterance represented as a JSON object. The beginOffset and endOffset properties
represent the beginning and end of the text labeled for the ML Entity. Create ML
Entities describes the other properties in this object.

annotation
"[
 {
 ""Utterance"":{
 ""utterance"":""I want to order a family size pepperoni
pizza with thin crust and mozzarella cheese"",
 ""languageTag"":""en"",
 ""entities"":[
 {
 ""entityValue"":""family"",
 ""entityName"":""MLPizzaCrust"",
 ""beginOffset"":18,
 ""endOffset"":24

Chapter 40
Annotation Jobs

40-19

 },
 {
 ""entityValue"":""mozzarella"",
 ""entityName"":""MLCheeseType"",
 ""beginOffset"":66,
 ""endOffset"":76
 },
 {
 ""entityValue"":""pepperoni"",
 ""entityName"":""MLPizzaType"",
 ""beginOffset"":30,
 ""endOffset"":39
 }
]
 }
 }
]"
"[
 {
 ""Utterance"":{
 ""utterance"":""I want to order a large supreme pizza
with regular crust and provolone cheese"",
 ""languageTag"":""en"",
 ""entities"":[
 {
 ""entityValue"":""supreme"",
 ""entityName"":""MLPizzaType"",
 ""beginOffset"":24,
 ""endOffset"":31
 },
 {
 ""entityValue"":""provolone"",
 ""entityName"":""MLCheeseType"",
 ""beginOffset"":61,
 ""endOffset"":70
 },
 {
 ""entityValue"":""regular"",
 ""entityName"":""MLPizzaCrust"",
 ""beginOffset"":43,
 ""endOffset"":50
 },
 {
 ""entityValue"":""large"",
 ""entityName"":""MLPizzaSize"",
 ""beginOffset"":18,
 ""endOffset"":23
 }
]
 }
 }
]"

Crowd workers will review the existing labels defined by these offsets, and
change them when they're incorrect.

Chapter 40
Annotation Jobs

40-20

You can combine previously completed annotation jobs into a single job, and also
combine CSVs with completed annotation jobs. If you're adding a prior job, then some of
the utterances will already be annotated.

7. Click Continue, verify the number of records, then Launch.

8. Copy then paste the link into an email that’s broadcast to crowd workers. Workers accept
the job by clicking this link. Before they begin labeling the utterances with annotations,
they review basic rules on how to label content with annotations. If the utterance includes
text that matches one the ML Entities listed in the page, a crowd worker highlights the
applicable text and applies the ML Entity label. If the utterance is already annotated,
workers can review the labels and adjust them when needed.

Chapter 40
Annotation Jobs

40-21

9. When the job completes (either because workers have completed the annotations
or because you canceled it), you can view the results and accept it into the ML
Entity's training corpus.

Chapter 40
Annotation Jobs

40-22

Before adding the results, however, you can have crowd workers verify them by
launching an Entity Validation Job. Only the correct results from a validation job are
added to the corpus. If needed, you can make additional corrections and additions to the
job results in the ML Entity's Dataset tab.

Validation Jobs
For Validation jobs, crowd workers review the results from Paraphrase jobs, Entity Annotation
jobs, or Intent Validation jobs generated from the Retrainer. To validate a Paraphrase Job,
they compare the utterances (the results of a Paraphrasing job or from) against a task, the
Paraphrasing job's prompt. For Entity Annotation Jobs, they review the utterances to ensure
that the correct ML entity has been identified and that the text has been labeled completely.

Create an Intent Paraphrasing Validation Job
1. Click Add Job in the Jobs page.

2. Select Intent Paraphrase Validation.

3. Enter a name.

4. Enter the language that's used by the crowd workers.

Chapter 40
Validation Jobs

40-23

5. Add Paraphrasing jobs that have not yet been accepted (that is, the Finished or
Canceled jobs). You can either upload a CSV file from your local system, select
one or more Paraphrasing jobs, or create a job from both.

6. Click Continue, verify the number of records, then Launch.

7. After the row for the Validation job is added to the Jobs page (you may need to
click Refresh), click Copy Link.

8. Paste the link into an email that's broadcast to crowd workers. After the crowd
workers accept the job, they review basic rules for evaluating the utterances.

Chapter 40
Validation Jobs

40-24

They then evaluate an utterance.

You can monitor the worker’s progress from the Jobs page.

Review a Validation Job
After workers complete the Validation job (or if you cancel the job because it's close enough
to completion), you can view it, accept or reject the job in its entirety. Even though Validation
jobs may contain thousands of results (which is why you'd source them to the crowd), you
may still want to review them individually. For example, you might see answers in the View
Results dialog that you disagree with. You'll want to change or remove them before
committing the results to your training data.

Chapter 40
Validation Jobs

40-25

To edit the results one by one:

1. Download the job as a CSV, either from the View Results dialog, or by clicking
Download in the Results page.

2. Open the CSV in a spreadsheet program.

3. Compare the entries in the IntentName and prompt columns and then change the
results entry when needed. You can edit just this column, or remove an entire row.

In general, you only need to focus on these three columns. That said, you can sort
by the contributor column to isolate the work of a particular crowd worker. If this
worker's decisions are consistently unreliable, then you can delete all of the rows
for this contributor.

Chapter 40
Validation Jobs

40-26

Note:

If you delete a row, make sure that you delete it entirely. You can't upload a
CSV with a partial row.

4. When you’re finished, click Upload in the Results page. Browse to, then select, the CSV
file. Select Validation, enter a name, then click Upload.

5. Click Accept or Reject. If you accept the job, only the "correct" utterances are added to
the training set. You can't undo this operation. You can only remove these utterances
manually.

6. Retrain the skill.

Create an Entity Annotation Validation Job
1. Click New Job in the Jobs page.

2. Select Entity Validation.

3. Enter a name.

4. Enter the language that's used by the crowd workers.

5. You can either upload a CSV file from your local system, select one or more completed
Entity Annotation Jobs (which includes jobs that workers have completed or that you
canceled), or combine them to create a single job. The CSV has the same format as the
one used to add annotated utterances to an Entity Annotation Job: it has the single
annotation column and JSON objects for utterances:

annotation
"[
 {
 ""Utterance"":{
 ""utterance"":""I want to order a family size pepperoni pizza
with thin crust and mozzarella cheese"",
 ""languageTag"":""en"",
 ""entities"":[
 {
 ""entityValue"":""family"",
 ""entityName"":""MLPizzaCrust"",
 ""beginOffset"":18,
 ""endOffset"":24
 },
 {
 ""entityValue"":""mozzarella"",
 ""entityName"":""MLCheeseType"",
 ""beginOffset"":66,
 ""endOffset"":76
 },
 {
 ""entityValue"":""pepperoni"",
 ""entityName"":""MLPizzaType"",
 ""beginOffset"":30,
 ""endOffset"":39
 }

Chapter 40
Validation Jobs

40-27

]
 }
 }
]"
...

6. Click Continue, verify the number of records, then click Launch.

7. Paste the link into an email that's broadcast to crowd workers.

Chapter 40
Validation Jobs

40-28

After the crowd workers accept the job, they review basic rules for evaluating the
annotations. From there, they review the annotations by classifying them as correct,
incorrect, or not sure.

You can monitor the worker’s progress from the Jobs page. When the job completes, you
can review the results before accepting or rejecting it.

Chapter 40
Validation Jobs

40-29

By clicking Accept, you add the correct results to the ML Entity's training set. If
needed you can edit them further in the Dataset tab.

Chapter 40
Validation Jobs

40-30

Create Test Suites
You can create Test Cases from the results of Intent Annotation and Intent Validation jobs.

1. Select the report in the Results page, then Click

2. select Test Suite.

3. Complete the dialog by giving the test suite and name and selecting the language that
the utterances will be tested in. Then click Create.

4. Open the Utterance Tester to run the test suite.

Chapter 40
Create Test Suites

40-31

Part V
Channels

• Channel Basics

• Facebook Messenger

• Slack

• Microsoft Teams

• Cortana

• Text-Only Channels

• Oracle Web

• Oracle iOS

• Oracle Android

• Apple Messages for Business

• Zoom App

• Webhooks

41
Channel Basics

What Are Channels?
To expose your digital assistants and standalone skills to users, you configure channels in
Digital Assistant. Channels carry the chat back and forth from users on various messaging
platforms to the digital assistant and its various skills. There are also channels for user agent
escalation and testing.

Channel Types
You can create and manage the following channel types from the Channels page, which you
access by clicking Channels in the left menu. There’s a tab for each type.

Channel Type Uses

Users • Create user-facing channels.

– Facebook Messenger
– Slack
– Microsoft Teams
– Cortana
– Text-Only Channels: Twilio/SMS
– Oracle Web
– Oracle Android
– Oracle iOS
– Apple Messages for Business
– Zoom App
– Webhooks

• Route and re-route channels to skills and
digital assistants.

• Reset the user chat sessions.
• Enable or disable channels.

Agent Integrations • Configure the Oracle B2C Service or Oracle
Fusion Service user. The skill communicates
with the service through this user. Create an
Agent Integration Channel provides
configuration details for both the service and
the agent components in the dialog flow.

• Enable or disable the agent integration.

DA as Agent • Integrate a digital assistant with Oracle B2C
Service or Oracle Fusion Service, where the
digital assistant acts as an automated agent
that is embedded in the service instance.

41-1

Channel Type Uses

Applications • Configure the application channel through
which an external application sends
notifications to a skill so that it can trigger a
conversation. Implementing Application-
Initiated Conversations describes the process
of configuring the skill to respond to
notifications.

• Enable or disable the application from
sending this notification (and therefore
prevent the skill-initiated conversation).

System • Enable or disable the chat on the Skill Tester
for all skill developers.

• Reset the chat sessions for all skill
developers.

User Channel Routing
You can route each user-facing channel to a single version of a digital assistant or a
skill.

Only one version of a skill or digital assistant can run on a channel at any given time.
When you create new version of the skill, you can stop the routing to the old version
and then assign the routing to the updated version.

You can support running two versions of a skill or digital assistant concurrently by
creating separate channels for each one. For example, beta testers could access the

Chapter 41
User Channel Routing

41-2

skill through one channel while customers continue to chat through a separate channel
uninterrupted.

Route (or Reroute) a Channel
1. Click to open the side menu, select Development > Channels > Users.

2. Select the Users tab, and select the channel.

3. In the channel, next to the Route To field, select and then select the digital assistant or
skill that you want to route the channel to.

How Digital Assistant User Channel Routing Works
When you register a skill to a digital assistant, both the messages that it sends and receives
are relayed through the digital assistant’s user channels. The digital assistant’s routing takes
over, even if the skill already has other channels routed to it.

For example, say there two skills, each with their own web channel that have been registered
to a digital assistant, which in turn routes to its own web channel and to a Facebook channel.
When users send a message to the digital assistant through the digital assistant’s web
channel, it determines the intent and sends the message to the appropriate skill. When the
skill replies, its message is sent back to the user over the digital assistant’s web channel, not
through the skill’s web channel. Likewise, when the digital assistant intercepts a message
from a Facebook subscriber, the skill’s response to the user is sent back over the digital
assistant’s Facebook channel instead of the skill’s own web channel.

Test Rendering for a Channel
To see how a conversation with a digital assistant or individual skill will render in a given user
channel, you can use the tester.

1. Open the digital assistant or skill that you want to test.

2. At the bottom of the left navigation for the digital assistant or skill, click .

3. In the Channel dropdown, select the channel you plan to deploy the digital assistant or
skill to.

4. In the text field at the bottom of the tester, enter some test text.

As you test the channel, you can see how it would display in the channel. In addition, when
there are limitations for that channel type that force the conversation to be rendered
differently than it otherwise might be, those limitations are described in the Conversations
tab.

Zero-Downtime Channel Updates
You can reroute your channel from one skill or digital assistant to another without causing any
user downtime.

Here's how you set it up:

• For a channel that is routed to a digital assistant, you:

1. Create a new version of the digital assistant.

Chapter 41
User Channel Routing

41-3

2. In the new version of the digital assistant, make whatever changes are
necessary, including adding new versions of existing skills.

3. Reroute the channel to the new version of the digital assistant.

• For a channel that is routed to an individual skill, you:

1. Create a new version of the skill, make the desired updates, and publish the
skill.

2. Reroute the channel to the new version of the skill.

Here's what happens after the channel is rerouted:

• If the user doesn't have an open session, they will get the new digital assistant or
skill when they next access the channel.

• If the user has an open session with the digital assistant or skill but is not in the
middle of a flow in a skill, the session is refreshed with the updated digital
assistant or skill.

• If the user is in the middle of a flow in a skill when the channel is rerouted, the user
will continue seeing the previous version of the skill or digital assistant. After they
finish their flow (which happens when the return transition is called in the flow),
the session will be updated with the updated digital assistant or skill.

Caution:

If you update an existing digital assistant (instead of creating a new version
of the digital assistant and then rerouting to that version), the zero downtime
feature will not work. For example, if a new version of a skill has been added
to the digital assistant and a user is in the middle of a session with the old
version of the skill, the session will be interrupted and the skill will stop
working.

Rich Text Formatting in Channels
You can use HTML tags to format skill messages, even for channels that have
channel-specific markup or markdown. When the message is passed to the channel,
the HTML tags you include are replaced with the appropriate markup or markdown for
that particular channel. This enables you write messages in one place for multiple
channels.

If a tag doesn't have a direct equivalent in a channel, the closest equivalent is used.
For example, if the message has <h1>Title 1</h1> and <h2>Title 2</h2> tags,
those are converted to *Title 1* and *Title 2* when sent to a Slack channel.

If there isn't a rough equivalent for the tag in the channel, the tags are merely stripped
from the message when sent to the channel.

Note:

the <video> tag is supported, but it only works if you can link directly to the
video file, such as an .mp4. It doesn't work for YouTube links.

Chapter 41
Rich Text Formatting in Channels

41-4

Style HTML Tags and Attributes

bold ;
italics ; <i>
headings <h1>; <h2>; <h3>
unordered lists (including nesting) ;
ordered lists (including nesting) ;
preformatted text <pre>
blockquote <blockquote>
newline <newline>
hyperlink
image link
table <table>; <th>; <tr>; <td>
font size font-size (e.g. <p style="font-

size:large;">Large Font</p>)

font color color (e.g. <p style="color:red;">Red
Font</p>)

video <video controls=""
src="link_to_video_source_file">

Session Expiration
For each channel that you configure, you use the Session Expiration field to set the timeout
for inactive user sessions. For most channel types, the default value is one day (1440
minutes). When the session has expired, the conversation is terminated and a message is
sent to notify the user of that fact.

In addition, any context variables that have been set in a skill's dialog flow will be destroyed,
unless the variable was declared as a user scoped variable. See User-Scoped Variables in
YAML Dialog Flows.

Change the Session Expiration Prompt
When a session expires, the user is prompted with a message that is set in the Expired
Session Error Prompt property for the digital assistant or skill that the channel is routed to.
By default, this message is "Your session has expired. Please start again."

To change this message for a digital assistant:

1. Click to open the side menu, select Development > Digital Assistants, and open
the digital assistant.

2. In the left navigation for the digital assistant, click and select the Configurations tab.

3. Scroll down to the Other Parameters section of the page and update the Expired
Session Error Prompt property.

To change this message for a standalone skill:

1. Click to open the side menu, select Development > Skills, and open the skill.

2. In the left navigation for the skill, click and select the Configuration tab.

Chapter 41
Session Expiration

41-5

3. Update the Expired Session Error Prompt property.

Reset User Channel Sessions
If needed, you can break off the current conversations in a user channel by clicking its
Reset Sessions button.

Caution:

This button is primarily intended for cases when you are developing the skill
or digital assistant. If you use it for a channel that is in production, you will
disrupt all user conversations that are in progress.

To access the Reset Sessions button:

• Click to open the side menu, select Development > Channels, and select the
user channel.

Enable or Disable Channels
From time to time, you may need to disable a channel to perform maintenance or
updates to the configuration and then re-enable the channel.

To do so, you can use the these switches:

• Channel Enabled

• Interaction Enabled (for agent integrations)

• Application Enabled (for applications)

Disabling the System channel, which supports the skill tester, alerts developers that
the channel is unavailable.

To access these options:

• Click to open the side menu, select Development > Channels, and select the
channel.

Channel-Specific Extensions
In addition to the generic elements that you can use in your dialog flows to render
across multiple channels, you can also take advantage of features that are specific to
a channel type. You can do so through the Common Response component's
channelCustomProperties metadata element, which takes the following form:

...
 channelCustomProperties:
 - channel: "CHANNEL_NAME" // can be facebook, slack,
cortana, twilio, androidsdk, iossdk, websdk, test
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

Chapter 41
Reset User Channel Sessions

41-6

You can apply channelCustomProperties in the component's metadata at the level of
globalActions, responseItems, and elements of responseItems, depending on the given
property.

Here is an example of custom properties defined at the response item level and the card
level:

responseItems:
 - type: "cards"
 cardLayout: "vertical"
 cards:
 - title: "${pizzas.name}"
 description: "${pizzas.description}"
 imageUrl: "${pizzas.image}"
 url: "${pizzas.moreInfo}"
 iteratorVariable: "pizzas"
 channelCustomProperties:
 - channel: "facebook"
 properties:
 webview_height_ratio: "compact"
 fallback_url: "https://www.example.com"
 channelCustomProperties:
 - channel: "facebook"
 properties:
 top_element_style: "large"
..

The channelCustomProperties element takes an array, where each entry specifies the
properties of a specific channel. Some custom properties are only applicable to a specific
Common Response component element, or even a specific response item type, as in the
above example where top_element_style only applies to response items of type cards.

You can also use Freemarker expressions to specify the value of a channel custom property.

Here is an example where a date picker is only shown on Slack when prompted for the
expense date item while resolving the composite bag entity expense:

responseItems:
 - type: "text"
 text: "${system.entityToResolve.value.prompt}"
 channelCustomProperties:
 - channel: "slack"
 properties:
 showDatePicker: "${system.entityToResolve.value.name=='Date'}"
...

The available properties vary by channel. See the following topics for the list of custom
properties available for each channel:

• Facebook Messenger Channel Extensions

• Slack Channel Extensions

• Adaptive Cards in Microsoft Teams

• Cortana Channel Extensions

Chapter 41
Channel-Specific Extensions

41-7

• Twilio Channel Extensions

• Oracle Web Channel Extensions

• Oracle iOS Channel Extensions

• Oracle Android Channel Extensions

Comparison of Channel Capabilities
Here's a non-exhaustive comparison of channels and the features that they support.

Capability Facebook
Messenger

Slack Microsoft
Teams

Cortana Twilio Web , iOS,
and Android

Text Yes Yes Yes Yes Yes Yes

Images Yes Yes Yes Yes for
sending. No for
receiving

Partial Yes

Files Yes Partial for
sending. Yes
for receiving

Yes Yes for
sending. No for
receiving

Partial Yes

Emojis Yes Partial for
sending. Yes
for receiving

Yes Yes for
sending. No for
receiving

Partial Yes

Location Yes, but
deprecated

No No No No Yes

Links Yes Yes Yes Yes Yes Yes

Postbacks Yes Yes Yes No Partial Yes

Location
Requests

Yes No No No No Yes

Extensions No No No No No No

Custom
Properties

Yes Yes Yes Yes Partial Yes

Carousel Yes Partial Yes Yes Partial Yes

List Yes Yes Yes Yes Partial Yes

Tables and
Forms

No Yes Yes
(autosubmit is
not supported)

No No Yes

Note:

To render an emoji from your dialog flow, start with its Unicode
representation, replace + with 000, and prefix the code with \. For example,
for U+1F600, you would enter \U0001F600 in your dialog flow. See https://
unicode.org/emoji/charts/full-emoji-list.html for a list of the Unicode codes for
each emoji.

Comparison of Channel Message Constraints
Here's a comparison of constraints on messages and action buttons, by channel.

Chapter 41
Comparison of Channel Capabilities

41-8

https://unicode.org/emoji/charts/full-emoji-list.html
https://unicode.org/emoji/charts/full-emoji-list.html

Text Message Constraints

Text Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Maximum length
of text message

640 characters. If
the length
exceeds 640, the
text is split over
multiple
messages.

3000 characters.
If the length
exceeds 3000,
the text is split
over multiple
messages.

No limit. 1600 characters.
If the length
exceeds 1600,
the text is split
over multiple
messages.

No limit.

Maximum length
of text action
label

20 characters 30 characters 1 line (about 50
characters)

N/A 128 characters

Types of text
actions allowed

Postback, Call,
URL

Postback, URL Postback, Call,
URL

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

Postback, URL,
Location
Request, Call (if
the device has
calling
capabilities), and
Share (if the
platform supports
it)

Maximum number
of text actions

If there are more
text actions, the
message is
converted to
multiple
horizontal cards,
with the same
text used as the
title on each card,
and each card
containing up to 3
actions.

No limit. No limit. N/A If there are more
text actions, the
message is
converted to
multiple
horizontal cards,
with the same
text used as the
title on each card,
and each card
containing up to 6
actions.

Horizontal Card Messages

Horizontal Card
Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Supported? Yes No. Card is layout
is converted to
vertical.

Yes No, but near
equivalent
functionality is
achieved by
converting some
action types to
text.

Yes

Maximum length
of title

80 characters 3000 characters 2 lines (about 80
characters)

N/A 30 characters

Maximum length
of description

80 characters 3000 characters 25,000 characters N/A 128 characters

Chapter 41
Comparison of Channel Message Constraints

41-9

Horizontal Card
Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Maximum length
of card action
label

20 characters 30 characters 1 line (about 50
characters)

N/A 25 characters

Maximum number
of cards

10 N/A 10 N/A 10

Maximum number
of card actions

3. If the number
of card actions
exceeds 3, the
card is duplicated
to render
remaining card
actions.

N/A 6. If the number
of card actions
exceeds 6, the
card is duplicated
to render
remaining card
actions.

N/A 3. If the number
of card actions
exceeds 3, the
card is duplicated
to render
remaining card
actions.

Minimum number
of card actions

0 N/A 0 N/A 1

Maximum number
of card list
actions

0 N/A 6 N/A --

At least one
description,
image or action
required?

Yes N/A No N/A No

Types of card
actions allowed

Postback, Call,
URL, Share

Postback, URL Postback,
Call,URL

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

Postback, URL

Types of card list
actions allowed

N/A Postback, URL Postback,
Call,URL

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

Postback, URL

Chapter 41
Comparison of Channel Message Constraints

41-10

Vertical Card Messages

Vertical Card
Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Supported? No Yes Yes No, but near
equivalent
functionality is
achieved by
converting some
action types to
text.

Yes.

N

o

t

e

:

F
o
r
1
9
.
4
.
1
,
t
h
i
s
i
s
n
o
t
s
u
p
p
o
r
t
e
d
.

Maximum length
of title

N/A 3000 characters 2 lines (about 80
characters)

N/A 30 characters

Maximum length
of description

N/A 3000 characters 25,000 characters N/A 128 characters

Maximum length
of card action
label

N/A 30 characters 1 line (about 50
characters)

N/A 25 characters

Chapter 41
Comparison of Channel Message Constraints

41-11

Vertical Card
Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Maximum number
of cards

N/A 100 10 N/A N/A

Maximum number
of card actions

N/A -- 3 N/A N/A

Minimum number
of card actions

0 0 0 N/A N/A

Maximum number
of card list
actions

1 -- 6 N/A N/A

At least one
description,
image or action
required?

Yes N/A No N/A No

Types of card
actions allowed

Postback, Call,
URL, Share

Postback, URL Postback, Call,
URL

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

N/A

Types of card list
actions allowed

Postback, Call,
URL

Postback, URL Postback,
Call,URL

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

N/A

Attachment Messages

Attachment
Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Supported? Yes Yes Yes Yes, if MMS is
enabled

Yes

Maximum number
of attachment
actions

0 -- -- N/A --

Chapter 41
Comparison of Channel Message Constraints

41-12

Attachment
Message
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Types of actions
allowed

N/A Postback,URL Postback, Call,
URL.

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

Postback,URL

Action Buttons

Action Button
Constraint

Facebook
Messenger

Slack Microsoft Teams
and Cortana

Twilio Web , iOS, and
Android

Supported? Yes Yes Yes No, but near
equivalent
functionality is
achieved by
converting some
action types to
text.

Yes

Maximum length
of global action
label

20 characters 30 characters 1 line (about 50
characters)

N/A 128 characters

Maximum number
of global actions

11 -- 6 N/A --

Types of global
actions allowed

Postback,
Location

Postback,URL Postback, Call,
URL

Postback, Call,
URL. These
action types are
converted to text.
For postback
actions, the label
serves as a
keyword that can
be used to trigger
the postback.

Postback,
Location

Chapter 41
Comparison of Channel Message Constraints

41-13

42
Voice

The SDKs for the Oracle Android, Oracle iOS, and Oracle Web channels have been
integrated with speech recognition to allow users to talk directly to skills and digital assistants
and get the appropriate responses.

When speech recognition is enabled, a microphone button replaces the send button
whenever the user input field is empty. Users tap this button to begin recording their voices.
The speech is sent to the speech server for recognition, converted to text, and then sent to
the skill. If the speech is only partly recognized, then the partial result is displayed in the user
input field, allowing the user to clean it up before sending it to the skill.

See General Feature Support by Language for a list of the languages that are supported for
voice.

Enable Voice for the Oracle Android Channel
To enable the microphone in chat view:

• Create the Oracle Android Channel and enable it.

• Set the enableSpeechRecognition feature flag to true. Speech Recognition describes
this and other voice-related properties and methods.

Enable Voice for the Oracle Web Channel
To enable the microphone for the chat widget that renders in a web page:

• Configure the Oracle Web Channel and enable it.

• Set the enableSpeech configuration property to true. Voice Recognition describes this
and other voice-related properties and methods.

Enable Voice on the Oracle iOS Channel
To enable the microphone in the iOS chat view:

• Configure the Oracle iOS Channel.

• Set the enableSpeechRecognition feature flag to true. Speech Recognition describes
this and other voice-recognition properties and methods.

Improve ASR with Enhanced Speech
If your skill's training data contains a lot of application- or skill-specific words or phrases,
jargon, proper nouns, or words with unusual spellings or pronunciations, then you can
increase the likelihood of these getting recognized and transcribed correctly using an
enhanced speech model.

42-1

Note:

You can only use enhanced speech with English-language skills (with
training data in English) that are intended for an English-speaking audience.

To build an enhanced speech model:

1. Select Enable Enhanced Speech in Settings.

2. Retrain the skill.

3. Route an Oracle Web, iOS, or Android client channel to the skill.

Tip:

Enhanced speech models are only available for skills developed with
Version 20.12 or later. If you want to use enhanced speech models, then
you must upgrade the skill to 20.12.

When you select this option, the speech recognition system builds an enhanced
speech model that's based on the skill's intent and entity data: utterances, entity
values, synonyms for both custom and dynamic entity values, and system entities that
have been associated with intents. The enhanced speech model is updated each time
you retrain your skill (or, as is the case in the current release, when the skill is
retrained after a finalized push request from the Dynamic Entity API).

When users issue a speech request through the Oracle Web, iOS, or Android client
channels, the speech runtime dynamically pulls in the custom language model for the
skill that's routed to the channel. If the channel points to a digital assistant, it will pull
the custom language models for each skill that has Enable Enhanced Speech
enabled. You can toggle this setting on and off for the individual skills that are
registered to a digital assistant.

Chapter 42
Improve ASR with Enhanced Speech

42-2

43
Facebook Messenger

You’ll need the following to configure the channel for Facebook Messenger:

• A Facebook Developer account

• A Facebook page

• A Facebook app

• A page access token

• An app secret ID

• The webhook URL

• A verify token

To run your digital assistant (or a standalone skill) on Facebook Messenger, you first need to
set up a Facebook page and a Facebook app. You can find out more about this from the
Facebook Messaging Platform documentation.

In a nutshell, here's how it works. The Facebook page hosts your digital assistant. Users chat
with your digital assistant through this page when they use the chat window in a desktop
browser. When they use a mobile device, users interact with your digital assistant directly
through Facebook Messenger itself. In this scenario, the Facebook app allows your digital
assistant to get the messages that are handled by Facebook Messenger.

To create a Facebook Messenger channel, you need artifacts that are generated by both
Oracle Digital Assistant and by Facebook Messenger.

From Oracle Digital Assistant, you’ll need:

• the webhook URL that connects your digital assistant to Facebook Messenger

• the verify token that enables Facebook Messenger to identify the digital assistant

From Facebook Messenger, you’ll need:

• the page access token

• the app secret ID

Because you need transfer these artifacts between Digital Assistant and Facebook
Messenger, you’ll need to switch between these two platforms as you configure the channel.

Step 1: Set Up Facebook Messenger
Start off by generating the App Secret and the Page Access token in Facebook Messenger.

1. Log into your Facebook developer’s account.

2. Create a Facebook page that hosts your bot. The description, images, and cover page
you add to the page will identify your bot to its users.

3. Next, create the Facebook app that you’ll link to this page. Because this is a Messenger
app, choose Apps for Messenger and then click Create App ID.

43-1

https://developers.facebook.com/docs/messenger-platform

If you didn't choose the Apps for Messenger option in this dialog (for example, if
you’re creating a test app), then click Add Product in the left navbar, choose
Messenger from the Product Setup page, and then click Get Started.

4. On the Dashboard page of the Facebook app, copy the app secret and paste
somewhere convenient on your system.

You’ll need the app secret to complete your Facebook channel configuration.

5. In the Dashboard for your app, generate the Page Access Token by selecting your
Facebook page.

Chapter 43
Step 1: Set Up Facebook Messenger

43-2

6. Copy the access token and paste it somewhere convenient.
You’ll use this token, which gives your Facebook App access to Facebook’s Messaging
API, to complete your channel definition in Digital Assistant.

Important:

Changes to the Facebook User Profile API require that you now must request
permissions for certain user profile fields for any Facebook app that you created
before or after July 26, 2018. Without the following permissions, the user’s name
will be populated as a random numeric string.

• pages_messaging
• pages_user_locale
• pages_user_timezone
If you created the app before July 26, you have until January 29, 2019 to apply the
permissions. If you created your app after July 26, 2018, then you need to add
these permissions as soon as possible. You can set them in the App Review for
Messenger section of the Messenger page.

Step 2: Create the Channel in Digital Assistant
Complete the Create Channel dialog by providing the Page Access Token and App Secret
keys from Facebook.

1. In Digital Assistant, click Channels in the left menu and then choose Users.

2. Next, click Add Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Facebook Messenger as the channel type.

Chapter 43
Step 2: Create the Channel in Digital Assistant

43-3

https://developers.facebook.com/docs/messenger-platform/identity/user-profile#fields

5. In the Page Access Token field, paste the page access token that you generated
previously in the Set Up Facebook Messenger procedure.

6. In the App Secret field, paste the app secret that you copied previously in the Set
Up Facebook Messenger procedure.

7. Click Create.

8. In the Channels page, copy both the Verify Token and WebHook URL and paste
them somewhere convenient on your system. You’ll need these to configure the
Facebook webhook.

Step 3: Configure the Facebook Messenger Webhook
In Facebook Messenger, define the Callback URL using the Webhook URL generated
by Digital Assistant in the previous step.

1. In Facebook Messenger, be sure that you’ve selected the project that you initially
created for the webhook.

Chapter 43
Step 3: Configure the Facebook Messenger Webhook

43-4

2. Click Messenger and then choose Settings .

3. Click Subscribe to Events to open the New Page Subscription dialog.

4. Copy the Webhook URL that you got from the Digital Assistant Channels page and paste
it in the CallBack URL field in the New Page Subscription dialog.

5. Copy the Verify Token generated by Digital Assistant and paste it into the Verify Token
field.

6. Under Subscription Fields, select the messages and messaging_postbacks callback
events.

The messages event is triggered whenever someone sends a message to your Facebook
page.

7. Click Verify and Save.

8. Subscribe to the page:

a. In the Webhooks section of the Messenger settings, select the Facebook page for
your digital assistant (or standalone skill).

Chapter 43
Step 3: Configure the Facebook Messenger Webhook

43-5

b. Click Subscribe.

.

Tip:

You might need to bounce your webhook by first clicking Unsubscribe
then Subscribe.

Step 4: Enable the Facebook Channel
With the configuration complete, you’re ready to activate the Facebook channel.

• In Digital Assistant, select the channel and switch on the Channel Enabled
control.

• Click and select the digital assistant or skill that you want to associate with the
channel.

You can now test the bot through the channel.

Step 5: Test Your Bot on Facebook Messenger
With the Facebook Channel and messaging configuration complete, you can test your
bot using your Facebook page, Facebook Messenger (https://www.messenger.com/)

and the Facebook Messenger app on your phone (). Once you locate your bot in
the search, you’re ready to start chatting with it. You can see the changes that you
make to the dialog flow in real time.

Chapter 43
Step 4: Enable the Facebook Channel

43-6

Persistent Menu
Facebook Messenger enables you to create a persistent menu next to its Message field. See
https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/
for details on the feature.

Here's an example that shows persistent menu items for "Order Pizza" and "Order Pasta":

Chapter 43
Persistent Menu

43-7

https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/

Create a Persistent Menu Item
To add persistent Facebook menu items for a digital assistant or a standalone skill,
you do the following:

1. Make sure that you have all of the prerequisites in place, including a get started
button.
Those prerequisites are listed here: https://developers.facebook.com/docs/
messenger-platform/send-messages/persistent-menu/#requirements

2. Add an action for each menu item in the Facebook persistent menu's
call_to_actions array, as generally described at https://
developers.facebook.com/docs/messenger-platform/send-messages/persistent-
menu/#set_menu.

3. Set the persistent menu items with a POST call to the Messenger Platform API.
The request URI is https://graph.facebook.com/v2.6/me/messenger_profile?
access_token=<PAGE_ACCESS_TOKEN>, where <PAGE_ACCESS_TOKEN> is the page
access token for your Facebook app.

Persistent Menu Items for a Digital Assistant
Here's the format of the POST to the Messenger Platform API for adding persistent
Facebook menu items for a digital assistant:

{
 "persistent_menu":[
 {
 "locale":"default",
 "composer_input_disabled": false,
 "call_to_actions":[
 {
 "title":"menu item display name",
 "type":"postback",

"payload":"{\"action\":\"system.textReceived\",\"variables\":
{\"system.text\": \"utterance that contains the skill's invocation
name\"}}"

Chapter 43
Persistent Menu

43-8

https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/#requirements
https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/#requirements
https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/#set_menu
https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/#set_menu
https://developers.facebook.com/docs/messenger-platform/send-messages/persistent-menu/#set_menu
https://developers.facebook.com/docs/messenger-platform/reference/messenger-profile-api
https://developers.facebook.com/docs/messenger-platform/reference/messenger-profile-api

 }
]
 }
]
}

For the payload, you use a system.textReceived action that passes an utterance from
Facebook Messenger to the digital assistant via a system.text variable. That utterance
should contain the invocation name of the target skill (i.e. be an explicit invocation) in order to
ensure proper routing.

Here's an example of creating two persistent menu items for your skill in Facebook
Messenger ("Order Pizza" and "Order Pasta"):

{
 "persistent_menu":[
 {
 "locale":"default",
 "composer_input_disabled": false,
 "call_to_actions":[
 {
 "title":"Order Pizza",
 "type":"postback",
 "payload":"{\"action\":\"system.textReceived\",\"variables\":
{\"system.text\": \"Order pizza from Pizza Joe \"}"
 },
 {
 "title":"Order Pasta",
 "type":"postback",
 "payload":"{\"action\":\"system.textReceived\",\"variables\":
{\"system.text\": \"Order pasta from Pizza Joe \"}"
 }
]
 }
]
}

Persistent Menu Items for a Standalone Skill
Here's the format of the POST to the Messenger Platform API for adding persistent Facebook
menu items for a standalone skill:

{
 "persistent_menu":[
 {
 "locale":"default",
 "composer_input_disabled": false,
 "call_to_actions":[
 {
 "title":"menu item display name",
 "type":"postback",
 "payload":"{\"action\":\"action name\",\"variables\": {}"
 }

Chapter 43
Persistent Menu

43-9

https://developers.facebook.com/docs/messenger-platform/reference/messenger-profile-api

]
 }
]
}

The payload is an action that is defined as a default transition in the skill's dialog flow.

For example, if you want the menu item to initiate the skill's help flow, you'd define the
default transition in your dialog flow like so:

context:
 variables:
 ...
defaultTransitions:
 actions:
 help: "help"
states:

And then you'd reference that help action in the Facebook persistent menu.

{
 "persistent_menu":[
 {
 "locale":"default",
 "composer_input_disabled": false,
 "call_to_actions":[
 {
 "title":"Help",
 "type":"postback",
 "payload":"{\"action\":\"help\",\"variables\": {}"
 }
]
 }
]
}

Supported Capabilities
Facebook Messenger channels in Digital Assistant support the following capabilities:

• text (both sending and receiving)

• images (both sending and receiving)

• files (both sending and receiving)

• emojis (both sending and receiving)

• location, but deprecated (both sending and receiving)

• links

• postbacks

• location requests

• custom properties

Chapter 43
Supported Capabilities

43-10

• carousel components

• list components

If you are targeting your skill to multiple channels with different formatting capabilities and
syntax, you can use basic HTML markup in your messages. If you do so, that markup will be
automatically converted to Facebook Messenger's markdown format when the message is
transmitted to the channel. This is particularly useful if you are targeting your skills to other
channels in addition to Facebook Messenger. See Rich Text Formatting in Channels.

Message Constraints
Facebook Messenger channels in Digital Assistant have the following message constraints:

• Text Messages

– Maximum length of text message: 640 characters. If the length exceeds 640, the text
is split over multiple messages.

– Maximum length of text action label: 20 characters

– Types of text actions allowed: Postback, Call, URL

– Maximum number of text actions: 3. If there are more text actions, the message is
converted to multiple horizontal cards, with the same text used as the title on each
card, and each card containing up to 3 actions.

• Horizontal Cards

– Maximum length of title: 80 characters

– Maximum length of description: 80 characters

– Maximum length of card action label: 20 characters

– Maximum number of cards: 10

– Maximum number of card actions: 3. If the number of card actions exceeds 3, the
card is duplicated to render remaining card actions.

– Minimum number of card actions: 0

– Maximum number of card list actions: 0

– At least one description, image or action required?: Yes

– Types of card actions allowed: Postback, Call, URL, Share

– Types of card list actions allowed: N/A

• Vertical Cards

– Not supported

• Attachment Messages

– Supported?: Yes

– Attachment actions allowed?: No

• Action Buttons

– Maximum length of global action label: 20 characters

– Maximum number of global actions: 11

– Types of global actions allowed: Postback

Chapter 43
Message Constraints

43-11

Facebook Messenger Channel Extensions
For Facebook Messenger channels, you can extend the functionality of Common
Response components with capabilities that are specific to Facebook.

You access the extensions by using the channelCustomProperties element in the
Common Response component's metadata and setting the appropriate properties. The
code has the following format:

...
 channelCustomProperties:
 - channel: "facebook"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

Here are the available custom properties for Facebook Messenger channels:

Property Name Allowed Values Applies To... Description

top_element_style • compact
• large

Response items with the
following attributes:
• type: "cards"
• cardLayout:

"vertical"

Determines how the image
of the first card is rendered.
See https://
developers.facebook.com/
docs/messenger-platform/
send-messages/template/
list/#cover_image for
details.
If not specified, Oracle
Digital Assistant defaults
this property to compact,
which is the opposite of the
Facebook default.

image_aspect_ratio • horizontal
• square

Response items with the
following attributes:
• type: "cards"
• cardLayout:

"horizontal"

The aspect ratio used to
render images. Defaults to
horizontal (1.91:1).
square sets the aspect
ratio to 1:1 . See https://
developers.facebook.com/
docs/messenger-platform/
reference/template/
generic#attachment

sharable • true
• false

Response items of type
cards.

Set to true to enable the
native share button in
Messenger for the template
message. Defaults to
false. See https://
developers.facebook.com/
docs/messenger-platform/
reference/template/
generic#attachment

Chapter 43
Facebook Messenger Channel Extensions

43-12

https://developers.facebook.com/docs/messenger-platform/send-messages/template/list/#cover_image
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list/#cover_image
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list/#cover_image
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list/#cover_image
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list/#cover_image
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment
https://developers.facebook.com/docs/messenger-platform/reference/template/generic#attachment

Property Name Allowed Values Applies To... Description

webview_height_ratio • compact
• tall
• full

Either of the following:
• A card where the

"url" property is
specified

• An action where
"type": "url"

Height of the webview that
is opened when the URL
button is tapped or the
height of the card with url
property specified is
tapped. See https://
developers.facebook.com/
docs/messenger-platform/
reference/buttons/
url#properties

messenger_extensions • true
• false

Either of the following:
• A card where the

"url" property is
specified

• An action where
"type": "url"

Messenger Extensions
gives you the ability to
tightly integrate
experiences in the webview
with the Messenger
experience by making
added functionality
accessible in the webview.
See https://
developers.facebook.com/
docs/messenger-platform/
reference/messenger-
extensions-sdk

fallback_url A valid URL Either of the following:
• A card where the

"url" property is
specified

• An action where
"type": "url"

The URL to use on clients
that don't support
Messenger Extensions . If
this is not defined, the url
will be used as the fallback.
It may only be specified if
messenger_extensions
is true. See https://
developers.facebook.com/
docs/messenger-platform/
reference/buttons/
url#properties

webview_share_button • hide Either of the following:
• A card where the

"url" property is
specified

• An action where
"type": "url"

Set to hide to disable the
share button in the
webview (for sensitive info).
This does not affect any
shares initiated by the
developer using
Extensions.

share_contents The format follows that
used in the Facebook
Messenger Send API

• An action where
"type": "share"

The message that you wish
the recipient of the share to
see, if it is different from the
one this button is attached
to. See https://
developers.facebook.com/
docs/messenger-platform/
reference/buttons/
share#properties

Chapter 43
Facebook Messenger Channel Extensions

43-13

https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/messenger-extensions-sdk
https://developers.facebook.com/docs/messenger-platform/reference/messenger-extensions-sdk
https://developers.facebook.com/docs/messenger-platform/reference/messenger-extensions-sdk
https://developers.facebook.com/docs/messenger-platform/reference/messenger-extensions-sdk
https://developers.facebook.com/docs/messenger-platform/reference/messenger-extensions-sdk
https://developers.facebook.com/docs/messenger-platform/send-api-reference/webview
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/url#properties
https://developers.facebook.com/docs/messenger-platform/send-api-reference
https://developers.facebook.com/docs/messenger-platform/send-api-reference
https://developers.facebook.com/docs/messenger-platform/reference/buttons/share#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/share#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/share#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/share#properties
https://developers.facebook.com/docs/messenger-platform/reference/buttons/share#properties

Here is an example of custom properties defined at the response item level
(top_element_style) and the cards level (webview_height_ratio and fallback_url):

responseItems:
 - type: "cards"
 cardLayout: "vertical"
 cards:
 - title: "${pizzas.name}"
 description: "${pizzas.description}"
 imageUrl: "${pizzas.image}"
 url: "${pizzas.moreInfo}"
 iteratorVariable: "pizzas"
 channelCustomProperties:
 - channel: "facebook"
 properties:
 webview_height_ratio: "compact"
 fallback_url: "http://www.oracle.com"
 channelCustomProperties:
 - channel: "facebook"
 properties:
 top_element_style: "large"
...

For more general information on channelCustomProperties, see Channel-Specific
Extensions.

Chapter 43
Facebook Messenger Channel Extensions

43-14

44
Slack

Here's what happens when you use Slack as a channel for your digital assistant (or
standalone skill):

• Slack hosts your digital assistant through the intermediary of a Slack app.

• Users chat with your digital assistant through the Slack app in the Slack user interface.

See Building Slack apps for Slack's developer documentation for Slack apps.

Below are the steps for creating a Slack channel for Digital Assistant.

Note:

Skills and digital assistants that you expose through Slack channels can also be
included in group chats. See Group Chats.

Step 1: Get a Slack Workspace
To make your digital assistant (or standalone bot) available in Slack, you need to have a
Slack workspace available to you where you have the permissions necessary to create a
Slack app.

If you don't have such a workspace available to you, you can create your own. See Slack's
Create a new workspace page.

Step 2: Create a Slack App
1. Go to Slack's Your Apps page.

2. Click Create a Slack App.

3. In the Create a Slack App dialog, fill in the App Name and Development Slack
Workspace fields and click Create App.

Once the app is created, its Basic Information page appears.

4. Scroll down to the App Credentials section of the page and note the values of the Client
ID, Client Secret, and Signing Secret.

You'll need these credentials when you set up the channel in Digital Assistant.

Step 3: Add OAuth Scopes for the Slack App
You add OAuth scopes for permissions that you want to give to the bot and to the user.

1. In the left navigation of the web console for your Slack app, within the Features section,
select OAuth and Permissions.

2. Scroll to the Scopes section of the page.

44-1

https://api.slack.com/slack-apps
https://slack.com/create
https://api.slack.com/apps

3. The scopes fall into these categories:

• Bot Token Scopes

• User Token Scopes

4. In the Bot Token Scopes section, add the scopes that correspond to the bot-level
permissions that you want to allow. At minimum, the following bot token scopes
are required:

• chat:write
• im:history
• users:read
Depending on the skill's features, other scopes might be required. For example,
the following scopes are required for working with attachments:

• files:read
• files:write

5. In the User Token Scopes section, add the scopes that correspond to the user-
level permissions that you want to allow. The following user token scopes are
required:

• files:read
• files:write

Depending on the requirements of your bot, you may need to add other scopes.

Step 4: Add the App to the Workspace
1. Scroll back to the top of the OAuth & Permissions page.

2. Within the OAuth Tokens & Redirect URLs section, click Install to Workspace.

A page will appear showing what the app will be able to do.

3. At the bottom of the page, click Allow.

Once you have completed this step, you should be able to see the app in your Slack
workspace by selecting Apps in the left navigation.

Step 5: Create a Channel in Digital Assistant
1. In Digital Assistant, click Channels in the left menu and then choose Users.

2. Click + Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Slack as the channel type.

5. Fill in the the values for Client ID, Client Secret, and Signing Secret that you
obtained when you created your Slack app.

You can retrieve these values from the Settings page of your Slack app.

6. If you are setting up the channel for group chats and you want messages to go to
the group without mentioning the Slack app name, select Allow Messages
Without App Mention in Group Chat.

Chapter 44
Step 4: Add the App to the Workspace

44-2

7. Click Create.

8. In the Channels page, copy the WebHook URL and paste it somewhere convenient on
your system. You’ll need this to finish setting up the Slack app.

9. Click and select the digital assistant or skill that you want to associate with the
channel.

10. In the Route To dropdown, select the digital assistant or skill that you want to associate
with the channel.

11. Switch on the Channel Enabled control.

Step 6: Configure the Webhook URL in the Slack App
1. In the left navigation of the web console for your Slack app, select Interactivity &

Shortcuts.

2. Turn the Interactivity switch ON.

3. In both the Request URL and Options Load URL fields, paste the webhook URL that
was generated when you created the channel in Digital Assistant .

4. Click Save Changes.

5. In the left navigation, select OAuth & Permissions.

6. In the Redirect URLs field, click Add New Redirect URL.

7. Paste the webhook URL, append /authorizeV2, and click Add.

8. Click Save URLs.

9. In the left navigation, select App Home.

10. In the Your App’s Presence in Slack section, turn on the Always Show My Bot as
Online switch.

11. Scroll down the page to the Show Tabs section, and turn the Messages Tab switch on.

12. Select the Allow users to send Slash commands and messages from the messages
tab checkbox.

13. In the left navigation, select Event Subscriptions.

14. Set the Enable Events switch to ON.

15. In the Request URL field, paste the webhook URL.

After you enter the URL, a green Verified label should appear next to the Request URL
label.

16. Expand the Subscribe to bot events section of the page, click Add Bot User Event,
and add the following event:

• message.im
17. If you plan to make the bot available in group chats, also add the following events:

• app_mention
• message.mpim
• message.channels

18. Click Save Changes.

Chapter 44
Step 6: Configure the Webhook URL in the Slack App

44-3

19. In the left navigation, select Manage Distribution.

20. Click the Add to Slack button and then click Allow.

At this point, you should get the message You've successfully installed your
App in Slack.

Step 7: Test Your Bot in Slack
With the Slack channel and messaging configuration complete, you can test your bot
(digital assistant or skill) in Slack.

1. Open the Slack workspace where you have installed the app.

2. In the left navigation bar, select the app that is associated with your digital
assistant.

3. In the Message field, enter text to start communicating with the digital assistant.

Note:

If you see the message "Sending messages to this app has been turned off”
in your Slack client, try restarting the Slack app. If this does not enable the
field, check to make sure that you have granted all of the necessary
permissions.

"New" vs. "Classic" Slack Apps
Starting with version 20.6 of Oracle Digital Assistant, creation of Slack channels is
based on an updated OAuth flow in Slack apps. This updated flow enables more
granular scopes. The instructions for channel setup in this guide are based on the new
OAuth flow.

See https://api.slack.com/authentication/oauth-v2 for details on the updated OAuth
flow.

Note:

Any existing channels that were created before Digital Assistant 20.6 and
that are based on "classic" Slack apps will continue to work. However, you
should consider migrating those classic Slack apps to new Slack apps. See
https://api.slack.com/authentication/migration for the details.

Supported Capabilities
Slack channels in Digital Assistant support the following capabilities:

• text (both sending and receiving)

• images (both sending and receiving)

• files (partial support for sending, full support for receiving)

Chapter 44
Step 7: Test Your Bot in Slack

44-4

https://api.slack.com/authentication/oauth-v2
https://api.slack.com/authentication/migration

• emojis (partial support for sending, full support for receiving)

• links

• postbacks

• custom properties

• carousel components (but rendered vertically instead of horizontally)

• list components

Slack enables you to format messages using markdown. See https://api.slack.com/reference/
surfaces/formatting in the Slack API documentation.

Note:

If you are targeting your skill to multiple channels with different formatting capabilities and
syntax, you can use basic HTML markup in your messages. If you do so, that markup will be
automatically converted to Slack's markdown format when the message is transmitted to the
channel. This is particularly useful if you are targeting your skills to other channels in addition
to Slack. See Rich Text Formatting in Channels.

Message Constraints
Slack channels in Digital Assistant have the following message constraints:

• Text Messages

– Maximum length of text message: 3000 characters. If the length exceeds 3000, the
text is split over multiple messages.

– Maximum length of text action label: 30 characters

– Types of text actions allowed: Postback, URL

• Horizontal Cards

– Supported?: No. Card is layout is converted to vertical.

• Vertical Cards

– Maximum length of title: 3000 characters

– Maximum length of description: 3000 characters

– Maximum length of card action label: 30 characters

– Maximum number of cards: 100

– Types of card actions allowed: Postback, URL

– Types of card list actions allowed: Postback, URL

• Attachment Messages

– Supported?: Yes

– Types of Actions Allowed: Postback, URL

• Action Buttons

– Maximum length of global action label: 30 characters

Chapter 44
Message Constraints

44-5

https://api.slack.com/reference/surfaces/formatting
https://api.slack.com/reference/surfaces/formatting

– Types of global actions allowed: Postback, URL

Slack Channel Extensions
For Slack channels, you can extend the functionality of Common Response
components with capabilities that are specific to Slack.

You access the extensions by using the channelCustomProperties element in the
Common Response component's metadata and setting the appropriate properties. The
code has the following format:

...
 channelCustomProperties:
 - channel: "slack"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

Here are the available custom properties for Slack channels:

Name Allowed Values Applies To... Description

dropDownPlaceholder • placeholder text
• nested object with the

following properties,
each of which takes a
string value:
– postbackAction

s
– cardPostbackAc

tions
– globalPostback

Actions

Response items Use this property to specify
the placeholder text shown
within the dropdown list.

ephemeral • true
• false

Response items Can be used in group chats
to display a message to
just one user, such as
when that user attempts to
authenticate.

fields • an array of strings Response items of type
text.

The string values specified
in this property are
displayed as fields in a two-
column layout (desktop) or
a single column layout
(mobile).

Chapter 44
Slack Channel Extensions

44-6

Name Allowed Values Applies To... Description

renderActionsAsDropDo
wn

• true
• false
• nested object with the

following properties,
each of which takes a
Boolean value:
– postbackAction

s
– cardPostbackAc

tions
– globalPostback

Actions

Response items By default (if you don't set
this property), actions are
displayed:
• as buttons if there are

five or fewer actions
• in a dropdown list if

there are six or more
If you want to display
actions in a dropdown list,
no matter how many
actions there are, set this
property to true.

If you want to display
actions as buttons, no
matter how many actions
there are, set this propeorty
to false.

If you want to have different
behavior for different types
of postback actions, you
can use a nested object
with Boolean values for
each of the following type
of actions:

• postbackActions -
postback actions
defined at the
response item level,
including text,
attachment, and card
list items.

• cardPostbackActio
ns - postback actions
defined for an
individual card

• globalPostbackAct
ions - postback
actions defined for
global actions.

To render actions in a
dropdown menu, Slack
uses a select menu with
static items. See https://
api.slack.com/reference/
messaging/block-
elements#static-select.

Chapter 44
Slack Channel Extensions

44-7

https://api.slack.com/reference/messaging/block-elements#static-select
https://api.slack.com/reference/messaging/block-elements#static-select
https://api.slack.com/reference/messaging/block-elements#static-select
https://api.slack.com/reference/messaging/block-elements#static-select

Name Allowed Values Applies To... Description

showDatePicker • true
• false
• a nested object with

show, initialDate
and placeholder
properties

Response items of type
text.

Set to true to show a date
picker next to the text
message.
In the Add State dialog,
you can select the Slack
Date Picker template to
get sample code for
displaying a date picker
conditionally.

See also https://
api.slack.com/reference/
messaging/block-
elements#datepicker.

showImageInAccessory • true
• false

Response items of type
cards.

Set to true to show the
card image at the right as a
small image instead of a
larger centered image.

Here's an example of using the renderActionsAsDropDown custom property.

responseItems:
- type:
 "text"
 text: "Here is a list of the UI features of the Common Response
Component:"
 actions:
 - ...
 channelCustomProperties:
 - channel: "slack"
 properties:
 renderActionsAsDropDown: false

And here's an example of using the renderActionsAsDropDown custom property with
nested properties for postbackActions, cardPostbackActions, and
globalPostbackActions.

responseItems:
- type: "text"
 text: "Here is a list of the UI features of the Common Response
Component:"
 actions:
 - ...
 channelCustomProperties:
 - channel: "slack"
 properties:
 renderActionsAsDropDown:
 postbackActions: false
 cardPostbackActions: true
 globalPostbackActions: true

Chapter 44
Slack Channel Extensions

44-8

https://api.slack.com/reference/messaging/block-elements#datepicker
https://api.slack.com/reference/messaging/block-elements#datepicker
https://api.slack.com/reference/messaging/block-elements#datepicker
https://api.slack.com/reference/messaging/block-elements#datepicker

For more general information on channelCustomProperties, see Channel-Specific
Extensions.

Slack Modals
You can create a button to invoke a Slack modal in a Common Response component. To do
so, you set the button's action property to system.openModal and include a variable named
system.dialogPayload of type map. The action metadata should look something like this
snippet:

 actions:
 - label: "Open Dialog"
 type: "postback"
 payload:
 action: "system.openModal"
 variables:
 system.dialogPayload: ${dialogPayload}

Note:

The Freemarker expression to reference the system.dialogPayload variable does
not end with .value. This is because the variable holds a JSON object, and
Freemarker expressions must always evaluate to a string. Using the expression $
{dialogPayload.value} would throw an error. The JSON object-to-string
conversion takes place when you omit .value.

The value of system.dialogPayload is typically set in a custom component, but also can be
defined inline or using a Set Variable component.

Here is an example in YAML dialog mode using a Set Variable component:

 setSlackModalUI:
 component: "System.SetVariable"
 properties:
 variable: "dialogPayload"
 value:
 type: modal
 title:
 type: plain_text
 text: Edit expense
 emoji: true
 submit:
 type: plain_text
 text: Submit
 emoji: true
 close:
 type: plain_text
 text: Cancel
 emoji: true
 blocks:
 - type: input

Chapter 44
Slack Modals

44-9

https://api.slack.com/surfaces/modals

 element:
 type: static_select
 initial_option:
 value: "${expense.value.Type!''}"
 text:
 type: "plain_text"
 text: "${expense.value.Type!''}"
 emoji: true
 placeholder:
 type: plain_text
 text: Select expense type
 emoji: true
 options:
 - text:
 type: plain_text
 text: Metro, bus, train
 emoji: true
 value: Public transport
 - text:
 type: plain_text
 text: Taxi
 emoji: true
 value: Taxi
 - text:
 type: plain_text
 text: Breakfast, lunch, dinner
 emoji: true
 value: Meal
 - text:
 type: plain_text
 text: Flight
 emoji: true
 value: Flight
 action_id: "expenseType"
 label:
 type: plain_text
 text: Expense Type
 emoji: true
 - type: input
 element:
 type: plain_text_input
 action_id: "expenseAmount"
 initial_value: "${expense.value.Amount?has_content?
then(expense.value.Amount.totalCurrency,'')}"
 placeholder:
 type: plain_text
 text: Expense amount
 emoji: true
 label:
 type: plain_text
 text: Amount
 emoji: true
 - type: input
 element:
 type: datepicker

Chapter 44
Slack Modals

44-10

 initial_date: "${expense.value.Date?has_content?
then(expense.value.Date.date?long?number_to_date?string['yyyy-MM-dd'],'')}"
 placeholder:
 type: plain_text
 text: Expense Date
 emoji: true
 action_id: "expenseDate"
 label:
 type: plain_text
 text: Date
 emoji: true

Note:

If you set the system.dialogPayload variable in a custom component, you don't
need to hard-code the entity values as options. Instead, you can iterate over all the
entity values of a specific item and dynamically create a select element type with an
options array for the allowable values.

When the user submits input in the Slack dialog, the Common Response component sets the
system.dialogSubmitted transition to move to a state that processes the submitted values.
The submitted values are stored in variables with the same name. For a custom component
equivalent of the preceding System.SetVariable example, you would need to define the
variables Type, Date and Amount, since those are are defined in dialogPayload.

Here's some sample code for handling the system.dialogSubmitted transition in a skill
designed in YAML dialog mode.

 transitions:
 next: "nothingSubmitted"
 actions:
 system.dialogSubmitted: "displaySlackReturnValues"

 displaySlackReturnValues:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - type: "text"
 text: "Expense Type : ${expenseType}"
 transitions:
 return: "done"

It is up to you to determine how to process the submitted field values. The Common
Response component does NOT perform any automatic updates of entity values. It only
stores the values in context variables. You will typically process these values in a custom
component, so you can do additional validations if needed. In its most simple form, you can
store the submitted field values in a string variable and then use the Match Entity component
to update entity values.

Chapter 44
Slack Modals

44-11

Here is an example for a dialog flow in YAML mode for using the submitted values to
update the expense composite bag entity:

 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "submittedFields"
 variable: "expense" transitions:
 next: "resolveExpense"

Tip:

In the dialog flow editor (in both Visual and YAML dialog mode), there is a
Slack Block Kit template that contains a heavily-nested metadata sample
that is typical of output from the kit builder. If you need complex metadata for
such a state and you want to make it easier to read, you can use flow-level
map variables, paste whole JSON objects generated by the kit builder into
them as default values, and incorporate the variables into the metadata.

For full documentation on the element types that are supported in the Slack dialog
payload, see https://api.slack.com/reference/block-kit/block-elements. The structure
you specify in the dialog payload should be identical to the structure described in the
Slack documentation.

Note:

The Slack dialog also supports having an error array sent back as the
response when the modal is submitted. However, this functionality is
currently not supported within Common Response components. Instead, you
should handle custom validation and user feedback associated with
validation errors in a custom component.

Slack Dialog Window

Note:

Slack now recommends that you use Slack modals instead of Slack dialogs.
See Slack Modals for details on incorporating Slack modals into your dialog
flow and https://api.slack.com/block-kit/dialogs-to-modals for info on
converting dialogs to modals.

You can create a button to invoke a Slack dialog in a Common Response component.
To do so, you set the button's action property to system.openDialog and include a

Chapter 44
Slack Dialog Window

44-12

https://api.slack.com/reference/block-kit/block-elements
https://api.slack.com/block-kit/dialogs-to-modals
https://api.slack.com/dialogs

variable named system.dialogPayload. The action metadata should look something like this
snippet:

 actions:
 - label: "Edit"
 type: "postback"
 payload:
 action: "system.openDialog"
 variables:
 system.dialogPayload: ${dialogPayload}

Note:

The Freemarker expression to reference the system.dialogPayload variable does
not end with .value. This is because the variable holds a JSON object, and
Freemarker expressions must always evaluate to a string. Using the expression $
{dialogPayload.value} would throw an error. The JSON object-to-string
conversion takes place when you omit .value.

The value of system.dialogPayload is typically set in a custom component, but also can be
defined inline or using a Set Variable component.

Here is a simple example using a System.SetVariable component in a YAML-mode dialog
flow:

 setDialogPayload:
 component: "System.SetVariable"
 properties:
 variable: "dialogPayload"
 value:
 callback_id: "editExpense"
 title: "Edit expense"
 submit_label": "Submit"
 elements:
 - type: "select"
 label: "Expense Type"
 name: "Type"
 value: "${expense.value.Type!''}"
 options:
 - value: "Public transport"
 label: "Metro, bus, train"
 - value: "Taxi"
 label: "Taxi"
 - value: "Meal"
 label: "Breakfast, lunch, dinner"
 - value: "Flight"
 label: "Flight"
 - type: "text"
 label: "Amount"
 name: "Amount"
 value: "${expense.value.Amount?has_content?
then(expense.value.Amount.totalCurrency,'')}"

Chapter 44
Slack Dialog Window

44-13

 - type: "text"
 label: "Date"
 name: "Date"
 value: "${expense.value.Date?has_content?
then(expense.value.Date.date?number_to_date,'')}"

Note:

If you set the system.dialogPayload variable in a custom component, you
don't need to hard-code the entity values as options. Instead, you can iterate
over all the entity values of a specific item and dynamically create a select
element type with an options array for the allowable values.

When the user submits input in the Slack dialog, the Common Response component
sets the system.dialogSubmitted transition to move to a state that processes the
submitted values. The submitted values are stored in context variables with the same
name. For a custom component equivalent of the preceding System.SetVariable
example, you would need to define the context variables Type, Date and Amount, since
those are are defined in dialogPayload.

Here's some sample code for handling the system.dialogSubmitted transition in a
skill designed in YAML dialog mode.

 ...
 transitions:
 actions:
 cancel: "askTalkToAgent"
 match: "afterMatch"
 disambiguate: "disambiguate"
 system.dialogSubmitted: "processDialog"

 processDialog:
 component: "System.SetVariable"
 properties:
 variable: "submittedFields"
 value: "${Type} ${Amount} ${Date}"
 transitions:
 ...

It is up to you to determine how to process the submitted field values. The Common
Response component does NOT perform any automatic updates of entity values. It
only stores the values in context variables. You will typically process these values in a
custom component, so you can do additional validations if needed. In its most simple
form, you can store the submitted field values in a string variable and then use the
Match Entity component to update entity values.

Here is an example for a dialog flow in YAML mode for using the submitted values to
update the expense composite bag entity:

 matchEntity:
 component: "System.MatchEntity"

Chapter 44
Slack Dialog Window

44-14

 properties:
 sourceVariable: "submittedFields"
 variable: "expense" transitions:
 next: "resolveExpense"

For documentation on other properties and element types that are supported in the Slack
dialog payload, see https://api.slack.com/dialogs#top-level_dialog_attributes. The structure of
the dialog payload should be identical to the structure described in the Slack documentation.

Note:

The Slack dialog also supports having an error array sent back as the response
when the dialog is submitted. However, this functionality is currently not supported
within Common Response components. Instead, you should handle custom
validation and user feedback associated with validation errors in a custom
component.

Chapter 44
Slack Dialog Window

44-15

https://api.slack.com/dialogs#top-level_dialog_attributes

45
Microsoft Teams

When you set up a Microsoft Teams channel, users can chat with your digital assistant (or a
standalone skill) through the Microsoft Teams user interface.

Here's the process for setting up a channel:

1. In Microsoft Teams' Developer Portal, create an app and add a bot to that app.

2. Using the app ID and password from the bot, create a channel in Digital Assistant .

3. Copy the webhook URL that is generated when you create the channel and add it to the
bot.

4. Test your digital assistant in Microsoft Teams.

Note:

Skills and digital assistants that you expose through Microsoft Teams channels can
also be included in group chats. See Group Chats.

Step 1: Create a Bot
To make your digital assistant (or standalone skill) available in Microsoft Teams, you need to
create the following through the Teams Developer Portal:

• A Microsoft Teams app. This app is the container for the bot that you create and is how
you access the bot in Teams.

• A bot. This is the artifact within the app that communicates with Oracle Digital Assistant

Note:

The Teams Developer Portal isn't available for some kinds of Microsoft tenants,
such as GCC-High and Department of Defense (DoD) tenants. If you are working
with such a tenant, you can use a regular tenant to be build the app, download the
app, and then use Microsoft Graph to upload the app to your national cloud. See
Developer Portal for Teams and National Cloud Deployments on Microsoft's site for
details.

Here are the steps:

1. Go to https://dev.teams.microsoft.com/home and log in with your Microsoft account.

2. In the left navigation, click Apps.

3. Click + New app.

45-1

https://learn.microsoft.com/en-us/microsoftteams/platform/concepts/build-and-test/teams-developer-portal
https://learn.microsoft.com/en-us/graph/deployments
https://dev.teams.microsoft.com/home

4. In the Add App dialog, fill in the name you want to use for the app as it will appear
in Microsoft Teams and then click Add.

(This app will encapsulate the bot, which you will create later.)

5. On the Basic Information page, fill in the remaining required fields except for
Application (client) ID and click Save.

Note:

This field is only needed if you configure the bot for single sign-on. See
SSO Configuration for Microsoft Teams Channels.

6. In the left navigation of the page, under the Configure section, select App
features.

7. Click Bot.

8. Click the Create a new bot link.

9. On the Bot Management page click + New Bot.

10. In the Add bot dialog, enter a name for the bot.

11. In the Channels section of the page, select the Microsoft Teams checkbox.

12. After the bot is created, select the Client secrets tab.

13. In the Client Secrets section of the page, right-click the Azure link to open the App
Registrations page of Azure Active Directory in a separate browser tab.

14. In the App Registrations page, select the bot resource that you created.

15. Click Add a certificate or secret.

16. With the Client Secrets tab selected, click + New Client Secret.

17. In the Add a client secret dialog, fill in a description, select its expiration period,
and click Add.

18. Copy the value of the generated client secret and save it in a safe place on your
system.

19. If you want to be able to use external events to send messages to users through a
Microsoft Teams channel, add permissions for fetching the user profile through the
Microsoft Graph API. (The external events feature uses cached user data from
past conversations to generate notifications or proactively initiate conversations
with the user.) Here are the steps for adding those permissions:

a. In the left navigation of the App Registrations page for the bot, select API
Permissions.

b. Click Add a Permission.

c. In the Request API permissions dialog, select Microsoft Graph.

d. Select Application permissions.

e. Select the Directory.Read.All permission and click Add Permissions.

f. Once the permission appears in the Configured permissions list, select the
permission, click Grant admin consent for... and then click Yes in the Grant
admin consent confirmation dialog.

20. Return to the tab where you have the Developer Portal open in your browser.

Chapter 45
Step 1: Create a Bot

45-2

21. In the left navigation, click Apps and then select your app.

22. In the left navigation for the app, select App features.

23. Click the Bot tile.

24. In dropdown below the Select an existing bot, select the bot that you just created.

25. Once again, in the left navigation for the app, select App features.

26. In the Bot title, copy the bot ID and save it in a text file.

Note:

You may have to manually transcribe the bot ID.

You'll need this ID when you create the channel in Digital Assistant.

27. In the Scopes section of the page, select Personal.
(You can also select other scopes, but Personal is required for the bot to respond.)

28. Click Save.

29. Optionally, in the left navigation of the page, under the Configure section, select
Domains and add any domains that the bot's users may be coming from.

30. Leave the Developer Portal open in your browser.

You'll later complete the registration with a webhook URL that you get when you create
the channel in Digital Assistant.

Step 2: Create a Channel in Digital Assistant
1. In a separate browser window or tab, open Digital Assistant, click Channels in the left

menu, and choose Users.

2. Click + Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Microsoft Teams as the channel type.

5. Fill in Microsoft Application Id with the ID of the Microsoft bot that you created.

6. Fill in Microsoft Application Password with the password or the client secret value (not
to be confused with the client secret ID) that was generated for the bot.

7. Click Create.

8. In the Channels page, copy the WebHook URL and paste it somewhere convenient on
your system.

9. Click and select the digital assistant or skill that you want to associate with the
channel.

10. Switch on the Channel Enabled control.

Step 3: Configure the Webhook URL for Microsoft Teams
Now you need to circle back and complete the configuration in Microsoft Teams.

Chapter 45
Step 2: Create a Channel in Digital Assistant

45-3

1. Return to the browser tab where you have the Teams Developer Portal open.

2. In the far left navigation of the page, select the Tools icon and then click Bot
Management.

3. Select the bot you created.

4. On the bot's page, select the Configure tab.

5. In the Bot endpoint address field, paste the webhook URL that you obtained
when creating the channel in Digital Assistant and then click Save.

Step 4: Enable Apps in Your Office 365 Tenant
You next need to have your Office 365 administrator configure your tenant to:

• Allow external apps in Microsoft Teams.

• Allow sideloading of external apps.

• Enable new external apps by default.

For the concrete steps, see https://docs.microsoft.com/en-us/microsoftteams/platform/
concepts/build-and-test/prepare-your-o365-tenant.

Step 5: Test in Microsoft Teams
With the Microsoft Teams channel and messaging configuration complete, you can test
your digital assistant (or skill) in Microsoft Teams. To do so:

• On the page for the app that you created with the Microsoft Developer Portal,click
the Preview in Teams button.

SSO Configuration for Microsoft Teams Channels
If you want a digital assistant or skill to require the same authentication that you have
configured for Microsoft Teams, you can set up single sign-on (SSO) authentication for
that digital assistant or skill within Microsoft Teams.

Once this SSO authentication is set up, users will be able to log in to Teams with their
Azure Active Directory (Azure AD) credentials and then seamlessly interact with the
digital assistant, without having to sign in again.

Note:

Any backend applications accessed through the digital assistant need to
support Azure AD access tokens directly.

Here are the general steps for configuring SSO for a Microsoft Teams channel:

1. (If you haven't already done so) create a Microsoft Teams channel as described in
the preceding topics.

2. Create an Azure AD application in the Azure Portal.

3. Update the Microsoft bot registration with with SSO details.

Chapter 45
Step 4: Enable Apps in Your Office 365 Tenant

45-4

https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/build-and-test/prepare-your-o365-tenant
https://docs.microsoft.com/en-us/microsoftteams/platform/concepts/build-and-test/prepare-your-o365-tenant

4. In Oracle Digital Assistant, register the Azure AD app as a Microsoft Identity Platform
authentication service.

5. Enable authentication in your skill(s) through the authentication service you have
registered.

Create an Azure AD Application
To set up SSO for a skill or digital assistant within Microsoft Teams, you need to create an
Azure AD application. This application is in addition to the Azure AD application you have
already created as part of setting up the Microsoft Teams channel.

Before getting started, make sure that you have the following:

• An Azure account with an active subscription.

• The Microsoft App ID for the bot that you have set up with your Microsoft Teams channel.

• Admin access to the Azure portal.

Here are the steps for creating an Azure AD application for SSO:

1. Create a new application registration:

a. Navigate to https://portal.azure.com/#blade/Microsoft_AAD_RegisteredApps/
ApplicationsListBlade in the Azure portal.

b. Click New Registration.

c. Fill in the Name field.

d. In the Supported account types section, select the Accounts in any
organizational directory (Any Azure AD directory - Multitenant) and personal
Microsoft accounts (e.g. Skype, Xbox) radio button.

e. Click Register.
Once the application is created, you will land in the Overview section. The
Application (client) ID and Directory (tenant) ID should be created for your app.

2. Add a web platform configuration:

a. In the left navigation, select Authentication.

b. Under Platform configurations, click Add a platform and select Web.

c. Add a redirect URI using the following format:

<YOUR_Oracle-Digital-Assistant_URL>/connectors/v2/callback

d. Click Configure.

3. Create a client secret:

a. In the left navigation, select Certificates and secrets.

b. Click + New client secret, fill in the required fields, and click Add.

c. Copy the client secret value and store in a secure place. You'll need this value later.

4. Configure the token:

a. In the left navigation, select Token configuration.

b. Click + Add optional claim.

c. For Token type, select Access.

Chapter 45
SSO Configuration for Microsoft Teams Channels

45-5

https://portal.azure.com/#blade/Microsoft_AAD_RegisteredApps/ApplicationsListBlade
https://portal.azure.com/#blade/Microsoft_AAD_RegisteredApps/ApplicationsListBlade

d. Select these claims:

• given_name

• upn

• email

e. Click Add.

f. Select the Turn on the Microsoft Graph email, profile permission
(required for claims to appear in token) option and click Add.

g. In the left navigation, select API permissions.
There you can see that three permissions are created.

h. Click + Add a Permission and add User.ReadBasic.All.
You will need this to access profile information.

5. Set the application ID URI:

a. In the left navigation, select Expose an API.

b. Click the Application ID URI field.

c. Update the value in the format:

api://botid-<Microsoft_App_ID_for_your_bot>

Note:

This needs to be the application ID for the bot, not the one for the
SSO APP.

d. Click + Add a scope.

e. In the panel that opens:

• Set access_as_user as the Scope name.
The domain part of the scope name displayed just below the text field
should automatically match the Application ID URI set in the previous
step, with /access_as_user added to the end.

• Set Who can consent? to Admins and users.

f. Fill in the fields for configuring the admin and user consent prompts with
values that are appropriate for the access_as_user scope.
Here are some suggestions:

• Admin consent title: Teams can access the user’s profile.

• Admin consent description: Allows Teams to call the app’s web APIs as
the current user.

• User consent title: Teams can access your user profile and make
requests on your behalf.

• User consent description: Enable Teams to call this app’s APIs with the
same rights that you have

g. Ensure that State is set to Enabled.

Chapter 45
SSO Configuration for Microsoft Teams Channels

45-6

h. In the Authorized client applications section, click + Add a client application.

i. Enter the following IDs:

• 1fec8e78-bce4-4aaf-ab1b-5451cc387264
This is the Teams mobile and desktop application.

• 5e3ce6c0-2b1f-4285-8d4b-75ee78787346
This is the Teams web application.

6. Update the manifest:

a. In the left navigation, select Manifest.

b. Set "acceptMappedClaims" to true.

c. Click Save.

7. Grant tenant admin permissions to the Azure AD application.

a. In the left navigation, select Overview.

b. Copy the Application (client) ID, the Directory (tenant) ID and the Application ID
URI and save them in a convenient place.

c. In a private browser window, log in to the Microsoft admin account.
The URL takes the following form:

 https://login.microsoftonline.com/<tenant-id>/adminconsent?
client_id=<client-id>

where you replace <tenant-id> with the Directory (tenant) ID that you just copied
and you replace <client-id> with the Application (client) ID that you just copied.

8. In the Permissions requested dialog, review and accept the permissions.

Update the Bot Registration with the SSO Details
Update your Microsoft bot with the SSO details you have configured:

1. Open the bot in the Teams Developer Portal and open the Manifest Editor.

2. Select the Basic information tab.

3. Scroll down to the Application (client) ID field and insert the application (client) ID.

4. Select the Single-Sign-On tab.

5. In the Application ID URI, add the application ID URI that you copied earlier.

6. In the left navigation, select Publish to org.

Register the Azure AD App as an Authentication Service in Digital
Assistant

Now you'll register the Azure AD app as an authentication service in Oracle Digital Assistant.

1. In a separate browser window or tab, open Digital Assistant, expand Settings in the left
menu, and select Authentication Services.

2. Click + Service.

3. In the New Authentication Service dialog, enter these values:

Chapter 45
SSO Configuration for Microsoft Teams Channels

45-7

• Identity Provider: Microsoft Identify Platform

• Name: A name to identify the authentication service.

• Token Endpoint URL: The identity provider's URL for requesting access
tokens. Use:

https://login.microsoftonline.com/<Azure-Active-Directory-
TenantID>/oauth2/v2.0/token

• Authorization Endpoint: The IDP's URL for the page that users authenticate
with by entering their user name and password. Use:

https://login.microsoftonline.com/<Azure-Active-Directory-
TenantID>/oauth2/v2.0/authorize

• Client ID and Client Secret: The client ID and secret for the Azure AD
application (OAuth Client) that was registered. Use the application ID and
secret.

• Scope: <Application(client)_ID_for_your_bot>/access_as_user
• Subject Claim: The access-token profile claim to use to identify the user. Use

email.

Reference the Authentication Service from Your Skills
In skills that need SSO authentication, incorporate the OAuth 2.0 Account Link
component in the dialog flow to handle authentication through the authentication
service. In that component, be sure to set the enableSingleSignOn property to true.
(For YAML-based dialog flows, the component is called System.OAuth2AccountLink.)

Tip:

If you don't want to hard-code the name of the authenticate service in the
component, you can create a custom parameter that you pass to the
component. See Custom Parameters.

Supported Capabilities
Microsoft Teams channels in Digital Assistant support the following capabilities:

• text (both sending and receiving)

• images (both sending and receiving)

• files (both sending and receiving)

• emojis (both sending and receiving)

• links

• postbacks

• custom properties

• carousel components

Chapter 45
Supported Capabilities

45-8

• list components

If you are targeting your skill to multiple channels with different formatting capabilities and
syntax, you can use basic HTML markup in your messages. If you do so, that markup will be
automatically converted to the Microsoft Teams markdown format when the message is
transmitted to the channel. This is particularly useful if you are targeting your skills to other
channels in addition to Microsoft Teams. See Rich Text Formatting in Channels.

Message Constraints
Microsoft Teams channels in Digital Assistant have the following message constraints:

• Text Messages

– Maximum length of text action label: 1 line (about 50 characters)

– Types of text actions allowed: Postback, Call, URL

• Horizontal Cards

– Maximum length of title: 2 lines (about 80 characters)

– Maximum length of description: 25,000 characters

– Maximum length of card action label: 1 line (about 50 characters)

– Maximum number of cards: 10

– Maximum number of card actions: 6. If the number of card actions exceeds 6, the
card is duplicated to render remaining card actions.

– Minimum number of card actions: 0

– Maximum number of card list actions: 6

– At least one description, image or action required?: No

– Types of card actions allowed: Postback, Call, URL

– Types of card list actions allowed: Postback, Call,URL

• Vertical Cards

– Maximum length of title: 2 lines (about 80 characters)

– Maximum length of description: 25,000 characters

– Maximum length of card action label: 1 line (about 50 characters)

– Maximum number of cards: 10

– Maximum number of card actions: 3

– Minimum number of card actions: 0

– Maximum number of card list actions: 6

– At least one description, image or action required?: No

– Types of card actions allowed: Postback, Call, URL

– Types of card list actions allowed: Postback, Call, URL

• Attachment Messages

– Supported?: Yes

– Types of actions allowed: Postback, Call, URL

Chapter 45
Message Constraints

45-9

• Action Buttons

– Maximum length of global action label: 1 line (about 50 characters)

– Maximum number of global actions: 6

– Types of global actions allowed: Postback, Call, URL

Adaptive Cards in Microsoft Teams
For skills that you expose through Microsoft Teams channels in Oracle Digital
Assistant, you can use Adaptive Cards.

To do so, you use the channelCustomProperties element in a Common Response
component and set the type property to "AdaptiveCard".

You can use this element at the following levels in the component:

• At the level of a card element within a cards response item. This allows you to
define a single adaptive card structure that will be stamped out multiple times
when an iteratorVariable has been specified for the card element.

• At the level of a text response item, typically to create a single adaptive card.
(Multiple cards can be defined but the iteratorVariable property is not
supported here.)

Tip:

In the dialog flow editor (in both Visual and YAML dialog mode), there is a
Microsoft Adaptive Cards template that contains sample metadata that you
can adapt to your needs.

Note:

Microsoft Teams currently does not support a carousel with adaptive cards.
In Common Response component metadata terms, this means that the card
layout property is ignored. The cards will always be laid out vertically
because horizontal layout (carousel) is simply not supported.

A second limitation to be aware of is that when a user taps on a button that is
included with the adaptive card, the button label will not be printed out as
user message in the conversation history. In other words, the user does not
get a visual confirmation of which button she selected. This can lead to an
inconsistent user experience, because buttons displayed with simple text
messages, or buttons displayed with standard Common Response
component cards (using the Microsoft Hero card) do print out the button
label.

Chapter 45
Adaptive Cards in Microsoft Teams

45-10

https://adaptivecards.io/

Example: Adaptive Card in Cards Response Item
To stamp out multiple cards, you can use the iteratorVariable with the card element within
a response item of type cards. Here is an example to use an adaptive card to stamp out
multiple pizza cards:

responseItems:
 - type: "cards"
 headerText: "Here are our pizzas you can order today:"
 cardLayout: "horizontal"
 cards:
 - title: "${pizzas.name}"
 description: "${pizzas.description}"
 imageUrl: "${pizzas.image}"
 iteratorVariable: "pizzas"
 actions:
 - label: "Order Now"
 type: "postback"
 payload:
 action: "order"
 variables:
 orderedPizza: "${pizzas.name}"
 orderedPizzaImage: "${pizzas.image}"
 channelCustomProperties:
 - channel: "msteams"
 properties:
 adaptiveCard:
 type: "AdaptiveCard"
 version: "1.0"
 fallbackText: "Adaptive card version not supported"
 body:
 - type: "TextBlock"
 text: "${pizzas.name}"
 weight: "bolder"
 - type: "TextBlock"
 text: "${pizzas.description}"
 wrap: true
 - type: "Image"
 url: "${pizzas.image}"
 horizontalAlignment: "center"
 actions:
 - type: "Action.Submit"
 title: "Order"
 data:
 action: "order"
 variables:
 orderedPizza: "${pizzas.name}"
 orderedPizzaImage: "${pizzas.image}"

Chapter 45
Adaptive Cards in Microsoft Teams

45-11

Example: Adaptive Card in Text Response Item
You can define an adaptive card with a text response item as follows:

responseItems:
 - type: "text"
 text: "This text is replaced with adaptive card defined in custom
property"
 footerText: "Is that correct?"
 visible:
 expression: "${system.channelType=='msteams' &&
system.entityToResolve.value.name=='Confirmed'}"
 channelCustomProperties:
 - channel: "msteams"
 properties:
 adaptiveCard:
 type: "AdaptiveCard"
 version: '1.0'
 fallbackText: "Adaptive card version not
supported"
 body:
 - type: TextBlock
 text: 'I have all information needed to create your
expense. Just to verify my understanding, here is an overview of your
expense:'
 wrap: true
 - type: FactSet
 facts:
 - title: Expense Type
 value: "${expense.value.Type}"
 - title: Amount
 value: "${expense.value.Amount.totalCurrency}"
 - title: Date
 value: "${expense.value.Date.date?number_to_date}"
 - title: Receipt URL
 value: "${expense.value.Receipt?has_content?
then(expense.value.Receipt.url,'N/A')}"

 actions:
 - type: Action.ShowCard
 title: Edit
 id: edit
 card:
 type: AdaptiveCard
 version: '1.0'
 body:
 - type: TextBlock
 size: Medium
 weight: Bolder
 text: Edit Expense
 - type: TextBlock
 text: Expense Type
 weight: Bolder

Chapter 45
Adaptive Cards in Microsoft Teams

45-12

 - type: Input.ChoiceSet
 choices:
 - title: Metro, bus, train
 value: Public transport
 - title: Taxi
 value: Taxi
 - title: Breakfast, lunch, dinner
 value: dinner
 id: Type
 value: "${expense.value.Type!''}"
 spacing: None
 - type: TextBlock
 text: Amount
 weight: Bolder
 - type: Input.Text
 id: amount
 spacing: None
 value: "${expense.value.Amount?has_content?
then(expense.value.Amount.totalCurrency,'')}"
 - type: TextBlock
 text: Date
 weight: Bolder
 - type: Input.Date
 id: Date
 value: "${expense.value.Date?has_content?
then(expense.value.Date.date?number_to_date,'')}"
 spacing: None
 actions:
 - type: Action.Submit
 title: Submit
 id: submit

You can also define multiple adaptive cards in this custom property. To do so, you prefix the
type property with a hypen (-) to indicate a YAML list rather than a map:

channelCustomProperties:
 - channel: "msteams"
 properties:
 adaptiveCard:
 - type: AdaptiveCard
 body: ...
 - type: AdaptiveCard
 body: ...

This can be convenient if you need to stamp out multiple static cards, but it will be more
common to stamp out multiple cards using the iteratorVariable property.

Submit Actions
Adaptive Cards has a submit action (Action.Submit), which you can use to gather user input
and send it to the skill.

Chapter 45
Adaptive Cards in Microsoft Teams

45-13

You define the action's payload in the data property of the submit action. If you want
the Common Response component to transition after the button is selected or set
some variables, you can use the standard action and variables properties:

actions:
- type: "Action.Submit"
 title: "Order"
 data:
 action: "order"
 variables:
 orderedPizza: "${pizzas.name}"
 orderedPizzaImage: "${pizzas.image}"

If you're using input fields in your card, the name and value of these fields will be
added as key-value pairs to the data JSON object. The example above with the Edit
Expense card includes three fields to modify the expense type, amount, and date.
When the user taps the Submit button in this case, a JSON object like the following
will be sent:

{
 "Type" : "Taxi",
 "Amount" : "10.0 dollar"
 "Date" : "2019-09-02"
}

The Common Response component doesn't know how to process this information, as
it does not follow the common payload structure with action and variables
properties. To solve this, you have these options:

• Convert the JSON payload to a string, which will then be matched for entities. If
any matches are found, the variable set with the component will be updated with
the corresponding entity value or entity values (in case of a composite bag entity).

To configure this option, you add the boolean system.convertToString property to
the data property of the submit action:

actions:
- type: Action.Submit
 title: Submit
 id: submit
 data:
 system.convertToString: true

• Have the skill update variables with the same name as the input fields. In the
above example, the "Type", "Amount" and "Date" context variables would be
updated.

To configure this option, you add the boolean system.setVariables property to
the data property of the submit action:

actions:
- type: Action.Submit
 title: Submit
 id: submit

Chapter 45
Adaptive Cards in Microsoft Teams

45-14

 data:
 system.setVariables: true

If you don't configure any of these options, the submitted values will simply be ignored.

When using a Common Response component with a composite bag entity, you will typically
use the first option, which will populate all the matched entities in the bag based on the
stringified JSON payload.

Note:

You need to set the component's processUserMessage property to true for these
submit actions to work.

Echo Text of Selected Button in Adaptive Card
When a user selects a button in an Adaptive Card, the conversation isn't updated to show
that the user selected that option unless you include a messageBack action for the card.

To set up a messageBack action, see https://docs.microsoft.com/en-us/microsoftteams/
platform/task-modules-and-cards/cards/cards-actions#adaptive-cards-with-messageback-
action.

Disable Buttons and Fields in Adaptive Cards
Though you can't technically disable buttons and fields in Adaptive Cards, you can create a
similar effect by replacing the card when a submit action is invoked. You do so using the
Boolean replaceMessage property that is specific to Microsoft Teams in Common Response
components.

To enable the card to be re-rendered in this way, add this property within the
channelCustomProperties section of the custom response component:

 ...
 - type: "text"
 text: "This text is replaced with the adaptive card defined in
custom property"
 channelCustomProperties:
 - channel: "msteams"
 properties:
 replaceMessage: "true"
 adaptiveCard:
 ...

You can also use an Apache FreeMarker expression to set the property's value.

Tips for Creating Adaptive Cards Definitions
The adaptive cards JSON schema is relatively complex with many different constructs
supported. As such, it is error prone when you try to define the adaptive card content by hand

Chapter 45
Adaptive Cards in Microsoft Teams

45-15

https://docs.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/cards/cards-actions#adaptive-cards-with-messageback-action
https://docs.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/cards/cards-actions#adaptive-cards-with-messageback-action
https://docs.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/cards/cards-actions#adaptive-cards-with-messageback-action

directly inside a Common Respone component. You may find it easier to use the
following process to create the adaptive cards:

1. With the visual tools in Microsoft's Adaptive Cards Designer, create the adaptive
card definition.

2. Click Copy Card JSON to get the definition in JSON format.

3. Use an online converter (such as https://jsonformatter.org/json-to-yaml) to convert
the definition to YAML.

4. Copy the result into a text editor and insert the indentation that is required for
where it will appear in the the dialog flow definition.

5. Paste the resulting text into the dialog flow.

Note:

To keep up to date on the version of Adaptive Cards supported by Teams,
see https://docs.microsoft.com/en-us/adaptive-cards/resources/partners. You
can visit https://adaptivecards.io/explorer/ for a list of all elements and
properties and the version they were introduced.

Keep in mind that the adaptive card designer does not check on the
combination of the elements used and the version number of adaptive cards.
For example, the ActionSet element was introduced in version 1.2, but the
designer doesn't present you from adding this element, even if you have
specified 1.0 as the version number in the designer.

If you want to use actions with 1.0, you can use the separate actions
property below the body property. This actions element can't be added using
the visual designer, so you'd need to do it by hand.

Disable the Welcome Message for a Digital Assistant
When a user connects to a digital assistant through a Microsoft Teams channel, an
internal message is sent to the digital assistant to initiate a conversation. By default,
that message is the word "help", which then triggers the digital assistant's help system
intent, which leads to the display of a welcome message and cards for the digital
assistant's skills.

To disable this behavior, you change the Internal Welcome Message property to a
value different than "help". You can change the value for that property in the digital
assistant's resource bundle.

To change the internal message that is set to the digital assistant when the user
connects with a Teams, channel:

1. Click to open the side menu, select Development > Digital Assistants, and
open your digital assistant.

2. In the left navigation for the digital assistant, click , and select the Configuration
tab.

3. In the Filter field, type internal to quickly to narrow down the list of resource
bundle keys.

Chapter 45
Disable the Welcome Message for a Digital Assistant

45-16

https://adaptivecards.io/designer/
https://jsonformatter.org/json-to-yaml
https://docs.microsoft.com/en-us/adaptive-cards/resources/partners
https://adaptivecards.io/explorer/

4. Select the Other - internalWelcomeMessage key.

5. Mouse over the value for the key and select the icon that appears.

6. Replace the value with the one you would like to use and click Update Entry.

Note:

If your digital assistant is on a platform version earlier than 21.04, resource bundle
keys aren't automatically defined for the configuration properties. In that case, you
may just wish to update the value of the property on the digital assistants Settings
page (which you can open by clicking).

Enable the Welcome Message for a Skill
By default, when a user connects directly to a standalone skill through a Microsoft Teams
channel, there is no welcome message sent to the user. However, if you configure the skill's
Welcome State property, the skill will use that state to display a message when the user
connects.

1. Click to open the side menu, select Development > Skills, and open your skill.

2. In the left navigation for the skill, click and select the Digital Assistant tab.

3. In the Welcome State field, enter the name of the state that you want to display the
welcome message.

Note:

Using the Welcome State property in this way for a standalone skill only works for
Microsoft Teams channels. For other channels, this property is ignored in
standalone skills.

Chapter 45
Enable the Welcome Message for a Skill

45-17

46
Cortana

When you set up a Cortana channel, users can chat with your digital assistant (or standalone
skill) through the Cortana user interface.

Here's the process for setting up a channel:

1. Create a bot registration in Azure to integrate with your digital assistant.

2. Using the app ID and password from the bot registration, create a channel in Digital
Assistant .

3. Copy the webhook URL that is generated when you create the channel and add it to the
bot registration.

4. Test your digital assistant through the Chat window in the Cortana user interface.

Step 1: Create a Bot Channels Registration in Azure
To make your digital assistant (or standalone skill) available in Cortana, you need to have it
registered through Azure Bot Service.

Before you create that registration, you need to have a Microsoft account.

To create the registration:

1. Go to https://portal.azure.com/ and log in with your Microsoft account.

2. In the Search field, search for and select Bot Channels Registration .

3. On the Bot Channels Registration page, fill in the Bot Name field with the text that you
want to use as the invocation name when accessing your digital assistant through the
Cortana channel.

4. Fill in the rest of the required fields.

5. Scroll down and select Auto create App ID and password and then click the button for
Auto create App ID and password in the panel that opens up.

6. Click Create.

7. Wait a minute or two for the bot registration to be created and deployed.

When it completes, you will get a notification that the deployment succeeded.

8. In the notification, click Go to resource.
If the notification disappears before you can click on it, you can open it up again by
clicking the Notifications icon at the top of the page.

46-1

https://portal.azure.com/

9. In the left navigation bar, under Bot Management, select Settings.

10. Copy the value of the Microsoft App ID and save it in a safe place.

11. Generate and save a client secret. You can do this by:

a. Clicking the Manage button that is next to the app ID.
This takes you to the Microsoft Bot Framework console.

b. Clicking View this app in the Azure portal.
This returns you to Azure.

c. In the left navigation, clicking Certificates & secrets.

d. Clicking + New Client Secret.

e. Clicking Add.

f. Copying the client secret and saving it to a safe place on your system.

You'll need both the app ID and client secret to configure the channel in Digital
Assistant.

12. Now that you have the client secret copied, close the Certificates & secrets
dialog.

13. Leave the Azure Portal open in your browser.

You'll later complete the registration with a webhook URL that you get when you
create the channel in Digital Assistant.

Step 2: Create a Channel in Digital Assistant
1. In Digital Assistant, click Channels in the left menu and then choose Users.

2. Click + Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Cortana as the channel type.

5. Fill in Microsoft Application Id with the Microsoft App ID that you obtained when
you created your bot registration in Azure.

6. Fill in Microsoft Application Password with the client secret that you obtained
from your bot registration.

7. Click Create.

8. In the Channels page, copy the WebHook URL and paste it somewhere
convenient on your system.

9. Click and select the digital assistant or skill that you want to associate with the
channel.

Chapter 46
Step 2: Create a Channel in Digital Assistant

46-2

10. Switch on the Channel Enabled control.

Step 3: Configure the Webhook URL and Deploy to Cortana
1. In the browser tab where you have Azure Portal open, use the Search field to navigate

back your bot registration.

2. In the left navigation bar, select Settings.

3. In the Messaging endpoint field, paste the webhook URL that you obtained when
creating the channel in Digital Assistant.

4. Save your changes.

5. Within Bot Service in the left navigation bar, scroll down to the Bot Management section
and click Channels.

6. Click the icon for Cortana.

7. After configuring the channel, click Deploy on Cortana.

Step 4: Test Your Bot in Cortana
With the Cortana channel and messaging configuration complete, you can test your bot
(digital assistant or skill) in Cortana.

You can test using either of following options:

• Within the Azure Portal, with the Test in Web Chat feature (under Bot Management).

• Through the Cortana app (either desktop or mobile), using the same user ID that you
used when setting up the bot registration in Azure.
When you test using this method, you need to include the bot name (as registered in the
Azure Portal) every time you input something into the chat window. Otherwise, Cortana
will not necessarily recognize that you are trying to speak with the Oracle digital
assistant.

Supported Capabilities
Cortana channels in Digital Assistant support the following capabilities:

• text (both sending and receiving)

• images (full support for sending, no support for receiving)

• files (full support for sending, no support for receiving)

• emojis (full support for sending, no support for receiving)

• links

• custom components

• carousel components

• list components

• typing indicator

Chapter 46
Step 3: Configure the Webhook URL and Deploy to Cortana

46-3

Message Constraints
Cortana channels in Digital Assistant have the following message constraints:

• Text Messages

– Maximum length of text action label: 1 line (about 50 characters)

– Types of text actions allowed: Postback, Call, URL

• Horizontal Cards

– Maximum length of title: 2 lines (about 80 characters)

– Maximum length of description: 25,000 characters

– Maximum length of card action label: 1 line (about 50 characters)

– Maximum number of cards: 10

– Maximum number of card actions: 6. If the number of card actions exceeds 6,
the card is duplicated to render remaining card actions.

– Minimum number of card actions: 0

– Maximum number of card list actions: 6

– At least one description, image or action required?: No

– Types of card actions allowed: Postback, Call, URL

– Types of card list actions allowed: Postback, Call,URL

• Vertical Cards

– Maximum length of title: 2 lines (about 80 characters)

– Maximum length of description: 25,000 characters

– Maximum length of card action label: 1 line (about 50 characters)

– Maximum number of cards: 10

– Maximum number of card actions: 3

– Minimum number of card actions: 0

– Maximum number of card list actions: 6

– At least one description, image or action required?: No

– Types of card actions allowed: Postback, Call, URL

– Types of card list actions allowed: Postback, Call, URL

• Attachment Messages

– Supported?: Yes

– Types of actions allowed: Postback, Call, URL

• Action Buttons

– Maximum length of global action label: 1 line (about 50 characters)

– Maximum number of global actions: 6

– Types of global actions allowed: Postback, Call, URL

Chapter 46
Message Constraints

46-4

Cortana Channel Extensions
For Cortana channels, you can extend the functionality of Common Response components
with capabilities that are specific to Cortana.

You access the extensions by using the channelCustomProperties element in the
component and setting the appropriate properties. The code has the following format:

...
 channelCustomProperties:
 - channel: "cortana"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

Here are the available custom properties for Cortana channels:

Name Allowed Values Applies To... Description

speak • free text
• SSML (Speech

Synthesis Markup
Language)

Response items of type
text.

The text or SSML that
Cortana reads to the user.
See https://
docs.microsoft.com/en-us/
azure/bot-service/nodejs/
bot-builder-nodejs-cortana-
skill?view=azure-bot-
service-3.0.

For more information on using channelCustomProperties, see Channel-Specific Extensions.

Chapter 46
Cortana Channel Extensions

46-5

https://docs.microsoft.com/en-us/azure/bot-service/nodejs/bot-builder-nodejs-cortana-skill?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/nodejs/bot-builder-nodejs-cortana-skill?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/nodejs/bot-builder-nodejs-cortana-skill?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/nodejs/bot-builder-nodejs-cortana-skill?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/nodejs/bot-builder-nodejs-cortana-skill?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/nodejs/bot-builder-nodejs-cortana-skill?view=azure-bot-service-3.0

47
Text-Only Channels

Like the Facebook channel, you configure text-only channels using artifacts generated by
both the messaging platform and Digital Assistant. For text-only channels like Twilio/SMS,
however, you also need to update the dialog flow definition to allow your bot’s responses to
render appropriately when buttons aren’t supported. There are two aspects of this:

• Showing or hiding content for text-only channels. For Common Response components,
this means that you need to update the metadata property to include (or where
applicable, exclude) Twilio for any response item, card, or global action:

responseItems:
- type: "text"
 text: "This text text displays on Twilio"
 visible:
 channels:
 include: "twilio"
- type: "text"
 text: "This text is not shown in Twilio or Facebook!"
 visible:
 channels:
 exclude: "facebook, twilio"
 actions:
 - label: "This action is only shown on web channel."
 type: "postback"
 payload:
 action: "someAction"
 visible:
 channels:
 include: "web"

• Configuring auto-numbering.

Twilio/SMS
You’ll need the following to run your digital assistant on Twilio/SMS:

• Twilio Credentials (you provide these to the Digital Assistant channel configuration):

– A Twilio phone number.

– Account SID

– Auth Token

• From Digital Assistant (and provided to Twilio):

– The webhook URL (generated when you create the Twilio channel).

47-1

Note:

When you create a channel for a digital assistant in Twilio, keep in mind that
"exit", which users may use to navigate away from skills in your digital
assistant, is also a default keyword in Twilio. So, if a user enters "exit" in a
Twilio channel, the Twilio conversation will be ended and the digital assistant
will not receive that input. Users that want "exit" to work with the digital
assistant would need to contact Twilio and have "exit" removed as a keyword
from their acccount.

Step 1: Get an SMS-Enabled Twilo Number
To generate the Twilio Number, Account SID, Auth Token needed for the Twilio
channel configuration, you first need to create a Twilio account (if you don’t have one
already).After you’ve verified your identity:

1. Click All Products and Services () in the left navbar.

2. Pin both Programmable SMS () and Phone Numbers () to your dashboard.

3. Click Phone Numbers (now pinned to the left navbar) and then click Get Started.

4. Choose Get a Number or Buy a Number. In either case, be sure to select the
SMS capability. . Keep this number close at hand, because you’ll use this number
to configure the Twilio channel back in Digital Assistant.

Chapter 47
Twilio/SMS

47-2

5. Click Console Dashboard () in the left navbar and note the Account SID and Auth
Token (accessed by clicking View). Along with the Twilio number, you need these
credentials to configure the Twilio Channel.

Step 2: Link Your Bot to the Twilio Number
With the Twilio credentials close at hand:

1. Back in Digital Assistant, click Channels in the left menu and then choose Users.

2. Click Add Channel.

3. In the Create Channel dialog:

a. Enter a name and then choose Twilio SMS from the Channel Type menu.

b. Enter the Account SID, Auth Token and Twilio Number.

c. Switch on Channel Enabled.

d. Click and select the digital assistant or skill that you want to associate with the
channel.

4. Click Create. Note the Webhook URL. You’ll need this for one last stop to the Twilio
Console.

5. In the Twilio Console, click Phone Numbers () then click Active Numbers.

6. Click the Twilio number in the Active Numbers page.

7. In the Messaging Section of the Configure page, paste the Webhook URL into the A
Message Comes In field.

8. Click Save.

Testing Tips
You can test the Twilio Channel using your own phone by sending messages to the Digital
Assistant Twilio account number.

Supported Capabilities
Twilio channels in Digital Assistant support the following capabilities:

• text

• images (as URL)

• files (as URL)

• emojis (as URL)

• links

• postbacks (as URL)

• custom properties (partial)

• carousel components (partial)

• list components (partial)

Chapter 47
Twilio/SMS

47-3

Note:

If you are targeting your skill to multiple channels with different formatting
capabilities, you can use HTML markup in your messages. For text-based
channels, this markup will be stripped from the message when the message
is transmitted to the channel. See Rich Text Formatting in Channels.

Message Constraints
Twilio channels in Digital Assistant have the following message constraints:

• Text Messages

– Maximum length of text message: 1600 characters. If the length exceeds
1600, the text is split over multiple messages.

– Types of text actions allowed: Postback, Call, URL. These action types are
converted to text. For postback actions, the label serves as a keyword that can
be used to trigger the postback.

• Horizontal Cards

– Supported?: No, but near equivalent functionality is achieved by converting
some action types to text.

– Types of card actions allowed: Postback, Call, URL. These action types are
converted to text. For postback actions, the label serves as a keyword that can
be used to trigger the postback.

– Types of card list actions allowed: Postback, Call,URL. These action types are
converted to text. For postback actions, the label serves as a keyword that can
be used to trigger the postback.

• Vertical Cards

– Supported: No, but near equivalent functionality is achieved by converting
some action types to text.

– Types of card actions allowed: Postback, Call, URL. These action types are
converted to text. For postback actions, the label serves as a keyword that can
be used to trigger the postback.

– Types of card list actions allowed: Postback, Call, URL. These action types are
converted to text. For postback actions, the label serves as a keyword that can
be used to trigger the postback.

• Attachment Messages

– Supported?: Yes, if MMS is enabled.

– Types of attachment actions allowed: Postback, Call, URL. These action types
are converted to text. For postback actions, the label serves as a keyword that
can be used to trigger the postback.

• Action Buttons

– Supported? No, but near equivalent functionality is achieved by converting
some action types to text.

Chapter 47
Twilio/SMS

47-4

– Types of global actions allowed: Postback, Call, URL. These action types are
converted to text. For postback actions, the label serves as a keyword that can be
used to trigger the postback.

Twilio Channel Extensions
For Twilio channels, you can extend the functionality of Common Response components with
capabilities that are specific to Twilio.

You access the extensions by using the channelCustomProperties element in the
component and setting the appropriate properties. The code has the following format:

...
 channelCustomProperties:
 - channel: "twilio"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

You can apply channelCustomProperties in the component's metadata at the level of
globalActions, responseItems, and elements of responseItems, depending on the given
property.

Here are the available custom properties for Twilio channels:

Name Allowed Values Applies To... Description

mmsEnabled • true
• false

Response items of type
cards or attachment.

Can be used to override
the default MMS-enabled
setting of the channel
configuration. If enabled,
images are shown in its
own message bubble with a
Tap to review button.

optimizeCardRendering • true
• false

Response items of type
cards.

Set to true to make the
card action selection a two-
step process, where the
user first selects a card and
then selects the card
action.

cardListHeader • free text Response items of type
cards.

The header shown when
the card list is presented.
This property overrides the
card message
headerText property. Only
applicable when
optimizeCardRendering
is set to true.

cardListFooter • free text Response items of type
cards.

The footer shown when the
card list is presented. This
property overrides the card
message footerText
property. Only applicable
when
optimizeCardRendering
is set to true.

Chapter 47
Twilio/SMS

47-5

Name Allowed Values Applies To... Description

cardDetailHeader • free text Either of the following:
• A card where the

"url" property is
specified

• An action where
"type": "url"

The header shown when
the card detail is
presented. This property
overrides the card
message headerText
property. Only applicable
when
optimizeCardRendering
is set to true.

cardDetailFooter • free text Either of the following:
• A card where the

"url" property is
specified

• An action where
"type": "url"

The footer shown when the
card detail is presented.
This property overrides the
card message
footerText property. Only
applicable when
optimizeCardRendering
is set to true.

For more information on using channelCustomProperties, see Channel-Specific
Extensions.

Chapter 47
Twilio/SMS

47-6

48
Oracle Web

The Digital Assistant Client SDK for Oracle Web provides you with a widget that enables you
to run a skill in a web page. Using the SDK, you can customize the look and behavior of this
widget.

The SDK connects to the Oracle Chat Server, the intermediary between the Oracle Web
channel configured in Oracle Digital Assistant and the client. The chat server then passes
messages to the skill for processing and delivers the skill's response to the client.

Note:

The Oracle Web Channel doesn't store messages when the client has disconnected
from the server. It only delivers messages to connected clients. The SDK does not
support multi-device login; it supports only one client per user.

Basic Setup
Here are the basic steps for getting an Oracle Web channel set up.

What Do You Need?
• An Oracle Web Channel. Creating the channel generates the Channel ID and the Secret

Key that you need to initialize the chat app.

• The URL of the Oracle Chat Server.

• The Oracle Web SDK (located under Oracle Native Client SDKs for OCI Native
Environments) from Oracle Technology Network’s ODA and OMC download page.
Download this ZIP and extract it to your local system. This ZIP includes a user guide that
describes the SDK's classes and a sample app that demonstrates many of its features.

Configure the Oracle Web Channel
You can configure the channel to connect to the ODA speech, text, or attachment server in
two modes: authenticated (to protect access to the channel) or unauthenticated.

• Authentication is enforced using JSON Web Tokens (JWT). The customer's backend
server generates the JWT token, which is then passed to the Oracle Web SDK. This
token is used for each request to an ODA speech, text, or attachment server.

Note:

To protect access to the channel, the token must always be generated by a
remote server. It must never be generated within the client browser.

48-1

https://www.oracle.com/downloads/cloud/amce-downloads.html

When the web app needs to connect to an ODA server, it first requests the token
from the backend server and then adds it to the Authorization header. The ODA
server validates the token, evaluates the claims, and then either opens the socket
or rejects the connection.

Tip:

This article steps you through running the SDK with an authenticated
channel.

• Unauthenticated mode – Use the unauthenticated mode when the client can't
generate signed JWT tokens, when no authentication mechanism is in place, or
when the client widget is already secured and visible to authenticated users.

To configure the Oracle Web channel:

1. Choose Development, then Channels from the menu.

2. Choose Users.

3. Click Add Channel and then Oracle Web as the channel type.

4. Complete the dialog:

• Enter the channel name.

• For authenticated connections:

– Switch on the Client Authentication Enabled toggle to determine
whether the SDK is connecting to a client authentication-enabled channel.

– The channel will only communicate with the sites from the domains that
you add as a comma-separated list. For example, *.corp.example.com,
.hdr.example.com. Entering a single asterisk () allows unrestricted
access to the channel from any domain. Typically, you'd only enter a
single asterisk during development. For production, you would add an
allowlist of domains.

– In the Max. Token Expiration (Minutes) field, set the maximum amount of
time for the JWT token.

• For unauthenticated connections:

– Switch off Client Authentication Enable toggle.

– Enter a comma-separated list of domains that can access the channel. If
the domains in this allowlist includes asterisks (*.hdr.example.com) or if
the allowlist is not completely known, then you might consider an
authenticated connection.

• Set the Session expiration time.

• Click Create. Oracle Digital Assistant will generate the Channel ID and the
Secret Key that you need to initialize the SDK. Keep these close at hand
because you'll need them when configuring the HTML page to host the chat
widget.

5. Route the channel to your skill or digital assistant.

6. Switch Channel Enabled to On.

Chapter 48
Basic Setup

48-2

https://blogs.oracle.com/mobile/techexchange%3a-how-to-build-a-remote-jwt-token-server-in-node-for-use-with-oracle-web-sdk-client-authentication

Tutorial: Secure Your Oracle Web SDK Chat
You can get a hands-on look at securing the Web chat widget through this tutorial: Secure
Your Oracle Web SDK Chat.

Install the SDK
1. In the extracted ZIP file of the downloaded Oracle Web SDK, locate the web-sdk.js file

(located in the native-client-sdk-js directory).

2. Save web-sdk.js (located in the native-client-sdk-js directory of the extracted ZIP) in
your project directory. Note the file location, because you'll need it to define the <WebSDK
URL> property in the <script> tag's code.

3. Create a JavaScript file with the following function that initializes the SDK. We call this file
settings.js in the sample that ships with the SDK.

//settings.js
var chatSettings = {
 URI: '<Server URI>',
 channelId: '<Channel ID>',
 userId: '<User ID>'
};

function initSDK(name) {
 // If WebSDK is not available, reattempt later
 if (!document || !WebSDK) {
 setTimeout(function() {
 initSDK(name);
 }, 2000);
 return;
 }

 // Default name is Bots
 if (!name) {
 name = 'Bots';
 }

 setTimeout(function() {
 var Bots = new WebSDK(chatSettings); // Initiate library with
configuration

 var isFirstConnection = true;
 Bots.on(WebSDK.EVENT.WIDGET_OPENED, function() {
 if (isFirstConnection) {
 Bots.connect() // Connect to
server
 .then(function() {
 console.log('Connection Successful');
 })
 .catch(function(reason) {
 console.log('Connection failed');
 console.log(reason);
 });

Chapter 48
Basic Setup

48-3

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=datwj-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=datwj-index

 isFirstConnection = false;
 }
 });

 window[name] = Bots;
 }, 0);
}

4. Define the following properties:

• URI - The host name in Oracle Digital Assistant instance URL. Only the first
path (/) needs to be passed here. You can pass this URL either with, or
without, the protocol (https://).

• channelId - The Channel ID that's generated when you create the Oracle Web
channel. This property is required because connects the widget to the
underlying skill.

• userId - A user ID. When you provide this value, the user base for this skill
can be tracked by the unique user metrics in Insights. When you don't provide
a user ID, but the SDK will generate one with each new session. This property
is optional for unauthenticated connections.

5. In your HTML page, reference the locations of both the your JS file (setting.js in
the following example) the web-sdk.js library and the Web SDK namespace,
which is typically Bots. Use this namespace to invoke the public APIs. For
example, if you set the namespace to Bots, then you invoke the APIs as
Bots.<API>(). To find out more about the various functions and events, refer to
the user guide (available as both a readme and HTML doc) that's included in the
Oracle Web SDK ZIP file.

 <script src="scripts/settings.js"></script>
 <script src="scripts/web-sdk.js" onload="initSdk('Bots')"></
script>

Import the Library Using the Asynchronous Module Definition API
You can import the library using implementations of the Asychronous Module Definition
(AMD) API such as RequireJS with Oracle JET, and SystemJS.

requirejs(['<path of the web-sdk>'], function(WebSDK) {
var settings = {
 URI: '<Server URI>',
 channelId: '<Channel ID>',
 userId: '<User ID>'
};
Bots = new WebSDK(settings);

Bots.connect();
});

Chapter 48
Basic Setup

48-4

Import the Library Dynamically with JavaScript
Use the following Mozilla Development Network (MDN)-based utility function to import the
library dynamically with JavaScript:

function fetchSDK(src, onloadFunction, name) {
var script = document.createElement('script');
script.type = 'application/javascript';
script.async = true; // load the script asynchronously
script.defer = true; // fallback support for browsers that does not
support async
script.onload = function() {
 onloadFunction(name);
};
document.head.appendChild(script);
script.src = src;
}

fetchSDK('<path of the web-sdk>', initSDK, '<WebSDK namespace>');

Configure Client Authentication
In addition to using lists of allowed domains, client authentication is enforced by signed JWT
tokens.

The token generation and signing must be done by the client in the backend server
(preferably after user/client authentication) which is capable of maintaining the keyId and
keySecret safe.

When the SDK needs to establish a connection with the ODA server, it first requests a JWT
token from the client and then sends it along with the connection request. The ODA server
validates the token signature and obtains the claim set from the JWT payload to verify the
token to establish the connection.

To enable this mode, these two fields are required during SDK initialization:
clientAuthEnabled: true must be passed in the SDK settings parameter, and a token
generator function must be passed as the second parameter. The function must return a
Promise, which is resolved to return a signed JWT token string.

//settings.js
var chatSettings = {
 URI: '<Server URI>',
 clientAuthEnabled: true
};

function generateToken() {
 return new Promise(function(resolve) {
 fetch('https://yourbackend.com/endpointToGenerateJWTToken')
 .then(function(token) {
 resolve(token);
 })
 .catch(function(error) {
 console.log('Token generation error:', error);

Chapter 48
Basic Setup

48-5

https://developer.mozilla.org/en-US/docs/Web/API/HTMLScriptElement#Dynamically_importing_scripts

 });
 });
}

function initSDK(name) {
 // If WebSDK is not available, reattempt later
 if (!document || !WebSDK) {
 setTimeout(function() {
 initSDK(name);
 }, 2000);
 return;
 }

 // Default name is Bots
 if (!name) {
 name = 'Bots';
 }

 setTimeout(function() {
 var Bots = new WebSDK(chatSettings, generateToken); //
Initiate library with configuration

 var isFirstConnection = true;
 Bots.on(WebSDK.EVENT.WIDGET_OPENED, function() {
 if (isFirstConnection) {
 Bots.connect() // Connect to
server
 .then(function() {
 console.log('Connection Successful');
 })
 .catch(function(reason) {
 console.log('Connection failed');
 console.log(reason);
 });
 isFirstConnection = false;
 }
 });

 window[name] = Bots;
 }, 0);
}

The JWT Token
The client app is responsible for the JWT token generation. Some of the token payload
fields are mandatory and are validated by the ODA server. Clients must use the
HS256 signing algorithm to sign the tokens. The body of the token must have the
following claims:

• iat - issued at time

• exp - expiry time

• channelId - channel ID

• userId - user ID

Chapter 48
Basic Setup

48-6

The tokens themselves must be signed by the secret key of the client auth-enabled channel
to which the connection is made. Here’s a sample signed JWT token:

Encoded:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1NzY3NDcyMDUsImV4cCI6MTU3Njc1
MTExNywiY2hhbm5lbElkIjoiNDkyMDU5NWMtZWM3OS00NjE3LWFmOWYtNTk1MGQ2MDNmOGJiIiwid
XNlcklkIjoiSm9obiIsImp0aSI6ImQzMjFjZDA2LTNhYTYtNGZlZS05NTBlLTYzZGNiNGVjODJhZC
J9.lwomlrI6XYR4nPQk0cIvyU_YMf4gYvfVpUiBjYihbUQ

Decoded:

• Header:

{
 "typ": "JWT",
 "alg": "HS256"
}

• Payload:

{
 "iat": 1576747205,
 "exp": 1576748406,
 "channelId": "4920595c-ec79-4617-af9f-5950d603f8bb",
 "userId": "John"
}

If any claim in the token is missing or has incorrect format for its value, then an error
message is thrown by the SDK describing the cause. The connection is not attempted. The
error message can be used to fix the issue with the JWT token. Any additional claims passed
in the payload do not affect the client authentication mechanism.

Customize the Chat Widget
You can customize various aspects of the chat widget, such as its layout and icons, colors,
and text.

Tip:

This article gets you acquainted with the various customization properties.

Network Configuration
You intiate the SDK using these connection properties. The sample app that ships with the
SDK provides an example of how to set them in its scripts/settings.js file.

Property Name Description Required? Default Value

URI The URL of the Oracle
Chat Server

Yes N/A

Chapter 48
Customize the Chat Widget

48-7

https://blogs.oracle.com/mobile/overview-of-the-new-oracle-web-sdk-and-its-customization-features-in-oracle-digital-assistant-1910-and-later

Property Name Description Required? Default Value

channelId The Channel ID of the
Oracle Web Channel

Yes N/A

userId A unique identifier for
the user. If you don't
provide this, Oracle
Digital Asssistant
generates one.

No A randomly generated
value

clientAuthEnabled Determines whether the
SDK connectes to a
channel where client
authentication has been
enabled. As described
in Configure Client
Authentication, you set
this to true to connect
to channel with
authentication enabled
and use the JWT token.

Yes false

Feature Flags
Use the Feature Flag properties for:

• Secure connections

• Pill-shaped action buttons

• Audio narration of skill responses.

• Attachment sharing

• Disabling clicks on previous (out of focus) messages

• Autocomplete user input

For example:

 <script>
 var chatWidgetSettings = {
 enableTimestamp: true,
 showConnectionStatus: true,
 conversationBeginPosition: 'bottom',
 openChatOnLoad: true,
 position: {bottom: '2px', right: '2px'},
 displayActionAsPills: true,
 initUserHiddenMessage: 'Hello',
 embedded: true,
 targetElement: 'chat-container',
 embedTopScrollId: 'top-text',
 customHeaderElementId: 'custom-header',
 botButtonIcon: 'images/bot-button.png',
 logoIcon: 'images/bot-white.png',
 botIcon: 'images/bot-green.png',
 personIcon: 'images/user-icon.png',
 URI: YOUR_URI,

Chapter 48
Customize the Chat Widget

48-8

 channelId: YOUR_CHANNELID,

 };

...
 </script>

Tip:

Starting with Release 22.08, the chat widget configuration settings schema is
available in a standard JSON schema format through a CDN (https://
static.oracle.com/cdn/oda/22.8.0/settings-schema.json), which can be used
to create dynamic configuration screens.

Property Name Description Required? Default Value

defaultGreetingTime
out

The default timeout, in
seconds, after which a
default greeting
message displays.

No 5

defaultWaitMessageI
nterval

The default interval, in
seconds, that the default
wait message displays.

No 5

disablePastActions Disables the action
buttons in a skill
message after a user
has interacted with a
postback, location or
form submit action. The
allowed values are all,
none, or postback.
When set to all, all
action buttons of the
message are disabled
upon interaction. Setting
postback only disables
postback and location
actions, and setting
none keeps all buttons
enabled even after an
interaction. The
behavior enabled by this
property is independent
of the digital assistant-
level configuration for
disabling the selection
of past actions. You
need to set the two
separately.

No all

displayActionsAsPil
ls

Displays pill-shaped
action buttons.

No false

enableAttachment Configures attachment
sharing.

No true

Chapter 48
Customize the Chat Widget

48-9

Property Name Description Required? Default Value

enableAttachmentSec
urity

When set to true, extra
headers are passed to
the attachment upload
requests to ensure that
they can't be
downloaded without
passing a valid signed
JWT token as an
authorization header.
Do not enable this
setting if the skill
connects to an ODA
instance that's Version
20.08 or runs on any
version prior to 20.08.
This property only
applies to client auth-
enabled connections to
Versions 20.12 and
higher of the ODA
platform.

No false

enableAutocomplete Set to true to enable
the skill to autocomplete
the user request using
the idealized user
requests entered as
Autocomplete
Suggestions in the
Create Intent page. The
skill ouputs these
suggestions when the
user enters three or
more characters. It also
sets off the words in the
user input that match
the suggested phrases
in bold.

No false

enableBotAudioRespo
nse

Enables the utterance of
a skill's responses as
they are received using
the Web speech
synthesis API.

No false

enableClearMessage Enables the clear
message button in the
chat widget header.

No false

enableDraggableButt
on

Enables users to drag
the launch button out of
the way when it's
blocking content on the
web page. This feature
also works for Android
and iOS Safari
browsers.

No false

Chapter 48
Customize the Chat Widget

48-10

Property Name Description Required? Default Value

enableHeadless Enables you to use the
Oracle Web SDK
without its UI so that you
can develop your own
chat UI.

No false

enableLocalConversa
tionHistory

Enables the previous
conversation that's
associated with a given
userId to be loaded in
the browser when the
widget has been
initialized.

No false

enableLongPolling Use HTTP requests
when the websocket
fails to connect.

No false

enableSecureConnect
ion

Configures secure
communication (https
v. http and wss v. ws).

No true

enableSpeech When set to true, this
property enables the
microphone for voice
recognition. For
example:

chatWidgetSetting
s = {
 URI: 'idcs-
oda-example.com',
 channelId:
'9999b1-
f99a-9999-999ee-
df9d99999d',

enableSpeech:
true
};

No false

Chapter 48
Customize the Chat Widget

48-11

Property Name Description Required? Default Value

enableSpeechAutoSen
d

When set to true (the
default), the user's
speech response is
automatically sent to the
chat server (and
displays as a sent
message in the chat
widget). When set to
false, the user's
speech response is
rendered in the
message text field
before it's sent to the
chat server so that the
user can modify it before
sending it manually, or
delete the message.

No true

enableTimestamp Enables the timestamp
for messages and the
"read" symbol, which is
a tick mark ('✓'). Use
readMark to change
this symbol. This feature
is deprecated in
Release 22.02.

No true

focusOnNewMessage Sets the focus on either
the user input field, or
on the first action button
in a message when a
new message is
received.
• action – When a

message is
received, the focus
is the first action
button (if the
message has action
buttons). If the
message has no
buttons, then the
focus is the user
input field.

• input – The user
input field remains
as the focus when
new messages are
received.

No input

Chapter 48
Customize the Chat Widget

48-12

Property Name Description Required? Default Value

multiLangChat Enables the chat widget
to both detect a user’s
language and allow the
user to select a
preferred language from
a dropdown menu in the
header. You define the
menu with an object that
defines the primary
language and an array
of two or more language
tags (the
supportedLangs array,
described in Multi-
Lingual Chat).

No N/A

name The name for the
instance. Provides a
namespace to the
instance and is used as
prefix for the CSS
classnames and
element IDs.

No oda-chat

openChatOnLoad Expands the chat widget
when the page is
loaded.

No false

openLinksInNewWindo
w

Overrides the user's
browser preference by
opening links in a new
window. This setting
applies to all links
present in the
conversation, including
action buttons, fallback
links for attachments,
and card links.

No false

showConnectionStatu
s

Enables the connection
status to display in the
chat widget header.

No false

showPrevConvStatus Displays status
messages at the end of
older messages from
previous conversations.

No true

showTypingIndicator Displays a chat bubble
when waiting for a
response.

No true

Functionality
Use the Functionality properties to:

• Imitate a skill-initiated conversation.

• Embed content to the top and bottom of the chat window that either scrolls, or is
stationary (sticky).

• Set the locale.

Chapter 48
Customize the Chat Widget

48-13

• Set debug mode.

• Set the locale and voice for speech synthesis.

Property Name Description Required? Default Value

customHeaderEleme
ntId

Names the ID of the
<div> element that's
added to the header of
the chat widget.

No N/A

delegate An object that sets a
delegate to receive
callbacks before
certain events occur in
a conversation. The
delegate object
allows code to interact
with both user
messages and skill
responses before
messages are sent
and responses get
displayed.

No N/A

embedBottomScroll
Id

The ID of the element
that's added as the
scrolling content at the
bottom of the chat.
Use this property to
add custom content in
the chat widget's
conversation view.

No N/A

embedBottomSticky
Id

The ID of the element
used for the sticky
content that appears
at the bottom of the
chat. Use this property
to add custom content
in the chat widget's
conversation view.

No N/A

embedded Setting this to true,
activates the
embedded mode for
the chat widget. In
addition to setting this
property, you need to
name the div element
that houses the widget
in the
targetElement
property.

No false

embeddedVideo Enables the
embedding of
YouTube and Oracle
Hub Vidoe links in a
text message.

No false

Chapter 48
Customize the Chat Widget

48-14

Property Name Description Required? Default Value

embedTopscrollId The ID of the div
element that's added
as a scrolling content
at the top of the chat
widget.

No N/A

embedTopStickyId The ID of the div
element that's used for
the sticky content that
appears at the top of
the chat widget. Use
this property to add
custom content in the
chat widget's
conversation view. For
example, the top-
text div element in
the following snippet is
referenced as
embedTopStickyId:
'top-text':

<div id="top-
text"
style="padding:
0; text-align:
initial">
<p>Talk to
Pizzabot to
order your
pizza.</p>
</div>

The Web SDK tutorial
describes how to
configure this property
and set scrolling and
non-scrolling for chat
widget elements.

No N/A

enableAgentSneakP
review

Sends the user-
entered text along with
typing status to the
agent.

No false

enableAutocomplet
eClientCache

Enables client side
caching to minimize
server calls when the
autocomplete feature
is in use.

No false

Chapter 48
Customize the Chat Widget

48-15

Property Name Description Required? Default Value

enableDefaultClie
ntResponse

When set to true, the
client displays default
responses when the
skill response has
been delayed, or when
there's no response
from the skill.

No false

enableEndConversa
tion

Enables the user to
end the conversation
and reset the chat
session. It also clears
the local conversation
history, disconnects
from the chat server
and minimizes the
widget

No true

enableHeaderActio
nCollapse

Collapses the header
actions into a menu
button if the icon count
is more than two.

No true

enableResizableWi
dget

Enables the user to
resize the chat widget
after expanding it. If
the widget is located
on the right side of the
web page, users
adjust its dimensions
by dragging the top
edge, left edge, or top-
left corner. In the
same way, if the
widget is placed on
the left side, users
resize the top edge,
right edge, or top-right
corner.

No false

enableSendTypingS
tatus

Sends the typing
status of the user to
the live agent.

No false

enableTabsSync Synchronizes
conversation
messages across
different tabs for a
given userId and
channelId.

No true

Chapter 48
Customize the Chat Widget

48-16

Property Name Description Required? Default Value

hotkeys An object that
contains a list of
keyboard keys that
activate, or focus,
elements using the
ALT Key combined
with the passed
hotkey.

No {...} For example:

hotkeys: {

collapse:
'c', // Usage:
press Alt + C
to collapse the
chat widget
when chat
widget is
expanded
 launch:
'l' //
Usage: press
Alt + L to
launch the chat
widget when
chat widget is
collapsed
 }

i18n An object that
contains locale fields.
Each locale maintains
i18n key-value pairs
for the text strings
used in the widget.

No {'en-us':{…}}
For example:

"i18n": {

"en-us": {

"chatTitle":
"Pizza King"

}
 }

initBotAudioMuted Initializes the skill
message utterance in
muted mode. This
feature can only be
activated when you
set
enableBotAudioRes
ponse to true.

No true

Chapter 48
Customize the Chat Widget

48-17

Property Name Description Required? Default Value

initMessageOption
s

Whereas
initUserHiddenMes
sage sends the initial
"hidden" message
only after the client
has connected to the
skill and the chat
widget has been
expanded, you can
use this setting to
send messages as
soon as the client has
connected to the skill,
regardless of whether
the widget is
expanded or not. This
setting accepts an
object that has a
sendAt property. The
sendAt property can
have one of the two
values: 'init', or
'expand'. If you set
'init', then the init
messages are sent as
soon as connection is
made. If you set
'expand', then the
init messages are sent
only when the widget
is expanded. In the
following snippet, the
message is set when
the connection is
established because
of sendAt: 'init':

var settings = {
 URI: '...',
 channelId:
'...',

initUserHiddenMe
ssage: 'Hello',

initMessageOptio
ns: {
 sendAt:
'init'
 }
}
Bots = new
WebSDK(settings)

Chapter 48
Customize the Chat Widget

48-18

Property Name Description Required? Default Value

;
Bots.connect();

Bear in mind that
billing starts when the
init message has been
sent, even if the
widget is still closed
(as would be the case
with sendAt:
'init').

initUserHiddenMes
sage

A message that's used
to initiate a
conversation. This
message, can be a
text string or a
message payload. For
example:
initUserHiddenMes
sage: 'Hi'. These
messages are not
dependent on the user
history. This message
is sent in every
session after the client
has connected to the
skill and the chat
widget has been
expanded. To send the
first message only
when the conversation
history is empty, you
must bind event
listeners using the
Bots.on() method.
For example, you can
accomplish this by
binding the
WIDGET_OPENED and
NETWORK events,
which are described in
the SDK docs.

No N/A

Chapter 48
Customize the Chat Widget

48-19

Property Name Description Required? Default Value

initUserProfile Updates the user
profile before the start
of a conversation. The
format of the profile
payload must be
{ profile:
{...} }. For
example:

initUserProfile
: {
 profile:{
 givenName:
'First',
 surname:
'Last',
 email:
'first.last@exam
ple.com',
 properties:
{

lastOrderedItems
: '1 medium
pepperoni'
 }
}

This function updates
the user context after
the client is connected
to the skill and the
chat widget has been
expanded. As a result,
the user profile can be
reflected in the first
response message to
the user. For example,
the skill can greet the
user with a message
like "Welcome back,
John Smith! Your last
order was a medium
pepperoni pizza."
These messages are
sent after the client
has connected to the
skill and the chat
widget is
expanded.These user
profile messages are
sent after the client
has connected to the
skill and the chat
widget is expanded. A

No N/A

Chapter 48
Customize the Chat Widget

48-20

Property Name Description Required? Default Value

user profile message
is still sent before the
initial "hidden"
message if
initUserHiddenMes
sage is also passed.
You can only pass the
profile property in
the payload. If you
need to pass another
property such as
messagePayload. If
the initial message
needs both the profile
and the
messagePayload
properties, then use
initUserHiddenMes
sage instead.

isDebugMode Enables debug mode. No false
linkHandler An object that

overrides the
configuration for
handling the clicks on
the links that are
embedded in the skill's
responses. There are
two ways that this
object handles links:
target, which
accepts a string, and
onclick, which
accepts a function.
You can set either
target or onclick,
but not both. When
you want all links to
open in a WebView,
pass linkHandler:
{ target: 'oda-
chat-webview' }.

No
{ onclick:
<function>,
target:
'string' }

Chapter 48
Customize the Chat Widget

48-21

Property Name Description Required? Default Value

locale The default locale for
the widget's text
strings. The locale
passed during
initialization has a
higher preference over
users’ browser
locales. If there isn’t
an exact match, then
the SDK attempts to
match the closest
language. For
example, if the locale
is 'da-dk', but i18n
translations are
provided only for
'da', then the 'da'
translation is used. In
absence of
translations for passed
locale, translations are
searched for and
applied for the
browser locales. In
absence of
translations for any of
them, the default
locale, 'en' is used
for translations.

No en-us

messageCacheSizeL
imit

The maximum number
of messages that get
save in
localStorage at a
time.

No 2000

Chapter 48
Customize the Chat Widget

48-22

Property Name Description Required? Default Value

readMark Sets the symbol that
denotes that a skill's
messages have been
read. By default, this is
indicated by a tick
mark ('✓') when
enableTimestamp is
set to true, but you
can substitute another
symbol by defining this
property. This symbol,
whether the default or
custom, can only
accompany the
timestamp, so it is
hidden when
enableTimestamp is
set to false. The
read mark does not
display for absolute
timestamps. This
setting has been
deprecated.

No A tick mark (

'✓'

)

reconnectMaxAttem
pts

The number of
attempts made by the
chat widget to
reconnect when the
initial connection fails.

No 5

Chapter 48
Customize the Chat Widget

48-23

Property Name Description Required? Default Value

shareMenuItems The menu items in the
share popup menu.
This property accepts
an array with string
values that are
mapped to menu
items:
• 'visual' for

image and videos
• 'audio' for

audio
• 'file' for files

• 'location' for
location

You can specify which
items are available in
the menu (['audio',
'file'], for
example). All of the
menu items are
available when the
array is empty, when
the items in the array
are incorrect
(['audio',
'visuil'], or when
shareMenuItems has
not been defined.

No
['audio',
'file',
'location',
'visual']

skillVoices An array containing
the preferred voices
that used for narrating
responses. Each item
in the array should be
an object with two
fields: lang, and
name. name is
optional. The first item
that matches a voice
that’s available in the
system will be used for
the narration. This
setting is deprecated.

No System language

Chapter 48
Customize the Chat Widget

48-24

Property Name Description Required? Default Value

speechLocale The expected locale of
the user's speech
that's used for voice
recognition. US
English ('en-US') is
the default locale. The
other supported
locales are: Australian
English ('en-au'),
UK English ('en-
uk'), French ('fr-
fr'), German ('de-
de'), Italian ('it-
it'), Indian-Hindi
(hi-in), Indian-
English (en-in),
Brazilian Portuguese
('pt-br'), and
Spanish ('es-es').
The speech locale can
be set dynamically by
calling the
setSpeechLocale('
<locale>') API.
Voice recognition will
not work if an
unsupported locale
has been passed.

No 'en-us'

storageType The web storage
mechanism that's
used to store the
conversation history
for users whose
userId is passed by
the host app. The
supported values are
'localStorage' and
'sessionStorage'.
Anonymous users’
conversations are
always stored in
sessionStorage and
are deleted
automatically after the
browser session has
ended.

No 'localStorage'

Chapter 48
Customize the Chat Widget

48-25

Property Name Description Required? Default Value

targetElement Names the div
element where the
chat widget gets
embedded in the web
page. The chat-
container div
element in the
following snippet is
referenced as
targetElement:
'chat-container':

 <div
id="chat-
container"
class="chatbox"

style="height:
600px; width:
400px; padding:
0;

text-align:
initial">
 </div>

Check out the Web
SDK tutorial to find out
how to add and style
the div element.

No N/A

theme The primary layout
theme. Three themes
are available:
'default',
'redwood-dark',
and 'classic'.

No default

timestampFormat Formats the delivery
timestamp that
accompanies
messages. Accepts
values in a
DateTimeFormat
options object or as
a pattern string as
described in
Customize the
Timestamp.

No
{
weekday:'long',
year:'numeric',
month: 'long',
day: 'numeric'

}

Chapter 48
Customize the Chat Widget

48-26

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/DateTimeFormat#Syntax

Property Name Description Required? Default Value

timestampMode Selects the timestamp
display mode as either
absolute timestamps
that appear on each
message, or as a
relative timestamp that
appears only on the
latest message.
• default – Sets

an relative
timestamp on
each message.

• relative
(default) – The
timestamp
displays before
the first message
of the day as an
absolute
timestamp in a
header, and then
as a relative
timestamp for the
new messages as
an updating
timestamp
indicating the time
passed since the
message was
added in the
conversation. The
relative timestamp
updates at set
intervals until a
new message is
received.

• absolute – Sets
an absolute
timestamp on
each message.

• none – Disables
the time stamp.

No default (for absolute
timestamps), or
relative.

ttsService An array containing
preferred voices used
for speaking
responses via text-to-
speech (TTS). Each
item in the array
should be an object
with at least one of the
following fields: lang
and name. The first
item that matches a
voice that’s available
in the system will be
used for the TTS.

No oracle

Chapter 48
Customize the Chat Widget

48-27

Property Name Description Required? Default Value

typingIndicatorTi
meout

Sets the number of
seconds after which
the typing indicator is
automatically removed
if the chat widget has
not yet received the
response.

No 20

typingStatusInter
val

Sets the interval, in
seconds, to throttle the
typing status that's
sent to the live agent.

No 3

webViewConfig Customizes the in-
widget WebView.

No { referrerPolicy:
'no-referrer-
when-downgrade',
closeButtonType:
'icon', size:
'tall' }

Read More and Read Less Buttons for Multi-Paragraph Skill
Responses

You can optimize the user experience for multi-paragraph skill messages by adding
Read More and Read Less buttons.

Chapter 48
Customize the Chat Widget

48-28

You can add the client-side code for these buttons, which hide and show paragraphs, using
the delegate object and custom functions.

1. In settings.js, define a delegate object with a beforeDisplay callback function in the
var chatWidgetSettings declaration:

delegate: {
 beforeDisplay: function (message) {
 var messagePayload = message && message.messagePayload;
 if (messagePayload.type === 'text') {
 messagePayload.text =
splitParagraph(messagePayload.text);
 }
 return message;
 }
 }

If the message is of type text, beforeDisplay calls the custom splitParagraph function
to split the text by the first paragraph.

Chapter 48
Customize the Chat Widget

48-29

2. Declare the variables for the custom splitParagraph and toggleParagraph view
functions:

var PREFIX_DOTS = 'dots_';
var PREFIX_MORE = 'more_';
var PREFIX_TOGGLE = 'toggle_button';

3. Add the splitParagraph function expression and the toggleParagraphView
function.
splitParagraph is an IIFE (Immediately Invoked Function Expression) that
isolates the globalIDCounter variable so that it can only be accessed by the
splitParagraph function. The code identifies a paragraph ("\n\n") and splits the
text accordingly. It then adds three dots (…) to indicate that there is more text to
display and a Read More button to unhide the remaining text.

var splitParagraph = (function () {
 var globalIDCounter = 0;

 return function splitParagraph(text) {
 var paragraphs = text.split('\n\n');

 if (paragraphs.length > 1) {
 var HTMLText = '<p>' + paragraphs[0] +
 '<span id="' + PREFIX_DOTS + globalIDCounter +
'">...</p>' +
 '<span id="' + PREFIX_MORE + globalIDCounter + '"
class="more">';

 for (var i = 1; i < paragraphs.length; i++) {
 HTMLText += '<p>' + paragraphs[i] + '</p>';
 }

 HTMLText += '<button id="' + PREFIX_TOGGLE +
globalIDCounter + '" class="readMore"
onclick="toggleParagraphView(' + globalIDCounter + ')">Read More</
button>';

 globalIDCounter++;
 return HTMLText;
 } else {
 return text;
 }

Chapter 48
Customize the Chat Widget

48-30

 }
})();

function toggleParagraphView(elemID) {
 var dots = document.getElementById(PREFIX_DOTS + elemID);
 var textMore = document.getElementById(PREFIX_MORE + elemID);
 var buttonToggle = document.getElementById(PREFIX_TOGGLE + elemID);

 if (!dots || !textMore || !buttonToggle) {
 return;
 }

 if (dots.style.display === 'none') {
 dots.style.display = 'inline';
 buttonToggle.innerText = 'Read More';
 textMore.style.display = 'none';
 } else {
 dots.style.display = 'none';
 buttonToggle.innerText = 'Read Less';
 textMore.style.display = 'inline';
 }
}

4. Configure and (optionally) style the Read More and Read Less buttons. The CSS
includes a display:none style to show or hide buttons according to the state of the long
text display.

• If you don't want to style the buttons, add the following code:

<style>
.more {
 display: none;
}
</style>

• If you want to style the buttons, you can do something like this:

<style>
.readMore {
 color: #fff !important;
 background-color: red;
 font-size: 12pt;
 padding: 4px;
 outline: 0;
 -moz-outline: 0;
 border: 0;
}

.readMore:hover {
 color: #fff !important;
 background-color: #606060 !important;
}
.more {
 display: none;

Chapter 48
Customize the Chat Widget

48-31

}
</style>

Layout
Use the layout properties to:

• Set the position of the widget within the web page.

• Set chat widget's dimensions, colors, and font style.

• Set the padding for the messages within the widget.

• Set the position of the notification badge icon with respect to bot button.

• Set the starting position for the conversation within the widget.

For example:

 <script>
 var chatWidgetSettings = {
 URI: YOUR_URI,
 channelId: YOUR_CHANNELID,
 font: '14px "Helvetica Neue", Helvetica, Arial, sans-
serif', //layout modification property
 height: '60vh', //layout modification property
 width: '20vw', //layout modification property
 "colors": { //custom colors property
 "branding": "#01538A",
 "text": "#B20637"
 },
 }

...
 </script>

Property Description Required? Default Value

actionsLayout Sets the layout
direction for the local
actions. When you set
this as horizontal,
these buttons are laid
out horizontally and
will wrap if the content
overflows.

No vertical

badgePosition The position of the
badge icon with
respect to the icon
button.

No {"top": "0",
"right": "0"}

cardActionsLayout Sets the layout
direction for the card
actions. When you set
this as horizontal,
these buttons are laid
out horizontally and
will wrap if the
contents.

No vertical

Chapter 48
Customize the Chat Widget

48-32

Property Description Required? Default Value

colors The colors used in the
chat widget.

No {"branding":
"#1B8FD2",
"text":
"#212121",
"textLight":
"#737373"}

conversationBegin
Position

The starting position
for conversation in the
widget. If set to top,
the first messages
appear at the top of
the widget. If set to
bottom, then the
conversation starts at
the bottom.

No bottom

font The font used in the
chat widget.

No 16px "Oracle
Sans", -apple-
system,
BlinkMacSystemFon
t, "Segoe UI",
"Helvetica Neue

fontFamily The font family used
for all of the text in the
chat widget. This
setting precedence
over the font
configuration.

No "Oracle Sans", -
apple-system,
BlinkMacSystemFon
t, "Segoe UI",
"Helvetica Neue"

fontSize The font size to use for
the header,bubble,
and footer text in the
widget. This setting
takes precedence over
the font
configuration.

No 16px

globalActionsLayo
ut

Sets the layout
direction for the global
actions. If set
'horizontal' the buttons
are laid horizontally
and will wrap if the
content overflows.

No vertical

height The height of a chat
width as set by one of
the <length> data type
values.

No 70vh

messagePadding The padding around
messages in the chat
widget.

No 15px

position The placement of the
chat widget in the
browser window. This
should be passed as a
JSON object.

No {bottom: '20px',
right: '20px'}

Chapter 48
Customize the Chat Widget

48-33

https://developer.mozilla.org/en-US/docs/Web/CSS/length

Property Description Required? Default Value

width The width of the chat
widget as set to one of
the <length> data type
values.

No 30vw

Custom Header Button Icons
You can customize the header's clear message , audio response toggle button ,
and the close button in two ways: by passing the source URL of the image, or by
passing a raw SVG string. For raw SVG strings, the fill color of the SVG can be
customized by CSS classes, as well as by passing a color value in the
colors.headerButtonFill property in the initial settings.

Note:

The color customization may not work for all SVGs, as they can be multi-
colored or have their own stroke and fill colors.

Icon Function Feature Flag Customization

Clear Message Clears both the
current and older
messages in the
conversation.

enableClearMessag
e: true

'<image URL | SVG
string>'

Audio response Toggles the audio of
skill responses as they
are received. Because
this a toggle button, it
has two states,
utterance on, where
responses are spoken,
and utterance off,
where responses are
not spoken.

enableBotAudioRes
ponse: true

• Response on:
audioResponseO
nIcon: '<image
URL | SVG
string>'

• Response off:
audioResponseO
ffIcon:
'<image URL |
SVG string>

Close Collapses the widget
and displays the

launch button .
This button cannot be
disabled.

None: This icon is
always enabled in the
chat widget. It's not
displayed in the
embedded mode.

closeIcon :
'<image URL | SVG
string>'

Custom Colors
You can customize the widget by modifying its colors. There are two approaches to
color customization:

• You can pass the colors config:

colors: {
 "branding": "#e00",

Chapter 48
Customize the Chat Widget

48-34

https://developer.mozilla.org/en-US/docs/Web/CSS/length

 "text": "#545454"
},

• Or you can use CSS variables defined on the chat wrapper (.oda-chat-wrapper):

.oda-chat-wrapper {
 --color-branding: '#e00';
 --color-text: '#545454';
}
}

The color must be a hexadecimal color. If you don't provide a color, then a default color is
used instead. These snippets illustrates how to modify the branding and text colors. The
default color will be used for the secondary text color.

Tip:

We recommend changing colors using CSS variables.

CSS Variable Key Description

--color-actions-
background

actionsBackground The background color for the
action buttons

--color-actions-
background-hover

actionsBackgroundFocus The background color for the
action buttons when they're in
focus.

--color-actions-
background-focus

actionsBackgroundHover The background color of the
action buttons on hover

--color-actions-border actionsBorder The border color for the action
buttons

--color-actions-text actionsText The text color for the action
buttons

--color-actions-text actionsTextFocus The text color for the action
buttons on focus

--color-actions-text-
focus

actionsTextHover The text color for the action
buttons on hover

--color-user-message-
background

botMessageBackground The color for the background of
the skill's response message
bubble

--color-bot-text botText The color for the text in a
message sent by the skill

--color-branding branding The primary color for the widget
branding. This color is used as
the header background and as
the hover color on footer buttons.

--color-card-background cardBackground The background color used for a
card.

--color-conversation-
background

conversationBackground The color used for the
background of the conversation
pane.

--color-danger-actions-
background

dangerActionsBackground The danger action button
background color

Chapter 48
Customize the Chat Widget

48-35

CSS Variable Key Description

--color-danger-actions-
background-focus

dangerActionsBackgroundFo
cus

The danger action button
background color on focus

--color-danger-actions-
background-hover

dangerActionsBackgroundHo
ver

The danger action button
background color on hover

--color-danger-actions-
border

dangerActionsBorder The danger action button border
color

--color-danger-actions-
text

dangerActionsText The danger action button text
color

--color-danger-actions-
text-focus

dangerActionsTextFocus The danger action button text
color on focus

--color-danger-actions-
text-hover

dangerActionsTextHover The danger action button text
color on hover

--color-danger-form-
actions-background

dangerFormActionsBackgrou
nd

The background color of danger
actions in Table, Form, Table-
Form and Edit-Form messages

--color-danger-form-
actions-background-focus

dangerFormActionsBackgrou
ndFocus

The background color of danger
actions on focus in Table, Form,
Table-Form and Edit-Form
messages

--color-danger-form-
actions-background-hover

dangerFormActionsBackgrou
ndHover

The background color of danger
actions on hover in Table, Form,
Table-Form and Edit-Form
messages

--color-danger-form-
actions-border

dangerFormActionsBorder The border color of danger
actions in Table, Form, Table-
Form and Edit-Form messages

--color-danger-form-
actions-text

dangerFormActionsText The text color of danger actions
in Table, Form, Table-Form and
Edit-Form messages

--color-danger-form-
actions-text-focus

dangerFormActionsTextFocu
s

The text color of danger actions
on focus in Table, Form, Table-
Form and Edit-Form messages

--color-danger-form-
actions-text-hover

dangerFormActionsTextHove
r

The text color of danger actions
on hover in Table, Form, Table-
Form and Edit-Form messages

--color-error-border errorBorder The border color of an error
message bubble. The color is
used as the border color of form-
level error message that is
displayed in Edit-Form
messages.

--color-error-message-
background

errorMessageBackground The background color of an error
message bubble. The color is
used as the background color of
form-level error message that is
displayed in Edit-Form
messages.

Chapter 48
Customize the Chat Widget

48-36

CSS Variable Key Description

--color-error-title errorTitle The title color of the error
message content. The color is
used as error text color of form-
level error message that is
displayed in Edit-Form
messages.

--color-footer-background footerBackground The color used for the
backgound of the footer.

--color-footer-button-
fill

footerButtonFill The fill color of an SVG icon
used in the buttons that are
located in the chat footer.

--color-form-actions-
background

formActionsBackground The background color of form
actions

--color-form-actions-
background-focus

formActionsBackgroundFocu
s

The background color of form
actions on focus

--color-form-actions-
background-hover

formActionsBackgroundHove
r

The background color of form
actions on hover

--color-form-actions-
border

formActionsBorder The border color of form actions

--color-form-actions-text formActionsText The text color of form actions

--color-form-actions-
text-focus

formActionsTextFocus The text color of form actions on
focus

--color-form-actions-
text-hover

formActionsTextHover The text color of form actions on
hover

--color-form-background formBackground The background color of forms

--color-form-error formError The SVG fill color of the icon in
field-level and form-level error
messages that display in Edit-
Form messages. The color is
used as the border color of input
field upon error in Edit-Form
messages.

--color-form-error-text formErrorText The text color of a field-level
error message that is displayed
in Edit-Form messages

--color-form-header-
background

formHeaderBackground The background color of form
titles

--color-form-header-text formHeaderText The text color of form titles

--color-form-input-
background

formInputBackground The background color of the
input fields in Edit-Form
messages

--color-form-input-border formInputBorder The border color of the input
fields in Edit-Form messages

--color-form-input-
border-focus

formInputBorderFocus The border color of the input
fields on focus in Edit-Form
messages

--color-form-input-text formInputText The text color of the input fields
in Edit-Form messages

--color-form-label formLabel The color of the form labels

--color-form-text formText The text color of forms

Chapter 48
Customize the Chat Widget

48-37

CSS Variable Key Description

--color-global-actions-
background

globalActionsBackground The background color of the
global action buttons

--color-global-actions-
background-focus

globalActionsBackgroundFo
cus

The background color of the
global action buttons when
they're in focus.

--color-global-actions-
background-hover

globalActionsBackgroundHo
ver

The background color for the
hover over the global action
buttons.

--color-global-actions-
border

globalActionsBorder The border color of the global
action buttons

--color-global-actions-
text

globalActionsText The text color of the global action
buttons

--color-global-actions-
text-focus

globalActionsTextFocus The color of the text in the global
action buttons when they're in
focus.

--color-global-actions-
text-hover

globalActionsTextHover The color of the text in the global
action buttons when users hover
over them.

--color-header-background headerBackground The background color of the chat
widget’s header

--color-header-button-
fill

headerButtonFill The fill color of the SVG icons
used for the buttons in the chat
header

--color-header-text headerText The color of the chat header title

--color-input-background inputBackground The message input field
background color in the chat
footer

--color-input-text inputText The message input text color in
the chat footer

--color-links links The color for the links that are
embedded in skill messages

--color-error-border N/A The border color of an error
message bubble

--color-error-message-
background

N/A The background color of an error
message bubble

--color-error-text N/A The description color of an error
message content

--color-error-title N/A The title color of an error
message content

--color-footer-button-
background-hover

N/A The background color of the
footer buttons on hover

--color-footer-button-
fill-hover

N/A The fill color of the header footer
on hover

--color-header-button-
background-hover

N/A The background color of the
header buttons on hover

--color-header-button-
fill-hover

N/A The fill color of the header
buttons on hover

--color-input-border N/A The border color of the input field

Chapter 48
Customize the Chat Widget

48-38

CSS Variable Key Description

--color-user-links N/A The color of the links that are
embedded in user messages.

--color-popup-background N/A The background color of prompts
and popups

--color-popup-button-
background

N/A The background color of popup
buttons

--color-popup-button-text N/A The text color of popup buttons

--color-popup-horizontal-
rule

N/A The horizonatal rule color for
separator for multi-lang chat
menu action

--color-popup-item-
background-hover

N/A The background color on hover
of popup list items

--color-popup-text N/A The text and icon color of
prompts and popups

--color-table-background N/A The background color of tables

--color-table-header-
background

N/A The background color of table
headers

--color-table-separator N/A The separator color of table rows

--color-table-text N/A The text color of tables

--color-notification-
badge-background

notificationBadgeBackgrou
nd

The background color for the
message notification badge

--color-notification-
badge-text

notificationBadgeText The text color for the message
count in the notification badge

--color-primary-actions-
background

primaryActionsBackground The primary action button
background color

--color-primary-actions-
background-focus

primaryActionsBackgroundF
ocus

The primary action button
background color on focus

--color-primary-actions-
background-hover

primaryActionsBackgroundH
over

The primary action button
background color on hover

--color-primary-actions-
border

primaryActionsBorder The primary action button border
color

--color-primary-actions-
text

primaryActionsText The primary action button text
color

--color-primary-actions-
text-focus

primaryActionsTextFocus The primary action button text
color on focus

--color-primary-actions-
text-hover

primaryActionsTextHover The primary action button text
color on hover

--color-primary-form-
actions-background

primaryFormActionsBackgro
und

The background color of primary
actions in Table, Form, Table-
Form and Edit-Form messages

--color-primary-form-
actions-background-focus

primaryFormActionsBackgro
undFocus

The background color of primary
actions on focus in Table, Form,
Table-Form and Edit-Form
messages

--color-primary-form-
actions-background-hover

primaryFormActionsBackgro
undHover

The background color of primary
actions on hover in Table, Form,
Table-Form and Edit-Form
messages

Chapter 48
Customize the Chat Widget

48-39

CSS Variable Key Description

--color-primary-form-
actions-border

primaryFormActionsBorder The border color of primary
actions in Table, Form, Table-
Form and Edit-Form messages

--color-primary-form-
actions-text

primaryFormActionsText The text color of primary actions
in Table, Form, Table-Form and
Edit-Form messages

--color-primary-form-
actions-text-focus

primaryFormActionsTextFoc
us

The background color of primary
actions on focus in Table, Form,
Table-Form and Edit-Form
messages

--color-primary-form-
actions-text-hover

primaryFormActionsTextHov
er

The background color of primary
actions on hover in Table, Form,
Table-Form and Edit-Form
messages

--color-rating-star ratingStar The color that's applied to the
rating stars in a feedback
message when users hover over
them or select them. If you do
not specify a color, the
branding color is used instead.

N/A recognitionViewBackground The background color for the
view where the recognized text
displays when users activate the
voice mode. If you don't define
this color, then the color defined
for headerBackground is used
instead.

N/A recognitionViewButtonFill The SVG fill color for the voice-
text mode toggle when users
switch to the voice mode.

--color-recognition-view-
text

recognitionViewText The color used for the text that's
recognized from the user's voice
input. If you don't define this
color, then color defined for text
is used instead.

N/A shareMenuText The color used for the share
menu items. This color overrides
the value set for the text key, if
passed.

--color-table-actions-
background-focus

tableActionsBackgroundFoc
us

The background color of table
actions on focus

--color-table-actions-
text-focus

tableActionsTextFocus The text color of table actions on
focus

--color-table-actions-
text-hover

tableActionsTextHover The text color of table actions on
hover

--color-text text The text color for messages in
the chat widget.

-color-text-light textLight The text color of the secondary
text in the messages, such as
the card descriptions in the chat
widget.

Chapter 48
Customize the Chat Widget

48-40

CSS Variable Key Description

--color-timestamp timestamp The color for the relative
timestamp.

--color-typing-indicator typingIndicator The background fill color used for
the typing indicator.

N/A userMessageBackgound The background color of the
bubble used for user messages.

--color-user-text userText The color for the text in a
message sent by the user.

--color-visualizer visualizer The color used for the bars in the
visualizer graph. If you don't
define this color, then the color
defined for branding is used
instead.

--color-visualizer-
container-background

visualizerContainerBackgr
ound

The background color for the
container of the voice visualizer
that displays when users toggle
to the voice mode. If you don't
define this color, then the color
defined for
userMessageBackgound is
used instead.

Note:

You can set an image for conversationBackground, headerBackground, and
footerBackground. These fields can accept any parameters that can be passed to
the CSS background background property. For example:

colors: {conversationBackground: 'no-repeat url("https://
images.unsplash.com/photo-1582580470647-e3be5274d6a0?
ixlib=rb-1.2.1&auto=format&fit=crop&w=668&q=80")'},

Custom Icons
You can customizes the icons, including the ones for the skill icon, the chat logo icon, and the
avatar icons for the skill and user.

You can pass the URL of the image asset for these icons. For some icons, you can either use
the URL or pass a Scalable Vector Graphics (SVG) string. You can pass the raw SVG data
for icons that support SVG strings. The chat view renders these as an inline SVG.

Tip:

SVG strings load faster than image assets. They also let you animate the image
and change its color. The layout defined for the theme property is applied to SVG
strings for attachment, send, and mic buttons, but not for the other image assets.

Chapter 48
Customize the Chat Widget

48-41

https://developer.mozilla.org/en-US/docs/Web/CSS/background

Starting with Version 21.10, you can use the icons property to group all of the custom
icons into a single field. The pre-21.10 icons are still supported, but the values passed
with the icons object take precedence. All fields within the icons object support both
image resource paths and raw SVG strings.

var settings = {
 URI: '<URI>',
 channelId: '<channel ID>',
 icons: {
 rating: '<svg xmlns="http://www.w3.org/2000/svg" height="24"
width="24" viewBox="0 0 24 24"><path d="M15.994 3.006a5.7 5.7 0
00-3.795 1.707L12 4.916l-.199-.202a5.676 5.676 0 00-8.128 0c-2.231
2.275-2.231 5.953 0 8.228L12 21.428l8.326-8.486A5.873 5.873 0 0022
8.828a5.873 5.873 0 00-1.675-4.115A5.693 5.693 0 0016.262 3z"/></svg>'
 },

Property (21.10
Release)

Property (Prior
Releases)

Description SVG String
Compatible?

avatarAgent agentAvatar For skills integrated
with live agents, this
icon displays
alongside messages
from the live agent.
The avatarBot (or
agentAvatar)
appears if this
property is not
defined.

Yes

avatarbot botIcon The icon that displays
alongside the skill's
reponse message.
This skill icon only
displays if you provide
this icon. Otherwise,
no icon displays.

Yes

avatarUser personIcon The icon that displays
alongside user
messages. This icon
does not display by
default: it only displays
if you define it.

Yes

clearHistory clearMessageIcon The clear message
button icon that's
located in the widget
header

Yes

close N/A The icon that's
displayed for the close
button in error
message banners,
expanded image
previews, and the in-
widget WebView.

Yes

Chapter 48
Customize the Chat Widget

48-42

Property (21.10
Release)

Property (Prior
Releases)

Description SVG String
Compatible?

collapse closeIcon The icon for the
button, located in the
chat view header, that
minimizes the chat
view.

Yes

download downloadIcon The icon used for the
attachment download
button that appears on
each attachment
message sent by the
skill.

download – Yes

error errorIcon The URL for the image
used for the error icon.

• errorIcon – No

• error – Yes

No

expandImage expandImageIcon The icon used for the
image expand control
that appears on each
image attachment
message sent by the
skill.

expandImage – Yes

fileAudio audioIcon The audio attachment
icon, displayed when
attachment source
URL is not reachable.

• audioIcon – No

• fileAudio – Yes

fileGeneric fileIcon The file attachment
icon.

• fileIcon – No

• fileGeneric –
Yes

fileImage imageIcon The image attachment
icon, which is
displayed when the
attachment source
cannot be reached.

• fileImage – No

imageIcon –
Yes

fileVideo videoIcon The video attachment
icon, which is
displayed when the
attachment source
URL cannot be
reached.

• videoIcon – No

• fileVideo – Yes

keyboard keyboardIcon The keyboard icon,
displayed in button
that switches the
mode from voice to
keyboard mode.

Yes

launch botButtonIcon The skill bot button,
displayed when the
chat widget is
minimized.

• botButtonIcon
– No

launch – Yes

logo logoIcon The chat logo icon
which is displayed in
the header of the chat
widget.

• logoIcon – No

• logo – Yes

Chapter 48
Customize the Chat Widget

48-43

Property (21.10
Release)

Property (Prior
Releases)

Description SVG String
Compatible?

mic micIcon The mic button icon in
the footer of the chat
widget that appears
when

Yes

rating N/A The icon displayed for
the feedback action
buttons in the ratings
component. For the
best user experience
for the hover action,
pass a filled SVG icon
string.

rating – Yes

send sendIcon The send message
button icon

Yes

shareMenu attachmentIcon The attachment
upload icon

Yes

shareMenuAudio N/A The icon for the audio
menu item in the
share menu popup.

Yes

shareMenuFile N/A The icon for the file
menu item in the
share menu popup.

Yes

shareMenuLocation N/A The icon for the share
menu button in the
share menu popup.

Yes

shareMenuVisual N/A The icon for the
image/video menu
item in the share
menu popup

Yes

ttsOff audioResponseOffI
con

The icon for the toggle
button when audio
responses are turned
off.

Yes

ttsOn audioResponseOnIc
on

The icon for the toggle
button when audio
responses are turned
on.

Yes

typingIndicator chatBubbleIcon The animated icon in
conversation pane that
indicates a response
being sent from skill.

Yes

You can also resize the icon for the loading chat bubble icon (enabled with
chatBubbleIcon).

Property Name Description Required? Default Value

chatBubbleIconHei
ght

The height of the
loading chat bubble
icon.

No 42px

Chapter 48
Customize the Chat Widget

48-44

Property Name Description Required? Default Value

chatBubbleIconWid
th

The width of the
loading chat bubble
icon.

No 56px

Custom Strings
You can customize the following strings and provide them as localized text. As illustrated by
the following object, localization requires you to provide a valid locale for each entry. You
need to update all keys for locales other than en-us. If you don't, then en-us translations are
displayed for the missing values.

"i18n": {
 "fr": {
 "chatTitle": "Soutien"
 },
 "en-us": {
 "chatTitle": "Support"
 },
 "es": {
 "chatTitle": "Apoyo"
 },
 "zh-cn": {
 "chatTitle": "支持"
 }
}

Key Description Default Value

agent The text used for the agent 'Agent'
agentMessage The skill message indicator

for screen readers. It is
spoken by the screen
readers before the skill
responses. The text (`{0}`)
is replaced by the agent
name.

`'{0} says'`

attachment_audio The text that's used for the
TTS utterance of an audio
attachment.

'Audio attachment'

attachment_file The text that's used for the
TTS utterance of a file
attachment.

'File attachment'

attachment_image The text that's used for the
TTS utterance of an image
attachment.

'Image attachment'

attachment_video The text that's used for the
TTS utterance of a video
attachment.

'Video attachment'

Chapter 48
Customize the Chat Widget

48-45

Key Description Default Value

attachmentAudioFallback The fallback message that
is displayed in place of an
audio attachment if the
audio can not be rendered
by the client. The text
between {0} and {/0} is
set to a link for downloading
the file.

Your browser does not
support embedded audio.
However you can {0}download
it{/0}.

attachmentVideoFallback The fallback message that
is displayed in place of an
video attachment if the
video can not be rendered
by the client. The text
between {0} and {/0} is
set to a link for downloading
the file.

Your browser does not
support embedded video.
However you can {0}download
it{/0}.

audioResponseOn The tooltip that appears
when the user hovers over
the audio utterance "off"
button in header.

Turn audio response on

avatarAgent The alternative text used for
the agent icon that displays
alongside the agent
messages.

Agent icon

avatarBot The alternative text used for
the skill icon that's displayed
alongside the skill
messages.

Bot icon

avatarUser The alternative text used for
the user icon that's
displayed alongside the
user messages.

User icon

card The identifier for the card. 'Card {0}'. You can localize the
string by placing the ordinal
placeholder ({0}) before or after the
word. We will continue to support
the 'Card' string used in prior
releases that does not include the
ordinal placeholder. For this string,
the ordinal is placed after the word.
If you want to mute the utterance,
pass an empty string (card: '').

cardImagePlaceholder The placeholder text that
displays while the card
image is fetched and
loaded.

Loading image

cardImagePlaceholder The placeholder text that
displays while the card
image is fetched and
loaded.

Loading image

cardNavNext The label for the card
navigation button for
displaying the next card in a
horizontal layout.

Next card

Chapter 48
Customize the Chat Widget

48-46

Key Description Default Value

cardNavPrevious The label for the card
navigation button for
displaying the previoust
card in a horizontal layout.

Previous card

chatSubtitle Sets the subtitle of the chat
view, which is displayed
below the title on the chat
view header. If the subtitle
flag is set and either (or
both) the
showConnectionStatus
and
showTypingIndicator
flags are set to true, then
the subtitle is displayed
instead of either the
connection status or the
typing indicator.

N/A

chatTitle The title of the chat widget
that is displayed in the
header.

Ask

clear The tooltip that appears
when the user hovers over
the Clear Messages button
in the header.

Clear

close The tooltip that appears
when the user hovers over
the close widget button in
the header.

Close

closing The status text that displays
while the connection
between chat widget and
server is closing.

Closing

connected The status text that displays
while the connection
between chat widget and
server is established.

Connected

connecting The status text that displays
when the chat widget
connects to the chat server.

Connecting

connectionFailureMessage The failure message that
displays when the widget
can't connect to skill.

Sorry, the assistant is
unavailable right now. If
the issue persists, contact
your help desk.

connectionRetryLabel The label of the retry
connection button.

Try Again

defaultGreetingMessage The default client greeting
response displayed when
the skill response has not
been received within the
number of seconds set by
defaultGreetingTimeou
t..

Hey, Nice to meet you! Allow
me a moment to get back to
you.

Chapter 48
Customize the Chat Widget

48-47

Key Description Default Value

defaultSorryMessage The default client response
when the skill response has
not been received the
number of seconds set by
typingIndicatorTimeou
t.

Unfortunately, I am not able
to get you the right
content. Please try again.

defaultWaitMessage The default response that
displays at the interval when
an actual skill response has
not been received. This
interval is set, in seconds,
by
defaultWaitMessageInt
erval

I'm still working on your
request. Thank you for your
patience!

disconnected The status text that displays
when the connection
between chat widget and
server has closed.

Disconnected

download The accessibility text for the
download button that
appears on each
attachment message sent
by the skill.

Download

endConversation The tooltip that appears
when hovering over the end
conversation header button.

End Conversation

endConversationConfirmMe
ssage

The confirmation message
that displays when a user
clicks the end conversation
button.

Are you sure you want to end
the conversation?

endConversationDescripti
on

The description message
that displays along with the
confirm message in the end
conversation prompt.

This will also clear your
conversation history.

errorSpeechInvalidUrl The error message that's
displayed when the speech
server URL is not set.

ODA URL for connection is
not set. Please pass 'URI'
parameter during SDK
initialization.

errorSpeechMultipleConne
ction

The error message that's
displayed when multiple
speech connections are
attempted wihtin a short
interval.

Another voice recognition is
ongoing. Can't start a new
one.'

errorSpeechTooMuchTimeou
t

The error message that's
displayed when a user
provides voice message
that's too long to be
recognized.

Too much voice input to
recognize. Can not generate
recognized text.

errorSpeechUnsupportedLo
cale

The error message that's
displayed when a recording
is attempted and an
unsupported locale has
been configured for voice
recognition.

The set speech locale is not
supported. Cannot start
recording.

Chapter 48
Customize the Chat Widget

48-48

Key Description Default Value

imageViewerClose The accessibility text for the
button that closes the
expanded image.

Close image viewer

imageViewOpen The accessibility text for the
button that expands the
image.

Open image viewer

inputPlaceholder The placeholder text that
appears in the user input
field.

Type a message

itemIterator Item identifier in a list of
items in a Table, Form, or
Table-Form message. The
text ({0}) is replaced by the
item index.

Item {0}

linkField The replacement utterance
text for a link field in a
Table, Form, or Table-
Form message. The
placeholder ({0}) is
replaced with the
linkLabel of the field.

Click on the highlighted
text to open Link for {0}

noSpeechTimeout The status text that's
displayed when the Chat
Server is unable to
recognize the voice.

Could not detect the voice,
no message sent.

noText The label for the No
confirmation button.

No

openMap The label for the action
button that's used to open a
location map.

Open Map

previousChats The status text that displays
at the end of older
messages.

Previous conversations

ratingStar The tooltip text that's
displayed for each rating
star in a feedback message.
The placeholder `{0}` is
replaced by number of stars
that the user has selected.

Rate {0} star

recognitionTextPlacehold
er

When voice mode is
activated, this is the
placeholder text that's
displayed in the recognition
text field.

Speak your message

relTimeDay The relative timestamp that
displays every day since the
previous message was
received. {0} is replaced by
the number of days that
have passed.

{0}d ago

Chapter 48
Customize the Chat Widget

48-49

Key Description Default Value

relTimeHr The relative timestamp that
displays every hour for the
first 24 hours after the
previous message was
received. {0} is replaced by
the number of hours that
have passed.

{0}hr ago

relTimeMin The relative timestamp that
displays every minute since
the last message was
received. {0} is replaced by
the number of minutes that
have passed.

{0}min ago

relTimeMoment The relative timestamp that
displays ten seconds after
the message has been
received and before 60
seconds has elapsed since
the last message was
received.

A few seconds ago

relTimeMon The relative timestamp that
displays every month since
the previous message was
received. {0} is replaced by
the number of months that
have passed.

{0}mth ago

relTimeNow The relative timestamp that
displays for a new message.

Now

relTimeYr The relative timestamp that
displays each year after the
previous message was
received. {0} is replaced by
the number of years that
have passed.

{0}yr ago

requestLocation The text that displays while
the user location is
requested.

Requesting location

requestLocationDeniedPer
mission

The error message that's
displayed when the
permission to access
location is denied.

Location permission denied.
Please allow access to share
your location, or else type
in your location.

requestLocationDeniedTim
eout

The error message that's
displayed when the location
request is not resolved
because of a timeout.

Taking too long to get your
current location. Please try
again, or else type in your
location.

requestLocationDeniedUna
vailable

The error message
displayed when the location
request is denied because
the current location of the
client device is unavailable.

Your current location is
unavailable. Please try
again, or else type in your
location.

requestLocationString The error text that displays
when the user denies the
location request.

Cannot access your location.
Please allow access to
proceed further.

Chapter 48
Customize the Chat Widget

48-50

Key Description Default Value

retryMessage The text that displays when
the user message has not
been sent to the server.

Try again

send The tooltip appears when
the user hovers over the
send button in the footer.

Send

shareAudio The menu item text in the
share the popup for sharing
an audio file

Share Audio

shareFailureMessage The error message that's
displayed when the share
action button in a message
is clicked, but the share API
is unavailable in the client
device, or the share request
has been rejected.

Sorry, sharing is not
available on this device.

shareFile The menu item text in the
share popup for sharing a
generic file

Share File

shareLocation The menu item text for
sharing a location in the
popup

Share Location

shareVisual The menu item text in the
share popup for sharing an
image or video file

Share Image/Video

skillMessage A skill message indicator for
screen readers. It's spoken
by the screen readers
before the skill responses.

Skill says

speak The tooltip that appears
when the user hovers over
the speak button in the
footer.

Speak

typingIndicator The accessibility text for the
typing indicator. It is spoken
by the screen readers.

Waiting for response

upload The tooltip that appears
when the user hovers over
the upload button in the
footer.

Share popup

uploadFailed The error text that displays
when an upload fails.

Upload Failed.

uploadFileSizeLimitExcee
ded

The error text that displays
when the size of the upload
file exceeds the limit.

Upload Failed. File size
should not be more than
25MB.

uploadFileSizeZeroByte The error text that displays
when upload file size is 0
bytes.

Upload Failed. Files of size
zero bytes cannot be
uploaded.

uploadUnsupportedFileTyp
e

The error text that displays
when an upload is
attempted for an
unsupported file type.

Upload Failed. Unsupported
file type.

Chapter 48
Customize the Chat Widget

48-51

Key Description Default Value

userMessage A user message indicator
for screen readers. It's
spoken by the screen
readers before the user
messages.

I say

utteranceGeneric The fallback description for
the response message
that's used in utterance.

Message from skill.

webViewAccessibilityTitl
e

The default accessibility title
for webview that's read
aloud by screen readers.

In-widget WebView to display
links

webViewClose The default label/
tooltip title for webview
close button.

Done

webViewErrorInfoDismiss The tooltip for the dismiss
button that's used to close
the fallback link inside the
webview.

'Dismiss'

webViewErrorInfoText The informational text
displayed in the webview
when the clicked link can't
be opened within it. The text
between {0} and {/0} is
set to the original link that
opens in a new tab or
window.

Sorry, we can't open this
page in the chat window.
Click {0}here{/0} to open it
in your browser.

yesText The label for the Yes
confirmation button.

Yes

editFieldErrorMessage The field-level error
message that is displayed
when the value entered by
the user is invalid for that
field. The SDK defaults to
this message when the skill
does not provide a client
error message.

Field Input is invalid

editFormErrorMessage The form-level error
message that is displayed
below the form's submit
action for client-side
validation. This message
display when at least one of
the fields is not valid and
there is more than one field.
The SDK defaults to this
message when the skill
does not provide an error
message in the message
payload.

Some of the fields need your
attention.

noResultText The status text that's
displayed when there are no
matches from a user search
in multi-select list view.

No more results

Chapter 48
Customize the Chat Widget

48-52

Configure Share Menu Options
By default, the share menu displays options for the following file types:

• visual media files (images and videos)

• audio files

• general files like documents, PDFs, and spreadsheets

• location

The shareMenuItems setting allows you to restrict the items that display in the share menu.
The setting accepts a string array with keys that are mapped to the share menu items:
'visual' for the Share Image/Video item, 'audio' for the Share Audio item, 'file' for the
Share File item, and 'location' for the Share Location item. You can use these keys,
which are not case-sensitive, to specify which items are available in the menu (['visual',
'location'], for example). All of the menu items are available when the array is empty, or
when an invalid value is passed.

Chapter 48
Customize the Chat Widget

48-53

Note:

You can disable the attachment functionality by setting enableAttachment to
false.

Using attachment functionality often requires updating the network security policy of
the host site. The attachments, which are uploaded to Oracle Digitial Assistant object
storage using HTTP calls, may get blocked by the site's CORS policies. With the site
blocking the uploads, an error can display in the browser console indicating that the
client has blocked the request because of a CORS policy. To fix such issues, the
network security policy of the host site should be updated to allow the Oracle Digital
Assistant domain. This allows the upload requests to go through. Since the CORS
policy does not apply to WebSockets, the conversations between the SDK and the
skills are not impacted by such restrictions.

Chapter 48
Customize the Chat Widget

48-54

Note:

Do not enable this setting if the skill connects to an ODA instance that's Version
20.08 or runs on any version prior to 20.08. This property only applies to client auth-
enabled connections to Versions 20.12 and higher of the ODA platform.

Custom Share Menu Items
You can customize the share menu item to display specific file types. To create this
customized menu, pass each menu item as an object of the shareMenuItems array:

{
type: string, // Space separated list of file formats, pass '*' to
allow all supported file types

label: string, // OPTIONAL, label for the share menu item, should
preferably be configured through i18n strings

icon?: string, // OPTIONAL, Icon image source path or SVG source
string, the file icon is displayed as fallback

maxSize?: number // OPTIONAL, Maximum file size allowed for upload in
KiloBytes, the maximum and fallback value is 25 MB (25600 KB)
}

The menu item can be passed with or without the string category.

Tip:

To support labels in multiple languages, we recommend using i18n instead of the
label tag.

The following code snippet illustrates how to pass the shareMenuItems array in the settings
variable. You set the labels by passing them with share_ keys, which are illustrated in this
snippet as well. You can set the label for a wild card (*) using the share_all i18n key.

var settings = {
shareMenuItems: [{
 type: 'pdf',
 label: 'Upload PDF',
}, {
 type: 'pdf'
}, {
 type: 'jpg png jpeg',
 icon: 'https://image-source-site/imageicon'
}, {
 type: 'doc docx xls',
 maxSize: 4096
}],
i18n: {

Chapter 48
Customize the Chat Widget

48-55

 en: {
 share_pdf: 'Upload PDF',
 share_jpg_png_jpeg: 'Upload Image',
 share_doc_docx_xls: 'Upload document'
 }
}
}

Customize CSS Classes
You can override the widget's CSS classes with custom style rules to further customize
the look and feel.

Class Component

oda-chat-button The collapsed chat component button

oda-chat-button-clear The clear messages button

oda-chat-button-close The close widget button

oda-chat-button-narration The skill's audio response toggle button

oda-chat-button-send The send message button

oda-chat-button-upload The upload file button

oda-chat-card The card message

oda-chat-closing Applied as a sibling to oda-chat-
connection-status when the widget is
disconnecting from server

oda-chat-connected Applied as a sibling to oda-chat-
connection-status when the widget is
connected to server

oda-chat-connecting Applied as a sibling to oda-chat-
connection-status when the widget is
connecting to server

oda-chat-connection-status The connection status. Each connection value
has its own class as well, such as oda-chat-
connected, oda-chat-disconnected, or
oda-chat-connecting.

oda-chat-conversation The container for the conversation

oda-chat-disconnected Applied as a sibling to oda-chat-
connection-status when the widget is
disconnected from server

oda-chat-footer The chat widget footer

oda-chat-footer-button The common class for all footer buttons

oda-chat-header The chat widget header

oda-chat-header-button The common class for all header buttons

oda-chat-icon-wrapper The wrapper for the skill or for a person that's
displayed alongside the message.

oda-chat-left The wrapper for the skill message

oda-chat-logo The logo on the widget header

oda-chat-message The common wrapper class for all chat
messages

Chapter 48
Customize the Chat Widget

48-56

Class Component

oda-chat-message-action-location The location request action button

oda-chat-message-action-postback The postback action button

oda-chat-message-actions The action buttons wrapper

oda-chat-message-bubble The message bubble

oda-chat-message-global-actions The global action buttons wrapper

oda-chat-message-icon The image for the skill or for a person that's
displayed alongside the message.

oda-chat-notification-badge The notification badge for messages that
haven't been viewed.

oda-chat-rating-star The rating star button in a feedback message

oda-chat-rating-star-icon The SVG icon for the rating star button

oda-chat-right The wrapper for the user message

oda-chat-title The title on the widget header

oda-chat-user-input The user input text area

oda-chat-widget The expanded chat component, which wraps
the widget header, conversation, and footer.

oda-chat-wrapper The wrapper for entire chat component

Customize the Timestamp
By default, the timestamp that displays in the header when enableTimestampdates is set to
true displays the format as the locale's day of the week, month, date, year, and time (am and
pm). For example, Thursday, August 13, 2020, 9:52:22 AM. You can configure this timestamp
by passing formatting options in the timestampFormat setting. You can format the timestamp
by either passing a pattern string of formatting tokens, or by passing an object containing
Intl.DateTimeFormat options.

Format the Date-Time with Pattern Strings
The pattern strings used for formatting the timestamp are made up of format tokens. For
example, passing timestampFormat: 'hh:mm:ss a' sets the timestamp as 09:30:14 pm.

Note:

These tokens are case-sensitive, so for example, passing yyyy instead of YYYY
would prevent the year from displaying.

Component Token Output

Day of the month • D
• Do
• DD

• 1 2 ... 30 31
• 1st 2nd ... 30th 31st
• 01 02 ... 30 31

Chapter 48
Customize the Chat Widget

48-57

Component Token Output

Day of the week • d
• dd
• dddd

• 0 1 ... 5 6
• Sun Mon ... Fri Sat
• Sunday Monday ... Friday

Saturday

Month • M
• MM
• MMM
• MMMM

• 1 2 ... 11 12
• 01 02 ... 11 12
• Jan Feb ... Nov Dec
• January February ...

November December

Year • YY
• YYYY

• 70 71 ... 29 30
• 1970 1971 ... 2029 2030

Hour • H
• HH
• h
• hh

• 0 1 ... 22 23
• 00 01 ... 22 23
• 1 2 ... 11 12
• 01 02 ... 11 12

Minute • m
• mm

• 0 1 ... 58 59
• 00 01 ... 58 59

Second • s
• ss

• 0 1 ... 58 59
• 00 01 ... 58 59

Fractional Second • S
• SS
• SSS

• 0 1 ... 8 9
• 0 1 ... 98 99
• 0 1 ... 998 999

AM/PM • A
• a

• AM PM
• am pm

Timezone • Z
• ZZ

• -07:00 -06:00 ... +06:00
+07:00

• -0700 -0600 ... +0600
+0700li

Format the Timestamp with Intl.DateTimeFormat Objects
The timestamp can also be formatted using the options defined for
Intl.DateTimeFormat object. The properties that are passed with the object include:

Property Values

dateStyle 'full' | 'long' | 'medium' | 'short'
timeStyle 'full' | 'long' | 'medium' | 'short'
weekday • 'long' (for example, Thursday)

• 'short' (for example, Thu)

• 'narrow' (for example, T)

day • 'numeric'
• '2-digit'

Chapter 48
Customize the Chat Widget

48-58

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/DateTimeFormat#Syntax

Property Values

month • 'numeric' (for example, 2)

• '2-digit' (for example, 02)

• 'long' (for example, March)

• 'short' (for example, Mar)

• 'narrow' (for example, M)

year • 'numeric'
• '2-digit'

era • 'long' (for example, Anno Domini)

• 'short' (for example, AD)

• 'narrow' (for example, A)

hour • 'numeric'
• '2-digit'

minute • 'numeric'
• '2-digit'

second • 'numeric'
• '2-digit'

timeZoneName • 'long' (for example, British Summer
Time)

• 'short' (for example, GMT+1)

timeZone The time zone. All implementations must
recognize UTC. The default value is the
runtime's default time zone. Implementations
may also recognize the time zone names of
the IANA time zone database, such as Asia/
Shanghai, Asia/Kolkata, America/
New_York.

hour12 Whether to use 12-hour time (as opposed to
24-hour time). Values are true and false.

Customize the Feedback Message Rating Gauge
The feedback component message enables you to collect user feedback. If you're using the
21.10 SDK, the default presentation of the feedback component is a star rating system, a
horizontal row of stars that are highlighted as users hover over and select them. You can
change the behavior of the component using the User Feedback component, but you can
customize the components' appearance using the SDK settings.

You can change the icon for the component's rating selection buttons by passing the icon of
your choice by defining the rating icon in the icons field.

Tip:

For the best user experience, use a solid SVG string without a fill color, as it allows
for a recognizable highlighting on hover.

new WebSDK({
 URI: '<Server URI>',

Chapter 48
Customize the Chat Widget

48-59

 //...,
 icons: {
 rating: '<svg height="24" width="24" xmlns="http://www.w3.org/
2000/svg"><path d="M15.994 3.006a5.7 5.7 0 00-3.795 1.707L12
4.916l-.199-.202a5.676 5.676 0 00-8.128 0c-2.231 2.275-2.231 5.953 0
8.228L12 21.428l8.326-8.486A5.873 5.873 0 0022 8.828a5.873 5.873 0
00-1.675-4.115A5.693 5.693 0 0016.262 3z"/></svg>' // A heart icon
 }
})

The color of the icon in the two states, unselected and hovered/selected, can be
configured with the ratingStar and ratingStarFill color fields in colors setting
respectively.

new WebSDK({
 URI: '<Server URI>',
 //...,
 icons: {
 rating: '<svg height="24" width="24" xmlns="http://www.w3.org/
2000/svg"><path d="M15.994 3.006a5.7 5.7 0 00-3.795 1.707L12
4.916l-.199-.202a5.676 5.676 0 00-8.128 0c-2.231 2.275-2.231 5.953 0
8.228L12 21.428l8.326-8.486A5.873 5.873 0 0022 8.828a5.873 5.873 0
00-1.675-4.115A5.693 5.693 0 0016.262 3z"/></svg>' // A heart icon
 },
 colors: {
 ratingStar: '#ffebee',
 ratingStarFill: '#d32f2f'
 }
})

Tip:

You can customize the prompts output by the User Feedback component by
the editing the Feedback-related resource bundles accessed through the
Resource Bundle Configuration page or by editing the
systemComponent_Feedback_ keys in an exported resource bundle CSV file.

Send the Initial Message when the Conversation History is Empty
The initUserHiddenMessage messages are sent regardless of the user's conversation
history; they are sent the first time the chat widget is opened for every session. To
send the initial message when the conversation history is empty, you need to bind an
event listener to the Bots.on() method. For example:

Bots = new WebSDK(chatWidgetSettings);

var isHandled = false;
var message = ;

Bots.on(WebSDK.EVENT.WIDGET_OPENED, function() {
 if (!isHandled && Bots.isConnected() && !

Chapter 48
Customize the Chat Widget

48-60

Bots.getConversationHistory().messagesCount) {
 Bots.sendMessage(message, { hidden: true });
 isHandled = true;
 }
});

Bots.on(WebSDK.EVENT.NETWORK, function(state) {
 if (!isHandled && Bots.isConnected() && Bots.isChatOpened() && !
Bots.getConversationHistory().messagesCount) {
 Bots.sendMessage(message, { hidden: true });
 isHandled = true;
 }
});

Bots.connect();

Speech Synthesis Service Injection
By utilizing the device's native text-to-speech service, the SDK's text-to-speech (TTS)
synthesis uses the device's service allows the skill's responses to be uttered as soon as
they're received by the Web SDK instance. This is the out-of-the box approach, and while it's
reliable, it does have a few drawbacks:

• You're often limited to unnatural, generic-sounding voices that can undermine your
branding.

• A user's device may not support gender-specific voices.

• Some native frameworks (Cordova and ReactNative among them) require third-party
libraries for TTS services because their webviews do not expose the native speech
synthesis APIs that are required by the Web SDK.

To address these challenges, you can set the voice used for the skill's responses by injecting
a TTS service into the SDK instance by initiating the SDK with the ttService feature flag or
by calling the setTTSService method (described in the documentation that accompanies the
SDK). You can use an Oracle-provided service, such as Oracle Cloud Infrastructure (OCI)
Speech service, or one provided by a third party.

Text-to-Speech
• Feature flag: enableBotAudioResponse: true (The default is false.)

• Default TTS service: WebSDK.TTS.oracle
• Feature configuration: ttsVoice
You can enrich the conversational experience by enabling text-to-speech (TTS) to speak the
responses as they reach the SDK. The SDK provides two types of TTS service out of the
box: WebSDK.TTS.platform and WebSDK.TTS.oracle. By default, the SDK uses the Oracle
Cloud Infrastructure (OCI) Speech service for responses spoken in a more naturalistic tone.
This service provide an easily branded experience because it offers several voices. However,
you can instead use the platform-dependent TTS service, WebSDK.TTS.platform, that's
based on the Web Speech API. It uses the speech synthesis APIs on the user's device to
speak the responses.

You use the ttsVoice array to configure the voice for the TTS. Each item in the array must be
an object that has at least a lang field or a name field. The SDK looks up the availability of

Chapter 48
Customize the Chat Widget

48-61

http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
https://www.oracle.com/artificial-intelligence/speech/
https://www.oracle.com/artificial-intelligence/speech/

each voice in the order that they are passed in the setting. The first complete match is
set as the voice. If no exact match is found, then the SDK uses the first match based
on the lang value alone. If there's still no match, then the SDK uses the default voice.

var settings = {
 ...,
 enableBotAudioResponse: true,
 ttsVoice: [{
 lang: 'en-US',
 name: 'Samantha'
 }, {
 lang: 'en-US',
 name: 'Alex'
 }, {
 lang: 'en-UK'
 }]
}

To tailor the way the utterances are spoken, the ttsVoice array allows passing
optional pitch, rate, and volume properties in each item. These properties correspond
to the same fields in the SpeechSynthesisUtterance interface.

• The pitch property can have a value between 0 and 2.

• The rate property can have a value between 0.1 and 10.

• The volume property can have a value between 0 and 1.

For example:

var settings = {
 //,
 ttsVoice: [{
 lang: 'en-us',
 name: 'Alex',
 pitch: 1.5,
 rate: 2,
 volume: 0.8
 }, {
 lang: 'en-us',
 name: 'Victoria',
 pitch: 1.2,
 rate: 1.7,
 }, {
 lang: 'en',
 name: 'Fiona',
 pitch: 2,
 }, {
 lang: 'en'
 }]
}

Chapter 48
Customize the Chat Widget

48-62

https://developer.mozilla.org/en-US/docs/Web/API/SpeechSynthesisUtterance

Speech Synthesis Service Interface
You need to implement the SpeechSynthesisService interface for the TTS service instance
that you're going to inject.

/**
 * Interface for the speech synthesis service; this can be used to define a
service that can be
 * injected into the SDK to perform speech synthesis on behalf of the skill
or assistant
 */
interface SpeechSynthesisService {
 /**
 * Adds a phrase to the utterance queue to be spoken
 * @param phrase string
 */
 speak(phrase: string): void;

 /**
 * Cancels any ongoing speech synthesis utterance
 */
 cancel(): void;

 /**
 * Returns a Promise that resolves into a list of
SpeechSynthesisServiceVoice objects representing
 * the available voices
 *
 * @return {*} {Promise<SpeechSynthesisServiceVoice[]>}
 */
 getVoices(): Promise<SpeechSynthesisServiceVoice[]>;

 /**
 * Sets the voice to be used for speaking the utterances. It accepts an
array of candidate voices
 * sorted in their preference order, and sets one of them according to
its matching criteria.
 * It returns a Promise that gets resolved when the voice is set.
 *
 * @param {SpeechSynthesisServiceVoice[]} voice
 * @return {*} {Promise<void>}
 */
 setVoice(voices: SpeechSynthesisServiceVoice[]): Promise<void>;

 /**
 * Returns the voice that is used for speaking the utterances
 */
 getVoice(): SpeechSynthesisServiceVoice;
}

Chapter 48
Customize the Chat Widget

48-63

You must implement or extend the SpeechSynthesisServiceVoice interface for the
voices used in the speech synthesis service:

/**
 * Represents a voice that the SpeechSynthesisService supports. Every
SpeechSynthesisServiceVoice has
 * its own relative speech service including information about
language, name and optionally more.
 */
interface SpeechSynthesisServiceVoice {
 /**
 * Returns a BCP 47 language tag indicating the language of the
voice
 */
 readonly lang: string;

 /**
 * Returns a human-readable name that represents the voice
 */
 readonly name: string;

 /**
 * Pitch of the voice, can range between 0 and 2, default is 1
 * Optional
 */
 pitch?: number;

 /**
 * Speed at which the utterance is spoken at, can range between
0.1 and 10, default is 1
 * Optional
 */
 rate?: number;

 /**
 * Volume at which the utterance is spoken at, can range between 0
and 1, default is 1
 * Optional
 */
 volume?: number;
}

Once your TTS service is mapped to an object that implements the Speech Synthesis
API, it can be passed to the SDK for injection of the TTS service. The service can be
injected when this object is passed to the ttsService field during initialization, or it can
be injected dynamically by passing the object to the setTTSService(service) method.

After the TTS service has been injected, the SDK handles the calls to the service
methods for uttering the messages. However, you can call these methods directly, or
you can use the TTS methods exposed by the SDK for any requirement. In headless
mode, for example, you can call the Bots.speakTTS(message) method to pass a
message as it is received from the skill. The SDK handles both the parsing of the
utterable text from the message and the passing of this text to the TTS service so that
it can be uttered.

Chapter 48
Customize the Chat Widget

48-64

Features
Here are the features that you can configure in the Oracle Web SDK.

Absolute and Relative Timestamps
• Feature flag: timestampFormat: 'none'

Note:

enableTimestamp: true (default: true) has been deprecated.

• Feature configuration: timestampFormat
You can enable absolute or relative timestamps for chat messages. Absolute timestamps
display the exact time for each message. Relative timestamps display only on the latest
message and express the time in terms of the seconds, days, hours, months, or years ago
relative to the previous message.

The precision afforded by absolute timestamps make them ideal for archival tasks, but within
the limited context of a chat session, this precision detracts from the user experience
because users must compare timestamps to find out the passage of time between messages.
Relative timestamps allow users to track the conversation easily through terms like Just Now
and A few moments ago that can be immediately understood. Relative timestamps improve
the user experience in another way while also simplifying your development tasks: because
relative timestamps mark the messages in terms of seconds, days, hours, months, or years
ago, you don't need to convert them for timezones.

Chapter 48
Features

48-65

How Relative Timestamps Behave
As previously mentioned, a relative timestamp appears only on the latest message.
Here's that behavior in a little more detail. When you configure the timestamp
(timestampMode: 'relative' or timestampMode: 'default'), an absolute timestamp
displays before the first message of the day as a header. This header displays when
the conversation has not been cleared and older messages are still available in the
history.

A relative timestamp then displays on each new message.

Chapter 48
Features

48-66

This timestamp is updated at following regular intervals (seconds, minutes, etc.) until a new
message is received.

• For first 10s

• Between 10s-60s

• Every minute between 1m-60m

• Every hour between 1hr-24hr

• Every day between 1d-30d

• Every month between 1m-12m

• Every year after first year

When a new message is loaded into the chat, the relative timestamp on the previous
message is removed and a new timestamp appears on the new message displaying the time
relative to the previous message. At that point, the relative timestamp updates until the next
messages arrives.

Add a Relative Timestamp
To add a relative timestamp:

Chapter 48
Features

48-67

• Enable timestamps – enableTimestamp: true

Note:

This feature flag has been deprecated in Release 22.02 in favor of
timestampFormat: 'none'.

• Enable relative timestamps – timestampMode: 'relative'
• Optional steps:

– Set the color for the relative timestamp – timestamp: '<a hexadecimal color
value>'

– For multi-lingual skills, localize the timestamp text using these keys:

Key Default Text Description

relTimeNow Now The initial timestamp, which
displays for the first 9
seconds. This timestamp
also displays when the
conversation is reset.

relTimeMoment a few moments ago Displays for 10 to 60
seconds.

relTimeMin {0}min ago Updates every minute

relTimeHr {0}hr ago Updates every hour

relTimeDay {0}d ago Updates every day for the
first month.

relTimeMon {0}mth ago Updates every month for
the first twelve months.

relTimeYr {0}yr ago Updates every year.

– Use the timeStampFormat settings to change the format of the absolute
timestamp that displays before the first message of each day.

Autocomplete
• Feature flag: enableAutocomplete: true (default: false)

• Enable client side caching: enableAutocompleteClientCache
Autocomplete minimizes user error by providing effective phrases that can be used as
both direct input and as suggestions. To enable this feature, update the widget settings
with enableAutocomplete: true and add a set of optimized user messages to the
Create Intent page. Once enabled, a popup displays these messages after users enter
three or more characters. The words in the suggested messages that match the user
input are set off in bold. From there, users can enter their own input, or opt for one of
the autocomplete messages instead.

Note:

This feature is only available over WebSocket.

Chapter 48
Features

48-68

When a digital assistant is associated with the Oracle Web channel, all of the sample
utterances configured for any of the skills registered to that digital assistant can be used as
autocomplete suggestions.

Auto-Submitting a Field
When a field has the autoSubmit property set to true, the client sends a
FormSubmissionMessagePayload with the submittedField map containing either the valid
field values that have been entered so far. Any fields that are not set yet (regardless of
whether they are required), or fields that violate a client-side validation are not included in the
submittedField map. If the auto-submitted field itself contains a value that's not valid, then
the submission message is not sent and the client error message displays for that particular
field. When an auto-submit succeeds, the partialSubmitField in the form submission
message will be set to the id of the autoSubmit field.

Replacing a Previous Input Form
When the end user submits the form, either because a field has autosubmit set to true, the
skill can send a new EditFormMessagePayload. That message should replace the previous
input form message. By setting the replaceMessage channel extension property to true, you
enable the SDK to replace previous input form message with the current input form message.

Automatic RTL Layout
When the host page's base direction is set with <html dir="rtl"> to accomodate right-to-left
(RTL) languages, the chat widget automatically renders on the left side. Because the widget
is left-aligned for RTL langauges, its icons and text elements are likewise repositioned. The
icons are in the opposite positions from where they would be in a left-to-right (LTR) rendering.
For example, the send, mic and attachment icons are flipped so that the mic and send icons
occupy the left side of the input field (with the directional send icon pointing left) while the
attachment icon is on the right side of the input field. The alignment of the text elements, such
as inputPlaceholder and chatTitle, is based on whether the text language is LTR or RTL.
For RTL languages, the inputPlaceHolder text and chatTitle appear on the right side of the
input field.

Chapter 48
Features

48-69

Avatars
By default, none of the messages in the chat are accompanied with avatars. Using the
following parameters, however, you can configure avatars for the skill, the user, and an
agent avatar when the skill is integrated with live agent support.

• avatarBot - The URL of the image source, or the source string of the SVG image
that's displayed alongside the skill messages.

• avatarUser - The URL of the image source, or the source string of the SVG image
that's displayed alongside the user messages. Additionally, if the skill has a live
agent integration, the SDK can be configured to show a different icon for agent
messages.

• avatarAgent - The URL of the image source, or the source string of the SVG
image that's isplayed alongside the agent messages. If this value is not provided,
but avatarBot is set, then the avatarBot icon is used instead.

Note:

These settings can only be passed in the initialization settings. They cannot
be modified dynamically.

new WebSDK({
URI: '<URI>',
//...,
icons: {
 avatarBot: '../assets/images/avatar-bot.png',
 avatarUser: '../assets/images/avatar-user.jpg',
 avatarAgent: '<svg xmlns="http://www.w3.org/2000/svg" height="24"
width="24"><path d="M12 6c1.1 0 2 .9 2 2s-.9 2-2 2-2-.9-2-2 .9-2 2-2m0
9c2.7 0 5.8 1.29 6 2v1H6v-.99c.2-.72 3.3-2.01 6-2.01m0-11C9.79 4 8
5.79 8 8s1.79 4 4 4 4-1.79 4-4-1.79-4-4-4zm0 9c-2.67 0-8 1.34-8
4v3h16v-3c0-2.66-5.33-4-8-4z"/></svg>'
}
})

Cross-Tab Conversation Synchronization
Feature flag: enableTabsSync: true (default: true)

Users may need to open the website in multiple tabs for various reasons. With
enableTabsSync: true, you can synchronize and continue the user's conversation
from any tab, as long as the connections parameters (URI, channelId, and userId) are
the same across all tabs. This feature ensures that users can view messages from the
skill on any tab and respond from the same tab or any other one. Additionally, if the
user clears the conversation history in one tab, then it's deleted from the other tabs as
well. If the user updates the chat language on one tab, then the chat language gets
synchronized to the other tabs.

There are some limitations:

Chapter 48
Features

48-70

• A new tab synchronizes with existing tab(s) for the new messages between the user and
the skill on opening. If you have not configured the SDK to display messages from the
conversation history, the initial chat widget on the new tab will appear empty when
opened.

• If you have configured the SDK to display conversation history, the messages from the
current chat on existing tabs will appear as part of conversation history on a new tab.
Setting disablePastActions to all or postback, may prevent interaction with the actions
for messages in the new tab.

• The Safari browser currently does not support this feature.

Custom Message Rendering
Feature flag: delegate.render: (message) => boolean (default: undefined)
Use this feature to override the default message rendering with your own custom message
template. To use this feature, you need to implement the render delegate function which
takes the message model as the input and returns a boolean flag as the output. It must return
true to replace the default rendering with your custom rendering for a particular message
type. If false is returned, the default message is rendered instead.

Note:

For custom rendering, all of the action click handling, and the disabling or enabling
of action must be handled explicitly.

You can use any external framework component for your message rendering. Refer to the
integration samples included in the SDK's samples directory to check how you can use this
feature with such frameworks like React, Angular, and Oracle JavaScript Extension Toolkit
(JET).

Default Client Responses
Feature flag: enableDefaultClientResponse: true (default: false)

Use this flag to provide default client-side responses along with a typing indicator when the
skill response has been delayed, or when there's no skill response at all. If the user sends out
the first message/query, but the skill does not respond within the number of seconds set by
the defaultGreetingTimeout flag, the skill can display a greeting message that's configured
using the defaultGreetingMessage translation string. Next, the client checks again for the
skill response. The client displays the skill response if it has been received, but if it hasn't,
then the client displays a wait message (configured with the defaultWaitMessage translation
string) at intervals set by defaultWaitMessageInterval. When the wait for the skill response
exceeds the threshold set by the typingIndicatorTimeout flag, the client displays a sorry
response to the user and stops the typing indicator. You can configure the sorry response
using the defaultSorryMessage translation string.

Delegation
Feature configuration: delegate

Chapter 48
Features

48-71

The delegation feature sets a delegate to receive callbacks before certain events in
the conversation. To set a delegate, pass the delegate parameter, or use the
setDelegate method. The delegate object may optionally contain the beforeDisplay,
beforeSend, beforePostbackSend, beforeEndConversation and render delegate
functions.

var delegate = {
 beforeDisplay: function(message) {
 return message;
 },
 beforeSend: function(message) {
 return message;
 },
 beforePostbackSend: function(postback) {
 return postback;
 },
 beforeEndConversation: function(message) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(message);
 }, 2000);
 });
 },
 render: function(message) {
 if (message.messagePayload.type === 'card') {
 // Perform custom rendering for card using msgId
 return true;
 }
 return false;
 }
}

beforeDisplay
The beforeDisplay delegate allows a skill's message to be modified before it is
displayed in the conversation. The message returned by the delegate displays instead
of the original message. The returned message is not displayed if the delegate returns
a falsy value like null, undefined, or false. If the delegate errors out, then the original
message will be displayed instead of the message returned by the delegate. Use the
beforeDisplay delegate to selectively apply the in-widget WebView linking behavior.

beforeSend
The beforeSend delegate allows a user message to be modified before it is sent to the
chat server as part of sendMessage. The message returned by the delegate is sent to
the skill instead of the original message. The message returned by the delegate is not
set if the delegate returns a falsy value like null, undefined, or false, then the
message is not sent. If it errors out, the original message will be sent instead of the
message returned by the delegate.

Chapter 48
Features

48-72

beforePostbackSend
The beforePostbackSend delegate is similar to beforeSend, just applied to postback
messages from the user. The postback returned by the delegate is sent to the skill. If it
returns a falsy value, like null, undefined, or false, then no message is sent.

beforeEndConversation
The beforeEndConversation delegate allows an interception at the end of a conversation
flow if some pre-exit activity must be performed. The function receives the exit message as
its input parameter and it must return a Promise. If this Promise resolves with the exit
message, then the CloseSession exit message is sent to the chat server. Otherwise, the exit
message is prevented from being sent.

...

 beforeEndConversation: function(message) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve(message);
 }, 2000);
 });
 }

render
The render delegate allows you to override the default message rendering. If the render
delegate function returns true for a particular message type, then the WebSDK creates a
placeholder slot instead of the default message rendering. To identify the placeholder, add
the msgId of the message as the id of the element. In the render delegate function, you can
use this identifier to get the reference for the placeholder and render your custom message
template. See Custom Message Rendering.

Draggable Launch Button
Feature flag: enableDraggableButton: true (default: false)

Sometimes, particularly on mobile devices where the screen size is limited, the chat widget's
launch button can block content in a web page. By setting enableDraggableButton: true,
you can enable users to drag the launch button out of the way when it's blocking the view.
This flag only affects the location of the launch button, not the chat widget: the widget will still
open from its original location.

Dynamic Typing Indicator

Feature flag: showTypingIndicator: 'true'
A typing indicator tells users to hold off on sending a message because the skill is preparing
a response. By default, skills display the typing indicator only for their first response when you
initialize the SDK with showTypingIndicator: 'true'. For an optimal user experience, the
skill should have a dynamic typing indicator, which is a typing indicator that displays after

Chapter 48
Features

48-73

each skill response. Besides making users aware the skill has not timed out but is still
actively working on a response, displaying the typing indicator after each skill
response ensures that users won’t attempt to send messages prematurely, as might
be the case when the keepTurn property directs the skill to reply with a series of
separate messages that don’t allow user to interject a response.

To enable a typing indicator after each skill response:

• Initialize the SDK with showTypingIndicator set to true.

• Call the showTypingIndicator API

The showTypingIndicator can only enable the display of the dynamic typing indicator
when:

• The widget is connected to the Oracle Chat Server. The dynamic typing indicator
will not appear when the connection is closed.

• The SDK has been initialized with showTypingIndicator set to true.

Note:

This API cannot work when the SDK is used in headless mode.

The typing indicator displays for the duration set by the optional property,
typingIndicatorTimeout, that has default setting of 20 seconds. If the API is called
while a typing indicator is already displaying, then the timer is reset and the indicator is
hidden.

The typing indicator disappears as soon as the user receives the skill’s messages. The
typing indicator moves to the bottom of the chat window if a user enters a message, or
uploads an attachment, or sends a location, while it’s displaying.

Control Embedded Link Behavior

• Custom handling: linkHandler: { onclick: <function>, target:
'<string>' }

• In the In-widget webview : linkHandler: { target: 'oda-chat-webview' }
• In a new window: openLinksInNewWindow: 'true'
In addition to opening links within a new window by setting openLinksInNewWindow:
true, or the default behavior of opening links in a new tab when this option is set to
false, you can also open links which overlay the widget’s web page. To enable this
and other overrides to the linking behavior, initialize the SDK with

linkHandler: {
 target: '_blank', // open link in a new page
 onclick: (event) => { // some operation }
}

Use linkHander to:

Chapter 48
Features

48-74

• Control iframe navigation so that it can continue to overlay the page without having to
include the widget in every page, reopening it upon navigation, and maintaining the same
user ID.

• Open some links in a new window, while opening others in the same tab.

• Performing an action when a link is clicked.

• Preventing a link from opening.

• Opening a link in a webview.

To override the linking behavior set by the openLinksInNewWindow setting, you must define
one, or both, of these attributes:

• target – Names the browsing location context, such as tab, a window, or an iFrame.
Define the iFrame location as the target attribute of an anchor element (<a>). You can
define the target’s _self, _blank, _parent and _top attributes.

• onclick - Accepts a callback function that is called when the link is clicked. The callback
is passed the MouseEvent that's received on the click, and can be used to perform an
action, or even prevent the link from opening.

Embedded Mode
• Feature flag: embedded: true (default: false)

• Pass the ID of target container element: targetElement
In addition to the other settings that customize the look and feel of the widget that runs the
chat, you can embed the widget itself in the Web page by:

• Adding embedded: true.

• Defining the targetElement property with the ID of the DOM element (an HTML
component) that's used as the widget's container (such as 'container-div' in the
following snippet).

<head>
 <meta charset="utf-8">
 <title>Oracle Web SDK Sample</title>
 <script src="scripts/settings.js"></script>
 <script>
 var chatWidgetSettings = {
 URI: YOUR_URI,
 channelId: YOUR_CHANNELID,
 embedded: true,

Chapter 48
Features

48-75

https://www.w3schools.com/tags/att_a_target.asp

 targetElement: 'container-div'
...

 </script>
</head>
<body>
 <h3 align="center">The Widget Is Embedded Here!</h3>
</body>
 <div id="container-div"
 style="height: 600px; width: 380px; padding: 0; text-
align: initial">
 </div>

Note:

The widget occupies the full width and height of the container. If it can't be
accommodated by the container, then the widget won't display in the page.

End the Conversation Session
Feature flag: enableEndConversation: true (default: true)

Starting with Version 21.12, the SDK adds a close button to the chat widget header by
default (enableEndConversation: true) that enables users to end the current session.

After users click this button, the SDK presents them with a confirmation prompt whose
text ("Are you sure you want to end the conversation? This will also clear your
conversation history.") you can customize with the endConversationConfirmMessage
and endConversationDescription keys. When a user dismisses the prompt by
clicking Yes, the SDK sends the skill an event message that marks the current
conversation session as ended. The instance then disconnects from the skill,
collapses the chat widget, and erases the current user's conversation history. It also
raises a chatend event that you can register for:

Bots.on('chatend', function() {
 console.log('The conversation is ended.');
});

Opening the chat widget afterward starts a new conversation session.

Chapter 48
Features

48-76

Note:

You can also end a session by calling the Bots.endChat() method (described in the
reference that accompanies the Oracle Web SDK that's available from the
Downloads page). Calling this method may be useful when the SDK is initialized in
headless mode.

Focus on the First Action in a Message
Feature flag: focusOnNewMessage: 'action' (default: 'input')

For users who prefer keyboard-based navigation (which includes power users), you can shift
the focus from the user input field to the first (or left most), action button in a message. By
default, the chat widget sets the focus back to the user input field with each new message
(focusOnNewMessage: 'input'). This works well for dialog flows that expect a lot of textual
input from the user, but when the dialog flow contains a number of messages with actions,
users can only select these actions through mousing or reverse tab navigation. For this use
case, you can change the focus to the first action button in the skill message as it's received
by setting focusOnNewMessage: 'action'. If the message does not contain any actions, the
focus is set to the user input field.

Keyboard Shortcuts and Hotkeys
By defining the hotkeys object, you can create Alt Key combination shortcuts that activate, or
shift focus to, UI elements in the chat widget. Users can execute these shortcuts in place of
using the mouse or touch gestures. For example, users can enter Alt + L to launch the chat
widget and Alt + C to collapse it. You assign the keyboard keys to elements using the
hotkeys object's key-value pairs. For example:

var settings = {
 // ...,
 hotkeys: {
 collapse: 'c', // Usage: press Alt + C to collapse the chat widget
when chat widget is expanded
 launch: 'l' // Usage: press Alt + L to launch the chat widget
when chat widget is collapsed
 }
};

When creating these key value pairs:

• You can pass only a single letter or digit for a key.

• You can use only keyboard keys a-z and 0-9 as values.

You can pass the hotkey attribute by defining the following keys.

Note:

The attribute is not case-sensitive.

Chapter 48
Features

48-77

https://www.oracle.com/downloads/cloud/amce-downloads.html

Key Element

clearHistory The button that clears the conversation history.

close The button that closes the chat widget and
ends the conversation.

collapse The button that collapses the expanded chat
widget.

input The text input field on the chat footer

keyboard The button that switches the input mode from
voice to text.

language The select menu that shows the language
selection list.

launch The chat widget launch button

mic The button that switches the input mode from
text to voice.

send The button that sends the input text to the skill.

shareMenu The share menu button in the chat footer

shareMenuAudio The menu item in the share menu popup that
selects an audio file for sharing.

shareMenuFile The menu item in the share menu popup that
selects a generic file for sharing

shareMenuLocation The menu item in the share menu popup that
selects the user location for sharing.

shareMenuVisual The menu item in the share menu popup that
selects an image or video file for sharing.

Headless SDK
Feature flag: enableHeadless: true (default: false)

Similar to headless browsers, the SDK can also be used without its UI. The SDK
maintains the connection to the server and provides APIs to send messages, receive
messages, and get updates on the network status. You can use these APIs to interact
with the SDK and to update the UI. To enable this feature, pass enableHeadless:
true in the initial settings. The communication can be implemented as follows:

• Sending messages - Calls Bots.sendMessage(message) to pass any payload to
server.

• Receiving messages - Responses can be listened for using
Bots.on('message:received', <messageReceivedCallbackFunction>).

• Get connection status update - Listens for updates on the status of the connection
using Bots.on('networkstatuschange', <networkStatusCallbackFunction>).
The callback has a status parameter that is updated with values from 0 to 3, each
of which maps to WebSocket states:

– 0 : WebSocket.CONNECTING
– 1: WebSocket.OPEN
– 2: WebSocket.CLOSING
– 3: WebSocket.CLOSED

Chapter 48
Features

48-78

https://developer.mozilla.org/en-US/docs/Web/API/WebSocket#Constants

– Return suggestions for a query – Returns a Promise that resolves to the suggestions
for the given query string. The Promise is rejected if it takes too long (which is
approximately 10 seconds) to fetch the suggestion.

Bots.getSuggestions(utterance)
 .then((suggestions) => {
 const suggestionString = suggestions.toString();
 console.log('The suggestions are: ', suggestionString);
 })
 .catch((reason) => {
 console.log('Suggestion request failed', reason);
 });

Note:

To use this API, you need to enable autocomplete (

enableAutocomplete: true

) and configure autocomplete for the intents.

Multi-Lingual Chat
The Web SDK's native language support enables the chat widget to detect a user's language
or allow users to select the conversation language. Users can switch between languages, but
only in between conversations, not during a conversation because the conversation gets
reset whenever a user selects a new language.

Enable the Language Menu
You can enable a menu that allows users to select a preferred language from a dropdown
menu by defining the multiLangChat property with an object containing the supportedLangs
array, which is comprised of language tags (lang) and optional display labels (label).
Outside of this array, you can optionally set the default language with the primary key
(primary: 'en' in the following snippet).

multiLangChat: {
 supportedLangs: [{
 lang: 'en'
 }, {
 lang: 'es',
 label: 'Español'
 }, {
 lang: 'fr',
 label: 'Français'
 }, {
 lang: 'hi',
 label: 'ंंंंं'
 }],

Chapter 48
Features

48-79

 primary: 'en'
}

The chat widget displays the passed-in supported languages in a dropdown menu
that's located in the header. In addition to the available languages, the menu also
includes a Detect Language option. When a user selects a language from this menu,
the current conversation is reset, and a new conversation is started with the selected
language. The language selected by the user persists across sessions in the same
browser, so the user's previous language is automatically selected when the user
revisits the skill through the page containing the chat widget.

Tip:

You can add an event listener for the chatlanguagechange event (described
in the reference that accompanies the Oracle Web SDK that's available from
the Downloads page), which is triggered when a chat language has been
selected from the dropdown menu or has been changed.

Bots.on('chatlanguagechange', function(language) {
 console.log('The selected chat language is', language);
});

Here are some things to keep in mind when configuring language dropdown menu:

• You need to define a minimum of two languages to enable the dropdown menu to
display.

• The label key is optional for the natively supported languages: fr displays as
French in the menu, es displays as Spanish, and so on.

• Labels for the languages can be set dynamically by passing the labels with the
i18n setting. You can set the label for any language by passing it to its
language_<languageTag> key. This pattern allows setting labels for any language,
supported or unsupported, and also allows translations of the label itself in
different locales. For example:

i18n: {
 en: {
 langauge_de: 'German',
 language_en: 'English',
 language_sw: 'Swahili',
 language_tr: 'Turkish'
 },
 de: {
 langauge_de: 'Deutsche',
 language_en: 'Englisch',
 language_sw: 'Swahili',
 language_tr: 'Türkisch'
 }
}

Chapter 48
Features

48-80

https://www.oracle.com/downloads/cloud/amce-downloads.html

If the i18n property includes translation strings for the selected language, then the text for
fields like the input placeholder, the chat title, the hover text for buttons, and the tooltip
titles automatically switch to the selected language. The field text can only be switched to
a different language when there are translation strings for the selected language. If no
such strings exist, then the language for the field text remains unchanged.

• The widget automatically detects the language in the user profile and activates the
Detect Language option if you omit the primary key.

• While label is optional, if you've added a language that's not one of the natively
supported languages, then you should add a label to identify the tag, especially when
there is no i18n string for the language. For example, if you don't define label: 'ंंंंं',
for the lang: hi, then the dropdown displays hi instead, contributing to a suboptimal
user experience.

Disable Language Menu
Starting with Version 21.12, you can also configure and update the chat language without
also having to configure the language selection dropdown menu by passing
multiLangChat.primary in the initial configuration without also passing a
multiLangChat.supportedLangs array. The value passed in the primary variable is set as the
chat language for the conversation.

Language Detection
In addition to the passed-in languages, the chat widget displays a Detect Language option in
the dropdown. Selecting this option tells the skill to automatically detect the conversation
language from the user's message and, when possible, to respond in the same language.

Note:

If you omit the primary key, the widget automatically detects the language in the
user profile and activates the Detect Language option in the menu.

You can dynamically update the selected language by calling the
setPrimaryChatLanguage(lang) API. If the passed lang matches one of the supported
languages, then that language is selected. When no match can be found, Detect Language
is activated. You can also activate the Detected Language option by calling
setPrimaryChatLanguage('und') API, where 'und' indicates undetermined or by passing
either multiLangChat: {primary: null} or multiLangChat: {primary: 'und'}.

You can update the chat language dynamically using the setPrimaryChatLanguage(lang)
API even when the dropdown menu has not been configured. For example:

Bots.setPrimaryChatLanguage('fr')

You can dynamically update the language irrespective of whether the chat language is initially
configured or not.

Chapter 48
Features

48-81

Note:

Voice recognition, when configured, is available when users select a
supported language. It is not available when the Detect Language option is
set. Selecting a language that is not supported by voice recognition disables
the recognition functionality until a supported language has been selected.

Multi-Lingual Chat Quick Reference

To do this... ...Do this

Display the language selection dropdown to
end users.

Pass multiLangChat.supportedLangs.

Set the chat language without displaying the
language selection dropdown menu to end
users.

Pass multiLangChat.primary.

Set a default language. Pass multiLangChat.primary with
multiLangChat.supportedLangs. The
primary value must be one of the supported
languages included the array.

Enable language detection. Pass primary: null or primary: 'und'
with multiLangChat.

Dynamically update the chat language. Call the setPrimaryChatLanguage(lang)
API.

In-Widget Webview
You can configure the link behavior in chat messages to allow users to access web
pages from within the chat widget. Instead of having to switch from the conversation to
view a page in a tab or separate browser window, a user can remain in the chat
because the chat widget opens the link within a Webview.

Configure the Linking Behavior to the Webview
You can apply the webview to all links, or in a more typical use case, to just select
links. You can also customize the webview itself.

• To open all links in the webview, pass linkHandler: { target: 'oda-chat-
webview' } in the settings. This sets the target of all links to oda-chat-webview,
which is the name of the iframe in the webview.

• To open only certain links in the webview while ensuring that other links open
normally in other tabs or windows, use the beforeDisplay delegate. To open a
specific message URL action in the webview, replace the action.type field’s
'url' value with 'webview'. When the action type is 'webview' in the
beforeDisplay function, the action button will open the link in the webview when
clicked.

Chapter 48
Features

48-82

Open Links from Within the Webview
Links that are embedded within a page that displays within the WebView can only be opened
within the WebView when they are converted into an anchor element (<a>), with a target
attribute defined as target="oda-chat-webview".

Customize the WebView
You can can customize the WebView with the webViewConfig setting which accepts an
object. For example:

{ referrerPolicy: 'no-referrer-when-downgrade', closeButtonType: 'icon',
size: 'tall'

The fields within this object are optional.

Note:

The configuration can also by updated dynamically by passing a webViewConfig
object in the setWebViewConfig method. Every property in the object is optional.

Field Value Description

accessibilityTitle String The name of the WebView frame
element for Web Accessibility.

closeButtonIcon String The image URL/SVG string that
is used to display the close
button icon.

closeButtonLabel String Text label/tooltip title for the close
button.

closeButtonType • 'icon'
• 'label'
• 'iconWithLabel'

Sets how the close button is
displayed in the WebView.

referrerPolicy ReferrerPolicy Indicates which referrer to send
when fetching the frame's
resource. The referrerPolicy
policy value must be a valid
directive. The default policy
applied is 'no-referrer-
when-downgrade'.

sandbox A String array An array of of valid restriction
strings that allows for the
exclusion of certain actions
inside the frame. The restrictions
that can be passed to this field
are included in the description of
the sandbox attribute in MDN
Web Docs.

Chapter 48
Features

48-83

https://www.w3schools.com/tags/att_a_target.asp
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#Directives
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe

Field Value Description

size • 'tall'
• 'full'

The height of the WebView
compared to the height of the
chat widget. When set to
'tall', it is set as 80% of the
widget's height, when set to
'full' it equals the widget's
height.

title String The title that's displayed in the
header of the WebView
container.

Not all links may be able to open inside the WebView. Here are some reasons why:

• Pages which provide response header X-frame-options: deny or X-frame-
options: sameorigin may not open in the WebView due to server-side
restrictions that prevent the page from being opened inside iframes. In such cases,
the WebView presents the link back to the user so that they can open it in a new
window or tab.

• Due to server-side restrictions, authorization pages like IDCS, Google Login, and
FaceBook Login cannot opened inside the WebViews, as authorization pages
always return X-frame-options: deny to prevent a clickjacking attack.

• External links, which can't open correctly within the WebView. Only links
embedded in the conversation messages can be opened in the WebView.

Note:

Because external messages are incompatible with the WebView, do not
target any external link to be opened in the WebView.

When a link can't open in the WebView, the widget presents the user with some
informational text and a link to the WebView, which opens the page in a new tab when
clicked. You can customize this text using the webViewErrorInfoText i18n translation
string:

settings = {
 URI: 'instance',
 //...,
 i18n: {
 en: {
 webViewErrorInfoText: 'This link can not be opened here.
You can open it in a new page by clicking {0}here{/0}.'
 }
 }
}

Long Polling
Feature flag: enableLongPolling: true (default: false)

Chapter 48
Features

48-84

https://tools.ietf.org/html/draft-ietf-oauth-v2-23#section-10.13

The SDK uses WebSockets to connect to the server and converse with skills. If for some
reason the WebSocket is disabled over the network, traditional HTTP calls can be used to
chat with the skill. This feature is known as long polling because the SDK must continuously
call, or poll, the server to fetch the latest messages from skill. This fallback feature can be
enabled by passing enableLongPolling: true in the initial settings.

Typing Indicator for User-Agent Conversations
Feature flag: enableSendTypingStatus: boolean (default: false)

This feature allows agents to ascertain if users are still engaged in the conversation by
sending the user status to the live agent. When enableSendTypingStatus is set to true, the
SDK sends a RESPONDING typing status event along with the text that is currently being typed
by the user to Oracle B2C Service or Oracle Fusion Service. This, in turn, displays a typing
indicator on the agent console. When the user has finished typing, the SDK sends a
LISTENING event to the service to hide the typing indicator on the agent console.

The typingStatusInterval configuration, which has a minimum value of three seconds,
throttles the typing status update.

To send an Oracle B2C Service agent both the text as it's being typed by the user and the
typing status, enableAgentSneakPreview (which by default is false) must be set to true and
Sneak Preview must be enabled in Oracle B2C Service chat configuration.

Note:

You do not have to configure live typing status on the user side. The user can see
the typing status of the agent by default. When the agent is typing, the SDK
receives a RESPONDING status message which results in the display of a typing
indicator in the user's view. Similarly, when the agent is idle, the SDK receives a
LISTENING status message which hides the typing indicator.

Voice Recognition
Feature flag: enableSpeech: true (default: false)

Setting enableSpeech: true enables the microphone button to display in place of the send
button whenever the user input field is empty.

Your skill can also utilize voice recognition with the
startVoiceRecording(onSpeechRecognition, onSpeechNetworkChange) method to start
recording and the stopVoiceRecording method to stop recording. (These methods are
described in the User's Guide that's included with the SDK.)

Using the enableSpeechAutoSend flag, you can configure whether or not to send the text
that’s recognized from the user’s voice directly to the chat server with no manual input from
the user. By setting this property to true (the default), you allow the user’s speech response
to be automatically sent to the chat server. By setting it to false, you allow the user to edit
the message before it's sent to the chat server, or delete it.

Voice Visualizer

Chapter 48
Features

48-85

https://docs.oracle.com/en/cloud/saas/b2c-service/famug/t-Enable-sneak-preview.html#EnableSneakPreview-D222B194

Feature configuration: enableSpeechAutoSend

The chat widget displays a voice visualizer when users click the voice icon , the
chat widget displays a voice visualizer. It's an indicator of whether the audio level is
sufficiently high enough for the SDK to capture the user’s voice. The user’s message,
as it is recognized as text, displays below the visualizer.

Note:

Voice mode is indicated when the keyboard icon appears.

Because of the default setting for enableSpeechAutosend is true
(enableSpeechAutoSend: true), messages are sent automatically after they're
recognized. Setting enableSpeechAutoSend: false switches the input mode to text
after the voice message is recognized, allowing users to edit or complete their
messages using text before sending them manually. Alternatively, users can complete
their message with voice through a subsequent click of the voice icon before sending
them manually.

Chapter 48
Features

48-86

Note:

The voice visualizer is created using AnalyserNode. You can implement the voice
visualizer in headless mode using the startVoiceRecording method. Refer to the
SDK to find out more about AnalyserNode and frequency levels.

Message Model
To use features like headless mode and delegate, you need to understand both user and skill
messages. Everything that's received or sent from the Oracle Chat Server is represented as
a message, one that's sent from the user to the skill, or from the skill to the user.

These are the base types used in all messages sent from the user to the skill and vice versa.
They are the building blocks of all messages.

• Action

• Attachment

• Card

• Location

• PaginationInfo

• FormRow

• Column

• Form

• Row

• Heading

• Field

• selectFieldOption

• Read Only Field

• Editable Field

• EventContextProperties

• Conversation Message

• User Message

• Skill Message

Action
An action represents something that the user can select.

Name Description Type Required?

type The action type string Yes

label The descriptive label
text for the action.

string At least one of label or
imageUrl must be
included.

Chapter 48
Message Model

48-87

https://developer.mozilla.org/en-US/docs/Web/API/AnalyserNode
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/digital-assistant&id=daswe-index

Name Description Type Required?

imageUrl The image for the action string At least a single label
or imageUrl property
must be included.

style The rendering style of
the button

"primary", "danger",
"default"

No

displayType The rendering for the
type of action element
(button, link, or icon)

"button", "link",
"icon"

No

channelExtensions The channel-specific
extension properties
associated with the
action

JSONObject No

PostbackAction
Sends a predefined postback back to the skill when the user selects an action.

Name Description Type Required?

type The action type "postback" Yes

postback The postback that's
returned when the
user selects an action.

A string or JSON
object

Yes

For example:

{
 "type": "postback",
 "label": "Large Pizza",
 "imageUrl": "https://example.com/images/gallery/locations/11.jpg",
 "postback": {
 "state": "askSize",
 "action": "getCrust"
 }
}

CallAction
Requests the client to call a specified phone number on behalf of the user.

Name Description Type Required?

type The action type "call" Yes

phoneNumber The phone number to
call

string Yes

For example:

{
 "type": "call",
 "label": "Call Support",

Chapter 48
Message Model

48-88

 "imageUrl": "http://example.com.ar/files/2016/05/cuidado.jpg",
 "phoneNumber": "18005555555"
}

urlAction
Requests the client to open a website in a new tab or in an in-app browser.

Name Description Type Required?

type The action type "call" Yes

url The URL of the website
that's displayed.

string Yes

ShareAction
Requests the client to open a sharing dialog for the user.

Name Description Type Required?

type The action type "share" Yes

LocationAction
Requests the client to ask for the user's location.

Name Description Type Required?

type The action type "location" Yes

For example:

{
 "type": "location",
 "label": "Share location",
 "imageUrl": "http://images.example.com/location-clipart-location-pin-
clipart-1.jpg"
}

PopupAction
This action opens a pop-up window after users perform a click action on an element.
PopupAction uses the Action properties along with its own:

Name Description Type Required?

type The action type "popup" Yes

Chapter 48
Message Model

48-89

Name Description Type Required?

popupContent The content that
displays within the pop-
up window.

The message payload
(refer to the following
JSON example)

Yes

{
 "type": "popup",
 "label": "Give Feedback",
 "popupContent": {
 "formRows": [
 {
 "columns": [
 {
 "width": "stretch",
 "fields": [
 {
 "displayType": "text",
 "label": "What was the issue with this
response?"
 },
 {
 "displayType": "multiSelect",
 "options": [
 {
 "label": "Inaccurate",
 "value": "inaccurate"
 },
 {
 "label": "Inappropriate",
 "value": "inappropriate"
 }
],
 "id": "system_feedback_reasons",
 "required": true
 },
 {
 "displayType": "textInput",
 "id": "system_feedback_comments",
 "placeholder": "Additional feedback"
 }
]
 }
]
 },
 {
 "columns": [
 {
 "fields": [
 {
 "displayType": "action",
 "action": {
 "postback": {
 "rating": "negative",

Chapter 48
Message Model

48-90

 "action": "cancel",
 },
 "label": "Cancel",
 "type": "postback"
 },
 }
]
 },
 {
 "fields": [
 {
 "displayType": "action",
 "action": {
 "postback": {
 "rating": "negative",
 "system.state": "invokeLLM"
 },
 "label": "Submit Feedback",
 "type": "submitForm"
 },
 }
]
 }
]
 }
],
 "type": "editForm",
 "title": "Give your feedback",
 "formColumns": 1,
 }
}

SubmitFormAction
This action is used to submit an input form to the skill when it satisfies the client side
validation. It adds the following properties to the Action properties:

Name Description Type Required?

type The action type "submitForm" Yes

postback The postback payload,
which might include an
action proeprty to trigger
navigation. The value of
this property should be
set in the
FormSubmissionMessa
gePayload.

JSONObject No

Example JSON

{
 "type": "submitForm",
 "label": "Submit",

Chapter 48
Message Model

48-91

 "postback": {
 "system.botId": "6803DE12-DAA9-4182-BD54-3B4D431554F4",
 "system.flow": "ExpenseFlow",
 "system.state": "editFormMapVar"
 }
}

Attachment
Represents an attachment that's sent by the user.

Name Description Type Required?

title The attachment title string No

type The attachment type string (valid values:
audio, file, image,
video)

Yes

url The download URL for
the attachment

string Yes

For example:

{
 "title": "Oracle Open World Promotion",
 "type": "image",
 "url": "https://www.oracle.com/us/assets/hp07-oow17-
promo-02-3737849.jpg"
}

Card
Represents a single card in the message payload.

Name Description Type Required?

title The title of the card,
displayed as the first
line on the card.

string Yes

description The description of the
card

string No

imageUrl The URL of the image
that is displayed.

string No

URL The website URL
that's opened by a tap.

string No

actions An array of actions
related to the text

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Chapter 48
Message Model

48-92

Location
Represents a location object.

Name Description Type Required?

title The location title string No

url The URL for displaying
the location on a map

string No

latitude The GPS coordinate's
longitude value

double Yes

longitude The GPS coordinate's
latitude value

double Yes

For example:

{
 "title": "Oracle Headquarters",
 "url": "https://www.google.com.au/maps/place/
37°31'47.3%22N+122°15'57.6%22W",
 "longitude": -122.265987,
 "latitude": 37.529818
}

PaginationInfo
Represents the paging information for the results in the Table, Form, and Table-Form objects.

Name Description Type Required?

totalCount The total results count number Yes

rangeSize The range size of the
results per page

number Yes

status The paging status
message

String Yes

currentRangeSize The size of curent range
of results

number Yes

rangeStart The starting offset of the
current range of results

number Yes

nextRangeSize The size of the next
range of results

number Yes

hasPrevious Indicates whether there
is a previous set of
results

boolean Yes

hasNext Indicates whether there
is a next set of results

boolean Yes

Chapter 48
Message Model

48-93

FormRow

Name Description Type Required?

id The ID of the form row String No

columns A list of columns
displayed in the form
row.

Array <Column> Yes

selectAction The actions that's
executed when the
form has been
selected. When users
hover over the form,
the action's label
displays as a tool tip
(when supported by
the channel).

Action No

separator Setting this property to
true inserts a
separator line above
the content in the form
row.

Boolean No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Column

Name Description Type Required?

id The ID of the column String No

fields A list of fields that
display vertically within
the column. These
fields must be
ReadOnlyField
instances when the
column is used in a
FormRow within a
Form. The fields can
be both read-only and
editable fields when
the FormRow is used
within an
EditFormMessagePa
yload.

Array<Field> Yes

verticalAlignment The vertical alignment
of the column with
respect to the other
columns in the same
form row.

String No

Chapter 48
Message Model

48-94

Name Description Type Required?

width Determines the width
of the column within
the form row.
Allowable values are
auto (the default) and
stretch. When set to
stretch, the column
takes all the remaining
width after any auto-
width columns are
rendered. If there are
multiple columns set
to stretch, they
evenly divide the
remaining width.

String No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Form
Represents an array of fields along with a title. Used in Table-Form messages for nested
forms of a table row.

Name Description Type Required?

id The ID of the form String No

title The form title String No

fields An array of fields Array <Field> Yes

actions An array of actions Array <BotsAction> No

formRows A list of rows which can
include both editable
and read only fields. You
can define either the list
of fields (using the
fields and optionally,
the formColumns
properties), or a list of
rows using this property.
The fields and
formRows are mutually
exlusive.

Action No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Row
Represents an array of fields.

Chapter 48
Message Model

48-95

Name Description Type Required?

fields An array of fields <Field> Yes

selectAction The action that is
executed when the
row is selected. The
label of the action is
shown as tooltip when
users hover above the
row.

Action No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Heading
Represents a heading for tables in a Table or Table-Form object.

Name Description Type Required?

label The heading label String Yes

alignment The positioning of the
label within the cell

"left", "right",
"center"

Yes

width The suggested
percentage of the
table width that should
be provided to the
heading.

No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Field
Represents the atomic information of a table cell or a form field within the Table, Form,
and Table-Form objects, provided as key-value pair.

Name Description Type Required?

displayType The field type String Yes

label The field key String Yes

marginTop The amount of vertical
space between this
field and the previous
field within the same
column

"none",
"medium","large"

No

labelFontSize The font size used for
the field label

"small", "medium",
"large"

No

labelFontWeight The positioning of the
label within its cell

"light", "medium",
"bold"

No

Chapter 48
Message Model

48-96

Name Description Type Required?

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

selectFieldOption
The Single-Select and Multi-Select fields use a list of select field options with following
properties:

Name Description Type Required?

label The display text string Yes

value The value for option Primitive data types
(string, number,
boolean, etc.)

No

channelExtensions The channel-specific
extension properties
associated with the field
option.

JSONObject No

Read Only Field
Represents a read only field. All read only fields inherit the field properties and have the
following additional properties:

Name Description Type Required?

value The field value string Yes

width The suggested
percentage of the total
available width that the
field should occupy in a
table layout.

number No

alignment The alignment of the
value within a table
column. The default
alignment is right.

"left", "center" and
"right"

No

onHoverPopupContent The content that
displays when users
hover over a field.

Message Payload No

Text Field
The text field inherits all of the read only field properties.

Name Description Type Required?

displayType The element type. text (a String value) Yes

Chapter 48
Message Model

48-97

Name Description Type Required?

truncateAt The position at which
lengthy text gets
truncated and where an
ellipsis mark (which
indicates the value has
been truncated)
displays.

Number No

fontSize The font size used for
the field value

"small", "medium",
"large"

No

fontWeight The font weight used for
the field value

"light", "medium",
"bold"

No

.

Link Field
The link field inherits all of the read only field properties and has following additional
properties:

Name Description Type Required?

displayType The field type "link" Yes

linkLabel The label used for the
hyperlink

string No

imageUrl The URL of the image
that opens a link when
clicked.

string No

Media Field
The media field inherits all of the read only field properties and has following additional
properties:

Name Description Type Required?

displayType The field type "media" Yes

mediaType The field media type "video", "audio",
"image"

Yes

Action Field
The action field inherits all all of the read only field properties and has following
additional properties:

Name Description Type Required?

displayType The field type "action" Yes

action The action that should
be performed when
the user clicks the
action button.

Action Yes

Chapter 48
Message Model

48-98

Editable Field
Represents an editable field. All editable fields inherit the the field properties and have the
following additional properties:

Name Description Type Required?

id The field ID string Yes

placeholder A description of the
input that's expected
from the user. This text
displays when the user
has not yet made a
selection or entered a
value.

string No

required Whether this input is
required to submit the
form

boolean No

clientErrorMessage The field-level error
message that's
displayed below the field
when a client-side
validation error occurs. If
not provided, the SDK
defaults to
editFieldErrorMessa
ge.

string No

serverErrorMessage The field level error
message that's
displayed below the field
when a server-side
validation error occurs.
This error message
must be included in the
payload sent by the skill.

string No

autoSubmit When set to true, the
form is auto-submitted
when the user has
entered a value for the
field.

No

Single-Select
The single-select field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "singleSelect" Yes

defaultValue The default selection Primitive data types
(string, number,
boolean, etc.)

No

options An array of options
presented to the user.

A selectFieldOption
array

Yes

Chapter 48
Message Model

48-99

Name Description Type Required?

layoutStyle The layout style used to
render the single select
options. The default
layout is list.

"list", "radioGroup" No

Multi-Select
The multi-select field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "multiSelect" Yes

defaultValue The default selection An Array<object> of
primitive data types (a
string, number,
boolean, etc.)

No

options An array of options
presented to the user

A selectFieldOption
array

Yes

layoutStyle The layout style used
to render the options.

"list",
"checkboxes"

No

DatePicker
The date picker field inherits the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "datePicker" Yes

defaultValue The initial value for
this field. The format
must be YYYY-MM-
DD.

string No

minDate The minimum, or
earliest, date allowed.
The format must be
YYYY-MM-DD.

string No

maxDate The maximum, or
latest, date allowed.
The format must be
YYYY-MM-DD.

string No

TimePicker
The time picker field inherits the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "timePicker" Yes

Chapter 48
Message Model

48-100

Name Description Type Required?

defaultValue The initial value for
this field, entered as
HH:mm in 24-hour
format.

string No

minTime The minimum, or
earliest, time allowed,
entered as HH:mm in
24-hour format. For
example, 00:00.

string No

maxTime The maximum, or
latest, time allowed,
entered as HH:mm, in
24-hour format. For
example, 13:00.

string No

Toggle
The toggle field inherits all of the Editable Field properties and has the following additional
properties:

Name Description Type Required?

displayType The field type "toggle" Yes

defaultValue The initial selected
value. If you want the
toggle to be initially on,
set the default value to
the same value as
valueOn.

string No

valueOff The value when toggle
is off

string Yes

valueOn The value when toggle
is on

string Yes

labelOff The label for the "off"
value

string No

labelOn The label for the "on"
value

string No

TextInput
The text input field inherits Editable Field properties and has the following additional
properties:

Name Description Type Required?

displayType The field type "textInput" Yes

defaultValue The initial value for this
field

string no

validationRegularEx
pression

A regular expression
indicating the required
format for this text input

string no

Chapter 48
Message Model

48-101

Name Description Type Required?

multiline The flag that determines
whether to render
multiple lines of input

boolean no

minLength The minimum length of
input that the user must
provide

integer no

maxLength The maximum number
of characters allowed in
the text input field

integer no

inputStyle The input style used by
the client. Allowable
values are: "text",
"tel",
"url","email", and
"password".

string no

NumberInput
The number input field inherits Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "numberInput" Yes

defaultValue The initial value for
this field

Integer No

minValue A smallest allowable
number

Integer No

maxValue The largest allowable
number.

Integer No

EventContextProperties
Event context properties represent the CloudEvent context properties.

Name Description Type Required? Example

dataschema Identifies the
schema that the
data adheres to.

URI No "/dw/
approval_payl
oad.json"

datacontentty
pe

The content type
of the data that's
contained in the
data attribute.

String No "application/
json"

source The resource that
produced the
event.

URI No "objectstorag
e"

Chapter 48
Message Model

48-102

Name Description Type Required? Example

time The time of the
event expressed
in RFC 3339
timestamp
format.

Timestamp No "2021-01-10T2
1:19:24Z"

specversion The version of
the CloudEvents
specification.

String No "1.0"

id The ID of the
CloudEvents
specification.

String No "123e4567-
e89b-12d3-
a456-42661417
4000"

subject The event’s
subject in the
context of the
event producer
and/or event type.

String No "mynewfile.jp
g"

Conversation Message
All of the messages that are part of a conversation have the following structure:

Name Description Type Required?

messagePayload The message payload Message Yes

userId The user ID string Yes

For example:

{
 "messagePayload": {
 "text": "show menu",
 "type": "text"
 },
 "userId": "guest"
}

Message
Message is an abstract base type for all other messages. All messages extend it to provide
some information.

Name Description Type Required?

type The message type string Yes

User Message
Represents a message sent from the user to the skill.

Chapter 48
Message Model

48-103

User Text Message
The simple text message that's sent to the server.

Name Description Type Required?

type The message type "text" Yes

text The message text string Yes

For example:

{
 "messagePayload": {
 "text": "Order Pizza",
 "type": "text"
 },
 "userId": "guest"
}

User Postback Message
The postback response message that's sent to the server.

Name Description Type Required?

type The message type "postback" Yes

text The postback text string No

postback The postback of the
selected action

A string or
JSONObject

Yes

For example:

{
 "messagePayload": {
 "postback": {
 "variables": {
 "pizza": "Small"
 },
 "system.botId": "69BBBBB-35BB-4BB-82BB-BBBB88B21",
 "system.state": "orderPizza"
 },
 "text": "Small",
 "type": "postback"
 },
 "userId": "guest"
}

User inboundEvent Message
Represents the outbound event messages that can be sent to the server. It applies the
following properties to the Message.

Chapter 48
Message Model

48-104

Name Description Type Required?

type The message type "inboundEvent" Yes

eventType The event type (defined
in the event catalog)

String Yes

eventVersion The event type version
(defined in the event
catalog)

String Yes

eventData The business data JSONObject Yes

contextProperties The event context
properties

Event context properties No

For example:

{
 "messagePayload": {
 "eventData": {
 "size": "Medium",
 "type": "Cheese"
 },
 "eventVersion": "1.0",
 "eventType": "com.pizzastore.pizza.orderserved",
 "type": "inboundEvent",
 "contextProperties": {
 "id": "6ce23f09-bff7-4369-8467-0c510e971aaf",
 "source": "pizza/service",
 }
 },
 "userId": "guest"
}

User Form Submission Message
This represents the form submission message that's sent after the user has submitted a form
by a SubmitFormAction. It has the following properties:

Name Description Type Required?

type The message type. "formSubmission" Yes

submittedFields Key-value pairs of the
submitted field values.
The key is the name (ID)
of the field.

JSONObject Yes

postback The postback payload,
which might include an
action property to trigger
navigation. The value of
this property should be
taken from the
SubmitFormAction.

JSONObject No

Chapter 48
Message Model

48-105

Name Description Type Required?

partialSubmitField The ID of the field that
triggers a partial form
submission. Fields with
the autoSumbit
property set to true can
trigger a partial form
submission.

String No

Example JSON

{
 "messagePayload": {
 "submittedFields": {
 "Attendees": [
 "Toff van Alphen"
],
 "Type": "Public transport",
 "Description": "expense",
 "Subject": "Expense",
 "Date": "2023-06-07",
 "Time": "18:58",
 "Amount": 6,
 "TipIncluded": "true"
 },
 "partialSubmitField": "Attendees",
 "type": "formSubmission"
 },
 "userId": "guest"
}

User Attachment Message
The attachment response message that's sent to the server.

Name Description Type Required?

type The message type "attachment" Yes

attachment The attachment
metadata

Attachment Yes

For example:

{
 "messagePayload": {
 "attachment": {
 "type": "image",
 "url": "http://oda-instance.com/attachment/v1/attachments/
d43fd051-02cf-4c62-a422-313979eb9d55"
 },
 "type": "attachment"
 },

Chapter 48
Message Model

48-106

 "userId": "guest"
}

User Location Message
The location response message that's sent to the server.

Name Description Type Required?

type The message type "location" Yes

location The user location
information

Location Yes

For example:

{
 "messagePayload": {
 "location": {
 "latitude": 45.9285271,
 "longitude": 132.6101925
 },
 "type": "location"
 },
 "userId": "guest"
}

Skill Message
Represents the message sent from the skill to the user.

Name Description Type Required?

type The message type string Yes

headerText The header text
displayed above the
message text.

string No

footerText The footer text displayed
below the message text
and actions, but before
the global actions.

string No

actions A list of actions related
to the message

Array<Action> No

footerForm A form layout that
displays below the footer
text of the message and
above its global actions.

Skill Form Message No

globalActions A list of global actions
related to the text

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Chapter 48
Message Model

48-107

Bot Text Message
Represents a text message. It applies the following properties to the Skill Message.

Name Description Type Required?

type The message type "text" Yes

text The message text string Yes

For example:

{
 "messagePayload": {
 "type": "text",
 "text": "What do you want to do?",
 "actions": [
 {
 "type": "postback",
 "label": "Order Pizza",
 "postback": {
 "state": "askAction",
 "action": "orderPizza"
 }
 },
 {
 "type": "postback",
 "label": "Cancel A Previous Order",
 "postback": {
 "state": "askAction",
 "action": "cancelOrder"
 }
 }
]
 },
 "userId": "guest"
}

Skill Location Message
Represents a location message. It applies the following properties to the Skill
Message.

Name Description Type Required?

type The message type "location" Yes

location The location Location Yes

Skill Attachment Message
Represents an attachment message. It applies the following properties to the Skill
Message.

Chapter 48
Message Model

48-108

Name Description Type Required?

type The message type "attachment" Yes

attachment The attachment sent Attachment Yes

Note:

File uploads from the host site may fail and throw a console error similar to the
following:

https://<oda-instance>/chat/v1/attachments from origin <client site>
has been blocked by CORS policy: No Access-Control-Allow-Origin
header is present on the requested resource

This is because the host site's CORS (Cross-Origin Resource Sharing) settings,
which block all cross-origin HTTP requests, may also block upload requests from
the client instance to the Oracle Digital Assistant attachment server. If you run into
this problem, update the host site's security policy to allow the domain for the Digital
Assistant instance. Because the conversation uses WebSocket connections, CORS
does not impact the conversation.

Passing File Names
Use the following headers to retrieve the name of a file (including video, audio, or image files)
that's uploaded to the ODA file server:

• x-oda-meta-file-name
• x-oda-meta-file-type
You can return these headers with GET or HEAD requests. Use HEAD if a custom
component doesn't need the file's contents.

Feedback Messages
This represents a feedback rating component, which takes a user’s feedback using a rating
gauge (typically a star rating system). Its payload is similar to a text message, but it has an
additional channelExtensions object field that is set as { "displayType": "stars" }. It
applies the following properties to the Skill Message.

Name Description Type Required?

type The message type "text" Yes

text The message text string Yes

channelExtensions An object describing
extensions to the
payload.

{ “displayType”:
“stars” }

Yes

Chapter 48
Message Model

48-109

https://web.dev/cross-origin-resource-sharing/

For example:

{
 "messagePayload":{
 "text":"How would you like to rate us?",
 "type":"text",
 "actions":[
 {
 "postback":{
 "variables":{
 "rating":"1"
 },
 "system.botId":"61C8D800-23AF-4DDD-B5AF-
D79AB3F3BE67",
 "action":"1",
 "system.state":"giveFeedback"
 },
 "label":"1",
 "type":"postback"
 },
 {
 "postback":{
 "variables":{
 "rating":"2"
 },
 "system.botId":"61C8D800-23AF-4DDD-B5AF-
D79AB3F3BE67",
 "action":"2",
 "system.state":"giveFeedback"
 },
 "label":"2",
 "type":"postback"
 },
 {
 "postback":{
 "variables":{
 "rating":"3"
 },
 "system.botId":"61C8D800-23AF-4DDD-B5AF-
D79AB3F3BE67",
 "action":"3",
 "system.state":"giveFeedback"
 },
 "label":"3",
 "type":"postback"
 },
 {
 "postback":{
 "variables":{
 "rating":"4"
 },
 "system.botId":"61C8D800-23AF-4DDD-B5AF-
D79AB3F3BE67",
 "action":"4",
 "system.state":"giveFeedback"

Chapter 48
Message Model

48-110

 },
 "label":"4",
 "type":"postback"
 },
 {
 "postback":{
 "variables":{
 "rating":"5"
 },
 "system.botId":"61C8D800-23AF-4DDD-B5AF-D79AB3F3BE67",
 "action":"5",
 "system.state":"giveFeedback"
 },
 "label":"5",
 "type":"postback"
 }
],
 "channelExtensions":{
 "displayType":"stars"
 }
 },
 "source":"BOT",
 "userId":"<userID>"
}

Skill Card Message
Represents a set of choices that are displayed for the user, either horizontally as carousels or
vertically as lists. It applies the following properties to the Skill Message.

Name Description Type Required?

type The message type "card" Yes

layout Whether to display the
messages horizontally
or vertically.

string (values:
horizontal,
vertical)

Yes

cards An array of cards to be
rendered.

array Yes

Card
Represents a single card in the message payload.

Name Description Type Required?

title The title of the card,
displayed as the first line
on the card.

string Yes

description The description of the
card

string No

imageUrl The URL of the image
that is displayed.

string No

url The website URL that's
opened by a tap.

string No

Chapter 48
Message Model

48-111

Name Description Type Required?

actions An array of actions
related to the text

array No

Here's an example:

{
 "messagePayload": {
 "type": "card",
 "layout": "horiztonal",
 "cards": [
 {
 "title": "Hawaiian Pizza",
 "description": "Ham and pineapple on thin crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "large"
 }
 }
 }
]
 },
 {
 "title": "Cheese Pizza",
 "description": "Cheese pizza (i.e. pizza with NO
toppings) on thick crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",

Chapter 48
Message Model

48-112

 "pizzaCrust": "thick",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",
 "pizzaSize": "large"
 }
 }
 }
]
 }
],
 "globalActions": [
 {
 "type": "call",
 "label": "Call for Help",
 "phoneNumber": "123456789"
 }
]
 },
 "userId": "guest"
}

Skill Postback Message
Represents a postback. It applies the following properties to the Skill Message.

Name Description Type Required?

type The message type "postback" Yes

text The message text string No

postback The postback A string or a
JSONObject

Yes

Skill Form Message
Represents a message that returns the results of a query in a form that's read only. The
message consists of an array of form results. Each form result contains a fields array with
key-value pairs that represent a field. It applies the following properties to the Skill Message.

Note:

This message type is used for SQL dialogs.

Chapter 48
Message Model

48-113

Name Description Type Required?

type The message type "form" Yes

forms An array of form
results. Each result
contains a fields
array that represents
the form fields.

Array<Row> Yes

formColumns The number of
columns in which the
fields of the form
should be grouped.

1, 2 Yes

paginationInfo The paging
information for the
results in the form

PaginationInfo No

{
 "type":"form",
 "headerText":"A-Team",
 "forms":[
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/aaron-
adams-4862752"
 },

Chapter 48
Message Model

48-114

 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Bobbrown"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Bob is a member of the cloud architects team
which is specialized in enterprise mobility and cloud development. Bob has
been directly involved with Oracle middleware since 2005 during which he
held different roles in managing highly specialized teams."
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",

Chapter 48
Message Model

48-115

 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Charlie-
chase-97a418"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Charlie is a member of the enterprise
mobility team. Charlie has 20+ years experience with custom
development. Charlie is an expert on mobile cloud services and
development tools. He is the creator of productivity tools. His latest
passion is building chatbots with a minimum amount of custom code."
 }
]
 }
],
 "formColumns":2,
 "paginationInfo":{
 "currentRangeSize":3,
 "rangeStart":0,
 "nextRangeSize":2,
 "hasPrevious":false,
 "hasNext":true,
 "totalCount":5,
 "rangeSize":3,
 "status":"Showing 1-3 of 5 items"
 },
 "globalActions":[

Chapter 48
Message Model

48-116

 {
 "postback":{
 "variables":{},
 "action":"system.showMore"
 },
 "label":"Show More",
 "type":"postback"
 }
]
}

Skill Table Message
Represents a message that returns the results of a query in table form The message consists
of an array of headings and an array of rows. The rows themselves contain a fields array
that represents individual cells. It applies the following properties to the Skill Message.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "table" Yes

headings An array of table
headings

Array<Heading> Yes

rows An array of table rows.
Each row contains a
fields array that
represents the table
cells.

Array<Row> Yes

paginationInfo The paging information
for the results in the
table

PaginationInfo No

{
 "type":"table",
 "headerText":"A-Team",
 "headings":[
 {
 "width":20,
 "label":"First Name",
 "alignment":"left"
 },
 {
 "width":20,
 "label":"Last Name",
 "alignment":"left"
 },
 {
 "width":35,
 "label":"Title",

Chapter 48
Message Model

48-117

 "alignment":"left"
 },
 {
 "width":25,
 "label":"Phone",
 "alignment":"right"
 }
],
 "rows":[
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",

Chapter 48
Message Model

48-118

 "value":"Brown"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,

Chapter 48
Message Model

48-119

 "label":"First Name",
 "alignment":"left",
 "value":"David"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Davidson"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Machine Learning Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Eric"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Eastman Junior"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Docker Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",

Chapter 48
Message Model

48-120

 "value":"1234567890"
 }
]
 }
],
 "paginationInfo":{
 "currentRangeSize":5,
 "rangeStart":0,
 "nextRangeSize":-3,
 "hasPrevious":false,
 "hasNext":false,
 "totalCount":5,
 "rangeSize":8,
 "status":"Showing 1-5 of 5 items"
 }
}

Skill Table-Form Message
This message combines the Table and Form message types. It represents a message that
returns the results of a query in the form of a table. Each each row of the table has a read-
only form in addition to the row information. It applies the following properties to the Skill
Message.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "tableForm" Yes

headings An array of table
headings

Array<Heading> Yes

rows An array of table rows.
Each row contains an
array of fields that
represent the table cells.

Array<Row> Yes

forms An array of form results
that correspond to each
table row. Each form
contains a fields array
that represents the form
fields.

Array<Form> Yes

formColumns The number of columns
in which the fields of the
form should be grouped.

1, 2 Yes

paginationInfo An array of global
actions related to the
text

Array<Action> No

{
 "type":"tableForm",

Chapter 48
Message Model

48-121

 "headerText":"A-Team",
 "headings":[
 {
 "width":47,
 "label":"First Name",
 "alignment":"left"
 },
 {
 "width":47,
 "label":"Last Name",
 "alignment":"left"
 }
],
 "rows":[
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {

Chapter 48
Message Model

48-122

 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 }
]
 }
],
 "forms":[
 {
 "title":"View details Aaron Adams",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Aaron-adams-4862572"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left"
 }
]
 },
 {
 "title":"View details Bob Brown",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",

Chapter 48
Message Model

48-123

 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Bobbrown"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Bob is a member of the cloud architects
team which is specialized in enterprise mobility and cloud
development. Bob has been directly involved with Oracle middleware
since 2005 during which he held different roles in managing highly
specialized teams."
 }
]
 },
 {
 "title":"View details Charlie Chase",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder Fanatic"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Charlie-
chase-97a418"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Charlie is a member of the enterprise
mobility team. Charlie has 20+ years experience with custom
development. Charlie is an expert on mobile cloud services and
development tools. He is the creator of productivity tools. His latest
passion is building chatbots with a minimum amount of custom code."
 }
]
 }
],
 "formColumns":2,
 "paginationInfo":{

Chapter 48
Message Model

48-124

 "currentRangeSize":3,
 "rangeStart":0,
 "nextRangeSize":2,
 "hasPrevious":false,
 "hasNext":true,
 "totalCount":5,
 "rangeSize":3,
 "status":"Showing 1-3 of 5 items"
 },
 "actions":[
 {
 "postback":{
 "variables":{

 },
 "action":"system.showMore"
 },
 "label":"Show More",
 "type":"postback"
 }
],
 "footerText":"Tap on a row to see personal details"
}

Skill Outbound Event Message
Represents the outbound event messages that can be sent by the server. It applies the
following properties to the Message.

Name Description Type Required?

type The message type "outboundEvent" Yes

eventType The event type (defined
in the event catalog)

String Yes

eventVersion The event type version
(defined in the event
catalog)

String Yes

eventData The business data JSONObject Yes

contextProperties The event context
properties

Event Context
Properties

No

For example:

{
 "messagePayload": {
 "eventData": {
 "size": "Medium",
 "type": "Cheese"
 },
 "eventVersion": "1.0",
 "eventType": "com.pizzastore.pizza.ordercreated",
 "type": "outboundEvent",
 "contextProperties": {
 "tenancy": "odaserviceinstance00",

Chapter 48
Message Model

48-125

 "specversion": "1.0",
 "id": "7a923f09-bff7-4369-8467-0c510e971aaf",
 "source": "hello/app",
 "time": 1659357000,
 "type": "com.pizzastore.pizza.ordercreated",
 "channelname": "System_Global_Test",
 "version": "1.0",
 "userid": "3910088",
 "contenttype": "application/json"
 }
 }
}

Skill Edit Form Message
Represents an editable form message (input form). The message consists of a Field
array.

Name Description Type Required?

type The message type. In
this case, it's
"editForm".

"editForm" Yes

title A representative title
for the edit form

String No

fields A list of fields which
can include both
editable and read only
fields.

Array<Field> Yes

formColumns The number of
columns in which the
form fields should be
grouped. The property
is applicable only
when you also set the
field property.

Integer No

formRows A list of rows which
can include both
editable and read only
fields. You must set
either the
fieldsproperty and
formRows is required.
They are mutually
exclusive.

Array<FormRow>

errorMessage A form-level error
message that displays
when the user has
submitted invalid data
but the error cannot be
linked to an individual
field.

String No

Chapter 48
Message Model

48-126

Name Description Type Required?

actions An array of actions
related to the edit
form. This array
includes a
SubmitFormAction. An
error displays in the
browser console when
the
SubmitFormAction
is not included in the
actions array.

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions A set of channel-
specific extension
properties
The
channelExtensions
object can include a
replaceMessage
property that's used to
replace a previous
input form.

JSONObject No

{
 "messagePayload": {
 "headerText": "Create Expense",
 "type": "editForm",
 "title": "Fill in the below form",
 "fields": [
 {
 "displayType": "textInput",
 "serverErrorMessage": "Invalid Text Input",
 "defaultValue": "Expense",
 "minLength": 5,
 "id": "Subject",
 "label": "Subject",
 "placeholder": "Enter subject of the expense",
 "clientErrorMessage": "Subject is required and must be
between 5 and 15 characters",
 "maxLength": 15,
 "required": true
 },
 {
 "displayType": "textInput",
 "defaultValue": "expense",
 "multiLine": true,
 "id": "Description",
 "label": "Description",
 "placeholder": "What is expense justification",
 "clientErrorMessage": "Description is required",
 "required": true
 },

Chapter 48
Message Model

48-127

 {
 "displayType": "datePicker",
 "defaultValue": "2023-06-07",
 "maxDate": "2023-06-22",
 "id": "Date",
 "label": "Expense Date",
 "placeholder": "Pick a date in the past",
 "clientErrorMessage": "Expense date is required and
must be in the past.",
 "required": true
 },
 {
 "displayType": "timePicker",
 "defaultValue": "18:58",
 "id": "Time",
 "label": "Expense Time",
 "placeholder": "What time was the expense",
 "clientErrorMessage": "Time is required. Please fill a
value",
 "required": true
 },
 {
 "displayType": "numberInput",
 "minValue": 5,
 "defaultValue": 6,
 "maxValue": 500,
 "id": "Amount",
 "label": "Amount",
 "placeholder": "Enter expense amount",
 "clientErrorMessage": "Amount is required and must be
between 5 and 500.",
 "required": true
 },
 {
 "autoSubmit": true,
 "displayType": "toggle",
 "defaultValue": "true",
 "labelOn": "Yes",
 "id": "TipIncluded",
 "label": "Tip Included?",
 "valueOff": "false",
 "labelOff": "No",
 "valueOn": "true"
 },
 {
 "displayType": "singleSelect",
 "serverErrorMessage": "Invalid Selection",
 "defaultValue": "Public transport",
 "options": [
 {
 "label": "Public transport",
 "value": "Public transport"
 },
 {
 "label": "Flight",

Chapter 48
Message Model

48-128

 "value": "Flight"
 }
],
 "layoutStyle": "list",
 "id": "Type",
 "label": "Expense Type",
 "placeholder": "Select expense type",
 "clientErrorMessage": "Expense type is required",
 "required": true
 },
 {
 "displayType": "multiSelect",
 "defaultValue": [
 "Toff van Alphen"
],
 "options": [
 {
 "label": "Toff van Alphen",
 "value": "Toff van Alphen"
 },
 {
 "label": "Roger Federer",
 "value": "Roger Federer"
 }
],
 "layoutStyle": "checkboxes",
 "id": "Attendees",
 "label": "Attendees",
 "placeholder": "Select attendees",
 "clientErrorMessage": "Please select atleast one attendee",
 "required": true
 }
],
 "formColumns": 1,
 "actions": [
 {
 "postback": {
 "system.botId": "6803DE12-DAA9-4182-BD54-3B4D431554F4",
 "system.flow": "ExpenseFlow",
 "system.state": "editFormMapVar"
 },
 "label": "Submit",
 "type": "submitForm"
 }
],
 "channelExtensions": {
 "replaceMessage": "True"
 }
 },
 "source": "BOT",
 "userId": "guest"
}

Chapter 48
Message Model

48-129

Skill Raw Message
Used when a component creates the channel-specific payload itself.

Name Description Type Required?

type The message type "raw" Yes

payload The channel-specific
payload

A JSON object Yes

Embed Chat in Visual Builder Apps
Using the <oj-oda-chat> Web Component, you can embed chat in Oracle Visual
Builder apps.

This component, which is available from the Component Exchange that's associated
with your instance, provides the following:

• Support for Common Response component-based conversations

• Speech integration

• Attachment sharing

• Connection to authentication-enabled channels

• Audio response for skill messages

• Delegate

• Theming

Refer to the Oracle Visual Builder Documentation for information on adding
components from the Component Exchange.

Tutorial: Access a Skill from Your Website
You can get a hands-on look at setting up the Oracle Web Channel, embedding the
widget in a web page, customizing the widget's look and feel, and enabling
autocomplete through the following tutorial.

• Access a Skill from Your Website

Oracle Web Channel Extensions
For Oracle Web channels, you can extend the functionality of Common Response
components with capabilities that are specific to the JavaScript SDK.

You access the extensions by using the channelCustomProperties element in
Common Response components and setting the appropriate properties. The code has
the following format:

...
 channelCustomProperties:
 - channel: "websdk"
 properties:

Chapter 48
Embed Chat in Visual Builder Apps

48-130

https://docs.oracle.com/en/cloud/paas/digital-assistant/tutorial-web-sdk/index.html

 PROPERTY_NAME: "PROPERTY_VALUE"
...

You can apply channelCustomProperties in the component's metadata at the level of
globalActions, responseItems, and elements of responseItems, depending on the given
property.

Here are the available custom properties for Oracle Web channels:

Name Allowed Values Applies To... Description

mediaType • A valid media type • Response items with
the following attributes:
– type:

"attachment"
– attachmentType

: "file"or
attachmentType
: "image"

• Cards with imageUrl
specified

The media type of the
attachment. For example,
image/jpeg. If not
specified, the media type
will be resolved from the
attachment URL.

For more information on using channelCustomProperties, see Channel-Specific Extensions.

Chapter 48
Oracle Web Channel Extensions

48-131

49
Oracle iOS

Using the Oracle iOS SDK for Oracle Digital Assistant, you can integrate your digital assistant
with iOS apps.

The SDK connects to the Oracle Chat Server, the intermediary between the Oracle iOS
channel configured in Oracle Digital Assistant and the client. The chat server then passes
messages to the skill for processing and delivers the skill's response to the client.

What Do You Need?
Here's what you need to get an Oracle iOS channel working.

• An Oracle iOS Channel. Creating the channel generates the Channel ID and the Secret
Key that you need to initialize the chat app.

• The URL of the Oracle Chat Server.

• The Oracle iOS SDK (located under Oracle Native Client SDKs for OCI Native
Environments) from Oracle Technology Network’s ODA and OMC download page.
Download this ZIP and extract it to your local system. This ZIP includes a user guide that
describes the SDK's functions.

• Starting with Version 22.04, the supported version of Swift is 5.6. The minimum
requirements for this version are:

– Swift Version: 5.5

– Target iOS Version: 12.0 or higher

– Xcode Version: 13 or higher

Note:

If you want your app to work with earlier versions, keep in mind that we haven't
tested these and therefore can't guarantee their compatibility.

Create the Oracle iOS Channel
You can configure the channel to connect to the Oracle Chat Server in two modes:
unauthenticated mode and authenticated mode (to protect access to the channel).

• Unauthenticated mode – Use the unauthenticated mode when the client can't generate
signed JWT tokens, when no authentication mechanism is in place, or when the client
widget is already secured and visible to authenticated users.

• Authenticated mode – Authentication is enforced using JSON Web Tokens (JWT). The
customer's backend server generates the JWT token, which is then passed to the Oracle
iOS SDK. This token is used for each request to an ODA speech, text, or attachment
server.

49-1

https://www.oracle.com/downloads/cloud/amce-downloads.html

Note:

To protect access to the channel, the token must always be generated by
a remote server. It must never be generated within by the client app.

When the app needs to connect to an ODA server, it first requests the token from
the backend server and then adds it to the Authorization header. The ODA server
validates the token, evaluates the claims, and then either opens the socket or
rejects the connection.
The JWT Token has the following claims: channelId and userId, and the claim
names iat (issued at time), and exp (expiration time). iat signifies the time at
which the token was issued. This must a number that represents the seconds that
have elapsed since the UNIX epoch. exp must be a number representing the
seconds that have elapsed since the UNIX epoch. We recommend setting the
expiration time to at least 30 minutes after the issued at time (iat). The token
header looks something like this:

{

 "alg": "HS256",

 "typ": "JWT"

}

An example token body looks something like this:

{

 "iat": 1569828182,

 "exp": 1569831782,

 "channelId": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "userId": "John"

}

Note:

The token illustrated by this example is not signed. The actual tokens are
signed by channel's Secret Key.

Configure the Oracle iOS Channel
To configure the Oracle iOS channel:

1. Choose Development, then Channels from the menu.

Chapter 49
Create the Oracle iOS Channel

49-2

2. Choose Users.

3. Click Add Channel and then Oracle iOS as the channel type.

4. Complete the dialog:

• Enter the channel name.

• For authenticated connections:

– Switch on the Client Authentication Enabled toggle to determine whether the
SDK is connecting to a client authentication-enabled channel.

– In the Max. Token Expiration (Minutes) field, set the maximum amount of time for
the JWT token.

– Set the Session expiration time.

• For unauthenticated connections:

– Switch off Client Authentication Enable toggle.

– Set the Session expiration time.

• Click Create. Oracle Digital Assistant will generate the Channel ID and the Secret
Key that you need to initialize the SDK. Keep these close at hand because you'll
need them when configuring the HTML page to host the chat widget.

5. Route the channel to your skill or digital assistant.

6. Switch Channel Enabled to On.

Add the SDK to the Project
Here are details on adding the Oracle iOS SDK to your project.

The frameworks are bundled into a single .xcframework file.

1. Download the ODA Client SDK for iOS and extract it to your local system.

2. Add the .xcframework files to the Frameworks file in your Xcode project. Choose the set
of frameworks from the appropriate folder depending on where you want to run the app
(simulator or actual device). You can drag and drop the files into the Frameworks file or
you can add them as follows:

a. Click File > Add Files to "<project name>".

b. Choose the .framework files that you want to add depending on where you want to
run the app (simulator or actual device).

c. Make sure to that Copy items if needed (located under Destinations) is selected.

d. Alternatively, you can drag and drop the .framework files into the project file in
Xcode.

3. After you've added the files:

• Make sure Copy items if needed for the Destination property is selected.

• Make sure that Add to Targets is selected for the project.

4. Embed and sign the frameworks in the Frameworks, Libraries, and Embedded Content
category in the General tab. (This may vary according to the version of Xcode that you're
using.) Make sure the Targets option is selected.

5. Add the following keys in the project's Info.plist file:

Chapter 49
Add the SDK to the Project

49-3

• Privacy - Location Always and When In Use Usage Description or
<key>NSLocationAlwaysUsageDescription</key> and the corresponding
<string></string> in the source code.

• Privacy - Location When In Use Usage Description or
<key>NSLocationWhenInUseUsageDescription</key> and the corresponding
<string></string> in the source code.

• Privacy - Microphone Usage Description or
<key>NSMicrophoneUsageDescription</key> and the corresponding
<string></string> in the source code.

• Privacy - Camera Usage Description or <key>NSCameraUsageDescription</
key> and the corresponding <string></string> in the source code.

• Privacy - Photo Library Usage Description or
<key>NSPhotoLibraryUsageDescription</key> and the corresponding
<string></string> in the source code.

6. To open a location in Google maps instead of Apple maps when a user taps a map
view in a location message, declare the URL schemes used by the Maps SDK for
iOS in the app's Info.plist file as described in the Google Maps SDK for iOS
documentation.

7. To enable users to download attachments that are part of a skill response, set the
Application Supports iTunes file sharing key (UIFileSharingEnabled) to YES
and the Support opening documents in place key
(LSSupportsOpeningDocumentsInPlace) to YES in the Info.plist file.

Initialize the SDK in Your App
You can use the following code to initialize the chat view.

// Import the SDK
import BotClientUISDK

public class ViewController: UIViewController {

 // Declare a global BotsViewController variable in your app view
controller class
 public var chatViewController: BotsViewController?

 override func viewDidLoad() {

 // Obtain a shared instance of BotsViewController from
BotsUIManager
 chatViewController =
BotsUIManager.shared().viewControllerInstance()

 // Specify the color changes if any in a particular component.
Make sure you set all the required colors in BotsProperties before
adding the chat view to the view controller.

 // Add the chatViewController to your navigationController

self.navigationController?.pushViewController(chatViewController!,

Chapter 49
Initialize the SDK in Your App

49-4

https://developers.google.com/maps/documentation/ios-sdk/start
https://developers.google.com/maps/documentation/ios-sdk/start

animated: false)

 // Obtain a shared instance of BotsManager
 let botsManager = BotsManager.shared()

 // If you require access to callback methods provided in
AuthenticationProvider. Make sure your class conforms to
BotsMessageServiceDelegate
 botsManager.authenticationTokenProvider = self

 // Initialize a BotsConfiguration object and set feature flags if
required.
 var botsConfiguration = BotsConfiguration(url: url, userId: userId,
channelId: channelId)

 // Initialize the configuration in botsViewController. Make sure you
set all the feature flag values before passing the botsConfiguration to
initConfiguration.
 chatViewController?.initConfiguration(botsConfiguration:
botsConfiguration)

 // If you require access to callback methods provided in
BotsMessageServiceDelegate. Make sure your class conforms to
BotsMessageServiceDelegate
 botsManager.delegate = self

 // If you require access to callback methods provided in
BotsEventListener. Make sure your class conforms to BotsEventListener
 botsManager.botsEventListener = self

 // Initialize and establish connection to the chat server
 botsManager.initialize(botsConfiguration: botsConfiguration,
completionHandler: { (connectionStatus, error) in
 if error != nil {
 print ("Error: \(error.localizedDescription)")
 } else {
 print ("Connection Status: \(connectionStatus)")
 }
 })
 }
}

App Development Settings
Here is a reference to the settings you may use in the development of the app for your iOS
channel.

Initialize the Feature Flag Settings
Initialize BotsConfiguration object using one of its constructors.

• clientAuthDisabled
– BotsConfiguration(url: String, userId: String, channelId: String)

Chapter 49
App Development Settings

49-5

* Parameters:

* url - The Oracle Chat Server URL. This cannot be null.

* userId - The unique identifier for the user. This cannot be null.

* channelId - The Oracle iOS Channel ID. This cannot be null.

* When the userId not provided (a randomly generated value is instead)

* url - The Oracle Chat Server URL. This cannot be null.

* channelId - The Oracle iOS Channel ID. This cannot be null.

• clientAuthEnabled
– BotsConfiguration(url: String, authToken: String)

* Parameters:

* url - The Oracle Chat Server URL. This cannot be null.

* authToken - The authentication token for establishing a connection
with an authentication-enabled channel. This cannot be null.

For example:

// Initialize a BotsConfiguration object
var botsConfiguration = BotsConfiguration(url: chatServerUrl,
authToken: token)

// Set the feature flag values if the desired values are different
from the default values
botsConfiguration.showConnectionStatus = true
botsConfiguration.enableBotAudioResponse = true
botsConfiguration.disablePastActions = "none"

Network Configuration

Property Name Description Required? Default Value

url The URL of the Oracle
Chat Server

Yes N/A

channelId The ID of the Oracle
iOS channel.

Yes N/A

userId The unique identifier
for user. This value
gets initialized by the
SDK if not provided.

No A randomly generated
value

authToken The authentication
token for establishing
a connection with an
authentication-enabled
channel.

Yes N/A

Chapter 49
App Development Settings

49-6

Feature Flags

Property Description Required? Default Value

disablePastActions A field for disabling the
button clicks on the
messages that a user
has already interacted
with. The allowed values
are all, none, and
postback. The
behavior enabled by this
property is independent
of the digital assistant-
level configuration for
disabling the selection
of past actions. You
need to set the two
separately.

No all

displayPreviousMess
ages

Enables, or disables, the
user's local conversation
history.

No false

enableAgentSneakPre
view

If enabled, the agent
can view the user
message as it is being
typed, even before the
user sends the
message.
Otherwise, ... is sent
to the agent.

No false

enableAttachment Configures attachment
sharing in the chat app.

No true

enableAttachmentSec
urity

When set to true, extra
headers are passed to
the attachment upload
requests to ensure that
they can't be
downloaded without
passing a valid signed
JWT token as an
authorization header.
Note: Do not enable this
setting if the skill
connects to an ODA
instance that's Version
20.08 or runs on any
version prior to 20.08.
This property only
applies to client auth-
enabled connections to
Versions 20.12 and
higher of the ODA
platform.

No false

Chapter 49
App Development Settings

49-7

Property Description Required? Default Value

enableAutoSendSpeec
hResponse

When set to true (the
default), the user's
speech response is
automatically sent to the
chat server (and
rendered as a sent
message in the chat
window). When set to
false, the user's
speech response is
rendered in the
message text field
before it's sent to the
chat server, allowing the
user to modify it before
sending it manually, or
delete the message.

No true

enableClearMessage Enables the clear
message button in the
chat widget header.

No false

enableDefaultClient
Response

When set to true, the
client displays default
responses when the skill
response has been
delayed, or when there's
no response from the
skill.

No false

enableEndConversati
on

Enables the user to end
the conversation and
reset the chat session. It
also clears the local
conversation history,
disconnects from the
chat server, and
minimizes the widget.

No true

enableSendTypingSta
tus

Controls the sending of
the user typing status.

No false

enableSpeechRecogni
tion

Enables the microphone
button.

No false

enableSpeechSynthes
is

Enables the skill
responses to be read
aloud. By setting this
flag to true, you enable
the skill's responses to
be read aloud using
Swift API.

No false

enableTimestamp Enables the timestamp
for messages. You can
set the timestamp
display mode as
absolute or relative
using the
timestampMode
setting.

No true

Chapter 49
App Development Settings

49-8

Property Description Required? Default Value

headerLogo Passes a UIImage
object, which is placed
on the header. The
default alignment is on
the left side of the
header. To place it on
the right, set the
headerLogoAlignment
property to
NSTextAlignment.rig
ht.

No N/A

headerLogoAlignment Sets the alignment of
the header logo, if
passed.

No NSTextAlignment.lef
t

initSpeechSynthesis
Muted

Sets the default state of
BotAudioResponse as
muted or unmuted.

No true

initUserHiddenMessa
ge

A user text message
that's used to initiate a
conversation. This
message, which is sent
when chat widget is
ready, does not actually
display in chat.

No N/A

Chapter 49
App Development Settings

49-9

Property Description Required? Default Value

initUserProfile Initializes the user
profile before the start of
the conversation. The
format of the profile
payload must be
["profile": […]].
For example:

initUserProfile
= ["profile":
["givenName":
"First",
"surname":
"Last", "email":
"first.last@examp
le.com",
"properties":
["lastOrderedItem
s": "1 medium
pepperoni"]]]

This function updates
the user context before
the initial "hidden"
message is sent by
initUserHiddenMessa
ge to start the
conversation. As a
result, the user profile
can be reflected in the
first response message
to the user. For
example, the skill can
greet the user with a
message like "Welcome
back, John Smith! Your
last order was a medium
pepperoni pizza."

No N/A

multiLangChat Enables the chat widget
to both detect a user's
language and allow the
user to select a
preferred language from
a dropdown menu in the
header for conversation.

reconnectMaxAttempt
s

The number of attempts
made by the chat widget
to reconnect when the
initial connection fails.

No 5

Chapter 49
App Development Settings

49-10

Property Description Required? Default Value

sharePopupConfigura
tion

Allows the user to
choose the options
available as part of the
attachment menu. The
default value is set to a
list of all options.

No [.photoAndVideoLibr
ary, .files, .camer
a]

showConnectionStatu
s

Enables the connection
status to display in the
chat widget header.

No false

showTypingStatus Displays the typing
indicator when waiting
for skill's response.

No true

speechLocale The expected locale of
the user's speech that's
used for voice
recognition. US English
('en-US') is the default
locale. The other
supported locales are:
Australian English ('en-
au'), UK English ('en-
uk'), French ('fr-fr'),
German ('de-de'),
Italian ('it-it'),
Brazilian Portuguese
('pt-br'), and Spanish
('es-es'). The speech
locale can be set
dynamically by calling
the
setSpeechLocale('<l
ocale>') API. Voice
recognition will not work
if an unsupported locale
has been passed.

No en-us

speechSynthesisVoic
ePreferences

Matches the provided
preferences based on
both the language-
locale and voice name.
If no match is found,
then the default voice for
the given language-
locale is used. In the
latter case, the Apple
API finds the best match
with the given language-
locale.

No N/A

timestampFormat Formats the delivery
timestamp that
accompanies
messages. The
timestamp format should
be supported by the
Swift DateFormatter.

No E MMM d, HH:mm a

Chapter 49
App Development Settings

49-11

https://developer.apple.com/documentation/foundation/dateformatter

Property Description Required? Default Value

timestampMode If you enable
timestamps by setting
enableTimestamp to
true, you can use set
the timestamp mode as
either absolute
timestamps that appear
on each message, or as
a relative timestamp that
appears only on the
latest message.
• TimestampMode.d

efault – Sets an
absolute timestamp
on each message.

• TimestampMode.r
elative – The
timestamp displays
before the first
message of the day
as an absolute
timestamp in a
header, and then as
a relative timestamp
for the new
messages as an
updating timestamp
indicating the time
passed since the
message was
added in the
conversation. The
relative timestamp
updates at set
intervals until a new
message is
received.

No TimestampMode.relat
ive

title Sets the title of the app,
which is displayed in the
app bar.

No N/A

ttsService An instance of type
TTSService which
used for injecting a text-
to- speech (TTS)
service. Applicable only
if
enableSpeechSynthes
is is set to true.

No

typingStatusInterva
l

The interval, in seconds,
to throttle the typing
event and the sending of
the typing status.

No 3

Chapter 49
App Development Settings

49-12

Property Description Required? Default Value

typingStatusTimeout Sets the timeout, in
seconds, to hide the
typing status indicator
when no response has
been received from the
chat server.

No 30 secs

Strings
Configure strings by adding the following key = value pairs in the app's <language-
code>.iproj/Localizable.strings file.

Key Description Default Value

connectionFailureMessage The message that displays after
the number of attempts set by
reconnectMaxAttempts have
been exhausted.

Sorry, the assistant is
unavailable right now. If
the issue persists,
contact your help desk.

connectionRetryLabel The default string for the retry
button that displays with
connectionFailureMessage.

Try Again

end_conversation_action_y
es

The text for the confirm button in
the end session confirmation
prompt.

Yes

end_conversation_alert_me
ssage

The message body of the end
conversation confirmation
prompt.

This will also clear your
conversation history

end_conversation_alert_no The text for the decline button in
the end session confirmation
prompt.

No

end_conversation_alert_ti
tle

The title for the end conversation
confirmation prompt.

Are you sure you want to
end the conversation?

odais_access_label_audio_
attachment

The accessibility label for an
audio attachment message

audio attachment

odais_access_label_button
_attach

The accessibility label for the
upload attachment button.

Upload attachment

odais_access_label_button
_audio_reponse_off

The accessibility label for the
muted volume button

Unmute audio response

odais_access_label_button
_audio_reponse_on

The accessibility label for the
unmuted volume button.

Mute audio response

odais_access_label_button
_back

The accessibilty label for the
back button.

Go back

odais_access_label_button
_card_navigation_left

The accessibility label for the left
navigation button for the
horizontal card view.

Card navigation right

odais_access_label_button
_card_navigation_right

The accessibility label for the
right navigation button for the
horizontal card view.

Card navigation left

odais_access_label_button
_clear

The accessibilty label for the
clear message button

Clear messages

Chapter 49
App Development Settings

49-13

Key Description Default Value

odais_access_label_button
_keyboard

The accessibility label for the
keyboard button.

Enter message

odais_access_label_button
_overflow

The accessibility label for a
overflow menu button.

Open Menu

odais_access_label_button
_select_language

The accessibility label
for select language
button.

Select Language

odais_access_label_button
_send

The accessibility label for the
send button

Send message

odais_access_label_button
_speak

The accessibility label for the mic
button

Speak message

odais_access_label_card_d
esc

The accessibility label for a card
description that's followed by the
text

card description

odais_access_label_card_t
itle

The accessibility label for a card
title that's followed by the text

card title

odais_access_label_chat_s
tatus

The accessibility label for the
chat status which is followed by
the status string

Chat status

odais_access_label_chat_t
itle

The accessibility label for the
chat title which is followed by the
chat title string

Chat title

odais_access_label_file_a
ttachment

The accessibility label for a file
attachment message

file attachment

odais_access_label_footer
_text

The accessibility label for a
footer text that's followed by the
text

footer text

odais_access_label_header
_text

The accessibility label for a
header text that's followed by the
text

header text

odais_access_label_image_
attachment

The accessibility label for an
image attachment message

image attacment

odais_access_label_locati
on_message

The accessibility label for a
location message that's followed
by the location message title and
the latitude and longitude

location message

odais_access_label_pause The accessibility label for the
pause button.

Pause

odais_access_label_play The accessibility label for the
play button

Play

odais_access_label_skill The accessibility label for a skill
message payload read by
VoiceOver (the iOS Accessibility
feature). This label is then
appended with the message
specific label.

Skill

odais_access_label_text_m
essage

The accessibility label for a text
message that's followed by the
text

text message

Chapter 49
App Development Settings

49-14

Key Description Default Value

odais_access_label_user The accessibility label for a user
message payload read by
VoiceOver (the iOS Accessibility
feature). This label is then
appended with the message
specific label.

User

odais_access_label_video_
attachment

The accessibility label for a video
attachment message

video attachment

odais_access_label_webvie
w_clear_button

The accessibility label for the
WebView clear button in the in-
widget webview.

Close webview

odais_access_label_webvie
w_title

The default accessibility label for
the title of the in-widget Webview.

Webview title

odais_alert The title of the alert message
displayed for speech and file-
related errors.

Alert

odais_camera The action text that appears on
the attachment popup for using
the device's camera.

Camera

odais_camera_permission_d
enied

The error message that's
displayed when camera access
is not allowed.

Camera permission denied.

odais_chat_title The title of the app that's
displayed on the app bar.

Digital Assistant

odais_check_url The error message displayed for
a broken link in the webview.

Please check the url!

odais_clear_chat The title of the clear chat button
in the overflow menu.

Clear Chat

odais_connected The status text that displays
when the connection between
chat widget and the Oracle chat
server has been established.

Connected

odais_connecting The status text that displays
while the chat widget connects to
the Oracle chat server.

Connecting

odais_default_greeting_me
ssage

The default greeting response. Hey, Nice to meet you!
Allow me a moment to get
back to you.

odais_default_sorry_messa
ge

The default response when the
wait time for message expires.

I'm sorry. I can't get
you the right content.
Please try again.

odais_default_wait_messag
e

The default response that
displays while waiting for the skill
message.

I'm still working on your
request. Thank you for
your patience!

odais_disconnected The status text that displays
when the connection between
the chat view and the Oracle
chat server has closed.

Disconnected

odais_done The label text for the button that
closes the chat view.

Done

Chapter 49
App Development Settings

49-15

Key Description Default Value

odais_download_attachment
_folder

The name of the folder created
inside the applications folder for
saving attachments. The default
value is an empty string.

An empty string.

odais_error The title of the webview-related
error and alert messages.

Error

odais_fail_to_load The error message displayed
when the page can't load in in
the webview. The text inside the
curly braces ({}) will be linkified
with the link to open in the
default browser.

Sorry, we can't open this
page in the chat window.
Click {here} to open it
in your browser.

odais_file_not_supported The alert message displayed
when the user selects file type
that's not supported for
attachments.

File type not supported

odais_file_size_warning The alert message that's
displayed when the file chosen
for attachment exceeds the max
attachment size limit. The text
{0} is replaced by the max
attachment size limit set. The
default max attachment size limit
is 25MB.

You can only attach files
of size up to {0}MB.

odais_files The action text that appears on
the attachment popup for
choosing a file from storage.

Files

odais_gallery_permission_
denied

The alert message displayed
when permission to the gallery
has not been granted.

You don't have permission
to access gallery.

odais_language_ar The default string for displaying
the Arabic language in the drop-
down menu unless otherwise
provided.

Arabic

odais_language_de The default string for displaying
the German language in the
drop-down menu, unless
otherwise provided.

German

odais_language_detect The default string for displaying
Detect Language in the drop-
down menu, unless otherwise
provided.

Detect Language

odais_language_en The default string for displaying
the English language in the drop-
down menu, unless otherwise
provided.

English

odais_language_es The default string for displaying
the Spanish language in the
drop-down menu, unless
otherwise provided.

Spanish

odais_language_fr The default string for displaying
the French language in the drop-
down menu, unless otherwise
provided.

French

Chapter 49
App Development Settings

49-16

Key Description Default Value

odais_language_it The default string for displaying
the Italian language in the drop-
down menu, unless otherwise
provided.

Italian

odais_language_nl The default string for displaying
the Dutch language in the drop-
down menu, unless otherwise
provided.

Dutch

odais_language_pt The default string for displaying
the Portuguese language in the
drop-down menu, unless
otherwise provided.

Portuguese

odais_location_disabled The error message that's
displayed when location services
are disabled.

Location services not
enabled. Please enable
the Location Services
switch in Settings >
Privacy.

odais_location_fetch_erro
r

The error message that's
displayed when the SDK is not
able to fetch the current device
location.

Error in getting device
location. Please check
location settings or try
again.

odais_location_permission
_denied

The error message that's
displayed when location access
is not allowed.

Location Permission
Denied.

odais_mute The title of the mute button in the
overflow menu.

Mute

odais_no_speech_error The alert message
that'sdisplayed when no audio
content is sent to the speech
server (the user hasn't spoken).

Could not detect the
voice, no message sent.

odais_notification_title The title displayed on the
notifications bar.

OracleChatBot

odais_ok The label text for the button that
closes alert and error messages.

Ok

odais_photo The action text that appears on
the attachment popup for
choosing a file from phone's
gallery.

Photo & Video Library

odais_select_language The title of the select language
button in the overflow menu.

Select Language

odais_speak_your_message The placeholder text for the user
message input field in speech
mode

Start speaking

odais_speech_cancel The button label text on the
speech popup for cancelling the
sending of recorded audio to the
speech server.

CANCEL

odais_speech_error The alert message that's
displayed when the audio cannot
be recorded.

Error in voice
recognition. Please try
again later.

Chapter 49
App Development Settings

49-17

Key Description Default Value

odais_speech_permission_d
enied

The error message displayed
when microphone usage is not
allowed.

Permission_Denied

odais_speech_start The text displayed on the speech
popup indicating that the user
can now start speaking.

Listening...

odais_speech_unsupported_
locale

The error message displayed
when the set speech locale is not
supported by the speech server.

The set speech locale is
not supported. Cannot
start recording.

odais_stars_rating The message that's read aloud
when the user clicks a feedback
button while in accessibility mode

Rate {0} star

odais_subtitle The subtitle of the chat widget
that's displayed below the title in
the header . If
showConnectionStatus is set
to true, and the subtitle is set as
well, the subtitle is displayed
instead of the connection status.

N/A

odais_timestamp_days The relative timestamp that
displays every day since the
previous message was received.
{0} is replaced by the number of
days that have passed.

{0}d ago

odais_timestamp_hours The relative timestamp that
displays every hour for the first
24 hours after the previous
message was received. {0} is
replaced by the number of hours
that have passed.

{0}hr ago

odais_timestamp_minutes The relative timestamp that
displays every minute since the
last message was received. {0}
is replaced by the number of
minutes that have passed.

{0}min ago

odais_timestamp_months The relative timestamp that
displays every month since the
previous message was received.
{0} is replaced by the number of
months that have passed.

{0}mth ago

odais_timestamp_now The relative timestamp that
displays for a new message.

Now

odais_timestamp_seconds The relative timestamp that
displays ten seconds after the
message has been received and
before 60 seconds has elapsed
since the last message was
received.

A few seconds ago

odais_timestamp_years The relative timestamp that
displays each year after the
previous message was received.
{0} is replaced by the number of
years that have passed.

{0}yr ago

Chapter 49
App Development Settings

49-18

Key Description Default Value

odais_too_much_speech_err
or

The alert message that's
displayed when too much audio
content is sent to the speech
server at once (the user speaks
too much).

Too much voice input to
recognize. Cannot
generate recognized text.

odais_type_your_message The placeholder text for the user
message input field

Enter message

odais_unmute The title of the unmute button in
the overflow menu.

Unmute

odais_upload_attachment The text that's displayed on the
bubble indicating that an
attachment is being uploaded.

Uploading attachment

odais_upload_attachment_e
rror

The error message that displays
when an attachment cannot be
uploaded.

Error in uploading
attachment

odais_zero_byte_file_warn
ing

The alert message that's
displayed when the selected file
has zero (0) bytes.

Files of size zero bytes
can not be uploaded.

editFieldErrorMessage The field-level error message
that is displayed when the value
entered by the user is invalid for
that field. The SDK defaults to
this message when the skill does
not provide a client error
message.

Field Input is invalid

editFormErrorMessage The form-level error message
that is displayed below the form's
submit action for client-side
validation. This message display
when at least one of the fields is
not valid and there is more than
one field. The SDK defaults to
this message when the skill does
not provide an error message in
the message payload.

Some of the fields need
your attention.

noResultText The status text that's displayed
when there are no matches from
a user search in multi-select list
view.

No more results

UI Properties and Colors
You can modify the colors for the following components by using
BotsProperties.<component name> = <UIColor type>. As described in Initialize the SDK in
Your App, you must set all of the colors in BotsProperties before adding the chat view to the
view controller.

Component Description Values

ActionBorderColor The border color for an action
button

161513.withAlphaComponen
t(0.50)

ActionButtonColor The color for an action button UIColor.clear

Chapter 49
App Development Settings

49-19

Component Description Values

ActionLabelTextColor The text color for an action label #161513
AgentAvatarBackgroundColo
r

The background color of the
avatar layout when the agent
avatar has not been provided
and the agent name initials
display in its place

#A890B6

AgentAvatarTextColor The text color of the agent name
initials that display inside the
agent avatar layout.

UIColor.white

AgentNameTextColor The text color used for the agent
name that displays above the
agent messages.

#161513.withAlphaComponen
t(0.65)

AttachmentBackgroundColor The background color of the
attachment messages.

UIColor.white

AttachmentBorderColor The background color of the
attachment messages.

#161513

AttachmentIconColor The color of the icons in
attachment messages.

#161513

AttachmentTextColor The text color of the attachment
messages.

#161513

BotMessageColor The background color for text,
attachment, and location
messages sent by the skill

UIColor.white

BotTextColor The color for the text in a text
message sent by the skill

#161513

CardActionBorderColor The order color of a card action
button

#161513.withAlphaComponen
t(0.50)

CardActionButtonColor The color of a card action button UIColor.clear
CardActionLabelTextColor The text color of a card action

label
UIColor.white

CardBackgroundColor The background color for a card UIColor.white
CardDescriptionTextColor The text color for a card

description
#161513

CardNavigationArrowColor The color of the navigation
button arrows in a horizontal card
view

#161513

CardNavigationButtonColor The color of the navigation
buttons in horizontal card view

#FBF9F8

CardTitleTextColor The text color for a card title #161513
ChatBackgroundColor The color for the chat view

background
#F5F4F2

conversationBeginPosition Sets the starting point of the
conversation at the top or the
bottom.

Values are top and bottom. The
default is bottom.

EnableArrowsForHorizontal
Cards

Enables navigation arrows for
horizontal card view when set to
true. Disables them when set to
false.

false

FooterColor The background color of the
footer.

UIColor.white

Chapter 49
App Development Settings

49-20

Component Description Values

FooterIconsColor The color of the attachment,
send, and mic icons located in
the footer.

#161513

FooterInlineIconsColor The color of the icons (if any)
inside the text input field

#004C8C

GlobalActionBorderColor The border color of a global
action button

#161513.withAlphaComponen
t(0.50)

GlobalActionButtonColor The color of the global action
button

#0077C2

GlobalActionLabelTextColo
r

The color of a global action label #161513

HeaderColor The background color of the
header

#F1EFED

HeaderIconsColor The color for the clear message,
volume, and mute header icons.

#161513

HeaderTextColor The text color for the connection
status, typing status, and chat
title header items

#161513

InputFieldColor The background color of the text
input field

#161513

InputFieldTextColor The color of the text in the text
input field

#161513

IsRTL When when set to true, flips the
UI to support layout for right-to-
left languages such as Arabic.
When set to false, the default
UI layout for left-to-right
languages (English, for
example).

false

LinkHandler Sets how the links that appear in
the chat widget as part of any
message payload are opened.
The possible values are
LinkHandlerType.browser
and
LinkHandlerType.webview.
This behavior can be overriden
for specific URL actions using
the beforeDisplay() delegate
by changing the action type from
url to webview.

LinkHandlerType.browser

PopupBackgroundColor The background color of the
popup views.

UIColor.white

PopupIconColor The color of the icons in popup
views.

#161513

PopupTextColor The text color in popup views. #161513
RatingStarColor The color of a feedback button

before the user has selected it.
UIColor.white

RatingStarColorFill The color of a feedback button
after the user has selected it.

#0077C2

Chapter 49
App Development Settings

49-21

Component Description Values

saveClickedImagesInGaller
y

When set to true (the default),
the images captured by the
iPhone Camera app by skill
users get saved to the gallery
and are uploaded directly to the
skill as an attachment. If these
images should not be saved to
the gallery, set this flag to false.

true

SpeechVisualizationColor The color of the speech
visualization bars

#161513

SpeechVisualizerContainer
Background

The background color of the
speech visualization view

UIColor.white

Theme The UI theme for the application.
Valid values are
BotUITheme.REDWOOD_DARK
and BotUITheme.DEFAULT. For
the REDWOOD_DARK theme, we
recommend #201E1C. For the
DEFAULT theme, it's #004C8C.
Set the color of the navigation
bar using the sample app.

BotUITheme.DEFAULT

TimestampColor The color for the message
timestamp

#161513.withAlphaComponen
t(0.65)

UserMessageColor The background color for a user
message

#E4E1DD

UserTextColor The color for the text in a text
user sent by the user

#161513

WebViewConfig An instance of the struct
WebViewConfiguration with
all fields set to their default
values.

Sets the configuration settings
for of the webview.

Icons
You can customize the following icons by setting the name of the icon image asset in
the client app.

Icon Image Asset Name

Agent Avatar "agentAvatar"
Attachment Button "attachmentButton"
Skill Avatar "botAvatar"
Clear Button "clearButton"
The close button to invoke the end
conversation flow

"closeButton"

Download "downloadAttachmentButton"
File Icon for a file attachment "file"
Keyboard Button "keyboardButton"
Left Arrow for horizontal cards "leftArrow"

Chapter 49
App Development Settings

49-22

Icon Image Asset Name

Mic Button "micButton"
Person Avatar "personAvatar"
Rating icon used for the feedback component
buttons

"ratingIcon"

Right Arrow for horizontal cards "rightArrow"
Send Button "sendButton"
The button to invoke the language selection
popup

"selectLanguageButton"

The overflow menu button when there are
three or more action buttons in the header.

"overflowButton"

Volume Off Button "volumeOffButton"
Volume On Button "volumeOnButton"
Zoom "imageZoomButton"

Features
Here are the features that you can configure in the Oracle iOS SDK.

Absolute and Relative Timestamps
• Feature flag: enableTimestamp
• Feature flag: timestampMode
You can enable absolute or relative timestamps for chat messages. Absolute timestamps
display the exact time for each message. Relative timestamps display only on the latest
message and express the time in terms of the seconds, days, hours, months, or years ago
relative to the previous message.The precision afforded by absolute timestamps make them
ideal for archival tasks, but within the limited context of a chat session, this precision detracts
from the user experience because users must compare timestamps to find out the passage of
time between messages. Relative timestamps allow users to track the conversation easily
through terms like Just Now and A few moments ago that can be immediately understood.
Relative timestamps improve the user experience in another way while also simplifying your
development tasks: because relative timestamps mark the messages in terms of seconds,
days, hours, months, or years ago, you don't need to convert them for timezones.

Configure Relative Timestamps
To add a relative timestamp, enableTimestamp must be enabled (true) and timestampMode,
which controls the style of timestamp, must be timestampMode.relative. By setting
timestampMode.relative, an absolute timestamp displays before the first message of the
day as a header. This header displays when the conversation has not been cleared and older
messages are still available in the history.

This timestamp is updated at following regular intervals (seconds, minutes, etc.) until a new
message is received.

• For first 10s

• Between 10s-60s

Chapter 49
Features

49-23

• Every minute between 1m-60m

• Every hour between 1hr-24hr

• Every day between 1d-30d

• Every month between 1m-12m

• Every year after first year

When a new message is loaded into the chat, the relative timestamp on the previous
message is removed and a new timestamp appears on the new message displaying
the time relative to the previous message. At that point, the relative timestamp updates
until the next messages arrives.

Actions Layout
Use the BotsProperties.actionsLayout configuration settings to display the action
buttons in horizontal or vertical layouts. The layout can be set for local actions, global
actions, card actions, and form actions. The default value is horizontal for all action
types.

BotsProperties.actionsLayout =
ActionsLayout(local: .horizontal,global: .vertical,card: .horizontal,fo
rm: .horizontal)

Agent Avatars
For skills integrated with live agent support, the agentAvatar setting enables the
display of an avatar icon for the messages sent by the agents. You configure this with
the URL of the icon that displays alongside the agent messages.

Dynamically Update Avatars and Agent Details
You can enable the user and agent avatars to be dynamically updated at runtime using
the setUserAvatar(avatarAsset : String), getAgentDetails(), and
setUserAvatar(avatarAsset : String).

Set the User Avatar
The setPersonAvatar(avatarAsset : String) enables the dynamic updating of the
user avatar at runtime. This method sets the user avatar for the all the messages,
including previous messages. The avatarAsset can be:

• The name of the asset from the project Assets folder.

• An external link to the image source as shown in the following example.

BotsUIManager.shared().setPersonAvatar(avatarAsset: "https://
picsum.photos/200/300")
BotsUIManager.shared().setPersonAvatar(avatarAsset:
"userAvatarInAssetsFolder")

Chapter 49
Features

49-24

Set the Agent Details
You can customize the agent details using the setAgentDetails(agentDetails:
AgentDetails) API. Along with the agent name, the other attributes that you can use this API
to customize are text color and the avatar. If no agent avatar has been configured, the avatar
can be configured dynamically with the agent name initials. You can also customize the color
of these initials and background color. The getAgentDetails() API retrieves the current
agent details.

Although these APIs can be called at any time, we recommended using them with either the
onReceiveMessage() or beforeDisplay() events.

setAgentDetails(agentDetails: AgentDetails)
To override the agent details received from server, use this API as follows:

Note:

All of the parameters of the AgentDetails object are optional.

// to override avatar , name and name text colorlet agentDetails =
AgentDetails(name: "Bob", avatarImage: "https://picsum.photos/200/300",
nameTextColor: .red)
// to override avatar , namelet agentDetails = AgentDetails(name: "Bob",
avatarImage: "https://picsum.photos/200/300")
// to override avatar, name, name text color,avatar initials color , avatar
background let agentDetails = AgentDetails(name: "Bob",
nameTextColor: .red,avatarTextColor: .blue,avatarBackgroundColor: .green)
BotsUIManager.shared().setAgentDetails(agentDetails: agentDetails)

Additionally, each property of the AgentDetails object can be modified. For example:

let agentDetails = AgentDetails()
agentDetails.name = "Bob"
agentDetails.avatarImage = "agentAvatar"
agentDetails.nameTextColor = .red
agentDetails.avatarBackgroundColor = .green
agentDetails.avatarTextColor = .brown
BotsUIManager.shared().setAgentDetails(agentDetails: agentDetails)

getAgentDetails()
Returns an object containing the agent details.

let agentDetails = BotsUIManager.shared().getAgentDetails()

Chapter 49
Features

49-25

Attachment Filtering
Feature flag: shareMenuConfiguration
Use shareMenuConfiguration to restrict, or filter, the item types that are available in
the share menu popup, set the file size limit in KB for uploads (such as 1024 in the
following snippet), and customize the menu’s icons and labels. The default and the
max limit is 25 MB.

Note:

Before you can configure shareMenuConfiguration, you must set
enableAttachment to true.

botsConfiguration.shareMenuConfiguration = ([ShareMenuItem.files,
ShareMenuItem.camera, ShareMenuItem.location],
[ShareMenuCustomItem(types: [String(kUTTypePDF)], label: "PDF Files",
maxSize: 1024), ShareMenuCustomItem(types: [String(kUTTypeText)],
label: "Text Files")])

For the types, you have to use the CFString for the corresponding file type and
convert it to String. Any other string will not be valid. You can allow users to upload all
file types by setting the types as String(kUTTypeItem).

public func shareMenuItems(shareMenuItems: ([ShareMenuItem],
[ShareMenuCustomItem]))

You can dynamically update the share menu items popup by calling the
BotsManager.shared().shareMenuItems(shareMenuItems: ([ShareMenuItem],
[ShareMenuCustomItem])) API.

BotsManager.shared().shareMenuItems([ShareMenuItem.files,
ShareMenuItem.camera, ShareMenuItem.location],
[ShareMenuCustomItem(types: [String(kUTTypePDF)], label: "PDF Files",
maxSize: 1024), ShareMenuCustomItem(types: [String(kUTTypeText)],
label: "Text Files")])

public func shareMenuItems() -> ([ShareMenuItem],
[ShareMenuCustomItem])

You can get the share menu items list by calling the

BotsManager.shared().shareMenuItems();

API.

BotsManager.shared().shareMenuItems()

Chapter 49
Features

49-26

Auto-Submitting a Field
When a field has the autoSubmit property set to true, the client sends a
FormSubmissionMessagePayload with the submittedField map containing either the valid
field values that have been entered so far. Any fields that are not set yet (regardless of
whether they are required), or fields that violate a client-side validation are not included in the
submittedField map. If the auto-submitted field itself contains a value that's not valid, then
the submission message is not sent and the client error message displays for that particular
field. When an auto-submit succeeds, the partialSubmitField in the form submission
message will be set to the id of the autoSubmit field.

Connect, Disconnect, and Destroy Methods
The skill can be connected or disconnected, or the SDK can be destroyed, using the public
func destroy(), public func disconnect(), and the public func connect() methods.

public func destroy()
Destroys the SDK by closing any active connection, voice recognition, speech synthesis, file
uploads, and by removing the SDK view controller. Once called, none of the public API
methods can be called. They will only be active again after the
initialize(botsConfiguration: BotsConfiguration, completionHandler: @escaping
(ConnectionStatus, Error?) -> ()) method is called again to initialize the SDK.

public func disconnect()
All network connections are closed after calling the disconnect method.

BotsManager.shared().disconnect()

public func connect()
The web socket connection is established if the skill was in a disconnected state.

BotsManager.shared().connect()

public func connect(botsConfiguration: BotsConfiguration)
When this method is called with a new BotsConfiguration, the existing web socket
connection is closed, and a new connection is established using the new channel properties.
Other properties set in BotsConfiguration remain as is.

var botsConfiguration = BotsConfiguration(url: url, userId: userId,
channelId: channelId)
BotsManager.shared().connect(botsConfiguration: botsConfiguration)

Default Client Responses
Feature flag: enableDefaultClientResponse

Chapter 49
Features

49-27

Use enableDefaultClientResponse: true to provide default client-side responses
accompanied by a typing indicator when the skill response has been delayed, or when
there's no skill response at all. If the user sends out the first message/query, but the
skill does not respond with the number of seconds set by defaultGreetingTimeout,
the skill can display a greeting message that's configured using the
odais_default_greeting_message translation string. Next, the client checks again for
the skill's response. The client displays the skill's response if it has been received, but
if it hasn't, then the client displays a wait message (configured with the
odais_default_wait_message translation string) at intervals set by the
defaultWaitMessageInterval flag. When the wait for the skill response exceeds the
threshold set by the typingStatusTimeout flag, the client displays a sorry response to
the user and stops the typing indicator. You can configure the sorry response using the
odais_default_sorry_message translation string.

Delegation
The delegation feature lets you set a delegate to receive callbacks before certain
events in the conversation. To set a delegate, a class must conform to the
BotsMessageServiceDelegate protocol and implement the following methods:

• public func beforeDisplay(message: [String: Any]?) -> [String: Any]?

• public func beforeSend(message: [String: Any]?) -> [String: Any]?

• public func beforeSendPostback(action: [String: Any]?) -> [String: Any]?

public func beforeDisplay(message: [String: Any]?) -> [String: Any]?
This method allows a skill’s message payload to be modified before it is displayed in
the conversation. The message payload returned by the method is used to display the
message. If it returns nil, then the message is not displayed.

public func beforeSend(message: [String: Any]?) -> [String: Any]?
This method allows a user message payload to be modified before it is sent to the chat
server. The message payload returned by the method is sent to the skill. If it returns
nil, then the message is not sent.

public func beforeSendPostback(action: [String: Any]?) -> [String: Any]?
The public func beforeSendPostback(action: [String: Any]?) -> [String:
Any]? allows a postback action payload to be modified before it is sent to the chat
server. The action payload returned by the method is sent to the skill. If it returns nil,
then the postback action selected by the user is not sent to the chat server.

public class ViewController: UIViewController,
BotsMessageServiceDelegate {
 func beforeSend(message: [String : Any]?) -> [String : Any]? {
 // Handle before send delegate here
 }

 func beforeDisplay(message: [String : Any]?) -> [String : Any]? {
 // Handle before display delegate here
 }

Chapter 49
Features

49-28

 func beforeSendPostback(action: [String : Any]?) -> [String : Any]? {
 // Handle before send postback action delegate here
 }
}

The instance, which conforms to the BotsMessageServiceDelegate protocol, should be
assigned to the BotsManager.shared().delegate property as shown in the following code
snippet for initializing the SDK:

BotsManager.shared().delegate = self

End the Chat Session
Feature flag: enableEndConversation
enableEndConversation, when set to true, adds a close button to the header view that
enables users to explicitly end the current chat session. A confirmation prompt dialog opens
when users click this close button and when they confirm the close action, the SDK sends an
event message to the skill that marks the end of the chat session. The SDK then disconnects
the skill from the instance, collapses the chat widget, and erases the current user's
conversation history. The SDK also raises a chatend event in the BotsEventListener
protocol that you can implement.

Opening the chat widget afterward starts a new chat session.

Tip:

The conversation can also be ended by calling BotsManager.shared().endChat()
method, which you can use when the SDK is initialized in the headless mode.

Headless SDK
The SDK can be used without its UI. The SDK maintains the connection to server and
provides APIs to send messages, receive messages, and get updates for the network status
and for other services. You can use the APIs to interact with the SDK and update the UI.

You can send a message using any of the send() APIs available in BotsManager class. For
example, public func send(message: UserMessage) sends text message to skill or digital
assistant.

public func send(message: UserMessage)
This function sends a message to the skill. Its message parameter is an instance of a class
which conforms to the UserMessage class. In this case, it is
UserTextMessage.BotsManager.shared().send(message: UserTextMessage(text: "I want
to order a pizza", type: .text))

Chapter 49
Features

49-29

BotsEventListener
To listen for the connection status change, a message received from skill and
attachment upload status events, a class can implement the BotsEventListener
protocol which then implements the following methods:

• onStatusChange(ConnectionStatus connectionStatus) – This method is called
when the WebSocket connection status changes. Its connectionStatus parameter
is the current status of the connection. Refer to the API docs included in the SDK
for more details about the ConnectionStatus enum.

• onReceiveMessage(message: BotsMessage) – This method is called when a new
message is received from the skill. Its message parameter is the message received
from the skill. Refer to the API docs included in the SDK for more details about the
BotsMessage class.

• onUploadAttachment(message: BotsAttachmentMessage) – This method is called
when an attachment upload has completed. Its message parameter is the
BotsAttachmentMessage object for the uploaded attachment.

• onDestroy() – This method is called when the destroy() method is called.

• onInitialize() – This method is called when the
initialize(botsConfiguration: BotsConfiguration, completionHandler:
@escaping (ConnectionStatus, Error?) -> ()) method is called. It takes the
following parameter:

– newLanguage – The SupportedLanguage object for the newly set chat
language.

• beforeEndConversation() – This method is called when the end conversation
session is initiated.

• chatEnd() – A callback method triggered after conversation has ended
successfully.

extension ViewController: BotsEventListener {
 func onReceiveMessage(message: BotsMessage) {
 // Handle the messages received from skill or Digital Assistant
 }

 func onUploadAttachment(message: BotsAttachmentMessage) {
 // Handle the post attachment upload actions
 }

 func onStatusChange(connectionStatus: ConnectionStatus) {
 // Handle the connection status change
 }

 func onInitialize() {
 //Handle initialization
 }

 func onDestroy() {
 //Handle destroy
 }

Chapter 49
Features

49-30

 func onChatLanguageChange(newLanguage: SupportedLanguage) {
 //Handle the language change.
 }

 func beforeEndConversation(completionHandler: @escaping
(EndConversationStatus) -> Void) {
 //Do the desired cleanup before session is closed.
 return completionHandler(.success) // if cleanup was successfull.
 return completionHandler(.success) // if there was en error cleaning
up.
 }

 func chatEnd() {
 //Handle successfull session end from server before the SDK is
destroyed.
 }
}

The instance which conforms to the BotsEventListener protocol should be assigned to the
BotsManager.shared().botsEventListener property as illustrated in the following code
snippet for initializing the SDK:

BotsManager.shared().botsEventListener = self

In-Widget Webview
UI Property: LinkHandler
You can configure the link behavior in chat messages to allow users to access web pages
from within the chat widget. Instead of having to switch from the conversation to view a page
in a tab or separate browser window, a user can remain in the chat because the chat widget
opens the link within a webview.

Configure the In-Widget Webview
UI Property: WebViewConfig
You can set the webview configuration by setting the LinkHandler property to
LinkHandlerType.webview. WebViewConfig can be set to a WebViewConfiguration struct
instance.

BotsProperties.LinkHandler = LinkHandlerType.webview
//Set the properties which you want changed from the default values.
BotsProperties.WebViewConfig.webViewSize = WebViewSize.full
BotsProperties.WebViewConfig.clearButtonLabelColor = UIColor.black

As illustrated in this code snippet, you can set the following attributes for the webview.

Chapter 49
Features

49-31

Attribute Settings

webViewSize Sets the screen size of the in-widget webview
window with WebviewSize attribute, which
has two values: parial
(WebviewSize.partial) and full
(WebviewSizeWindow.full).

clearButtonLabel Sets the text used for clear/close button in the
top right corner of webview. The default text is
taken from the string set to odais_done in the
Localizable.strings file.

clearButtonIcon Sets an icon for the clear button, which
appears left-aligned inside the button. By
default, there's no icon set for the clear button.
It's an empty string.

clearButtonLabelColor Sets the color of text of clear button label. The
default color is UIColor.white.

clearButtonColor Sets the background color for the clear button.
The default color is UIColor.clear.

webviewHeaderColor Sets the background color for webview header.

webviewTitleColor Sets the color of title in the header. The title is
the URL of the web link that has been opened.

Message Timestamp Formatting
The timestampFormat flag formats timestamps that display in the messages. It can
accept a string consisting of format tokens like "hh:mm:ss" and other formats
supported by the Swift DateFormatter.

Multi-Lingual Chat
Feature flag: multiLangChat
The iOS SDK's native language enables the chat widget to detect a user's language or
allow users to select the conversation language. Users can switch between languages,
but only in between conversations, not during a conversation because the
conversation gets reset whenever a user selects a new language.

Enable the Language Menu
You can enable a menu that allows users to select a preferred language from a
dropdown menu by defining the multiLangChat property with an object containing the
supportedLanguage array, which is comprised of language tags (lang) and optional
display labels (label). Outside of this array, you can optionally set the default
language with the primaryLanguage attribute (primaryLanguage: "en" in the following
snippet)..

botsConfiguration.multiLangChat = MultiLangChat(supportedLanguages:
[SupportedLanguage(lang: "en", label: "English"),
SupportedLanguage(lang: "fr", label: "French"),
SupportedLanguage(lang: "es", label: "Spanish")], primaryLanguage:
"en")

Chapter 49
Features

49-32

https://developer.apple.com/documentation/foundation/dateformatter

The chat widget displays the passed-in supported languages in a dropdown menu that's
located in the header. In addition to the available languages, the menu also includes a Detect
Language option. When a user selects a language from this menu, the current conversation
is reset, and a new conversation is started with the selected language. The language
selected by the user persists across sessions in the same browser, so the user's previous
language is automatically selected when the user revisits the skill through the page
containing the chat widget.

Here are some things to keep in mind when configuring multi-language support:

• You need to define a minimum of two languages to enable the dropdown menu to display.

• If you omit the primaryLanguage attribute, the widget automatically detects the language
in the user profile and selects the Detect Language option in the menu.

• The label key is optional for the natively supported languages: fr displays as French in
the menu, es displays as Spanish, and so on.

• While label is optional, if you've added a language that's not one of the natively
supported languages, then you should add a label to identify the tag. For example, if you
don't define label: 'ंंंंं', for the lang: "hi", then the dropdown menu displays hi
instead, contributing to a suboptimal user experience.

Disable Language Menu
Starting with Version 21.12, you can also configure and update the chat language without
also having to configure the language selection dropdown menu by passing
MultiLangChat(primaryLanguage: String).

Language Detection
In addition to the passed-in languages, the chat widget displays a Detect Language option in
the dropdown menu. Selecting this option tells the skill to automatically detect the
conversation language from the user's message and, when possible, to respond in the same
language.

You can dynamically update the selected language by calling the
BotsManager.shared().setPrimaryLanguage(primaryLanguage: String) API. If the passed
lang matches one of the supported languages, then that language is selected. When no
match can be found, Detect Language is activated. You can also activate the Detected
Language option by calling BotsManager.shared().setPrimaryLanguage(primaryLanguage:
"und") API, where "und" indicates undetermined or by passing primaryLanguage:nil.

You can update the chat language dynamically using the
setPrimaryLanguage(primaryLanguage: String) API even when the dropdown menu has
not been configured.

Multi-Lingual Chat Quick Reference

To do this... ...Do this

Display the language selection dropdown menu to
end users.

Pass MultiLangChat(supportedLanguages:
[SupportedLanguage]).

Set the chat language without displaying the
language selection dropdown menu to end users.

Pass MultiLangChat(primaryLanguage:
String).

Chapter 49
Features

49-33

To do this... ...Do this

Set a default language. Pass MultiLangChat(supportedLanguages:
[SupportedLanguage], primaryLanguage:
String).

Enable language detection. Pass primaryLanguage:nil or
primaryLanguage:"und".

Dynamically update the chat language. Call the
setPrimaryLanguage(primaryLanguage:
String) API.

Replacing a Previous Input Form
When the end user submits the form, either because a field has autosubmit set to
true, the skill can send a new EditFormMessagePayload. That message should
replace the previous input form message. By setting the replaceMessage channel
extension property to true, you enable the SDK to replace previous input form
message with the current input form message.

Share Menu Options
By default, the share menu displays options for the following file types:

• visual media files (images and videos)

• audio files

• general files like documents, PDFs, and spreadsheets

• location

The sharePopupConfiguration setting allows you to restrict the items that display in
the share menu. By passing a tuple of arrays to ShareMenuConfiguration --
shareMenuConfiguration = ([ShareMenuItem], [ShareMenuCustomItem]) -- you can
restrict, or filter, the type of items that are available in the menu, customize the menu's
icons and labels, and limit the upload file size. The tuple is has an array of share menu
options of type ShareMenuItem and an array of share menu options of type
ShareMenuCustomItem. Pass either as an empty array for all file types.

public func shareMenuItems(shareMenuItems: ([ShareMenuItem],
[ShareMenuCustomItem]))

You can enable dynamic updating of the menu using the

shareMenuItems(shareMenuItems: ([ShareMenuItem],
[ShareMenuCustomItem]))

method.

public func shareMenuItems() -> ([ShareMenuItem], [ShareMenuCustomItem])
This method returns the existing configuration of share menu items.

Chapter 49
Features

49-34

Speech Recognition
• Feature flag: enableSpeechRecognition
• Functionality configuration: enableAutoSendSpeechResponse
Setting the enableSpeechRecognition feature flag to true enables the microphone button to
display in place of the send button whenever the user input field is empty. The speech is
converted to text and sent to the skill or digital assistant. If the speech is partially recognized,
then the partial result is displayed in a popup that's opened by clicking the microphone
button.

Setting this property to true also supports the functionality enabled by the
enableAutoSendSpeechResponse property, which when also set to true, enables the user's
speech response to be sent to the chat server automatically while displaying the response as
a sent message in the chat window. You can allow users to first edit (or delete) their dictated
messages before they send them manually by setting enableSpeechRecognitionAutoSend to
false.

Speech recognition is utilized through the following methods:

• public func startRecording()

• public func stopRecording()

• public func isRecording() -> Bool

public func startRecording()
Starts recording the user's voice message.

public func stopRecording()
Stops recording the user's message.

public func isRecording() -> Bool
Checks whether the voice recording has started or not. Returns true if the recording has
started. Otherwise, it returns false.

The onSpeechResponseReceived(data: String, final: Bool) function from the
BotsEventListener protocol can be used to handle all the responses from the speech server.

BotsManager.shared().startRecording()
if (BotsManager.shared().isRecording()) {
 BotsManager.shared().stopRecording() // Stop voice recording
}

Speech Synthesis
• Feature flag: enableSpeechSynthesis
• Functionality configuration: speechSynthesisVoicePreferences

Chapter 49
Features

49-35

The SDK has been integrated with speech synthesis to read the skill's message aloud
when a new message is received from skill.

• You enable this feature by setting the enableSpeechSynthesis feature flag to true.

• You can set the preferred language that read the skill's messages aloud with the
speechSynthesisVoicePreferences property. This property enables a fallback
when the device doesn't support the preferred language or voice. If the device
does not support the preferred voice, then the default voice for the preferred
language is used instead. When neither the preferred voice or language are
supported, then the default voice and language are used.

public func speak(text: String)
Starts reading the skill's response aloud. Its text parameter is the text for the skill's
message that's read aloud.

BotsManager.shared().speak(text: "What kind of crust do you want?")

public func stopSpeech()
Stops reading the skill's response aloud.

BotsManager.shared().stopSpeech()

Speech Service Injection
Feature flag: ttsService
The ttsService feature flag allows you to inject any text-to-speech (TTS) service --
your own, or one provided by a third-party vendor -- into the SDK. To inject a TTS
service, you must first set the enableSpeechSynthesis feature flag to true and then
pass an instance of the TTSService interface to the ttsService flag.

The TTSService Protocol
You create an instance of a class that's an implementation of the TTSService interface.
It implements the following methods:

• speak(text: String) - This method adds the text that's to be spoken to the
utterance queue. Its text parameter is the text to be spoken.

• isSpeaking() - This method checks whether or not the audio response is being
spoken. It returns false if no audio response is being spoken.

• stopSpeech() - This method stops any ongoing speech synthesis.

 class CustomTTSService: TTSService {

 func speak(text: String) {
 // Adds text to the utterance queue to be spoken
 }

 func stopSpeech() {

Chapter 49
Features

49-36

 // Stops any ongoing speech synthesis
 }

 func isSpeaking() -> Bool {
 // Checks whether the bot audio response is being spoken or not.
 }
 }

Typing Indicator for User-Agent Conversations
Feature flag: enableSendTypingStatus
When this flag is enabled, the SDK sends a RESPONDING typing event along with the text that's
currently being typed by the user to Oracle B2C Service or Oracle Fusion Service. This
shows a typing indicator on the agent console. When the user has finished typing, the SDK
sends a LISTENING event to the service. This hides the typing indicator on the agent console.

Similarly, when the agent is typing, the SDK receives a RESPONDING event from the service.
On receiving this event, the SDK shows a typing indicator to the user. When the agent is idle,
the SDK receives LISTENING event from the service. On receiving this event, the SDK hides
the typing indicator that's shown to the user.

The sendUserTypingStatus API enables the same behavior for headless mode.

 public func sendUserTypingStatus(status: TypingStatus, text: String? = nil)

• To show the typing indicator on the agent console:

BotsManager.shared().sendUserTypingStatus(status: .RESPONDING, text:
textToSend)

• To hide the typing indicator on the agent console:

BotsManager.shared().sendUserTypingStatus(status: .LISTENING)

• To control user-side typing indicator, use the onReceiveMessage() event. For example:

 public func onReceiveMessage(message: BotsMessage) {
 if message is AgentStatusMessage {
 if let status = message.payload["status"] as? String {
 switch status {
 case TypingStatus.LISTENING.rawValue:
 hideTypingIndicator()
 case TypingStatus.RESPONDING.rawValue:
 showTypingIndicator()
 }
 }
 }
 }

There are two more settings in BotsConfiguration that provide additional control:

Chapter 49
Features

49-37

• typingStatusInterval – By default, the SDK sends the RESPONDING typing event
every three seconds to Oracle B2C Service. Use this flag to throttle this event. The
minimum value that can be set is three seconds.

• enableAgentSneakPreview - Oracle B2C Service supports showing the user text
as it's being entered. If this flag is set to true (the default is false), then the SDK
sends the actual text. To protect user privacy, the SDK sends … instead of the text
to Oracle B2C Service when the flag is set to false.

Note:

This feature must be enabled in both the SDK and the Oracle B2C
Service chat configuration.

Voice Visualizer

When voice support is enabled (botsConfiguration.enableSpeechRecognition =
true), the footer of the chat widget displays a voice visualizer, a dynamic visualizer
graph that indicates the frequency level of the voice input. The visualizer responds to
the modulation of the user's voice by indicating whether the user is speaking too softly
or too loudly. This visualizer is created using Swift's AVAudioEngine which is exposed
in the onAudioReceived method in the SpeechEventListener protocol for use in
headless mode.

The chat widget displays a voice visualizer when users click the voice icon. It's an
indicator of whether the audio level is sufficiently high enough for the SDK to capture
the user’s voice. The user’s message, as it is recognized as text, displays below the
visualizer.

Note:

Voice mode is indicated when the keyboard icon appears.

When botsConfiguration.enableSpeechAutoSendSpeechResponse = true, the
recognized text is automatically sent to the skill after the user has finished dictating the
message. The mode then reverts to text input. When
botsConfiguration.enableSpeechAutoSendSpeechResponse = false, the mode also
reverts to text input, but in this case, users can modify the recognized text before
sending the message to the skill.

Message Model
To use features like headless mode and delegate, you need to understand both user
and skill messages. Everything that's received or sent from the Oracle Chat Server is
represented as a message, one that's sent from the user to the skill, or from the skill to
the user.

These are the base types used in all messages sent from the user to the skill and vice
versa. They are the building blocks of all messages.

Chapter 49
Message Model

49-38

https://docs.oracle.com/en/cloud/saas/b2c-service/famug/t-Enable-sneak-preview.html#EnableSneakPreview-D222B194
https://docs.oracle.com/en/cloud/saas/b2c-service/famug/t-Enable-sneak-preview.html#EnableSneakPreview-D222B194
https://developer.apple.com/documentation/avfoundation/avaudioengine

• Attachment

• Location

• Action

• Card

• Heading

• Heading

• Field

• Row

• Form

Attachment
Represents an attachment that's sent by the user.

Name Description Type Required?

type The attachment type string (valid values:
audio, file, image,
video)

Yes

url The download URL for
the attachment

string Yes

title The name of the
uploaded file

string No

For example:

{
 "type": "image",
 "url": "https://www.oracle.com/us/assets/hp07-oow17-promo-02-3737849.jpg"
}

Location
Represents a location object.

Name Description Type Required?

title The location title string No

URL The URL for displaying
the location on a map

string No

latitude The GPS coordinate's
longitude value

double Yes

longitude The GPS coordinate's
latitude value

double Yes

For example:

{
 "title": "Oracle Headquarters",

Chapter 49
Message Model

49-39

 "url": "https://www.google.com.au/maps/place/
37°31'47.3%22N+122°15'57.6%22W",
 "longitude": -122.265987,
 "latitude": 37.529818
}

Action
An action represents something that the user can select.

Name Description Type Required?

type The action type string Yes

label The descriptive label
text for the action.

string At least one label or
imageUrl must be
present.

imageUrl The image for the
action

string At least one label or
imageUrl must be
present.

PostbackAction
Sends a predefined postback back to the skill when the user selects an action.

Name Description Type Required?

type The action type "postback" Yes

postback The postback that's
returned when the
user selects an action.

A string or
JSONObject

Yes

For example:

{
 "type": "postback",
 "label": "Large Pizza",
 "imageUrl": "https://example.com/images/gallery/locations/11.jpg",
 "postback": {
 "state": "askSize",
 "action": "getCrust"
 }
}

CallAction
Requests the client to call a specified phone number on behalf of the user.

Name Description Type Required?

type The action type "call" Yes

phoneNumber The phone number to
call

string Yes

Chapter 49
Message Model

49-40

For example:

{
 "type": "call",
 "label": "Call Support",
 "imageUrl": "http://example.com.ar/files/2016/05/cuidado.jpg",
 "phoneNumber": "18005555555"
}

urlAction
Requests the client to open a website in a new tab or in an in-app browser.

Name Description Type Required?

type The action type "call" Yes

URL The URL of the website
that's displayed.

string Yes

For example:

{
 "type": "url",
 "label": "Open URL",
 "imageUrl": "http://example.com.ar/files/2016/05/cuidado.jpg",
 "url": "https://example.com/images/gallery/locations/11.jpg",
}

SubmitFormAction
This action is used to submit an input form to the skill when it satisfies the client side
validation. It adds the following properties to the Action properties:

Name Description Type Required?

type The action type "submitForm" Yes

postback The postback payload,
which might include an
action proeprty to trigger
navigation. The value of
this property should be
set in the
formSubmissionPaylo
ad.

JSONObject No

Example JSON

{
 "type": "submitForm",
 "label": "Submit",
 "postback": {
 "system.botId": "6803DE12-DAA9-4182-BD54-3B4D431554F4",
 "system.flow": "ExpenseFlow",

Chapter 49
Message Model

49-41

 "system.state": "editFormMapVar"
 }
}

LocationAction
Requests the client to ask for the user's location.

Name Description Type Required?

type The action type "location" Yes

For example:

{
 "type": "location",
 "label": "Share location",
 "imageUrl": "http://images.example.com/location-clipart-location-
pin-clipart-1.jpg"
}

Card
Represents a single card in the message payload.

Name Description Type Required?

title The title of the card,
displayed as the first
line on the card.

string Yes

description The description of the
card

string No

imageUrl The URL of the image
that's displayed.

string No

URL The website URL
that's opened by a tap.

string No

actions An array of actions
related to the text

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Heading
Represents a heading for tables in a Table or Table-Form object.

Name Description Type Required?

label The heading label String Yes

alignment The positioning of the
label within the cell

"left", "right",
"center"

Yes

Chapter 49
Message Model

49-42

Name Description Type Required?

width The suggested
percentage of the
table width that should
be provided to the
heading.

No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Field
Represents the atomic information of a table cell or a form field within the Table, Form, and
Table-Form objects, provided as key-value pair.

Name Description Type Required?

displayType The field type "text", "link" Yes

label The field key String Yes

value The field value String No

linkLabel A short label for the link
value if displayType is
link.

String No

alignment The positioning of the
label within its cell

"left", "right",
"center"

No

width The suggested
percentage of the table
width that should be
provided to the field

No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

selectFieldOption
The Single-Select and Multi-Select fields use a list of select options with following properties:

Name Description Type Required?

label The display text string Yes

value The value for option Primitive data types
(string, number,
boolean, etc.)

No

channelExtensions The channel-specific
extension properties
associated with the field
option.

JSONObject No

Chapter 49
Message Model

49-43

Read Only Field
Represents a read only field. All read only fields inherit the generic field properties and
have the following additional properties:

Name Description Type Required?

value The field value string Yes

width The suggested
percentage of the total
available width that the
field should occupy in
a table layout.

number No

alignment The alignment of the
value within a table
column. The default
alignment is right.

"left", "center"
and "right"

No

Note:

In Release 23.06 of Oracle Digital Assistant, read only fields do not render
within input forms, even if they are received in the message payload.

Text Field
The text field inherits all of the read only field properties. The displayType value for
this field is "text".

Link Field
The link field inherits all of the read only field properties and has following additional
properties:

Name Description Type Required?

displayType The field type "link" Yes

linkLabel The label used for the
hyperlink

string No

imageUrl The URL of the image
that opens a link when
clicked.

string No

Media Field
The media field inherits all of the read only field properties, and has following
additional properties:

Name Description Type Required?

displayType The field type "media" Yes

Chapter 49
Message Model

49-44

Name Description Type Required?

mediaType The field media type "video", "audio",
"image"

Yes

Action Field
The action field inherits all read only field properties and has following additional properties:

Name Description Type Required?

displayType The field type "action" Yes

action The action that should
be performed when the
user clicks the action
button.

Action Yes

Editable Field
Represents an editable field. All editable fields inherit the generic field properties and have
the following additional properties:

Name Description Type Required?

id The field ID string Yes

placeholder A description of the
input that's expected
from the user. This text
displays when the user
has not yet made a
selection or entered a
value.

string No

required Whether this input is
required to submit the
form

boolean No

clientErrorMessage The field-level error
message that's
displayed below the field
when a client-side
validation error occurs. If
not provided, the SDK
defaults to
editFieldErrorMessa
ge.

string No

serverErrorMessage The field level error
message that's
displayed below the field
when a server-side
validation error occurs.
This error message
must be included in the
payload sent by the skill.

string No

Chapter 49
Message Model

49-45

Name Description Type Required?

autoSubmit When set to true, the
form is partially
submitted when the user
has entered a value for
the field.

No

Single-Select
The single-select field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "singleSelect" Yes

defaultValue The default selection Primitive data types
(string, number,
boolean, etc.)

No

options An array of options
presented to the user.

An
Array<SelectFieldOpti
on>

Yes

layoutStyle The layout style used
to render the single
select options. The
default layout is list.

"list",
"radioGroup"

No

Multi-Select
The multi-select field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "multiSelect" Yes

defaultValue The default selection An Array<object> of
primitive data types (a
string, number,
boolean, etc.)

No

options An array of options
presented to the user

Array<SelectFieldOpti
on>

Yes

layoutStyle The layout style used
to render the options.

"list",
"checkboxes"
list is not supported
in the 23.06 Release,
so the options can't be
rendered as a picklist,
They can only as
check boxes.

No

Chapter 49
Message Model

49-46

DatePicker
The date picker field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "datePicker" Yes

defaultValue The initial value for this
field. The format must
be YYYY-MM-DD.

string No

minDate The minimum, or
earliest, date allowed.
The format must be
YYYY-MM-DD.

string No

maxDate The maximum, or latest,
date allowed. The
format must be YYYY-
MM-DD.

string No

TimePicker
The time picker field inherits the Editable Field properties and has the following additional
properties:

Name Description Type Required?

displayType The field type "timePicker" Yes

defaultValue The initial value for this
field, entered as HH:mm
in 24-hour format.

string No

minTime The minimum, or
earliest, time allowed,
entered as HH:mm in
24-hour format. For
example, 00:00.

string No

maxTime The maximum, or latest,
time allowed, entered as
HH:mm, in 24-hour
format. For example,
13:00.

string No

Toggle
The toggle field inherits all of the Editable Field properties and has the following additional
properties:

Name Description Type Required?

displayType The field type "toggle" Yes

Chapter 49
Message Model

49-47

Name Description Type Required?

defaultValue The initial selected
value. If you want the
toggle to be initially on,
set the default value to
the same value as
valueOn.

string No

valueOff The value when toggle
is off

string Yes

valueOn The value when toggle
is on

string Yes

labelOff The label for the "off"
value

string No

labelOn The label for the "on"
value

string No

TextInput
The text input field inherits all of the Editable Field and has the following additional
properties:

Name Description Type Required?

displayType The field type "textInput" Yes

defaultValue The initial value for
this field

string no

validationRegular
Expression

A regular expression
indicating the required
format for this text
input

string no

multiline The flag that
determines whether to
render multiple lines of
input

boolean no

minLength The minimum length
of input that the user
must provide

integer no

maxLength The maximum number
of characters allowed
in the text input field

integer no

inputStyle The input style used
by the client. Allowable
values are: "text",
"tel",
"url","email", and
"password".

string no

NumberInput
The number input field inherits all of the Editable Field properties and has the following
additional properties:

Chapter 49
Message Model

49-48

Name Description Type Required?

displayType The field type "numberInput" Yes

defaultValue The initial value for this
field

Integer No

minValue A smallest allowable
number

Integer No

maxValue The largest allowable
number.

Integer No

Row
Represents an array of fields.

Name Description Type Required?

fields An array of fields Array <field> Yes

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Form
Represents an array of fields along with a title. Used in Table-Form messages for nested
forms of a table row.

Name Description Type Required?

title The form title String No

field An array of fields Array <field> Yes

actions An array of actions Array <BotsAction> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

PaginationInfo
Represents the paging information for the results in the Table, Form, and Table-Form objects.

Name Description Type Required?

totalCount The total results count number Yes

rangeSize The range size of the
results per page

number Yes

status The paging status
message

string Yes

currentRangeSize The size of curent range
of results

number Yes

Chapter 49
Message Model

49-49

Name Description Type Required?

rangeStart The starting offset of the
current range of results

number Yes

nextRangeSize The size of the next
range of results

number Yes

hasPrevious Indicates whether there
is a previous set of
results

boolean Yes

hasNext Indicates whether there
is a next set of results

boolean Yes

Conversation Message
All of the messages that are part of a conversation have the following structure:

Name Description Type Required?

messagePayload The message payload Message Yes

userId The user ID string Yes

For example:

{
 "messagePayload": {
 "text": "show menu",
 "type": "text"
 },
 "userId": "guest"
}

User Message
Represents a message sent from the user to the skill.

User Text Message
The simple text message that's sent to the server.

Name Description Type Required?

type The message type "text" Yes

text The message text string Yes

For example:

{
 "messagePayload": {
 "text": "Order Pizza",
 "type": "text"
 },

Chapter 49
Message Model

49-50

 "userId": "guest"
}

User Postback Message
The postback response message that's sent to the server.

Name Description Type Required?

type The message type "postback" Yes

text The postback text string No

postback The postback of the
selected action

A string or JSONObject Yes

For example:

{
 "messagePayload": {
 "postback": {
 "variables": {
 "pizza": "Small"
 },
 "system.botId": "69BBBBB-35BB-4BB-82BB-BBBB88B21",
 "system.state": "orderPizza"
 },
 "text": "Small",
 "type": "postback"
 },
 "userId": "guest"
}

User Attachment Message
The attachment response message that's sent to the server.

Name Description Type Required?

type The message type "attachment" Yes

attachment The attachment
metadata

Attachment Yes

For example:

{
 "messagePayload": {
 "attachment": {
 "type": "image",
 "url": "http://oda-instance.com/attachment/v1/attachments/
d43fd051-02cf-4c62-a422-313979eb9d55"
 },
 "type": "attachment"
 },

Chapter 49
Message Model

49-51

 "userId": "guest"
}

User Location Message
The location response message that's sent to the server.

Name Description Type Required?

type The message type "location" Yes

location The user location
information

Location Yes

For example:

{
 "messagePayload": {
 "location": {
 "latitude": 45.9285271,
 "longitude": 132.6101925
 },
 "type": "location"
 },
 "userId": "guest"
}

User Form Submission Message
This represents the form submission message that's sent after the user has submitted
a form by a SubmitFormAction. It has the following properties:

Name Description Type Required?

type The message type. "formSubmission" Yes

submittedFields Key-value pairs of the
submitted field values.
The key is the name
(ID) of the field.

JSONObject Yes

postback The postback payload,
which might include
an action property to
trigger navigation. The
value of this property
should be taken from
the
SubmitFormAction.

JSONObject No

partialSubmitFiel
d

The ID of the field that
triggers a partial form
submission. Fields
with the autoSubmit
property set to true
can trigger a partial
form submission.

String No

Chapter 49
Message Model

49-52

Example JSON

{
 "messagePayload": {
 "submittedFields": {
 "Attendees": [
 "Toff van Alphen"
],
 "Type": "Public transport",
 "Description": "expense",
 "Subject": "Expense",
 "Date": "2023-06-07",
 "Time": "18:58",
 "Amount": 6,
 "TipIncluded": "true"
 },
 "partialSubmitField": "Attendees",
 "type": "formSubmission"
 },
 "userId": "guest"
}

Skill Message
Represents the message sent from the skill to the user.

Message is an abstract base type for all other messages. All messages extend it to provide
some information.

Name Description Type Required?

type The message type string Yes

Skill Raw Message
Used when a component creates the channel-specific payload itself.

Name Description Type Required?

type The message type "raw" Yes

payload The channel-specific
payload

JSONObject Yes

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Skill Text Message
Represents a text message.

Chapter 49
Message Model

49-53

Name Description Type Required

type The message type "text" Yes

text The message text string Yes

headerText The header text for
cards

string No

footerText The footer text for
cards

string No

actions An array of actions
related to the text.

array No

globalActions An array of global
actions related to the
text.

array No

channelExtensions The channel-specific
extension properties
associated with the
message.
"displayType" :
"stars" identifies the
feedback component.

JSONObject No

For example:

{
 "messagePayload": {
 "type": "text",
 "text": "What do you want to do?",
 "actions": [
 {
 "type": "postback",
 "label": "Order Pizza",
 "postback": {
 "state": "askAction",
 "action": "orderPizza"
 }
 },
 {
 "type": "postback",
 "label": "Cancel A Previous Order",
 "postback": {
 "state": "askAction",
 "action": "cancelOrder"
 }
 }
]
],
 "channelExtensions": {
 "displayType":"stars"
 }
 },
 "userId": "guest"
 "userId": "guest",
 "msgId": "message_id",

Chapter 49
Message Model

49-54

 "source": "BOT"
}

Skill Attachment Message
Represents an attachment message.

Name Description Type Required

type The message type "attachment" Yes

attachment The attachment sent Attachment Yes

headerText The card's header text string No

footerText the card's footer text string No

actions An array of actions
related to the text.

array No

globalActions An array of global
actions related to the
text.

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Skill Card Message
Represents a set of choices that are displayed for the user, either horizontally as carousels or
vertically as lists.

Name Description Type Required

type The message type "card" Yes

layout Whether to display the
messages horizontally
or vertically.

string (values:
horizontal,
vertical)

Yes

cards An array of cards to be
rendered.

array Yes

headerText The cards' header text string No

actions An array of actions
related to the text.

array No

globalActions An array of global
actions related to the
text.

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

{
 "messagePayload": {
 "type": "card",
 "layout": "horizontal",
 "cards": [

Chapter 49
Message Model

49-55

 {
 "title": "Hawaiian Pizza",
 "description": "Ham and pineapple on thin crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "large"
 }
 }
 }
]
 },
 {
 "title": "Cheese Pizza",
 "description": "Cheese pizza (i.e. pizza with NO
toppings) on thick crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",

Chapter 49
Message Model

49-56

 "pizzaSize": "large"
 }
 }
 }
]
 }
],
 "globalActions": [
 {
 "type": "call",
 "label": "Call for Help",
 "phoneNumber": "123456789"
 }
]
 },
 "userId": "guest"
}

Skill Table Message
Represents a message that returns the results of a query in table form The message consists
of an array of headings and an array of rows. The rows themselves contain a fields array
that represents individual cells.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "table" Yes

headings An array of table
headings

Array<Heading> Yes

rows An array of table rows.
Each row contains a
fields array that
represents the table
cells.

Array<Row> Yes

paginationInfo The paging information
for the results in the
table

PaginationInfo No

actions An array of actions
related to the table

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

{
 "type":"table",

Chapter 49
Message Model

49-57

 "headerText":"A-Team",
 "headings":[
 {
 "width":20,
 "label":"First Name",
 "alignment":"left"
 },
 {
 "width":20,
 "label":"Last Name",
 "alignment":"left"
 },
 {
 "width":35,
 "label":"Title",
 "alignment":"left"
 },
 {
 "width":25,
 "label":"Phone",
 "alignment":"right"
 }
],
 "rows":[
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]

Chapter 49
Message Model

49-58

 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder"

Chapter 49
Message Model

49-59

 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"David"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Davidson"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Machine Learning Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Eric"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",

Chapter 49
Message Model

49-60

 "alignment":"left",
 "value":"Eastman Junior"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Docker Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 }
],
 "paginationInfo":{
 "currentRangeSize":5,
 "rangeStart":0,
 "nextRangeSize":-3,
 "hasPrevious":false,
 "hasNext":false,
 "totalCount":5,
 "rangeSize":8,
 "status":"Showing 1-5 of 5 items"
 }
}

Skill Form Message
Represents a message that returns the results of a query in a form that's read only. The
message consists of an array of form results. Each form result contains a fields array with
key-value pairs that represent a field.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "form" Yes

forms An array of form results.
Each result contains a
fields array that
represents the form
fields.

Array<Row> Yes

Chapter 49
Message Model

49-61

Name Description Type Required?

formColumns The number of columns
in which the fields of the
form should be grouped.

1, 2 Yes

paginationInfo The paging information
for the results in the
form

PaginationInfo No

actions An array of actions
related to the form

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONbject No

{
 "type":"form",
 "headerText":"A-Team",
 "forms":[
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/aaron-
adams-4862752"

Chapter 49
Message Model

49-62

 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Bobbrown"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Bob is a member of the cloud architects team
which is specialized in enterprise mobility and cloud development. Bob has
been directly involved with Oracle middleware since 2005 during which he
held different roles in managing highly specialized teams."
 }
]
 },
 {
 "fields":[
 {

Chapter 49
Message Model

49-63

 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Charlie-
chase-97a418"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Charlie is a member of the enterprise
mobility team. Charlie has 20+ years experience with custom
development. Charlie is an expert on mobile cloud services and
development tools. He is the creator of productivity tools. His latest
passion is building chatbots with a minimum amount of custom code."
 }
]
 }
],
 "formColumns":2,
 "paginationInfo":{
 "currentRangeSize":3,
 "rangeStart":0,
 "nextRangeSize":2,
 "hasPrevious":false,
 "hasNext":true,
 "totalCount":5,
 "rangeSize":3,
 "status":"Showing 1-3 of 5 items"
 },

Chapter 49
Message Model

49-64

 "globalActions":[
 {
 "postback":{
 "variables":{},
 "action":"system.showMore"
 },
 "label":"Show More",
 "type":"postback"
 }
]
}

Skill Table-Form Message
This message combines the Table and Form message types. It represents a message that
returns the results of a query in the form of a table. Each each row of the table has a read-
only form in addition to the row information.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "tableForm" Yes

headings An array of table
headings

Array<Heading> Yes

rows An array of table rows.
Each row contains an
array of fields that
represent the table cells.

Array<Row> Yes

forms An array of form results
that correspond to each
table row. Each form
contains a fields array
that represents the form
fields.

Array<Form> Yes

formColumns The number of columns
in which the fields of the
form should be grouped.

1, 2 Yes

paginationInfo An array of global
actions related to the
text

Array<Action> No

actions An array of actions
related to the table form

Array<Action> No

globalActions An array of global
actions

Array<Action> No

Chapter 49
Message Model

49-65

Name Description Type Required?

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

{
 "type":"tableForm",
 "headerText":"A-Team",
 "headings":[
 {
 "width":47,
 "label":"First Name",
 "alignment":"left"
 },
 {
 "width":47,
 "label":"Last Name",
 "alignment":"left"
 }
],
 "rows":[
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 }
]

Chapter 49
Message Model

49-66

 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 }
]
 }
],
 "forms":[
 {
 "title":"View details Aaron Adams",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Aaron-adams-4862572"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left"
 }
]
 },
 {
 "title":"View details Bob Brown",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",

Chapter 49
Message Model

49-67

 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Bobbrown"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Bob is a member of the cloud architects
team which is specialized in enterprise mobility and cloud
development. Bob has been directly involved with Oracle middleware
since 2005 during which he held different roles in managing highly
specialized teams."
 }
]
 },
 {
 "title":"View details Charlie Chase",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder Fanatic"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Charlie-
chase-97a418"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Charlie is a member of the enterprise

Chapter 49
Message Model

49-68

mobility team. Charlie has 20+ years experience with custom development.
Charlie is an expert on mobile cloud services and development tools. He is
the creator of productivity tools. His latest passion is building chatbots
with a minimum amount of custom code."
 }
]
 }
],
 "formColumns":2,
 "paginationInfo":{
 "currentRangeSize":3,
 "rangeStart":0,
 "nextRangeSize":2,
 "hasPrevious":false,
 "hasNext":true,
 "totalCount":5,
 "rangeSize":3,
 "status":"Showing 1-3 of 5 items"
 },
 "actions":[
 {
 "postback":{
 "variables":{

 },
 "action":"system.showMore"
 },
 "label":"Show More",
 "type":"postback"
 }
],
 "footerText":"Tap on a row to see personal details"
}

Skill Edit Form Message
Represents an editable form message (input form). The message consists of a Field array. It
has the following properties

Name Description Type Required?

type The message type. In
this case, it's
"editForm".

"editForm" Yes

fields A list of fields which can
include both editable
and read only fields.

Array<Field> Yes

title A representative title for
the edit form

String No

formColumns The number of columns
in which the form fields
should be grouped.

Integer (1)
The SDK supports only
one column for Release
23.06.

No

Chapter 49
Message Model

49-69

Name Description Type Required?

errorMessage A form-level error
message that displays
when the user has
submitted invalid data
but the error cannot be
linked to an individual
field.

String No

actions An array of actions
related to the edit form.
This array should
include a
SubmitFormAction.
An error displays in the
browser console when
the SubmitFormAction
is not included in the
actions array.

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions A set of channel-specific
extension properties
The
channelExtensions
object can include a
replaceMessage
property that's used to
replace the previous
input form message.

JSONObject No

{
 "messagePayload": {
 "headerText": "Create Expense",
 "type": "editForm",
 "title": "Fill in the below form",
 "fields": [
 {
 "displayType": "textInput",
 "serverErrorMessage": "Invalid Text Input",
 "defaultValue": "Expense",
 "minLength": 5,
 "id": "Subject",
 "label": "Subject",
 "placeholder": "Enter subject of the expense",
 "clientErrorMessage": "Subject is required and must be
between 5 and 15 characters",
 "maxLength": 15,
 "required": true
 },
 {
 "displayType": "textInput",
 "defaultValue": "expense",
 "multiLine": true,
 "id": "Description",

Chapter 49
Message Model

49-70

 "label": "Description",
 "placeholder": "What is expense justification",
 "clientErrorMessage": "Description is required",
 "required": true
 },
 {
 "displayType": "datePicker",
 "defaultValue": "2023-06-07",
 "maxDate": "2023-06-22",
 "id": "Date",
 "label": "Expense Date",
 "placeholder": "Pick a date in the past",
 "clientErrorMessage": "Expense date is required and must be
in the past.",
 "required": true
 },
 {
 "displayType": "timePicker",
 "defaultValue": "18:58",
 "id": "Time",
 "label": "Expense Time",
 "placeholder": "What time was the expense",
 "clientErrorMessage": "Time is required. Please fill a
value",
 "required": true
 },
 {
 "displayType": "numberInput",
 "minValue": 5,
 "defaultValue": 6,
 "maxValue": 500,
 "id": "Amount",
 "label": "Amount",
 "placeholder": "Enter expense amount",
 "clientErrorMessage": "Amount is required and must be
between 5 and 500.",
 "required": true
 },
 {
 "autoSubmit": true,
 "displayType": "toggle",
 "defaultValue": "true",
 "labelOn": "Yes",
 "id": "TipIncluded",
 "label": "Tip Included?",
 "valueOff": "false",
 "labelOff": "No",
 "valueOn": "true"
 },
 {
 "displayType": "singleSelect",
 "serverErrorMessage": "Invalid Selection",
 "defaultValue": "Public transport",
 "options": [
 {

Chapter 49
Message Model

49-71

 "label": "Public transport",
 "value": "Public transport"
 },
 {
 "label": "Flight",
 "value": "Flight"
 }
],
 "layoutStyle": "list",
 "id": "Type",
 "label": "Expense Type",
 "placeholder": "Select expense type",
 "clientErrorMessage": "Expense type is required",
 "required": true
 },
 {
 "displayType": "multiSelect",
 "defaultValue": [
 "Toff van Alphen"
],
 "options": [
 {
 "label": "Toff van Alphen",
 "value": "Toff van Alphen"
 },
 {
 "label": "Roger Federer",
 "value": "Roger Federer"
 }
],
 "layoutStyle": "checkboxes",
 "id": "Attendees",
 "label": "Attendees",
 "placeholder": "Select attendees",
 "clientErrorMessage": "Please select atleast one
attendee",
 "required": true
 }
],
 "formColumns": 1,
 "actions": [
 {
 "postback": {
 "system.botId": "6803DE12-DAA9-4182-
BD54-3B4D431554F4",
 "system.flow": "ExpenseFlow",
 "system.state": "editFormMapVar"
 },
 "label": "Submit",
 "type": "submitForm"
 }
],
 "channelExtensions": {
 "replaceMessage": "True"
 }

Chapter 49
Message Model

49-72

 },
 "source": "BOT",
 "userId": "guest"
}

Oracle iOS Channel Extensions
For Oracle iOS channels, you can extend the functionality of Common Response
components with capabilities that are specific to the Oracle iOS SDK.

You access the extensions by using the channelCustomProperties element in Common
Response components and setting the appropriate properties. The code has the following
format:

...
 channelCustomProperties:
 - channel: "iossdk"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

You can apply channelCustomProperties in the component's metadata at the level of
globalActions, responseItems, and elements of responseItems, depending on the given
property.

Here are the available custom properties for Oracle iOS channels:

Name Allowed Values Applies To... Description

mediaType • A valid media type • Response items with
the following attributes:
– type:

"attachment"
– attachmentType

: "file"or
attachmentType
: "image"

• Cards with imageUrl
specified

The media type of the
attachment. For example,
image/jpeg. If not
specified, the media type
will be resolved from the
attachment URL.

For more information on using channelCustomProperties, see Channel-Specific Extensions.

Chapter 49
Oracle iOS Channel Extensions

49-73

50
Oracle Android

Using the Oracle Android SDK for Oracle Digital Assistant, you can integrate your digital
assistant with Android apps.

The SDK connects to the Oracle Chat Server, the intermediary between the Oracle Android
channel configured in Oracle Digital Assistant and the client. The chat server then passes
messages to the skill for processing and delivers the skill's response to the client.

Note:

The Oracle Android Channel doesn't store messages when the client has
disconnected from the server. It only delivers messages to connected clients. The
SDK does not support multi-device login; it supports only one client per user.

What Do You Need?
Here's what you need to get an Oracle Android channel working.

• An Oracle Android Channel. Creating the channel generates the Channel ID and the
Secret Key that you need to initialize the chat view.

• The URL of the Oracle Chat Server.

• The Android SDK. Download it from the ODA and OMC download page and extract it to
your local system. This ZIP includes a user guide that describes the SDK's functions a
sample app that demonstrates many of its features, and JavaDoc of all the classes.

• API Level 33 (Upside Down Cake). API Level 21 (Lollipop) is the lowest version that can
support the Digital Assistant Client SDK for Android. If your app needs to support even
earlier versions, keep in mind that we haven't tested these and therefore can't guarantee
their compatibility.

Note:

Speech recognition has been tested for API level 23 (Marshmallow) and higher.
It may not work on API levels below 23.

Create the Oracle Android Channel
You can configure the Android channel to connect to the Oracle Chat Server in two modes:
unauthenticated mode and authenticated mode (to protect access to the channel).

• Unauthenticated mode – Use the unauthenticated mode when the client can't generate
signed JWT tokens, when no authentication mechanism is in place, or when the client
app is already secured and visible to authenticated users.

50-1

https://www.oracle.com/downloads/cloud/amce-downloads.html

• Authenticated mode – Authentication is enforced using JSON Web Tokens (JWT).
The customer's backend server generates the JWT token, which is then passed to
the Oracle Andriod SDK. This token is used for each request to an ODA speech,
text, or attachment server.

Note:

To protect access to the channel, the token must always be generated by
a remote server. It must never be generated within by the client app.

When the app needs to connect to an ODA server, it first requests the token from
the backend server and then adds it to the Authorization header. The ODA server
validates the token, evaluates the claims, and then either opens the socket or
rejects the connection.

The JWT Token has the following claims: channelId and userId, and the claim names
iat (issued at time), and exp (expiration time). iat signifies the time at which the token
was issued. This must be a number that represents the seconds that have elapsed
since the UNIX epoch. exp must be a number representing the seconds that have
elapsed since the UNIX epoch. We recommend setting the expiration time to at least
30 minutes after the issued at time (iat). The token header looks something like this:

{

 "alg": "HS256",

 "typ": "JWT"

}

An example token body looks something like this:

{

 "iat": 1569828182,

 "exp": 1569831782,

 "channelId": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "userId": "John"

}

Note:

The token illustrated by this example is not signed. The actual tokens are
signed by channel's Secret Key.

Chapter 50
Create the Oracle Android Channel

50-2

Configure the Oracle Android Channel
To configure the Oracle Android channel:

1. Choose Development, then Channels from the menu.

2. Choose Users.

3. Click Add Channel and then Oracle Android as the channel type.

4. Complete the dialog:

• Enter the channel name.

• For authenticated connections:

– Switch on the Client Authentication Enabled toggle to determine whether the
SDK is connecting to a client authentication-enabled channel.

– In the Max. Token Expiration (Minutes) field, set the maximum amount of time for
the JWT token.

• For unauthenticated connections:

– Switch off Client Authentication Enable toggle.

• Set the Session expiration time.

• Click Create. Oracle Digital Assistant will generate the Channel ID and the Secret
Key that you need to initialize the SDK. Keep these close at hand.

5. Route the channel to your skill or digital assistant.

6. Switch Channel Enabled to On.

Add the Oracle Android Client SDK to the Project
Here are details on adding the Oracle Android SDK to your project.

To add the SDK using the Arctic Fox version of Android Studio or higher:

1. Download the ODA Client SDK for Android and extract it to your local system.

2. In Android Studio, select your project's app directory.

3. Select the libs directory.

4. Add com.oracle.bots.client.sdk.android.core-24.02.aar and
com.oracle.bots.client.sdk.android.ui-24.02.aar to the libs folder.

5. Add the following to the dependencies to the build.gradle (Module: app) file. These
dependencies include:

• The SDK library dependency

• Core and UI dependencies - Used by the SDK library for the smooth functioning of
library features.

// SDK
implementation files('libs/
com.oracle.bots.client.sdk.android.ui-24.02.aar')
implementation files('libs/
com.oracle.bots.client.sdk.android.core-24.02.aar')

Chapter 50
Add the Oracle Android Client SDK to the Project

50-3

// Core dependencies
implementation 'androidx.room:room-runtime:2.4.2'
implementation 'io.socket:socket.io-client:0.8.3'
implementation 'androidx.core:core:1.8.0'

//UI dependencies
implementation 'androidx.appcompat:appcompat:1.4.2'
implementation 'androidx.constraintlayout:constraintlayout:2.1.4'
implementation 'androidx.webkit:webkit:1.4.0'
implementation 'com.google.android.material:material:1.6.1'
implementation 'com.intuit.sdp:sdp-android:1.0.6'
implementation 'com.squareup.picasso:picasso:2.5.2'
implementation 'com.google.android.gms:play-services-
location:20.0.0'

For prior versions for Android Studio:

1. Select your project's app directory and then click File > New > New Module.

2. Choose Import JAR/.AAR Package and then click Next.

3. Navigate to, and select, com.oracle.bots.client.sdk.android.core-24.02.aar.
Click Finish.

4. Repeat these steps to import
com.oracle.bots.client.sdk.android.ui-24.02.aar.

Note:

You don't need to import this package if you're using the SDK in
headless mode.

5. Ensure that these libraries are listed at the top of project's settings.gradle file.
For example:

 include ':app', ':com.oracle.bots.client.sdk.android.core-24.02',
':com.oracle.bots.client.sdk.android.ui-24.02'
 rootProject.name = 'ODASDKSample'

6. Add the following to the dependencies in the build.gradle (Module: app) file.
These dependencies include:

• The SDK library dependency

• Core and UI dependencies which are used by the SDK library for the smooth
functioning of library features.

// SDK
implementation
project(':com.oracle.bots.client.sdk.android.core-24.02')
implementation
project(':com.oracle.bots.client.sdk.android.ui-24.02')

// Core dependencies

Chapter 50
Add the Oracle Android Client SDK to the Project

50-4

implementation 'androidx.room:room-runtime:2.4.2'
implementation 'io.socket:socket.io-client:0.8.3'
implementation 'androidx.core:core:1.7.0'

//UI dependencies
implementation 'androidx.appcompat:appcompat:1.4.1'
implementation 'androidx.constraintlayout:constraintlayout:2.1.3'
implementation 'androidx.webkit:webkit:1.4.0'
implementation 'com.google.android.material:material:1.5.0'
implementation 'com.intuit.sdp:sdp-android:1.0.6'
implementation 'com.squareup.picasso:picasso:2.5.2'
implementation 'com.google.android.gms:play-services-location:19.0.1'

For example:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 29
 buildToolsVersion "29.0.0"
 defaultConfig {
 applicationId "com.example.odasdksample"
 minSdkVersion 21
 targetSdkVersion 29
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner
"androidx.test.runner.AndroidJUnitRunner"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-
optimize.txt'), 'proguard-rules.pro'
 }
 }
}

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])

 androidTestImplementation 'androidx.test:runner:1.2.0'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'

 testImplementation 'junit:junit:4.12'
 // SDK
 implementation
project(':com.oracle.bots.client.sdk.android.core-24.02')
 implementation
project(':com.oracle.bots.client.sdk.android.ui-24.02')

 // Core dependencies
 implementation 'androidx.room:room-runtime:2.4.2'
 implementation 'io.socket:socket.io-client:0.8.3'
 implementation 'androidx.core:core:1.8.0'

Chapter 50
Add the Oracle Android Client SDK to the Project

50-5

 //UI dependencies
 implementation 'androidx.appcompat:appcompat:1.4.2'
 implementation
'androidx.constraintlayout:constraintlayout:2.1.4'
 implementation 'androidx.webkit:webkit:1.4.0'
 implementation 'com.google.android.material:material:1.6.1'
 implementation 'androidx.preference:preference:1.2.0'
 implementation 'com.intuit.sdp:sdp-android:1.0.6'
 implementation 'com.squareup.picasso:picasso:2.5.2'
 implementation 'com.google.android.gms:play-services-
location:19.0.1'
 implementation 'com.google.android.gms:play-services-
auth:20.1.0'
}

Initialize the Oracle Android Client SDK in Your App
Here's what you need to know about initializing the Android SDK in your app.

Initialize Oracle Android Client SDK in your Application class. Initialize the SDK
describes the different methods that you can use to initialize the SDK. The JavaDoc
that's included with the SDK describes all of the available classes.

If you're connecting to a channel with client authentication disabled, pass false as the
second parameter to the BotsConfiguration.BotsConfigurationBuilder()
constructor function.

import android.app.Application;
import oracle.cloud.bots.mobile.core.Bots;
import oracle.cloud.bots.mobile.core.BotsCallback;
import oracle.cloud.bots.mobile.core.BotsConfiguration;
import oracle.cloud.bots.mobile.core.BotsSDKException;

public class YourApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 try {
 BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>, false,
getApplicationContext()) // Configuration to initialize the SDK
 .channelId(<CHANNEL_ID>)
 .userId(<USER_ID>)
 .build();

 Bots.init(this, botsConfiguration, new BotsCallback()
{ // Initialize the SDK
 @Override
 public void onSuccess(Response paramResponse) {
 // Handle init success
 }
 @Override
 public void onFailure(Response paramResponse) {

Chapter 50
Initialize the Oracle Android Client SDK in Your App

50-6

 // Handle init failure
 }
 });
 } catch (BotsSDKException e) {
 // Handle Exceptions thrown by SDK
 }
 }
}

If you are connecting to a channel with client authentication enabled, you need to make some
minor modifications: along with passing true as the second parameter to the
BotsConfiguration.BotsConfigurationBuilder() constructor function, you also need to set
the authTokenProvider property with the instance of type AuthenticationTokenProvider
that can be used to generate and pass the JWT token.

The class should implement the AuthenticationTokenProvider interface, which then
overrides the getAuthToken() function to generate and return a JWT token. The function will
be used by the SDK to generate a new token whenever it needs to establish a new
connection and existing token is expired. The code would look something like this:

import android.app.Application;
import oracle.cloud.bots.mobile.core.AuthenticationTokenProvider;
import oracle.cloud.bots.mobile.core.Bots;
import oracle.cloud.bots.mobile.core.BotsCallback;
import oracle.cloud.bots.mobile.core.BotsConfiguration;
import oracle.cloud.bots.mobile.core.BotsSDKException;

public class YourApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 try {
 BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>, true,
getApplicationContext()) // Configuration to initialize the SDK
 .authTokenProvider(new AuthTokenProvider())
 .build();

 Bots.init(this, botsConfiguration, new BotsCallback() { //
Initialize the SDK
 @Override
 public void onSuccess(Response paramResponse) {
 // Handle init success
 }
 @Override
 public void onFailure(Response paramResponse) {
 // Handle init failure
 }
 });
 } catch (BotsSDKException e) {
 // Handle Exceptions thrown by SDK
 }
 }

Chapter 50
Initialize the Oracle Android Client SDK in Your App

50-7

 private class AuthTokenProvider implements
AuthenticationTokenProvider {
 @Override
 public String getAuthToken() {
 // Generate a new JWT Token and return
 }
 }
}

Display the user interface:

import oracle.cloud.bots.mobile.ui.ConversationActivity;

...

ConversationActivity.show(this);

App Development Settings
Here is a reference to the settings you may use in the development of the app for your
Android channel.

Network Configuration

Property Name Description Required? Default Value

channelId The ID of the Oracle
Android channel.

Yes N/A

userId The unique identifier
for user. This value
gets initialized by the
SDK if not provided.

No A randomly generated
value

authTokenProvider An instance of
AuthenticationTokenPr
ovider, which is used
to generate a new
token whenever the
SDK needs to
establish a new
connection using a
client authentication-
enabled channel and
when existing token is
expired.

Yes N/A

Chapter 50
App Development Settings

50-8

Feature Flags

Property Description Required? Default Value

actionsLayout An object of type
ActionsLayout which
sets the layout
orientation of local,
global, card and form
actions.

No new
ActionsLayout(Layou
tOrientation.VERTIC
AL,
LayoutOrientation.V
ERTICAL,
LayoutOrientation.V
ERTICAL,
LayoutOrientation.V
ERTICAL)

disablePastActions A field for disabling the
button clicks on the
messages that a user
has already interacted
with. The allowed values
are all, none, and
postback. The
behavior enabled by this
property is independent
of the digital assistant-
level configuration for
disabling the selection
of past actions. You
need to set the two
separately.

No all

displayPreviousMess
ages

Enables or disables the
display of previous
messages after the SDK
has been re-initialized.
When set to false, the
previous messages are
not displayed for the
user after re-initialization
of SDK.

No true

enableAgentSneakPre
view

Sends the user-entered
text along with the
typing status to the
agent.

No false

enableArrowsForHori
zontalCards

Enables navigation
arrows for the horizontal
card view when set to
true, but disables them
when set to false.

No false

Chapter 50
App Development Settings

50-9

Property Description Required? Default Value

enableAttachment Enables attachment
sharing in the chat view.
When set to true, you
can restrict items that
are available in the
share menu popup
using
shareMenuItems.
This setting is
deprecated in Release
22.02. Use
timeStampType
instead.

No true

enableAttachmentSec
urity

When set to true, extra
headers are passed to
the attachment upload
requests to ensure that
they can't be
downloaded without
passing a valid signed
JWT token as an
authorization header.
Note: Do not enable this
setting if the skill
connects to an ODA
instance that's Version
20.08 or runs on any
version prior to 20.08.
This property only
applies to client auth-
enabled connections to
Versions 20.12 and
higher of the ODA
platform.

No false

enableClearMessage Enables the clear
message button in the
header of the chat view.

No false

enableDefaultClient
Response

When set to true, the
client displays default
responses when the skill
response has been
delayed, or when there's
no response from the
skill.

No false

enableEndConversati
on

Enables the user to end
the conversation and
reset the chat session. It
also clears the local
conversation history,
disconnects from the
chat server and closes
the activity

No true

Chapter 50
App Development Settings

50-10

Property Description Required? Default Value

enableNotification Enables or disables new
message notifications
from the SDK when the
chat application is
running in the
background. The SDK
won't provide any
notifications when you
set this flag to false.

No true

enableNotificationS
ound

Enables the notification
sound on new skill
messages while the
chat view is open. This
feature only applies
when
enableNotificationS
oundSetting is set to
false.

No true

enableNotificationS
oundSetting

Enables the notification
sound setting button in
the chat view header.

No false

enableSendTypingSta
tus

Sends the typing status
of the user to the live
agent.

No false

enableSpeechRecogni
tion

Enables the speech
recognition service to
convert user voice to
text messages. Set this
property to true to use
the
enableSpeechRecogni
tionAutoSend
property.

No false

Chapter 50
App Development Settings

50-11

Property Description Required? Default Value

enableSpeechRecogni
tionAutoSend

When
enableSpeechRecogni
tionAutoSend is set to
true (the default), the
user's speech response
is automatically sent to
the chat server (and
displays as a sent
message in the chat
window). When set to
false, the user's
speech response is
rendered in the
message text field
before it's sent to the
chat server so that the
user can modify it before
sending it manually, or
delete the message.
This functionality is only
available when
enableSpeechRecogni
tion is set to true.

No true

enableSpeechSynthes
is

Enables the skill's audio
response button in the
header of the chat view.
When the button is in
the unmute state, the
skill's responses are
read aloud.

No false

enableTimestamp Enables the timestamp
for messages.

No true

googleMapsApiKey The Google Maps API
key that’s used to
display a location
preview image for
Location messages.

No N/A

initSpeechSynthesis
Muted

This flag, which is only
applicable when
enableSpeechSynthes
is is true, determines
whether the skill's audio
response button will be
active (unmute) by
default initially, or muted.
By default, it is set to
true, where the button
is muted.

No true

initUserHiddenMessa
ge

A user text message
that's used to initiate a
conversation. This
message, which is sent
when chat view is ready,
does not actually display
in the chat.

No N/A

Chapter 50
App Development Settings

50-12

Property Description Required? Default Value

initUserProfile Initializes the user
profile before the
conversation starts. The
profile payload must be
of type User. The profile
is updated before
sending the value in
initUserHiddenMessa
ge.

No N/A

linkHandler A field used to set link
handler for opening
links, either in a
webview or a browser.
WebviewLinkHandlerT
ype is an enum with two
values: BROWSER and
WEBVIEW.

No WebviewLinkHandlerT
ype.BROWSER

messageModifierDele
gate

An instance of type
MessageModifierDele
gate which is used to
receive callbacks before
certain events in the
conversation.

No N/A

multiLangChat Enables the chat widget
to both detect a user's
language and allow the
user to select a
preferred language from
a dropdown menu in the
header. Multi-Lingual
Chat describes how
create this menu.

No

notificationCustomi
zer

An instance of the
NotificationCustomi
zer class which is used
to customize
notifications received
from SDK.

No N/A

reconnectMaxAttempt
s

The number of attempts
made by the chat widget
to reconnect when the
initial connection fails.

No 5

saveClickedImagesIn
Gallery

When set to true (the
default), an image
captured by the skill
users using the camera
will be saved to the
gallery and will be
uploaded directly to the
skill as an attachment. If
you don't want the
images saved to the
gallery, then set
saveClickedImagesIn
Gallery to false.

No true

Chapter 50
App Development Settings

50-13

Property Description Required? Default Value

shareMenuItems Restricts the items that
display in the share
menu item and
customizes the menu's
icons and labels. To
configure these items,
pass an ArrayList of
Objects to
shareMenuItems. The
Arraylist objects can
either be
ShareMenuItem enum
values that are mapped
to the share menu items
or a
ShareMenuCustomItem
object. To use this flag,
you must set
enableAttachment to
true.

No N/A

showBotAvatar Enables the display of
the skill's avatar icon
beside the skill's
messages.

No false

showConnectionStatu
s

Enables the connection
status to display in the
chat view header.

No false

showPersonAvatar Enables the display of
the skill’s avatar icon
beside the skill’s
messages and on the
notifications. If your skill
has live agent
integration, setting this
flag to true displays
agent’s avatar icon
beside the agent’s
messages and on the
notifications.

No false

showTypingIndicator Enables the typing
indicator to display while
waiting for skill's
response.

No true

showUserAvatar Enables the display of a
user avatar icon beside
a user messages.

No false

Chapter 50
App Development Settings

50-14

Property Description Required? Default Value

speechLocale The expected locale of
the user's speech that's
used for voice
recognition. The
supported locales are
Australia-English (en-
au), UK-English (en-
gb), French (fr-fr),
German (de-de),
Indian-Hindi (hi-in),
Indian-English (en-in),
Italian (it-it), Brazilian
Portuguese (pt-br),
Spanish (es-es), and
the default, US-English
(en-us). Call the
Bots.setSpeechLocal
e(<locale>) API to set
the speech locale
dynamically. Voice
recognition will not work
if an unsupported locale
has been passed.

No "en-us"

speechSynthesisServ
ice

An instance of the
SpeechSynthesisServic
e that's used to inject a
text to speech (TTS)
service. Applicable only
if
enableSpeechSynthes
is is set to true.

No N/A

speechSynthesisVoic
ePreferences

Configures the language
and voice that read the
skill's messages aloud
by taking a list of
instances that are of
type
SpeechSynthesisSett
ing as its parameter. If
the device does not
support the preferred
voice, then the default
voice for the preferred
language is used
instead. When neither
the preferred voice or
language are supported,
then the default voice
and language are used.

No N/A

Chapter 50
App Development Settings

50-15

Property Description Required? Default Value

subtitle Sets the subtitle of
the chat view, which is
displayed below the title
on the chat view header.
If the subtitle flag is
set and either (or both)
the
showConnectionStatu
s,
showTypingIndicator
are set to true, then the
subtitle is displayed
instead of either the
connection status or the
typing indicator.

No N/A

timestampFormat Formats the timestamps
that display in the
messages. It can accept
a string of format tokens
like 'mm:ss:a'. Refer
to the Android
documentation for
information about valid
timestamp patterns

No N/A

timestampType If you enable
timestamps by setting
enableTimestamp to
true, you can use set a
relative timestamp that
appears only on the
latest message by
setting
timestampType:
'relative'.

N/A

title Sets the title in the
header of the chat view.

No N/A

typingIndicatorTime
out

Sets the number of
seconds after which the
typing indicator is
automatically removed if
the chat view has not
yet received the
response.

No 30

typingStatusInterva
l

Sets the interval, in
seconds, to throttle the
typing status that's sent
to the live agent.

No 3

Chapter 50
App Development Settings

50-16

https://developer.android.com/reference/java/text/SimpleDateFormat
https://developer.android.com/reference/java/text/SimpleDateFormat

Property Description Required? Default Value

WebViewConfig Sets the attributes of the
in-widget webview, such
as its size (partial or full)
or customizations to the
clear button.
Customizations to clear
button inside the
webview can also be
done.

No Sets the configuration
settings for of the
webview.

youtubeApiKey Supports the streaming
of YouTube videos by
setting the YouTube API
key.

No N/A

Custom Colors
You can modify the chat view's colors to give it a custom look. To configure these colors,
define name attributes for the <color> elements in the res/values/colors.xml file (located in
the project's app resources) using the the following keys. The following snippet demonstrates
a modifications of the color that's used for the background of the skill's message
(odaas_primary) and the text color used in the skill's (odaas_on_primary) message while
maintaining the default colors for other resources.

<resources>
 <color name="odaas_primary">#6699FF</color>
 <color name="odaas_on_primary">#000000</color>
</resources>

Note:

Version 20.8.1 of the SDK resets the colors for prior versions. For example, if the
background color of the action buttons in the existing implementation is #418980,
then this will be changed to the default color of odaas_action_background
(introduced in 20.8.1), which is #FFFFFF. For implementations created using
versions prior to 20.8.1, you can set custom colors by updating the res/values/
colors.xml file in your application. For example:

<resources>
 <color name="odaas_action_background">#418980</color>
 </resources>

Key Description Default Value

odaas_action_background The background color of the
action and global action buttons.

#FFFFFF

Chapter 50
App Development Settings

50-17

Key Description Default Value

odaas_agent_avatar_backgr
ound_color

The background color used for
the avatar layout when agent
avatar is unavailable and the
agent name initials display
instead.

#A890B6

odaas_agent_avatar_text_c
olor

The text color used for the agent
name initials that display inside
the agent avatar layout.

#FFFFFF

odaas_agent_name_text_col
or

The text color used for the agent
name that displays above the
agent messages.

#A6161513

odaas_background The background color for the
view.

#F5F4F2

odaas_bot_avatar_backgrou
nd

The background color used for
the skill's avatar.

#bdbdbd

odaas_bot_avatar_backgrou
nd

The background color of the skill
avatar.

#bdbdbd

odaas_card_background The background color of the card
messages and their action
buttons.

FFFFFF

odaas_dialog_accent The color that's used for buttons
and progress bars on the dialog
window that is shown before
clearing messages and while
uploading attachments.

161513

odaas_dialog_background The background color of the
dialog window that is shown
before clearing messages and
while uploading attachments.

#FFFFFF

odaas_dialog_box_negative
_button_background

The background color of the
decline button that appears in the
alert dialog box.

@android:color/
transparent

odaas_dialog_box_negative
_button_text_color

The text color of the decline
button that appears in the alert
dialog box.

#161513

odaas_dialog_box_positive
_button_background

The background color of the
confirm button that appears in
the alert dialog box.

#161513

odaas_dialog_box_positive
_button_text_color

The text color of the confirm
button that appears in the alert
dialog box.

#FFFFFF

odaas_error The text color that's used in error
messages.

@android:color/white

odaas_footer_accent The border and cursor color of
the input field in the footer.

#01579B

odaas_footer_attach_butto
n

The color of the attachment
button.

#161513

odaas_footer_background The background color of the
footer.

#FFFFFF

odaas_footer_buttons The background color of the
interactive buttons in the footer,
except for the send button.

161513

Chapter 50
App Development Settings

50-18

Key Description Default Value

odaas_footer_inline_send_
button

The color of the inline send
button that appears within the
input field when
enableSpeechRecognitionAu
toSend is set to true.

#161513

odaas_footer_input_backgr
ound

The background color of the
input field in the footer.

#FFFFFF

odaas_footer_mic_button The color of the mic button. #161513
odaas_footer_send_button The color of send button. #FFFFFF
odaas_footer_send_button_
background

The background color of the
send button.

#161513

odaas_header_buttons The background color of the
interactive buttons in the header.

#FFFFFF

odaas_on_action_backgroun
d

The text color used with the
odaas_action_background color.

@android:color/black

odaas_on_background The text color used with the
odaas_background color.

@android:color/black

odaas_on_card_action_text The text color of the action
buttons on the card.

@android:color/black

odaas_on_card_description
_text

The text color used for the
description of the card.

@android:color/white

odaas_on_card_title_text The text color used for the title of
the card.

@android:color/white

odaas_on_dialog_backgroun
d

The text color used with the
odaas_dialog_background
color on dialog windows.

@android:color/black

odaas_on_footer_input_bac
kground

The text color used with the
odaas_footer_input_backgr
ound color in the footer.

@android:color/black

odaas_on_multichat_spinne
r_background

The background color of the
multi-language chat dropdown
menu before the popup window
opens.

#F1EFED

odaas_on_multichat_spinne
r_popup_background

The background color of the
multi-language chat dropdown
menu after the popup window
opens.

#FFFFFF

odaas_on_multichat_spinne
r_popup_border

The border color of the multi-
language chat dropdown menu
items after the popup window
opens.

#BDBDBD

odaas_on_multichat_spinne
r_popup_text_color

The text color used for the items
in the multi-language chat
dropdown menu.

@android:color/black

odaas_on_multichat_spinne
r_text_color

The text color for a selected item
in the multi-language chat
dropdown menu.

#161513

odaas_on_primary The text color that's used with
the odaas_primary color

#161513

Chapter 50
App Development Settings

50-19

Key Description Default Value

odaas_on_primary_variant_
dark

The text color used with the
odaas_primary_variant_dar
k color.

#161513

odaas_on_primary_variant_
light

The text color used with the
odaas_primary_variant_lig
ht color.

@android:color/black

odaas_on_secondary The text color used with the
odaas_secondary color.

#161513

odaas_on_secondary_varian
t_light

The text color used with the
odaas_secondary_variant_l
ight color.

@android:color/black

odaas_on_speech_view_back
ground

The text color used with the
odaas_speech_view_backgro
und color in speech mode.

@android:color/white

odaas_on_status_bar_trans
parent

The background color of status
bar when the webview is opened.

@android:color/
transparent

odaas_on_webview_header_b
ackground_redwood

The background color of the in-
widget webview header in the
Redwood Theme mode

#201E1C

odaas_person_avatar_backg
round

The background color of the user
avatar.

#bdbdbd

odaas_primary The primary branding color that's
used for the background of the
skill's message and for the
background of the interactive
buttons in the footer.

#FFFFFF

odaas_primary_status_bar The color that's used in the
status bar.

#DCD7D1

odaas_primary_variant_dar
k

The dark variant of primary color
that's used in app bar and in
notifications.

#F1EFED

odaas_primary_variant_lig
ht

The light variant of the primary
color that's used in the
background for the skill's
attachment messages.

#E4E1DD

odaas_rating_star The color that indicates that a
user has not yet selected a rating
feedback button.

@android:color/white

odaas_rating_star_fill The color that indicates that a
user has selected a rating
feedback button.

#DAA520

odaas_secondary The secondary branding color
that's used for the background of
the user messages background
and for the background of the
skill's action buttons.

#E4E1DD

odaas_secondary_variant_d
ark

The dark variant of the
secondary color that's used for
the background of user
attachment messages.

#CCCCCC

Chapter 50
App Development Settings

50-20

Key Description Default Value

odaas_secondary_variant_l
ight

The light variant of the
secondary color that's used in
background for the actions
buttons that have been disabled.

#BDBDBD

odaas_selected_text_highl
ighted_color

The color of the text that's
highlighted for a copy or share
operation.

#B6AFAF

odaas_speech_view_backgro
und

The background color of the
footer in speech mode.

#FFFFFF

odaas_speech_view_button The color of the cancel button in
speech mode.

#161513

odaas_speech_visualizer_b
ackground

The background color of the
speech visualizer in speech
mode.

#12000000

odaas_speech_visualizer_c
olor

The bar color of the speech
visualizer in speech mode.

#5C926D

odaas_timestamp_font_colo
r

The text color used with the
odaas_timestamp_header_ba
ckground color in the relative
timestamp mode.

#5b5652

odaas_timestamp_header_ba
ckground

The background color used with
the timestamp header in the
relative timestamp mode.

#d3d3d3

Custom Text
You can customize the default text displayed in the chat view by modifying the following
strings. You can configure these strings by defining the name attributes for <string> elements
in the app resource's res/value/strings.xml file using the following keys. For example, to
change the title of the chat view, define the odaas_bot_chat_title key:

<resources>
 <string name="odaas_bot_chat_title">Support</string>
</resources>

In this example, only the chat title has been changed. The other string resources maintain
their default values.

Key Description Default Value

odaas_bot_chat_title The title of the chat view that's
displayed in the chat view
header. This resource is used
only when the title feature flag
is not set.

Digital Assistant

odaas_bot_status_connecte
d

The status text that displays
when the connection between
chat view and the Oracle Chat
Server has been established.

Connected

Chapter 50
App Development Settings

50-21

Key Description Default Value

odaas_bot_status_connecti
ng

The status text that displays
while the chat view connects to
the Oracle Chat Server.

Connecting

odaas_bot_status_disconne
cted

The status text that displays
when the connection between
the chat view and the Oracle
Chat Server has closed.

Disconnected

odaas_bot_status_respondi
ng

The status text that displays
while the user waits for the skill's
response.
This string is deprecated in
Release 22.06.

Responding...

odaas_button_clear_label The text for the clear button in
the webview.

DONE

odaas_capture_photo The menu item text in the
attachment popup that's used for
sending photos captured by the
device's camera which are to be
uploaded to the server as
attachments.

Capture Photo

odaas_captured_image_fold
er

The name of the folder inside the
Pictures directory where images
that have been clicked will be
saved. If no customizations have
been provided, then by default,
the clicked images are saved
inside the Camera folder of
DCIM.

N/A

odaas_clear_messages_dial
og_button_no

The action text that appears on
the Clear Messages popup for a
negative action.

No

odaas_clear_messages_dial
og_button_yes

The action text that appears on
the Clear Messages popup for a
positive action.

Yes

odaas_content_desc_attach
ment_loaded

The content description for the
attachment message after
loading the attachment
successfully.

Open attachment

odaas_content_desc_attach
ment_loading

The content description for the
attachment message while the
attachment is loading.

Loading attachment

odaas_content_desc_attach
ment_loading_error

The content description for the
attachment message when the
attachment fails loading.

Error in loading
attachment

odaas_content_desc_audio_
pause

The content description for the
pause button of the audio player.

Pause audio

odaas_content_desc_audio_
play

The content description for the
play button of the audio player.

Play audio

Chapter 50
App Development Settings

50-22

Key Description Default Value

odaas_content_desc_button
_attach

The tooltip that appears when a
long press gesture has been
detected on the attachment
button. Also, the content
description for the attachment
button.

Upload Attachment

odaas_content_desc_button
_audio_response_off

The tooltip that appears when a
long press gesture has been
detected on the mute button for
the audio response. Also, the
content description for the mute
button of the audio response.

Unmute

odaas_content_desc_button
_audio_response_on

The tooltip that appears when a
long press gesture has been
detected on the unmute button
for the audio response. Also, the
content description for the
unmute button of the audio
response.

Mute

odaas_content_desc_button
_back

The tooltip that appears when a
long press gesture has been
detected on the back button on
the chat view header. Also, the
content description for back
button.

Navigate Up

odaas_content_desc_button
_cancel

The tooltip that appears when a
long press gesture has been
detected on the keyboard button
that is shown while user’s voice
message is being recorded. Also,
the content description for the
keyboard button.

Cancel

odaas_content_desc_button
_clear

The tooltip that appears when a
long press gesture has been
detected on the clear button.
Also, the content description for
the clear button.

Clear Chat

odaas_content_desc_button
_download

The tooltip that appears when a
long press gesture has been
detected on the download button.
Also, the content description for
the download button.

Download

odaas_content_desc_button
_end_conversation

The content description for the
end conversation button.

End Conversation

odaas_content_desc_button
_notification_sound_off

The tooltip that appears when a
long press gesture has been
detected on the mute button for
the notification sound. Also, the
content description for the mute
button of the notification sound.

Turn On Notification
Sound

Chapter 50
App Development Settings

50-23

Key Description Default Value

odaas_content_desc_button
_notification_sound_on

The tooltip that appears when a
long press gesture has been
detected on the unmute button
for the notification sound. Also,
the content description for the
unmute button of the notification
sound.

Turn Off Notification
Sound

odaas_content_desc_button
_send

The tooltip that appears when a
long press gesture has been
detected on the Send button.
Also, the content description for
the send button.

Send

odaas_content_desc_button
_speak

The tooltip that appears when a
long press gesture has been
detected on the Microphone
button. Also, the content
description for the microphone
button.

Speak

odaas_content_desc_locati
on_loaded

The content description for the
location message after loading
the location preview image
successfully.

Open Location in Maps

odaas_content_desc_locati
on_loading

The content description for the
location message while the
location preview image is
loading.

Loading location preview
image

odaas_content_desc_locati
on_loading_error

The content description for the
location message when the
location preview image loading
fails.

Error in loading location
preview image. Tap to
reload image.

odaas_content_desc_multi_
lang_chat

The text that appears along with
the language detection icon in
the overflow menu.

Select Language

odaas_content_desc_read_s
tatus

The content description for the
tick mark ('✓') for read
messages. This string appears
only when enableTimestamp is
set to true.

Read

odaas_content_desc_video_
pause

The content description for the
pause button of video player.

Pause video

odaas_content_desc_video_
play

The content description for the
play button of video player.

Play video

odaas_content_timestamp_a
_few_moments_ago

The relative timestamp that
displays ten seconds after the
message has been received and
before 60 seconds has elapsed
since the last message was
received.

a few moments ago

odaas_content_timestamp_d
ay

The relative timestamp that
displays every day since the
previous message was received.
%1$s is replaced by the number
of days that have passed.

%1$sd ago

Chapter 50
App Development Settings

50-24

Key Description Default Value

odaas_content_timestamp_h
our

The relative timestamp that
displays every hour for the first
24 hours after the previous
message was received. %1$s is
replaced by the number of hours
that have passed.

%1$shr ago

odaas_content_timestamp_m
in

The relative timestamp that
displays every minute since the
last message was received.
%1$s is replaced by the number
of minutes that have passed.

%1$smin ago

odaas_content_timestamp_m
onth

The relative timestamp that
displays every month since the
previous message was received.
%1$s is replaced by the number
of months that have passed.

%1$smth ago

odaas_content_timestamp_n
ow

The relative timestamp that
displays for a new message.

Now

odaas_content_timestamp_y
ear

The relative timestamp that
displays each year after the
previous message was received.
%1$s is replaced by the number
of years that have passed.

%1$syr ago

odaas_default_greeting_me
ssage

The default client greeting
response that's displayed when
the skill response has not
received within the number of
seconds set by
defaultGreetingTimeout.

Hey, Nice to meet you!
Allow me a moment to get
back to you.

odaas_default_greeting_ti
meout

The default timeout, in seconds,
after which a default greeting
message displays.

5

odaas_default_sorry_messa
ge

The default client response when
the skill response has not
received a message within the
number of seconds set by
typingIndicatorTimeout.

`I'm sorry, but I can't
get the right content
right now. Please try
again.`

odaas_default_wait_messag
e

The default response that
displays at the interval when an
actual skill response has not
received. This interval is set, in
seconds, by
defaultWaitMessageInterva
l.

I'm still working on your
request. Thank you for
your patience!

odaas_default_wait_messag
e_interval

he default interval, in seconds,
that the default wait message
displays.

5

odaas_dialog_text_clear_m
essages

The text displayed within a popup
that prompts the user for
confirmation before clearing the
messages.

Clear messages?

Chapter 50
App Development Settings

50-25

Key Description Default Value

odaas_download_dialog_mes
sage

The message in the download
dialog popup that displays when
a user initiates a download from
within the in-widget webview.

Do you want to save

odaas_download_dialog_neg
ative_button

The text for download dialog's
negative button that cancels a
download that a user has
initiated from within the in-widget
webview.

Cancel

odaas_download_dialog_pos
itive_button

The text for download dialog's
negative button that confirms a
download that a user has
initiated from within the in-widget
webview.

Yes

odaas_download_dialog_tit
le

The title of the download dialog
popup that displays when a user
initiates a download from within
the in-widget webview.

Download

odaas_end_conversation_ac
tion_yes

The text for the confirm button in
the end session confirmation
prompt.

Yes

odaas_end_conversation_al
ert_message

The message body of the end
conversation confirmation
prompt.

This will also clear your
conversation history.

odaas_end_conversation_al
ert_no

The text for the decline button in
the end session confirmation
prompt.

No

odaas_end_conversation_al
ert_title

The title of the end conversation
confirmation prompt.

Are you sure you want to
end the conversation?

odaas_error_in_capturing_
photo

The error message that's
displayed when an error occurs
while capturing a photo from the
camera of the device.

Error in capturing photo.

odaas_error_in_recording_
audio

The error message that's
displayed when an error occurs
while establishing connection to
Oracle speech server.

Error in recording audio.
Please try again later.

odaas_error_in_speech_rec
ognition

The error message that's
displayed when no input, or too
much input, is given in speech.

Speech Recognition Error.

odaas_error_speech_unsupp
orted_locale

The error message that's
displayed when a voice recording
has been attempted and an
unsupported speech locale has
been configured for voice
recognition.

The set speech locale is
not supported. Can not
start recording.

odaas_file_uploading_in_p
rogress

The text displayed within the
popup while uploading a user's
attachment to the Oracle Server.

Uploading file to
server.....

odaas_hint_edit_text_user
_message

The placeholder text that
appears in the user input field.

Type your message

Chapter 50
App Development Settings

50-26

Key Description Default Value

odaas_hint_text_view_spee
ch_mode

The placeholder text that
appears in the text view of
speech mode before the user
starts speaking.

Speak your message

odaas_no_messages_to_clea
r

The message displayed when
there are no messages to clear.

No messages to clear

odaas_no_speech_error The status text that's displayed
when the Chat Server cannot
recognize a voice because no
user input has been detected.

Could not detect the
voice, no message sent.

odaas_notification_attach
ment_message

The message that's displayed in
the notification for an attachment
message that's received from the
skill. The text for %1$s is set to
the Notification title that's
defined using the
NotificationCustomizer
class, described in the SDK
(available from the ODA and
OMC download page).

%1$s has sent you an
Attachment Message.

odaas_notification_card_m
essage

The message that's displayed in
the notification for a Card
message that's received from the
skill. The text for %1$s is set to
the Notification title that's
defined using the
NotificationCustomizer
class, described in the SDK
(available from the ODA and
OMC download page).

%1$s has sent you a Card
Message.

odaas_notification_card_m
essage

The message that is displayed in
the notification for a card
message received from the skill.

odaas_notification_fallba
ck_message

The fallback message that is
displayed in the notification for a
message received from the skill.
The text for %1$s is set to the
Notification title that's
defined using the
NotificationCustomizer
class, described in the SDK
(available from the ODA and
OMC download page).

%1$s has sent you a
Message.

odaas_notification_fallba
ck_message

The fallback message that is
displayed in the notification for a
message received from the skill.

Chapter 50
App Development Settings

50-27

https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html

Key Description Default Value

odaas_notification_intent The activity to open, when
tapped by the user, on
notifications received from the
SDK. The text for %1$s is set to
the Notification title that's
defined using the
NotificationCustomizer
class, described in the SDK
(available from the ODA and
OMC download page).

oracle.cloud.bots.mobile.
ui.ConversationActivity

odaas_notification_locati
on_message

The message that is displayed in
the notification for a location
message received from the skill.
The text for %1$s is set to the
Notification title that's
defined using the
NotificationCustomizer
class, described in the SDK
(available from the ODA and
OMC download page).

%1$s has sent you a
Location Message.

odaas_page_loading The text within the popup while a
page is loading inside a webview.

Please Wait...Page is
Loading.

odaas_require_audio_recor
ding_permission

The error message that's
displayed when users deny
permission for recording the
audio.

Audio recording
permission is needed to
record audio

odaas_require_download_to
_storage_access_permissio
n

The error message that's
displayed when users deny the
storage access permission to
save the downloaded file.

Storage access permission
is needed to download
file

odaas_require_location_pe
rmission

The error message that's
displayed when users deny
permission to access their
locations.

Location access
permission is needed to
track location

odaas_require_storage_acc
ess_permission

The error message that's
displayed when access to
storage has been denied.

Storage access permission
is needed to attach files

odaas_share_audio The menu item text in the
attachment popup used for
sharing audio file.

Share Audio

odaas_share_file The menu item text in the
attachment popup used for
sharing a generic file.

Share File

odaas_share_message_choos
er_title

The title of the application
chooser that's displayed when
user clicks the Share action.

Share using:

odaas_share_visual The menu item text in the
attachment popup used for
sharing an image or video file.

Share Image/Video

Chapter 50
App Development Settings

50-28

https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html

Key Description Default Value

odaas_skill_message The skill message indicator for
screen readers. It's spoken by
screen readers before the skill
response. The text is not
displayed in the chat view.

Skill says:

odaas_speech_to_text_dial
og_placeholder

The placeholder text displayed
on the speech recognition popup
before the user starts speaking.
This property is deprecated in
Release 20.8.1. From that
release onward, the setting for
this property will be ignored.

Listening.....

odaas_star_rating The message that's read aloud
when a user rating button has
been clicked while the user is in
accessibility mode.

Rate %1$s star

odaas_too_much_speech_err
or

The error message that's
displayed when a user provides
voice message that's too long to
be recognized.

Too much voice input to
recognize. Can not
generate recognized text.

odaas_user_message The user message indicator for
screen readers. It's spoken by
screen readers before the user
messages.

I say:

Localization
To localize these strings, define the name attributes for the <string> elements in the app
resource's res/values-<your-language-code>/strings.xml file with the keys. For example,
to localize the title of the chat view in English, define the following in a file called res/value-
en/strings.xml:

<resources>
 <string name="odaas_bot_chat_title">Support</string>
</resources>

To localize the title in French, you'd add the following to a file called res/value-fr/
strings.xml file:

<resources>
 <string name="odaas_bot_chat_title">Soutien</string>
</resources>

The values for res/value/strings.xml are used by default for the keys that are not found in
res/values-<your-language-code>/strings.xml. For these two examples, the default
values would be used for the resources that are not defined in either the res/value-fr/
strings.xml or res/value-en/strings.xml files.

Chapter 50
App Development Settings

50-29

Custom Icons
Configure drawables by adding the required images or vector assets to the app
resource's res/drawable folder that have the following names.

Name Description

ic_odaas_agent_avatar The avatar icon for the messages from the live
agent. This icon displays in notifications only
when the showBotAvatar feature flag is set to
true.

ic_odaas_bot_avatar The avatar icon for the skill's messages. This
icon displays on notifications only when the
showBotAvatar feature flag is set to true.

ic_odaas_download The download icon that appears on the
attachment message that's sent by the skill.

ic_odaas_image_zoom The icon for the zoom control that appears on
an image attachment message that's sent by
the skill.

ic_odaas_notification_app_icon The app icon displayed in the status bar and
on notifications received from SDK library.

ic_odaas_person_avatar The avatar icon for user messages.

ic_odaas_rating The icon used for the feedback rating button.

Set Feature Flags
Use the BotsConfiguration.BotsConfigurationBuilder class to initialize the
BotsConfiguration class.

Use these constructors:

• BotsConfiguration.BotsConfigurationBuilder(String chatServerUrl,
boolean clientAuthEnabled, Context context)
Parameters:

– chatServerUrl – The URL to the Oracle Chat and Attachment Server. This
cannot be null.

– clientAuthEnabled - Determines whether the channel's client authentication
settings are enabled or disabled.

– context – The application context. This cannot be null.

BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>, false,
getApplicationContext())

• BotsConfiguration.BotsConfigurationBuilder(String chatServerUrl,
Context context) – This can be used to establish a connection to channel with
client authentication enabled.
Parameters:

– chatServerUrl – The URL to the Oracle Chat and Attachment Server. This
cannot be null.

Chapter 50
App Development Settings

50-30

– context – The application context. This cannot be null.

BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>,
getApplicationContext())

Initialize the SDK
Use the following methods to initialize the SDK:

• public static void init(Application application, BotsConfiguration
botsConfiguration)

• public static void init(Application application, BotsConfiguration
botsConfiguration, BotsCallback botsCallback)

• public static void init(Application application, String chatServerUrl,
String channelId, String userId, BotsCallback botsCallback)

• public static void init(Application application, String chatServerUrl,
AuthenticationTokenProvider authTokenProvider, BotsCallback botsCallback)

public static void init(Application application, BotsConfiguration botsConfiguration)
The public static void init(Application application, BotsConfiguration
botsConfiguration) method initializes all of the services based on the BotsConfiguration
instance passed by the user and establishes the WebSocket connection to the Oracle Chat
Server.

Parameters:

• application – The application instance. This cannot be null.

• botsConfiguration – The BotsConfiguration object used to control the features of
library. This cannot be null.

Bots.init(getApplication(),
 botsConfiguration);

public static void init(Application application, BotsConfiguration botsConfiguration,
BotsCallback botsCallback)

The public static void init(Application application, BotsConfiguration
botsConfiguration, BotsCallback botsCallback) method initializes all of the services
based on the BotsConfiguration instance passed by the user and establishes the
WebSocket connection to the Oracle Chat Server.

Parameters:

• application – The application instance. This cannot be null.

• botsConfiguration – The BotsConfiguration object used to control the features of
library. This cannot be null.

Chapter 50
App Development Settings

50-31

• botsCallback – The callback received while establishing the connection.

Bots.init(getApplication(), botsConfiguration, new BotsCallback() {
 @Override
 public void onSuccess(Response paramResponse) {}

 @Override
 public void onFailure(Response paramResponse) {}
});

public static void init(Application application, String chatServerUrl, String
channelId, String userId, BotsCallback botsCallback)

The public static void init(Application application, String chatServerUrl,
String channelId, String userId, BotsCallback botsCallback) method initializes
all of the services with the default configuration. This method can be invoked to
connect to a channel with client authentication disabled.

Parameters:

• application – The application instance. This cannot be null.

• chatServerUrl – The URL of the Oracle Chat Server. This cannot be null.

• channelId – The Channel ID belonging to the Oracle Android channel that's
routed to the skill or digital assistant. This cannot be null.

• userId – A unique identifier for the user. The SDK initializes this value when it's
not provided.

• botsCallback – The callback received while establishing the connection to the
Oracle Chat Server.

Bots.init(getApplication(), chatServerUrl, authTokenProvider, new
BotsCallback() {
 @Override
 public void onSuccess(Response paramResponse) {}

 @Override
 public void onFailure(Response paramResponse) {}
});

public static void init(Application application, String chatServerUrl,
AuthenticationTokenProvider authTokenProvider, BotsCallback botsCallback)

Invoke the public static void init(Application application, String
chatServerUrl, AuthenticationTokenProvider authTokenProvider, BotsCallback
botsCallback method to connect to a channel that has client authentication enabled.
This method initializes all of the services with the default configuration.

Parameters:

• application – The application instance. This cannot be null.

• chatServerUrl – The URL of the Oracle Chat Server. This cannot be null.

Chapter 50
App Development Settings

50-32

• authTokenProvider – The instance of AuthenticationTokenProvider, which is used to
generate the authentication token whenever it's needed.

• botsCallback – The callback received while establishing connection.

BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>,
getApplicationContext())

Interface AuthenticationTokenProvider
The public String getAuthToken method returns the string of the generated token.

An instance of this interface can be passed to the authTokenProvider property to allow the
SDK to generate a new authentication token when one is required to establish an
authenticated channel connection. When implementing this interface, override the public
String getAuthToken method.

private class AuthTokenProvider implements AuthenticationTokenProvider {
 @Override
 public String getAuthToken() {
 // Generate a new JWT Token and return
 }
}

Interface BotsCallback
This interface acts as a callback while initializing the library.

• void onSuccess(Response paramResponse) – This method is called when the web
socket connection has been successfully established.

• void onFailure(Response paramResponse) – This method is called on any failures that
occur while initializing the library.

Show Conversation Activity
After initializing the SDK, display the conversation view by invoking public static void
show(Context context). This method's context parameter is the context from which to start
the activity.

ConversationActivity.show(getApplicationContext())

Customize Notifications
You can customize the notifications received for the skill's messages by instantiating the
NotificationCustomizer class and passing the instance to the notificationCustomizer
property. The constructors are:

• NotificationCustomizer()– Initializes the notification channel with the default
configuration.

Chapter 50
App Development Settings

50-33

• NotificationCustomizer(String channelId) – Initializes the notification channel
with the given channel ID. The channelId parameter is the ID of the notification
channel through which the notifications are sent.

• NotificationCustomizer(String channelId, String channelName, String
description, String title) – Initializes the notification channel with the given
parameters:

– channelID – The ID of the notification channel through which notifications are
sent.

– channelName – The name of the notification channel through which the
notifications are sent.

– description – A description of the notification channel through which the
notifications are sent.

– title – The title displayed on the notifications.

For example:

new BotsConfiguration.NotificationCustomizer(<NOTIFICATION_CHANNEL_ID>,
 <NOTIFICATION_CHANNEL_NAME>, <NOTIFICATION_CHANNEL_DESCRIPTION>,
<NOTIFICATION_TITLE>);

Features
Here are the features that you can configure in the Oracle Android SDK.

Absolute and Relative Timestamps
Feature flag: timestampType: TimestampMode.RELATIVE
You can enable absolute or relative timestamps for chat messages. Absolute
timestamps display the exact time for each message. Relative timestamps display only
on the latest message and express the time in terms of the seconds, days, hours,
months, or years ago relative to the previous message.The precision afforded by
absolute timestamps make them ideal for archival tasks, but within the limited context
of a chat session, this precision detracts from the user experience because users must
compare timestamps to find out the passage of time between messages. Relative
timestamps allow users to track the conversation easily through terms like Just Now
and A few moments ago that can be immediately understood. Relative timestamps
improve the user experience in another way while also simplifying your development
tasks: because relative timestamps mark the messages in terms of seconds, days,
hours, months, or years ago, you don't need to convert them for timezones.

Configure Relative Timestamps
To add a relative timestamp:

• Enable timestamps – enableTimestamp: true
• Enable relative timestamps – timestampType: 'relative'
When you configure the timestamp (timestampType: 'relative'), an absolute
timestamp displays before the first message of the day as a header. This header

Chapter 50
Features

50-34

displays when the conversation has not been cleared and older messages are still available
in the history.

This timestamp is updated at following regular intervals (seconds, minutes, etc.) until a new
message is received.

• For first 10s

• Between 10s-60s

• Every minute between 1m-60m

• Every hour between 1hr-24hr

• Every day between 1d-30d

• Every month between 1m-12m

• Every year after first year

When a new message is loaded into the chat, the relative timestamp on the previous
message is removed and a new timestamp appears on the new message displaying the time
relative to the previous message. At that point, the relative timestamp updates until the next
messages arrives.

Action Buttons Layout
Feature flag: actionsLayout
actionsLayout sets layout direction for the local, global, card and form actions. When you set
this as LayoutOrientation.HORIZONTAL, these buttons are laid out horizontally and will wrap
if the content overflows.

BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<Server_URI>, false,
getApplicationContext())
 .channelId(<CHANNEL_ID>)
 .userId(<USER_ID>)
 .actionsLayout(actionsLayout)
 .build();

Attachment Filtering
(Required) <Enter a short description here.>

Feature flag: shareMenuItems
Use this feature to restrict, or filter, the item types that are available in the share menu popup,
set the file size limit for uploads (such as 1024 in the following snippet), and customize the
menu's icons and labels.

Chapter 50
Features

50-35

Note:

Before you can configure shareMenuItems, you must set enableAttachment
to true.

ArrayList<Object> customItems = new ArrayList<>();
 ShareMenuCustomItem shareMenuCustomItem1 = new
ShareMenuCustomItem("pdf bin", "Label1", 1024,
R.drawable.odaas_menuitem_share_file);
 ShareMenuCustomItem shareMenuCustomItem2 = new
ShareMenuCustomItem("doc", "Label2",
R.drawable.odaas_menuitem_share_file);
 ShareMenuCustomItem shareMenuCustomItem3 = new
ShareMenuCustomItem("csv");
 ArrayList<Object> customItems = new
ArrayList<>(Arrays.asList(shareMenuCustomItem1,shareMenuCustomItem2,sha
reMenuCustomItem3,ShareMenuItem.CAMERA));
 BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(sharedPreferences.getString(
getString(R.string.pref_name_chat_server_host),
Settings.CHAT_SERVER_URL), false, getApplicationContext())
 .channelId(<CHANNEL_ID>)
 .userId(<USER_ID>)
 .shareMenuItems(customItems)
 .enableAttachment(true)
 .build();

If a ShareMenuCustomItem object has no value or a null for the label, as does
shareMenuCustomItem3 = ShareMenuCustomItem('csv') in the preceding snippet,
then a type string that’s suffixed to share_ becomes the label. For
shareMenuCustomItem3, the label is share_csv.

Note:

You can allow users to upload all file types by setting the type of a
ShareMenuCustomItem object as *.

public static void shareMenuItems(ArrayList<Object> shareMenuItems)
You can dynamically update the share menu items popup by calling the
Bots.shareMenuItems(customItems); API, where customItems is an ArrayList of
Objects. Each object can either be of type ShareMenuItem enum values or an object of
ShareMenuCustomItem.

ArrayList<Object> customItems = new ArrayList<>();
 ShareMenuCustomItem shareMenuCustomItem1 = new
ShareMenuCustomItem("pdf bin", "Label1", 1024,
R.drawable.odaas_menuitem_share_file);
 ShareMenuCustomItem shareMenuCustomItem2 = new

Chapter 50
Features

50-36

ShareMenuCustomItem("doc", "Label2", R.drawable.odaas_menuitem_share_file);
 ShareMenuCustomItem shareMenuCustomItem3 = new
ShareMenuCustomItem("csv");
 customItems.add(shareMenuCustomItem1);
 customItems.add(ShareMenuItem.CAMERA);
 customItems.add(ShareMenuItem.FILE);
 customItems.add(shareMenuCustomItem2);
 customItems.add(shareMenuCustomItem3);
 Bots.shareMenuItems(customItems);

public static void shareMenuItems()
You can get the share menu items list by calling the Bots.shareMenuItems(); API.

Bots.shareMenuItems()

Auto-Submitting a Field
When a field has the autoSubmit property set to true, the client sends a
FormSubmissionMessagePayload with the submittedField map containing either the valid
field values that have been entered so far. Any fields that are not set yet (regardless of
whether they are required), or fields that violate a client-side validation are not included in the
submittedField map. If the auto-submitted field itself contains a value that's not valid, then
the submission message is not sent and the client error message displays for that particular
field. When an auto-submit succeeds, the partialSubmitField in the form submission
message will be set to the id of the autoSubmit field.

Replacing a Previous Input Form
When the end user submits the form, either because a field has autosubmit set to true, the
skill can send a new EditFormMessagePayload. That message should replace the previous
input form message. By setting the replaceMessage channel extension property to true, you
enable the SDK to replace previous input form message with the current input form message.

Connect and Disconnect Methods
The skill can be connected and disconnected using the public void disconnect() and
public void connect() methods. The WebSocket is closed after calling the direct method:

Bots.disconnect();

Calling the following method re-establishes the WebSocket connection if the skill has been in
a disconnected state:

Bots.connect();

Chapter 50
Features

50-37

When public void connect(Botsconfiguration botsconfiguration) is called with
a new botsconfiguration object, the existing WebSocket connection is closed and a
new connection is established using the new botsconfiguration object.

BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>, false,
getApplicationContext()) // Configuration to initialize the SDK
 .channelId(<CHANNEL_ID>)
 .userId(<USER_ID>)
 .build();

 Bots.connect(botsConfiguration);

Default Client Responses
Feature flag: enableDefaultClientResponse: true (default: false)

Use enableDefaultClientResponse: true to provide default client-side responses
accompanied by a typing indicator when the skill response has been delayed, or when
there's no skill response at all. If the user sends out the first message/query, but the
skill does not respond with the number of seconds set by the
odaas_default_greeting_timeout flag, the skill can display a greeting message that's
configured using the odaas_default_greeting_message translation string. Next, the
client checks again for the skill's response. The client displays the skill's response if it
has been received, but if it hasn't, then the client displays a wait message (configured
with the odaas_default_wait_message translation string) at intervals set by the
odaas_default_wait_message_interval flag. When the wait for the skill response
exceeds the threshold set by the typingIndicatorTimeout flag, the client displays a
sorry response to the user and stops the typing indicator. You can configure the sorry
response using the odaas_default_sorry_message translation string.

Delegation
Feature configuration: messageModifierDelegate
The delegation feature lets you set a delegate to receive callbacks before certain
events in the conversation. To set a delegate, a class must implement the interface
MessageModifierDelegate and pass its instance to the messageModifierDelegate
property.

private MessageDelegate implements MessageModifierDelegate {
 @Override
 public Message beforeSend(Message message) {
 // Handle before send delegate here
 }

 @Override
 public Message beforeDisplay(Message message) {
 if (message != null && message.getPayload() != null &&
message.getPayload().getType() == MessagePayload.MessageType.CARD) {

((CardMessagePayload)message.getPayload()).setLayout(CardLayout.VERTICA
L);

Chapter 50
Features

50-38

 }
 return message;
 }

 @Override
 public Message beforeNotification(Message message) {
 // Handle before notification delegate here
 }
}
 @Override
 public void beforeEndConversation(CompletionHandler completionHandler) {
 // Handle before end conversation end delegate here
 // Trigger completionHandler.onSuccess() callback after successful
execution of the task.
 // Trigger completionHandler.onFailure() callback when the task is
unsucessful.
 }
 }

public Message beforeDisplay(Message message)
The public Message beforeDisplay(Message message) delegate allows a skill's message to
be modified before it is displayed in the conversation. The modified message that's returned
by the delegate displays in the conversation. If the method returns null, then the message is
not displayed.

public Message beforeDisplay(Message message)
The public Message beforeDisplay(Message message) delegate allows a user message to
be modified before it is sent to the chat server. The message returned by the delegate is sent
to the skill. If it returns null, then the message is not sent.

public Message beforeNotification(Message message)
The public Message beforeNotification(Message message) delegate allows a skill's
message to be modified before a notification is triggered. If it returns null, then the notification
is not triggered.

Display the Conversation History
You can either enable or display of a user's local conversation histor after the SDK has been
re-initialized by setting displayPreviousMessages to true or false in the bots configuration.
When set to false, previous messages are not displayed for the user, after re-initialization of
SDK.

End the Chat Session
FeatureFlag: enableEndConversation: true
enableEndConversation: true adds a close button to the header view that enables users to
explicitly end the current chat session. A confirmation prompt dialog opens when users click
this close button and when they confirm the close action, the SDK sends an event message
to the skill that marks the end of the chat session. The SDK then disconnects the skill from

Chapter 50
Features

50-39

the instance, collapses the chat widget, and erases the current user's conversation
history. The SDK triggers a delegate on beforeEndConversation(CompletionHandler
completionHandler) which can be used to perform a task before sending close
session request to server. It also raises a OnChatEnd() event that you can register for.

Opening the chat widget afterward starts a new chat session.

public static void endChat()
The conversation can also be dynamically ended by calling Bots.endChat() API.

Bots.endChat()

CompletionHandler
CompletionHandler is an event listener that is implemented on the SDK, which listens
for completion of the task being performed on the
beforeEndConversation(CompletionHandler completionHandler) delegate in the
host application. Refer to the Javadoc included with the SDK available from the ODA
and OMC download page.

Foreground Service
A foreground service starts by default to prevent the app from getting terminated in the
background, even when it has been running there for a long period of time. To
preserve the battery, users can turn this service off through a call to the following API,
which disables the service.

ConversationActivity.enableForegroundService(false)

Headless SDK
The SDK can be used without its UI. To use it in this mode, import only the
com.oracle.bots.client.sdk.android.core-24.02.aar package into the project as
described in Add the Oracle Android Client SDK to the Project.

The SDK maintains the connection to server and provides APIs to send messages,
receive messages, and get updates for the network status and for other services. You
can use the APIs to interact with the SDK and update the UI.

You can send a message using any of the send*() APIs available in Bots class. For
example, public static void sendMessage(String text) sends text message to
skill or digital assistant.

public static void sendMessage(String text)
Sends a text message to the skill. Its text parameter is the text message.

Bots.sendMessage("I want to order a Pizza");

Chapter 50
Features

50-40

https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html

EventListener
To listen for the connection status change, the message sent to the skill and received from
the skill, and the attachment upload status events, a class should implement the
EventListener interface, which then implements the functionality for:

• void onStatusChange(ConnectionStatus connectionStatus) – This method is called
when the WebSocket connection status changes. Its connectionStatus parameter is the
current status of the connection. Refer to the Javadocs included in the SDK (available
from the ODA and OMC download page) for more details about the ConnectionStatus
enum.

• void onMessageReceived(Message message) – This method is called when a new
message is received from the skill. Its message parameter is the message received from
the skill. Refer to the Javadocs included in the SDK (available from the ODA and OMC
download page) for more details about the Message class.

• void onMessageSent(Message message) - This method is called when a message is sent
to the skill. Its message parameter is the message sent to the skill. Refer to the Javadocs
included in the SDK (available from the ODA and OMC download page) for more details
about the Message class.

• void onAttachmentComplete() – This method is called when an attachment upload has
completed.

public class BotsEventListener implements EventListener {
 @Override
 public void onStatusChange(ConnectionStatus connectionStatus) {
 // Handle the connection status change
 }

 @Override
 public void onMessageReceived(Message message) {
 // Handle the messages received from skill/DA
 }

 @Override
 public void onMessageSent(Message message) {
 // Handle the message sent to skill or Digital Assistant
 }

 @Override
 public void onAttachmentComplete() {
 // Handle the post attachment upload actions
 // Close the attachment upload progress popup if any etc.
 }
}

The instance of type EventListener should then be passed to
setEventListener(EventListener eventListener).

Chapter 50
Features

50-41

https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html
https://www.oracle.com/downloads/cloud/amce-downloads.html

public static void setEventListener(EventListener eventListener)
Sets the listener to receive the response returned from the skill to get updates on
connection status change and to receive an update when the attachment upload is
complete. Its eventListener parameter is an instance of type EventListener to
receive updates.

Bots.setEventListener(new BotsEventListener());

In-Widget Webview
Feature flag: linkHandler
You can configure the link behavior in chat messages to allow users to access web
pages from within the chat widget. Instead of having to switch from the conversation to
view a page in a tab or separate browser window, a user can remain in the chat
because the chat widget opens the link within a Webview.

Configure the In-Widget Webview
Feature flag: webViewConfig
You can configure the webview linking behavior by setting the linkHandler function to
WebviewLinkHandlerType.WEBVIEW. You can set the size and display of the webview
itself using a webViewConfig class object:

BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>, false,
getApplicationContext()) // Configuration to initialize the SDK
 .channelId(<CHANNEL_ID>)
 .userId(<USER_ID>)
 .linkHandler(WebviewLinkHandlerType.WEBVIEW)
 .webViewConfig(new WebViewConfig()
 .webViewSize(WebviewSizeWindow.FULL)
 .webViewTitleColor(<COLOR_VALUE>)
 .webviewHeaderColor(<COLOR_VALUE>)
 .clearButtonLabel(<BUTTON_TEXT>)
 .clearButtonLabelColor(<COLOR_VALUE>)
 .clearButtonIcon(<IMAGE_ID>))
 .build();

As illustrated in this code snippet, you can set the following attributes for the webview.

Attribute Settings

webViewSize Sets the screen size of the in-widget webview
window with the WebviewSizeWindow enum,
which has two values: PARTIAL
(WebviewSizeWindow.PARTIAL) and FULL
(WebviewSizeWindow.FULL).

Chapter 50
Features

50-42

Attribute Settings

clearButtonLabel Sets the text used for clear/close button in the
top right corner of webview. The default text is
DONE.

clearButtonIcon Sets an icon for the clear button, which
appears left-aligned inside the button.

clearButtonLabelColor Sets the color of text of clear button label.

clearButtonColor Sets the background color for the clear button.

webviewHeaderColor Sets the background color for webview header.

webviewTitleColor Sets the color of title in the header. The title is
the URL of the web link that has been opened.

Multi-Lingual Chat
Feature flag: multiLangChat
The Android SDK's native language support enables the chat widget to both detect a user's
language and allow the user to select the conversation language from a dropdown menu in
the header. Users can switch between languages, but only in between conversations, not
during a conversation because the conversation gets reset whenever a user selects a new
language.

Enable the Language Menu
You can enable a menu that allows users to select a preferred language from a dropdown
menu by defining the multiLangChat property with an object containing the
supportedLanguage ArrayList, which is comprised of language tags (lang) and optional
display labels (label). Outside of this array, you can optionally set the default language with
the primary property as illustrated by the (primary("en") in the following snippet.

ArrayList<SupportedLanguage> supportedLanguages = new ArrayList<>();
supportedLanguages.add(new SupportedLanguage("en"));
supportedLanguages.add(new SupportedLanguage("fr", "French"));
supportedLanguages.add(new SupportedLanguage("de", "German"));
MultiLangChat multiLangChat = new
MultiLangChat().supportedLanguage(supportedLanguages).primary("en");
BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(<SERVER_URI>, false,
getApplicationContext()) // Configuration to initialize the SDK
 .channelId(<CHANNEL_ID>)
 .userId(<USER_ID>)
 .multiLangChat(multiLangChat)
 .build();

The chat widget displays the passed-in supported languages in a dropdown menu that's
located in the header. In addition to the available languages, the menu also includes a Detect
Language option. When a user selects a language from this menu, the current conversation
is reset, and a new conversation is started with the selected language. The language
selected by the user persists across sessions in the same browser, so the user's previous
language is automatically selected when the user revisits the skill through the page
containing the chat widget.

Chapter 50
Features

50-43

Here are some things to keep in mind when configuring multi-language support:

• You need to define a minimum of two languages to enable the dropdown menu to
display.

• If you omit the primary key, the widget automatically detects the language in the
user profile and selects the Detect Language option in the menu.

Disable Language Menu
Starting with Version 21.12, you can also configure and update the chat language
without also having to configure the language selection dropdown menu by passing
primary in the initial configuration without the supportedLanguage ArrayList. The value
passed in the primary variable is set as the chat language for the conversation.

Language Detection
In addition to the passed-in languages, the chat widget displays a Detect Language
option in the dropdown. Selecting this option tells the skill to automatically detect the
conversation language from the user's message and, when possible, to respond in the
same language.

Note:

If you omit the primary property, the widget automatically detects the
language in the user profile and activates the Detect Language option in the
menu.

You can dynamically update the selected language by calling the
setPrimaryChatLanguage(lang) API. If the passed lang matches one of the
supported languages, then that language is selected. When no match can be found,
Detect Language is activated. You can also activate the Detected Language option
by calling Bots.setPrimaryChatLanguage('und') API, where 'und' indicates
undetermined.

You can update the chat language dynamically using the
setPrimaryChatLanguage(lang) API even when the dropdown menu has not been
configured.

Multi-Lingual Chat Quick Reference

To do this... ...Do this

Display the language selection dropdown to
end users.

Define multiLangChat property with an
object containing the supportedLanguage
ArrayList.

Set the chat language without displaying the
language selection dropdown menu to end
users.

Define primary only.

Set a default language. Pass primary with the supportedLanguage
Arraylist. The primary value must be one of
the supported languages included the array.

Chapter 50
Features

50-44

To do this... ...Do this

Enable language detection. Pass primary as und.

Dynamically update the chat language. Call the setPrimaryChatLanguage(lang)
API.

Share Menu Options
By default, the share menu displays options for the following file types:

• visual media files (images and videos)

• audio files

• general files like documents, PDFs, and spreadsheets

• location

By passing an ArrayList of Objects to shareMenuItems
shareMenuItems(Arraylist<Object>), you can restrict, or filter, the type of items that are
available in the menu, customize the menu's icons and labels, and limit the upload file size
(such as 1024 in the following snippet). These objects can either be an object of
shareMenuCustomItem, or ShareMenuItem enum values that are mapped to the share menu
items: ShareMenuItem.CAMERA for the camera menu item (if supported by the device),
ShareMenuItem.VISUAL for sharing an image or video item, ShareMenuItem.AUDIO for sharing
an audio item, and ShareMenuItem.FILE for sharing a file item. Passing either an empty value
or a null value displays all of the menu items that can be passed as ShareMenuItem enum
values.

If a ShareMenuCustomItem object has no value or a null for the label as does
shareMenuCustomItem3 = ShareMenuCustomItem('csv') in the following snippet, then a type
string that's suffixed to share_ becomes the label. For shareMenuCustomItem3, the label is
share_csv. You can allow users to upload all file types by setting the type of a
ShareMenuCustomItem object as *.

Note:

This configuration only applies when enableAttachment is set to true.

ArrayList<Object> customItems = new ArrayList<>();
ShareMenuCustomItem shareMenuCustomItem1 = new ShareMenuCustomItem("pdf
bin", "Label1", 1024, R.drawable.odaas_menuitem_share_file);
ShareMenuCustomItem shareMenuCustomItem2 = new ShareMenuCustomItem("doc",
"Label2", R.drawable.odaas_menuitem_share_file);
ShareMenuCustomItem shareMenuCustomItem3 = new ShareMenuCustomItem("csv");
ArrayList<Object> customItems = new
ArrayList<>(Arrays.asList(shareMenuCustomItem1,shareMenuCustomItem2,shareMenu
CustomItem3,ShareMenuItem.CAMERA));
BotsConfiguration botsConfiguration = new
BotsConfiguration.BotsConfigurationBuilder(sharedPreferences.getString(getStr
ing(R.string.pref_name_chat_server_host), Settings.CHAT_SERVER_URL), false,
getApplicationContext())
 .channelId(<CHANNEL_ID>)

Chapter 50
Features

50-45

 .userId(<USER_ID>)
 .shareMenuItems(customItems)
 .enableAttachment(true)
 .build();

public static void shareMenuItems()
You can get the share menu items list by calling the Bots.shareMenuItems(); API.

Bots.shareMenuItems()

public static void shareMenuItems(ArrayList<Object> shareMenuItems)
You can dynamically update the share menu items popup by calling the
Bots.shareMenuItems(customItems); API, where customItems is an ArrayList of
Objects. Each object can either be of type ShareMenuItem enum values or an object of
ShareMenuCustomItem.

ArrayList<Object> customItems = new ArrayList<>();
ShareMenuCustomItem shareMenuCustomItem1 = new
ShareMenuCustomItem("pdf bin", "Label1", 1024,
R.drawable.odaas_menuitem_share_file);
ShareMenuCustomItem shareMenuCustomItem2 = new
ShareMenuCustomItem("doc", "Label2",
R.drawable.odaas_menuitem_share_file);
ShareMenuCustomItem shareMenuCustomItem3 = new
ShareMenuCustomItem("csv");
customItems.add(shareMenuCustomItem1);
customItems.add(ShareMenuItem.CAMERA);
customItems.add(ShareMenuItem.FILE);
customItems.add(shareMenuCustomItem2);
customItems.add(shareMenuCustomItem3);
Bots.shareMenuItems(customItems);

Speech Recognition
Feature flag: enableSpeechRecognition
Setting the enableSpeechRecognition feature flag to true enables the microphone
button to display along with the send button whenever the user input field is empty.

Setting this property to true also supports the functionality enabled by the
enableSpeechRecognitionAutoSend property, which when also set to true, enables
the user's speech response to be sent to the chat server automatically while displaying
the response as a sent message in the chat window. You can allow users to first edit
(or delete) their dictated messages before they send them manually by setting
enableSpeechRecognitionAutoSend to false.

Speech recognition is utilized through the following methods:

• public static void startRecording(IBotsSpeechListener listener)

• public static void stopRecording()

Chapter 50
Features

50-46

• public static boolean isRecording()

public static void startRecording(IBotsSpeechListener listener)
Starts recording the user's voice message. The listener parameter is an instance of
IBotsSpeechListener to receive the response returned from the server.

public static void stopRecording()
Stops recording the user's voice message.

public static boolean isRecording()
Checks whether the voice recording has started or not. Returns true if the recording has
started. Otherwise, it returns false.

IBotsSpeechListener
A class should implement the interface IBotsSpeechListener which then implements the
functionality for the following methods:

• void onError(String error)

• void onSuccess(String utterance)

• void onPartialResult(String utterance)

• void onClose(int code, String message)

• void onOpen()

void onError(String error)
This method is called when errors occur while establishing the connection to the server, or
when there is either no input given or when too much input is given. Its error parameter is
the error message.

void onSuccess(String utterance)
This method is called when a final result is received from the server. Its utterance parameter
is the final utterance received from the server.

Note:

This method is deprecated in Release 20.8.1.

void onSuccess(BotsSpeechResult botsSpeechResult)
This method is called when a final result is received from the server. Its parameter,
botsSpeechResult, is the final response received from the server.

Chapter 50
Features

50-47

void onPartialResult(String utterance)
This method is called when a partial result is received from the server. Its utterance
parameter is the partial utterance received from the server.

void onClose(int code, String message)
This method is called when the connection to server closes.

Parameters:

• code – The status code

• message – The reason for closing the connection

void onOpen()
The method called when the connection to server opens.

onActiveSpeechUpdate(byte[] speechData)
This method is called when there is an update in the user's voice message, which can
then be used for updating the speech visualizer. It's parameter is speechData, the byte
array of the recorded voice of user.

public class BotsSpeechListener implements IBotsSpeechListener {
 @Override
 public void onError(String error) {
 // Handle errors
 }

 @Override
 public void onSuccess(String utterance) {
 // This method was deprecated in release 20.8.1.
 // Handle final result
 }

 @Override
 public void onSuccess(BotsSpeechResult botsSpeechResult) {
 // Handle final result
 }

 @Override
 public void onPartialResult(String utterance) {
 // Handle partial result
 }

 @Override
 public void onClose(int code, String message) {
 // Handle the close event of connection to server
 }

 @Override

Chapter 50
Features

50-48

 public void onOpen() {
 // Handle the open event of connection to server
 }

 @Override
 public void onActiveSpeechUpdate(byte[] speechData) {
 // Handle the speech update event
 }
}

Bots.startRecording(new BotsSpeechListener()); // Start voice recording

if (Bots.isRecording()) {
 Bots.stopRecording(); // Stop voice recording
}

Speech Synthesis
• Feature flag: enableSpeechSynthesis
• Functionality configuration: speechSynthesisVoicePreferences
The SDK has been integrated with speech synthesis to read the skill's message aloud when
a new message is received from skill:

• Users can mute or unmute the skill's audio response using a button that's located in the
header of the chat view. You enable this feature by setting the enableSpeechSynthesis
feature flag to true.

• You can set the preferred language that read the skill's messages aloud with the
speechSynthesisVoicePreferences property. This parameter that sets the language and
voice is a list of SpeechSynthesisSetting instances (described in the SDK's Javadoc that
you download from the ODA and OMC download page). This property enables a fallback
when the device doesn't support the preferred language or voice. If the device does not
support the preferred voice, then the default voice for the preferred language is used
instead. When neither the preferred voice or language are supported, then the default
voice and language are used.

public static void initSpeechSynthesisService()
Initializes the speech synthesis service. This method should be called in the onCreate()
method of an Activity to initialize the speech synthesis service. The initialization of speech
synthesis service will be done when the SDK library initializes only if the
enableSpeechSynthesis feature flag is set to true.

public class ConversationActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Bots.initSpeechSynthesisService();
 }
}

Chapter 50
Features

50-49

https://www.oracle.com/downloads/cloud/amce-downloads.html

public static void startBotAudioResponse(String text)
Starts reading the skill's response aloud. Its text parameter is the text for the skill's
message that's read aloud.

Bots.startBotAudioResponse("What kind of crust do you want?");

Note:

This method was deprecated in Release 21.08.

public static void stopBotAudioResponse()
Stops reading the skill's response aloud.

Bots.stopBotAudioResponse()

public static boolean isSpeaking()
Checks if the skill's response is currently being read aloud or not.

Returns true if the skill's response is currently being read aloud. Otherwise, it returns
false.

if (Bots.isSpeaking()) {
 Bots.stopBotAudioResponse();
}

public static void shutdownBotAudioResponse()
Releases the resources used by the SDK.

This method is called in the onDestroy() method of ConversationActivity.

public class ConversationActivity extends AppCompatActivity {
 @Override
 protected void onDestroy() {
 super.onDestroy();
 Bots.shutdownBotAudioResponse();
 }
}

Speech Service Injection
Feature flag : ttsService
The speechSynthesisService feature flag allows you to inject any text-to-speech
(TTS) service -- your own, or one provided by a third-party vendor -- into the SDK. To

Chapter 50
Features

50-50

inject a TTS service, you must first set the enableSpeechSynthesis feature flag to true and
then pass an instance of the SpeechSynthesisService interface to the
speechSynthesisService flag.

The SpeechSynthesisService Interface
You create an instance of a class that's an implementation of the SpeechSynthesisService
interface. It implements these methods:

• initTextToSpeechService(@NonNull Application application, @NonNull
BotsConfiguration botsConfiguration): Initializes a new TTS service.

Parameter Description

application The application. This cannot be null.

botsConfiguration The BotsConfiguration object used to
control the features of the library. This cannot be
null.

• speak(String phrase): Adds a phrase that's to be spoken to the utterance queue. It's
phrase parameter is the text to be spoken.

• isSpeaking(): Checks whether or not the audio response is being spoken. It returns
false if there is no ongoing audio response is being spoken.

Note:

This method was deprecated in Release 21.08.

• stopTextToSpeech(): Stops any ongoing speech synthesis.

Note:

This method was deprecated in Release 21.08.

• shutdownTextToSpeech(): Releases the resources used by the TextToSpeech engine.

• getSpeechSynthesisVoicePreferences(): Returns the voice preferences array which is
used to choose the best match for the available voice that's used for speech synthesis.

• setSpeechSynthesisVoicePreferences(ArrayList<SpeechSynthesisSetting>
speechSynthesisVoicePreferences): Sets the voice preferences array which is used to
choose the best available voice match for speech synthesis. The
speechSynthesisVoicePreferences parameter is the voice preference array for speech
synthesis.

• onSpeechSynthesisVoicePreferencesChange(ArrayList<SpeechSynthesisSetting>
speechSynthesisVoicePreferences): Sets the speech synthesis voice to the best
available voice match.

Chapter 50
Features

50-51

Note:

This method was deprecated in Release 21.08.

We recommend that you call this method inside the
setSpeechSynthesisVoicePreferences method after setting the voice preferences
ArrayList. The speechSynthesisVoicePreferences parameter is the voice
preference array for speech synthesis.

• onSpeechRecognitionLocaleChange(Locale speechLocale): This method gets
invoked when the speech recognition language has changed. By overriding this
method, you can set the speech synthesis language to the same language as the
speech recognition language. The speechLocale parameter is the locale set for
speech recognition.

 private class TextToSpeechServiceInjection implements
SpeechSynthesisService {

 @Override
 public void initTextToSpeechService(@NonNull Application
application, @NonNull BotsConfiguration botsConfiguration) {
 // Initialisation of Text to Speech Service.
 }

 @Override
 public void speak(String phrase) {
 // Adds a phrase to the utterance queue to be spoken
 }

 @Override
 public boolean isSpeaking() {
 // Checks whether the bot audio response is being spoken
or not.
 return false;
 }

 @Override
 public void stopTextToSpeech() {
 // Stops any ongoing speech synthesis
 }

 @Override
 public void shutdownTextToSpeech() {
 // Releases the resources used by the TextToSpeech engine.
 }

 @Override
 public ArrayList<SpeechSynthesisSetting>
getSpeechSynthesisVoicePreferences() {
 // The voice preferences array which is used to choose the
best match available voice for speech synthesis.
 return null;
 }

Chapter 50
Features

50-52

 @Override
 public void
setSpeechSynthesisVoicePreferences(ArrayList<SpeechSynthesisSetting>
speechSynthesisVoicePreferences) {
 // Sets the voice preferences array which can be used to choose
the best match available voice for speech synthesis.
 }

 @Override
 public SpeechSynthesisSetting
onSpeechSynthesisVoicePreferencesChange(ArrayList<SpeechSynthesisSetting>
speechSynthesisVoicePreferences) {
 // Sets the speech synthesis voice to the best voice match
available.
 return null;
 }

 @Override
 public void onSpeechRecognitionLocaleChange(Locale speechLocale) {
 // If the speech recognition language is changed, the speech
synthesis language can also be changed to the same language.
 }
 }

Note:

SpeechSynthesisService#setSpeechSynthesisVoicePreferencesonSpeechSynthe
sisVoicePreferencesChange(ArrayList<SpeechSynthesisSetting>) and
SpeechSynthesisService#onSpeechSynthesisVoicePreferencesChange(ArrayLis
t<SpeechSynthesisSetting>) have been deprecated in this release and have been
replaced by
SpeechSynthesisService#setTTSVoice(ArrayList<SpeechSynthesisSetting>)
and SpeechSynthesisService#getTTSVoice(). Previously,
SpeechSynthesisService#setSpeechSynthesisVoicePreferencesonSpeechSynthe
sisVoicePreferencesChange set the speech synthesis voice preference array and
SpeechSynthesisService#onSpeechSynthesisVoicePreferencesChange set the
best voice available for speech synthesis and returned the selected voice. Now, the
same functionality is attained through the new methods:
SpeechSynthesisService#setTTSVoice(ArrayList<SpeechSynthesisSetting>
TTSVoices), which sets both the speech synthesis voice preference array and the
best available voice for speech synthesis and
SpeechSynthesisService#getTTSVoice(), which returns the selected voice for
speech synthesis.

Typing Indicator for User-Agent Conversations
Feature flag: enableSendTypingStatus
When enabled, the SDK sends a RESPONDING typing event along with the text that's currently
being typed by the user to . This shows a typing indicator on the agent console. When the

Chapter 50
Features

50-53

user has finished typing, the SDK sends a LISTENING event to Oracle B2C Service or
Oracle Fusion Service. This hides the typing indicator on the agent console.

Similarly, when the agent is typing, the SDK receives a RESPONDING event from the
service. On receiving this event, the SDK shows a typing indicator to the user. When
the agent is idle, the SDK receives LISTENING event from the service. On receiving this
event, the SDK hides the typing indicator that's shown to the user.

The sendUserTypingStatus API enables the same behavior for headless mode.

public void sendUserTypingStatus(TypingStatus status, String text)

• To show the typing indicator on the agent console:

Bots.sendUserTypingStatus("RESPONDING", "<Message_Being_Typed>");

• To hide the typing indicator on the agent console:

Bots.sendUserTypingStatus("LISTENING", "");

• To control user-side typing indicator, use the onReceiveMessage(Message
message) event. For example:

public void onReceiveMessage(Message message) {
 if (message != null) {
 MessagePayload messagePayload = message.getPayload();
 if (messagePayload instanceof StatusMessagePayload) {
 StatusMessagePayload statusMessagePayload =
(StatusMessagePayload) messagePayload;
 String status = statusMessagePayload.getStatus();

 if
(status.equalsIgnoreCase(String.valueOf(TypingStatus.RESPONDING))) {
 // show typing indicator
 } else if
(status.equalsIgnoreCase(String.valueOf(TypingStatus.LISTENING))
 // hide typing indicator
 }
 }
 }

There are two more settings that provide additional control:

• typingStatusInterval – By default, the SDK sends the RESPONDING typing event
every three seconds to the service. Use this flag to throttle this event. The
minimum value that can be set is three seconds.

• enableAgentSneakPreview - Oracle B2C Service supports showing the user text
as it's being entered. If this flag is set to true (the default is false), then the SDK
sends the actual text. To protect user privacy, the SDK sends … instead of the
actual text to Oracle B2C Service when the flag is set to false.

Chapter 50
Features

50-54

Note:

This feature must be enabled in both the SDK and the Oracle B2C Service chat
configuration.

Update the User Avatar
You can enable dynamic updating of the user avatar at runtime.

public void updatePersonAvatar
Sets the user avatar for the all the messages, including previous messages.

ConversationActivity.setUserPerson(Object);

Expose Agent Details
Use these APIs to modify agent name, the text color, avatar, agent name initials, text color,
and avatar background.

public AgentDetails getAgentDetails()
Returns an object containing the agent details.

Bots.getAgentDetails(AgentDetails);

Refer to the Javadocs for more details about the AgentDetails class.

public void setAgentDetails(AgentDetails)
Overrides the agent details received from server.

Bots.setAgentDetails(AgentDetails);

public AgentDetails getAgentDetails()
Returns an object containing the agent details.

Bots.getAgentDetails(AgentDetails);

Refer to the Javadocs for more details about the AgentDetails class.

Voice Visualizer

When voice support is enabled (enableSpeechRecognition(true)), the footer of the chat
widget displays a voice visualizer, a dynamic visualizer graph that indicates the frequency
level of the voice input. The visualizer responds to the modulation of the user's voice by

Chapter 50
Features

50-55

https://docs.oracle.com/en/cloud/saas/b2c-service/famug/t-Enable-sneak-preview.html#EnableSneakPreview-D222B194
https://docs.oracle.com/en/cloud/saas/b2c-service/famug/t-Enable-sneak-preview.html#EnableSneakPreview-D222B194
https://docs.oracle.com/en/cloud/paas/digital-assistant/sdk-android/
https://docs.oracle.com/en/cloud/paas/digital-assistant/sdk-android/

indicating whether the user is speaking too softly or too loudly. This visualizer is
created using the stream of bytes that are recorded while the user is speaking, which
is also exposed in the IBotsSpeechListener#onActiveSpeechUpdate(byte[]) method
for use in headless mode.

The chat widget displays a voice visualizer when users click the voice icon. It's an
indicator of whether the audio level is sufficiently high enough for the SDK to capture
the user’s voice. The user’s message, as it is recognized as text, displays below the
visualizer.

Note:

Voice mode is indicated when the keyboard icon appears.

When enableSpeechRecognitionAutoSend(true), the recognized text is automatically
sent to the skill after the user has finished dictating the message. The mode then
reverts to text input. When enableSpeechRecognitionAutoSend(false), the mode also
reverts to text input, but in this case, users can modify the recognized text before
sending the message to the skill.

Message Model
To use features like headless mode and delegate, you need to understand both user
and skill messages. Everything that's received or sent from the Oracle Chat Server is
represented as a message, one that's sent from the user to the skill, or from the skill to
the user.

These are the base types used in all messages sent from the user to the skill and vice
versa. They are the building blocks of all messages.

• Attachment

• Location

• Action

• Card

• Heading

• Field

• Row

• Form

• PaginationInfo

Action
An action represents something that the user can select.

Name Description Type Required?

type The action type string Yes

Chapter 50
Message Model

50-56

Name Description Type Required?

label The descriptive label
text for the action.

string At least one label or
imageUrl must be
present.

imageUrl The image for the
action

string At least one label or
imageUrl must be
present.

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

PostbackAction
Sends a predefined postback back to the skill when the user selects an action.

Name Description Type Required?

type The action type "postback" Yes

postback The postback that's
returned when the user
selects an action.

A string or JSONObject Yes

For example:

{
 "type": "postback",
 "label": "Large Pizza",
 "imageUrl": "https://example.com/images/gallery/locations/11.jpg",
 "postback": {
 "state": "askSize",
 "action": "getCrust"
 }
}

CallAction
Requests the client to call a specified phone number on behalf of the user.

Name Description Type Required?

type The action type "call" Yes

phoneNumber The phone number to
call

string Yes

For example:

{
 "type": "call",
 "label": "Call Support",
 "imageUrl": "http://example.com.ar/files/2016/05/cuidado.jpg",

Chapter 50
Message Model

50-57

 "phoneNumber": "18005555555"
}

urlAction
Requests the client to open a website in a new tab or in an in-app browser.

Name Description Type Required?

type The action type "call" Yes

URL The URL of the
website that's
displayed.

string Yes

For example:

{
 "type": "url",
 "label": "Open URL",
 "imageUrl": "http://example.com.ar/files/2016/05/cuidado.jpg",
 "url": "https://example.com/images/gallery/locations/11.jpg",
}

SubmitFormAction
This action is used to submit an input form to the skill when it satisfies the client side
validation. It adds the following properties to the Action properties:

Name Description Type Required?

type The action type "submitForm" Yes

postback The postback payload,
which might include
an action proeprty to
trigger navigation. The
value of this property
should be set in the
FormSubmissionMes
sagePayload.
<<XREF>>

JSONObject No

Example JSON

{
 "type": "submitForm",
 "label": "Submit",
 "postback": {
 "system.botId": "6803DE12-DAA9-4182-BD54-3B4D431554F4",
 "system.flow": "ExpenseFlow",
 "system.state": "editFormMapVar"
 }
}

Chapter 50
Message Model

50-58

LocationAction
Requests the client to ask for the user's location.

Name Description Type Required?

type The action type "location" Yes

For example:

{
 "type": "location",
 "label": "Share location",
 "imageUrl": "http://images.example.com/location-clipart-location-pin-
clipart-1.jpg"
}

Attachment
Represents an attachment that's sent by the user.

Name Description Type Required?

type The attachment type string (valid values:
audio, file, image,
video)

Yes

url The download URL for
the attachment

string Yes

title The name of the
uploaded file

string No

For example:

{
 "type": "image",
 "url": "https://www.oracle.com/us/assets/hp07-oow17-promo-02-3737849.jpg"
}

Card
Represents a single card in the message payload.

Name Description Type Required?

title The title of the card,
displayed as the first line
on the card.

string Yes

description The description of the
card

string No

imageUrl The URL of the image
that is displayed.

string No

Chapter 50
Message Model

50-59

Name Description Type Required?

URL The website URL that's
opened by a tap.

string No

actions An array of actions
related to the text

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Location
Represents a location object.

Name Description Type Required?

title The location title string No

URL The URL for displaying
the location on a map

string No

latitude The GPS coordinate's
longitude value

double Yes

longitude The GPS coordinate's
latitude value

double Yes

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

For example:

{
 "title": "Oracle Headquarters",
 "url": "https://www.google.com.au/maps/place/
37°31'47.3%22N+122°15'57.6%22W",
 "longitude": -122.265987,
 "latitude": 37.529818
}

Heading
Represents a heading for tables in a Table or Table-Form object.

Name Description Type Required?

label The heading label String Yes

alignment The positioning of the
label within the cell

"left", "right",
"center"

Yes

Chapter 50
Message Model

50-60

Name Description Type Required?

width The suggested
percentage of the
table width that should
be provided to the
heading.

No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Field
Represents the atomic information of a table cell or a form field within the Table, Form, and
Table-Form objects, provided as key-value pair.

Name Description Type Required?

displayType The field type "text", "link" Yes

label The field key String Yes

value The field value String No

linkLabel A short label for the link
value if displayType is
link.

String No

alignment The positioning of the
label within its cell

"left", "right",
"center"

No

width The suggested
percentage of the table
width that should be
provided to the field

No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

selectFieldOption
The Single-Select and Multi-Select fields use a list of select options with following properties:

Name Description Type Required?

label The display text string Yes

value The value for option Primitive data types
(string, number,
boolean, etc.)

No

channelExtensions The channel-specific
extension properties
associated with the field
option.

JSONObject No

Chapter 50
Message Model

50-61

Read Only Field
Represents a read only field. All read only fields inherit the field properties and have
the following additional properties:

Name Description Type Required?

value The field value string Yes

width The suggested
percentage of the total
available width that the
field should occupy in
a table layout.

number No

alignment The alignment of the
value within a table
column. The default
alignment is right.

"left", "center"
and "right"

No

Text Field
The text field inherits all of the read only field properties. The displayType value for
this field is "text".

Link Field
The link field inherits all of the read only field properties. It has the following additional
properties:

Name Description Type Required?

displayType The field type "link" Yes

linkLabel The label used for the
hyperlink

string No

imageUrl The URL of the image
that opens a link when
clicked.

string No

Media Field
The media field inherits all of the read only field properties. It has the following
additional properties:

Name Description Type Required?

displayType The field type "media" Yes

mediaType The field media type "video", "audio",
"image"

Yes

Action Field
The action field inherits all of the read only field properties. It has the following
additional properties:

Chapter 50
Message Model

50-62

Name Description Type Required?

displayType The field type "action" Yes

action The action that should
be performed when the
user clicks the action
button.

Action Yes

Editable Field
Represents an editable field. All editable fields inherit the field properties and have the
following additional properties:

Name Description Type Required?

id The field ID string Yes

placeholder A description of the
input that's expected
from the user. This text
displays when the user
has not yet made a
selection or entered a
value.

string No

required Whether this input is
required to submit the
form

boolean No

clientErrorMessage The field-level error
message that's
displayed below the field
when a client-side
validation error occurs. If
not provided, the SDK
defaults to
editFieldErrorMessa
ge.

string No

serverErrorMessage The field level error
message that's
displayed below the field
when a server-side
validation error occurs.
This error message
must be included in the
payload sent by the skill.

string No

autoSubmit When set to true, the
form is partially
submitted when the user
has entered a value for
the field.

No

Single-Select
The single-select field inherits all of the Editable Field properties and has the following
additional properties:

Chapter 50
Message Model

50-63

Name Description Type Required?

displayType The field type "singleSelect" Yes

defaultValue The default selection Primitive data types
(string, number,
boolean, etc.)

No

options An array of options
presented to the user.

A selectFieldOption
array

Yes

layoutStyle The layout style used
to render the single
select options. The
default layout is list.

"list",
"radioGroup"

No

Multi-Select
The multi-select field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "multiSelect" Yes

defaultValue The default selection An Array<object> of
primitive data types (a
string, number,
boolean, etc.)

No

options An array of options
presented to the user

A selectFieldOption
array

Yes

layoutStyle The layout style used
to render the options.

"list",
"checkboxes"

No

DatePicker
The date picker field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "datePicker" Yes

defaultValue The initial value for
this field. The format
must be YYYY-MM-
DD.

string No

minDate The minimum, or
earliest, date allowed.
The format must be
YYYY-MM-DD.

string No

maxDate The maximum, or
latest, date allowed.
The format must be
YYYY-MM-DD.

string No

Chapter 50
Message Model

50-64

TimePicker
The time picker field inherits some of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "timePicker" Yes

defaultValue The initial value for this
field, entered as HH:mm
in 24-hour format.

string No

minTime The minimum, or
earliest, time allowed,
entered as HH:mm in
24-hour format. For
example, 00:00.

string No

maxTime The maximum, or latest,
time allowed, entered as
HH:mm, in 24-hour
format. For example,
13:00.

string No

Toggle
The toggle field inherits all of the Editable Field properties and has the following additional
properties:

Name Description Type Required?

displayType The field type "toggle" Yes

defaultValue The initial selected
value. If you want the
toggle to be initially on,
set the default value to
the same value as
valueOn.

string No

valueOff The value when toggle
is off

string Yes

valueOn The value when toggle
is on

string Yes

labelOff The label for the "off"
value

string No

labelOn The label for the "on"
value

string No

TextInput
The text input field inherits all of the Editable Field properties and has the following additional
properties:

Name Description Type Required?

displayType The field type "textInput" Yes

Chapter 50
Message Model

50-65

Name Description Type Required?

defaultValue The initial value for this
field

string no

validationRegularEx
pression

A regular expression
indicating the required
format for this text input

string no

multiline The flag that determines
whether to render
multiple lines of input

boolean no

minLength The minimum length of
input that the user must
provide

integer no

maxLength The maximum number
of characters allowed in
the text input field

integer no

inputStyle The input style used by
the client. Allowable
values are: "text",
"tel",
"url","email", and
"password".

string no

NumberInput
The number input field inherits all of the Editable Field properties and has the following
additional properties:

Name Description Type Required?

displayType The field type "numberInput" Yes

defaultValue The initial value for
this field

Integer No

minValue A smallest allowable
number

Integer No

maxValue The largest allowable
number.

Integer No

Row
Represents an array of fields.

Name Description Type Required?

fields An array of fields Array <field> Yes

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Chapter 50
Message Model

50-66

Form
Represents an array of fields along with a title. Used in Table-Form messages for nested
forms of a table row.

Name Description Type Required?

title The form title String No

field An array of fields Array <field> Yes

actions An array of actions Array <BotsAction> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

PaginationInfo
Represents the paging information for the results in the Table, Form, and Table-Form objects.

Name Description Type Required?

totalCount The total results count number Yes

rangeSize The range size of the
results per page

number Yes

status The paging status
message

string Yes

currentRangeSize The size of curent range
of results

number Yes

rangeStart The starting offset of the
current range of results

number Yes

nextRangeSize The size of the next
range of results

number Yes

hasPrevious Indicates whether there
is a previous set of
results

boolean Yes

hasNext Indicates whether there
is a next set of results

boolean Yes

Conversation Message
All of the messages that are part of a conversation have the following structure:

Name Description Type Required?

messagePayload The message payload Message Yes

userId The user ID string Yes

For example:

{
 "messagePayload": {

Chapter 50
Message Model

50-67

 "text": "show menu",
 "type": "text"
 },
 "userId": "guest"
}

Message
Message is an abstract base type for all other messages. All messages extend it to
provide some information.

Name Description Type Required?

type The message type string Yes

User Message
Represents a message sent from the user to the skill.

User Text Message
The simple text message that's sent to the server.

Name Description Type Required?

type The message type "text" Yes

text The message text string Yes

For example:

{
 "messagePayload": {
 "text": "Order Pizza",
 "type": "text"
 },
 "userId": "guest"
}

User Postback Message
The postback response message that's sent to the server.

Name Description Type Required?

type The message type "postback" Yes

text The postback text string No

postback The postback of the
selected action

A string or
JSONObject

Yes

Chapter 50
Message Model

50-68

For example:

{
 "messagePayload": {
 "postback": {
 "variables": {
 "pizza": "Small"
 },
 "system.botId": "69BBBBB-35BB-4BB-82BB-BBBB88B21",
 "system.state": "orderPizza"
 },
 "text": "Small",
 "type": "postback"
 },
 "userId": "guest"
}

User Attachment Message
The attachment response message that's sent to the server.

Name Description Type Required?

type The message type "attachment" Yes

attachment The attachment
metadata

Attachment Yes

For example:

{
 "messagePayload": {
 "attachment": {
 "type": "image",
 "url": "http://oda-instance.com/attachment/v1/attachments/
d43fd051-02cf-4c62-a422-313979eb9d55"
 },
 "type": "attachment"
 },
 "userId": "guest"
}

User Form Submission Message
This represents the form submission message that's sent after the user has submitted a form
by a SubmitFormAction. It has the following properties:

Name Description Type Required?

type The message type. "formSubmission" Yes

submittedFields Key-value pairs of the
submitted field values.
The key is the name (ID)
of the field.

JSONObject Yes

Chapter 50
Message Model

50-69

Name Description Type Required?

postback The postback payload,
which might include an
action property to trigger
navigation. The value of
this property should be
taken from the
SubmitFormAction.

JSONObject No

partialSubmitField The ID of the field that
triggers a partial form
submission. Fields with
the autoSubmit property
set to true can trigger a
partial form submission.

String No

Example JSON

{
 "messagePayload": {
 "submittedFields": {
 "Attendees": [
 "Toff van Alphen"
],
 "Type": "Public transport",
 "Description": "expense",
 "Subject": "Expense",
 "Date": "2023-06-07",
 "Time": "18:58",
 "Amount": 6,
 "TipIncluded": "true"
 },
 "partialSubmitField": "Attendees",
 "type": "formSubmission"
 },
 "userId": "guest"
}

User Location Message
The location response message that's sent to the server.

Name Description Type Required?

type The message type "location" Yes

location The user location
information

Location Yes

For example:

{
 "messagePayload": {
 "location": {
 "latitude": 45.9285271,

Chapter 50
Message Model

50-70

 "longitude": 132.6101925
 },
 "type": "location"
 },
 "userId": "guest"
}

Skill Message
Represents the message sent from the skill to the user.

Skill Text Message
Represents a text message.

Name Description Type Required?

type The message type "text" Yes

text The message text string Yes

headerText The header text for
cards

string No

footerText The footer text for cards string No

actions An array of actions
related to the text.

array No

globalActions An array of global
actions related to the
text.

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

For example:

{
 "messagePayload": {
 "type": "text",
 "text": "What do you want to do?",
 "actions": [
 {
 "type": "postback",
 "label": "Order Pizza",
 "postback": {
 "state": "askAction",
 "action": "orderPizza"
 }
 },
 {
 "type": "postback",
 "label": "Cancel A Previous Order",
 "postback": {
 "state": "askAction",
 "action": "cancelOrder"

Chapter 50
Message Model

50-71

 }
 }
],
 "channelExtensions": {
 "displayType":"stars"
 }
 },
 "userId": "guest",
 "msgId": "message_id",
 "source": "BOT"
}

Location Message
represents a location message.

Name Description Type Required?

type The message type "location" Yes

location The location location No

headerText The header text for the
message

string No

footerText The footer text for the
message

string No

actions An array of actions
related to the text

Array<Action> No

globalActions An array of global
actions related to the
text

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Skill Attachment Message
Represents an attachment message.

Name Description Type Required?

type The message type "attachment" Yes

attachment The attachment sent Attachment Yes

headerText The card's header text string No

footerText the card's footer text string No

actions An array of actions
related to the text.

array No

globalActions An array of global
actions related to the
text.

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Chapter 50
Message Model

50-72

Skill Card Message
Represents a set of choices that are displayed for the user, either horizontally as carousels or
vertically as lists.

Name Description Type Required?

type The message type "card" Yes

layout Whether to display the
messages horizontally
or vertically.

string (values:
horizontal,
vertical)

Yes

cards An array of cards to be
rendered.

array Yes

headerText The cards' header text string No

actions An array of actions
related to the text.

array No

globalActions An array of global
actions related to the
text.

array No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

{
 "messagePayload": {
 "type": "card",
 "layout": "horizontal",
 "cards": [
 {
 "title": "Hawaiian Pizza",
 "description": "Ham and pineapple on thin crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",

Chapter 50
Message Model

50-73

 "pizzaSize": "large"
 }
 }
 }
]
 },
 {
 "title": "Cheese Pizza",
 "description": "Cheese pizza (i.e. pizza with NO
toppings) on thick crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",
 "pizzaSize": "large"
 }
 }
 }
]
 }
],
 "globalActions": [
 {
 "type": "call",
 "label": "Call for Help",
 "phoneNumber": "123456789"
 }
]
 },
 "userId": "guest",
 "msgId": "message_id",
 "source": "BOT"
 }

Chapter 50
Message Model

50-74

Skill Table Message
Represents a message that returns the results of a query in table form The message consists
of an array of headings and an array of rows. The rows themselves contain a fields array
that represents individual cells.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "table" Yes

headings An array of table
headings

Array<Heading> Yes

rows An array of table rows.
Each row contains a
fields array that
represents the table
cells.

Array<Row> Yes

paginationInfo The paging information
for the results in the
table

PaginationInfo No

actions An array of actions
related to the table

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

{
 "type":"table",
 "headerText":"A-Team",
 "headings":[
 {
 "width":20,
 "label":"First Name",
 "alignment":"left"
 },
 {
 "width":20,
 "label":"Last Name",
 "alignment":"left"
 },
 {
 "width":35,
 "label":"Title",
 "alignment":"left"
 },

Chapter 50
Message Model

50-75

 {
 "width":25,
 "label":"Phone",
 "alignment":"right"
 }
],
 "rows":[
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 },

Chapter 50
Message Model

50-76

 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",

Chapter 50
Message Model

50-77

 "value":"David"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Davidson"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Machine Learning Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "width":20,
 "label":"First Name",
 "alignment":"left",
 "value":"Eric"
 },
 {
 "displayType":"text",
 "width":20,
 "label":"Last Name",
 "alignment":"left",
 "value":"Eastman Junior"
 },
 {
 "displayType":"text",
 "width":35,
 "label":"Title",
 "alignment":"left",
 "value":"Docker Expert"
 },
 {
 "displayType":"text",
 "width":25,
 "label":"Phone",
 "alignment":"right",
 "value":"1234567890"
 }

Chapter 50
Message Model

50-78

]
 }
],
 "paginationInfo":{
 "currentRangeSize":5,
 "rangeStart":0,
 "nextRangeSize":-3,
 "hasPrevious":false,
 "hasNext":false,
 "totalCount":5,
 "rangeSize":8,
 "status":"Showing 1-5 of 5 items"
 }
}

Skill Form Message
Represents a message that returns the results of a query in a form that's read only. The
message consists of an array of form results. Each form result contains a fields array with
key-value pairs that represent a field.

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "form" Yes

forms An array of form results.
Each result contains a
fields array that
represents the form
fields.

Array<Row> Yes

formColumns The number of columns
in which the fields of the
form should be grouped.

1, 2 Yes

paginationInfo The paging information
for the results in the
form

PaginationInfo No

actions An array of actions
related to the form

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

A JSONObject No

{
 "type":"form",
 "headerText":"A-Team",
 "forms":[

Chapter 50
Message Model

50-79

 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/aaron-
adams-4862752"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 },

Chapter 50
Message Model

50-80

 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Bobbrown"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Bob is a member of the cloud architects team
which is specialized in enterprise mobility and cloud development. Bob has
been directly involved with Oracle middleware since 2005 during which he
held different roles in managing highly specialized teams."
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 },
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"

Chapter 50
Message Model

50-81

 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Charlie-
chase-97a418"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Charlie is a member of the enterprise
mobility team. Charlie has 20+ years experience with custom
development. Charlie is an expert on mobile cloud services and
development tools. He is the creator of productivity tools. His latest
passion is building chatbots with a minimum amount of custom code."
 }
]
 }
],
 "formColumns":2,
 "paginationInfo":{
 "currentRangeSize":3,
 "rangeStart":0,
 "nextRangeSize":2,
 "hasPrevious":false,
 "hasNext":true,
 "totalCount":5,
 "rangeSize":3,
 "status":"Showing 1-3 of 5 items"
 },
 "globalActions":[
 {
 "postback":{
 "variables":{},
 "action":"system.showMore"
 },
 "label":"Show More",
 "type":"postback"
 }
]
}

Skill Table-Form Message
This message combines the Table and Form message types. It represents a message
that returns the results of a query in the form of a table. Each each row of the table has
a read-only form in addition to the row information.

Chapter 50
Message Model

50-82

Note:

This message type is used for SQL dialogs.

Name Description Type Required?

type The message type "tableForm" Yes

headings An array of table
headings

Array<Heading> Yes

rows An array of table rows.
Each row contains an
array of fields that
represent the table cells.

Array<Row> Yes

forms An array of form results
that correspond to each
table row. Each form
contains a fields array
that represents the form
fields.

Array<Form> Yes

formColumns The number of columns
in which the fields of the
form should be grouped.

1, 2 Yes

paginationInfo An array of global
actions related to the
text

Array<Action> No

actions An array of actions
related to the table form

Array<Action> No

globalActions An array of global
actions

Array<Action> No

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

{
 "type":"tableForm",
 "headerText":"A-Team",
 "headings":[
 {
 "width":47,
 "label":"First Name",
 "alignment":"left"
 },
 {
 "width":47,
 "label":"Last Name",
 "alignment":"left"
 }
],
 "rows":[
 {
 "fields":[
 {

Chapter 50
Message Model

50-83

 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Aaron"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Adams"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Bob"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Brown"
 }
]
 },
 {
 "fields":[
 {
 "displayType":"text",
 "label":"First Name",
 "alignment":"left",
 "value":"Charlie"
 },
 {
 "displayType":"text",
 "label":"Last Name",
 "alignment":"left",
 "value":"Chase"
 }
]
 }
],
 "forms":[
 {
 "title":"View details Aaron Adams",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Demo Builder"

Chapter 50
Message Model

50-84

 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Aaron-adams-4862572"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left"
 }
]
 },
 {
 "title":"View details Bob Brown",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Multi-lingual Expert"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Bobbrown"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Bob is a member of the cloud architects team
which is specialized in enterprise mobility and cloud development. Bob has
been directly involved with Oracle middleware since 2005 during which he
held different roles in managing highly specialized teams."
 }
]
 },
 {

Chapter 50
Message Model

50-85

 "title":"View details Charlie Chase",
 "fields":[
 {
 "displayType":"text",
 "label":"Title",
 "alignment":"left",
 "value":"Flow Builder Fanatic"
 },
 {
 "displayType":"text",
 "label":"Phone",
 "alignment":"left",
 "value":"1234567890"
 },
 {
 "linkLabel":"Open Link",
 "displayType":"link",
 "label":"Contact",
 "alignment":"left",
 "value":"https://www.example.com/in/Charlie-
chase-97a418"
 },
 {
 "displayType":"text",
 "label":"Bio",
 "alignment":"left",
 "value":"Charlie is a member of the enterprise
mobility team. Charlie has 20+ years experience with custom
development. Charlie is an expert on mobile cloud services and
development tools. He is the creator of productivity tools. His latest
passion is building chatbots with a minimum amount of custom code."
 }
]
 }
],
 "formColumns":2,
 "paginationInfo":{
 "currentRangeSize":3,
 "rangeStart":0,
 "nextRangeSize":2,
 "hasPrevious":false,
 "hasNext":true,
 "totalCount":5,
 "rangeSize":3,
 "status":"Showing 1-3 of 5 items"
 },
 "actions":[
 {
 "postback":{
 "variables":{

 },
 "action":"system.showMore"
 },
 "label":"Show More",

Chapter 50
Message Model

50-86

 "type":"postback"
 }
],
 "footerText":"Tap on a row to see personal details"
}

Skill Edit Form Message
Represents an editable form message (input form). The message consists of a Field array. It
has the following properties

Name Description Type Required?

type The message type. In
this case, it's
"editForm".

"editForm" Yes

fields A list of fields which can
include both editable
and read only fields.

Array<Field> Yes

title A representative title for
the edit form

String No

formColumns The number of columns
in which the form fields
should be grouped.

Integer (1)
The SDK supports only
one column for Release
23.06.

No

errorMessage A form-level error
message that displays
when the user has
submitted invalid data
but the error cannot be
linked to an individual
field.

String No

actions An array of actions
related to the edit form.
This array should
include a
SubmitFormAction An
error displays in the
browser console when
the SubmitFormAction
is not included in the
actions array.

Array<Action> No

globalActions An array of global
actions

Array<Action> No

Chapter 50
Message Model

50-87

Name Description Type Required?

channelExtensions A set of channel-specific
extension properties
The
channelExtensions
object can include a
replaceMessage
property that's used to
replace a previous input
form.

JSONObject No

{
 "messagePayload": {
 "headerText": "Create Expense",
 "type": "editForm",
 "title": "Fill in the below form",
 "fields": [
 {
 "displayType": "textInput",
 "serverErrorMessage": "Invalid Text Input",
 "defaultValue": "Expense",
 "minLength": 5,
 "id": "Subject",
 "label": "Subject",
 "placeholder": "Enter subject of the expense",
 "clientErrorMessage": "Subject is required and must be
between 5 and 15 characters",
 "maxLength": 15,
 "required": true
 },
 {
 "displayType": "textInput",
 "defaultValue": "expense",
 "multiLine": true,
 "id": "Description",
 "label": "Description",
 "placeholder": "What is expense justification",
 "clientErrorMessage": "Description is required",
 "required": true
 },
 {
 "displayType": "datePicker",
 "defaultValue": "2023-06-07",
 "maxDate": "2023-06-22",
 "id": "Date",
 "label": "Expense Date",
 "placeholder": "Pick a date in the past",
 "clientErrorMessage": "Expense date is required and
must be in the past.",
 "required": true
 },
 {
 "displayType": "timePicker",

Chapter 50
Message Model

50-88

 "defaultValue": "18:58",
 "id": "Time",
 "label": "Expense Time",
 "placeholder": "What time was the expense",
 "clientErrorMessage": "Time is required. Please fill a
value",
 "required": true
 },
 {
 "displayType": "numberInput",
 "minValue": 5,
 "defaultValue": 6,
 "maxValue": 500,
 "id": "Amount",
 "label": "Amount",
 "placeholder": "Enter expense amount",
 "clientErrorMessage": "Amount is required and must be
between 5 and 500.",
 "required": true
 },
 {
 "autoSubmit": true,
 "displayType": "toggle",
 "defaultValue": "true",
 "labelOn": "Yes",
 "id": "TipIncluded",
 "label": "Tip Included?",
 "valueOff": "false",
 "labelOff": "No",
 "valueOn": "true"
 },
 {
 "displayType": "singleSelect",
 "serverErrorMessage": "Invalid Selection",
 "defaultValue": "Public transport",
 "options": [
 {
 "label": "Public transport",
 "value": "Public transport"
 },
 {
 "label": "Flight",
 "value": "Flight"
 }
],
 "layoutStyle": "list",
 "id": "Type",
 "label": "Expense Type",
 "placeholder": "Select expense type",
 "clientErrorMessage": "Expense type is required",
 "required": true
 },
 {
 "displayType": "multiSelect",
 "defaultValue": [

Chapter 50
Message Model

50-89

 "Toff van Alphen"
],
 "options": [
 {
 "label": "Toff van Alphen",
 "value": "Toff van Alphen"
 },
 {
 "label": "Roger Federer",
 "value": "Roger Federer"
 }
],
 "layoutStyle": "checkboxes",
 "id": "Attendees",
 "label": "Attendees",
 "placeholder": "Select attendees",
 "clientErrorMessage": "Please select atleast one
attendee",
 "required": true
 }
],
 "formColumns": 1,
 "actions": [
 {
 "postback": {
 "system.botId": "6803DE12-DAA9-4182-
BD54-3B4D431554F4",
 "system.flow": "ExpenseFlow",
 "system.state": "editFormMapVar"
 },
 "label": "Submit",
 "type": "submitForm"
 }
],
 "channelExtensions": {
 "replaceMessage": "True"
 }
 },
 "source": "BOT",
 "userId": "guest"
}

Skill Raw Message
Used when a component creates the channel-specific payload itself.

Name Description Type Required?

type The message type "raw" Yes

payload The channel-specific
payload

JSONObject Yes

Chapter 50
Message Model

50-90

Name Description Type Required?

channelExtensions The channel-specific
extension properties
associated with the
message

JSONObject No

Oracle Android Channel Extensions
For Oracle Android channels, you can extend the functionality of Common Response
components with capabilities that are specific to the Oracle Android SDK.

You access the extensions by using the channelCustomProperties element in Common
Response components and setting the appropriate properties. The code has the following
format:

...
 channelCustomProperties:
 - channel: "androidsdk"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

You can apply channelCustomProperties in the component's metadata at the level of
globalActions, responseItems, and elements of responseItems, depending on the given
property.

Here are the available custom properties for Oracle Android channels:

Name Allowed Values Applies To... Description

mediaType • A valid media type • Response items with
the following attributes:
– type:

"attachment"
– attachmentType

: "file"or
attachmentType
: "image"

• Cards with imageUrl
specified

The media type of the
attachment. For example,
image/jpeg. If not
specified, the media type
will be resolved from the
attachment URL.

For more information on using channelCustomProperties, see Channel-Specific Extensions.

Chapter 50
Oracle Android Channel Extensions

50-91

51
Apple Messages for Business

When you set up a Apple Messages for Business channel, users can chat with your digital
assistant through the Apple Messages for Business user interface.

Here's the process for setting up a channel:

1. Set up an Apple Messages for Business account in which you designate Oracle Digital
Assistant as a messaging service provider.

2. Using the token you receive after creating the Apple Messages for Business account,
create a channel in Digital Assistant .

Step 1: Set Up an Apple Messages for Business Account
Here are the steps for setting up an Apple Messages for Business account.

1. Go to https://register.apple.com/messages/create-account/get-started to set up your
Apple Messages for Business account.
Under Messaging Platform, designate an Oracle Digital Assistant messaging service
provider (MSP). You have the following options:

• Use the commercial public MSP provided by Digital Assistant. You select this option
selecting the Apple authorized commercial messaging platform radio button and
selecting Oracle from the MSP dropdown.

• Use a commercial non-public MSP. These MSPs can be used commercially, but they
are not offered in the MSP dropdown and are generally specific to a region. You
select this option selecting the URL provided by your messaging platform radio
button and entering the endpoint manually in the text field. For Digital Assistant, you
can use these endpoints:

– https://mcms.digitalassistant.eu-paris-1.oci.oraclecloud.com/
listeners/apple/message (for EMEA)

– https://mcms.digitalassistant.sa-saopaulo-1.oci.oraclecloud.com/
listeners/apple/message

2. If your digital assistant needs to support Apple Pay, fill in the Apple Pay Merchant ID.

3. If your digital assistant requires authentication, provide the following values:

• OAuth URL

• Token URL

• Client Identifier

4. When you complete the messaging service provider setup, copy the business ID that is
provided.
You will need this to set up the Apple Messages for Business channel in Digital Assistant.

5. Optionally, also copy the token. When you create the channel Digital Assistant, you can
include this token to provide additional security.

51-1

https://register.apple.com/messages/create-account/get-started

Step 2: Create a Channel in Digital Assistant
Here are the steps for creating an Apple Messages for Business channel in Digital
Assistant.

1. In Digital Assistant, click Channels in the left menu and then select Users.

2. Click + Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Apple Messaging for Business as the channel type.

5. In the Business Name field, fill in the business name you will use for the channel.

6. In the Business Id field, enter the business ID that you received when registering
Oracle Digital Assistant as a messaging service provider in the Apple Messaging
for Business account.

7. Optionally, in the Business Token field, enter the token that you received when
registering Digital Assistant as the messaging service provider. Entering this token
provides additional security for the channel.

8. Optionally, in the Business Logo URI field, enter the URI for the business logo
that you want to appear in the chats.

9. In the Whitelisted Domains field, enter any allowed domains from which the
channel can send links and attachments in bot messages to the Apple Messages
for Business.
This field is required. To allow all domains, enter the asterisk wildcard (*).

10. Click Create.

11. Click and select the digital assistant or skill that you want to associate with the
channel.

12. Switch on the Channel Enabled control.

General Capabilities Supported
Apple Messages for Business channels in Digital Assistant support a number of
capabilities, some of which are common to most channel types and some of which are
specific to Apple Messages for Business channels.

Here are the general capabilities that are supported.

• text (both sending and receiving)

• images (both sending and receiving)

• files (both sending and receiving)

• emojis (both sending and receiving)

• links

• postbacks

• custom properties

• carousel components

• list components

Chapter 51
Step 2: Create a Channel in Digital Assistant

51-2

Supported Apple Messages for Business Features
For skills that you expose through Apple Messages for Business channels in Oracle Digital
Assistant, you can use features specific to Apple Messages for Business in addition to the
features that are generally supported across other channels.

To do so, you generally use the channelCustomProperties element in Common Response
components to insert Apple-specific properties.

The code has the following format:

...
 channelCustomProperties:
 - channel: "apple"
 properties:
 PROPERTY_NAME: "PROPERTY_VALUE"
...

Rich Link
To incorporate Rich Link messages in Apple Messages for Business channels, you use the
richLinkData channel custom property and its sub-property assets. The assets property
can take either an image object or a video object, as shown in this sample:

channelCustomProperties:
 - channel: "apple"
 properties:
 richLinkData:
 assets:
 image:
 data: "<base-64-encoded image data>"
 mimeType: "image/jpeg"
 video:
 mimeType: "video/mp4",
 url: "https://example.com/example.mov"

Example: Rich Link Image

responseItems:
 - type: "text"
 text: "iPad Pro"
 actions:
 - type: "url"
 url: "https://www.apple.com/ipad-pro/"
 channelCustomProperties:
 - channel: "apple"
 properties:
 richLinkData:
 assets:
 image:

Chapter 51
Supported Apple Messages for Business Features

51-3

https://register.apple.com/resources/messages/msp-rest-api/type-richlink#rich-link-messages

 data: "<base 64 encoded image data>"
 mimeType: "image/jpeg"

Example: Rich Link Video

responseItems:
 - type: "text"
 text: "HomePod"
 actions:
 - type: "url"
 url: "https://images.apple.com/media/films/expand/homepod-expand-
tpl-cc-us-20180306_1280x720h.mp4"
 channelCustomProperties:
 - channel: "apple"
 properties:
 richLinkData:
 assets:
 image:
 data: "<base 64 encoded image data>"
 mimeType: "image/jpeg"
 video:
 mimeType: "video/mp4",
 url: "https://store.storevideos.cdn-apple.com/v1/
store.apple.com/st/1619042871000/mx532-

Quick Reply
The Quick Reply message type is a convention used in Apples Messages for Business
for providing two to five pre-defined responses that a user can select with a single tap.

You can set the Quick Reply's summary text using the summaryText channel custom
property:

channelCustomProperties:
 - channel: apple
 properties:
 summaryText: Your selection

If you don't provide the summaryText property, the channel uses the text propery
instead.

In addition, keep the following in mind:

• summaryText should not be more than 25 characters.

• For keywords, you use the A, B, C, D, and E (instead of numbers).

Example: Quick Reply

responseItems:
 - text: "You can type or select from the options below:"
 type: text
 actions:

Chapter 51
Supported Apple Messages for Business Features

51-4

https://register.apple.com/resources/messages/msp-rest-api/type-interactive#quick-reply-message

 - payload:
 variables:
 menuAction: orderAccessories
 action: orderAccessories
 label: "Order Accessories"
 type: postback
 keyword: "A"
 - payload:
 variables:
 menuAction: checkOrder
 action: checkOrder
 label: "Check Order Status"
 type: postback
 keyword: "B"
 channelCustomProperties:
 - channel: apple
 properties:
 summaryText: Your selection

List Picker
Apple Messages for Business has a List Picker message type that you can use to allow users
to select one or more options. To incorporate List Picker messages in Apple Messages for
Business channels, you use the following Apple channel custom properties:

• images. This is a list of objects that are used by the receivedMessage and replyMessage
properties and which contain the following elements:

– identifier: the identifier by which the image is referenced by other properties.

– imageUrl: the URL of the image to be displayed.

– description.

• receivedMessage. This is an object with the following optional elements:

– imageIdentifier. Its value must match with the identifier property of one of the
images defined in the images custom property.

– style. The possible values are icon, small, and large.

– subtitle.

– title.

• replyMessage. This is an object with the following optional elements:

– imageIdentifier. Its value must match with the identifier property of one of the
images defined in the images custom property.

– style. The possible values are icon, small, and large.

– subtitle.

– title.

• imageIdentifier. You can use this property within the channelCustomProperties
element of the options element to add images to the options in the picker. Its value must
match with the identifier property of one of the images defined in the images custom
property.

Chapter 51
Supported Apple Messages for Business Features

51-5

https://register.apple.com/resources/messages/msp-rest-api/type-interactive#list-picker-message

You can create single-select list pickers using either the cards or the editForm
response item types.

For single-select list pickers using editForm:

• Set the displayType for the items to "singleSelect".

For multi-select list pickers, use the editForm response item type:

• Set the displayType for the items to "multiSelect".

You can also create list pickers with multiple sections using any combination of
singleSelect and multiSelect lists. You do so by creating an entry in the items for
each section and setting each entry's displayType to "singleSelect" or
"multiSelect", depending on the type of list you want for that section.

Example: Single-Select List Picker Using Cards

responseItems:
 - type: "cards"
 cardLayout: "horizontal"
 headerText: "Here are our pizzas you can order today:"
 visible:
 entitiesToResolve:
 include: "Type"
 cards:
 - title: "${enumValue}"
 description: ""
 imageUrl: "system.entityToResolve.value.image"
 iteratorVariable: "system.entityToResolve.value.enumValues"
 actions:
 - label: "Order Now"
 type: "postback"
 payload:
 variables:
 pizza: "${enumValue}"
 channelCustomProperties:
 - channel: "apple"
 properties:
 images:
 - identifier: image1
 imageUrl: "https://example.com/url1.jpg"
 - identifier: image2
 imageUrl: "https://example.com/url2.jpg"
 receivedMessage:
 imageIdentifier: "image1"
 style: "small"
 subtitle: "Fresh baked for you"
 title: "Select Your Pizza"
 replyMessage:
 title: "Selected Pizza"
 style: "small"
 imageIdentifier: "image2"

Chapter 51
Supported Apple Messages for Business Features

51-6

Examples: Single-Select ListPicker Using editForm

responseItems:
 - headerText: "Let's start Shopping!"
 type: editForm
 formColumns: 1
 items:
 - displayType: singleSelect
 name: selectHeadset
 options:
 - label: "Logitech® G435 LIGHTSPEED Wireless Gaming Headset"
 value: LogitechG435
 channelCustomProperties:
 - channel: apple
 properties:
 imageIdentifier: logitech g435
 - label: "JBL Live 660NC Wireless Over-Ear NC Headphones"
 value: JBL660NC
 channelCustomProperties:
 - channel: apple
 properties:
 imageIdentifier: jbl 660nc
 - label: "Altec Lansing® 3-In-1, MZX4100-PGRN-STK-6"
 value: altec
 channelCustomProperties:
 - channel: apple
 properties:
 imageIdentifier: altec
 label: Select the headset of your choice
 placeholder: Tap to select the product
 channelCustomProperties:
 - channel: apple
 properties:
 subtitle: Headset of your choice
 required: true
 actions:
 - processingMethod: mapVariable
 variable: skill.skillSelectedProduct
 label: Submit
 type: submitForm
 channelCustomProperties:
 - channel: apple
 properties:
 showSummary: true
 receivedMessage:
 imageIdentifier: main
 subtitle: Personalized search on basis of your requirements
 style: large
 title: "Tap & Select Headphones"
 images:
 - identifier: main
 imageUrl: "https://example.com/b/shopping-cart-
headphones-23724543.jpg"

Chapter 51
Supported Apple Messages for Business Features

51-7

 - identifier: logitech g435
 imageUrl: "https://example.com/
60_o01_040122/2310460.jpg"
 description: "Play never ends with G435."
 - identifier: jbl 660nc
 imageUrl: "https://example.com/7693360_o01/7693360.jpg"
 description: "Enjoy while studying or working out."
 - identifier: altec
 imageUrl: "https://example.com/
18_o01_110422/5159518.jpg"
 description: "Simple setup."
 replyMessage:
 imageIdentifier: logitech g435
 subtitle: "Your cart is ready!"
 style: icon
 title: Tap to view your response.

ListPicker (Multi-Select)

responseItems:
 - headerText: Choose the type of product you are looking
 type: editForm
 formColumns: 1
 items:
 - displayType: multiSelect
 name: features
 options:
 - label: Noise cancellation
 value: Noise cancellation
 - label: Microphone/Remote
 value: Microphone/Remote
 - label: Wireless
 value: Wireless
 - label: USB connectivity
 value: USB connectivity
 - label: Voice Assistant Support
 value: Voice Assistant Support
 - label: Fast Charging
 value: Fast Charging
 label: What features are you looking for?
 placeholder: Select multiple-values
 required: true
 - displayType: multiSelect
 name: usage
 options:
 - label: Attending Online Meetings
 value: Attending Online Meetings
 - label: Music
 value: Music
 - label: Casual usage
 value: Casual usage
 - label: Binge Watching
 value: Binge Watching
 - label: Jogging/Gym

Chapter 51
Supported Apple Messages for Business Features

51-8

 value: Jogging/Gym
 label: Your purpose of usage
 placeholder: Select multiple-values
 required: true
 actions:
 - processingMethod: mapVariable
 variable: requirementMap
 label: Submit
 type: submitForm
 channelCustomProperties:
 - channel: apple
 properties:
 receivedMessage:
 imageIdentifier: main
 subtitle: "Customize your product search!"
 style: icon
 title: "Tap & Provide your Preferences"
 images:
 - identifier: main
 imageUrl: "https://example.com/images/search-filter-icon.jpg"
 - identifier: filter
 imageUrl: "https://example.com/images/filter.jpg"
 replyMessage:
 imageIdentifier: filter
 style: icon

Time Picker
You use the Time Picker message type in Apples Messages for Business to offer the users a
time slots. Each timePicker field element in the editForm corresponds to one time slot that
user can pick. You use the defaultValue property to set the start time and the Apple channel
custom property duration to set the duration of the time slot in seconds. There are also
Apple channel custom properties for timeZoneOffset and location.

Example: Time Picker

responseItems:
 - headerText: "Select Date & Time for your appointment"
 type: editForm
 formColumns: 2
 items:
 - displayType: timePicker
 defaultValue: "2023-05-10T06:00Z"
 name: 27JanOne
 label: Slots available
 channelCustomProperties:
 - channel: apple
 properties:
 duration: 1800
 required: true
 - displayType: timePicker
 defaultValue: "2023-05-05T07:30Z"
 name: 27JanTwo

Chapter 51
Supported Apple Messages for Business Features

51-9

https://register.apple.com/resources/messages/msp-rest-api/type-interactive#time-picker-message

 label: Enter Time
 channelCustomProperties:
 - channel: apple
 properties:
 duration: 1800
 required: true
 - displayType: timePicker
 defaultValue: "2023-05-11T07:30Z"
 name: 24th
 label: another time
 channelCustomProperties:
 - channel: apple
 properties:
 duration: 1800
 required: true
 actions:
 - label: Submit
 type: submitForm
 channelCustomProperties:
 - channel: apple
 properties:
 receivedMessage:
 imageIdentifier: clock
 subtitle: "Every slot is of 30 mins.!"
 style: large
 title: "Tap & Select from available Slots"
 images:
 - identifier: clock
 imageUrl: "https://example.com/images/clock.png"
 description: clock
 timezoneOffset: 1200
 replyMessage:
 imageIdentifier: clock
 style: icon
 title: Selected Slot
 location:
 latitude: 28.605354
 radius: 1.5
 title: Supremo Customer Service Center
 longitude: 77.053546

Apple Form
You can create Apple form messages using the editForm response item type with a
combination of the following field types:

• numberInput
• textInput
• datePicker
• timePicker
• singleSelect

Chapter 51
Supported Apple Messages for Business Features

51-10

• multiSelect
In addition to the custom channel properties you need for the various fields in the form, you
use the following Apple channel custom properties for the form as a whole:

• submitForm, which you set to true for the last item in the form.

• pickerTitle, which you can optionally use to set text shown to a given picker text field.

• selectedItemIndex, which you can optionally use to set to the index number of the item
that you want selected by default. The default is 0.

You define a welcome page for the form with the splash Apple channel custom property. The
splash property contains the following elements:

• header.

• splashText.

• buttonTitle. The text that appears on the button. This is required.

• imageIdentifier.

Example: Apple Form

responseItems:
 - headerText: Provide Delivery Address details
 type: editForm
 formColumns: 1
 items:
 - displayType: textInput
 name: house_address
 label: House No.
 required: true
 maxLength: 100
 channelCustomProperties:
 - channel: apple
 properties:
 subtitle: Your House/Appartment No.
 options:
 keyboardType: numberPad
 - displayType: textInput
 name: street_address
 label: Street Name
 channelCustomProperties:
 - channel: apple
 properties:
 subtitle: Your Street Details
 options:
 keyboardType: default
 required: true
 maxLength: 200
 - displayType: numberInput
 name: zipcode
 label: Where do you live?
 placeholder: Enter your area zipcode
 channelCustomProperties:
 - channel: apple

Chapter 51
Supported Apple Messages for Business Features

51-11

 properties:
 subtitle: Zip-code
 required: true
 actions:
 - label: Submit
 type: submitForm
 channelCustomProperties:
 - channel: apple
 properties:
 showSummary: true
 receivedMessage:
 imageIdentifier: main
 subtitle: "Add your details carefully!"
 style: icon
 title: "Tap & Provide your Delivery details"
 images:
 - identifier: main
 imageUrl: "https://example.com/delivery-address.png"
 - identifier: saveAddress
 imageUrl: "https://example.com/successful-delivery.png"
 replyMessage:
 imageIdentifier: saveAddress
 style: icon
 title: Your address details are saved. Tap to review.
 splash:
 imageIdentifier: main

Authentication
You can use Digital Assistant's OAuth Account Link component for Authentication
messages in Apple Messages for Business. There are two approaches you can use:

• In the OAuth Account Link component's Authorize URL property, provide
responseType and scope query parameters.
Upon successful authentication, it returns an authorization code, which you then
use to fetch an access token.

• In the OAuth Account Link component's Authorize URL property, provide
responseType, clientSecret, and scope query parameters.
Upon successful authentication, it returns an access token.

iMessage App
With Apple Messages for Business, you can create messages of type iMessage App,
which are custom interactive data messages. To get those messages working within
an Apple Messages for Business channel in Digital Assistant, you need to construct
the Apple interactive data payload in the skill itself using a custom component.

The custom component should send a raw Common Message Model (CMM) message
containing the following payload attributes:

• type: interactive (required)

• interactiveData :

– appIcon

Chapter 51
Supported Apple Messages for Business Features

51-12

https://register.apple.com/resources/messages/msp-rest-api/type-interactive#imessage-app

– appId
– appName
– URL (required)

– bid (required)

– receivedMessage
– replyMessage
– useLiveLayout

For a tutorial on creating an iMessage app, see Integrating Your iMessage App in Apple's
documentation.

For information on using Digital Assistant's Common Message Model, see Conversation
Messaging section of the Bots Node SDK documentation.

Example: iMessage App Payload

{
 "type": "interactive",
 "interactiveData": {
 "appId": 12345678,
 "appName": "Package Delivery",
 "URL": "?
name=WWDC%20Goodies&deliveryDate=09-06-2017&destinationName=Moscone%20Convent
ion%20Center&street=747%20Howard%20St&state=CA&city=San%20
Fransisco&country=USA&postalCode=94103&latitude=37%2E7831&longitude=%2D122%2E
4041&extraCharge=15%2E00",
 "bid":
"com.apple.messages.MSMessageExtensionBalloonPlugin:4R3L6Z3UP2:com.example.ap
ple-samplecode.PackageDelivery4R3L6Z3UP2.MessagesExtension",
 "receivedMessage": {
 "title": "PackageDelivery",
 "subtitle": "Tap to Install the iMessage App from App Store"
 }
 }
}

Chapter 51
Supported Apple Messages for Business Features

51-13

https://register.apple.com/resources/messages/msp-api-tutorial/imessage-apps#integrating-your-imessage-app
https://github.com/oracle/bots-node-sdk/blob/master/MESSAGE_FACTORY.md
https://github.com/oracle/bots-node-sdk/blob/master/MESSAGE_FACTORY.md

ChannelCustomProperties for Apple Messages for Business

Name Allowed Values Applies To... Description

images Nested object with the
following properties:
• imageUrl
• identifier, which is

the string by which the
image is referenced
from the
imageIdentifier
element of other
properties, such as
receivedMessage.

• description, which
is an optional textual
description of the
image.

editForm reponse items. Images that you define for
use in list items and other
places in your form.

receivedMessage Nested object with the
following properties, all of
which are optional:
• imageIdentifier
• style
• subtitle
• title

editForm reponse items The message that appears
above a list picker or other
message type.

replyMessage Nested object with the
following properties, all of
which are optional:
• imageIdentifier
• style
• subtitle
• title

editForm reponse items The message that appears
after the user has made a
selection with a given
picker.

location Nested object with the
following properties:
• latitude
• longitude
• radius
• title

editForm reponse items. Provides coordinates for a
given location.

showSummary • true
• false

editForm reponse items. If true, a summary of the
options the user has
selected are displayed.
Defaults to false.

splash Nested object with the
following properties:
• imageIdentifier
• buttonTitle
• header
• splashText

editForm reponse items. Used to define a welcome
page for the form.

timeZoneOffset A number editForm reponse items. The difference in minutes
between the time in the
location's time zone and
GMT.

Chapter 51
Supported Apple Messages for Business Features

51-14

Name Allowed Values Applies To... Description

imageIdentifier Strings that match the
identifier value for any
images in the images
array.

Objects in the options
array in editForm reponse
items.

Used to apply an image to
a given option in response
items of type editForm.

subtitle Any string. editForm reponse items. Optional subtitle for a list
picker.
Note: Properties such as
receivedMessage and
replyMessage also have
an optional subtitle
element.

duration A number. editForm reponse items
with a displayType of
timePicker

The number of seconds the
duration.

options Nested object with
properties such as
keyboardType and
dateFormat. There are
separate options for
datePicker and input
page types. See Apple's
Form Message
documentation.

editForm reponse items
with a displayType of
datePicker and
textInput.

A category of properties
specific to the Apple
Messages for Business
channel that can be used
on individual items.
Note: This category is
distinct from the options
element of the items
element in editForm
response items.

submitForm • true
• false
or false

On individual items in the
dataSet response item
type.

Set to true if you want the
form to be sent when the
item is selected. Defaults to
false.

pickerTitle String On individual items in the
dataSet response item
type.

A string value representing
optional text shown next to
the picker text field. This
value defaults to an empty
string. When empty the
picker text field centers to
the page

selectedItemIndex Number On individual items in the
dataSet response item
type.

Optionally use to set to the
index number of the item in
a picker that you want
selected by default. The
default is 0.

Chapter 51
Supported Apple Messages for Business Features

51-15

https://register.apple.com/resources/messages/msp-rest-api/type-interactive#form-message
https://register.apple.com/resources/messages/msp-rest-api/type-interactive#form-message
https://register.apple.com/resources/messages/msp-rest-api/type-interactive#form-message

52
Zoom App

You can configure a digital assistant to work within Zoom Meetings video conferences.

• You access your digital assistant through the Oracle Digital Assistant for Zoom app,
which you can install through Zoom's App Marketplace.

• Users can then chat with your digital assistant within that app during an ongoing Zoom
meeting.

Below are the steps for creating a Zoom App channel for Digital Assistant.

Step 1: Install Zoom's Digital Assistant App
1. Go to the Oracle Digital Assistant for Zoom app in the Zoom App Marketplace.

2. If you are not signed in to Zoom, click Sign in to Add.

3. Click Authorize to install Oracle Digital Assistant for Zoom.

Step 2: Create a Channel in Digital Assistant
1. In Digital Assistant, click Channels in the left menu and then choose Users.

2. Click + Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Zoom App as the channel type.

5. In the Allowed Domains field, enter any allowed domains from which users can connect.
This field controls which domains can connect to the Zoom App channel. In most cases
you'll probably want to enter the asterisk wildcard (*) to indicate all domains.

6. Click Create.

7. Click and select the digital assistant or skill that you want to associate with the
channel.

8. In the Route To dropdown, select the digital assistant or skill that you want to associate
with the channel.

9. Switch on the Channel Enabled control.

10. Keep the page open so that you can use the Secret Key and Channel ID values in the
next step.

Step 3: Create a Connection to the Channel from the App in
Zoom

Once the Zoom app is installed and the channel is created, you need to create a connection
to between Zoom and the Zoom App channel to be able to use the digital assistant within the
Zoom interface.

52-1

https://marketplace.zoom.us/apps/h9WcUhLVS8qOeVWNGPBAcQ/

To create a new connection:

1. Within your Zoom client, click the Connect Skill tab.

2. Enter a name. We recommend it matches the one in your Oracle Digital Assistant
instance.

3. Enter the hostname of your Oracle Digital Assistant instance.
This is the part of the Digital Assistant URL that comes after https:// and
before /botsui

4. Enter the channel ID of the Zoom App channel that you just created.

5. Enter the secret key of the Zoom App channel.

6. (Optional) If you want the connection to only be visible to you, select the Connect
Privately checkbox.
If unchecked, this connection will be visible to anyone under the same Zoom
account as you.

7. Press Connect.
Once the connection is made, a chat widget for the digital assistant should appear
within the Zoom interface.

8. Test the digital assistant by entering text into the chat widget.

If the digital assistant works as expected, your connection is ready to go and you can
close the chat widget.

When you are done interacting with the digital assistant, click the X at the top right-
hand corner to exit.

Open the Connection to Your Digital Assistant
Once you have created a connection to a digital assistant through a Zoom App
channel, you can open the digital assistant from your Zoom client at any time:

1. In your Zoom client, click the Most Recent tab.
This tab is only visible if you have one or more saved connections.

2. To search for an existing connection, start typing the name of the connection in the
search bar.

3. Once you find the connection you are looking for, click it.
A chat widget for the digital assistant will open.

Uninstall the Digital Assistant for Zoom App
If you need to uninstall the Oracle Digital Assistant for Zoom app, follow these steps:

1. Sign in to your Zoom account

2. Navigate to the Zoom App Marketplace.

3. Click Manage > Added Apps and search for the Oracle Digital Assistant entry.

4. Click the Oracle Digital Assistant for Zoom entry's Remove button.

Chapter 52
Open the Connection to Your Digital Assistant

52-2

https://marketplace.zoom.us/

Zoom App Channel Limitations
The Zoom App environment provided by Zoom is very similar to that of a web browser, with
key differences:

• You cannot access the microphone. That means that when interacting with your skill
through the Zoom App channel, you can only type.

• There isn't an API for accessing the user's location. If your skill requires obtaining a
user's location, you can ask them to provide it manually.

Zoom App Channel Attributes Available to Skill
When a skill is connected through a Zoom App channel, you can get user profile information
from Zoom for each piece of user input in the conversation. Here are expressions that you
can use to get user profile information:

• ${profile.user.value.id}: The current user's Zoom user ID.

• ${profile.user.value.first_name}: The current user's first name.

• ${profile.user.value.last_name}: The current user's last name.

• ${profile.user.value.email}: The current user's email address.

For more information on the user attributes available through these expressions, see https://
developers.zoom.us/docs/api/rest/reference/zoom-api/methods/#tag/Users.

Zoom also has variables that enable you to get information about the meeting itself. To
access them, the meeting must be created in the account of the current user. Here are the
expressions that you can use to access that information:

• ${profile.meeting.value.id}: The ID for the Zoom meeting. When the meeting is a
recurring meeting, this value is the same for each occurrence of the meeting.

• ${profile.meeting.value.uuid}: The ID for the occurrence of a Zoom meeting. This
value is always unique, even between occurrences of the same meeting.

• ${profile.meeting.value.created_at}: The date and time that the meeting was
scheduled. If this meeting was initiated without being scheduled, its value will be identical
to ${profile.meeting.value.started_at}.

• ${profile.meeting.value.started_at}: The date and time that the meeting was
started.

• ${profile.meeting.value.host_id}: ID of the meeting host.

• ${profile.meeting.value.host_email}: Email of the meeting host.

• ${profile.meeting.value.topic}: Short meeting description.

• ${profile.meeting.value.agenda}: Long meeting description.

• ${profile.meeting.value.recurrence}: If the meeting is a recurring meeting, this
expression accesses an object that details when the meeting starts, how many times it
repeats, when it stops repeating (if applicable), the type of recurrence (monthly, weekly,
daily, etc.) and when it recurs (e.g. which day it recurs if it's a weekly or monthly meeting).

Chapter 52
Zoom App Channel Limitations

52-3

https://developers.zoom.us/docs/api/rest/reference/zoom-api/methods/#tag/Users
https://developers.zoom.us/docs/api/rest/reference/zoom-api/methods/#tag/Users

• ${profile.meeting.value.type}: An integer that indicates the type of meeting. (1
is an instant meeting, 2 is a scheduled meeting, 3 is a recurring meeting with no
fixed time, and 8 is a recurring meeting with fixed time.)

If the current user is the meeting owner, you can get the following information on the
participants. This information is actively maintained as participants join and leave, so
each utterance will have the most up-to-date information on participants at that
moment:

• ${profile.meeting.participants}: An array that contains the meeting's current
participants. Each array object contains the following objects:

– participantUUID: The ID of the participant (unique in each meeting)

– screenName: The particpant's screen name.

– role: The participant's role (e.g., host, co-host, attendee).

– active: A boolean indicating whether the participant is currently in the meeting
or not.

For more information on the meeting profile variables, see https://developers.zoom.us/
docs/api/rest/reference/zoom-api/methods/#tag/Meetings.

Troubleshooting
If you have problems installing the Oracle Digital Assistant for Zoom app or have
problems connecting with a digital assistant in a Zoom meeting, first follow the
directions provided in any displayed error messages.

If you continue to have problems, check with the administrator of your team's Zoom
account and/or the administrator of your team's Oracle Digital Assistant instance.

For questions or issues that cannot be addressed, please reach out to My Oracle
Support.

Chapter 52
Troubleshooting

52-4

https://developers.zoom.us/docs/api/rest/reference/zoom-api/methods/#tag/Meetings
https://developers.zoom.us/docs/api/rest/reference/zoom-api/methods/#tag/Meetings
https://support.oracle.com/
https://support.oracle.com/

53
Webhooks

If the messaging channel that you want to use is not supported out of the box in Oracle
Digital Assistant, you can use a webhook to manually integrate that channel.

To create a webhook channel, you need the following:

• A publicly accessible HTTP messaging server that relays messages between the user
device and your digital assistant (or skill) using a webhook.

You implement this webhook with:

– A POST call that enables the server to receive messages from your digital assistant.

– A POST call that enables the server to send messages to your digital assistant.

• The URI of the webhook call that receives your digital assistant’s messages (so the
digital assistant knows where to send the messages).

• The Webhook URL that’s generated for your digital assistant after you complete the
Create Channel dialog (so that the message server can access your digital assistant).

To assemble these pieces into a webhook:

1. Set up the server.

2. To receive messages from your digital assistant, publish the POST call on the server.

3. In the Create Channel dialog, enter a name and then:

• Choose Webhook as the channel type.

• Set Platform Version to 1.1 (Conversation Model).

• Register the server as the recipient of your digital assistant’s messages by entering
the URI to this POST call in the Outgoing Webhook URI field.

• If needed, enter the session expiry and switch on Channel Enabled.

53-1

4. Click Create.

Digital Assistant generates the webhook URL for your digital assistant and its
Secret Key for encrypting messages. Keep the webhook URL handy, because it’s
the pointer that your messaging server needs to send messages back to your
digital assistant.

5. On your server, publish the second POST API, one that sends messages to your
digital assistant using the webhook URL.

6. Switch the Channel Enabled option on.

You can use the Digital Assistant's Node.js SDK to set up the sending of messages to
and from your digital assistant.

Inbound Messages
The WebhookClient library in Oracle Digital Assistant's Node.js SDK simplifies the
setting up of sending and receiving messages in Webhook channels. If you aren't
using the SDK, here's what you need to know about creating inbound messages.

The call for sending messages to your digital assistant (or skill) must have:

1. An X-Hub-Signature header containing the SHA256 value of the payload. The call
includes functions that create this hash using Secret Key as the key.

const body = Buffer.from(JSON.stringify(messageToBot), 'utf8');
 const headers = {};
 headers['Content-Type'] = 'application/json; charset=utf-8';
 headers['X-Hub-Signature'] = buildSignatureHeader(body,
channelSecretKey);

...

function buildSignatureHeader(buf, channelSecretKey) {
 return 'sha256=' + buildSignature(buf, channelSecretKey);
}

function buildSignature(buf, channelSecretKey) {
 const hmac = crypto.createHmac('sha256',

Chapter 53
Inbound Messages

53-2

https://github.com/oracle/bots-node-sdk#webhook
https://github.com/oracle/bots-node-sdk#webhook

Buffer.from(channelSecretKey, 'utf8'));
 hmac.update(buf);
 return hmac.digest('hex');
}

BOT_WEBHOOK_URL and BOT_WEBHOOK_SECRET are environment variables that you set on the
Node server. Using these environment variables enables you to avoid hard-coding
sensitive information directly in the webhook

2. A JSON object with userId, profile, and messagePayload properties:

{
 "userId": "33c0bcBc8e-378c-4496-bc2a-b2b9647de2317",
 "profile": {
 "firstName": "Bob",
 "lastName": "Franklin",
 "age": 45
 },
 "messagePayload": {....}
}

Property Description Type Required?

userId A unique identifier for
the user. This ID is
specific to the caller.

String Yes

profile Properties that
represent the user, like
firstName and
LastName.

JSON object No

messagePayload The messagePayload
can be text,
postback,
attachment, and
location.

JSON object Yes

Note:

If your skill or digital assistant needs to detect the user language, be sure that
profile.locale and profile.languageTag are set to null in the Webhook
messages.

Chapter 53
Inbound Messages

53-3

Example Payloads: Inbound Messages

Message Type Example Payload

text
{
 "type": "text",
 "text": "hello, world!"
}

postback
{
 "type": "postback",
 "postback": {
 "state": "orderPizza",
 "action": "deliverPizza",
 "variables": {
 "pizzaSize": "Large",
 "pizzaCrust": "Thin",
 "pizzaType": "Hawaiian"
 }
 }
}

attachment
{
 "type": "attachment",
 "attachment": {
 "type": "image",
 "url": "https://
image.freepik.com/free-icon/
attachment-tool-ios-7-interface-
symbol_318-35539.jpg"
 }
}

location
{
 "type": "location",
 "location": {
 "longitude": -122.265987,
 "latitude": 37.529818
 }
}

Chapter 53
Inbound Messages

53-4

Outbound Messages
The WebhookClient library in Oracle Digital Assistant's Node.js SDK simplifies the setting up
of sending and receiving messages in Webhook channels. If you aren't using the SDK, here's
what you need to know about creating outbound messages.

You need to publish the calls in the JSON format that Digital Assistant expects, along with the
authorization header.

The call for your digital assistant’s outbound messages includes:

1. An X-Hub-Signature header containing the SHA256 value of the payload, calculated
using the Secret Key as the key.

Note:

Digital Assistant uses the X-Hub-Signature header to allow the recipient to
authenticate your digital assistant as the sender and validate the integrity of the
payload.

2. A JSON payload containing the userID, a unique identifier that’s specified by the inbound
message, the type, which can be text,attachment, and card. As shown in the following
examples, both the text and card response types can have associated actions. Any of
the response types can also include global actions.

Chapter 53
Outbound Messages

53-5

https://github.com/oracle/bots-node-sdk#webhook

Response Type Example Payload

text {
 "userId":"22343248763458761287
 "messagePayload": {
 "type": "text",
 "text": "Hello, how are
you?"
 }
}

The following snippet show a text response
with actions:

{
 "userId":"22343248763458761287
 "messagePayload": {
 "type": "text",
 "text": "What do you want
to do?",
 "actions": [
 {
 "type": "postback",
 "label": "Order Pizza",
 "postback": {
 "state": "askAction",
 "action": "orderPizza"
 }
 },
 {
 "type": "postback",
 "label": "Cancel A
Previous Order",
 "postback": {
 "state": "askAction",
 "action":
"cancelOrder"
 }
]
 }
}

Chapter 53
Outbound Messages

53-6

Response Type Example Payload

card
...
{
 "type": "card",
 "layout": "horiztonal",
 "cards": [
 {
 "title": "Hawaiian Pizza",
 "description": "Ham and
pineapple on thin crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order
Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType":
"hawaiian",
 "pizzaCrust":
"thin",
 "pizzaSize":
"small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order
Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType":
"hawaiian",
 "pizzaCrust":
"thin",
 "pizzaSize":
"large"
 }
 }
 }
]
 },
 {
 "title": "Cheese Pizza",
 "description": "Cheese
pizza (i.e. pizza with NO
toppings) on thick crust",
 "actions": [

Chapter 53
Outbound Messages

53-7

Response Type Example Payload

 {
 "type": "postback",
 "label": "Order
Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType":
"cheese",
 "pizzaCrust":
"thick",
 "pizzaSize":
"small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order
Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType":
"cheese",
 "pizzaCrust":
"thick",
 "pizzaSize":
"large"
 }
 }
 }
]
 }
],
 "globalActions": [
 {
 "type": "call",
 "label": "Call for Help",
 "phoneNumber": "123456789"
 }
]
}

Chapter 53
Outbound Messages

53-8

Response Type Example Payload

attachment The attachment response type can an
image, audio file, or a video:

...
{
 "type": "attachment",
 "attachment": {
 "type": "video",
 "url": "https://
www.youtube.com/watch?
v=CMNry4PE93Y"
 }
}

Chapter 53
Outbound Messages

53-9

Part VI
Extension of Digital Assistants and Skills

• Extending Digital Assistants and Skills

54
Extending Digital Assistants and Skills

You can extend any digital assistant or skill that you have pulled from the Skill Store to
customize it for cases specific to your business. When a new version appears in the Skill
Store, you can transfer your customizations to the new version by rebasing.

Note:

Extension of digital assistants is not supported for versions earlier than 20.6.

What is Extension and What's it For?
When you install bots (digital assistants and skills) from the Skill Store, they may not satisfy
all your requirements or you may want to modify them to align with your business processes.
You can't modify an installed bot directly, but you can can create an extension of it and then
modify that extension.

When you create an extension, you are creating a new bot that has a tight relationship to the
original (base) bot. Through this relationship, you can later take advantage of updates to the
base bot without having to manually reapply your customizations. You do this by using the
Rebase feature. When a new version of the base bot becomes available in the Skill Store,
you can install that version into your instance and then rebase your extended bot to the
updated base version.

Note:

When you extend a bot, you can add to or modify existing properties of the bot.
However, you can't delete any properties that were defined in the base bot.

Cloning vs. Extending
Though cloning and extending are similar on a surface level, they have key differences and
purposes:

• When you create a clone of a bot:

– You create a totally independent copy of the bot.

– You can make unlimited changes to the clone.

– The clone loses all association with the original bot (the tracking IDs for the cloned
bot do not match those of the original), so you can't later rebase to an updated
version of the original bot.

Use cloning when you want to use an existing bot as a starting point for your
development.

54-1

• When you extend a bot (a skill or a digital assistant):

– You can make a wide range of additions and changes to the extended bot but
you cannot delete anything that was defined in the base bot.

– You can later rebase, which means applying updates from the base bot into
your extended bot.
Rebasing is possible for extended bots because the internal tracking IDs that
are generated for the extended bots match those of the base bots.

Use extension when you want to customize a bot and then later be able to
incorporate any improvements or new features from the base bot into your
customized version. You can only extend skills and digital assistants that you have
pulled from the Skill Store.

Note:

A third approach is to extend a bot, make customizations, and then create a
clone of the extended bot. When you do this, the clone of the extended bot is
also treated as an extension of the original bot (the internal tracking IDs that
are generated for the clone of the extension match those of the original bot).

What Happens When You Extend a Skill or a Digital
Assistant

When you extend a bot (either a skill or digital assistant), each of the parts of the bot
(such as intents, entities, and properties) have one of the following statuses:

• Inherited (): artifacts that are defined in the base bot. After you create an
extension, all the artifacts in the bot have this status.

• Local: artifacts that have been created in the the extension (e.g. new intents).

• Customized (): artifacts inherited from the base bot whose values have been
changed in the extension.

When you extend a skill, filters for these statuses appear on the Intents tab above the
list of intents and above the list of examples.

When you extend a digital assistant, filters for these statuses appear above the list of
skills (on the Skills tab) and above the list of examples (on the Intents tab).

Note:

It is not possible to delete artifacts (such as skills in digital assistants, and
intents and entities in skills), but you can disable them.

Important Note for Developers of Base Bots
If you are a developer of a skill or digital assistant that has been uploaded to the Skill
Store and you need to update that bot in the Skill Store, you must create the updated

Chapter 54
What Happens When You Extend a Skill or a Digital Assistant

54-2

version via the New Version option in order for users to be able to rebase their extended
versions to the updated base version. If you clone the existing bot or simply create a new bot
with the same name, the internal tracking IDs that are generated for the new bot will differ
from those of the existing bot, so there will be no correlation between the bots.

Skills
Here's what you need to know about extending skills that you have pulled from the Skill
Store.

Extend a Skill
1. Click to open the side menu, and select Development > Skills.

2. In the tile for the skill that you want to extend, click the Options icon (), and select
Extend.

This skill must be a skill that you have pulled from the Skill Store.

What You Can Add and Customize in an Extended Skill
• Intents. You can add utterances, change existing utterances, and add new intents. You

can't delete utterances or intents, but you can disable intents.

• Entities. You can add entity values, add synomyms to entity values, and add new
entities. In addition, you can edit these fields:

– Enumeration Range Size

– Error Message

– Multiple Values

– Fuzzy Match

However, you can't delete entities or delete or change entity values.

• Dialog flow. You can make changes throughout the dialog flow. There are no specific
limitations. However, no deltas are tracked by the system. When you rebase the skill
extension, you are presented with a diff tool to compare your dialog flow side-by-side with
that of the new base skill. It's then up to you determine what to keep from your skill and
what to bring forward from the new base skill.

• Resource bundles. You can:

– Add new message keys in any of the supported languages.

– Modify any of the existing messages.

• Custom component service. You can:

– Replace the package file.

– Add components to the service.

You can't:

– Remove components.

You can change the implementation of custom components in your extended skill.
However, if the custom component is later updated in the base skill, those updates will

Chapter 54
Skills

54-3

not be merged with any changes you have made to the component in the
extended skill when you rebase your skill. In this case, you would need to
manually merge the custom component changes from the updated base skill into
your extended skill.

• Settings. You can adjust most of the settings for the skill, including:

– General properties, like skill description.

– Training model.

– Whether insights and conversation logging are enabled.

– Values of system parameters, such as confidence threshold and standard
prompts.

– Custom parameters. (You can create new custom parameters and modify
values of existing ones.)

– Values of digital assistant properties, such Invocation, Example Utterances,
Start State, Welcome State, and Help State.

Modifications Which Aren't Preserved When Rebasing
• Q&A. You can modify the contents of a Q&A module in an extended skill, but

those modifications are discarded if you later rebase the skill.
If you have modified a Q&A module in your extended skill, be sure to export the
Q&A source file before you rebase.

Note:

This limitation does not apply to answer intents.

Disable Intents
When you extend a skill, you can't remove intents, but you can disable them.

When you disable an intent, you exclude it from the training model. Any user input that
would otherwise match well with a disabled intent's training data will instead resolve to
a different intent (likely unresolvedIntent).

If you later rebase the skill, any intents that you have disabled will remain disabled. If
you re-enable an intent after rebasing, you will pick up any changes that were made to
that intent in the base skill.

To disable an intent:

1. In the left navbar of the extended skill, click .

2. Select the intent you want to disable.

3. Turn the intent's Enabled switch to the OFF position.

4. Click the Train button in the upper right corner of the page and then click Submit.

Chapter 54
Skills

54-4

Note:

If you want to exclude the functionality of an intent from a skill but want to let the
user know that the intent's functionality is not available, keep the intent enabled, but
enter a static response in the intent's Answer field. When you do this, this text is
displayed when the user's input resolves to that intent. See Answer Intents for more
on how this works.

Digital Assistants
Here's what you need to know about extending digital assistants that you have pulled from
the Skill Store.

Extend a Digital Assistant
1. Click to open the side menu, and select Development > Digital Assistants.

2. In the tile for the digital assistant that you want to extend, click the Options icon (),
and select Extend.

This digital assistant must be one that you have pulled from the Skill Store.

What You Can Add and Customize in an Extended Digital Assistant
• Skills. You can add other skills. You can't delete skills that are inherited from the base

digital assistant but you can disable them.

• System Intents. For the exit, help, and unresolvedIntents intents, you can add
utterances and change existing utterances.

• Settings. You can adjust most of the settings for the digital assistant, including:

– General properties, like the digital assistant description.

– Training model.

– Whether insights are enabled.

– Routing parameters, such as the various confidence thresholds and standard
prompts.

– Custom parameters. You can create new custom parameters and modify values of
existing ones.

Disable Skills
When you extend a digital assistant, you can't remove skills, but you can disable them.

When you disable a skill, you exclude it from the training model. Any user input that would
otherwise match well with the skill's training data will instead resolve elsewhere (likely the
digital assistant's unresolvedIntent).

If you later rebase the digital assistant, any skills that you have disabled will remain disabled.
If you re-enable a skill after rebasing, you will pick up any changes that were made to that
skill in the base digital assistant.

Chapter 54
Digital Assistants

54-5

To disable a skill:

1. In the left navigation for the digital assistant, click .

2. Select the skill you want to disable.

3. Turn the skill's Enabled switch to the OFF position.

Update a Skill in an Extended Digital Assistant
If you have an extended digital assistant that contains a skill that has a newer version
that is installed in your instance, you can update the digital assistant to use that newer
version.

1. Click to open the side menu, and select Development > Digital Assistants.

2. Click the tile for the digital assistant to open it.

3. On the Skills tab of the digital assistant, select the skill that you want to replace
with a newer version.

The skill should have the badge.

4. Click Update Skill.

5. From the New Skill Version dropdown, select the version of the skill that you want
to include and click Update Skill.

6. Set the Overwrite Interaction Model switch.

If you want any changes that have been made to the Invocation and Example
Utterances properties that are defined on the Digital Assistant tab of the skill's
Settings page to be propagated to the digital assistant, leave this switch in the ON
position.

These values are used in the help card for the skill in the digital assistant.

7. Click Update Skill.

Extend a Skill in an Extended Digital Assistant
If you have extended a digital assistant want to replace one of its base skills with an
extended version of that skill, you need to follow these general steps:

1. Extend the skill and make the desired customizations to it.

2. Train the skill.
(A skill needs to be trained before it can be published.)

3. In the digital assistant, update the version of the skill that it uses by doing the
following:

a. Click to open the side menu, and select Development > Digital
Assistants.

b. Click the tile for the digital assistant to open it.

c. On the Skills tab of the digital assistant, select the skill that you have
extended. This skill should have the badge.

d. Click Update Skill.

Chapter 54
Digital Assistants

54-6

e. From the New Skill Version dropdown, select the extended version of the skill and
click Update Skill.

4. Once you have tested the digital assistant with the new version of the skill and are
satisified with its behavior, publish the skill.

Make, Review, and Revert Customizations
You can add to or customize an extended bot (skill or digital assistant) by using any of its
enabled controls and editable fields.

You can review customizations made in a bot by clicking the icon that appears next to the
field that has been customized. (For an intent's example utterances, you need to mouse over

the icon next to the utterance to display the icon.

When you click this icon, the Review Customization dialog appears, which enables you to
compare the current value of the field with the base value. If you want to revert to the value in
the base bot, click Revert to Original.

Testing Customizations
You can use the Test Cases feature to ensure that any modifications that you have made in
your extensions have not broken any of the bot's basic functions.

You can create the tests by recording conversations in the tester. In addition, some skills and
digital assistants in the Skill Store come with test cases, which you can run on your
extensions to make sure that you haven't broken any of the functionality.

See Test Suites and Test Cases for details on creating and using test cases.

Rebasing
If a new base version of a bot that you have extended is made available, you can rebase the
extended bot so that it picks up the changes to the base bot and keeps the customizations
that you made in the extended bot. Rebasing is available for both skills and digital assistants.

You can also rebase to any version of the bot that descends from the original bot, whether it
is a version of the original bot or an extended version of the bot. (This does not apply to
clones or bots that are created separately but with the same name.)

How Rebasing Works
When you rebase, the following things happen in the extended bot:

• A new version of the extension is created.

• Any new artifacts (such as new intents) in the new version of the base bot (i.e. those that
were added after the extension was created or last rebased) are added to the extension.

• Any local artifacts (those that were created in the extension) are retained in the
extension.

• Any customizations of artifacts (such as changes of property values) are retained.

Chapter 54
Make, Review, and Revert Customizations

54-7

Note:

Customized property values always take precedence over changes in
the base bot. If you want to use the values from the new base, you can
revert changes once the rebase process is complete.

• Any inherited artifacts that are included in the current version of the base bot that
have not been customized and that have been removed from the new version of
the base bot are deleted.
Customized artifacts that no longer exist in the new base bot are included in the
rebased extension. In the extension, they are treated as local artifacts, so you can
delete them if they are no-longer needed.

Caution:

If both the new version of the base bot and the extension have a new artifact
with the same key (usually the name), the rebasing will not be able to resolve
the two and thus will fail. In this case, you would need to delete the local
version of the artifact before being able to successfully rebase.

Rebase a Skill Extension
1. If you haven't already done so, install the updated skill:

a. Click to open the side menu and select Development > Store.

b. In the tile for the updated base skill, click and select Pull.

2. Click to open the side menu, select Development > Skills, and click the tile for
the extended version of the skill to open it.

3. In the left navigation for the skill, click .

4. Click the Rebase button.

5. In the Base Skill dropdown, select the skill version you are rebasing to and click
Next.

6. Complete the wizard.

If the rebase is successful, the new rebased version of the skill is created and opened
in Draft mode.

If the rebase isn't successful, an error message appears indicating what has blocked
the successful rebase and a new version of the extended skill is not created.

Rebase a Digital Assistant Extension
1. If you haven't already done so, install the updated digital assistant:

a. Click to open the side menu and select Development > Store.

b. In the tile for the updated base digital assistant, click and select Pull.

2. Click to open the side menu, select Development > Digital Assistants, and
click the tile for the extended version of the digital assistant to open it.

Chapter 54
Rebasing

54-8

3. In the left navigation for the digital assistant, click .

4. Click the Rebase button.

5. In the Base Digital Assistant dropdown, select the skill version you are rebasing to and
click Next.

6. Complete the wizard.

If the rebase is successful, the new rebased version of the digital assistant is created and
opened in Draft mode.

If the rebase isn't successful, an error message appears indicating what has blocked the
successful rebase and a new version of the extended digital assistant is not created.

How Do I Respond to a Failed Rebase?
If a rebase of a skill or digital assistant fails, here are the steps to re-attempt the rebase:

1. Create a new version of the bot extension.

2. Make changes to the extension to address errors in the rebase attempt. This may simply
mean reverting any customizations that have conflicted with changes in the base bot.

3. Attempt to rebase the version of the extension.

Branching an Extension
It is also possible to create a clone of an extension so that you can work on different
branches in parallel. For example, you might do this when you have an extended bot in
production but you want to have a differently named extension where you are working on
significant changes.

When you clone an extension, the extended bot is also treated as an extension of the original
bot, meaning that:

• At design time, the various artifacts are marked as inherited, local, and customized, just
like they are in other extended bots.

• You can rebase to new versions of the original bot.

• The internal tracking IDs that are generated for the clone of the extension match those of
the original bot.

Note:

Cloning works with bot extension only if you first create an extended bot.

Post-Deployment Lifecycle of an Extended Skill
Once you have deployed an extended version of a skill, it's important to establish a routine for
incorporating improvements and then redeploying.

Here's an example of what such a routine might look like, based on the following
assumptions:

• You are using Insights on an ongoing basis to improve intent resolution in the skill.

Chapter 54
Branching an Extension

54-9

• You periodically add new features to the skill.

• You have two instances of Digital Assistant (one for production and one for testing
and staging).

1. In your production instance, create a new version of the deployed skill.
You create a new version of the skill in your production instance so that you can
capture Insights data from actual customer usage and then use the Retrainer to
supplement your training model with utterances that the skill did not correctly
understand before.

To make this procedure easier to read, let's assume the the published skill is
version v1 and the new draft version is v1.1.

2. Evaluate the Insights reports on the skill and supplement the training data for your
intents with additional utterances to handle valid user phrasing that was not taken
into account in your previous training data.
As part of this process, you can use the Insights Retrainer to add unresolved
utterances to the appropriate intents.

3. Export the skill (v1.1 in the example above).

4. In your test or staging instance, import the skill you just exported from the
production instance (v1.1).

5. In the test or staging instance, create a new version of the imported skill. This new
version will be for incorporating any new features that you are adding to the skill.
(Let's refer to this version as v2.)

6. In v2, incorporate any feature additions or changes that you want to include.
If you have been developing those changes elsewhere, manually merge them into
v2.

7. Train and test v2 until you are satisfied with the results.

8. Export the skill (v2) from your test instance.

9. In your production instance, import the skill that you have just trained and tested
(v2).

10. Train the skill.

11. Publish the skill.

12. If you are deploying the skill as part of a digital assistant, create a new version of
the digital assistant.

13. Update the new version of the digital assistant to use the new version of the skill
(v2).

14. Update the channel to use the new version of the digital assistant.

15. Publish the new version of the digital assistant.

Chapter 54
Post-Deployment Lifecycle of an Extended Skill

54-10

Part VII
Service Integration

• Intelligent Advisor

• Knowledge Search

• Live Help Approaches

• DA as an Agent

• Insights for Oracle B2C Service Chat and Oracle Fusion Service Chat

• Live Agent Transfer

55
Intelligent Advisor

Oracle Intelligent Advisor lets business users deliver consistent and auditable advice across
channels and business processes by capturing rules in natural-language using Microsoft
Word and Excel documents, and then building interactive customer-service experiences,
called interviews, around those rules. You can leverage existing interviews by incorporating
them into your skills.

For example, an energy company has a utility skill that lets customers report outages, pay
bills, and view monthly usage. It also has a web form interview that gives advice on how to
save on electricity. The company can enhance the utility skill by making that same interview
available from the skill, where it is conducted in the form of a chat conversation. The skill
designer doesn't have to write dialog flow to model the interview rules, and the interview rules
can be maintained in just one place. You can learn more about Oracle Intelligent Advisor at
Intelligent Advisor Documentation Library.

Note:

You only can use the interviews for anonymous users. The skill can't access
interviews that are enabled for portal users or agent users.

How the Intelligent Advisor Framework Works
The Intelligent Advisor service, along with the System.IntelligentAdvisor component,
allows you to integrate an Oracle Intelligent Advisor interview into your skill.

When a skill conducts an interview, it displays each field in a way that's appropriate for the
channel, as described in How Artifacts Display in a Conversation. To navigate through the
interview, customers either answer the question or say one of the following slash commands:

Slash Command Action

/reset Go back to the first question.

/back Go back to previous question.

/exit Exit the interview. If a user exits an interview and then triggers the
System.IntelligentAdvisor state again while in the same session, the
skill will ask the user if they want to resume the previous interview.

Tip:

You can configure your own text for the slash commands. For example, you can
change /back to /previous.

Integrating your skill with an interview is a three-step process.

1. Add an Intelligent Advisor service integration.

55-1

https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Overview/Overview_of_Intelligent_Advisor.htm

2. (Optional but highly recommended) Create a "conversational" variation of the
interview.

3. Add a System.IntelligentAdvisor component to your skill's dialog flow.

Add an Intelligent Advisor Service
Before you can access Oracle Intelligent Advisor interviews from any skills, you need
to add an Intelligent Advisor service, which configures the connection between Oracle
Digital Assistant and an Intelligent Advisor Hub's API client.

We'll guide you through the steps for obtaining the API client information from
Intelligent Advisor Hub and for creating the Intelligent Advisor service in Digital
Assistant. The steps in the Intelligent Advisor Hub must be completed by a Hub
administrator.

1. From Intelligent Advisor Hub, click to open the side menu, click Permissions,
and then click the Workspaces tab.

2. Click the desired collection and ensure that Chat Service is selected so that when
deployments in the collection are activated, they are activated for chat service by
default.

3. Click the API clients tab.

4. If you don't see a client that has the Chat Service role, then assign the role to one
of the existing clients or create one with the Chat Service role enabled.

5. Open the API client, make sure that the client is enabled, and make a note of the
secret and the API client's identifier, which you'll need to create the Intelligent
Advisor service.

6. Either select Hub administrator for the page or select Manager for the
workspace. If neither of these are selected, then you won't be able to display the
Hub's active chat deployments from the Intelligent Advisor service page. Nor will
you be able to create new skills directly from the service page.

7. You can sign out of the Hub.

In Digital Assistant, click to open the side menu, click Settings, click
Additional Services, and click the Intelligent Advisor tab.

8. Click + Service.

9. In the New Intelligent Advisor Service dialog, provide a unique name for the
service.

This is the name that you'll use for the System.IntelligentAdvisor component's
intelligentAdvisorService property in your skill.

10. Enter the host for the Intelligent Advisor Hub. Leave out the https:// prefix. For
example: myhub.example.com.

11. Set the Client ID and Client Secret to the API client identifier and secret that you
noted earlier.

12. Click Create.

13. Click Verify Settings to ensure that a connection can be made using the entered
settings.

Chapter 55
Add an Intelligent Advisor Service

55-2

As you create skills that use the service, the Intelligent Advisor service page will display the
names of the skills and the Hub deployments that the skills use. You can open the skill tester
for any of these skills directly for the service's page. You also can create skills directly from
this page. See Create and Test Skills From Intelligent Advisor Service Page.

For more information about API clients, see Activate a project and Update an API client's
details in Intelligent Advisor Documentation Library.

Create and Test Skills From Intelligent Advisor Service Page
The Intelligent Advisor service page lists all the skills that use the Hub's active chat
deployments, and you can run the skill tester for any of the listed skills. In addition, from this
page, you can create a skill that accesses an active deployment.

To test a skill that's on the list, click the Test this Skill icon that appears next to the skill's
name. When the Conversation Tester opens, start the conversation. With typical skills, you
can simply type hi and press Enter to start. However, sometimes the skill is looking for
specific phrases. In that case, if you enter a phrase that it doesn't understand, it should give
you instructions on what to type.

To create a skill from the Intelligent Advisor service page, select a service for anonymous
users, and then click + New Skill. (Skills can't access deployments that are enabled for portal
users or agent users.) Provide a display name for the skill, select a deployment from the
drop-down, and click Create. The new skill appears in the list of skills that use the service.

Here's an example of the dialog flow for a skill that you create from the service page:

main: true
name: "StoreChat"
context:
 variables:
 iResult: "nlpresult"

Chapter 55
Create and Test Skills From Intelligent Advisor Service Page

55-3

https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Use_Intelligent_Advisor/Manage_deployments/Activate_a_project.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Implement_Intelligent_Advisor/Manage_users_permissions/Create_account_for_application_integration.htm#Update
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Implement_Intelligent_Advisor/Manage_users_permissions/Create_account_for_application_integration.htm#Update

states:
 intelligentAdvisor:
 component: "System.IntelligentAdvisor"
 properties:
 intelligentAdvisorService: "myHubClient"
 deployment: "My Store Chat"
 transitions:
 return: "done"

Note:

If the service's API client doesn't have either Hub administrator or Manager
selected, then the drop-down can't list the deployments, and you'll get a
notification that you do not have permission to perform the operation. See
Add an Intelligent Advisor Service.

List Available Deployments
To see a list of the Hub's deployments that you can access from skills, go to
Additional Services, click Intelligent Advisor, select the Hub's service, and click
Deployments.

Note:

The list shows all the deployments that are chat enabled. However, you only
can use the deployments for anonymous users. The skill can't access
deployments that are enabled for portal users or agent users.

If a deployment is web enabled, then you'll see the Start web interview icon next to
its name. You can click the icon to run the interview in a new browser tab.

To access the deployment in the Hub, click Manage deployment .

Chapter 55
List Available Deployments

55-4

If the service's API client doesn't have either Hub administrator or Manager selected, then
the page can't display the deployments and you'll get a notification that you do not have
permission to perform the operation. See Add an Intelligent Advisor Service.

Creating a Conversational Interview
Although it's not a hard requirement, you can dramatically increase the effectiveness of your
chat-based Oracle Intelligent Advisor interviews by employing conversational techniques.

Most interviews are optimized for forms on web pages, where screen labels, section labels,
and component types, such as drop-down lists and check boxes, give visual clues about the
context of the question and the choices you can make. Because skill conversations are
different from traditional web interfaces, you might not be able to simply use your form-based
interview for a conversation. To illustrate the point, have a person join you and sit back-to-
back, with one person acting as the bot and the other acting as the interviewee. Read your
form-based interview aloud (reading every label and prompt) and ask yourself if this is a
conversation you think your customers would want to have with a bot.

Rather than re-using an interview that's specifically designed for a web page, consider
designing a variation that's more conversational in manner. Because you'll want to use the
same policy model as the single source-of-truth, use the Oracle Intelligent Advisor Inclusions
feature to create additional interviews for that policy model. See Inclusions in Intelligent
Advisor Documentation Library. Alternatively, consider passing seed data to the interview to
indicate that the interview is being conducted in a skill and have the interview hide or display
artifacts accordingly, similar to the steps described in Customize multi-channel interviews for
different user types in Intelligent Advisor Documentation Library except that you'll use your
own attribute. See Pass Attribute Values and Connection Parameters.

Here's an example. The following interview presents a set of image toggles. On a web page,
the user can click the images that apply.

Chapter 55
Creating a Conversational Interview

55-5

https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Use_Intelligent_Advisor/Use_Policy_Modeling/Inclusions/Inclusions.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Implement_Intelligent_Advisor/Integrate_other_applications/Integrate_with_B2C/Customize_multi_channel_interviews.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Implement_Intelligent_Advisor/Integrate_other_applications/Integrate_with_B2C/Customize_multi_channel_interviews.htm

When conducted in a skill, the interview presents each image and asks the user if the
sign is present. The user has to answer Yes or No for each sign, as shown in this
example.

Chapter 55
Creating a Conversational Interview

55-6

Because the rules for this interview only care if any sign is present, the interview can be
optimized for a skill by displaying a single image with all of the signs and asking just one
question – "Are any of these signs present?" The rules simply need to be modified to add a
condition for there is any sign present, as shown here.

dangerous goods need to be handled if
 there is a combustibles sign present or
 there is an explosives sign present or
 there is a flammable gas sign present or
 there is an inhalation sign present or
 there is a nonflammable sign present or
 there is an oxygen sign present or
 there is a flammable solid sign present or
 there is any sign present

Also note that the lead-in text isn't applicable to the behavior of the skill conversation and,
therefore, should be modified or hidden.

What Makes an Interview Conversational
The ideal interview for a skill would be one that uses the same concise natural language that
a human would encounter in a person-to-person conversation. Instead of a cold, robotic,
boring series of questions, strive for an interactive conversation that's welcoming, helpful,
familiar, encouraging, and non-judgmental. Here are some ways to make an interview more
conversational.

Chapter 55
Creating a Conversational Interview

55-7

• Create a persona for your interview and have the interview convey a consistent
personality that users can identify with. For example, you might create a persona
who is professional and personable. Or you might want to create a persona who is
professorial.

• Let the user know the goal and benefit for each set of related questions. For
example: "Before we can approve your loan, we need to know about your assets
and liabilities."

• Use active voice whenever possible. For example, instead of "The request has
been submitted", say "The request is on its way."

• Use point-of-view terms such as "you", "your", "I", and "we". For example: "How
much do you want to borrow?"

• Break up long series of yes/no questions with occasional interjections. For
example: "OK. I have some more questions about this."

• If you have a long list of choices, break the list into smaller ones and ask a
question that will help filter which list to display. Another option is to break up the
list into smaller ones that each include "none." As soon as the user selects a
choice, skip the remaining lists. Put the most common choices first and the least
common last.

• Use encouraging words. For example: "We're almost done. I just need to get some
references."

• Minimize repetition and avoid redundancy. For example: instead of "What's the
asset type?" and "What's the asset value", you can say "What type of asset is it?"
and "What's its value?"

• Use contractions.

• Use familiar words. For example, instead of "Fulfillment Date", you could say
"When did you receive your order?"

• Because a default value is displayed as a "suggested value", be judicious in its
use. Don't set a default value unless you really want to suggest that as the
optimum input. For example, if you gave What is your employment status? a
default of employed, the conversational output would be What is your
employment status? Suggested value "employed", which might be a bit jarring
for someone who is out of work or retired.

• Try to reduce interview questions by using user variables, profile variables, and
composite bag entities to gather as many answers as possible and passing the
answers to the interview through the System.IntelligentAdvisor component's
seedData property as explained in Pass Attribute Values and Connection
Parameters.

After you complete your initial draft of the interview, you can quickly create a test skill
and test the skill as described in Create and Test Skills From Intelligent Advisor
Service Page. You might want to test it out on several people to get their feedback.
After you complete the production skill, you can use the skill's analytics to help re-
evaluate and refine the interview.

If you haven't designed a skill conversation before, you might want to read
Conversational Design to learn about best practices.

Chapter 55
Creating a Conversational Interview

55-8

How Artifacts Display in a Conversation
A skill conversation can't display some UI affordances, such as drop-down lists, checkboxes,
and radio buttons. Instead, the affordances are converted to buttons.

• Drop-down lists and non-Boolean radio button sets are output as button sets

• For a check box group, each check box in the group is output with its prompt followed by
Yes and No buttons

• A Boolean radio button is output as a prompt followed by Yes and No buttons (and an
Uncertain button if the radio button is optional)

In text-only channels, the buttons are displayed as text the user has to type the answer.

Some affordances, such as dates and sliders, don't display if they don't have prompts. Some
of the affordances aren't supported, such as signatures, captchas, and custom properties.

Before you design your interview, you should understand how the artifacts are handled
differently between forms on web pages and skill conversations in the various channels.

As an example, this table shows how an image button group appears on a web form as
compared to a skill conversation in a rich-UI channel, Oracle B2C Service default chat, and a
text-only channel. Note that for the Oracle B2C Service default chat and the text-only
channel, auto-numbering was enabled for the example.

Intelligent Advisor
Web Form

Rich-UI Channel Oracle B2C Service
Default Chat

Text-Only Channel

This table describes how each interview artifact appears in a conversation.

Chapter 55
Creating a Conversational Interview

55-9

Intelligent Advisor
Artifact

Rich-UI Channel Oracle B2C Service
Default Chat

Text-Only Channel

Button group: text,
image, and text and
image

Displays the prompt
and the buttons, which
are labeled using the
item values. For text-
and-image button
groups and for image
button groups, both
the image and the
item value are
displayed.

For image button
groups, the buttons
are displayed either
horizontally or
vertically depending
on whether Horizontal
or Vertical is selected
for the input control in
Policy Modeler.

Slack channels don't
display the images.

Displays the prompt
and the buttons, which
are labeled using the
item values.

For image button
groups, the buttons
are displayed either
horizontally or
vertically depending
on whether Horizontal
or Vertical is selected
for the input control in
Policy Modeler.

Displays the prompt
and a list of the item
values. The user types
the text for the entry
that they want.

Calendar (date, time,
and date time)

Displays the prompt
and accepts a date,
date and time, or time,
depending on the
input data's Attribute.
Accepts any format
that's valid for the
Digital Assistant DATE
and TIME entities,
respectively, such as
today, 5/16/1953
11:00pm, or 13:00.
Non-formatted values
resolve to UTC time
zone.
The valid date format
depends on the locale
settings for the DATE
entity and the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Displays the prompt
and accepts a date,
date and time, or time,
depending on the
input data's Attribute.
Accepts any format
that's valid for the
Digital Assistant DATE
and TIME entities,
respectively, such as
today, 5/16/1953
11:00pm, or 13:00.
Non-formatted values
resolve to UTC time
zone.
The valid date format
depends on the locale
settings for the DATE
entity and the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Displays the prompt
and accepts a date,
date and time, or time,
depending on the
input data's Attribute.
Accepts any format
that's valid for the
Digital Assistant DATE
and TIME entities,
respectively, such as
today, 5/16/1953
11:00pm, or 13:00.
Non-formatted values
resolve to UTC time
zone.
The valid date format
depends on the locale
settings for the DATE
entity and the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Captcha Not supported Not supported Not supported

Chapter 55
Creating a Conversational Interview

55-10

Intelligent Advisor
Artifact

Rich-UI Channel Oracle B2C Service
Default Chat

Text-Only Channel

Checkbox Each checkbox is
output with its prompt
followed by Yes and
No buttons.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different button labels.

Each checkbox is
output with its prompt
followed by Yes and
No buttons.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different strings.

Each checkbox is
output with the prompt
followed by Yes and
No.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different strings.
However, the NLP
must be able to
recognize that the
strings represent yes
and no.

Currency Displays the label and
accepts a numeric
response (no currency
symbol).
The valid number
format depends on the
locale settings for the
NUMBER entity and
the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Displays the label and
accepts a numeric
response (no currency
symbol).
The valid number
format depends on the
locale settings for the
NUMBER entity and
the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Displays the label and
accepts a numeric
response (no currency
symbol).
The valid number
format depends on the
locale settings for the
NUMBER entity and
the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Custom property Not supported Not supported Not supported

Drop-down, filtered
drop-down, and fixed
list

Displays buttons,
which are labeled
using the display
values.

Displays a list of the
display values. The
user types the text for
the entry that they
want.

Displays a list of the
display values. The
user types the text for
the entry that they
want.

Explanation You can use the
System.Intelligen
tAdvisor
showExplanation
property to specify
whether to display the
explanation.

You can use the
System.Intelligen
tAdvisor
showExplanation
property to specify
whether to display the
explanation.

You can use the
System.Intelligen
tAdvisor
showExplanation
property to specify
whether to display the
explanation.

Form Displays the label
followed by a button
with its label set to the
file name plus the file
type, such as (PDF).

Displays the label, file
name, file type, such
as (PDF), and a
clickable link to open
the form in a web
browser.

Displays the label, file
name, file type, such
as (PDF), and the
URL.

Image Displays the image.
Ignores custom
properties.

Displays the image.
Ignores custom
properties.

Images aren't
supported in text-only
channels.

Chapter 55
Creating a Conversational Interview

55-11

Intelligent Advisor
Artifact

Rich-UI Channel Oracle B2C Service
Default Chat

Text-Only Channel

Image toggle Displays the image in
a Yes button and
again in a No button.

Slack channels don't
display the images.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different button labels.

Displays the image in
a Yes button and
again in a No button.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different strings.

Displays the label
followed by Yes and
No.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different strings.
However, the NLP
must be able to
recognize that the
strings represent yes
and no.

Label Ignores style and
custom properties.

Ignores style and
custom properties.

Ignores style and
custom properties.

Masked text The expected format
is shown as Answer
format: <mask>.

The expected format
is shown as Answer
format: <mask>.

The expected format
is shown as Answer
format: <mask>.

Number Displays the label and
accepts a numeric
response.
The valid number
format depends on the
locale settings for the
NUMBER entity and
the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Displays the label and
accepts a numeric
response.
The valid number
format depends on the
locale settings for the
NUMBER entity and
the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Displays the label and
accepts a numeric
response.
The valid number
format depends on the
locale settings for the
NUMBER entity and
the
System.Intelligen
tAdvisor locale
property. See the
property description at
System.IntelligentAdvi
sor

Password Because the user's
utterance is passed as
clear text, you should
not ask for passwords.

Because the user's
utterance is passed as
clear text, you should
not ask for passwords.

Because the user's
utterance is passed as
clear text, you should
not ask for passwords

Radio button, Boolean Displays the prompt
and Yes and No
buttons. If the field is
optional, Uncertain is
also displayed.

You can use the
System.Intelligen
tAdvisor yesLabel.
noLabel, and
uncertainLabel
properties to define
different button labels.

Displays the prompts,
Yes, No, and, if the
field is optional,
Uncertain.

You can use the
System.Intelligen
tAdvisor yesLabel,
noLabel, and
uncertainLabel
properties to define
different strings.

Displays the prompts
Yes, No, and, if the
field is optional,
Uncertain.

You can use the
System.Intelligen
tAdvisor yesLabel,
noLabel, and
uncertainLabel
properties to define
different strings.
However, the NLP
must be able to
recognize that the yes
and no strings
represent yes and no.

Chapter 55
Creating a Conversational Interview

55-12

Intelligent Advisor
Artifact

Rich-UI Channel Oracle B2C Service
Default Chat

Text-Only Channel

Radio button set, non-
Boolean

Outputs the prompt
and buttons, which are
labeled using the
display values.

Outputs the prompt
and the display values.
The user types the
text for the entry that
they want.

Outputs the prompt
and the display values.
The user types the
text for the entry that
they want.

Screen The title text is
displayed. HTML
formatting is
supported except for
Slack.

The title text is
displayed. HTML
formatting is
supported.

The title text is
displayed. The actual
HTML markup is
output. Ignores style
and custom
properties.

Signature Not supported Not supported Not supported

Slider Displays the label.
Then it displays one of
the following artifacts:

• Range: Enter a
number between
<n> and <n>.

• Values: Buttons
for each display
value.

Displays the label.
Then it displays one of
the following text:

• Range: Enter a
number between
<n> and <n>.

• Values: A list of
the display
values.

Displays the label.
Then it displays one of
the following text:

• Range: Enter a
number between
<n> and <n>.

• Values: A list of
the display
values.

Switch The label is output
followed by 2 buttons
– Yes and No.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different button labels.

Displays the label
followed by Yes and
No.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different strings.

Displays the label
followed by Yes and
No.

You can use the
System.Intelligen
tAdvisor yesLabel
and noLabel
properties to define
different strings.
However, the NLP
must be able to
recognize that the
strings represent yes
and no.

Tabular and portrait
entity collects

Displays the prompt,
the label for the add
button, and Yes and
No buttons. If the user
clicks Yes the user is
prompted to enter the
fields for a table row
for the next entity.
Then the skill repeats
the process until the
user answers No.

The behavior is the
same as for rich-UI
channels except that
the user has to type
Yes or No.

The behavior is the
same as for rich-UI
channels except that
the user has to type
Yes or No.

Chapter 55
Creating a Conversational Interview

55-13

Intelligent Advisor
Artifact

Rich-UI Channel Oracle B2C Service
Default Chat

Text-Only Channel

Text box and text area For read-only, displays
the label and value.

Otherwise, displays
the label and waits for
a response. Even if
the field is optional,
the user must provide
text before the
conversation
continues to the next
step.

For read-only, displays
the label and value.

Otherwise, displays
the label and waits for
a response. Even if
the field is optional,
the user must provide
text before the
conversation
continues to the next
step.

For read-only, displays
the label and value.

Otherwise, displays
the label and waits for
a response. Even if
the field is optional,
the user must provide
text before the
conversation
continues to the next
step.

Upload Not supported by
embedded chat inlay.

Not supported. Supported.

You can change the following helper text by opening the skill's Resources Bundle
page, clicking , selecting the Configuration tab, and then selecting the key:

• IntelligentAdvisor - answerNotValid: The answer is not in the correct format. Try
again.

• IntelligentAdvisor - defaultValue:Suggested value is {0}

• IntelligentAdvisor - doneHelp: (Upload) When you are done with the upload, say
{0}.

• IntelligentAdvisor - maskLabel: (Masked) Answer format: {0}

• IntelligentAdvisor - numberMinMax: (Slider) Enter a number between {0} and
{1}.

• IntelligentAdvisor - outOfOrderMessage: You have already answered this
question. When you want to step backwards to change a previous answer, say {0}.

• IntelligentAdvisor - resumeSessionPrompt: Do you want to restart the interview
from where you previously left?

• IntelligentAdvisor - yesNoMessage: (Boolean Radio Button, Checkbox, Switch,
Collects) Enter either {0} or {1}

Tips for Conversational Design of Interviews
Here are some interview-design suggestions for the various field types.

Chapter 55
Creating a Conversational Interview

55-14

Field Type Suggestion

Assessment, advice,
conclusion

Each field is output as a separate utterance. If you have several fields,
the advice might scroll off the screen. Consider combining the
information into as few fields as possible. For example, instead of saying

Based on the information provided,
you are eligible for this loan.
Loan amount $32,000
Effective rate 6% p.a.
Minimum monthly repayment $191.86
Please contact one of our representatives to
complete your loan application.

say

Based on your information, you're eligible for
a $32000 loan at 6% p.a. with a $191.86 monthly
payment.
Please contact one of our representatives to complete
your loan application.

All All input fields must have prompts.
If the form uses HTML and CSS markup to make the interview present
as a form, you might end up with a lot of blank lines in the skill
conversation. To prevent this, set the System.IntelligentAdvisor
component's removeHtml property to false.

Chapter 55
Creating a Conversational Interview

55-15

Field Type Suggestion

Button, radio Make sure that you provide unambiguous meaningful choices that the
user can quickly scan and immediately know the appropriate response.
For example, instead of asking

Are you employed?
yes
no

ask

What is your employment status?
employed
unemployed

For text-only channels, where the user types the response, don't put
punctuation in the labels. For example, instead of saying

Do you want:
a hard copy,
digital media,
or both?

say

What format do you want:
hard copy
digital
both

Also see the suggestions for text buttons.

Button, text Make sure that you provide unambiguous meaningful choices that the
user can quickly scan and immediately know the appropriate response.
For example, instead of asking

Do you want to keep your changes before
you exit?
save
undo

ask

Before exiting, what should we do with
your changes?
save changes
discard changes

For text-only channels, where the user types the response, keep the
labels short and don't put punctuation in the labels.

Chapter 55
Creating a Conversational Interview

55-16

Field Type Suggestion

Calendar (date, date and
time, time)

To enable locale-based formatting for the input date, ensure that
Consider End User Locale is switched to On for the DATE entity as
described in Locale-Based Date Resolution and ensure that
profile.locale is set to the user's locale as described in Profile-
Scope Variables for User Context. When Consider End User Locale is
switched to Off, then the DATE entity's Default Date Format is used.

The user can enter words that imply a date or time such as today, now,
Wednesday, noon, or 1:00. The natural language parser will try to make
a reasonable guess for the specific date and/or time. It uses the current
UTC time for its calculations. For example:

• Today, tomorrow, yesterday: It performs its calculations on the
current UTC date. For example, if it is 8 pm on July 8th in the
Hawaii–Aleutian time zone, then it's July 9th in the UTC time zone.

• Name of a day: It uses the DATE entity's Resolve Date as setting
to determine whether to resolve to a past, current, or future date as
described in Ambiguity Resolution Rules for Time and Date
Matches. It performs its calculations on the current UTC date.

• Time without am or pm: It uses the DATE entity's Resolve Date as
setting to determine whether to resolve to a past, current, or future
time as described in Ambiguity Resolution Rules for Time and Date
Matches. It performs its calculations on the current UTC time.

Depending on where the user is in relation to the UTC time zone, the
date or time might not resolve as the user intended. For this reason, the
prompt should indicate an explicit format in the prompt, and the interview
should echo what the input actually resolved to. You might also want to
output a string such as If this isn't correct, enter "/back"
and re-enter the date in the specified format.

Here's an example of an interview design that shows the desired format
and echoes the resolved date:

Here's what the conversation looks like:

Chapter 55
Creating a Conversational Interview

55-17

Field Type Suggestion

Checkbox For each item in the checkbox set, the skill outputs the checkbox label
and Yes and No buttons (or text for text-only channels).
Because the label for the full checkbox set will quickly scroll off the
screen, consider using questions for the checkbox labels. For example,
instead of saying

Does the package contain any of the following
(select all that apply):
Liquid
 Yes
 No
...
Aerosol
 Yes
 No

say

I need to know if the package contains
controlled materials.
Does the package contain liquid?
 Yes
 No
...
Does the package contain an aerosol?
 Yes
 No

If the set is too long, the user might tire of clicking a multitude of Yes and
No buttons, and may not carefully read the prompts. Instead of creating a
dozen or more checkboxes in a group, think of ways you can help the
user narrow down the number of checkboxes, such as by using
categories. Say, for example, the checkboxes fall into three groups. Ask if
the first group is applicable, and, if so, present the checkboxes for that
group, and so on. Or alternatively, break up the checkboxes into logical
groupings.

Chapter 55
Creating a Conversational Interview

55-18

Field Type Suggestion

Drop-down Avoid long choice lists that require the user to scroll on a mobile phone
or in a chat widget. If you have a long list of choices, think of ways to
help the user narrow down their request so that the skill can provide a
more concise list. Alternatively, break the list up into multiple drop-
downs, each of which includes none. As soon as the user selects a
choice, skip the remaining drop-down lists.
For text-only channels, consider that the user's input has to exactly
match the button label, so keep the label as short as possible.

Image buttons For text-only channels where the images aren't shown, make sure that
the item value, which is used for the button text, clearly describes the
choice.

Image toggle The label should be in the form of a yes/no question.

Label, input Always provide a prompt for an input field. Consider phrasing as a
question. For example, instead of saying

Age

say

How old are you?

Label, output Output the information in complete sentences. For example, instead of
saying

Loan paid off in: 5 years

say

You'll pay off your loan in 5 years

Don't put related hints, helpful information, or suggestions after an input
field. In a conversation, this information will be output after the user
answers the question. Instead put it in the label. For example, instead of
saying

What's the code?*
[input field]
* Enter 9999 if you don't know the answer.

say

What's the code? (Enter 9999 if you don't know)
[input field]

Read-only Output the information in a complete sentence. For example, instead of
saying
Loan paid off in: 5 years
say
You'll pay off your loan in 5 years

Chapter 55
Creating a Conversational Interview

55-19

Field Type Suggestion

Switch Because switches display as Yes/No choices, consider using a question
for the label. For example, instead of saying

Activate
 Yes
 No

say

Do you want to activate the subscription?
 Yes
 No

Tabular entity collect The field label should explain that the user will have the opportunity to
add multiple items. For example: Tell us about each of your
assets?
The label for the add button should be a question, such as Do you want
to add an asset?

Text In a conversation, the user must enter a value before moving to the next
question. Therefore, if optional, provide some value for the user to enter
to skip to the next question. For example, you can say

Any comments? (say 'n/a' if you don't have any)

You'll have to modify your interview to properly handle that value.

For text fields that are associated with currency and numeric attributes,
the valid format depends on the skill's settings for the NUMBER and
CURRENCY entities. When the entity's Consider End User Locale is
switch to On, then the valid format depends on profile.locale.
Otherwise, the default format is the same as for en-US (for example,
1,000,000.00). See Locale-Based Date Resolution and Profile-Scope
Variables for User Context.

Chapter 55
Creating a Conversational Interview

55-20

Field Type Suggestion

Title Omit or use as a conversational cue about what to expect next. For
example, instead of saying

Location

say

Let's start by getting some information
about your location

You also can use the title as an opportunity for reflective listening by
restating the user's input before moving on to the next screen or section.
For example, instead of saying

Loan Options

say

Great. Now that we know you want a car loan,
let's get some details.

Note that you can set the System.IntelligentAdvisor
hideScreenTitle property to not display the screen titles in the skill's
conversation.

Designing Interviews for Text-Only Channels
Text-only channels can't display buttons or images. If your skill that uses the
System.IntelligentAdvisor component will be accessible through text-only channels, here
are some suggestions for designing interviews that work with both Rich UI channels and text-
only channels.

• Add the following property to the System.IntelligentAdvisor component to autonumber
choices. When autonumber is turned on, the user can type the number instead of the full
text.

autoNumberPostbackActions: ${(system.channelType=='twilio'||
system.channelType=='osvc')?then('true','false')}

• Consider using all lower case for lists, buttons, to make it easier for the user to type.

• Set the System.IntelligentAdvisor yesLabel, noLabel, and uncertainLabel properties
to lower case text to make it easier for the user to type that response.

• Don't set the System.IntelligentAdvisor yesLabel and noLabel properties to values
that the natural language parser (NLP) won't recognize as a variation of Yes and No
respectively. For switches, check boxes, and Boolean radio buttons, the skill displays the
values from the yesLabel and noLabel properties (and uncertainLabel for optional
Boolean radio buttons). For text responses, the skill passes the user response through
the NLP and converts any variations of yes and no to true and false respectively. If you

Chapter 55
Creating a Conversational Interview

55-21

set the labels to strings that the NLP can't convert to true or false, the skill will
return a message that the answer isn't in the correct format. For example, you can
set the yesLabel to ok or yeah and the NLP will convert the utterance to true.
However, if you set the yesLabel to Please the skill won't accept Please as a valid
response.

Use the Intelligent Advisor Component in Your Skill
Before you can access an anonymous interview from a skill, ask a Digital Assistant
administrator to add an Intelligent Advisor service to your instance, and ask a Hub
Manager to deploy your interview to the Intelligent Advisor Hub and activate it for chat
service. After those tasks are completed, you can access the interview from your skill
by adding a System.IntelligentAdvisor component.

Tip:

You can quickly create the skill from the Intelligent Advisor service page.
Click to open the side menu, click Settings, click Additional Services,
click the Intelligent Advisor tab, and then click + New Skill. Give the skill a
display name and select the deployment from the drop-down.

The following steps walk you through using the component in a skill that was created
for YAML dialog mode. The steps for visual dialog mode are similar.

1. In your skill, click Entities to view the Entities page, and then select the DATE
entity.

2. Switch Consider End User Locale to On and select Nearest from the Resolve
Date as drop-down.

The interview uses these settings to determine the input date format and to
interpret ambiguous dates as described in Ambiguity Resolution Rules for Time
and Date Matches and Locale-Based Date Resolution.

3. Verify that Consider End User Locale is switched to On for the CURRENCY and
NUMBER entities.

4. Click Flows to view the dialog flow.

5. Click + Add Component, click Service Integration, and click Use Intelligent
Advisor.

6. From the Insert After State drop-down, select the state that you want the new
state to follow, and then click Insert Component.

7. In the dialog flow, scroll to the newly added state.

The state is named intelligentAdvisor, but you can change it.

8. Set the component's intelligentAdvisorService property to the name of the
service that was added to the Settings > Additional Services > Intelligent
Advisor page.

9. Set deployment to the name of the anonymous interview that was deployed on the
Intelligent Advisor Hub.

Chapter 55
Use the Intelligent Advisor Component in Your Skill

55-22

Tip:

If you're not sure about the exact spelling of the name, go to Additional
Services, click Intelligent Advisor, select the Hub's service, and click
Deployments to see a list of the deployment names.

10. The following optional properties let you define labels and valid values. You can use
these properties to define the strings or you can go to the configuration tab in the skill's
Resource Bundles page to redefine the default values. If you want to use the default
value from the resource bundle, then exclude the associated property from the
component.

Property Description Default Value

yesLabel Valid value to indicate "yes" for
checkboxes, image toggles,
switches, and Boolean radio
buttons.

For text-only channels, the
string must be a word that the
NLP recognizes as a synonym
for yes.

Yes

noLabel Valid value to indicate "no" for
checkboxes, image toggles,
switches, and Boolean radio
buttons.

For text-only channels, the
string must be a word that the
NLP recognizes as a synonym
for no.

No

uncertainLabel Valid value to indicate
"uncertain" for checkboxes,
image toggles, switches, and
Boolean radio buttons.

Uncertain

endLabel Defines what the skill should
output after it returns from the
interview.

Keep in mind that the user can
leave the interview without
completing it. You'll want to use
a phrase that covers both an
incomplete interview and a
successful completion. For
example, you might say "You
can ask me another question if
there's something else that I
can help you with."

If you prefer no text, set the
property to "".

Interview ended

doneLabel The string that the users must
type to indicate that they are
done uploading attachments.

/done

Chapter 55
Use the Intelligent Advisor Component in Your Skill

55-23

Property Description Default Value

undoLabel The string that the users must
type to indicate that they want
to go back one step.

/back

resetLabel The string that the users must
type to indicate that they want
to go back to the first question.

/reset

exitLabel The string that the users must
type to indicate that they want
to exit the interview

/exit

explanationAskLabel If showExplanation is set to
"ask", then this property
specifies how the interview
should ask the user if they want
to see the explanation.

Do you want to see the
explanation?

Tip:

The default values for all the component's label properties are stored in
the skill's resource bundle. To change a default, open the skill's
Resources Bundle page, click , select the Configuration tab, and
change the message for the IntelligentAdvisor - <property name> key.
If you use the skill's resource bundle to change the default, then you
don't need to include the label property in the component unless you
want to override the default.
The configuration resource bundle also allows you to change the
IntelligentAdvisor - defaultValue, IntelligentAdvisor - doneHelp,
IntelligentAdvisor - maskLabel, IntelligentAdvisor - numberMinMax,
IntelligentAdvisor - outOfOrderMessage, IntelligentAdvisor -
resumeSessionPrompt, and IntelligentAdvisor - yesNoMessage
messages. For example, the IntelligentAdvisor - doneHelp message is
output for attachment fields, and it defaults to When you are done with
the upload, say {0}. You might want to change it to something like
Say {0} to let me know that you are done uploading.

11. By default, the interview displays screen titles. If you want the component to hide
screen titles, set hideScreenTitle to true.

12. By default, the interview doesn't display the explanation. You can set the
showExplanation property to "always" to display the explanation every time, or to
"ask" if you want the user to choose whether to see the explanation.

13. If the skill has already obtained values for any of the interview's attributes, then
you can use the seedData property to pass the values. Otherwise, remove the
property.

See Pass Attribute Values and Connection Parameters to learn how to pass use
the seed data and how to use the data in an interview.

14. By default, the skill outputs the interview's HTML and CSS markup. If the interview
contains HTML and CSS markup that causes the conversation to contain
unnecessary blank lines, consider setting removeHtml to true. Otherwise, you can
remove the property.

Chapter 55
Use the Intelligent Advisor Component in Your Skill

55-24

15. If the interview expects a certain currency, then set currency to the ISO-4217 code for
the expected currency. When a code is specified, the user only can input currency values
in the formats that are allowed for that currency. You can set this property to blank or
exclude the property if the interview doesn't prompt for currency amounts or is not
expecting any certain currency.

16. If the skill can be accessed by text-only channels, add the following property to number
all the choices. When set to true, the user can type the number instead of the full text.

autoNumberPostbackActions: ${(system.channelType=='twilio'||
system.channelType=='osvc')?then('true','false')}

17. Add the transitions node to the state, add error and next transitions, and set the
transitions to the appropriate states. For example:

 transitions:
 error: "handleIAError"
 next: "endOfFlow"

You'll add the error handler next.

18. If there's a problem with the Intelligent Advisor integration, a global error is thrown. When
this happens, your skill should handle the error gracefully. Add a state for the error
transition. For example:

 handleIAError:
 component: "System.Output"
 properties:
 text: |
 We are having a problem with a connection.
 Can you please send email to
 contact@example.com to let them know that
 the loan advisor isn't working? Thank you.
 transitions:
 next: "endOfFlow"

19. (Optional), Click Preview and test the interview for all the channels that will be able to
access the skill.

Here's a simple example:

 ####################
 # Loan Advisor
 ####################

 loanAdvisorStart:
 component: "System.Output"
 properties:
 keepTurn: true
 text: |
 OK, I can initiate a loan request for you.
 But first I'll transfer you to an
 automated advisor that will ask some
 questions about the loan that you want,
 your assets, your liabilities, and your

Chapter 55
Use the Intelligent Advisor Component in Your Skill

55-25

 financial history. It shouldn't take
 more than 5 minutes.
 <#if (user.notFirstTime)??><#else>
 At any time, you can say
 /back to go to the previous question,
 /reset to start over or
 /exit to stop the questions.</#if>
 transitions:
 next: "setNotFirstTime"

 setNotFirstTime:
 component: "System.SetVariable"
 properties:
 variable: "user.notFirstTime"
 value: true
 transitions:
 next: "loanAdvisorIA"

 loanAdvisorIA:
 component: "System.IntelligentAdvisor"
 properties:
 intelligentAdvisorService: "myService"
 deployment: "Loan Qualifier"
 # default yesLabel: "yes"
 # default noLabel: "no"
 uncertainLabel: "not sure"
 endLabel: " "
 # default doneLabel: "/done"
 # default undoLabel: "/back"
 # default resetLabel: "/reset"
 # default exitLabel: "/exit"
 showExplanation: "ask"
 # default explanationAskLabel: "Do you want to see the
explanation?"
 interviewAttributes: "interviewDetails"
 transitions:
 error: "handleIAError"
 next: "handleEligibility"

 handleEligibility:
 component: "System.Switch"
 properties:
 source: <#list interviewDetails.value as i><#if i.key =
'eligibility'>${i.val}</#if></#list>
 # The values that are matched against the value of the variable
or source property. The value that matches is set as transition action
 values:
 - "eligible"
 - "noteligible"
 transitions:
 actions:
 eligible: "initiateLoan"
 noteligible: "suggestNextSteps"
 NONE: "handleUnexpectedAttributeValue" # the attribute value
was other than eligible or noteligible or the user exited interview

Chapter 55
Use the Intelligent Advisor Component in Your Skill

55-26

 error: "handleAttributeNotSet" # the attribute wasn't set during the
interview or the key is incorrect

 handleIAError:
 component: "System.Output"
 properties:
 text: |
 We are having a problem with a connection.
 Can you please send email to
 contact@example.com to let them know that
 the loan advisor isn't working? Thank you.
 transitions:
 next: "endOfFlow"
...

For details about each of the component properties, see System.IntelligentAdvisor.

Pass Attribute Values and Connection Parameters
If your skill has already obtained values for an interview's attributes, you can use the
seedData property in the System.IntelligentAdvisor component to pass the values to the
interview. If your interview requires parameters for web service connectors, you can use the
params property to pass the values.

Use the seedData property to pass values for any interview attribute that has the Seed from
URL parameter option enabled. You can find this option in the Edit Attribute dialog in
Oracle Policy Modeling.

As shown in this example, you use a map to set the seedData. Provide the attribute name
and set the value that you want passed.

 emergencyIA:
 component: "System.IntelligentAdvisor"
 properties:
 intelligentAdvisorService: "myService"
 deployment: "AccidentReport"
 seedData:
 latitude: ${latitude.value}
 longitude: ${longitude.value}
 transitions:
 error: "handleIAError"
 next: "endOfFlow"

The interview uses the seedData values to set default values, which are displayed as
suggested values.

If you want the interview to skip the screen or step if seed data is provided for it, follow these
steps in the Policy Modeling:

1. Add a rule to determine whether the seed data was provided:

Chapter 55
Pass Attribute Values and Connection Parameters

55-27

• For a Boolean attribute, use this rule:

The <screen name> screen should be shown if
 <attribute name> is uncertain or
 <attribute name> is currently unknown

• For a non-Boolean attribute, use this rule:

The <screen name> screen should be shown if
 <attribute name> is currently unknown

2. In the Interview tab, select the screen, click Show Screen if, and select the rule
from the Show if drop-down list.

If you have more than one question on the screen and you want to hide just the
question, then instead of using the Show Screen if button, select the question,
click Mandatory, and select the rule from the Show if drop-down list.

To learn more about seed data and how you can use them in an interview, see these
articles in Intelligent Advisor Documentation Library:

• Allow interview data to be seeded from a URL

• Attribute values

• Start an interview with pre-populated data

• Use seeded data to streamline an interview

• Hide and show screen controls

If your interview uses a web service connector that contains data mappings to
application data, you use the params property to pass the data to the connector. Use a
map to set the params property. Provide the parameter name and set the value that
you want passed, similar to the example shown for seedData.

To learn about parameters, see Data integration in Intelligent Advisor Documentation
Library.

Access Interview Attributes
If you need to access the values of named attributes that were set during the interview,
you can use the interviewAttributes property to pass in the name of a context
variable. The named-attribute values will be stored in that variable as an array of key/
value pairs. Note that if the user exits the interview before completion, then the
variable that is named by interviewAttributes won't be created.

Chapter 55
Access Interview Attributes

55-28

https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Use_Intelligent_Advisor/Use_Policy_Modeling/Design_interviews/Allow_interview_data_to_be_seeded_URL.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Customize_extend/DeterminationsAPI/Attribute_values.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Customize_extend/Web_Interviews/Integration/Start_interview_with_prepopulated_data.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Use_Intelligent_Advisor/Use_Policy_Modeling/Design_interviews/Use_seeded_data_to_streamline_interview.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Use_Intelligent_Advisor/Use_Policy_Modeling/Screens/Hide_and_show_screen_controls.htm
https://documentation.custhelp.com/euf/assets/devdocs/unversioned/IntelligentAdvisor/en/Content/Guides/Customize_extend/Web_Interviews/Integration/Data_integration.htm

Here's a simple example of accessing an interview's attribute values:

context:
 variables:
 iResult: "nlpresult"
 interviewDetails: "string"

states:
 ...
 loanAdvisorIA:
 component: "System.IntelligentAdvisor"
 properties:
 intelligentAdvisorService: "myService"
 deployment: "Loan Qualifier"
 # default yesLabel: "yes"
 # default noLabel: "no"
 uncertainLabel: "not sure"
 endLabel: " "
 # default doneLabel: "/done"
 # default undoLabel: "/back"
 # default resetLabel: "/reset"
 # default exitLabel: "/exit"
 showExplanation: "ask"
 # default explanationAskLabel: "Do you want to see the explanation?"
 interviewAttributes: "interviewDetails"
 transitions:
 error: "handleIAError"
 next: "handleEligibility"

 handleEligibility:
 component: "System.Switch"
 properties:
 source: <#list interviewDetails.value as i><#if i.key = 'eligibility'>$
{i.val}</#if></#list>
 # the values that are matched against the value of the variable or
source property. The value that matches is set as transition action
 values:
 - "eligible"
 - "noteligible"
 transitions:
 actions:
 eligible: "initiateLoan"
 noteligible: "suggestNextSteps"
 NONE: "handleUnexpectedAttributeValue" # the attribute value was
other than eligible or noteligible or the user exited interview
 error: "handleAttributeNotSet" # the attribute wasn't set during the
interview or the key is incorrect
 ...

If the user exits the interview before completion, then the variable that is named by
interviewAttributes won't be created.

Chapter 55
Access Interview Attributes

55-29

56
Knowledge Search

If you are using Oracle B2C Service Knowledge Foundation or Oracle Fusion Service
Knowledge Management, then you can use the System.KnowledgeSearch built-in component
to search for and display articles from that service.

To integrate your skill with a Knowledge Foundation service, you:

1. Add a knowledge search integration. You only need to do this once per service interface.

2. Add one or more System.KnowledgeSearch components to the skill's dialog flow, as
described in Use the System.KnowledgeSearch Component.

Add a Knowledge Search Service
To use the Knowledge Search component in a skill to search for and retrieve Oracle B2C
Service Knowledge Foundation or Oracle Fusion Service Knowledge Management articles,
you must first create a knowledge search service that integrates with the service.

Before you create a knowledge search service for Knowledge Foundation, confirm that your
Oracle B2C Service Account Manager has enabled the Connect Knowledge Foundation API
at the site level and the II_CONNECT_ENABLED configuration setting is switched on.
Otherwise, when you invoke the Knowledge Service component, it will return a global error.
The exception code will be ACCESS_DENIED and the message will contain the message base
string for SOAP_SERVER_DISABLED. If you plan to integrate with multiple interfaces, then the
profile for the user that you use for the service integration must have access enabled for the
interfaces.

To create a knowledge search service, complete these steps:

1. In Oracle Digital Assistant, click to open the side menu, select Settings, select
Additional Services, and then click the Knowledge Search tab.

2. Click + Add Service

The New Knowledge Search Integration Service dialog displays.

3. Provide this information:

Field Require
d

Description

Name Y A unique name for the integration.

Description N Description of the integration.

Service Type Y Select whether this integrates with Oracle B2C Service
Knowledge Foundation or Oracle Fusion Service
Knowledge Management.

Host Y The fully qualified domain for the service. For example:
interfacename.custhelp.com.

Service Cloud Version Y (For Oracle B2C Service only) Indicate whether the Oracle
B2C Service version is 20A or later, or earlier than that.

56-1

Field Require
d

Description

Authentication Type Y (For Oracle Fusion Service only). By default, set to allow
both signed-in and anonymous users to access articles.
Warning: As of 24.02, the option to allow only signed-in
users to access the articles is not fully tested.

User Name Y The user name for the knowledge service account.
For Oracle B2C Service the user must be associated with
a Oracle B2C Service profile that has Public Knowledge
Foundation API account authentication and session
authentication permissions selected on the Profile
Permissions Administration tab. If this service
integration will include multiple interfaces, then the profile
must have access enabled for the interfaces.

The user must also have access to the articles that the
skill needs to retrieve.

Password Y The user's password.

Search Path or Custom
URL

N If you want the component's search button to go to a
custom URL instead of the default search link, you can
specify it here. You can use the <SEARCH_TERM>
placeholder to specify where to put the search term in the
URL.
Note that for B2C services, if you use an absolute URL,
then the skill will not add the search filters that are
described in Filter Results by Product and Category to the
URL.

Result Path or Custom
URL

N If you want the component's show more button to go to a
custom URL instead of the default result link, you can
specify it here. You can use the <ANSWER_ID> placeholder
to specify where to put the article ID in the URL.

4. Click Create.

If you are integrating with Oracle Fusion Service Knowledge Management, then
skip to Step 7.

5. For Oracle B2C Service, if the host's site has more than one interface, you will be
asked to select the main (default locale) interface.

You can add more interfaces in the next step. You also can change which interface
is the default.

6. If your Oracle B2C Service service has different interfaces for different locales,
click + Add Locale to include them in the service integration. You'll need to select
the interface to add and then specify the host for the interface. You only can add
one interface per locale.

Note that the profile for the user that you use for the service integration must have
access enabled for the interfaces.

When a System.KnowledgeSearch component uses a multi-interface service
integration, you use the locale property to specify which interface to search (the
property defaults to the profile.locale value). If none of the interfaces support
the locale, then the component searches the default interface.

7. Click Verify Settings to check if Oracle Digital Assistant can connect to the
service successfully.

Chapter 56
Add a Knowledge Search Service

56-2

Test Knowledge Foundation Search Terms
For Oracle B2C Service Knowledge Foundation, you can test search terms from the
Knowledge Search service page for each configured Oracle B2C Service interface.
To test search terms:

1. In Oracle Digital Assistant, click to open the side menu, select Settings, select
Additional Services, and then click the Knowledge Search tab.

2. Select the knowledge search service and then click the Service Cloud host for which you
want to test the search terms.

The service's search page displays. Enter the search terms to see the results.

Use the System.KnowledgeSearch Component
You use the System.KnowledgeSearch component to search for and display information from
a knowledge service.

Using this component, you specify the search term, the knowledge search service to search,
which product or category to search on (or both), and how many results to display. You also
can configure labels and prompts. For Oracle B2C Service Knowledge Foundation you can
specify whether to display the answer or the special response, and, for multi-locale
interfaces, which interface to search. The component property details and transitions are
described in System.KnowledgeSearch.

You can incorporate knowledge search to not only provide answers for specific sets of
questions, you can also use knowledge search to handle unresolved intents. If a user's
utterance doesn't resolve to any intent within the skill's confidence threshold, then the skill
can search the knowledge base using the utterance as the search term. For example, your
knowledge base might contain articles about your return policy, shipping return costs, and
whether one can return wearable products. Your product order skill could include intents that
are specifically tailored to use precise knowledge base searches to return these answers.
Should the user ask a related question that your skill doesn't specifically handle, such as a
question about warranties, then the question would resolve to the unresolved intent, and your
skill could perform a knowledge base search using the user's question as the search term.

To implement this technique, do the following steps:

1. Associate a set of related questions with a specific search term: For each
knowledge base answer that you want to use in the skill, create an intent with a set of
example utterances (training corpus). When the user utterance resolves to that intent,
transition the dialog flow to a state that searches the knowledge base with a search term
that returns the desired answer. The training corpus, along with the natural language
parser (NLP), helps the skill resolve questions that are similar to the training corpus to
that intent.

2. Employ the user's utterance as the search term for unresolved intents: If the user
utterance doesn't resolve to any intent within the skill's confidence level, then you can
transition the dialog flow to a state that searches the knowledge base with the search
term set to the user's utterance. That is, perform a roll-over search.

Note that you must first create a knowledge search integration before you can use this
component.

Chapter 56
Test Knowledge Foundation Search Terms

56-3

Associate Related Questions with a Search Term
While it's possible to simply employ the user's utterance as the search term for a
knowledge base search, it's often preferable to leverage the intent and natural
language parsing features to ensure that the skill displays the best possible answer for
a given question.

By creating an intent for each knowledge base answer that you want to incorporate
into your skill, you can use the intent's example utterances (training corpus) to
associate various questions with that answer. Using the training corpus, the natural
language parser (NLP) will resolve other questions that are similar to the ones in the
training corpus to that intent. As your skill is put to use, you can insights and retraining
to improve the resolution of utterances to that intent.

When an utterance resolves to one of your intents, which we'll call knowledge intents,
transition the dialog flow to a state that searches the knowledge base using a search
term that will retrieve and display the desired answer.

As an example, let's say that you have a knowledge base answer about product
registration that not only explains how to register a product, but describes the
advantages of registering as well as how to update and retire a product. You would
start by creating an intent named knowledge.Product Registration. You would then
add several example utterances to the intent that illustrate the ways in which people
would ask about product registration (it's great if you can start with 12 to 24 examples).
Here's a small set of the example utterances you might use for knowledge.Product
Registration.

• how to register my product

• I need to retire a registered product

• I want to update registered device

• is product registration important

• what are the advantages to registering a device

• why should we register products

Next, you would need to create a state in the dialog flow to search the knowledge base
using a search term that will produce the desired answer. You can either create a
knowledge search state for each knowledge intent and hard code the search term, or
you can create a single state and use a map context variable to associate your
knowledge intents with search terms.

The following diagram illustrates how to implement the single-state method. 1) You use
a map context variable to associate the knowledge intents with search terms. 2) You
set each knowledge intent's action in the Intent state to transition to a data flow that
uses the map to set the searchTerm context variable to the intent's search term. 3) You
then transition to a state that searches the knowledge base for the searchTerm value.

Chapter 56
Use the System.KnowledgeSearch Component

56-4

Tip:

This example uses the answer's summary for the search term. With Oracle B2C
Service Knowledge Foundation, you also can use the answer's ID.

Here are the detailed steps that you need to do for each knowledge intent:

1. Add the intent and search term to a context variable that associates intents with search
terms as shown in this example.

context:
 variables:
 iResult: "nlpresult"
 intentName: "string"
 searchTerm: "string"
 searchTerms: "map"

states:

 setSearchTerms:
 component: "System.SetVariable"
 properties:
 variable: "searchTerms"
 value:
 knowledge.Shipping Return Costs: "Shipping Return Costs"
 knowledge.Locate Service Tag or Serial: "Locating Your Service
Tag or Asset Serial Number"
 knowledge.Support Account: "My Support Account"
 knowledge.Product Registration: "How do I register my product?" #
(1)
 knowledge.Noncontiguous Delivery Time: "What is the delivery time
to Alaska, Hawaii and the U.S. Territories?"
 knowledge.Return Policy: "What is your return policy?"

Chapter 56
Use the System.KnowledgeSearch Component

56-5

 transitions:
 next: "intent"

2. In the intent state, add an action for the intent, and have the action transition to
the start of a dialog flow that gets the search term for that intent. (For example, the
knowledge.Product Registration: "startIntentKnowledgeSearch" action in
the following code.)

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 system.Greeting: "welcome"
 system.Unsatisfactory Response: "transferToAgent"
 system.Request Agent: "transferToAgent"
 knowledge.Shipping Return Costs:
"startIntentKnowledgeSearch"
 knowledge.Locate Service Tag or Serial:
"startIntentKnowledgeSearch"
 knowledge.Support Account: "startIntentKnowledgeSearch"
 knowledge.Product Registration:
"startIntentKnowledgeSearch" # (2)
 knowledge.Noncontiguous Delivery Time:
"startIntentKnowledgeSearch"
 knowledge.Return Policy: "startIntentKnowledgeSearch"
 unresolvedIntent: "genericKnowledgeSearch"

3. After setting the searchTerm variable as shown here, transition to a
System.KnowledgeSearch state that uses the search term value for the
component's searchTerm property (knowledgeSearchForGivenSearchTerm in the
following example).

 startIntentKnowledgeSearch: # (2)
 component: "System.ResetVariables"
 properties:
 variableList: "searchTerm, intentName"
 transitions:
 next: "setIntentName"

 setIntentName:
 component: "System.SetVariable"
 properties:
 variable: "intentName"
 value: "${iResult.value.intentMatches.summary[0].intent}"
 transitions:
 next: "setSearchTerm"

 setSearchTerm:
 component: "System.SetVariable"
 properties:

Chapter 56
Use the System.KnowledgeSearch Component

56-6

 variable: "searchTerm"
 value: "${searchTerms.value[intentName.value]}"
 transitions:
 next: "knowledgeSearchForGivenSearchTerm" # (3)

4. In the System.KnowledgeSearch state, set the searchServiceName to the name of the
knowledge search service that you created in Settings and set the searchTerm to the
value of the searchTerm that you set in the previous step..

 knowledgeSearchForGivenSearchTerm:
 component: "System.KnowledgeSearch"
 properties:
 # Set to the name of the search service that is configured in
Settings
 searchServiceName: "KnowledgeSearch"
 searchTerm: "${searchTerm.value}" # put the search term here (3)
 # searchPrelude: Optional property. If missing, there's no search
prelude.
 resultSizeLimit: 1 # Change to how many articles to show.
 # resultVersion: Optional property. Defaults to "Answer".
 # resultVersionExclusive: Optional property. Defaults to false.
 resultLinkLabel: "Show More"
 # defaultAttachmentLabel: Optional property. Defaults to "Download"
 searchLinkLabel: "Search for Similar Answers"
 noResultText: >
 I don't have an answer for that. Try rephrasing your question
 (or you can ask to speak to a live agent).
 # cardLayout: Optional property. Defaults to "horizontal"
 transitions:
 actions:
 resultSent: "offerMoreHelp"
 noResult: "reset"
 serverError: "handleSearchServerProblem"
 error: "handleSearchError"
 next: "reset"

5. Add the states for the actions, error, and next transitions. The full dialog below shows
some examples for these states.

Click Validate to ensure that the dialog flow doesn't have any errors.

6. Click Train to train the skill with your example utterances.

Here's an example of the full dialog flow.

context:
 variables:
 iResult: "nlpresult"
 intentName: "string"
 searchTerm: "string"
 searchTerms: "map"
 someVariable: "string" # For the reset state

states:

Chapter 56
Use the System.KnowledgeSearch Component

56-7

 #
 # Set search term for each knowledge intent
 #

 setSearchTerms:
 component: "System.SetVariable"
 properties:
 variable: "searchTerms"
 value:
 knowledge.Shipping Return Costs: "Shipping Return Costs"
 knowledge.Locate Service Tag or Serial: "Locating Your Service
Tag or Asset Serial Number"
 knowledge.Support Account: "My Support Account"
 knowledge.Product Registration: "How do I register my
product?" # (1)
 knowledge.Noncontiguous Delivery Time: "What is the delivery
time to Alaska, Hawaii and the U.S. Territories?"
 knowledge.Return Policy: "What is your return policy?"
 transitions:
 next: "intent"

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 system.Greeting: "welcome"
 system.Unsatisfactory Response: "transferToAgent"
 system.Request Agent: "transferToAgent"
 knowledge.Shipping Return Costs: "startIntentKnowledgeSearch"
 knowledge.Locate Service Tag or Serial:
"startIntentKnowledgeSearch"
 knowledge.Support Account: "startIntentKnowledgeSearch"
 knowledge.Product Registration: "startIntentKnowledgeSearch" #
(2)
 knowledge.Noncontiguous Delivery Time:
"startIntentKnowledgeSearch"
 knowledge.Return Policy: "startIntentKnowledgeSearch"
 unresolvedIntent: "genericKnowledgeSearch"

 #
 # Start knowledge search for a knowledge intent's search term
 # based on searchTerms context variable
 #
 # First, reset variables
 #

 startIntentKnowledgeSearch: # (2)
 component: "System.ResetVariables"
 properties:
 variableList: "searchTerm, intentName"
 transitions:
 next: "setIntentName"

Chapter 56
Use the System.KnowledgeSearch Component

56-8

 #
 # Set the intentName context variable
 #

 setIntentName:
 component: "System.SetVariable"
 properties:
 variable: "intentName"
 value: "${iResult.value.intentMatches.summary[0].intent}"
 transitions:
 next: "setSearchTerm"

 #
 # Get the search term to use for the intent
 #

 setSearchTerm:
 component: "System.SetVariable"
 properties:
 variable: "searchTerm"
 value: "${searchTerms.value[intentName.value]}"
 transitions:
 next: "knowledgeSearchForGivenSearchTerm" # (3)

 #
 # This state searches for the searchTerm variable's value
 #

 knowledgeSearchForGivenSearchTerm:
 component: "System.KnowledgeSearch"
 properties:
 # Set to the name of the search service that is configured in Settings
 searchServiceName: "KnowledgeSearch"
 searchTerm: "${searchTerm.value}" # put the search term here (3)
 # searchPrelude: Optional property. If missing, there's no search
prelude.
 resultSizeLimit: 1 # Change to how many articles to show.
 # resultVersion: Optional property. Defaults to "Answer".
 # resultVersionExclusive: Optional property. Defaults to false.
 resultLinkLabel: "Show More"
 # defaultAttachmentLabel: Optional property. Defaults to "Download"
 searchLinkLabel: "Search for Similar Answers"
 noResultText: >
 I don't have an answer for that. Try rephrasing your question
 (or you can ask to speak to a live agent).
 # cardLayout: Optional property. Defaults to "horizontal"
 transitions:
 actions:
 resultSent: "offerMoreHelp"
 noResult: "reset"
 serverError: "handleSearchServerProblem"
 error: "handleSearchError"
 next: "reset"

 #

Chapter 56
Use the System.KnowledgeSearch Component

56-9

 # This state is called after knowledge search returns its results.
 #

 offerMoreHelp:
 component: "System.Output"
 properties:
 text: >
 You can ask me another question if there's something
 else that I can help you with.
 transitions:
 return: "offerMoreHelp"

 #
 # This state is called when there's a problem accessing the
knowledge base such
 # as a server error fault or an unexpected error fault. When this
error occurs,
 # the error message is stored in system.state.<state-
name>.serverError.message.
 #

 handleSearchServerProblem:
 component: "System.Output"
 properties:
 text: >
 I'm not able to get an answer for that question. Let me know
 if there's anything else I can help you with.
 transitions:
 return: "handleSearchServerProblem"

 #
 # This state is called when there's a problem using the knowledge
search component
 # such as when there's a problem with the knowledge search
integration configuration
 #

 handleSearchError:
 component: "System.Output"
 properties:
 text: >
 Oops, my answer mechanism for that isn't working properly.
 You can ask a different question or ask to speak to an agent?
 transitions:
 return: "handleSearchError"

 #
 # This state ends the conversation
 #

 reset:
 component: "System.SetVariable"
 properties:
 variable: "someVariable"
 value: "x"

Chapter 56
Use the System.KnowledgeSearch Component

56-10

 transitions:
 return: "reset"

Tip:

The default values for the defaultAttachmentLabel, noResultText, and
resultLinkLabel properties are stored in the skill's resource bundle. To change a
default, open the skill's Resources Bundle page, click , select the Configuration
tab, and change the message for the KnowledgeSearch - <property name> key. If
you use the skill's resource bundle to change the default, then you don't need to
include the property in the component unless you want to override the default.

Employ User Utterance as Search Term
A common use for the System.KnowledgeSearch component is to try and resolve a user's
question or request that your skill wasn't designed to handle. If a user's utterance doesn't
resolve to any intents, then use the component to search the knowledge base with the
searchTerm property set to the user utterance. If it doesn't find any results, or if the user
doesn't find the results helpful, you can offer other options such as transferring to a live agent
or rephrasing the question.

The following example shows how to set the searchTerm to the user's utterance in a YAML
dialog skill. For a visual dialog skill, you use skill.system.nlpresult.value.query instead.

context:
 variables:
 iResult: "nlpresult"
 someVariable: "string" # For the reset state

states:

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 system.Greeting: "welcome"
 system.Unsatisfactory Response: "transferToAgent"
 ...
 unresolvedIntent: "genericKnowledgeSearch"

 #
 # This state searches the knowledge base with the user input as the search
term.
 #

 genericKnowledgeSearch:
 component: "System.KnowledgeSearch"
 properties:
 # Set to the name of the search service that is configured in Settings
 searchServiceName: "KnowledgeSearch"

Chapter 56
Use the System.KnowledgeSearch Component

56-11

 searchTerm: "${iResult.value.query}"
 searchPrelude: "I don't know the answer offhand. Let's see what
articles we have..."
 resultSizeLimit: 3 # Change to how many articles to show.
Defaults to 10.
 # resultVersion: Optional property. Defaults to "Answer".
 # resultVersionExclusive: Optional property. Defaults to false.
 resultLinkLabel: "Show More"
 # defaultAttachmentLabel: Optional property. Defaults to
"Download"
 searchLinkLabel: "Open Page with All Answers"
 noResultText: >
 I couldn't find any articles about that. Try rephrasing your
 question (or you can ask to speak to a live agent).
 # cardLayout: Optional property. Defaults to "horizontal"
 transitions:
 actions:
 resultSent: "offerMoreHelp"
 noResult: "reset"
 serverError: "handleSearchServerProblem"
 error: "handleSearchError"
 next: "reset"

 #
 # This state is called after knowledge search returns its results.
 #

 offerMoreHelp:
 component: "System.Output"
 properties:
 text: >
 You can ask me another question if there's something
 else that I can help you with.
 transitions:
 return: "offerMoreHelp"

 #
 # This state is called when there's a problem accessing the
knowledge base such
 # as a server error fault or an unexpected error fault. When this
error occurs,
 # the error message is stored in system.state.<state-
name>.serverError.message.
 #

 handleSearchServerProblem:
 component: "System.Output"
 properties:
 text: >
 I'm not able to get an answer for that question. Let me know
 if there's anything else I can help you with.
 transitions:
 return: "handleSearchServerProblem"

 #

Chapter 56
Use the System.KnowledgeSearch Component

56-12

 # This state is called when there's a problem using the knowledge search
component
 # such as when there's a problem with the knowledge search integration
configuration
 #

 handleSearchError:
 component: "System.Output"
 properties:
 text: >
 Oops, my answer mechanism for that isn't working properly.
 You can ask a different question or ask to speak to an agent?
 transitions:
 return: "handleSearchError"

 #
 # This state ends the conversation
 #

 reset:
 component: "System.SetVariable"
 properties:
 variable: "someVariable"
 value: "x"
 transitions:
 return: "reset"

Note that this example handles unresolved intents within a skill. When the flow navigates
through the digital assistant's unresolved intent, then the request doesn't go through the skill's
System.Intent component and the utterance won't be in ${iResult.value.query}. In this
case, consider creating a state that uses ${system.message.messagePayload.text} for the
search string. Then open the Digital Assistant and, in the Settings > Configurations page,
go to Skill State Mappings and set the Digital Assistant Custom UnresolvedIntent Skill
and Digital Assistant Custom UnresolvedIntent State to point to this state.

Find Only the Results That Contain Every Word in the Knowledge
Foundation Search Term

By default, Oracle B2C Service Knowledge Foundation searches for answers that contain
any of the words in the search term. If you want the search to return only the answers that
contain every word in the search term, add the key/value pair word_connector: "AND" to the
customProperties property in the System.KnowledgeSearch component as shown below:

Note:

Oracle Fusion Service does not support the word_connector property.

 startSearch:
 component: "System.KnowledgeSearch"
 properties:

Chapter 56
Use the System.KnowledgeSearch Component

56-13

 searchServiceName: "KnowledgeSearch"
 searchTerm: "${searchTerm.value}"
 customProperties:
 word_connector: "AND"
 transitions:
 actions:
 resultSent: "offerMoreHelp"
 noResult: "reset"
 serverError: "handleSearchServerProblem"
 error: "handleSearchError"
 next: "reset"

Note:

The word_connector key is supported for Knowledge Foundation only.

Filter Results by Product and Category
You can have the System.KnowledgeSearch return only the search results for a
specified product or category (or both).

To limit the results to those related to a product or category, include the customFilters
property. Add product and category items as needed to specify the product or
category filter. You can have only one product filter and only one category filter.

 customFilters:
 - name: "product"
 value: "heart rate monitor"
 - name: "category"
 value: "returns"

Tailor Knowledge Foundation Response for Chat Conversation
Oracle B2C Service Knowledge Foundation answers are typically written for web
pages and thus can be too long to fully display in a conversation. For lengthy answers,
the output is truncated and the user must click the Show More button to see the full
content. When your answer is longer than a short paragraph, consider adding a
special response that you tailor specifically for chat conversations.

To display the special response instead of the answer, set the
System.KnowledgeSearch component's resultVersion property to "Special
Response" and set resultVersionExclusive to false. With these settings, the
component outputs the special response if it exists. Otherwise it outputs the full
answer if the result-size limit hasn't been met.

The following screenshots show the difference between a full answer and a special
response. The first screenshot shows the full answer. Notice how the response to "how
do I register a product", which begins with "Did you know that product registration is
very important", is not the way a human would respond to the question, and thus is not
"conversational." In addition, the full answer is cut off in the middle of the third
paragraph. The second screenshot shows the special response, which is more
conversational and not truncated.

Chapter 56
Use the System.KnowledgeSearch Component

56-14

To learn about adding special responses, see HTML Editor for Answers in Using B2C
Service.

Remove the View Details Button and Display All the Text
By default, the System.KnowledgeSearch component just displays the first few lines of the
answer along with a button that the user clicks to see the full answer in a browser tab. If you
want it to show all the answer's content, set the resultLinkLabel property to an empty string
("").

If the skill uses Visual Designer mode, this is the Web Article Link Label field. To set it to an
empty string, use the FreeMarker literal notation ${r""}.

If you choose to display the full answer, you should try to limit the answer to just a few
screen-fulls of text. Otherwise the user might have difficulty reading the text in a regular-sized
chat widget.

Chapter 56
Use the System.KnowledgeSearch Component

56-15

https://documentation.custhelp.com/euf/assets/devdocs/cloud20c/olh/Service/topicrefs/c_Adding_HTML_answers_aq1131124.html

Implement Multi-Lingual Knowledge Search
Both Oracle Fusion Service Knowledge Management and Oracle B2C Service
Knowledge Foundation support returning results for a specified locale.

For Oracle Fusion Service Knowledge Management, the search automatically returns
the articles that are associated with the locale identified by profile.locale. You can
override this by setting the component's locale property (for visual dialog skills, this is
the Search Using Locale property). If matching articles don't exist for the locale, it
returns noResult.

For Oracle B2C Service Knowledge Foundation, the service must have separate
interfaces for different locales, and you must configure the Knowledge Search
integration to connect with the desired interfaces. When the System.KnowledgeSearch
component is invoked by a skill, it performs the search on the interface for which the
locale matches the skill's profile.locale value (you can override this by setting the
component's locale property for YAML dialog and the Search Using Locale property
for visual dialog). If there isn't a match, it uses the Knowledge Search integration's
default interface.

Here are the steps to create a multi-language Oracle B2C Service Knowledge
Foundation search skill:

1. Add a Knowledge Search Service integration for the main interface. Then add to
the integration the locales for the other interfaces that you want the skill to search,
and specify the default locale. Note that the profile of the user that you specify for
the service integration must enable access for the interfaces.

2. Create a multi-language skill using one of these options:

• Create a skill with native language support and use resource bundles to create
the conversational text for each language that you want to support as
described in Native Language Support for Skills

• Create a skill that designates English as the primary language and use
translation mode as described in Create a Multi-Language Skill Without
Resource Bundles for Each Language.

3. Add the System.KnowledgeSearch component to the dialog flow. If you don't want
the component to use the profile.locale value to determine which interface to
search, then add the locale property and set it to the desired locale. Note that if
none of the interfaces support the locale, then the component searches the default
interface.

For an dialog flow examples, see Associate Related Questions with a Search Term
and Employ User Utterance as Search Term.

Knowledge Foundation Sample Skill
For an example of using the System.KnowledgeSearch component, download the CX
Service Template, which contains the CXS.KnowledgeSearch skill. See the Oracle
Digital Assistant CXS Overview Power Point slides for instructions.

Chapter 56
Knowledge Foundation Sample Skill

56-16

https://go.orcl.ai/odacxs-gettingstarted
https://go.orcl.ai/odacxs-gettingstarted

How the System.KnowledgeSearch Component Displays in
Oracle B2C Service Chat

How the results from the System.KnowledgeSearch component appear depend on whether
they are displayed in the default chat that's accessed through the customer portal or the
Oracle Inlay Toolkit embedded chat inlay.

• Links: Links appear as buttons in the embedded chat inlay. In the default chat, the label
is displayed as text, and it is followed by a clickable URL.

• Multiple Results: When there's more than one result, the results appear as cards either
horizontally or vertically depending on the value of the component's cardLayout property
(the default is horizontal). In the default chat, the results appear vertically.

Note that images don't appear in the results.

This table illustrates how single and multiple results display in the embedded chat inlay and
the default chat.

Example Component
Configuration

Embedded Chat Inlay Default Chat

Example of a single result:

 component:
"System.KnowledgeSearch"
 properties:
 ...
 resultSizeLimit: 1
 resultLinkLabel:
"Show More"
 searchLinkLabel:
"Search for Similar
Answers"
 ...

Chapter 56
How the System.KnowledgeSearch Component Displays in Oracle B2C Service Chat

56-17

Example Component
Configuration

Embedded Chat Inlay Default Chat

Example of multiple results:

 component:
"System.KnowledgeSearch"
 properties:
 resultSizeLimit: 3
 resultLinkLabel:
"Show More"
 searchLinkLabel:
"Open Page with All
Answers"
 ...

The System.KnowledgeSearch component supports embedded chat inlay for Oracle
B2C Service versions 20A and later. To learn about the embedded chat inlay, see the
Oracle Inlay Toolkit documentation.

Chapter 56
How the System.KnowledgeSearch Component Displays in Oracle B2C Service Chat

56-18

http://documentation.custhelp.com/s/oit/latest

57
Live Help Approaches

Oracle Digital Assistant lets you integrate with live help in two ways:

• DA as an agent

• Live agent transfer

DA as an Agent
The DA-as-an-agent feature lets you turn a digital assistant into an automated agent that
chats with the customer through the live-help channel. You can use this feature with Oracle
B2C Service and Oracle Fusion Service live help.

With this feature, the chat starts in the live-help channel, and the service can route the chat
request to either a human agent or a digital assistant. You set up routing rules to specify
when to send a chat request to a digital assistant. All conversations take place in the live-help
channel regardless of whether the agent is a human agent or a digital assistant.

See DA as an Agent.

Live Agent Transfer
Live-agent transfer enables you to hand off a skill's conversation to either an Oracle B2C
Service live agent or a third party chat service.

With this feature, you can enhance your skill to handle user tasks that require human
intervention by transferring the conversation to a live agent. The conversation continues in
the same user channel that the customer used to invoke the skill. After the live agent
completes their end of the conversation, the skill takes control of the conversation again.

When you transfer the conversation from the skill to Oracle B2C Service, you can pass
information that lets Oracle B2C Service know which agent queue to send the chat request
to.

57-1

This diagram shows the interaction between a user, a skill bot, and Oracle B2C
Service.

See Live Agent Transfer.

Chapter 57
Live Agent Transfer

57-2

58
DA as an Agent

Live help lets your customer representatives (agents) serve your customers in real time
through typed conversations. With Oracle B2C Service and Oracle Fusion Service, you can
turn a digital assistant into an automated agent that participates in live-help chats in much the
same way that human agents do.

In cases where the digital assistant can't assist the customer, it can transfer the conversation
to a live agent. This automated agent will be available 24 hours a day, 7 days a week, even
when all human agents are busy.

With live help, you might find that your agents spend the bulk of their time on tasks that an
automated agent can easily handle, such as answering a frequently-asked question or
tracking a package. To minimize the number of chats that your agents must handle, and to
reduce customer wait times, consider first routing your chat sessions to a digital assistant.
The digital assistant can deal with the easy tasks, and, for the more complex ones, gather
essential details before transferring the chat session to a human agent. Your agents will thus
provide more value to your company by only spending their time where they can add the
most value.

Supported Chat Services for DA as Agent
Oracle Digital Assistant supports integration with the following chat services:

• Oracle B2C Service Version 19C and later. Starting with Version 20A, the service
supports Oracle Inlay Toolkit inlays. Starting with Version 23A, it supports Web Chat for
Service, which is based on the Oracle Web SDK that is available for other types of digital
assistants.

• Oracle Fusion Service version 23A and later. Your Digital Assistant instance must be
paired with a subscription to a Fusion-based Oracle Cloud Applications service.

The Digital Assistant as Agent Framework in Action
Here's a high-level overview of how live help interacts with a digital-assistant agent:

1. A user initiates a chat, which is routed to a digital-assistant agent. This is a special
automated agent that's actually the digital assistant.

2. The user converses with the digital assistant instead of a human agent.

3. If the digital assistant discerns that the user needs to speak with a human agent, it can
transfer the conversation to an agent who's assigned to handle such transfers.

How the Digital Assistant as Agent Framework Works
These steps describe how a user requests a chat, how the service determines whether to
route the chat request to a digital assistant, and what can happen after the chat request is
routed to the digital assistant.

58-1

1. A user submits a chat request from the live help launch page

2. To determine where to route the chat request, the service completes these steps:

a. It uses rule processing to decide which queue to route the chat request to.

b. It looks up the agents that are assigned to the queue, and then routes the chat
request to an available agent. It could be a human agent or a digital assistant
agent.

You'll learn how to configure this setup in Task 2: Configure the Service.

3. If the agent is a digital-assistant agent, then the conversation is routed to the
digital assistant that's associated with the agent's DA-as-Agent channel.
Otherwise, it's routed to a human agent. When the conversation is routed to a
digital assistant, the subject is passed as the initial utterance. The other values
that the user entered on the live help launch page are passed in a customFields
array as described in Access Contact and Chat Launch Page Information.

You'll learn how to associate a digital assistant with an agent's DA-as-Agent
channel in Task 3: Sign Your Digital Assistant into the Service.

4. The service opens a chat that's connected to the agent or digital assistant and the
user can start the conversation.

5. If the agent is a digital-assistant agent, it can transfer the conversation to a human
agent, just like a human agent can transfer a conversation to another human
agent. When this happens, the service uses rule processing to decide which
queue to route the transferred chat request to.

You'll learn how to transfer the conversation to a human agent in Enable Transfer
to a Human Agent. You'll learn how to set up the rules for this transfer in Task 2:
Configure the Service.

DA-as-Agent Template
Oracle Digital Assistant offers the CX Service Template for Oracle B2C Service.

This template contains several skills and integrates with Oracle B2C Service
Knowledge Foundation. It also has an example of using custom metrics to count the
number of times users wanted to transfer, when users chose not to wait, and when no
agents were available. See the Oracle Digital Assistant CXS Overview Power Point
slides for instructions.

Basic Steps for Creating a Digital-Assistant Agent
The DA as Agent channel, along with the System.AgentTransfer component, lets you
integrate a digital assistant with Oracle B2C Service and Oracle Fusion Service chats.
Here are the basic steps. We'll go into the details later.

1. Build a DA-as-Agent digital assistant: You build your digital assistant similar to
how you build one for a messaging platform. For the cases where the customer
needs to chat with a human, you use the System.AgentTransfer component to
transfer the conversation to an agent.

2. Configure the service: You'll need to configure your Oracle B2C Service or
Oracle Fusion Service to integrate with Oracle Digital Assistant, such as creating a
digital-assistant agent, queue, and rules.

Chapter 58
DA-as-Agent Template

58-2

https://go.orcl.ai/odacxs-gettingstarted

3. Sign your digital assistant into the service: In Oracle Digital Assistant, you create a
DA as Agent channel that associates your digital assistant with the digital-assistant
agent. When you enable the channel, the digital assistant is signed in as the digital-
assistant agent, and is ready to handle chat requests.

After you publish your digital assistant, you'll want to periodically run Retrainer reports to see
if you need to improve intent resolution for any intents. See Apply the Retrainer.

You also might want to look at the overview report on the skill's Insights page to compare
the number of conversations that were handled by the skill against the number that were
transferred to an agent. The number of conversations that resolved to system.RequestAgent,
system.Unsatisfactory, and other intents that transition to agent transfer are good
escalation indicators.

Task 1: Build a DA-as-Agent Digital Assistant
Build the skills that you need for the DA-as-agent digital assistant, optionally publish them,
and then add them to the digital assistant that will act as a digital-assistant agent. Typically,
you'll need just one skill, but you can have more.

You can build your digital assistant from scratch, or you can clone the CX Service template as
described in the Oracle Digital Assistant CXS Overview Power Point slides.

When you build your digital assistant, consider these scenarios:

• The customer isn't sure what they can do with an automated assistant: Create a
help skill or add a help state to an existing skill. Then, do one of the following:

– Single-Skill Digital Assistant: In the skill, go to Settings > Digital Assistant and
set Help State to the name of the skill's help state. Note that the automated agent
conversation sample sets this to welcome.

– Multiple-Skill Digital Assistant: In the digital assistant, go to Settings >
Configurations and set these conversation parameters to point to the appropriate
state in the help skill.

* Digital Assistant Custom Help Skill

* Digital Assistant Custom Help State

• The customer wants something that a digital assistant isn't set up to handle: Do
one of the following:

– Single-Skill Digital Assistant: In the skill's System.Intent state, add an
unresolvedIntent action that handles requests that are out of scope for the skill.

Also add an intent and action that transfers to a System.AgentTransfer state. If you
are using a clone of an automated agent conversation skill, then the dialog flow does
this already.

– Multiple-Skill Digital Assistant: In the digital assistant, go to Settings >
Configurations and set these conversation parameters to point to the state that
starts the dialog flow for handling out-of-scope requests.

* Digital Assistant Custom UnresolvedIntent Skill

* Digital Assistant Custom UnresolvedIntent State

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-3

https://go.orcl.ai/odacxs-gettingstarted

Build the Skill
To build a DA-as-Agent skill can clone the DA-as-Agent Template or one from scratch,
as described here. Then you'll configure the skill, add intents and entities as required,
and make any necessary changes to the dialog flow. Last, you'll train and, optionally,
publish the skill.

Create and Configure the Skill
Here are the steps for creating a skill for use in a DA-as-Agent digital assistant.

1. Click to open the side menu, and then click Development > Skills.

2. Click New Skill .

3. Give it a display name that will make sense to someone who is conversing with the
digital assistant through the service. The digital assistant uses this value in some
automated messages and prompts. For example: You are at <skill-display-
name>. Here are some things you can do.

4. Complete the dialog, and then click Create.

5. In the left navigation bar, click Settings , and then click General.

6. Set the Training Model to Trainer Tm.

7. Switch Enable Insights to On.

You can use insights to analyze and retrain your skill, as described in Review
Conversation Trends Insights.

8. Click the Digital Assistant tab.

9. Enter an invocation that will make sense to a customer. This value is copied to the
digital assistant's interaction model for the skill and is used in automated digital-
assistant prompts and responses. For example:

You are at <skill-display-name>. Here are some things you can do:
<skill-invocation-name-from-DA> <skill-one-sentence-description>
1. <skill-example-utterance-set-in-DA>
2. <skill-example-utterance-set-in-DA>
...

Add Intents and Entities
Add the necessary intents and entities for your skill.

Tip:

If you would like your digital-assistant agent to be able to handle "small talk",
then pull the Digital Assistant Template from the skill store, and take a look at
its skill named Common Skill Template. It has intents and a dialog flow that
handles questions like "Are you a bot?", "Can I ask you out?", "Do you know
the time?", "Are you into football?", and "Do you tell jokes".

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-4

If your DA-as-agent skill is a basic question-and-answer skill, then you can use answer
intents to handle the questions and answers. For Oracle B2C Service, you also can use
System.KnowledgeSearch components to address questions and answers. For knowledge
search examples, see Use the System.KnowledgeSearch Component. Note that you must
create a knowledge search integration to use this component.

After you create your intents click Train. You can't test or publish a skill if it hasn't been
trained.

To test your intents, click Test Utterances, and then enter test utterances in the Quick Test
section to verify that the model is resolving to the desired intents. You should enter utterances
from the intents as well as utterances that are not in any intents. The dialog shows the
confidence level for each matched intent. If the resolution isn't what you intended, consider
adding the utterance to the desired intent or revising the intent that was incorrectly matched.
You also can click Go to Test Cases to create or import batch tests. To learn more see Intent
Training and Testing.

Access Contact and Chat Launch Page Information
When users are signed into the service or have provided their first name, last name, and
email address on the chat launch page, then the profile.firstName, profile.lastName,
and profile.email variables will contain the user information. For Oracle B2C Service, the
profile.locale variable is set to the interface language code. For Oracle Fusion Service the
locale is based on language that the user selected on the chat launch site, or, if none was
selected, the browser's locale.

In addition, the profile.contactInfo variable contains some chat-request info, such as the
customer's question (subject) and the product ID and category ID, if applicable. Also, if the
chat launch page contains any custom fields, then the values that the customer enters into
those fields are passed to the digital assistant in the profile.contactInfo.customFields
array. To learn about customizing the fields that are on the Oracle B2C Service chat launch
page, see Overview of Chat on the Customer Portal in Using Oracle B2C Service.

The profile.contactInfo variable is available only for instances of Oracle Digital Assistant
that were provisioned on Oracle Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure).

Here's the structure of the profile.contactInfo for Oracle B2C Service:

{
 "question": <string>,
 "productId": <number>,
 "orgId": <number>,
 "categoryId": <number>,
 "browser": <string>,
 "ipAddress": <string>,
 "userAgent": <string>,
 "sessionId": <string>,
 "operatingSystem": <string>,
 "customFields": [
 {
 "name": <string-name-of-custom-field>,
 "id": <ID-of-custom-field>,
 "value": <field-value>
 },
 ...

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-5

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=c_Chatting_on_the_Customer_Portal

]
}

Here's some example data:

{
 "question":"Do you deliver",
 "productId":7,
 "customFields":[
 {
 "name":"ODA Text",
 "id":44,
 "value":"N/A"

},
 {
 "name":"ODA YN",
 "id":45,
 "value":"1"

},
 {
 "name":"ODA Nbr",
 "id":46,
 "value":"1"

},
 {
 "name":"ODA Date",
 "id":47,
 "value":"2020,2,17"

},
 {
 "name":"ODA Menu",
 "id":48,
 "value":"12"

},
 {
 "name":"ODA DateTime",
 "id":49,
 "value":"2004,11,18,17,18"

}

],
 "browser":"FireFox 68.0",
 "ipAddress":"123.45.67.89",
 "userAgent":"Mozilla/5.0 (Windows NT 10.0; WOW64; rv:68.0) Gecko/
20100101 Firefox/68.0",
 "sessionId":"HI6unnBo",
 "operatingSystem":"Windows 10",
 "orgId":-1,

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-6

 "categoryId":-1
}

Here's an example of extracting and displaying contact info:

context:
 variables:
 contactInfo: "map"
 ...
 setContactInfo:
 component: "System.SetVariable"
 properties:
 variable: "contactInfo"
 value: "${profile.contactInfo.value}"
 transitions:
 next: "echoQuestion"
 echoQuestion:
 component: "System.Output"
 properties:
 text: "Your question was: ${contactInfo.value.question}"
 keepTurn: true
 transitions:
 next: "showText"
 showText:
 component: "System.Output"
 properties:
 text: "You entered: <#list contactInfo.value.customFields as p><#if
p.name=='VIP Status'>${p.value}</#if></#list>"
 keepTurn: true
 transitions:
 return: done

Here's the structure of the profile.contactInfo for Oracle Fusion Service:

{
 "question": <string>,
 "productId": <number>,
 "orgId": <number>,
 "categoryId": <number>,
 "browser": <string>,
 "ipAddress": <string>,
 "userAgent": <string>,
 "sessionId": <string>,
 "operatingSystem": <string>,
 "customFields": [
 {
 "name": "<custom-field-name>",
 "type": "<data-type>",
 "value": "<field-value>",
 "menuItemLabel": "<label-string>"
 },
 ...

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-7

]
}

Enable Transfer to a Human Agent
If you want the skill to transfer the chat session to a human agent, such as when the
user wants something that the skill isn't built to handle, add a state that uses the
System.AgentTransfer component. Then add some dialog flow to transition to that
state as necessary.

Here's an example of a dialog flow that transfers to an agent when the customer asks
to speak to an agent. Note that this example just illustrates how to use the
System.AgentTransfer component. If you'd like to get the wait time before attempting
the transfer, see Get Agent Availability and Wait Time. If you would like the skill to
track how many times an agent was needed and why, see Creating Dimensions that
Track Skill Usage.

metadata:
 platformVersion: "1.1"
main: true
name: "AutomatedAgentConversation"
context:
 variables:
 iResult: "nlpresult"
 someVariable: "string"
states:
 #
 # Note that even though Answer intents don't have actions, you must
have a System.Intent state even if
 # you have no other types of intents. Answer intents output the
answer and restart the conversation.
 #
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 ...
 system.Unsatisfactory Response: "transferToAgent"
 system.Request Agent: "transferToAgent"
 ...

 #
 # This state tries to transfer the user to another agent when the
user explicitly requests for it.
 #
 transferToAgent:
 component: "System.AgentTransfer"
 properties:
 maxWaitSeconds: "300"
 waitingMessage: "I'm transferring you to a human agent. Hold
tight."
 rejectedMessage: "I wasn't able to transfer you to a human

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-8

agent. Please try again later."
 errorMessage: "We're unable to transfer you to a human agent because
there was a system error."
 transitions:
 actions:
 accepted: "reset"
 rejected: "handleRejected"
 error: "offerMoreHelp"
 next: "reset"
 #
 # This state is called when an agent transfer is rejected.
 # It lets the customer know they can ask for something else.
 #
 handleRejected:
 component: "System.Output"
 properties:
 text: "Meanwhile, let me know if there's anything else I can help you
with."
 transitions:
 return: "handleRejected"

 #
 # This state is called when an agent transfer encounters a system error.
 # It lets the customer know they can ask for something else.
 #
 offerMoreHelp:
 component: "System.Output"
 properties:
 text: >
 You can ask me another question if there's something
 else that I can help you with.
 transitions:
 return: "offerMoreHelp"

 #
 # This state ends the conversation with a return transition for insights
purposes,
 # after the user has been transferred to another agent.
 #
 reset:
 component: "System.SetVariable"
 properties:
 variable: "someVariable"
 value: "x"
 transitions:
 return: "reset"

Note:

Be careful to not transition to the agent transfer state when there is a developer-
introduced bug or an issue with the System.AgentTransfer component. Otherwise
the flow might end up in an endless loop. For example, don't have the
DefaultTransition error transition go to the System.AgentTransfer state.

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-9

See System.AgentTransfer for details about the properties and actions.

Pass Information to the Service
When you transfer a conversation from a digital assistant to a live agent, you'll most
likely want to pass some information to the service, such as values for an escalation
rule. You use the customProperties object to pass this information.

Here's the structure for Oracle B2C Service:

 customProperties:
 - name:
 value:
 type:

The type property is required for custom fields, otherwise, it's optional.

For Oracle B2C Service, the name can be FIRST_NAME, LAST_NAME, EMAIL, QUESTION,
PRODUCT_ID, CATEGORY_ID, CONTACT_ID, INCIDENT_ID, and any custom field of type
Incident that has Chat Display enabled in the Visibility settings.

For custom fields, use the field's column name (lower case) preceded by c$. The type
can be BOOLEAN, DATE, DATETIME, INTEGER, LONG, STRING, and DECIMAL. The default is
STRING. For DATE and DATETIME, use the format yyyy-MM-dd'T'HH:mm:ssXXX. For
BOOLEAN, use 1 for true, and 0 for false.

Here's the structure for Oracle Fusion Service:

 customProperties:
 - name:
 value:

For Oracle Fusion Service, the name can be FIRST_NAME, LAST_NAME, EMAIL, QUESTION,
PRODUCT_ID, CATEGORY_ID, CONTACT_ID, INCIDENT_ID, and any field from an Oracle
Fusion Cloud Applications (Fusion) object. Note that when you add a custom field to a
Oracle Fusion Service object using Application Composer, the _c suffix is added to the
name automatically.

Here's an example customProperties setting for Oracle Fusion Service:

 doTransfer:
 component: "System.AgentTransfer"
 properties:
 maxWaitSeconds: "300"
 allowTransferIf: "agentSessionsAreAvailable"
 # Example of passing a custom property to Oracle Fusion
 Service
 customProperties:
 # This is a checkbox custom field in the Universal Work Object.
 # Checkboxes take the value of Y (selected) or N (unselected).
 - name: "TriagedByODA_c"
 value: "Y"

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-10

 acceptedMessage: "The conversation has been transferred to a live
agent."
 waitingMessage: "I'm transferring you to a human. Hold tight"
 rejectedMessage: "Looks like no one is available. Please try later"
 errorMessage: "We're unable to transfer you to a live agent because
there was a system error."
 transitions:
 actions:
 accepted: "reset"
 rejected: "handleRejected"
 error: "offerMoreHelp"
 next: "reset"

Tip:

For Oracle Fusion Service, the rules evaluation stops at the first rule where all
conditions are met. When you configure your rules, ensure that the transferred
conversation isn't routed back to the digital assistant agent. In the doTransfer
example, the custom property TriagedByODA_c is set to Y, and the rules can use
this custom property to ensure that when it is set to Y, the conversation isn't routed
to the digital assistant agent. (For Oracle B2C Service, the Transition State and
stop configuration determines the routing.)

To learn about Oracle B2C Service custom fields, see Overview of Custom Fields in Using
Oracle B2C Service. For information about Oracle Fusion Service custom property fields, see
"Fields" in Configuring Applications Using Application Composer.

Configure When to Attempt Agent Transfer
The System.AgentTransfer component has two properties that let you configure when to
attempt transferring to an agent – maxEngagementsInQueue and allowTransferIf.

The maxEngagementsInQueue property lets you set the maximum number allowed for
engagements waiting in the destination queue. When the chat request is sent, the service
responds with the current number of engagements waiting in the queue. If this value exceeds
maxEngagementsInQueue, then the rejected action occurs. If you don't include this property,
then there's no engagement limit.

You use the allowTransferIf property to specify when to transfer based on available agents.
The options are:

• agentsAreRequestingNewEngagements: (default) For Oracle B2C Service agents who
must pull chats (request new engagements), this is the most restrictive set of conditions,
and the user doesn't have to wait too long before they speak to an agent. The skill
attempts to transfer the conversation only if there are agents who have requested new
engagements. In all other cases, this option has the same behavior as
agentSessionsAreAvailable.

• agentSessionsAreAvailable: The skill attempts to transfer the conversation if any of the
available agents have not reached the maximum number of chats that they are allowed to
have at one time. The user may have to wait if the agents are involved in long-running
conversations or are doing some post-chat follow-up.

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-11

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=c_crm_admin_custom_fields
https://docs.oracle.com/en/cloud/saas/applications-common/24b/oacex/index.html

• agentsAreAvailable: The skill attempts to transfer the conversation if there are
any agents online regardless of whether they have reached their maximum
number of chats or are requesting new engagements. With this option, the users
may have long waits.

If the specified conditions aren't met, then the rejected action occurs.

Get Agent Availability and Wait Time
If all available agents are busy when a user wants to speak to an agent, then it's
possible that the user might have a long wait. Rather than simply transferring the
conversation and leaving the user stuck for an unknown amount of time, you can use
the System.AgentTransferCondition component to find out the estimated wait time,
display that time, and give the user the opportunity to cancel their request for transfer.

You use the component's properties to specify the transfer conditions and the name of
the context map variable to put the status information in. The component returns an
action that indicates whether the conditions were met. See
System.AgentTransferCondition for details about the status information and the
actions.

Here's an example of a dialog flow that invokes the component, displays the wait time,
and gives the user the opportunity to cancel their transfer request.

The askIfWillWait state uses a resource bundle entry to form the wait time message
so that the message makes sense whether the time is more or less than a minute and
whether a number is 0, one or more.

There are some experts online. But it might take {minutes, plural,
 =-1 {}
 =0 {}
 =1 {1 minute and }
 other {# minutes and }
}{seconds, plural,
 =-1 {a while}
 =0 {{minutes, plural,
 =0 {a very short wait time}
 other {0 seconds}
 }}
 =1 {1 second}
 other {# seconds}
} for one to join. Are you willing to wait?

Note that this example uses System.SetCustomMetrics to track if agents were
available, and, if so, how many users chose to wait and how many canceled the
transfer request.

 ############################
 # Agent Transfer
 ############################

 # See if there are any agents available

 evaluateAgentTransferCondition:
 component: "System.AgentTransferCondition"

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-12

 properties:
 maxWaitSeconds: 300
 maxEngagementsInQueue: 20
 allowTransferIf: "agentsAreAvailable"
 agentStatusVariable: "agentStatus"
 transitions:
 actions:
 conditionsMet: "askIfWillWait"
 conditionsNotMet: "setInsightsCustomMetricsConditionsNotMet"
 error: "handleTransferError"
 next: "done"

 # Measure when agents aren't available

 setInsightsCustomMetricsConditionsNotMet:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer Choice"
 value: "No agents available for new chats"
 transitions:
 next: "handleRejected"

 askIfWillWait:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "$
{rb('promptTextForTransferDecision','minutes,seconds',agentStatus.value.expec
tedWaitMinutes,agentStatus.value.expectedWaitSeconds)}"
 separateBubbles: true
 actions:
 - label: "Yes, I'll wait"
 type: "postback"
 keyword: "yes"
 payload:
 action: "yes"
 name: "Yes"
 - label: "No, nevermind"
 keyword: "no"
 type: "postback"
 payload:
 action: "no"
 name: "No"
 transitions:
 actions:
 yes: "setInsightsCustomMetricsAgentTransferInitiated"
 no: "setInsightsCustomMetricsAgentTransferCancelled"
 textReceived: "intent"
 next: "handleCancelled"

 # Measure when user chooses to wait for transfer

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-13

 setInsightsCustomMetricsAgentTransferInitiated:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer Choice"
 value: "User chose to wait"
 transitions:
 next: "transferToAgent"

 # Measure when user chooses to not wait for transfer

 setInsightsCustomMetricsAgentTransferCancelled:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer Choice"
 value: "User didn't want to wait"
 transitions:
 next: "handleCancelled"

 # Perform the actual transfer
 #
 # The maxWaitSeconds, maxEngagementsInQueue, allowTransferIf,
 # and customProperties, if any, should match those used for
 # System.AgentTransferCondition

 transferToAgent:
 component: "System.AgentTransfer"
 properties:
 maxWaitSeconds: 300
 maxEngagementsInQueue: 20
 allowTransferIf: "agentsAreAvailable"
 transitions:
 actions:
 accepted: "done"
 rejected: "handleRejected"
 error: "handleTransferError"
 next: "handleTransferError"

 ############################
 # All done
 ############################

 done:
 component: "System.Output"
 properties:
 text: "Let me know if you need help on anything else."
 transitions:
 return: "done"

 handleRejected:
 component: "System.CommonResponse"
 properties:
 keepTurn: true

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-14

 metadata:
 responseItems:
 - type: "text"
 text: >
 Unfortunately, none of my colleagues are currently available to
assist with this.
 Still, we’d love to see this through for you.
 Please feel free to reach us through email@example.com.
 transitions:
 next: "done"

 handleCancelled:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - type: "text"
 text: "OK. Maybe some other time. Please feel free to reach us
through email@example.com."
 transitions:
 next: "done"

 handleTransferError:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - type: "text"
 text: "Unfortunately, we can't transfer you at this time. Please
try again later."
 transitions:
 next: "done"

 ############################
 # Global error handler
 ############################

 globalErrorHandler:
 component: "System.Output"
 properties:
 text: "Sorry, we were unable to do the action that you requested."
 transitions:
 next: "done"

Create an Incident Report
You can create an incident report (or service request) for Oracle B2C Service or Oracle
Fusion Service from any skill.

To create an incident report from your skill:

1. Go to Settings > Additional Services > Customer Service Integration and create an
integration with the needed service.

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-15

You only need to do this once per instance.

2. Add the incident creation component to your flow. For the Visual Flow Designer,
see Incident Creation. For YAML, see System.IncidentCreation.

If you have created a Oracle Fusion Service integration and have selected Allow
only signed-in users to create service request as the authentication type, you
also need to do the following:

a. Set the Incident Creation component's Requires Authentication setting to
True.

b. Add an OAuth Account Link component to the dialog flow to handle user
authentication. For the Visual Flow Designer, see OAuth Account Link. For
YAML, see System.OAuthAccountLink.

Tip:

After creating and configuring the Incident Creation component, click
Validate in the page's banner to validate the skill. Among other things, this
validation will ensure that you have entered a service name in the Incident
Creation component that matches the name you have given to the customer
service integration that you created.

How the UI Components Display in the Service Chat
The default chat that's accessed through the service's customer portal is limited to text
and images. For example, instead of cards and buttons, it just displays text, and the
user has to type the choice or button label instead of just clicking on it.

To display more than just text for the UI components that are in the dialog flow, you
can use one of the following options:

• Web Chat for Service (WCFS). This feature enables you to customize the chat
widget by using features present in the SDK for Oracle Web user channels. To
configure WCFS, see the Web Chat for Service (WCFS) section of Administering
Oracle Engagement Engine.

• Oracle Inlay Toolkit Inlays. To learn about Inlays, see the Oracle Inlay Toolkit
documentation.

If your chat client is the default chat that's accessed through the service's customer
portal, then ensure that you set the Enable Auto Numbering on Postback Actions
to true on the Settings > Configuration page for the digital assistant so that the user
can respond to the UI component by typing in a number instead of the exact text. If
you don't set it to true, then use keywords for response items to minimize what the
user has to enter. In this example, autonumbering is set to true whenever the client is
Twilio or Oracle B2C Service chat.

${(system.channelType=='twilio'||system.channelType=='osvc')?
then('true','false')}

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-16

https://documentation.custhelp.com/euf/assets/devdocs/engagementengine/EngagementEngine/topicrefs/c_web-chat-for-service-wcfs.html
http://documentation.custhelp.com/s/oit/latest
http://documentation.custhelp.com/s/oit/latest

Tip:

When you use the digital assistant preview or the skill preview, if you set the
channel to Twilio SMS, it will render the conversation similar to the default chat.

Here's a comparison of how the UI components are displayed for the different clients.

Component/Property Web Chat for Service Inlay Default Chat

HTML tags Supported Supported Supported

Postback actions Supported Displayed as clickable
buttons. The share action
is ignored.

Displayed as non-clickable
text. The location, call
and share actions are
ignored.

System.CommonResponse Supported Supported, except that
users can't upload
attachments.

Supported, but the items
and action labels always
display vertically. Choices
and buttons are displayed
as non-clickable text.
For a response item of type
attachment, the
footerText value doesn't
display.

System.List Supported Supported. Supported, but the options
display as non-clickable
text and the footerText
value doesn't display.

This table illustrates how different component configurations display in the default chat and
Inlays.

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-17

Example Component
Configuration

Inlay Default Chat

 actionList:
 component:
"System.List"
 properties:
 prompt: "System.List
Choose an option for
setting the transition
action"
 options:
 - label: "Action 1"
 value: "action1"
 - label: "Action 2"
 value: "action2"
 - label: "Action 3"
 value: "action3"

autoNumberPostbackActions:
false
 footerText: "Footer"
 transitions:
 actions:
 action1: "output1"
 action2: "output2"
 action3: "output3"

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-18

Example Component
Configuration

Inlay Default Chat

 cardResponseHorizontal:
 component:
"System.CommonResponse"
 properties:
 processUserMessage:
true
 keepTurn: true
 metadata:

responseItems:
 - type: "cards"
 cardLayout:
"horizontal"
 footerText:
"Footer Text: Cards with
Values: Horizontal"
 cards:
 - title: "$
{myvalues.name}"
 description: "$
{myvalues.description}"
 imageUrl: "$
{myvalues.image}"
 cardUrl:
"http://www.oracle.com"
 name:
"ValuesCard"

iteratorVariable:
"myvalues"
 actions:
 - label: "I
Want This One"
 type:
"postback"
 payload:
 action:
"itemPicked"
 variables:

user.horizontalVariable: "$
{myvalues.name}"
 globalActions:
 - label: "Cancel"
 type:
"postback"
 payload:
 action:
"cancel"

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-19

Example Component
Configuration

Inlay Default Chat

 - label: "Send
Location"
 type:
"location"

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-20

Example Component
Configuration

Inlay Default Chat

 cardActionResponse:
 component:
"System.CommonResponse"
 properties:
 processUserMessage:
true
 keepTurn: true
 metadata:

responseItems:
 - type: "cards"
 cardLayout:
"vertical"
 footerText:
"Footer text for cards."
 cards:
 - title: "Card
with Actions"
 description:
"This is a card with
actions"
 cardUrl:
"http://www.oracle.com"
 name:
"ActionsCard"
 actions:
 - label:
"share"
 type: "share"
 payload:
 action:
"share"
 - label:
"location"
 type:
"location"
 payload:
 action:
"location"
 - label: "url"
 type: "url"
 payload:
 action:
"url"
 url:
"http://www.oracle.com"
 - label: "call"
 type: "call"
 payload:

Note that you can wrap the payload
URLs in HTML tags. For example <a
href="http://
www.oracle.com">Click
Here.

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-21

Example Component
Configuration

Inlay Default Chat

 action:
"call"

phoneNumber: "808 888 1212"
 - label: "ok"
 type:
"postback"
 payload:
 action:
"ok"
 variables:

user.someVariable: "ok"
 - label: "not
ok"
 type:
"postback"
 payload:
 action:
"notok"
 variables:

user.someVariable: "not
ok"
 transitions: {}

Train the Skill
After you build the skill, you must train it so that you can use it in the DA-as-agent
digital assistant.

1. Go to Settings > General and ensure that the training model is Trainer Tm.

When you use answer intents, you should always use Trainer Tm, even in
development environments.

2. Click Train.

3. (Optional) If you don't intend to make anymore changes to this version of the skill,
in the title bar, click the down arrow and select Publish.

You can now use the skill in the DA-as-agent digital assistant.

Configure the DA-as-Agent Digital Assistant
If you aren't using the CX Service template, follow these steps to create a digital
assistant that acts as an automated Oracle B2C Service or Oracle Fusion Service
agent:

1. Click to open the side menu, and then click Development > Digital
Assistants.

Chapter 58
Task 1: Build a DA-as-Agent Digital Assistant

58-22

2. Click New Digital Assistant.

3. Complete the dialog and click Create.

4. When the digital assistant opens, it displays the Skills page.

5. Click + Add Skill, select the skill that you built for this digital assistant, and then click
Close.

6. Click Settings , and then click General.

7. Switch Enable Insights to On.

8. Set the digital assistant's Training Model to Trainer Tm.

9. (Optional) Make these changes to your digital assistant in the Settings > Configurations
tab.

• Flow Information in Selection: ${system.routingToIntent}
• Nothing to Exit Prompt: Goodbye. Let me know if there's anything else I can

help you with.
10. (Optional) If the digital assistant has more than one skill, then you can customize the

digital-assistant behavior when user utterances match the digital assistant's help and
unresolvedIntent intents. Go to the Configuration tab on the Settings page, and then
specify the custom skill and state to navigate to for help or unresolvedIntent (or both).
See Specify States for a Digital Assistant's System Intents.

11. Click Train to train the digital assistant.

12. (Optional) To test the digital assistant, click Preview .

Note that when the dialog flow transitions to a state that transfers from a skill to an agent,
Preview stops responding. Click Reset when that happens.

After you put your digital assistant into production, you'll want to periodically run Retrainer
reports to see if you need to improve intent resolution for any intents. See Apply the
Retrainer.

Task 2: Configure the Service
Before you can use your digital assistant as a digital agent, you'll need to configure the
service. The configuration steps depend on the target service:

• Configure Oracle B2C Service

• Configure Oracle Fusion Service

Configure Oracle B2C Service
To configure Oracle B2C Service for a digital-assistant agent, an administrator must configure
a profile, a queue, an agent, and some rules.

The administrator can set up a Oracle B2C Service queue, profile, and chat rules to route the
request to a digital-assistant agent similar to the way routing is set up for a virtual assistant,
which is described at Route Chats to a Virtual Assistant in Using Oracle B2C Service.

The high-level steps to complete the configuration are:

1. Configure a Queue, Profile, and Agent for the Digital-Assistant Agent

Chapter 58
Task 2: Configure the Service

58-23

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=t_Route_Chats_to_Virtual_Assistant

2. Add Chat Rules

3. (Optional) Pass the Initial Utterance to the Digital Assistant.

After you configure Oracle B2C Service, you associate the digital-assistant agent with
the DA-as-Agent digital assistant by creating a channel as described in Task 3: Sign
Your Digital Assistant into the Service.

Configure a Queue, Profile, and Agent for the Digital-Assistant Agent
You'll need a dedicated queue, profile, and agent to enable a digital assistant to sign
into Oracle B2C Service as an agent.

Ask your Oracle B2C Service administrator to complete the following configurations in
the Service Console.

• Create a Digital-Assistant Queue

• Create a Digital-Assistant Profile

• Assign the Digital-Assistant Agent to the Digital-Assistant Profile

Create a Digital-Assistant Queue
When used with chat rules and profiles, queues enable automatic sorting of incoming
chats. Create a queue that you'll use to route chat sessions to the digital-assistant
agent that's associated with the digital-assistant profile.

1. In the Service Console console, click the Navigation icon, and then select the
first Configuration menu item.

Chapter 58
Task 2: Configure the Service

58-24

The Configuration menu appears in the Navigation pane.

2. Expand Application Appearance, and then double-click Customizable Menus.

3. Expand System Menus, and then select Chat Queues.

4. On the Home tab, click New.

5. Click the New Chat Queue label and change its name, such as Digital Assistant
Agent.

Chapter 58
Task 2: Configure the Service

58-25

6. On the Home tab, click Save & Close.

Create a Digital-Assistant Profile
You use profiles to manage account permissions and to assign agents to queues.
Create a dedicated profile for the digital-assistant agent.

1. In the Configuration menu in the Service Console, expand Staff Management,
double-click Profiles, and then click New.

2. Name the profile. For example: Digital Assistant.

3. In the Interfaces section, enable Access for the interface and add a navigation
set.

4. In the Home tab, click Permissions.

5. Click the Service tab.

6. In the Chat Agent Permissions section, select these options:

• Chat

• Conference/Transfer to Other Groups

7. Ensure that the Pull Chat option is not selected.

8. Ensure that the Pull Policy is set to First Due.

9. In the Chat Queues section, select the digital-assistant queue (Digital
Assistant Agent in our example) from the drop-down and then click Add .

10. Make sure that the queue that you added appears in the queue list, as shown in
this screen shot.

Chapter 58
Task 2: Configure the Service

58-26

11. In the Chat Agent Statuses section, ensure that Available - Unrestricted is assigned.

12. Select Available - Unrestricted as the default status.

This insures that when the digital assistant signs in as a digital-assistant agent, it will
receive incoming requests automatically.

13. In the Home tab, click Save and Close.

You don't need to set Max Active Chats or Max Total Chats because the digital assistant
always notifies the chat server that it has capacity to take new chats, which overrides the
numbers in these fields.

Assign the Digital-Assistant Agent to the Digital-Assistant Profile
You'll need to create an account in the Service Console for the digital-assistant agent, and
associate it with the digital-assistant profile. This way, chat sessions that are assigned to the
digital-assistant-agent queue will be sent to the digital-assistant agent.

You'll need a separate digital-assistant agent for each DA-as-Agent digital assistant that you
build.

1. From the Configuration menu, double-click Staff Accounts by Profile.

Chapter 58
Task 2: Configure the Service

58-27

2. In the Home tab, click New.

3. In the Account Details page, enter these values:

• User Name: For example, digitalassistant.

• First Name: For example, Chat.

• Last Name: For example, Bot.

• Display Name: For example, Chat Bot.

4. Click Change Password and provide a password.

For security, always provide a password for the digital-assistant agent.

5. From the Profile search list, select the profile that you configured in Create a
Digital-Assistant Profile.

6. Select a group, and set the default currency and country.

7. Save your changes.

Add Chat Rules
You'll need a chat rule in the Service Console to define when to assign a chat session
to the digital assistant. You'll also need a state to handle transfers from the digital
assistant to a live agent.

Here are the typical steps for adding the chat rules. You can learn more about rules at
Business Rules in Using Oracle B2C Service.

1. Expand Site Configuration and double-click Rules.

2. In the Home tab, click Chat, and then click Edit.

3. Create a state for the hand off to a live agent.

a. Right-click States and click New State.

b. Name the state. For example: 03. Hand Off to Live Agent.

c. Click Save.

4. Add a rule to the state to assign the chat session to a queue.

These substeps show a very simple configuration. For your instance, you must
carefully consider both the if conditions, and the then actions.

a. Right-click the state that you just added and click New Rule.

b. Name the rule. For example: Hand Off to Live Agent.

Chapter 58
Task 2: Configure the Service

58-28

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=business-rules

c. In this example, there are no if conditions. You might need to add conditions as
appropriate for your business needs.

d. Click Add Action - Then and then click Chat Queue ID.

e. From the Assign Chat Queue drop-down list, select the queue that the conversation
should be sent to (in this example, the default queue).

f. Click Save.

5. Add a rule to the initial state to route chat sessions to the digital-assistant-agent queue.

a. Right-click the initial state (the one that is shown in bold text), and click New Rule.

b. Name the rule. For example: Digital Assistant Agent.

c. If applicable, click Add IF Condition Based On to add the desired conditions for
routing to the digital assistant queue.

d. Click Add Action - Then and add an action to assign the chat session to the digital
assistant queue (Digital Assistant Agent in our example).

e. Click Add Action - Then and add an action to transition to the state that you created
for the hand off (03. Hand Off to Live Agent in our example) and then stop.

Chapter 58
Task 2: Configure the Service

58-29

f. (Optional) Add an Else action.

g. Drag the rule to a position in the initial state such it's evaluated before any
rules that might route the qualifying chat sessions to some other queue. For
example, ensure that it is evaluated before a state that unconditionally routes
chat sessions to the default queue.

6. Compile and activate your changes.

Pass the Initial Utterance to the Digital Assistant
To prevent the customer from having to state their need twice, add a Subject field to
the chat launch page. If a customer enters a value in that field, then, when the
conversation is transferred to the digital assistant, the digital assistant tries to resolve
the intent from the subject field value.

The Subject field is included in Inlays by default. To learn about customizing fields on
the chat launch page, see Overview of Chat on the Customer Portal in Using Oracle
B2C Service.

Configure Oracle Fusion Service
If your Digital Assistant instance is paired with a subscription to a Fusion-based Oracle
Cloud Applications service, you can integrate a digital assistant with an Oracle Fusion
Service implementation. This feature works with Oracle Fusion Service version 23A
and later.

To configure the service implementation to work with Digital Assistant, see the Use
Oracle Digital Assistant as an Agent section of Implementing Service Center with the
Classic User Experience.

Chapter 58
Task 2: Configure the Service

58-30

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=c_Chatting_on_the_Customer_Portal
https://docs.oracle.com/en/cloud/saas/fusion-service/faiec/use-oracle-digital-assistant-as-an-agent.html#u30239454
https://docs.oracle.com/en/cloud/saas/fusion-service/faiec/use-oracle-digital-assistant-as-an-agent.html#u30239454

Task 3: Sign Your Digital Assistant into the Service
To sign a digital assistant into Oracle B2C Service or Oracle Fusion Service as a digital-
assistant agent, create a DA as Agent channel and then enable it. This task also identifies the
digital assistant to route the conversation to.

Each DA as Agent channel must have a unique user name. That is, you can't use the same
digital-assistant agent for more than one channel. If the same digital-assistant agent is signed
in to more than one channel, none of the channels will work as expected.

1. In Oracle Digital Assistant, click to open the side menu, select Development, and
then select Channels.

2. Click DA as Agent, and then click + Add Agent Channel.

3. Enter a name and an optional description for this channel.

4. Select the service (Oracle B2C Service or Oracle Fusion Service).

If you selected Oracle Fusion Service, then the Authentication Service field displays the
name of the IDCS confidential client (also referred to as the OAuth client) that's
preconfigured for your paired instance.

5. Enter the host.

For Oracle B2C Service, you can derive these values from the URL that you use to
launch the Agent Browser User Interface or the chat launch page. For example, if the
URL is https://sitename.exampledomain.com/app/chat/chat_launch, then the host is
sitename.exampledomain.com.

For Oracle Fusion Service, this is the host portion of your Oracle Fusion Cloud
Applications (Fusion) instance's URL. For example: sitename.exampledomain.com.

6. Enter the user name and password for the digital-assistant agent that was created in
Oracle B2C Service or Oracle Fusion Service. For example: digitalassistant.

Don't use the same user name for more than one channel. If multiple channels have the
same user name, then racing conditions can cause unexpected behavior.

7. Click Create.

8. In the Route To drop-down, select the digital assistant to route to.

Chapter 58
Task 3: Sign Your Digital Assistant into the Service

58-31

9. Switch Interaction Enabled to On.

The channel establishes a connection with the service and the digital-assistant
agent is signed in.

You should wait at least one minute for the channel connection and sign-on to
complete.

Note:

Don't re-toggle the switch until at least one minute has passed. If you
enable the channel and then disable it before the connection is
established and sign-on completes (or vice versa), then you might break
the connection and the digital assistant won't be able to get or send
responses. To resolve a broken connection, delete the channel and then
re-create it.

Chapter 58
Task 3: Sign Your Digital Assistant into the Service

58-32

Tip:

If a channel isn't working, click Error Reports to see if there are any reported
errors. Note that if you see a CONFLICT error or an ACCESS_DENIED error, you can
typically resolve this problem by switching Interaction Enabled to Off, and then
switching it to On. Sometimes, however, you might see this problem because the
same digital assistant agent is signed in to more than one DA-as-Agent channel.

Change DA as Agent Channel Configuration
You can re-route a channel anytime regardless of whether the channel is enabled. For other
changes, including stopping routing, you must ensure that the channel is disabled
(Interaction Enabled is switched to Off) before you make the change.

Note that when you disable a channel, you sign the digital assistant agent out of the service .
Therefore, you can't disable a channel if there are any active sessions.

After you complete the changes, you can sign the digital assistant agent back into the service
by switching Interaction Enabled to On.

Chapter 58
Change DA as Agent Channel Configuration

58-33

59
Insights for Oracle B2C Service Chat and
Oracle Fusion Service Chat

The Overview report's Intents bar chart and key phrase cloud (accessed by clicking in the
left navbar) enable you to find out how many user requests were handled by live agents for
both DA-As-Agent conversations and live agent transfer conversations. For example, you can
use the number of DA-as-Agent conversations routed to system.RequestAgent intent as one
indicator for escalations (which you may want to keep at a minimum). You can compare the
usage of this intent to the skill's other intents. You might have other intents that result in agent
transfer, such as the DA-as-Agent's system.UnsatisfactoryResponse intent, or a
handleProblems intent in an agent-integration skill. Additionally, you might want to track
knowledge and answer intents for FAQs, which respond to the user and deflect conversations
from the live agent.

For live agent transfer implementations, you can review digital- and skill-level metrics to
assess how well your skills and digital assistants have been offloading tasks from live agents.

59-1

60
Live Agent Transfer

If you have Oracle B2C Service Chat, you can enhance your skills to offer the choice of
escalating the conversation to an agent whenever the skill senses that the customer is stuck
or frustrated, thus increasing customer satisfaction.

Oracle Digital Assistant lets you integrate your skill with a live agent system in two ways:

• You can integrate with version 18C (and later) of Oracle B2C Service through an Agent
Integrations channel as described here.

• You can integrate with a webhook channel as described in the Transfer Digital Assistant
Chats to Live Agents solution.

The Live-Agent-Transfer Framework in Action
Here's how the live-agent-transfer framework works.

If a skill determines that the customer wants or needs to speak to a person, the skill connects
to Oracle B2C Service and then displays a message that it's waiting for the agent to join the
conversation. Oracle B2C Service sends a chat request to one of the live agents who are
monitoring an agent chat console. After the agent accepts the request, the framework sends
the customer's chat history and, optionally, a list of supported actions that the agent can send
back to the bot. After the agent connects with the customer, the skill passes the messages
between the customer and the agent until the user or agent terminates the session or the
session expires.

How the Live-Agent-Transfer Framework Works
The Agent Integration channel, along with the Agent Integration and Agent Conversation
components, allows you to integrate your skill with Oracle B2C Service Chat Service.

The following sections describe how to configure these (and provide some other details for
using Oracle B2C Service as well), but here's a brief introduction:

• You configure an Agent Integration channel using the credentials provided to you by an
Oracle B2C Service administrator, and you reference this channel from the Agent
Integration and Agent Conversation components in your skill.

• The Agent Integration component connects the skill's conversation to Oracle B2C
Service. Optionally, the component can provide a list of supported actions that an agent
can send to the Agent Conversation component.

• The Agent Conversation component initiates a chat request with Oracle B2C Service,
which, in turn, sends the request to an agent's chat console. After the agent accepts the
chat request, the component sends subject text, the conversation history, and, if specified
in the Agent Integration component, the supported actions. The component then
manages the interchange between the skill and the agent. Beginning with Oracle B2C
Service version 19A, both the user and the agent can attach images to the conversation.

• The session can end in one of the following ways:

60-1

https://docs.oracle.com/en/solutions/transfer-chat-to-live-agent/index.html
https://docs.oracle.com/en/solutions/transfer-chat-to-live-agent/index.html

– The agent terminates the session.

– The agent sends one of the supported actions, the skill terminates the session,
and the skill transitions to the state that corresponds with the action.

– The customer enters one of the specified exit keywords, such as bye or
goodbye.

– The session expires after a period of inactivity.

– There is a problem with the connection to Oracle B2C Service.

Integrate a Skill with a Live Agent
Here are the high-level steps for integrating a skill with an existing Oracle B2C Service
interface. The next topics describe each step in more detail.

1. Create an Agent Integration channel: The channel allows the skill to
communicate with Oracle B2C Service.

2. Enable Insights: In the skill's Settings page, switch the Enable Insights option
to On to enable the framework to pass the conversation history to the live agent.

3. Configure the Agent-Transfer Dialog Flow: Add the System.AgentInitiation
and System.AgentConversation components to the dialog flow.

• The System.AgentInitiation component initiates the handoff to Oracle B2C
Service.

• The System.AgentConversation handles the interaction between the skill and
the agent.

You can find templates for these components from the Flow page by clicking +
Add Component, and then clicking Transfer from skill to Human Agent.

Chapter 60
Integrate a Skill with a Live Agent

60-2

Create an Agent Integration Channel
You use an Agent Integration channel to configure the connections between skills and the
live-agent system.

Before you begin, obtain the credentials of an Oracle B2C Service staff member who's
associated with a profile that has the following permissions:

• Access to the desired Oracle B2C Service interface

• Account Authentication and Session Authentication for Public SOAP API

• Account Authentication for Agent Browser User Interface

Contact an Oracle B2C Service administrator if you don't have this information.

You also need to confirm that your Oracle B2C Service Account Manager has enabled the
Chat Custom Interface API and the Chat Third-Party Queue Integration API.

1. Click to open the side menu, select Development, and then select Channels.

2. Click Agent Integrations, and then click + Add Agent Integration.

3. Enter a name and an optional description for this channel.

When you use the System.AgentInitiation and System.AgentConversation
components in your dialog flow to enable the transition to, and from, Oracle B2C Service,
you must use this name for their agentChannel properties.

4. Choose Service Cloud from the Integration Type menu.

5. Enter the user name and password for an Oracle B2C Service staff member who has the
necessary profile permissions.

6. Define the domain name and host name prefix.

If you have access to Oracle B2C Service, you can derive these values from the URL that
you use to launch the Agent Browser User Interface. For example, if the URL is
sitename.exampledomain.com, then the host name prefix is sitename and the domain
name is exampledomain.com.

If the channel is connecting to Oracle B2C Service version 19A or later, and you have
multiple interfaces, then you must include the interface ID in the host (site) name . For
example, for the interface that has an ID of 2, you would use something like
sitename-2.exampledomain.com.

7. (Optional) Increase or decrease Session Expiration (minutes). This value is used to
determine when the System.AgentConversation component should trigger the agentLeft
and expired actions.

If the Oracle B2C Service CS_IDLE_TIMEOUT is equal to or more than the Session
Expiration value, then expired is triggered when neither the end-user nor the agent
sends a message within the session expiration limit. If CS_IDLE_TIMEOUT is less than the
Session Expiration value, then Oracle B2C Service terminates the chat and the
agentLeft action is triggered instead.

If your instance is provisioned on the Oracle Cloud Platform (as all version 19.4.1
instances are), then the service uses 15 minutes instead of the Session Expiration
setting.

Chapter 60
Integrate a Skill with a Live Agent

60-3

By default, CS_IDLE_TIMEOUT is 10 minutes. To view or change your Oracle B2C
Service instance's settings, open the Oracle B2C Service desktop Service
Console, click Navigation, click the first Configuration item in the menu, and click
Configuration Settings. Then search the for CS_IDLE_TIMEOUT, which is in the
Chat folder.

8. Click Create.

9. To enable the skill to interact with the agent framework, enable the channel by
switching Interaction Enabled to On.

Enable Conversation History Transfer
You must turn on logging to enable the live-agent transfer framework to pass the
conversation history to a live agent. When you enable this option, the agent's chat
console displays the customer's conversation that occurred before the handoff to the
agent.

1. In the skill's left navbar, click Settings .

2. In the General tab, set the Enable Insights switch to On.

If your instance is provisioned on Oracle Cloud Platform (as all version 19.4.1
instances are), then the switch's name is Skill Conversation.

Note:

The conversation history is truncated after 4000 characters.

Configure the Agent Transfer Dialog Flow
There are several ways that your dialog flow can direct customers to a live agent. For
example:

• You can provide a specific option for talking with an agent.

• You can execute a path that gathers necessary customer information before
handing someone off to an agent.

• You can create a handler for unresolved intents that tranfers the customer to an
agent.

• You can create an agent-transfer intent.

In this example, the GetAgent intent is trained to understand distress calls like help me
please!

intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 OrderPizza: "resolvesize"
 CancelPizza: "cancelorder"

Chapter 60
Integrate a Skill with a Live Agent

60-4

 GetAgent: "agentInitiation"
 unresolvedIntent: "agentInitiation"

Here are the basic steps for configuring the dialog flow:

1. Initiate the live-agent transfer.

a. Add a state for the System.AgentInitiation component.

b. Set the state's agentChannel property to the name of the Agent Integration channel
that you configured for the live-agent system.

After the Agent Integration channel establishes a connection and Oracle B2C Service
sends the chat request to its queue (that is, after it creates a help ticket), the
System.AgentInitiation component allows the transition to the next state, which is
typically defined for the System.AgentConversation component (agentConversation in
the following example).

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 waitingMessage: "Waiting for an agent..."
 rejectedMessage: "Agents are not available right now."
 resumedMessage: "We're connecting you to an agent..."
 errorMessage: "Oops! We're having system issues. We're sorry, but
we can't connect you with an agent right now."
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "tryAgain"
 error: "tryAgain"
 tryAgain:
 component: "System.Output"
 properties:
 text: "Please try again later."
 transitions:
 return: "tryAgain"

Tip:

Customers may repeatedly request a live chat even though their requests have
already been queued in the agent's chat console. Add a resumedMessage
property to the System.AgentInitiation state to prevent such customers from
receiving a misleading Resuming chat with agent message.

2. Add and configure the System.AgentConversation component. While the dialog engine
is in the state defined for this component, the skill passes messages back and forth
between the customer and the agent. The skill listens for exit keywords in the customer
input, like bye. When the skill detects one of these keywords, the
System.AgentConversation component ends the live-chat session and triggers its next
transition.

Chapter 60
Integrate a Skill with a Live Agent

60-5

Here's an example:

 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 errorMessage: "Oops, we lost connection with the agent. If
you need further help, please call customer support."
 exitKeywords: "bye, exit, take care, goodbye, quit"
 expiryMessage: "Your chat with the agent timed out."
 conclusionMessage: "Your chat with the agent has ended."
 waitMessage: "You are number $
{system.message.messagePayload.position} in the queue. Your waiting
time is ${(system.message.messagePayload.waitTime>60)?then('$
{(system.message.messagePayload.waitTime/60)?int} mins','$
{system.message.messagePayload.waitTime} seconds')}."
 transitions:
 next: "endPrompt"
 actions:
 agentLeft: "endPrompt"
 expired: "endPrompt"
 error: "endPrompt"
 endPrompt:
 component: "System.Output"
 properties:
 text: "Returning you to your bot."
 transitions:
 return: "endPrompt"

Note:

The errorMessage property and the error action only work with
instances of Oracle Digital Assistant that were provisioned on Oracle
Cloud Infrastructure (sometimes referred to as the Generation 2 cloud
infrastructure).

Enable Agents to Specify the Transition Action
If you want to enable the agent to specify which state to transition to after the live-chat
session ends, use the agentActions property in the System.AgentInitiation
component to list the supported actions that the agent can send, and then use the
System.AgentConversation component to map the actions to states.

When the agent accepts the chat request, the chat console displays the supported
actions, each of which is preceded by a slash (these are referred to as slash actions).

Chapter 60
Integrate a Skill with a Live Agent

60-6

If the agent sends any of the slash actions, the action is sent to the live-agent transfer
framework, and the skill terminates the live chat. If the System.AgentConversation has a
transition for that action, the flow transitions to the named state. Note that the
conclusionMessage isn't output if the agent sends a slash action.

Chapter 60
Integrate a Skill with a Live Agent

60-7

1. Add an agentActions property to the System.AgentInitiation component, and
list the supported actions.

You can define the agentActions list elements in several ways:

• As a list of maps, where each map must contain an action property, a label
property, and optionally, a description property. For example:

 - action: "action1"
 label: "label1"
 description: "description1"
 - action: "action2"
 label: "label2"
 description: "description2"

• As a JSON array, where each object in the array must contain an action
property, a label property, and optionally, a description property. For example:

 [
 {action: "action1",
 label: "label1",
 description: "description1"},
 {action: "action2",
 label: "label2",
 description: "description2"}
]

• As a comma-delimited string of action values. The label and description are
the same as the action value. For example:

"action1, action2"

2. (Optional) Add the agentActionsMessage property to specify a message for the
live chat console to display before it lists the supported actions. For example:

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 waitingMessage: "Let me connect you with someone who can
further assist you."
 rejectedMessage: "Sorry, but no one's available now."
 resumedMessage: "Please wait, someone will be with you
shortly."
 errorMessage: "Oops! We're having system issues. We're sorry,
but we can't connect you with an agent right now."
 agentActionsMessage: "\nYou can terminate when done or send
one of these actions.\n"
 agentActions: [{
 action: "Order",
 label: "Order",
 description: "Initiate dialog in the bot to order a
pizza."},
 {action: "Cancel",

Chapter 60
Integrate a Skill with a Live Agent

60-8

 label: "Cancel",
 description: "Initiate dialog in the bot to cancel an
order."}]
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "initiationRejected"
 error: "tryAgain"
 initiationRejected:
 component: "System.Output"
 properties:
 text: "Perhaps it's outside their working hours or it's a holiday."
 transitions:
 return: "initiationRejected"
 tryAgain:
 component: "System.Output"
 properties:
 text: "Please try again later."
 transitions:
 return: "tryAgain"

If you don't set this property, then the default message is Here are the available actions
that you can send to transfer the conversation back to the bot. Prepend the action with a
forward slash (for example, /actionName).

3. Add a next transition for when the user terminates the conversation by using an exit
keyword, and then add these transition actions:

• An action for each supported action that's listed in the agentActions property in the
System.AgentConversation component.

• An agentLeft action for when the agent terminates the live chat without using a slash
action or the session times out. See System.AgentConversation Transitions.

• An expired action for when a session expires. See System.AgentConversation
Transitions.

• An error action for when the channel connection fails. See
System.AgentConversation Transitions. This action only works with instances of
Oracle Digital Assistant that were provisioned on Oracle Cloud Infrastructure
(sometimes referred to as the Generation 2 cloud infrastructure).

 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 exitKeywords: "bye, exit, take care, goodbye, quit"
 expiryMessage: "Your chat with the agent timed out."
 conclusionMessage: "Your chat with the agent has ended."
 waitMessage: "You are number $
{system.message.messagePayload.position} in the queue. Your waiting time
is ${(system.message.messagePayload.waitTime>60)?then('$
{(system.message.messagePayload.waitTime/60)?int} mins','$
{system.message.messagePayload.waitTime} seconds')}."
 transitions:

Chapter 60
Integrate a Skill with a Live Agent

60-9

 next: "endPrompt"
 actions:
 agentLeft: "endPrompt"
 expired: "endPrompt"
 error: "handleConversationError"
 Order: "resolvesize"
 Cancel: "cancelorder"
 endPrompt:
 component: "System.Output"
 properties:
 text: "Returning you to your bot."
 transitions:
 return: "endPrompt"

Note:

The error action only works with instances of Oracle Digital Assistant
that were provisioned on Oracle Cloud Infrastructure (sometimes
referred to as the Generation 2 cloud infrastructure).

Override Queue Position and Wait Time Message
By default, when a chat request is submitted, the service returns a message about the
queue position and wait time, which the skill outputs. For example, the message might
be:

You are in position {0} in our queue. Expected wait time is {1}
minute(s) {2} second(s)

You can use the System.AgentConversation component's waitMessage property to
define your own custom message. As illustrated by the following snippet, you can
create a message that returns the queue and wait time status using the
system.message.messagePayload.position and system.messagePayload.waitTime
properties, respectively:

"You are at number ${system.message.messagePayload.position} in the
queue. Your wait time is ${system.message.messagePayload.waitTime}."

You can tailor the message content by combining these properties with built-in Apache
FreeMarker operations, such as the then operation in the following snippet. Here, it
allows the skill to output content that's specific to either minutes or seconds. For wait
times of 60 seconds or longer (waitTime>60), the skill outputs You are at number 9 in
the queue. Your wait time is 1 mins. Otherwise, it outputs You are at number 9 in the
queue. Your wait time is 55 seconds.

 waitMessage: "You are at number $
{system.message.messagePayload.position} in the queue. Your wait time
is ${(system.message.messagePayload.waitTime>60)?then('$
{(system.message.messagePayload.waitTime/60)?int} mins','$
{system.message.messagePayload.waitTime} seconds')}"

Chapter 60
Integrate a Skill with a Live Agent

60-10

Handle Agent Initiation Rejection and System Errors
Your dialog flow needs to handle errors that might occur during agent initiation. When the
System.AgentInitiation component tries to initiate a connection with the live-agent system,
it might return an error or rejected action. Also, it might invoke a system error if there is a
developer-caused issue.

• rejected action: This action is triggered when Oracle B2C Service rejects the
connection request. Some of the reasons for rejecting a connection request are:

– No agents are available (requires allowTransferIf and queueId properties)

– It's outside of the configured operating hours

– It's a holiday

– There's a problem with the chat server

Note that if you don't set allowTransferIf and queueId, the rejected action will not occur
when no agents are available, instead, the transfer will remain in a wait condition.

When Oracle B2C Service rejects a connection request, the skill displays a rejected
message, which is Agent rejected by default. Then it transitions to the state that's
mapped to the rejected action. You can use the rejectedMessage property in the
System.AgentInitiation component to provide a custom message.

Tip:

If you have admin access to the Oracle B2C Service desktop Service Console,
you can view the operating hours and holidays. From the navigation pane, click
Configuration, click Site Configuration, double-click Interfaces, and then
click Chat Hours.

• error action: This action is triggered when there's a problem establishing a connection
with Oracle B2C Service. For example, the password in the Agent Integration channel is
no longer valid, or there's a problem with the Oracle B2C Service server.

When this type of error occurs, the skill displays the following message by default, and
then transitions to the state that's mapped to the error action.

Error transferring to agent, the reason is: <reason>, Please contact
your system administrator to resolve this error.

You can use the errorMessage property in the System.AgentInitiation component to
override the default message.

• System errors: When the agent integration channel doesn't exist or is disabled, the skill
invokes a system error. By default, the skill displays the message "Oops I'm encountering
a spot of trouble. Please try again later..." Unfortunately, until a developer fixes the
problem, it won't help the bot user to try again. Therefore, you might want your dialog
flow to better handle these errors by adding an error transition, which goes to a state
that outputs a more helpful customer-facing message. (This is different from the error
action). Alternatively, you can modify the default message by going to Settings >
Configuration and editing Unexpected Error Prompt. However, this change affects the
skill globally.

Chapter 60
Integrate a Skill with a Live Agent

60-11

Note that when you validate a dialog flow, the validator will let you know if the
agent integration channel is missing or disabled, so remember to do that before
you test your skill or release it to the public.

Here are some ways to diagnose a system error:

– Click Validate in the skill to validate the dialog flow.

– Run the skill in the Preview. When the error occurs, the error state and
message (reason) are displayed in the Conversation tab.

– In the state to which the error transition routes the flow, output a string that
includes the Freemarker template ${system.errorAction}, which prints the
error message (reason).

Here's an example of handling system errors and the error and rejected actions.

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "B2CServiceIntegration"
 nlpResultVariable: "iResult"
 waitingMessage: "Let me connect you with someone who can further
assist you."
 resumedMessage: "Someone will be with you shortly."
 errorMessage: "Oops! We're having system issues and we can't
connect you with an agent right now."
 rejectedMessage: "Unfortunately, no one's available right
now."
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "initiationRejected"
 error: "tryAgain"
 error: "agentInitiationSystemError"
 initiationRejected:
 component: "System.Output"
 properties:
 text: "Perhaps it's outside their working hours or it's a
holiday."
 transitions:
 return: "initiationRejected"
 tryAgain:
 component: "System.Output"
 properties:
 text: "Please try again later."
 transitions:
 return: "tryAgain"
 agentInitiationSystemError:
 component: "System.Output"
 properties:
 text: "I seem to be having a connection problem. Can you please
email email@example.com to let them know?"
 transitions:
 return: "done"

Chapter 60
Integrate a Skill with a Live Agent

60-12

Configure When to Attempt Agent Transfer
By default, the System.AgentConversation component transfers the conversation to Oracle
B2C Service regardless of whether there are any available agents. However, you have
options for when to transfer the chat to a human agent.

Note:

This feature works only with instances of Oracle Digital Assistant that were
provisioned on Oracle Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure).

If you would like to change the rules about when to transfer to an agent, you can use the
System.AgentInitiation component's allowTransferIf and queueId properties to configure
when the component should attempt to transfer the conversation to a live agent. Your choices
are:

• agentsAreRequestingNewEngagements: Transfer only if at least one agent who is
assigned to the specified queue has requested a new engagement (pulled a chat) or, if
chats are automatically routed to available agents, there is at least one agent assigned to
the queue who hasn't reached their maximum number of chats. With this option, the user
doesn't have to wait for an agent.

• agentSessionsAreAvailable: Transfer if any agents who are assigned to the queue
haven't reached their maximum number of chats regardless of whether they've requested
a new engagement (pulled a chat) or, if chats are automatically routed to available
agents, there is at least one agent assigned to the queue who hasn't reached their
maximum number of chats. The user may have to wait if all the agents are involved in
long-running conversations or are doing some post-chat follow-up.

• agentsAreAvailable: In the case where agents must request new engagements (pull
chats), transfer even if none of the queue's agents have requested a new engagement or
all the queue's agents have reached their maximum number of chats. In the case where
chats are automatically routed to available agents, transfer even if they all the queue's
agents have reached their maximum number of chats. The user may have a long wait.

You should insure that the queue that's identified by the queueId property is the actual queue
that the Oracle Digital Assistant chat rules will route the conversation to.

Tip:

To get the queue ID, ask someone who has configuration permissions to open the
Service Console and get the ID from Chat Queues in the System Menus page.
When you hover the mouse over the queue name, it displays the ID. Sometimes it
takes a few seconds for the ID tooltip to appear.

Enable Agents to Specify the Transition Action
If you want to enable the agent to specify which state to transition to after the live-chat
session ends, use the agentActions property in the System.AgentInitiation component to

Chapter 60
Configure When to Attempt Agent Transfer

60-13

list the supported actions that the agent can send, and then use the
System.AgentConversation component to map the actions to states.

When the agent accepts the chat request, the chat console displays the supported
actions, each of which is preceded by a slash (these are referred to as slash actions).

If the agent sends any of the slash actions, the action is sent to the live-agent transfer
framework, and the skill terminates the live chat. If the System.AgentConversation has
a transition for that action, the flow transitions to the named state. Note that the
conclusionMessage isn't output if the agent sends a slash action.

Chapter 60
Enable Agents to Specify the Transition Action

60-14

1. Add an agentActions property to the System.AgentInitiation component, and list the
supported actions.

You can define the agentActions list elements in several ways:

• As a list of maps, where each map must contain an action property, a label property,
and optionally, a description property. For example:

 - action: "action1"
 label: "label1"
 description: "description1"
 - action: "action2"
 label: "label2"
 description: "description2"

• As a JSON array, where each object in the array must contain an action property, a
label property, and optionally, a description property. For example:

 [
 {action: "action1",
 label: "label1",
 description: "description1"},
 {action: "action2",
 label: "label2",
 description: "description2"}
]

Chapter 60
Enable Agents to Specify the Transition Action

60-15

• As a comma-delimited string of action values. The label and description are
the same as the action value. For example:

"action1, action2"

2. (Optional) Add the agentActionsMessage property to specify a message for the
live chat console to display before it lists the supported actions. For example:

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 waitingMessage: "Let me connect you with someone who can
further assist you."
 rejectedMessage: "Sorry, but no one's available now."
 resumedMessage: "Please wait, someone will be with you
shortly."
 errorMessage: "Oops! We're having system issues. We're sorry,
but we can't connect you with an agent right now."
 agentActionsMessage: "\nYou can terminate when done or send
one of these actions.\n"
 agentActions: [{
 action: "Order",
 label: "Order",
 description: "Initiate dialog in the bot to order a
pizza."},
 {action: "Cancel",
 label: "Cancel",
 description: "Initiate dialog in the bot to cancel an
order."}]
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "initiationRejected"
 error: "tryAgain"
 initiationRejected:
 component: "System.Output"
 properties:
 text: "Perhaps it's outside their working hours or it's a
holiday."
 transitions:
 return: "initiationRejected"
 tryAgain:
 component: "System.Output"
 properties:
 text: "Please try again later."
 transitions:
 return: "tryAgain"

If you don't set this property, then the default message is Here are the available
actions that you can send to transfer the conversation back to the bot. Prepend the
action with a forward slash (for example, /actionName).

Chapter 60
Enable Agents to Specify the Transition Action

60-16

3. Add a next transition for when the user terminates the conversation by using an exit
keyword, and then add these transition actions:

• An action for each supported action that's listed in the agentActions property in the
System.AgentConversation component.

• An agentLeft action for when the agent terminates the live chat without using a slash
action or the session times out. See System.AgentConversation Transitions.

• An expired action for when a session expires. See System.AgentConversation
Transitions.

• An error action for when the channel connection fails. See
System.AgentConversation Transitions. This action only works with instances of
Oracle Digital Assistant that were provisioned on Oracle Cloud Infrastructure
(sometimes referred to as the Generation 2 cloud infrastructure).

 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 exitKeywords: "bye, exit, take care, goodbye, quit"
 expiryMessage: "Your chat with the agent timed out."
 conclusionMessage: "Your chat with the agent has ended."
 waitMessage: "You are number $
{system.message.messagePayload.position} in the queue. Your waiting time
is ${(system.message.messagePayload.waitTime>60)?then('$
{(system.message.messagePayload.waitTime/60)?int} mins','$
{system.message.messagePayload.waitTime} seconds')}."
 transitions:
 next: "endPrompt"
 actions:
 agentLeft: "endPrompt"
 expired: "endPrompt"
 error: "handleConversationError"
 Order: "resolvesize"
 Cancel: "cancelorder"
 endPrompt:
 component: "System.Output"
 properties:
 text: "Returning you to your bot."
 transitions:
 return: "endPrompt"

Note:

The error action only works with instances of Oracle Digital Assistant that were
provisioned on Oracle Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure).

Chapter 60
Enable Agents to Specify the Transition Action

60-17

Tutorial: Live Agent Transfer
You can get a hands-on look at transferring to a live agent by walking through this
tutorial:

• Integrate a Skill with Oracle Service Cloud Live Chat

Pass Customer Information to a Live Chat
When conversation logging is enabled for a skill, it passes the whole chat history to
Oracle B2C Service automatically. In addition to the chat history, you also can send
some specific customer information.

• Incident ID

• Chat Customer Information: Skills can pass the following chat customer
information to Oracle B2C Service.

– E-mail address

– First Name

– Last Name

– Contact

– Organization

– Category

– Product

The skill uses the profile values to populate and send these chat customer fields
automatically, you don't need to do anything to set these values:

– E-Mail address

– First Name

– Last Name

• Incident Custom Fields: You can pass values for any Oracle B2C Service
custom field of type Incident.

To learn about custom fields, see Overview of Custom Fields in Using Oracle B2C
Service.

Note:

If you are using an agent-integration channel that was created prior to 20.1,
or your channel connects to a Oracle B2C Service instance that's earlier than
19A, you can also pass interface information. With channels that are created
in version 20.1 and later and connect to Oracle B2C Service 19A and later,
you include the interface ID in the channel's URL.

Chapter 60
Tutorial: Live Agent Transfer

60-18

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=c_crm_admin_custom_fields

To send customer information to the live agent, you pass a map in the
System.AgentInitiation component's customProperties property. Here's the top-level
structure of the map:

incidentID: # type int
customerInformation: # chat customer information object
customFields: # incident custom fields object

The incidentID Property
You can pass an Incident ID to the live agent by adding an incidentID property to the
customProperties map.

Here's an example:

context:
 variables:
 liveChatInfo: "map"
 customerTicketId: "int"
...
 setCustomFields:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 incidentID: "${customerTicketId}" # long value
 ...
 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 ...
 customProperties: "${liveChatInfo.value}"

Chapter 60
Pass Customer Information to a Live Chat

60-19

Tip:

If you want to associate a chat request with an existing incident, then you
can create a custom component to retrieve the incidentId by sending a
REST request like the following example. This REST request retrieves the
most recent incident for the contact with a matching email address.

https://<URL>/services/rest/connect/latest/incidents?
q=primaryContact.ParentContact.Emails.EmailList.Address like
'email@gmail.com'&orderBy=createdTime:desc&limit=1

The response body contains an href link, which contains the incident ID:

{
 "items": [
 {
 "id": 26302,
 "lookupName": "200116-000003",
 "createdTime": "2020-01-16T13:08:25.000Z",
 "updatedTime": "2020-01-16T20:25:21.000Z",
 "links": [
 {
 "rel": "canonical",
 "href": "https://<URL>/services/rest/
connect/v1.4/incidents/26302"
 }
]
 }
],

To learn about custom components, see Backend Integration. To learn about
the Oracle B2C Service REST APIs, see REST API for Oracle B2C Service.

The Standard customerInformation Object
This section discusses the customerInformation object for skills that use an agent-
integration channel that was created in version 20.01 or later and that connects to
Oracle B2C Service version 19A or later.

You can use the customerInformation object in the customProperties map to pass
the following chat customer information:

• incidentID: int.

• eMailAddress: string. Maximum 80 characters. Your skill automatically sets this
value from the corresponding .profile properties (described in Profile-Scope
Variables for User Context) and passes it to Oracle B2C Service.

• firstName: string. Maximum 80 characters. Your skill automatically sets this
value from the corresponding .profile properties (described in Profile-Scope
Variables for User Context) and passes it to Oracle B2C Service.

Chapter 60
Pass Customer Information to a Live Chat

60-20

https://docs.oracle.com/en/cloud/saas/b2c-service/21a/cxsvc/index.html

• lastName: string. Maximum 80 characters. Your skill automatically sets this value from
the corresponding .profile properties (described in Profile-Scope Variables for User
Context) and passes it to Oracle B2C Service.

• contactID: Pass a value of type int in the id sub-property.

• organizationID: Pass a value of type int in the id sub-property.

• productID: Pass a value of type int in the id sub-property.

• categoryID: Pass a value of type int in the id sub-property.

This example sets the contactID.

context:
 variables:
 liveChatInfo: "map"
 contactId: "int"
...
 setCustomFields:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customerInformation:
 contactID:
 id: "${customerId}"
 ...
 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 ...
 customProperties: "${liveChatInfo.value}"

Tip:

You can use the Oracle B2C Service REST API to view the valid values for
customer information fields. For example, this GET request lists the categories:

curl --request GET \
--url https://<sitename.domain>/services/rest/connect/latest/
serviceCategories \
--header 'authorization: Basic <base64-encoded-username+:+password>'
\
--header 'osvc-crest-application-context: <some-comment>'

The Legacy customerInformation Object
This section discusses the customerInformation object for skills that use an agent-
integration channel that was created before 20.01 or a channel that connects to an Oracle
B2C Service instance that's earlier than 19A.

Chapter 60
Pass Customer Information to a Live Chat

60-21

You use the customerInformation object in the customProperties map to pass chat
customer information, such as the Interface ID, Contact ID, or Category ID. The
customerInformation object can contain the fields that are defined in the Chat
Customer Information section in the Oracle B2C Service WSDL at http://
<sitename.domain>/services/soap/connect/chat_soap?wsdl=server.

For objects, change the initial character in the name to lower case, and change the
names of simple fields to all lower case.

If you don't pass the interfaceID object, the skill uses a default of id:{id: 1}. Note
that if the interface isn't chat enabled, then the initiation handshake will fail. You can
use the Oracle B2C Service Configuration Assistant, which you access from My
Services, to verify if an interface is enabled for chat.

This example sets the interfaceID and contactID.

Tip:

Because the WSDL specifies that interfaceID is of type NamedID, we
could've used name: "myInterfaceName" instead of id: id: "$
{interfaceId}".

context:
 variables:
 liveChatInfo: "map"
 interfaceId: "int"
 contactId: "int"
...
 setCustomFields:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customerInformation:
 interfaceID:
 id:
 id: "${interfaceId}"
 contactID:
 id: "${customerId}"
 ...
 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 ...
 customProperties: "${liveChatInfo.value}"

While you can define the EMailAddress, FirstName, and LastName fields that are
described in the WSDL’s Chat Customer Information section, your skill automatically
sets these values from the corresponding .profile properties (described in Profile-
Scope Variables for User Context).

Chapter 60
Pass Customer Information to a Live Chat

60-22

Tip:

You can use the Oracle B2C Service REST API to view the valid values for
customer information fields. For example, this GET request lists interface IDs and
names:

curl --request GET \
--url https://<sitename.domain>/services/rest/connect/latest/
siteInterfaces \
--header 'authorization: Basic <base64-encoded-username+:+password>'
\
--header 'osvc-crest-application-context: <some-comment>'

This GET request lists the categories:

curl --request GET \
--url https://<sitename.domain>/services/rest/connect/latest/
serviceCategories \
--header 'authorization: Basic <base64-encoded-username+:+password>'
\
--header 'osvc-crest-application-context: <some-comment>'

As mentioned earlier, the customerInformation map structure must conform to the Chat
Customer Information structure that's shown in the WSDL at the following address:

http://<sitename.domain>/services/soap/connect/chat_soap?wsdl=server

Here's an excerpt from the WSDL:

<!-- ============================== -->
<!-- Chat Customer Information -->
<!-- ============================== -->

<xs:complexType name="ChatCustomerInformation">
 <xs:sequence>
 <xs:element name="EMailAddress" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="80"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="FirstName" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="80"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

Chapter 60
Pass Customer Information to a Live Chat

60-23

 <xs:element name="LastName" minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="80"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name="InterfaceID" type="rnccm:NamedID"
minOccurs="1" maxOccurs="1"/>
 <xs:element name="ContactID" type="rnccm:ID" minOccurs="0"
maxOccurs="1" />
 <xs:element name="OrganizationID" type="rnccm:ID"
minOccurs="0" maxOccurs="1" />
 <xs:element name="Question" type="xs:string" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="ProductID" type="rnccm:ID" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="CategoryID" type="rnccm:ID" minOccurs="0"
maxOccurs="1"/>
 </xs:sequence>
</xs:complexType>

Some objects are of type rnccm:ID, which is defined in the next excerpt. Notice that
the object contains an id field of type long.

<xs:element name="ID" type="ID"/>
<xs:complexType name="ID">
 <xs:attribute name="id" type="xs:long" use="optional"/>
</xs:complexType>

InterfaceID is of type rnccm:NamedID. Notice that this object can contain an ID (long),
a Name (string), or both.

<xs:element name="NamedID" type="NamedID"/>
<xs:complexType name="NamedID">
 <xs:sequence>
 <xs:element name="ID" type="ID" minOccurs="0" maxOccurs="1"/>
 <xs:element name="Name" type="xs:string" minOccurs="0"
maxOccurs="1"/>
 </xs:sequence>
</xs:complexType>

The casing differs between the WSDL and the customProperties map. In the map, the
first letter for an object name is lower case (Pascal case). For example, ProductID in
the WSDL would be productID for the map object. The simple field names are all
lower case (Name becomes name, for example).

Chapter 60
Pass Customer Information to a Live Chat

60-24

The Standard customFields Object
This section discusses the customerFields object for skills that use an agent-integration
channel that was created in version 20.01 or later and that connects to Oracle B2C Service
version 19A or later.

You use the customFields object in the customProperties map to pass values for any Oracle
B2C Service custom field of type Incident.

The customFields object is an array of maps that contain the following properties.

• Simple fields:

– name: The field's column name (lower case) preceded by c$.

– type: Allowable values are BOOLEAN, DATE, DATETIME, INTEGER, LONG,
STRING, and DECIMAL.

– value: The field's value.

• Menu field:

– name: The field's column name (lower case) preceded by c$.

– value: You can set the value to either the field's ID or the menu item's text. Notice
that this object doesn't have a type property.

Tip:

To find the ID for a menu item, open the custom field's details page from the
Oracle B2C Service desktop Service Console. Hover over a menu item and
wait for several seconds. The tool tip will appear and show the ID for that
item.

Here's an example:

context:
 variables:
 liveChatInfo: "map"
...
 setupCustomFields:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customFields:
 - name: "c$text_field" # text field
 type: "STRING"
 value: "SILVER"
 - name: "c$text_area" # text area
 type: "STRING"
 value: "My package arrived but there were no contents in the
box. Just bubble wrap."
 - name: "c$integer" # integer
 type: "INTEGER"
 value: 21

Chapter 60
Pass Customer Information to a Live Chat

60-25

 - name: "c$yes_no" # yes/no (1=yes and 0=no)
 type: "BOOLEAN"
 value: 1
 - name: "c$date_field" # date (yyyy-MM-dd'T'00:00:00.
Use 0 for time)
 type: "DATE"
 value: "2020-02-04T00:00:00+00:00"
 - name: "c$date_time" # datetime (yyyy-MM-
dd'T'HH:mm:ssXXX)
 type: "DATETIME"
 value: "2020-02-04T21:24:18+00:00"
 - name: "c$menu" # menu (no type property, you
can pass the string or the ID for the value property)
 value: "12"
 transitions:
 ...
 ...
 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 ...
 customProperties: "${liveChatInfo.value}"

Tip:

You can send the following GET request, which uses RightNow Object Query
(ROQL), to obtain a list of the column names:

curl --request GET \
--url https://<site.domain>/services/rest/connect/latest/
queryResults/?
query=select%20CustomFields.c.*%20from%20Incidents \
--header 'authorization: Basic <base64-encoded-
username+:+password>' \
--header 'osvc-crest-application-context: <some-comment>'

To get the valid values for a custom field, send a GET request that uses
RightNow Object Query (ROQL) like this:

curl --request GET \
--url https://<site.domain>/services/rest/connect/latest/
queryResults/?
query=select%20CustomFields.c.skillType%20from%20Incidents%20wh
ere%20CustomFields.c.skillType%20IS%20NOT%20NULL \
--header 'authorization: Basic <base64-encoded-
username+:+password>' \
--header 'osvc-crest-application-context: <some-comment>'

Chapter 60
Pass Customer Information to a Live Chat

60-26

The Legacy customFields Object
This section discusses the customerInformation object for skills that use an agent-
integration channel that was created before 20.01 or a channel that connects to an Oracle
B2C Service instance that's earlier than 19A.

You use the customFields object in the customProperties map to pass values for any Oracle
B2C Service custom field of type Incident.

The customFields object is an array of maps that contain name, dataType, and dataValue
properties, as shown in the following example. The name property's value is the field's lower-
case column name preceded by c$.

context:
 variables:
 liveChatInfo: "map"
 skillType: "string"
...
 setupCustomFields:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customerInformation:
 interfaceID:
 id:
 id: 1
 customFields:
Text Field
 - name: "c$da_text_field"
 dataType: "STRING"
 dataValue:
 stringValue: "SILVER"
Text Area
 - name: "c$da_text_area"
 dataType: "STRING"
 dataValue:
 stringValue: "This is a very long string that is more than 32
characters."
Integer
 - name: "c$da_integer"
 dataType: "INTEGER"
 dataValue:
 integerValue: 21
Menu
 - name: "c$da_menu"
 dataType: "NAMED_ID"
 dataValue:
 namedIDValue:
 name: "Item 1"
Instead of name, you can use
id:
id: 1
#

Chapter 60
Pass Customer Information to a Live Chat

60-27

Yes/No
 - name: "c$da_is_from_skill"
 dataType: "BOOLEAN"
 dataValue:
 booleanValue: true
Date (XML Schema Date)
 - name: "c$da_date"
 dataType: "DATE"
 dataValue:
 dateValue: "2019-10-26"
DateTime (XML Schema DateTime)
 - name: "c$da_datetime"
 dataType: "DATETIME"
 dataValue:
 dateTimeValue: "2019-10-26T21:32:52"
 transitions:
 ...
 ...
 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 ...
 customProperties: "${liveChatInfo.value}"

Tip:

You can send the following GET request, which uses RightNow Object Query
(ROQL), to obtain a list of the column names:

curl --request GET \
--url https://<site.domain>/services/rest/connect/latest/
queryResults/?
query=select%20CustomFields.c.*%20from%20Incidents \
--header 'authorization: Basic <base64-encoded-
username+:+password>' \
--header 'osvc-crest-application-context: <some-comment>'

To get the valid values for a custom field, send a GET request that uses
RightNow Object Query (ROQL) like this:

curl --request GET \
--url https://<site.domain>/services/rest/connect/latest/
queryResults/?
query=select%20CustomFields.c.skillType%20from%20Incidents%20wh
ere%20CustomFields.c.skillType%20IS%20NOT%20NULL \
--header 'authorization: Basic <base64-encoded-
username+:+password>' \
--header 'osvc-crest-application-context: <some-comment>'

Chapter 60
Pass Customer Information to a Live Chat

60-28

The GenericField definition in the Oracle B2C Service WSDL at http://
<sitename.domain>/services/soap/connect/chat_soap?wsdl=server describes the
dataType and dataValue structure:

<xs:element name="GenericField" type="GenericField"/>
 <xs:complexType name="GenericField">
 <xs:sequence>
 <xs:element name="DataValue" type="DataValue" minOccurs="1"
maxOccurs="1" nillable="true"/>
 </xs:sequence>
 <xs:attribute name="dataType" type="DataTypeEnum" use="optional"/>
 <xs:attribute name="name" type="xs:string" use="required"/>

Like the customerInformation fields, the same casing applies to the customProperties map
counterparts (the WSDL’s DataValue is dataValue in the map, for example).

Configure the Fields in the Dialog Flow
These steps describe the dialog flow configuration process for declaring the
customProperties object and setting its various values.

Step 1: Declare the Custom Properties Variable
In the context node, define a map variable for the customProperties property in the
System.AgentInitiation component. It’s a JSON object that can hold the chat customer
information and custom field values. In the following example, this variable is declared as
liveChatInfo:

context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
 interfaceId: "string"
 categoryId: "string"
 skillType: "string"
 liveChatInfo: "map"

Step 2: Set the Values for the customProperties Map Variable
Between the start state and the System.AgentInitation component definition, you need to
set the values that you need for the custom property map variable. You can set them through
a custom component, or through a series of value-setting components in the dialog flow
definition. Here’s an example of the latter approach.

states:
 ...

 setSkillType:
 component: "System.SetVariable"
 properties:

Chapter 60
Pass Customer Information to a Live Chat

60-29

 value: "pizza"
 variable: "skillType"
 transitions:
 next: "setCategory"

 setCategory:
 component: "System.SetVariable"
 properties:
 value: "604"
 variable: "categoryId"
 transitions:
 next: "setLiveChatInfo"

Step 3: Define the Fields for the customProperties Map Variable
Whether you set the map values through a custom component or through the dialog
flow, you need to structure the map object. Use the standard object formats unless the
agent integration channel was created before version 20.1 or the channel connects to
an Oracle B2C Service version that's earlier than 19A. Here's an example of the
standard format:

 setLiveChatInfo:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customerInformation:
 categoryID:
 id: "${categoryId}"
 customFields:
 - name: "c$skilltype"
 type: "STRING"
 value: "${skillType}"
 transitions:
 next: "agentInitiation"

Step 4: Add the customProperties to the System.AgentInitiation Component
Finally, add the customProperties property to the System.AgentInitiation
component and define it using an expression that accesses the map variable value.

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 subject: "A customer needs help regarding ${skillType}."
 agentChannel: "ServiceCloudIntegration"
 waitingMessage: "Let me connect you with someone who can further
assist you."
 resumedMessage: "Please wait, someone will be with you shortly."
 rejectedMessage: "Sorry no one is available now."
 errorMessage: "We're sorry! We're having system issues and we

Chapter 60
Pass Customer Information to a Live Chat

60-30

can't connect you with an agent."
 customProperties: "${liveChatInfo.value}"
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "initiationRejected"
 error: "tryAgain"
 initiationRejected:
 component: "System.Output"
 properties:
 text: "Perhaps it's outside their working hours or it's a holiday."
 transitions:
 return: "tryAgain"
 tryAgain:
 component: "System.Output"
 properties:
 text: "Please try again later."
 transitions:
 return: "tryAgain"

Tutorial: Pass Customer Information to a Live Chat
You can get a hands-on look at passing information to a live chat by walking through this
tutorial, which is part 2 of a series:

• Pass Customer Information to a Live Chat

Enable Attachments
Agent-integration channels that connect to Oracle B2C Service version 19A and later support
the ability of both agents and users to attach images, audio, video, and files to the
conversation.

If the following conditions are met, then both users and agents can click an attachments
button to attach the object to the conversation.

• You must use Web Chat for Service, or another messaging platform that supports
attachments. (Otherwise, users won't be able to attach files.)

• The skill's agent-integration channel must have been created using Oracle Digital
Assistant 20.1 or later. If the channel existed prior to version 20.1, then you must delete
the channel and re-create it.

• The channel must connect to Oracle B2C Service version 19A or later.

Note that when the above conditions are true, you must use the standard format to pass
custom field values as described in The Standard customFields Object.

Create an Incident Report
You can create an incident report (or service request) for Oracle B2C Service or Oracle
Fusion Service from any skill.

To create an incident report from your skill:

Chapter 60
Tutorial: Pass Customer Information to a Live Chat

60-31

1. Go to Settings > Additional Services > Customer Service Integration and
create an integration with the needed service.

You only need to do this once per instance.

2. Add the incident creation component to your flow. For the Visual Flow Designer,
see Incident Creation. For YAML, see System.IncidentCreation.

If you have created a Oracle Fusion Service integration and have selected Allow
only signed-in users to create service request as the authentication type, you
also need to do the following:

a. Set the Incident Creation component's Requires Authentication setting to
True.

b. Add an OAuth Account Link component to the dialog flow to handle user
authentication. For the Visual Flow Designer, see OAuth Account Link. For
YAML, see System.OAuthAccountLink.

Tip:

After creating and configuring the Incident Creation component, click
Validate in the page's banner to validate the skill. Among other things, this
validation will ensure that you have entered a service name in the Incident
Creation component that matches the name you have given to the customer
service integration that you created.

Get Survey Information
If you want to ask the customer to fill out a survey about the conversation with the
agent, you can get the conversation's session ID and engagement ID when the chat
session is established, and then pass those values to a survey service when the
conversation ends.

Let's say, for example, that you used a survey service such as Oracle Feedback Cloud
Service to develop a survey which takes session and engagement parameters. When
the agent conversation ends, you can display a link to the survey form, such as
https://example.com?session=12345&surveyid=12345. Here's how to use the
System.AgentInitiation component's chatResponseVariable property to get the IDs
that you need, and then use the System.AgentConversation.conclusionMessage
property to pass them in a link to a survey service.

When the chat session is established with the live agent, Oracle B2C Service sends
the following payload for channels that are created in version 20.1 and later and
connect to Oracle B2C Service 19A and later. This is referred to as the standard
format.

{
 "sessionId": "string", // agent session id
 "completedSurveyId": int,
 "engagementId": int, // survey id
 "cancelledSurveyId": int
}

Chapter 60
Get Survey Information

60-32

For channels were created prior to 20.1, and for channels that connect to a Oracle B2C
Service instance that's earlier than 19A, it sends this payload. This is referred to as the
legacy format.

{
 "sessionId": "string", // agent session id

 "completedSurveyId": {
 "id": int
 },

 "engagementId": { // survey id
 "id": int
 },

 "cancelledSurveyId": {
 "id": int
 }
}

The dialog engine stores this payload in the map variable that's referenced by the
System.AgentInitiation.chatResponseVariable property. (If
System.AgentInitiation.chatResponseVariable isn't defined, then the payload is
discarded.)

In the following example that uses the standard format, the System.AgentConversation
component outputs a survey link after the agent conversation ends. The link includes the
session and engagement ID from the map that was named by the chatResponseVariable
property.

context:
 variables:
 agentSystemResponse: "map" # chat request response is stored in this
variable.
 ...
states:
 ...
 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "B2CServiceIntegration"
 nlpResultVariable: "iResult"
 chatResponseVariable: "agentSystemResponse"
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "tryAgain"
 error: "tryAgain"
 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "B2CServiceIntegration"
 nlpResultVariable: "iResult"
 exitKeywords: "bye, exit, take care, goodbye, quit"

Chapter 60
Get Survey Information

60-33

 expiryMessage: "Your chat with the agent timed out."
 conclusionMessage: "Can you please fill out this survey: <PUT
SURVEY URL HERE>?session=$
{agentSystemResponse.value.sessionId}&surveyid=$
{agentSystemResponse.value.engagementId}"
 transitions:
 next: "endPrompt"
 actions:
 agentLeft: "endPrompt"
 expired: "sessionExpired"
 error: "agentConversationError"

Tip:

You can configure the survey to take other parameters, such as the user's
name and email address.

Transfer the Chat to a Specific Oracle B2C Service Queue
Oracle B2C Service uses chat rules and queues to sort incoming chat requests based
on Chat Customer Information and Incident custom field values.

By default, the skill routes all agent chats to the default queue. However, you can take
advantage of the System.AgentInitiation component's customProperties property
to pass in the values for a specific rule that will filter the chat request to the desired
queue.

An administrator can set up a Oracle B2C Service queue, profile, and chat rules to
route a skill's chat request to the appropriate agents. For example, the Oracle B2C
Service interface might have a chat rule that if the fromBot custom field is set to Yes,
then add the chat request to the Bot queue. When its rule base doesn't have a rule for
an incoming chat, then it sends the chat request to a default queue. (You can learn
more about rules at Business Rules in Using Oracle B2C Service.)

Before you begin, you'll need the names and valid values of the custom fields or
customer information (or both) that have been defined for the queue's chat rule. If you
have admin access to the Oracle B2C Service desktop Service Console, then you can
see the chat rules from the Configuration > Site Configuration > Rules > Chat
page. Otherwise, ask your Oracle B2C Service administrator to provide this
information.

You'll also need to understand how to structure the map object that you use with the
customProperties property. See Pass Customer Information to a Live Chat.

1. If you haven't already, in the context node, define a map variable to use with the
System.AgentInitiation component's customProperties property. For example:

context:
 variables:
 greeting: "string"
 name: "string"
 liveChatInfo: "map"

Chapter 60
Transfer the Chat to a Specific Oracle B2C Service Queue

60-34

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=business-rules

2. Define the fields for the map variable.

Here's an example of the standard format for agent-integration channels that were
created in version 20.01 or later and that connect to Oracle B2C Service version 19A or
later.

 setLiveChatInfo:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customFields:
 - name: "c$frombot"
 type: "BOOLEAN"
 value: 1
 transitions:
 next: "agentInitiation"

Here's an example of the legacy format for agent-integration channels that were created
prior to version 20.01 or that connect to a version that is earlier than Oracle B2C Service
version 19A.

 setLiveChatInfo:
 component: "System.SetVariable"
 properties:
 variable: "liveChatInfo"
 value:
 customFields:
 - name: "c$frombot"
 dataType: "BOOLEAN"
 dataValue:
 booleanValue: true
 transitions:
 next: "agentInitiation"

3. Add the customProperties property to the System.AgentInitiation component, and set
it to the value of your map variable. For example:

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "B2CServiceIntegration"
 nlpResultVariable: "iResult"
 customProperties: "${liveChatInfo.value}"
 waitingMessage: "Waiting for an agent..."
 rejectedMessage: "Agents are not available right now."
 resumedMessage: "We're connecting you to an agent..."
 errorMessage: "Oops! We're having system issues. We're sorry, but
we can't connect you with an agent right now."
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "tryAgain"
 error: "tryAgain"

Chapter 60
Transfer the Chat to a Specific Oracle B2C Service Queue

60-35

 tryAgain:
 component: "System.Output"
 properties:
 text: "Please try again later."
 transitions:
 return: "tryAgain"

Tutorial: Transfer to a Live Chat Queue
You can get a hands-on look at transferring to a live chat queue by walking through
this tutorial, which is part 3 of a series:

• Transfer a Chat Session to a Live Chat Queue

Chapter 60
Tutorial: Transfer to a Live Chat Queue

60-36

Part VIII
Analytics

• Analytics

61
Analytics

The Analytics reports enable you to gauge how well your skills and digital assistants resolve
intents and complete chat sessions both on an individual basis and as a group.

You can access these instance-wide reports by choosing Analytics from the left menu.

By default, the report renders metrics and graphs for all the instance's skills and digital
assistants. You can change the view to review the cross-version performance of a digital
assistant or skill by querying the Digital Assistant/Skill menu.

61-1

Metrics
These metrics render for both the instance and for individual skills.

• Total Utterances – A comparison of the voice and text traffic.

• Total Resolved and Unresolved Intents – The comparison and trend of the voice
and text utterances that got resolved to intents to those that did not.

• Defection Rate – For the skills integrated with live agents through Oracle B2C
Service Chat and Oracle Fusion Service Chat, you can use this report to track the
number of conversations that were completed because skills, not human agents,
answered customer questions or fulfilled customer requests.

• Engagement Channels – A break down of each skill or digital assistant in the
instance by channel usage. This chart also includes the Agent Channel (when it
exists) for integrations with Oracle B2C Service.

• Languages Used – A breakdown of each skill or digital assistant in the instance
by language.

Skill- and Digital Assistant-Level Reports
The Analytics report for individual skills contains the same metrics that are rendered at
the instance level, but here they're aggregated across all versions of a selected skill.

Traffic may have increased or decreased because of changes introduced by a new
version of the skill. To access the Insights report for a particular version of the skill,
click the version number to the left of the graphs.

Chapter 61
Metrics

61-2

Skill Performance
The skill-level enables you assess the skill's completion rate, the number completed
conversations taken against the total conversations a given period. The Skill Performance
report includes other factors that influence the skill’s performance: the number of errors
(system-handled errors, infinite loops, timeouts) and unresolved intents. For these, the report
counts the number of intents that couldn’t resolve to the confidence threshold for all of
incomplete conversations during the period. These metrics are aggregated across all
versions of the skill. To compare the metrics for a specific version, click Compare Versions.

Compare Metrics Across Different Versions of Skills

Ideally, each new version of a skill should result in an increase in the number of completed
conversations and simultaneous downward trend in the number of errors and incomplete
conversations.

Chapter 61
Skill- and Digital Assistant-Level Reports

61-3

To compare how different versions have impacted the success of a skill, click
Compare Conversations in the Skills report to open the dialog.

You can then filter the chart and KPIs by the following metrics:

• Total Count – The number of conversations (completed, incomplete, in progress)

• Completion Rate – The ratio of completed conversations to total conversations

• Incomplete Rate – The ratio of incomplete conversation to total conversations

• Unresolved – The number of unresolved conversations

You can narrow down the versions that you want to compare by selecting a version in
the legend.

Chapter 61
Skill- and Digital Assistant-Level Reports

61-4

Clicking the summary tile opens the analytics for that version of the skill.

Chapter 61
Skill- and Digital Assistant-Level Reports

61-5

Part IX
Data Management

• Data Management

62
Data Management

You can use the Data Management pages to manage the storage space for Insights data that
has been generated by the skills on your Oracle Digital Assistant instance.

For instances provisioned with the Development shape, you're allotted 40GB of storage. For
instances provisioned with the Production shape, you're allotted 100GB of storage. Insights
reporting stops when this storage has been depleted, so you can ensure that Insights
reporting continues by using the Data Management pages to monitor storage availability and
free up space by exporting data to an archive file before purging it, or by simply purging it.
You can perform archive and purge tasks manually, or schedule these tasks based on the
document retention period that’s designated by your documentation retention policy.

You can access Data Management by first clicking Settings in the left navbar then by clicking
Data Management. Here’s how you use the Data Management pages:

• Monitor – Check for data usage threshold alerts and monitor capacity.

• Manage – Manually purge and archive data, check the status of archive and purge tasks
that have either been triggered manually or automatically, and view the history or archive
and purge tasks

• Auto Purge Preference – Implement your organization’s document retention policy by
automating the archive and purge tasks related to the documentation retention period.

Monitor Insights Data Storage Capacity
Use the Data Monitoring dashboard to view storage consumption on both a daily and a
monthly basis for a given time period.

View Storage Indicators
Use the tiles on the Data Monitoring page to:

• Track the alerts generated during the selected period – The Monitor dashboard displays
warning- and critical-level alerts that correspond to the 60% and 80% data usage
thresholds that are set in the page’s Cumulative Percentage graph. In addition to
enumerating these alerts, this tile also tallies the info-level alerts, which confirm that data
has been removed from the database after the successful completion of purge tasks,
both manual and automated.

62-1

The report starts generating alerts when the storage in your allocated space
reaches the 60% warning level. Clicking the Alerts tile displays a history of alerts
for the period.

• Monitor the total amount of allocated storage space – For the selected period, you
can find out how much of it’s been used, how much storage remains, and the
average amount of storage that the skills in your instance consume.

View Storage Capacity
The Data Management report provides two views of storage consumption:

• Cumulative Percentage – This graph gives you the percentage of storage that’s
used up for each day during a selected time period. It plots data up to, but not
including, the last day of the selected date range. For example, if January 7th is
the last day of the selected date range, then the graph won’t include the capacity
used up for that day. The line concludes with the usage for January 6th instead.
The line continues to rise until an Export and Purge task succeeds. (The task itself
might have been signaled by the trend line crossing the graph’s 60% or 80%
thresholds.) After the data has been purged, the drop in the graph indicates how
much capacity has been freed up.

Chapter 62
Monitor Insights Data Storage Capacity

62-2

• Data Volume – This bar chart measures the actual amount of available storage (as
opposed to a percent) by plotting the data consumption by day, week, or month
(depending on the selected time span).

Manage Data Capacity with Archive and Purge Tasks
The Archive and Archive & Purge options on the Management page allow skill developers
and administrators to maintain Insights data. While both these tasks export the conversations
logged by Insights into a CSV file, they have different uses. Archive and purge tasks free up
data capacity while archive tasks do not.

Skill developers typically create archive tasks to review customer input for potential additions
to the training data. An archive task is part of the ongoing effort to improve skill quality, not to
manage storage.

An archive and purge task, on the other hand, does free up storage. System administrators,
not skill developers, usually create these tasks. They are either performed manually in
response to a capacity alert, or they are triggered automatically based on the schedule set
forth in a documentation retention policy. When archive and purge tasks complete, they
generate a ZIP file, one that itself contains ZIP files for every skill that generated Insights data
within the date range specified for the task. If only a single skill generated Insights data for
the selected period, then an archive task generates a ZIP file that contains a single CSV file.
Although archive and purge tasks allow you to maintain the Insights data in a CSV file, the
actual data no longer exists in storage so it can’t be recovered.

Chapter 62
Manage Data Capacity with Archive and Purge Tasks

62-3

Free Capacity Manually with Archive and Purge Tasks
When there’s not enough free space to support ongoing Insights reporting,
administrators can free up space manually by using the Archive & Purge option in the
Manage page. For example, when the Monitor dashboard displays a warning-level
alert, you (an administrator) would use this option to submit a task that archives and
purges the Insights data that’s been logged for a specific period. If that period ends
with the current date, then the data for conversations that are in-progress may also get
removed. After you’ve created the task, you can track it in the Manage page.

Note:

You can't preemptively purge data to maintain future storage capacity. You
can only manually archive and purge that that’s been collected up to, and
including, the current date.

Schedule Automated Archive and Purge Tasks
While administrators can dispose of excess data manually when critical levels of
consumption threaten Insights reporting, their organization’s document retention policy
may require automated archive and purge cycles that can be tracked for auditing
purposes. As an administrator, you can implement your documentation retention
policy’s requirements for document retention periods and scheduled data purges by
setting the properties on the Auto Purge Preference page. The record of the
automated archive and purge tasks that have been generated as a result of your auto
purge configuration is maintained by the Manage report.

By default, auto purge is not enabled. To set the retention period, purge schedule, data
usage threshold and other properties, you must first switch on Enable Auto Purge.
After you’ve activated this option, data can be purged from storage when it has either
been stored for longer than the number of days specified for the retention period, when
a data usage threshold has been reached, or because of a combination of both these
factors. For example, if your organization’s document retention policy sets the
document retention period for 90 days and the data storage threshold at 60% capacity,
then data that is older than 90 days gets purged whenever consumption rises above
the 60% threshold.

The Auto Purge Preferences
To implement an auto purge policy:

• Enable Auto Purge – Switch on to purge data from storage when it has either
been stored for longer than the Retention Period, when the Data Usage Threshold
has been reached, or both.

Note:

Switching this option off deletes, rather than disables the auto purge
policy created by these settings.

Chapter 62
Manage Data Capacity with Archive and Purge Tasks

62-4

• Enable Archiving – By default, this option is enabled so that data gets archived before
it’s purged from storage. If you switch this option off, then the data will be just be purged
after the retention period has ended or the usage threshold has been reached. Data
that’s purged from storage cannot be recovered.

• Retention Period – The number of days, according to your data retention policy, that
data should be retained in storage before it can be purged. Any purge or archive tasks
can only be run outside of this period. For example, if the retention period is 90 days,
then only the data that has been added to storage in the last 90 days will be kept. Any
data that's been stored for longer than 90 days will be purged. If you do not want to set a
retention period, then enter 0. In this case, all data will be either be archived, purged, or
both, depending on the auto purge preferences.

• Data Usage Threshold – A number between 0 and 99 that represents the storage limit
as a percentage. 60 means 60 percent, for example. Data gets purged when storage
consumption exceeds this cap. If you've set a Retention Period, then older data will be
purged when the volume of data exceeds the Data Usage Threshold. If you don't want to
set a threshold, then enter 0. In this case, data will be purged per the Retention Period
only.

• Schedule – Specifies the day (or days) on which the auto-purge and archiving process
can be run. You can set this in combination with the Retention Period according to your
data retention policy.

• Timeout – The amount of time (in seconds) that automatic archive and purge tasks can
run before they time out and fail. The time it takes to complete these tasks varies
depending on the amount of data within the selected date range, so large jobs may take
a longer time to complete.

Manage, Track, and Monitor Archive Tasks
In addition to creating archive and purge tasks, the Manage page lets you monitor, and
search for, manually-created and automated archive and purge tasks. For the automated
tasks, you can use the page’s filter and sort functions to create an audit log. In addition to
searching through tasks, you can use this page to:

• Create manual archive and purge tasks.

• Download ZIP files of completed tasks.

• Remove archive tasks (and delete their archived data).

After a task has been submitted, it's listed in a table with the following columns.

• Task: The type of task: Archive, Archive & Purge, Purge, and Auto Purge

• Name: The task name

• Run: The timestamp marking when the task was completed

• Created By: The name of the task creator. For auto purge tasks, the task creator name is
Automation.

• Date Range: The starting and ending date for the Insights data that has been purged
and/or archived.

• Status: Submitted, Archive Failed, Purge Failed, and No Data (when there's no data to
export within the date range defined for the task), and Archive Succeeded, Archive &
Purge Succeeded, hyperlinks that let you download a ZIP file that contains separate
CSVs for each skill that generated Insights data during the selected period.

Chapter 62
Manage, Track, and Monitor Archive Tasks

62-5

Tip:

You can filter the table's display using various criteria, such as the name
of the task and task creator, the task status or the task type. To track the
auto purge tasks for auditing purposes, enter Automation in the Filter
by Name or Created By field.

Chapter 62
Manage, Track, and Monitor Archive Tasks

62-6

Part X
Reference

• Legacy - YAML-Based Dialog Flow Editor

• Legacy - YAML-Based Dialog Flow Components

• Conversation Markers for Insights

• Apache FreeMarker Reference

• Feature Support by Language

A
The Dialog Flow Definition

The legacy mode for designing dialog flows is based on OBotML, a special implementation of
the YAML markup language.

Note:

The default mode for dialog flows is the Visual mode, which has many advantages
over the YAML-based editor, including the ability to create modular flows and to
design with much less code. If you are designing a new skill, you should use Visual
mode. See Visual Flow Designer.

The Dialog Flow Structure in YAML Mode
Your OBotML definition is divided into three main parts: context, defaultTransitions, and
states. You define the variables that are available across the session within the context
node. The definition of the flow itself is described in the states section.

The dialog flow is laid out as follows:

main: true
name: "HelloKids"
context:
 variables:
 variable1: "entity1"
 variable2: "error"
...

A-1

States
 state1:
 component: "a custom or built-in component"
 properties:
 property1: "component-specific property value"
 property2: "component-specific property value"
 transitions:
 actions:
 action1: "value1"
 action2: "value2"
 state2:
 component: "a custom or built-in component"
 properties:
 property1: "component-specific property value"
 property2: "component-specific property value"
 transitions:
 actions:
 action1: "value1"
 action2: "value2"
...

Note:

In platform version previous to 20.12, the dialog flow starts off with the
metadata node, which contains a platformVersion node. Starting with
platform version 20.12 these nodes are deprecated.

The context Node
The variables that you define within the context node can be primitive types like int,
string, boolean, double, or float. You can define a variable as a map, which is a
JSON object, or you can use variables to describe error handling.

As illustrated by the following snippet from the PizzaBot dialog flow definition, you can
name variables for built-in or custom entities (which in this case, are the PizzaSize
and PizzaCrust variables). Along with built-in entities and the custom entities, you can
also declare a variable for the nlpresult entity, which holds the intent that's resolved
from the user input. These variables are scoped to the entire flow. How Do I Write
Dialog Flows in OBotML? tells you how to assemble the different parts of the dialog
flow. You can also scope user variable values to enable your bot to recognize the user
and persist user preferences after the first conversation. User-Scoped Variables in
YAML Dialog Flows describes these variables.

main: true
name: "PizzaBot"
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"

Appendix A
The Dialog Flow Structure in YAML Mode

A-2

The defaultTransitions Node
You can set transitions in two places: as part of the component definitions in the dialog flow's
states, or in the defaultTransitions node. This node sets the global navigation. For
example:

defaultTransitions
 next: "..."
 error: "..."
 actions:
 action_name1: "..."
 action_name2: "..."

The default transition acts as a fallback in that it gets triggered when there are no transitions
defined within a state, or the conditions required to trigger a transition can't be met.

Use the defaultTransitions node to define routing that allows your skill bot to gracefully
handle unexpected user actions. In particular, you can use it to enable your skill bot to react
appropriately when a user taps an option in a previous reply instead of one of the options
presented in the bot's current (and more appropriate) reply. As shown by the NONE action in
the following snippet, you can configure this transition to route to a state that handles all of
the unexpected actions.

defaultTransitions:
 error: "globalErrorHandler"
 ...
globalErrorHandler:
 component: System.Switch
 properties:
 source: "${system.errorState}"
 values:
 - "getOrderStatus"
 - "displayOrderStatus"
 - "createOrder"
 transitions:
 actions:
 NONE: "unhandledErrorToHumanAgent"
 getOrderStatus: "handleOrderStatusError"
 displayOrderStatus: "handleOrderStatusError"
 createOrder: "handleOrderStatusError"

The states Node
In YAML-based dialogs, you define each bit of dialog and its related operations as a
sequence of transitory states, which manage the logic within the dialog flow. To cue the
action, each state node within your OBotML definition names a component that provides the
functionality needed at that point in the dialog. States are essentially built around the

Appendix A
The Dialog Flow Structure in YAML Mode

A-3

components. They contain component-specific properties and define the transitions to
other states that get triggered after the component executes.

 state_name:
 component: "component_name"
 properties:
 component_property: "value"
 component_proprety: "value"
 transitions:
 actions:
 action_string1: "go_to_state1"
 action_string2: "go_to_state2"

A state definition might include the transitions that are specific to the component or the
standard next, error, actions, or return transitions (which are described in Flow
Navigation and Transitions) that you can define for any component. Transitions set
within states can be overriden by the global transitions defined in the
defaultTransitions node.

The PizzaBot includes a sequence of state nodes that verify a customer’s age. These
states include components that take the user-supplied integer value, check it, and then
output a text string as appropriate. To start off the process, the askage state’s
component requests the user input then moves on to the checkAge state, whose
AgeChecker component validates the user input. Here, the dialog is at a juncture: its
transitions key defines the block or allow states. If the allow state is triggered, then
the user can continue on. The subsequent state definitions will track the user input to
preserve the user’s context until she completes her order. If the user input causes the
AgeChecker component to trigger the block action, however, then conversation ends
for the under-age user because the dialog transitions to the underage state.

main: true
name: "PizzaBot"
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 cheese: "CheeseType"
 iResult: "nlpresult"
...

 askage:
 component: "System.Output"
 properties:
 text: "How old are you?"
 transitions:
 next: checkage
 checkage:
 component: "AgeChecker"
 properties:
 minAge: 18
 transitions:
 actions:
 allow: "crust"

Appendix A
The Dialog Flow Structure in YAML Mode

A-4

 block: "underage"
 crust:
 component: "System.List"
 properties:
 options: "Thick,Thin,Stuffed,Pan"
 prompt: "What crust do you want for your Pizza?"
 variable: "crust"
 transitions:
 ...
 underage:
 component: "System.Output"
 properties:
 text: "You are too young to order a pizza"
 transitions:
 return: "underage"

How Do I Write Dialog Flows in OBotML?
OBotML uses a simple syntax for setting variables and defining states. Because it’s a variant
of YAML, keep the YAML spacing conventions in mind when you define the dialog flow. You
don’t need to start from scratch. Instead, you can use the default dialog flow definition as a
basic template.

The template already has the context and states nodes, so you can just delete the existing
boilerplate and add your own content. To help you build state definitions that are syntactically
sound, use the component templates in the + Component menu. See Dialog Flow Syntax for
tips on setting variables and defining states.

Tip:

Click Validate as you write your dialog flow to check for syntax errors and to apply
best practices.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-5

Dialog Flow Syntax
Here are some how-to examples of using OBotML syntax in dialog flows that are
developed in YAML mode.

How Do I? Use this

Set variables that persist the
context across the entire dialog
flow?

Within the context node, use the following syntax: variablename:
"variableType" For example:

main: true
name: "FinancialBotMainFlow"
context:
 variables:
 accountType: "AccountType"
 txnType: "TransactionType"
 txnSelector: "TransactionSelector"
 toAccount: "ToAccount"
 spendingCategory: "TrackSpendingCategory"
 paymentAmount: "string"

You can define variables as entities (like AccountType and ToAccount) and as
primitives (paymentAmount: “string”).

Define an error handler for your
skill?

Define the defaultTransitions node that points to a state that handles
errors. Typically, you'd add this state at the end of your dialog flow definition. For
example:

context:
 variables:
 iresult: "nlpresult"
defaultTransitions:
 next: "ImplicitTransitionDetected"
 error: "MyErrorState"
...
states:
...
 MyErrorState
 component: "System.Output"
 properties:
 text: "Problem detected in \"${system.errorState}\"
state."
 transitions:
 return: "done"

See Configure the Dialog Flow for Unexpected Actions.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-6

How Do I? Use this

Define a variable that holds the
value for the resolved intent?

Within the context node, define a variable that names the nlpresult entity.
As its name implies ("nlp" stands for Natural Language Processing), this entity
extracts the intent resolved by the Intent Engine. Nearly all of the reference bots
declare nlpresult variables. For example:

main: true
name: "FinancialBotMainFlow"
context:
 variables:
 iResult: "nlpresult"

Control the dialog flow based on
the user input?

Typically (though not always), you’d define an nlpresult variable property
for the System.Intent component that returns the result from the Intent
Engine. See System.Intent. The Dialog Engine proceeds based on the value
returned by its nlpresult variable (iResult).

As described in The Dialog Flow Structure in YAML Mode, you can declare an
nlpresult variable in the flow’s context node to hold the resolved intent
(iResult: "nlpresult"). The potential outcome is defined by one of the
states named in the System.Intent's actions node. This definition for the
System.Intent component tells the Dialog Engine to move on to the next state
that matches a resolved intent whose accuracy rate at parsing user data is at
least 70% or higher (which is the default confidence threshold value). See also
How Confidence Threshold Works and Tune Intent Resolution Before
Publishing.

Equip my skill to handle
unresolved intents?

Define a state for the System.Intent’s unresolvedIntent action.
unresolvedIntent is an intent that we provide for you to track the messages
that couldn’t be resolved within the minimum confidence threshold.

Example:

unresolvedIntent: "unresolved"
...
 unresolved:
 component: "System.Output"
 properties:
 text: "Sorry I don't understand that question!"
 transitions:
 return: "unresolved"

Appendix A
How Do I Write Dialog Flows in OBotML?

A-7

How Do I? Use this

Enable components to access
variable values?

Use the .value property in your expressions (${crust.value}). To substitute
a default value, use ${variable.value!\"default value\"} . For example,
thick is the default value in ${crust.value!\"thick\"}. For example:

context:
 variables:
 size: "PizzaSize"
 confirm: "YES_NO"
 ...
 confirmState:
 component: "System.List"
 properties:
 options: "Yes,No"
 prompt: "You ordered a ${size.value!\"medium\"}
pizza. Is this correct?"
 variable: "confirm"
...

Use the Apache FreeMarker default operator (${variable.value!\"default
value\"}) if it’s likely that a null value will be returned for a variable. You can
use this operator wherever you define variable replacement in your flow, like the
value definitions for variables used by system and custom components, or the
variables that name states in a transitions definition. See Defining Value
Expressions for the System.Output Component.

Save user values for return
visits?

Within a state definition, add a variable definition with a user. prefix. See Built-
In YAML Components for Setting User Values. For example:

 checklastorder:
 component: "System.ConditionExists"
 properties:
 variable: "user.lastpizza"

To find out more about user variables, see the dialog flow for the
PizzaBotWithMemory reference bot.

Exit a dialog flow and end the
user session.

Use a return transition.

Example:

 printBalance:
 component: "BalanceRetrieval"
 properties:
 accountType: "${accountType.value}"
 transitions:
 return: "printBalance"

Flow Navigation and Transitions
You can set the dialog engine on a specific path within the dialog flow by setting the
transitions property for a state. Transitions describe how the dialog forks when variable

Appendix A
How Do I Write Dialog Flows in OBotML?

A-8

values are either set or not set. They allow you to plot the typical route through the
conversation (the “happy” flow) and set alternate routes that accommodate missing values or
unpredictable user behavior.

The transition definition depends on your flow sequence and on the component.

To do this... ...Use this transition

Specify the next state to be executed. Set a next transition (next: "statename"), to instruct the
Dialog Engine to jump to the state named by the next key. As
noted in next Transition, you can add a next transtion to any
state except for the ones that have a return transition.

Reset the conversation. Use a return transition to clear any values set for the context
variables and resets the dialog flow. You can give this
transition any string value.

 unresolved:
 component: "System.Output"
 properties:
 text: "Sorry! I don't understand that
question!"
 transitions:
 return: "unresolved"

Defining a return: "done" transition terminates the user
session and positions the Dialog Engine at the beginning of
the flow.

Trigger conditional actions. Define actions keys to trigger the navigation to a specific
state. When a component completes its processing, it returns
an action string that instructs the Dialog Engine where to go
next. If you don’t define any action keys, then the Dialog
Engine relies on the default transition or a next transition (if
one exists). You can define as many actions as needed. Some
built-in components have specific actions. For example, a
component like System.MatchEntity that evaluates an Apache
FreeMarker expression, uses match and nomatch actions.
System.OAuthAccountLink has textReceived, pass, and
fail actions, and the user interface components use their
own actions (described in Transitions for Common Response
Components). Use the component templates as a guide. You
can define an actions transition on any state except for ones
that have a return transition.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-9

To do this... ...Use this transition

Handle errors. Components sometimes throw errors. This often happens
because of a system-related problem or failure (invalid
passwords, invalid hostnames, or communications errors).
Setting an error transition that names an error-handling state
allows your skill to gracefully handle problems:

transitions:
 error: "handleMe"

If you don’t set an error transition, then the skill outputs the
Unexpected Error Prompt (Oops! I’m encountering a spot of
trouble) and terminates the session. You can define an error
transition within any state except for ones that have a return
transition.
Some components have an error defined as an action. These
built-in error transitions handle component-specific errors:

transitions:
 actions:
 error: "handleMe"

You can use different types of transitions in the same state. In the following example,
the Dialog Engine navigation is based on an action or an error. When the component
doesn't evaluate to either one, then the Dialog Engine follows the next transition:

state_name:
 component: "component name"
 properties:
 component_property: "value"
 component_proprety: "value"
 transitions:
 next: "go_to_state"
 error: "go_to_error_handler"
 actions:
 action_string1: "go_to_state1"
 action_string2: "go_to_state2"

Note:

While you can define more than one transition, the return transition is an
exception: you can't combine a return transition with the error, next or
actions transitions.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-10

next Transition
You use the next transition to specify the default next state. When a state combines error,
actions, and next transitions, the next transition only gets triggered when the component
can't return a string that satisfies either of the error or actions transitions.

To ensure that a next transition gets triggered whenever errors or actions can't, define a next
action within the defaultTransition node.

context:
 variables:
 name: "string"
defaultTransitions:
 next: "nextRules"
states:
 getName:
 component: "System.Text"
 properties:
 prompt: "What's your name please?"
 variable: "name"
 transitions:
 next: "printName"
 printName:
 component: "System.Output"
 properties:
 text: "Hello ${name.value}."
 transitions:
 return: "done"
 nextRules:
 component: "System.Output"
 properties:
 text: "Hello ${name.value}. I told you! Next transitions rule the
game!"
 transitions:
 return: "done"

Configure the Dialog Flow for Unexpected Actions
When designing your dialog flow, you typically start modeling the “happy” flow, the path that
the user is most likely to follow. Here are some solutions when users follow to the "unhappy"
path, because their actions do not correspond to the current dialog flow state.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-11

Scenario Solution

Instead of tapping buttons, the user
responds inappropriately by entering
text.

To enable your bot to handle this gracefully, route to a state where the
System.Intent component can resolve the text input, like
textReceived: Intent in the following snippet from the CrcPizzaBot:

ShowMenu:
 component: System.CommonResponse
 properties:
 metadata: ...
 processUserMessage: true
 transitions:
 actions:
 pizza: OrderPizza
 pasta: OrderPasta
 textReceived: Intent

Appendix A
How Do I Write Dialog Flows in OBotML?

A-12

Scenario Solution

Users scroll back up to an earlier
message and tap its options, even
though they’re expected to tap the
buttons in the current response.

By default, Digital Assistant handles out-of-order messages, but you
can override or customize this behavior, as described in How Out-of-
Order Actions Are Detected.

context:
 variables:
 iresult: "nlpresult"
defaultTransitions:
 next: "ImplicitTransitionDetected"
 error: "MyErrorState"
 actions:
 system.outOfOrderMessage:
"HandleUnexpectedAction"

...

 HandleOutOfOrderMessage:
 component: "System.Switch"
 properties:
 variable: "system.actualState"
 values:
 - "ShowMenu"
 - "OrderPizza"
 - "AskPizzaSize"
 transitions:
 actions:
 NONE: "ActionNoLongerAvailable"
 ShowMenu: "${system.actualState}"

For example, adding a default system.outofOrderMessage transition
tells the Dialog Engine to transition to a single state that handles all of
the out-of-order messages, such as the HandleUnexpectedAction
state in the OBotML snippet above. You can use different approaches to
create this state:
• You can use the System.Output or System.CommonResponse

component that outputs a message like “Sorry, this option is no
longer available” along with a return: "done" transition to
invalidate the session so that the user can start over. For example:

ActionNoLongerAvailable:
 component: "System.Output"
 properties:
 text: "Sorry, this action is no longer
available"
 transitions:
 return: "done"

• Using a System.Switch component, you can enable your bot to
honor some of the request actions by transitioning to another state.
Depending on the factors involved in honoring the request, you may
need to create a custom component to implement the routing.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-13

Call a Skill from Another Skill from a YAML Dialog Flow
There might be times when you want to provide users an explicit option to temporarily
leave the skill they are engaged with to do something in a second skill within the same
digital assistant. For example, if they are in a shopping skill and they have made some
selections, you could display a button that enables them to jump to a banking skill (to
make sure that they have enough money for the purchase) and then return to the
shopping skill to complete their order.

To address this in a YAML dialog flow, you can configure an action in a skill to initiate
interaction with a different skill in the same digital assistant and then return to the
original flow.

Here's how it works:

1. You use the System.CommonResponse component to present the user a button to do
something in another skill.

The button is based on a postback action, in which you configure the payload to
provide an utterance that is directed toward the target skill. Ideally, that utterance
should contain the invocation name of the target skill (i.e. be an explicit invocation)
in order to maximize the likelihood that routing to that skill will occur. By doing this,
you essentially hard-code an utterance to trigger the desired intent.

Here's the format of that code:

 component: "System.CommonResponse"
 properties:
 metadata:
 ...
 responseItems:
 - type: "cards"
 ...
 actions:
 ...
 - label: "Press me to switch to different skill"
 type: "postback"
 payload:
 action: "system.textReceived"
 variables:
 system.text: "utterance with invocation name that
you want passed to the digital assistant"
 ...

By using a system.textReceived action and specifying the text in the
system.text variable, you ensure that the postback is treated as a user message
that can be properly routed by the digital assistant.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-14

Note:

When you use system.textReceived this way,system.text is the only variable
that you can define in the postback payload. Any other variables in the payload
are ignored.

2. You set the textReceived transition to the state containing the System.Intent
component.

 transitions:
 actions:

 textReceived: "Name of the state for the System.Intent component"

This is necessary to ensure that the digital assistant provides an appropriate fallback
response if the digital assistant does not contain the target skill.

For this to work, the skill's System.Intent component must have its daIntercept
property set to "always" (which is the default).

If the target skill is in the digital assistant, the digital assistant recognizes the explicit
invocation, takes control of the request (which would normally be handled by the component),
and routes the request to the target skill's System.Intent component. Once the flow in the
target skill is finished, the user is returned to the calling skill.

If the target skill is not in the digital assistant (or the calling skill is exposed without a digital
assistant), the calling skill's System.Intent component is invoked and the intent should
resolve to unresolvedIntent.

Tip:

To handle the case where the target skill's invocation name is changed when it is
added to a digital assistant, you can use a custom parameter to pass in the skill's
invocation name in the system.text variable.

For example, you could create a parameter called
da.CrcPizzaCashBankInvocationName in the pizza skill and give it a default value of
CashBank. You could then reference the parameter like so:

system.text: "ask $
{system.config.daCrcPizzaFinSkillInvocationName}, what is my balance"

If the invocation name of the skill is changed, you simply change the value of the
custom parameter to match the new invocation name.

See Custom Parameters.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-15

Note:

When you use an explicit invocation in the system.text variable, the user
may see the message with that button twice:

• When they are presented the button to navigate to the other skill.

• When they complete the flow in the other skill.

If you don't want the message to appear the second time, use an implicit
invocation in the system.text variable instead of explicit invocation. An
implicit invocation is an utterance that matches well with a given skill without
using the skill's invocation name (or a variant of the invocation name with
different spacing or capitalization).

Example: Call a Skill from Another Skill
For example, here is an intent for ordering pizza (OrderPizza) that gives the user the
option to check their bank account balance before completing their order. The account
balance is provided by a different skill (CashBank). If the user selects the Check
Balance option, the text "ask CashBank, what is my balance" is posted back to the
digital assistant and the user is routed to the appropriate intent within the CashBank
skill.

OrderPizza:
 component: "System.CommonResponse"
 properties:
 metadata:
 ...
 responseItems:
 - type: "cards"
 headerText: "Our pizzas:"
 cardLayout: "vertical"
 name: "PizzaCards"
 actions:
 - label: "More Pizzas"
 ...
 - label: "Check bank account balance"
 type: "postback"
 payload:
 action: "system.textReceived"
 variables:
 system.text: "ask CashBank, do I have enough money?"
 ...
 processUserMessage: true
 transitions:
 actions:
 order: "AskPizzaSize"
 more: "OrderPizza"
 textReceived: "Intent" # where the value of textReceived is the
name CashBank's System.Intent state
 ...

Appendix A
How Do I Write Dialog Flows in OBotML?

A-16

Assuming your pizza skill is in the same digital assistant as the Cash Bank skill, here's what it
should look like if you open the digital assistant in the tester, access the pizza skill, and then
click the Check bank account balance.

In the Routing tab of the tester, you can see that the explicit invocation has been recognized
and is given preference:

Further down, you can see that the Check Balance intent of the Cash Bank skill is matched:

User-Scoped Variables in YAML Dialog Flows
When the conversation ends, the variable values that were set from the user input are
destroyed. With these values gone, your skill users must resort to retracing their steps every
time they return to your skill. You can spare your users this effort by defining user-scope
variables in the dialog flow. Your skill can use these variables, which store the user input from
previous sessions, to quickly step users through the conversation.

User-scoped variables, which you define within the individual states, not in the context node,
are prefixed with user. The checklastorder state in the following excerpt from the
PizzaBotWithMemory dialog flow, includes the user.lastsize variable that retains the pizza

Appendix A
How Do I Write Dialog Flows in OBotML?

A-17

size from the previous user session. The user. variable persists the user ID. That ID is
channel-specific, so while you can return to a conversation, or skip through an order
using your prior entries on skills that run on the same channel, you can’t do this across
different channels.

main: true
name: "PizzaBot"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
 sameAsLast: "YesNo"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 OrderPizza: "checklastorder"
 CancelPizza: "cancelorder"
 unresolvedIntent: "unresolved"
 checklastorder:
 component: "System.ConditionExists"
 properties:
 variable: "user.lastsize"
 transitions:
 actions:
 exists: "lastorderprompt"
 notexists: "resolvesize"
 lastorderprompt:
 component: "System.List"
 properties:
 options: "Yes,No"
 prompt: "Same pizza as last time?"
 variable: "sameAsLast"
 transitions:
 next: "rememberchoice"
 rememberchoice:
 component: "System.ConditionEquals"
 properties:
 variable: "sameAsLast"
 value: "No"
 transitions:
 actions:
 equal: "resolvesize"
 notequal: "load"
...

 load:

Appendix A
How Do I Write Dialog Flows in OBotML?

A-18

 component: "System.CopyVariables"
 properties:
 from: "user.lastsize,user.lasttype,user.lastcrust"
 to: "size,type,crust"
 transitions:
 ...

Built-In YAML Components for Setting User Values
Define the value property of the following components with expressions like “$
{user.age.value}” to set stored user values.

Component Uses

System.SetVariable Sets the stored user value.

System.ResetVariables Resets a stored user value.

System.CopyVariables Copies in the stored user value.

System.Output Outputs the stored user value as text.

System.ConditionExists Checks if the user-scoped variable is already in
context.

System.ConditionEquals Checks for the user-scoped variable.

System.Switch Uses the stored value to switch from one state to
another.

Auto-Numbering for Text-Only Channels in YAML Dialog Flows
The auto-numbering framework enables your skill bot to run on text-only channels because it
prefixes buttons and list options with numbers. When users can’t use tap gestures, they can
still trigger the button’s postback actions by entering a number. For example, when the
CrcPizzaBot runs in a channel that supports buttons, it displays Pizzas and Pastas.

But when it runs on a text-only channel, it renders the Pizza and Pasta options as text and
prefixes them with sequential numbers (1. Pizza 2. Pasta).

Auto-numbering isn’t limited to text-only channels; enabling it where buttons are supported
add another way for users to input their choices. For examples, users can either tap Pizza or
enter 1.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-19

Set Auto-Numbering for YAML Dialog Flows
For YAML dialog flows, you can set the auto-numbering feature on a global scale
(meaning that it affects all components named in your dialog flow definition) or at the
component level for the components that trigger postback actions, namely the
System.List, System.CommonResponse, System.ResolveEntities, System.QnA,
System.Webview, System.OAuthAccountLinkComponent, and
System.OAuth2AccountLinkComponent components.

To automatically prefix the options with sequential numbers:

1. In the context node, add autoNumberPostbackActions: "boolean". This, like
textOnly and autoTranslate, is a common variable that can be used across all of
your bots.

context:
 variables:
 pizzaSize: "PizzaSize"
 pizzaType: "PizzaType"
 pizzaCrust: "PizzaCrust"
 pizzaCheese: "CheeseType"
 autoNumberPostbackActions: "boolean"
 iResult: "nlpresult"

2. Set the autoNumberPostbackActions property to true:

 type:
 component: "System.List"
 properties:
 prompt: "What Type of Pizza do you want?"
 options: "${pizzaType.type.enumValues}"
 variable: "pizzType"
 autoNumberPostbackActions: "true"
 footerText: "Enter a number or tap your selection."
 transitions:
 ...

If you need to override auto-numbering for a particular component (either a system
component or a custom component), set the autoNumberPostbackActions
property to false. To override auto-numbering for a specific postback action in the
System.CommonResponse, add a skipAutoNumber property and name the action.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-20

Note:

Because auto-numbering gets applied through server-side processing, it only
works on postback actions, not for the client-side URL actions. Consequently,
components that render two button actions, one URL action, and one postback
action result in a suboptimal user experience because of the inconsistent
numbering of the various UI elements. For the OAuth components that render
both a login URL action and a cancel postback action, only the cancel action is
prefixed with a number. To maintain consistency in cases like this, set the
autoNumberPostbackActions property to false .

3. You can conditionally enable auto-numbering by setting the autoNumberPostbackActions
variable with the current channel. For example:

setAutoNumbering:
 component: "System.SetVariable"
 properties:
 variable: "autoNumberPostbackActions"
 value: "${(system.channelType=='facebook')?then('true','false')}"

Once you’ve set the autoNumberPostbackActions variable, you can reference it to modify
the prompt text:

prompt: "Hello ${profile.firstName}, this is our menu today<#if
autoNumberPostbackActions.value>. Make your choice by entering the menu
option number</#if>:"

Likewise, you can conditionalize the footer text:

footerText: <#if autoNumberPostbackActions.value>"Make your choice by
entering the menu option number."</#if>

Render Content for Text-Only Channels in YAML Dialog Flows
You can show or hide channel-specific messages when you reference the textOnly variable
in the dialog flow-branching components like System.ConditionEquals or System.Switch.
Before you can branch your flow based on text-only messages, you need to declare textOnly
as a context variable and then set its value. Here are the basic steps:

1. Add the textOnly: "boolean" variable to the context node.

context:
 variables:
 autoNumberingPostbackActions: "boolean"
 textOnly: "boolean"

2. Reference textOnly in the variable setting components, like System.SetVariable and
System.Switch.

Appendix A
How Do I Write Dialog Flows in OBotML?

A-21

3. Use the system.message property to expose the complete user message. The
following snipppet shows how to set a boolean within the system.channelType
expression that indicates whether a text-only channel (Twilio, in this case) is in use
or not.

setTextOnly:
 component: "System.SetVariable"
 properties:
 variable: "textOnly"
 value: "${(system.channelType=='twilio')?then('true','false')}"

You can conditionally enable auto numbering by referencing the user message
channel. For example:

setAutoNumbering:
 component: "System.SetVariable"
 properties
 variable: autoNumeringPostbackActions
 value: "${(system.channelType=='twilio')?then('true','false')}"

Appendix A
How Do I Write Dialog Flows in OBotML?

A-22

B
Built-In Components: Properties, Transitions,
and Usage

Here is a reference for the properties and transitions for the components in YAML-mode
dialog flows.

Note:

In many cases, the Visual Flow Designer version of these components differs. If you
are using the Visual Flow Designer, see Component Templates.

• Control Components

• Language

• Security

• User Interface Components

• Variable Components

Control Components
These YAML-mode control components route the flow based on whether the user input
matches a predetermined value.

System.ConditionEquals
This component alters the navigation based on a variable value.

Note:

This component isn't available in the Visual Flow Designer. You can use the Switch
for this purpose instead.

Use this component to branch the dialog flow when a value gets matched. This component
executes value-based routing by comparing the values set for its source or variable
properties against the value stored by the value property. The component triggers the equal
and notequal actions accordingly based on a match (or lack thereof). In the following snippet,
the customer gets routed to the orderPizza state when the input extracted for the orders
context variable matches pizza, or to the execution path that begins with the orderPasta
state when it doesn't.

 Check for Pizza:
 component: "System.ConditionEquals"

B-1

 properties:
 variable: "orders"
 value: "pizza"
 transitions:
 actions:
 equal: "orderPizza"
 notequal: "orderPasta"

Properties Description Required?

variable The name of the variable whose current value determines the routing. The Dialog
Engine ignores the variable property if you have also defined the source property.

No

source The source property is an alternate to the variable property. No

value The value that's compared against either the source or variable properties. Yes

How Do I Use Apache FreeMarker Expressions with the
System.ConditionEquals Component?

You you can narrow the matching criteria to specific values and formats by defining the
value and source properties with Apache FreeMarker expressions. For example:

• verifyCode:
 component: "System.ConditionEquals"
 properties:
 variable: "code"
 value: "${userEnteredCode.value}"
 transitions:
 actions:
 equal: "wrongCode"
 notequal: "${flow.value}"

• conditionEquals:
 component:"System.ConditionEquals"
 properties:
 source: "${addressVariable.value.state} - $
{addressVariable.value.country}"
 value: "CA - USA"
 transitions:
 actions:
 equal: goCalfifornia
 notequal: goSomewhereElse

• main: true
name: "Shoppingbot"
context:
 variables:
 yesnoVar: "YES_NO"

...

 confirmBuy:
 component: "System.ConditionEquals"

Appendix B
Control Components

B-2

 properties:
 source: "${yesnoVar.value.yesno}"
 value: "YES"
 transitions:
 actions:
 equal: "deviceDone"
 notequal: "cancelOrder"
 deviceDone:
 component: "System.Output"
 properties:
 text: "Your ${devices.value} is on its way."
 transitions:
 return: "done"
 cancelOrder:
 component: "System.Output"
 properties:
 text: "Thanks for your interest."
 transitions:
 return: "done"

• context:
 variables:
 wordLength: "int"
 words: "string"
states:
 askName:
 component: "System.Text"
 properties:
 prompt: "What is your name?"
 variable: "words"
 setVariable:
 component: "System.SetVariable"
 properties:
 variable: "wordLength"
 value: "${words.value?length}"
 conditionEquals:
 component: "System.ConditionEquals"
 properties:
 source: "${(wordLength.value?number > 2)?then('valid', 'invalid')}"
 value: "valid"
 transitions:
 actions:
 equal: "checkFirstNameinDatabase"
 notequal: "inValidName"
 done:
 component: "System.Output"
 properties:
 text: "Done"
 transitions:
 return: "done"
 checkFirstNameinDatabase:
 component: "System.Output"
 properties:
 text: "Check the first name in the database."
 transitions:

Appendix B
Control Components

B-3

 return: "done"
 inValidName:
 component: "System.Output"
 properties:
 text: "This name is not valid. It needs to be at least three
letters."
 transitions:
 return: "done"

System.ConditionExists
Use this component to check for the existence of a specified variable. To route the
dialog according to the value, define the transitions key using exists and notexist
actions.

Note:

This component isn't available in the Visual Flow Designer. You can use the
Switch for this purpose instead.

Properties Description Required?

variable The name of the variable Yes

main: true
name: "HelloKids"
context:
 variables:
 foo: "string"
 lastQuestion: "string"
 lastResponse: "string"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 Talk: "checkUserSetup"
 unresolvedIntent: "checkUserSetup"
 checkUserSetup:
 component: "System.ConditionExists"
 properties:
 variable: "user.lastQuestion"
 transitions:
 actions:
 exists: "hellokids"
 notexists: "setupUserContext"
 setupUserContext:
 component: "System.CopyVariable"
 properties:
 from: "lastQuestion,lastResponse"

Appendix B
Control Components

B-4

 to: "user.lastQuestion,user.lastResponse"
 transitions:
 ...
...

System.Switch
Use this component to switch states based on a variable value.

Note:

This topic covers use of this component in YAML mode. For information on using it
in the Visual Flow Designer, see Switch.

Enables value-based routing similar to the System.ConditionEquals component. The
System.Switch component selects an execution path by comparing a list of values against a
variable or source property. When the values match, the component triggers an action
transition that names the state that starts the execution path. You can add a NONE transition
when the current value set for the variable doesn’t match any of the items defined for the
values property. Configure the Dialog Flow for Unexpected Actions describes how the
System.Switch component enables your skill bot to gracefully handle incorrect user input.

switchOnCategory:
 component: "System.Switch"
 properties:
 variable: "category"
 values:
 - "Vehicle"
 - "Property"
 - "Other"
 transitions:
 actions:
 NONE: "ActionNoLongerAvailable"
 Vehicle: "getVehicleQuote"
 Property: "getPropertyQuote"
 Other: "getOtherQuote"

Property Description Required?

variable A variable whose current value is used as the basis for the switch
transition. Define the values property as a list of comparison values. The
Dialog Engine ignores the variable property when you have also defined
the source property.

No

source The source property is an alternate to the variable property. No

Appendix B
Control Components

B-5

Property Description Required?

values The list of values used as comparisons against the source or variable
properties.

Note:

This property is not available in the Visual
Flow Designer of the component. See
Switch.

Yes

How Do I Use Apache FreeMarker Expressions with the System.Switch
Component?

You you can narrow the matching criteria to specific values and formats by defining the
value and source properties with Apache FreeMarker expressions. For example, you
can define the expression using built-in FreeMarker operations, like date and string:

 switch2:
 component: "System.Switch"
 properties:
 source: "${startDate.value.date?string('dd-MM-yyyy')}"
 values:
 - "17-12-2017"
 - "18-12-2017"
 transitions:
 actions:
 "17-12-2017": goToday
 "18-12-2017": goTomorrow

Language
These are the components that are available in the Language category of YAML-
based dialog flow editor.

• System.Intent

• System.MatchEntity

• System.DetectLanguage

• System.TranslateInput

• System.TranslateOutput

• System.Qna

System.Intent
This component detects the user intent and extracts all of the entities and then triggers
a subsequent state.

Appendix B
Language

B-6

Note:

This component is not available for skills developed with the Visual Flow Designer.
Instead, intents are resolved automatically when there is no active flow. See Intent
Detection and Resolution.

Property Description Required?

variable Holds the value that the
language processing framework
resolves from the user input. For
example, our sample skill bots
define this property as
variable=iResult (with
iResult: "nlpResult"
defined as one of the context
variables). You don’t need to
name the variable iResult. This
name is a convention used in our
sample code and sample skills.
Whatever variable name you use
for nlpResult, be sure to use it
consistently across the dialog
flow.

Yes

optionsPrompt The title for the list of intents
when you set a value for the Win
Margin option. By default, this
string value is Do you want to.
The default value for this
property is stored in the skill's
resource bundle. To change it,
click , select the
Configuration tab, and update
the Intent - optionsPrompt key.
If you use the skill's resource
bundle to change the default
message, then you don't need to
include the property in the
component unless you want to
override the default.

No

botName The name (not the display name)
of the skill that resolves the
intent. Use this property if you
decide to resolve the user input
using the model of a separate
skill rather than the current skill.
Using this approach might be
beneficial if you want resolve the
intent based on a model with a
more narrowly defined domain
than the domain required by your
primary use case.

No

botVersion Specifies the version of the skill.
The default value is 1.0 (if you
don't specify the version
number).

No

Appendix B
Language

B-7

Property Description Required?

sourceVariable The language processing
framework resolves the intent
using the sourceVariable as
the input.
Important: You can't use this
property in combination with the
translate property. If you need
to translate the input represented
by sourceVariable, you can
use the System.TranslateInput to
do so.

No

daIntercept For calls to System.Intent,
determines whether the digital
assistant can intercept and
reroute the user input to other
skills. These are the possible
values:
• always (the default)--

Enables the digital assistant
to intercept the input, even if
the current flow has not
ended. This enables the
digital assistant to handle
interruptions that suggest
switching to another flow.

• never--Prevents the digital
assistant from intercepting
the user input. For more on
the use case for setting this
value, see Enforce Calls to a
Skill's System.Intent
Component.

This property is ignored if the
skill does not belong to a digital
assistant.

No

translate Overrides the value set for the
autoTranslate context variable
here. If autoTranslate is not
set, or set to false, you can set
this property to true to enable
auto-translation for this
component only. If the
autotranslate context variable
is set to true, you can set this
property to false to exclude this
component from auto-translation.
Important: You can't use this
property in combination with the
sourceVariable property. If
you need to translate the input
represented by
sourceVariable, you can use
the System.TranslateInput to do
so.

No

Appendix B
Language

B-8

Q&A Properties for the System.Intent Component
These are optional properties for Q&A routing.

Property Description Data
Type

Default Value

qnaEnable Enables the routing to the Q&A
module. If you set this to true
(routing enabled) you also need to
define the Q&A transition action
(none or exit). See Q&A
Transitions.

boolean false

qnaBotName The name (not the display name) of
the skill with the Q&A module. If you
don’t define this property, then the
value defined for System.QnA
component’s botName property is
used instead.

string N/A

qnaBotVersion The version of the skill with the Q&A
module. By default, it's 1.0. This
value is optional

int N/A

qnaTimeout The time, in milliseconds, that the
skill waits for the Q&A server to
respond to the user input.

long 5000

qnaUseResult Setting this option to true (the
default), enables the skill to query
the Q&A server with the user input.
The skill then uses the results of
this query (the matches) to set the
routing. When you set this property
to true, the skill will display the
View Answers link only when there
are matches. Setting it to false,
displays the View Answers link at all
times.

boolean true

qnaSkipIfIntentFoun
d

When set to true, the skill
bypasses Q&A when an there’s an
intent match. The default value
(false), enables the skill to query
the QnA server with user utterance
and also present QnA as an option.

boolean false

optionsPrompt Q&A is displayed if it’s enabled for
the System.Intent component
and we find a match.

Tip: For foreign (non-English)
languages, reference a resource
bundle. See Reference Resource
Bundles in the Dialog Flow

string Do you want to

Appendix B
Language

B-9

Property Description Data
Type

Default Value

optionsQnaLabel A label for action in the options
(optionsPrompt) that takes the
user to the System.QnA component
to display the matches.

Tip: For foreign (non-English)
languages, reference a resource
bundle. See Reference Resource
Bundles in the Dialog Flow

string Questions

qnaMatchFields Sets the Q&A fields used to match
the user message. Valid values
include:
• all
• categories
• questions
• answers
• categories+questions
You can enter these values as a
comma-separated list

string all

Appendix B
Language

B-10

Property Description Data
Type

Default Value

qnaMinimumMatch Sets the minimum and maximum
percentage of tokens that any Q&A
pair must contain in order to be
considered a match.

To return the best matches, we
tokenize the utterances that the
Intent Engine resolves as questions.
These tokens are formed from word
stems and from various word
combinations. As a result, a large
set of tokens can be generated from
an utterance. Because of this, it’s
unlikely that any Q&A pair could
contain all of the key words and
variants. Therefore, we don’t
recommend that you change this
setting from its default, 50%,25%.

Having 50% of the generated
tokens (the default maximum level)
means that the Q&A pair can be
considered a relevant match if it has
all of the key words from the
utterance. If this maximum level
can’t be met, then a minimum level
of 25% would suffice. If you change
these settings—particularly by
increasing the maximum to more
than 50%—then the Q&A pair would
not only need to contain all of the
key words, but must also match
additional tokens.

That said, if you want to reduce the
chance of missing a relevant match
—and can tolerate returning
irrelevant matches in the process—
then you can add an even lower
threshold. For example:
50%,25%,10%.

If you want to minimize irrelevant
matches, then you can increase the
levels (say, 60%,50%). Keep in mind
doing so might exclude Q&A pairs
that have all of the keywords.

Important: If you don’t want to use
the default levels, then you need to
set the minimumMatch property
and the Q&A Batch tester’s Match
Thresholds option to the same
values. See Batch Test the Q&A
Module.

string 50%,25%

Appendix B
Language

B-11

Property Description Data
Type

Default Value

qnaUseSourceVariabl
e

When set to true, the Q&A
matching is based on the value
stored in the System.Qna’s
sourceVariable property, not the
user input.

boolean false

System.MatchEntity

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Match Entity.

The System.MatchEntity calls the Intent Engine to extract entity information from the
text held by the sourceVariable property. If a match exists for the variable's entity
type, the variable is set with this entity value.

Property Description Required?

sourceVariable The variable that holds the
input value.

Yes

variable The name of the context
variable. The value of this
variable can be used in a
subsequent
System.SetVariable
component to extract a
specific entity using a
FreeMarker expression. For
example, to extract an EMAIL
entity value: $
{userInputEntities.valu
e.entityMatches['EMAIL'
][0]}

Yes

This component also has two predefined transitions: match and nomatch.

Transition Description

match Directs the Dialog Engine to go a state when
the entities match.

nomatch Defines the Dialog Engine to go to a state
when the entities don’t match.

In the following snippet, System.MatchEntity component matches the user-provided
value stored in the mailInput variable against the EMAIL entity type that’s been
defined for the mailEntity variable. If the user input satisfies the entity type by being
an e-mail address, then the System.MatchEntity component writes this value to the
mailEntity variable that’s echoed back to the bot user ("You entered $

Appendix B
Language

B-12

{mailEntity.value.email}"). When the values don’t match, the Dialog Engine moves to the
nomatch state.

Note:

The System.MatchEntity component resolves a single value.

context:
 variables:
 iResult: "nlpresult"
 mailInput: "string"
 mailEntity: "EMAIL"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 displayMailAdresses: "askMail"
 unresolvedIntent: "dunno"
 askMail:
 component: "System.Text"
 properties:
 prompt: "Please provide a valid email address"
 variable: "mailInput"
 transitions:
 next: "matchEntity"
 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "mailInput"
 variable: "mailEntity"
 transitions:
 actions:
 match: "print"
 nomatch: "nomatch"
 print:
 component: "System.Output"
 properties:
 text: "You entered ${mailEntity.value.email}"
 transitions:
 return: "done"
 nomatch:
 component: "System.Output"
 properties:
 text: "All I wanted was a valid email address."
 transitions:
 return: "done"
 dunno:
 component: "System.Output"
 properties:

Appendix B
Language

B-13

 text: "I don't know what you want"
 transitions:
 return: "done"

System.DetectLanguage

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Detect Language.

This component uses the translation service to detect the user’s language from the
user input or from content that’s saved in a context variable that’s referenced by a
source property:

context:
 variables:
 autoTranslate: "boolean"
 translated: "string"
 someTranslatedText: "string"
states:
 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value: true
 transitions:
 next: "detect"
 detect:
 component: "System.DetectLanguage"
 properties:
 source: "someTranslatedText"
 useExistingProfileLanguageTag: true
 transitions:
 ...

The System.DetectLanguage component sets a variable named profile.languageTag
with the locale string. You can set variables with the current language when you use
this variable in a value expression (${profile.languageTag}).

Note:

The profile.languageTag takes precedence over the profile.locale
variable that’s set by the messenger client.

The useExistingProfileLanguageTag property is used when a skill is part of a digital
assistant that has a translation service. This enables the skill to use the language that
is detected by the digital assistant immediately. Otherwise, the skill might provide a

Appendix B
Language

B-14

message or prompt in English before the language is (re-)detected. If the skill is not in a
translation-enabled digital assistant, the property is ignored.

The profile.locale and profile.languageTag Variables
The use of a particular resource bundle and the translations for both the UI labels the
component messages themselves all depend on the user’s language that’s stored in the
profile.locale and profile.languageTag variables.

The ways these variables get set depend on the language mode of the skill:

• For skills that use native language support, the language is detected automatically and
the these variables are populated with the appropriate value, unless the variables have
already been assigned values.

• For skills that use a translation service:

– The value for the profile.locale variable is derived from the user’s messenger
client.

Note:

profile.locale supports values in ISO language-country or ISO
language_country formats.

– The value for the profile.languageTag variable is provided by the
System.DetectLanguage component.

Note:

The value set for the profile.locale variable can determine the locale-specific
formats for the DATE, CURRENCY, and NUMBER entities even when a value has
been set for the profile.languageTag variable.

You can set the value for both of these variables (and enable these variables to set values for
one another) using the System.SetVariable. For example:

• setLocaleToGerman:
 component: "System.SetVariable"
 properties:
 variable: "profile.locale"
 value: "de"

• setLanguageTagToGerman:
 component: "System.SetVariable"
 properties:
 variable: "profile.languageTag"
 value: "de"

• setLanguageToVariableValue:
 component: "System.SetVariable"
 properties:

Appendix B
Language

B-15

 variable: "profile.languageTag"
 value: "${language_preference_var.value}"

• setLocaleToLanguageTag:
 component: "System.SetVariable"
 properties:
 variable: "profile.locale"
 value: "${profile.languageTag}"

• setTagToLocale:
 component: "System.SetVariable"
 properties:
 variable: "profile.languageTag"
 value: "${profile.locale}"

Tip:

You can implement a choice list of languages by comparing the locale value
stored in these variables, or in a custom user database table, against a list of
supported languages. If the detected language isn’t on this list, you can
prompt the user to choose one and then set the profile.languageTag with
this value.

System.TranslateInput

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Translate Input.

This component sends specified text to the skill's translation service and then stores
the English translation. It relies on the skill being configured with a translation service,
which recognizes the language from the user's input and translates it into in English.
This component doesn't work with skills that use the Natively Supported language
mode.

Use this component when you need to process the raw input text before having it
translated. For example, you might want to remove some personal data from the user
input before sending it to the translation service.

Property Description Required?

source Specifies the text values to be
translated into English.

No

variable The variable that holds the
English translation of the text.

Yes

Because the System.TranslateInput component leverages the translation service,
which already detects the user’s language, this component doesn’t need to follow

Appendix B
Language

B-16

states that detect or set the language as described in Add a Translation Service to Your Skill.
As a result, you can store the English translation from direct user input, or from a source
variable.

Direct Input Translation
The System.TranslateInput component stores the English translation of direct user input in
its variable property. The following code snippet shows how user input like “Hallo, ich bin ein
Mensch” in the translatedString variable is stored as “Hello, I am a human”.

context:
 variables:
 translatedString: “string”
 sourceString: “string”
...

states:
...

 translateInput:
 component: "System.TranslateInput"
 properties:
 variable: "translatedString"

The source Variable
In the following snippet, the sourceString variable holds the user input. (This input, for
example, may have been gathered by a Common Response component.) After the
System.TranslateInput completes its processing, the English translation is stored in the
translatedString variable.

context:
 variables:
 autoTranslate: "boolean"
 translatedString: "string"
 sourceString: "string"

 ...

states:
 ...

 translateInputString:
 component: "System.TranslateInput"
 properties:
 source: "sourceString"
 variable: "translatedString"
 transitions:
 ...

Appendix B
Language

B-17

Note:

The System.TranslateInput component can’t translate data objects or
arrays that are stored in a context variable by a custom component. This
content can only be translated when the variable is referenced by a
component that uses autotranslation. For example, the
System.TranslateInput component can’t translate a data object like
{”product”: “scissors”, “color”: “silver”} as scissors and silver.

The sourceVariable Property
Because the System.Intent’s sourceVariable property holds the value processed by
the component, you can use it with the System.TranslateInput component to insert
translated text. The following snippet shows assigning the translated variable value
so that it can be processed by the NLP engine.

 translate:
 component: "System.TranslateInput"
 properties:
 variable: "translated"
 transitions:
 next: "intent"
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable: "translated"
...

System.TranslateOutput

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Translate Output.

The System.TranslateOutput component allows you to translate text to the user’s
language. The component takes the value defined for the source property. It translates
the text into the language detected by the System.DetectLanguage component or by
the profile.locale variable and then stores it in the variable property.

Properties Description Required?

source The text to be translated, or a
FreeMarker expression that
references a variable whose
value needs to be translated.

Yes

variable Holds the translated text. Yes

Appendix B
Language

B-18

In this example, the System.Output component, which would otherwise display
autotranslated text, still outputs translated text, but here it outputs the translation of the text
defined for the source property.

 unresolvedTranslate:
 component: "System.TranslateOutput"
 properties:
 source: "Sorry I don't understand"
 variable: "someTranslatedText"
 transitions:
 next: "unresolved"
 unresolved:
 component: "System.Output"
 properties:
 text: "${someTranslatedText}"
 transitions:
 return: "unresolved"

System.Qna
These are optional properties for the System.Qna component.

Name Description Required? Default Value

botName The name (not the display name) of the skill
with the Q&A module.

No N/A

botVersion The version of the skill that's identified by the
botName property. You can define the
botName property without also defining the
botVersion property. However, you can't
define botVersion without also defining
botName: botVersion is ignored when you
don't also define the botName property. As a
consequence, its default version (1.0), only
applies if you also define the botName
property. To route to another version of the
skill, you need to define the botName
property and set the botVersion property
with the target version.

No 1.0

highlighter The method used to highlight the most
relevant text in each answer. The valid
values are:
• system - the system tries to determine

the most relevant text in the answer and
highlights those words.

• firstNChars - the first characters in
the answer are highlighted. The number
of characters is determined by the value
of the highlightLength property plus
the remaining characters in the final
highlighted word.

No system

highlightLength The number of characters to be highlighted
in each answer.

No 100

Appendix B
Language

B-19

Name Description Required? Default Value

sourceVariable The language processing framework
resolves the Q&A matching using the value
stored by the sourceVariable, not the user
input. You activate this matching by setting
qnaUseSourceVariable: true for the
System.Intent component. For example:

metadata:
 platformVersion: "1.0"
main: true
name: "FinancialBotMainFlow"
context:
 variables:
 iResult: "nlpresult"
 iResult2: "nlpresult"
 transaction: "string"
 faqstring1: "string"
 faqstring2: "string"
states:

 ...

 setVariable:
 component:
"System.SetVariable"
 properties:
 variable: "faqstring1"
 value: "Tell me about
family floater plan"

...

 intent2:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable:
"faqstring1"
 qnaEnable: true
 qnaUseSourceVariable: true
 transitions:
 actions:
 Send Money: "sendMoney"
 Balances: "balances"
 unresolvedIntent:
"unresolved"
 qna: "qna"

 sendMoney:
 component: "System.Output"
 properties:

No N/A

Appendix B
Language

B-20

Name Description Required? Default Value

 text: "send money"
 transitions:
 return: "sendMoney"

 balances:
 component: "System.Output"
 properties:
 text: "Balances"
 transitions:
 return: "balances"

 unresolved:
 component: "System.Output"
 properties:
 text: "Sorry I don't
understand that question!"
 transitions:
 return: "unresolved"
 qna:
 component: "System.QnA"
 properties:
 sourceVariable:
"faqString1"
 transitions:
 actions:
 none: "unresolved"
 next: "intent2"

transitionOnText
Received

Transitions from the state defined with the
System.QnA component when the user
enters free text.
• true (the default)—Transitions from the

System.Qna state when the skill
receives any free text. Your skill can
attempt to resolve this text when you
configure a transition to a
System.Intent state that’s configured
with Q&A properties.

• false—The Dialog Engine remains in
the Q&A state, where the free text is
treated as a Q&A query. The component
also displays an exit option. By default,
this button displays as Exit Questions,
but you can change this using the
exitLabel property.

Because this adds the exit option, you
need to configure the exit transition.

No true

Appendix B
Language

B-21

Name Description Required? Default Value

keepTurn The keepTurn property behaves differently
depending on how the user transitions from
the state defined with the System.QnA
component. You can configure how
keepTurn routes the user through the flow
using a boolean (true, false) or with a map of
key-value pairs.

No false (when
configured as a
boolean)

matchListLimit Limits the pagination for the answers No 5

categoryListLimi
t

Limits the pagination of the categories No 5

resultLayout The layout for the matching answers. Valid
values: horizontal and vertical.

No horizontal

minimumMatch Sets the minimum and maximum percentage
of tokens that any Q&A pair must contain in
order to be considered a match.

To return the best matches, we tokenize the
utterances that the Intent Engine resolves as
questions. These tokens are formed from
word stems and from various word
combinations. Depending on the length of
the user message, the process can generate
a large set of tokens. Because it's unlikely
that any Q&A pair can match all of them, we
recommend that you set the matching level
at 50%, 25%.

In this setting, the Q&A pair can be
considered a relevant if it matches 50% of
the tokens. If this maximum level can’t be
met, then a minimum level of 25% will
suffice.

If you want to reduce the chance of missing
a relevant match—and can tolerate returning
irrelevant matches in the process—then you
can add an even lower threshold as a
fallback. For example: 50%,25%,10%.
If you want to minimize irrelevant matches,
then you can increase the percentage (say,
minimumMatch: "80%"), but doing so may
result in unexpected matches for messages
comprised of three-to-seven words. That
said, you can tune the precision of the
returned Q&A for both short and long user
queries.

Important: If you don’t want to use the
default levels when testing, then you need to
set the QnaMinimumMatch property and the
Q&A Batch tester’s Match Thresholds
option to the same values that you've set for
the minimumMatch property. See Batch Test
the Q&A Module

No 50%,25%

Appendix B
Language

B-22

Name Description Required? Default Value

matchfields Sets the Q&A fields used to match the user
message. Valid values include:
• all
• categories
• questions
• answers
• categories+questions
You can enter these values as a comma-
separated list.

No all

enableCategoryDr
illdown

Set to true to display a drill down by
category.

No true

exitLabel The label text for exiting the Q&A module. No Exit Questions
viewAnswerLabel The label text for the view action for an

answer detail.
No View

moreAnswersLabel The label text for view action for more
answers.

No More Answers

answersLabel The label text for the view actions for
answers in a specific category.

No Answers

categoriesLabel The label text for the categories that match
the utterance.

No Categories

subCategoriesLab
el

The label text for the view action for the
subcategories.

No Sub-Categories

moreCategoriesLa
bel

The label text for the view action for more
categories.

No More Categories

Increase the Precision of the Returned Q&A Using minimumMatch
While the default setting of 50%,25% returns accurate Q&A pairs, you may want your skill to
return fewer, more precise results by increasing the percentage. For example, you may want
your skill to only return a Q&A pair when it matches a high percentage of the tokens, or
instead route the user to a live agent.

In such a scenario, increasing the percentage for the minimumMatch property to 80% can
return more accurate Q&A matches, particularly for longer messages. The same may not be
true for shorter messages, which are typically comprised of three to seven words, with about
50% of them being ignored words (stop words). For example, the user question What is
account security? , for example, the system detects two tokens, account and security. When
minimumMatch is set to 80%, only one of these tokens gets returned (80% of 2 is 1.6, which
gets rounded down to 1), when ideally, both of them should. In this case, the skill might return
Q&A pairs that generally describe accounts, which is too broad a response. The skill should
have returned only the Q&A about account security, or returned nothing at all.

To configure the minimumMatch property to return accurate Q&A for short messages, enter the
number of tokens that must be matched, a less-than operator (<) and the required matching
level when the message contains a higher number of tokens. For example:

 qna:
 component: "System.QnA"
 properties:
 minimumMatch: "3<80%"
 transitions:

Appendix B
Language

B-23

 actions:
 none: "unresolved"
 next: "intent"

In this snippet, if message contains 1 to 3 tokens, then the Q&A pair must match all of
them for the skill to return it to the user. In terms of the scenario, this setting would only
return a Q&A pair that matched account security. When the message has four or more
tokens, then the Q&A pair only needs to match 80% of them.

You can tune the minimum match for longer messages that contain added details by
graduating the number of required matching tokens (and simultaneously decreasing
the percentage). For example, the following setting illustrates how to accommodate
messages that can potentially contain more than nine tokens:

 qna:
 component: "System.QnA"
 properties:
 minimumMatch: "3<80% 8<70% 12<65%"
 transitions:
 actions:
 none: "unresolved"
 next: "intent"

Per the minimumMatch setting in this snippet, the skill returns Q&A only when the
following tokens are matched.

Number of Tokens in the Message The Number of Tokens that Must Match

1 1

2 2

3 3

4 (80% match) 3 (3.2, rounded down to 3)

5 (80% match) 4

6 (80% match) 4 (4.8, rounded down to 4

7 (80% match) 5 (5.6, rounded down to 5)

8 (80% match) 6 (6.4 rounded down to 6)

9 (70% match) 6 (6.3, rounded down to 5)

10 (70% match) 7

11 (70% match) 7 (7.7, rounded down to 7)

12 (70% match) 8 (8.4, rounded down to 8)

13 (65% match) 8 (8.45, rounded down to 8)

keepTurn key-value Maps and Transition Actions
You can define the keepTurn property as a map whose keys describe the transitions.

Appendix B
Language

B-24

Key Description Default Value

next When set to false, the skill
relinquishes control when the dialog
transitions to the next state. The skill
won’t process any user input until the
Dialog Engine move to the next state.

false

none When set to true, the skill retains
control when a none transition action
is triggered because there’s no
question that can be returned for the
user input.

true

exit When set to true, the skill retains
control when an exit transition
action has been triggered.

true

textReceived When set to true, the skill retains
control of the conversation when
transitionOnTextReceived is set
to true which signals the Dialog
Engine to transition from the state.

true

Q&A Transitions

Name Description Required?

none No match found for the user
input (which typically means that
the flow routes to a state that
informs the user that no such
match was found).

Yes

exit The user exits the Q&A module.
By default, the keepTurn is set
to true for this action.

No

Security
These are the components that are available in the Security category of YAML-based dialog
flow editor.

System.OAuth2Client

Note:

This topic covers use of this component in YAML mode. For information on using it
in the Visual Flow Designer, see OAuth 2.0 Client.

Use this component to obtain an OAuth2 access token of grant type Client Credentials. That
is, you use it to get an access token that's based on the client's credentials, and not the
user's name and password. You can use this component to get a token that enables access

Appendix B
Security

B-25

to client resources that are protected by Oracle Identity Cloud Service or Oracle
Access Manager (OAM).

If you need to access resources on behalf of a user, see System.OAuth2AccountLink
and System.OAuthAccountLink.

Before you can use this component in a skill, you must do the following tasks:

1. If it isn't already registered, register the client with the identity provider as
described in Identity Provider Registration.

2. Add a client-credentials authentication service for the identity provider, as
described in Authentication Services.

Property Description Required?

authenticationService The name of the client-
credentials service that you
created in the Authentication
Services UI for the OAuth2
identity provider.

Yes

accessTokenVariableName Specifies the variable to store
the access token in. You can
declare it in the context node
as a variable, a string, or
another supported variable
type. It also can be a user-
scoped variable. For example:
user.accessToken.

Yes

This component doesn't have any actions. To handle system problems that might
occur, add a next transition that goes to a state that can handle such errors.

Here's an example of a state that uses this component:

 getAccessToken:
 component: "System.OAuth2Client"
 properties:
 authenticationService: "myAuthenticationService"
 accessTokenVariableName: "myAuthServiceToken"
 transitions:
 next: "next"
 error: "error" # handle auth service issues

System.OAuth2AccountLink

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see OAuth 2.0 Account Link.

Use this component to obtain an OAuth2 user access token (grant type Authorization
Code) for resources that are secured by Oracle Identity Cloud Service (IDCS), Oracle
Access Manager (OAM), Microsoft identity platform, or Google OAuth 2.0

Appendix B
Security

B-26

authorization. This component completes all the steps for the 3-legged OAuth2 flow and
returns the OAuth2 access token.

You can use the requiresAuthorization setting to indicate which states require
authorization before they can be invoked. For the states that require authorization, if the user
hasn't authorized yet, the System.OAuth2AccountLink state is invoked, and then the flow
invokes the state that required authorization. You can learn how to use this feature in User
Authorization in Group Chats (it works for all types of chats, not just group chats).

If you need to obtain an access token of grant type Client Credentials to access client
resources, see System.OAuth2Client.

Before you can use this component in a skill, you must do the following tasks:

1. If it hasn't been registered already, then register the client with the identity provider as
described in Identity Provider Registration.

2. Add an authentication service for the identity provider, as described in Authentication
Services.

Some identity providers issue refresh tokens. When you use this component, Digital Assistant
stores the refresh token for the retention period that's specified for the authentication service.
The Digital Assistant backend can use the refresh token, if available, to get a new access
token without the user having to sign in again.

Tip:

In skills with platform version 21.04 and later, the default values for the
cancelLabel, linkLabel, and prompt properties are stored in the skill's resource
bundle. To change a default, open the skill's Resources Bundle page, click ,
select the Configuration tab, and change the message for the
OAuth2AccountLink - <property name> key. If you use the skill's resource bundle
to change the default, then you don't need to include the property in the component
unless you want to override the default.
You also can change the Other - oauthCancelPrompt and the Other -
oauthSuccessPrompt messages in the configuration bundle.

Property Description Required?

accessTokenVariableName Specifies the variable to store the
access token in. If the variable is
user-scoped, such as
user.accessToken, then it can
be shared across skills.
Defaults to accessToken.

No

authenticatedUserVariable
Name

Specifies the variable in which to
store the authenticated user
name (the name that’s known by
the identity provider). If the
variable is user-scoped, such as
user.authenticatedUser,
then it can be shared across
skills.
Defaults to
authenticatedUser.

No

Appendix B
Security

B-27

Property Description Required?

authenticationService The name of the authorization-
code service that you created in
the Authentication Services UI
for the OAuth2 identity provider.

Yes

autoNumberPostbackActions When set to true, this option
prefixes a number to the cancel
option, which is a server-side
postback action. It doesn't prefix
a number to the option to get an
access token because that is a
URL action, which is a client-side
action that can't be prefixed with
a sequence number.
Even when you haven’t set this
option to true, auto-numbering
can be enforced on postback
actions when the digital
assistant’s Enable Auto
Numbering on Postback
Actions configuration is set to
true. Channel-specific auto-
numbering can be applied to any
skill bot that's registered to a
digital assistant:

$
{(system.message.channel
Conversation.channelType
=='twilio')?
then('true','false')}

See Auto-Numbering for Text-
Only Channels in YAML Dialog
Flows and

Auto-Numbering for Digital
Assistants

No

cancelLabel Use to override the label for the
button that the users can click to
leave state without invoking the
authentication dialog. The default
label is Cancel.

No

enableSingleSignOn (MS Teams only) If you have set
up Microsoft Teams single sign
on (SSO), then you can set this
to true so that users who have
already signed into MS Teams
don't have to sign into the skill.
The default is false. See SSO
Configuration for Microsoft
Teams Channels.
SSO isn't supported for use with
the calendar components.

No

Appendix B
Security

B-28

Property Description Required?

footerText Enhances the login dialog by
adding text beneath the login and
cancel options. As described in
Footers, you can use FreeMarker
expressions to conditionalize the
footer text for text-only channels.

No

linkLabel Use to override the label for the
button that the users can click to
invoke the authentication dialog.
The default label is Get an
access token.

No

prompt The string to use to prompt the
user instead of the default
Please sign in.

No

showCancelOption (Optional) Enables you to specify
whether or not to display the
Cancel button. By default, this
option is set to true, meaning
that the Cancel button is
displayed. In some cases, such
as for SMS channels, you might
not want to display this button.
You can configure such behavior
with an expression like:

$
{(system.message.channel
Conversation.channelType
=='twilio')?
then('false','true')}

No

translate Use this optional boolean
property to override the boolean
value of the autoTranslate
context variable. Note that
autoTranslate is false
(exclude from autotranslation)
unless that context variable has
been explicitly set to true.

No

updateUserProfile If the identity provider is IDCS,
and you want to store the user's
profile from IDCS for the duration
of the session, then set this
property to true. When a user is
challenged for authentication, if
this property is set to true, the
component will try to fetch the
user profile data from the identity
provider and set the results in the
userProfile.<authorizatio
n service> map. By default,
the value is false. See Store
IDCS User Profile for the
Duration of the Session.

No

Appendix B
Security

B-29

This component can return the following actions:

Action Description

fail The user clicked the cancel button.

pass The access token was retrieved successfully.

textReceived The user entered text instead of clicking the cancel
button or authenticating successfully.

When the dialog engine encounters the component, the skill bot prompts the user with
two links: Get an Access Token and Cancel (you can use linkLabel and
cancelLabel to change the link text).

If the user clicks the link to get an access token, it displays the identity provider’s login
page or authentication dialog as specified by the authentication service. After
successful login, it obtains the access token, sets the values for the variables identified
by accessTokenVariableName and authenticatedUserVariableName, and then flows
to the state that's named by the pass action (or to the next state if there isn't a pass
action). If the user cancels, the postback action is set to fail. If the user enters text, it
returns the textReceived action.

As mentioned earlier, you can set requiresAuthorization for a state to ensure that
the user is authorized before invoking the state's component. If the user hasn't

Appendix B
Security

B-30

authorized yet, the dialog invokes the system.authorizeUser action in defaultTransitions.
Here's an example:

main: true
name: RequiresAuthorizationExample
context:
 variables:
 iResult: "nlpresult"

defaultTransitions:
 actions:
 system.authorizeUser: "login"

states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 reg.general.showPasscode: "showPasscode"
 reg.general.showPhoneNumber: "showPhoneNumber"
 unresolvedIntent: "handleUnresolved"

 showPasscode:
 component: "System.Output"
 requiresAuthorization: true
 properties:
 text: "XYZABC123"
 transitions:
 return: "done"

 showPhoneNumber:
 component: "System.Output"
 requiresAuthorization: false
 properties:
 text: "555-1212"
 transitions:
 return: "done"

 handleUnresolved:
 component: "System.Output"
 requiresAuthorization: false
 properties:
 text: "You can ask for my phone number or ask for the passcode."
 transitions:
 return: "done"

 login:
 component: "System.OAuth2AccountLink"
 properties:
 prompt: "${profile.firstName}, please login"
 authenticationService: "MyAuthenticationService"
 accessTokenVariableName: "user.accessToken"
 authenticatedUserVariableName: "user.authenticatedUserId"

Appendix B
Security

B-31

 transitions:
 actions:
 pass : "${system.requestedState}"
 fail : "handleFailedLogin"
 textReceived: "intent"

 handleFailedLogin:
 component: "System.Output"
 requiresAuthorization: false
 properties:
 text: "Sorry, you aren't authorized to do that"
 transitions:
 return: "done"

Store IDCS User Profile for the Duration of the Session
If your skill needs to control the dialog flow based on the user's IDCS profile, then set
the System.OAuth2AccountLink component's updateUserProfile property to true.
This enables you to get the IDCS user's profile information from the
userProfile.<authorization service> map.

When updateUserProfile is set to true, the System.OAuth2AccountLink component
fetches the user profile from IDCS and stores the data in an object in the
userProfile.<authorization service> map.

Say, for example, that your dialog flow has this state:

 oauth2AccountLink:
 component: "System.OAuth2AccountLink"
 properties:
 authenticationService: "myIDCSProvider"
 authenticatedUserVariableName: "user.authuser"
 accessTokenVariableName: "user.accessToken"
 updateUserProfile: true
 transitions:
 actions:
 pass: "askGreeting"
 fail: "fail"
 textReceived: "authTextReceived"

After the user signs in, the userProfile.myIDCSProvider object is seeded with the
user's profile from IDCS, as shown in this example:

"userProfile.myIDCSProvider": {
 "sub": "myUsername",
 "website": "",
 "birthdate": "",
 "email_verified": false,
 "gender": "",
 "updated_at": 1584561296,
 "name": "First Last",
 "preferred_username": "myUsername",
 "given_name": "First",
 "family_name": "Last",

Appendix B
Security

B-32

 "email": "first.last@oracle.com",
 "appRoles": [
 {
 "appName": "some-instance-1_APPID",
 "displayName": "RoleName",
 "appID": "1234567abcd12345",
 "name": "some-instance-1_APPID",
 "adminRole": false,
 "legacyName": "some-instance-1.RoleName",
 "id": "1234567abcdefg",
 "$ref": "http://some/path/v1/AppRoles/a111234567abcdefg"
 }
]
}

Handle Multiple Authentication Services
If the skill bot needs access tokens from multiple authentication services, you can specify
unique access-token and authenticated-user variable names for each use of this component
as shown in this example:

...
states:
First Authentication Service
 getAccessToken1:
 component: "System.OAuth2AccountLink"
 properties:
 authenticationService: "AuthService1"
 accessTokenVariableName: "user.accessToken1"
 authenticatedUserVariableName: "user.authenticatedUser1"
 transitions:
 actions:
 pass: "getAccessToken2"
 textReceived: "handleAuthTextResponse"
 fail: "authCancelled"
Second Authentication Service
 getAccessToken2:
 component: "System.OAuth2AccountLink"
 properties:
 authenticationService: "AuthService2"
 accessTokenVariableName: "user.accessToken2"
 authenticatedUserVariableName: "user.authenticatedUser2"
 transitions:
 actions:
 pass: "getBankUserProfile"
 textReceived: "handleAuthTextResponse"
 fail: "authCancelled"
...

Appendix B
Security

B-33

System.OAuth2ResetTokens

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Reset OAuth 2.0 tokens.

Use this component to revoke all the logged-in user's refresh and user access tokens
from the identity provider that the authentication service represents. It also removes
the refresh tokens from the database. To use this component, you must provide the
identity provider's revoke refresh token URL in the Authentication Service UI.

The skill must include a state that uses the OAuth2AccountLink component for the
same authentication service, and it must be invoked before the state that uses the
System.OAuth2ResetTokens component.

Property Description Required?

authenticationService The name of the service that
you created in the
Authentication Service UI for
the OAuth2 identity provider.
This service must have a valid
revoke refresh token URL.

Yes

This component can return the following action:

Action Description

noRefreshTokenFound The authentication service doesn't have any refresh
tokens for the user.

System.OAuthAccountLink

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see OAuth Account Link.

Use this component to obtain the authorization code for services that are secured by
the authorization code grant flow, such as LinkedIn, Twitter, Google, or Microsoft. The
skill’s custom components can exchange the authorization code for an access token,
which they then use to invoke the end service.

The component first directs the user to the identity provider’s login page. After a
successful login, the component returns the authorization code in a variable, which
you use to pass the authorization code to the custom component. The custom
component API must exchange the authorization code, client ID, and client secret for
an OAuth2 user access token.

Appendix B
Security

B-34

You can use the requiresAuthorization setting to indicate which states require
authorization before they can be invoked. For the states that require authorization, if the user
hasn't authorized yet, the System.OAuthAccountLink state is invoked, and then the flow
invokes the state that required authorization. You can learn how to use this feature in User
Authorization in Group Chats (it works for all types of chats, not just group chats).

Tip:

In skills with platform version 21.04 and later, the default values for the
cancelLabel, linkLabel, and prompt properties are stored in the skill's resource
bundle. To change a default, open the skill's Resources Bundle page, click ,
select the Configuration tab, and change the message for the OAuthAccountLink
- <property name> key. If you use the skill's resource bundle to change the default,
then you don't need to include the property in the component unless you want to
override the default.
You also can change the Other - oauthCancelPrompt and the Other -
oauthSuccessPrompt messages in the configuration bundle.

Property Description Required?

authorizeURL The login URL. The
authorizeURL Property describes
how to configure this URL.

Yes

autoNumberPostbackActions When set to true, this option
prefixes a number to the cancel
option. Even when you haven’t
set this option to true, auto-
numbering can be enforced on
list items when the digital
assistant’s Enable Auto
Numbering on Postback
Actions configuration is set to
true. Channel-specific auto-
numbering can be applied to any
skill bot that's registered to a
digital assistant:

$
{(system.message.channel
Conversation.channelType
=='twilio')?
then('true','false')}

No

cancelLabel Use to override the label for the
button that the users can click to
leave state without invoking the
authentication dialog. The default
label is Cancel.

No

footerText Enhances the login dialog by
adding text beneath the login and
cancel options. As described in
Footers, you can use FreeMarker
expressions to conditionalize the
footer text for text-only channels.

No

Appendix B
Security

B-35

Property Description Required?

linkLabel Use to override the label for the
button that the users can click to
invoke the authentication dialog.
The default label is Log In.

No

prompt The string to use to prompt the
user to sign in.

Yes

showCancelOption (Optional) Enables you to specify
whether or not to display the
Cancel button. By default, this
option is set to true, meaning
that the Cancel button is
displayed. In some cases, such
as for SMS channels, you might
not want to display this button.
You can configure such behavior
with an expression like:

$
{(system.message.channel
Conversation.channelType
=='twilio')?
then('false','true')}

Yes

translate Use this optional boolean
property to override the boolean
value of the autoTranslate
context variable. Note that
autoTranslate is false
(exclude from autotranslation)
unless that context variable has
been explicitly set to true.

No

variable Specifies the variable to store the
authorization code in. You can
declare it in the context node as
a variable, a string, or another
supported variable type. It can
also be a user variable.

Yes

This component can return the following actions:

Action Description

fail The user clicked the cancel button.

pass The authorization code was retrieved successfully.

textReceived The user entered text instead of clicking the cancel
button or authenticating successfully.

This example shows the required properties that you need to define for the
System.OAuthAccountLink component: prompt, which specifies the login message,
variable, which tells the component where to store the authorization code, and

Appendix B
Security

B-36

authorizeURL which defines both the provider’s OAuth URL and the redirect URL that
receives the authorization code.

login:
 component: "System.OAuthAccountLink"
 properties:
 prompt: "Please login now."
 linkLabel: "login"
 cancelLabel: "cancel"
 authorizeURL: "https://www.linkedin.com/oauth/v2/authorization?
response_type=code&client_id=75k0vq4&scope=r_basicprofile&redirect_uri=https%
3A%2F%2FmyBotsinstance%2Fconnectors%2Fv2%2Fcallback"
 variable: "authCode"
 transitions:
 next: getBankUserProfile
 actions:
 textReceived: handleAuthTextResponse
 fail: authCancelled

When the dialog engine encounters this component, the skill bot prompts the user with two
links — Login and Cancel.

There are several ways to transition from this component:

• The user clicks the cancel button and the component transitions to the state that's named
by the fail action.

• The user doesn't click any buttons but enters text instead. The component transitions to
the state that's named by the textReceived action.

• The user clicks the login link and the channel renders the identity provider’s login page or
its authentication dialog as a webview, as shown in the example below. After successful
authorization, the component transitions to the state that's named by the pass action (or
to the next state if there isn't a pass action), which would typically call a custom
component that exchanges the authorization code for an access token.

Appendix B
Security

B-37

If the test window doesn’t render the webview, cut and paste the link text into your
browser.

The authorizeURL Property
To configure this property, you begin with the identity provider’s URL, such as https://
www.linkedin.com/oauth/v2/authorization in the example. Next, append the following OAuth
parameters to this URL:

1. response_type: Set to code because the skill bot expects an authorization code.

2. client_id: The API key value that you got when you registered your app with the
identity provider.

3. scope: A list of permissions to access resources on the user’s behalf. These are
the permissions that you set when you register your app with the provider. They
can vary by provider: for LinkedIn, these include r_basicprofile (shown in the
example) and r_emailadress; for Microsoft, they’re defined using openid email
and openid profile.

4. redirect_uri: This is the redirect URI that you used to register your app with the
identity provider, and tells the provider where to redirect users. This parameter,
which is the Digital Assistant service host name appended with connectors/v2/
callback, is the endpoint that receives the authorization code and then associates
it with the active channel. The redirect_uri property is based on the Webhook
URL that’s generated when you create a channel. See What Are Channels?

Ensure that the value that you enter for the redirect_uri matches the redirect
URI that you provided when you registered your app exactly. In both instances, the
URI must be appended with connectors/v2/callback.

Appendix B
Security

B-38

https://www.linkedin.com/oauth/v2/authorization
https://www.linkedin.com/oauth/v2/authorization

Note:

If your instance is provisioned on Oracle Cloud Platform (as all version 19.4.1
instances are), use v1 instead of v2.

User Interface Components
These are the components that are available in the User Interface category of YAML-based
dialog flow editor.

Use these components to display text and interface with the user:

• System.CommonResponse—Outputs content-rich messages.

• System.Webview—Integrates your bot with a web app.

• System.IncidentCreation—Creates an incident for Oracle B2C Service or Oracle Fusion
Service.

• System.IntelligentAdvisor—Integrates your skill with an Oracle Intelligent Advisor
interview.

• System.KnowledgeSearch—Searches a knowledge service for information about a
subject.

• System.AgentTransfer—Enables a DA-as-agent skill to transfer a conversation back to
Oracle B2C Service or Oracle Fusion Service.

• System.AgentTransferCondition—Lets you check if agents are available and get the
expected wait time.

• System.AgentInitiation and System.AgentConversation—Enables you to transfer a
conversation to an Oracle B2C Service live agent.

• System.ResolveEntities—Resolves the values for the member entities of a composite
bag entity.

• System.Feedback—Outputs a feedback rating component.

• Calendar Components

System.CommonResponse
The System.CommonResponse component enables you to build messages with rich UI features
like card carrousels with images and action buttons, or forms with tables and input fields.

Note:

This topic covers use of this component in YAML mode. For information on using it
in the Visual Flow Designer, see Common Response Component Templates.

Templates for the System.CommonResponse are available in the User Messaging section of
the Add Component dialog.

Appendix B
User Interface Components

B-39

How you build messages based on this component depends on the skill's dialog mode.
In the YAML mode, you edit the OBotML component state templates. The process is
simplified in the Visual Mode, where you can create these rich UI messages by just
updating the fields and response item metadata in the property window of the
Common Response component-based user messaging templates. For YAML-based
skills, you can see an example of using the System.CommonResponse component in the
CrcPizzaBot, one of the sample bots. In this spin on the PizzaBot, you can display an
image-rich menu with quick action Order Now buttons.

Within the context of the System.CommonResponse component, the different types of
messages are known as response types and the CrcPizzaBot shows you how, among
other things, they allow the bot users to respond to prompts using action buttons and
view the pizza menu as a cascade of card items.

From the Add Component menu, you can select different System.CommonResponse
templates for cards, text, attachment responses, and for composite bag entities
(demonstrated by the CbPizzaBot). These templates include both properties that are
common to all of these response type properties that are specific to the individual
response types. While the Add Component menu adds separate states for each
response type, you can combine one or more response types into a single state. The
CrcPizzaBot shows you examples of both in its ShowMenu (text response) and
OrderPizza (text and card responses) states.

Note:

You should test each skill in your target channels early in the development
cycle to make sure that your components render as desired.

Appendix B
User Interface Components

B-40

The Component Properties
Configuring System.CommonResponse components entails setting properties that direct the
Dialog Engine along with metadata properties that describe not only how the component
delivers messages (as text prompts, cards, or attachments), but also sets the content and
behavior for the messages themselves.

Name Description Required?

metadata The chat response created by this component is driven by the
contents of the metadata property. See The Metadata Property in
Common Response Components.

Yes

processUserMessage Set this property to true to direct the Dialog Engine to return to the
state after the user enters text or taps a button. Set this property to
false if no user input is required (or expected).
Set this property to true when setting a location.

Yes

autoNumberPostbackAct
ions

This property is used for composite bags, text responses, card
responses. When set to true, this option prefixes numbers to
options. Even when you haven’t set this option to true, auto-
numbering can be enforced on card items when the digital
assistant’s Enable Auto Numbering on Postback Actions
configuration is set to true. As demonstrated by its default
configuration, channel-specific auto-numbering can be applied to
any skill bot that registered to a digital assistant ($
{(system.channelType=='twilio')?
then('true','false')}):

No

variable This variable holds the name of the context or user variable that
gets populated when a user responds by entering free text instead
of tapping a button. This property is ignored when a user taps a
button, because the button’s payload determines which variables
values get set. If the variable property has already been set when
the Dialog Engine enters this state, then the state is skipped.

For composite bag entities, reference the composite bag entity
variable. Users get prompted for the individual entity values in the
bag. When all the entity values are set, the component transitions
to the next state.

No

nlpResultVariable Sets the variable property with an entity value (when that entity
value hasn’t already been set for the referenced variable). You can
enable nlpResultVariable to return value when you define it
using a variable that holds the NLP results (such as iResult:
"nlpresult" that’s used in our sample bots). By doing this, the
nlpResultVariable property can still populate the value when
it’s null if it finds a resolved entity that matches the one referenced
by the variable. The dialog transitions to the next state when the
nlpResultVariable sets the value. You can use this property in
place of the System.SetVariable component.

No

useFullEntityMatches When set to true, custom entity values are stored as JSON
objects (similar to built-in entity values). This enables you to create
expressions to access properties such as value,
primaryLanguageValue, and originalString, which are
particularly important for skills that are currently or eventually might
become multi-lingual.

No

Appendix B
User Interface Components

B-41

Name Description Required?

maxPrompts Before the System.CommonResponse component can populate the
variable value that you’ve specified for the variable property from
the text entered by the user, it validates the value against the
variable type. This can be entity-type validation, or in the case of a
primitive type, it’s a value that can be coerced to the primitive type.
When the component can’t validate the value, the Dialog Engine
sends the message text and options again. (You can modify this
message to reflect the validation failure.) To avoid an endless loop
resulting from the user’s continued inability to enter a valid value,
use this property to set a limit on the number of attempts given to
the user. When the user exceeds this allotment, the
System.CommonResponse component transitions to the cancel
action. See Limiting the Number of User Prompts.

As described in Create a Composite Bag Entity, individual entities
in the composite bag can override this setting when the Maximum
User Input Attempts option is set.

No

keepTurn The keepTurn property only applies when you set the
processUserMessage property to false. See System.Output to
find out how to set this property.

No

translate Use this property to override the boolean value that you’ve set for
the autotranslate context variable. If you haven’t set this
variable, or if you set it to false, then you can set this property to
true to enable autotranslation for this component only. If you set
the autotranslation variable is set to true, you can set this
property to false to exclude this component from autotranslation.
See Translation Services in Skills.

No

footerText Enhances the output on text-only channels. As described in
Footers, you can use FreeMarker expressions to conditionalize the
footer text for text-only channels.

No

transitionAfterMatch
(deprecated)

A boolean that, when you set it to true, enables a temporary
transition from the entity matching performed by this component to
another state. This property is no longer supported. To get this
functionality, use an entity event handler

No

cancelPolicy Determines the timing of the cancel transition:
• immediate—Immediately after the value set for the bag item’s

Maximum User Input Attempts has been met. If this value
has not been set, then the component fires this transition when
the component-wide maxPrompts value has been met.

• lastEntity—When the last entity in the bag has been
matched with value.

This property is ignored if you've registered an entity event handler
with an item- or event-level maxPromptsReached handler.

No

Here's the YAML for an example state based on the System.CommonResponse
component.

 AskPizzaSize:
 component: "System.CommonResponse"
 properties:
 variable: "pizzaSize"
 nlpResultVariable: "iresult"
 maxPrompts: 2
 metadata:

Appendix B
User Interface Components

B-42

 responseItems:
 - type: "text"
 text: "<#if system.invalidUserInput == 'true'>Invalid size, please
try again.\
 \ </#if>What size do you want?"
 name: "What size"
 separateBubbles: true
 actions:
 - label: "${enumValue}"
 type: "postback"
 payload:
 action: ""
 variables:
 pizzaSize: "${enumValue}"
 name: "size"
 iteratorVariable: "pizzaSize.type.enumValues"
 processUserMessage: true
 transitions:
 actions:
 cancel: "Intent"
 next: "AskLocation"

Tip:

The text property in this snippet is defined using Apache FreeMarker Template
Language (FTL). To find out how to add FTL expressions and use FreeMarker built-
in operations to transform variable values, see Apache FreeMarker Template
Language Syntax.

Transitions for the System.CommonResponse Component
Common Response components use the following transitions.

Transition Description

cancel Triggered when a user exceeds the allotted
attempts set by the maxAttempts property, or
redirect the flow .

textReceived Triggered when a user sends text or emojis
instead of tapping an action button or link.

attachmentReceived Triggered when a user sends an image, audio,
video, or file attachment.

locationReceived Triggered when the user sends a location.

system.outOfOrderMessage Set this to circumvent unexpected user behavior.
Specifically, when a user doesn’t tap an action
item in the current message, but instead taps an
action belonging to an older message in the chat
session.

Appendix B
User Interface Components

B-43

Composite Bag Transitions in the System.CommonResponse Component
These System.CommonResponse components triggers the match and cancel actions
based the values matched from the user input and on your configuration of the
cancelPolicy property.

Action Description Required?

match The component triggers this
action to navigate to the
specified state when at least
one entity in the bag has
matched the user input.

No

cancel The component triggers this
action to navigate to the
specified state based on the
setting for the cancelPolicy
property.

No

System.Webview

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Webview Component.

The System.Webview component opens a webview within your skill, or for skills that
run in a web channel, in an browser tab.

System.WebView Component Properties

Property Description Required?

sourceVariableList A comma-separated list of
context or user variable
names. These variable names
are the parameters that are
sent to the webview; they’re
the input parameters from your
bot. You can set each variable
by adding a series of
System.SetVariable states
before the System.Webview
state.

Yes

Appendix B
User Interface Components

B-44

Property Description Required?

variable The name of the variable (a
string value) that identifies the
webview payload that’s
returned to the bot after the
user completes his or her
interactions within the
webview.
Because the payload is stored
in this variable, which you can
access at a later point in your
dialog flow definition. For
example, you can reference
this in an output component.

Yes

prompt A text string like “Tap to
continue.”

No

service The name of the webview
component service.

No

imageUrl The URL to the image that
accompanies a prompt.

No

linkLabel The label for the button that
invokes the web app.

No

cancelLabel The label for the Cancel button
that lets users leave the state
without invoking the web app.

No

autoNumberPostbackActio
ns

Enables user input in SMS
channels, which don’t support
buttons, by adding number
equivalents to the UI
elements.
• false—Overrides the

global
autoNumberPostbackAc
tions variable.

• true—

Prefixes the Cancel
button with a sequence
number, which when
entered, executes the
button postback payload
as if the user tapped the
button rather than enter
its number equivalent.

No

Appendix B
User Interface Components

B-45

Property Description Required?

translate Use this property to override
the boolean value that you’ve
set for the autotranslate
context variable. If you haven’t
set this variable, or if you set it
to false, then you can set
this property to true to enable
autotranslation for this
component only. If you set the
autotranslation variable is
set to true, you can set this
property to false to exclude
this component from
autotranslation. See
Translation Services in Skills.

No

Transitions for the System.Webview Component

Transitions Description

next Names the next state in the dialog flow after
the successful callback from the web app.

return Exits the conversation after the successful
callback from the web app.

error Names the state that handles errors.

actions • cancel—Names the state that handles
the "user taps cancel" scenario.

• textReceived—Names the state when
users enter text rather than tapping one of
the buttons.

System.IncidentCreation
You can use the System.IncidentCreation component to create an incident on a
customer service site. Note that you must create a customer service integration from
the Settings > Additional Services > Customer Service Integration page before
you can use this component in your instance.

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Incident Creation.

Here's an example of using this component to transfer the conversation back to a
Oracle B2C Service site.

 component: "System.IncidentCreation"
 properties:
 serviceName: "IncidentService"

Appendix B
User Interface Components

B-46

 subject: "${incident.value.subject}"
 attachmentUrl: <#if (incident.value.Attachment.url)??>$
{incident.value.Attachment.url}<#else></#if>
 customFields:
 description: "${incident.value.description}"
 contactInfo: "<#if (profile.contactInfo)??>$
{profile.contactInfo}<#else></#if>"
 contactProperties:
 firstName: "${profile.firstName}"
 lastName: "${profile.lastName}"
 email: "${incident.value.email}"
 incidentNumberVariable: "incidentNumber"
 transitions:
 error: "incidentError"
 next: "exitIncident"

And here's an example for Oracle Fusion Service:

 component: "System.IncidentCreation"
 properties:
 serviceName: "IncidentServiceB2BEndUserAuth"
 subject: "${service.value.subject}"
 attachmentUrl: <#if (service.value.Attachment.url)??>$
{service.value.Attachment.url}<#else></#if>
 agentReportFilter: "ODAQueue"
 addChatTranscript: "true"
 customFields:
 description: "${service.value.description}"
 contactInfo: "<#if (profile.contactInfo)??>$
{profile.contactInfo}<#else></#if>"
 contactProperties:
 firstName: "${profile.firstName}"
 lastName: "${profile.lastName}"
 email: "<#if (profile.email)??>${profile.email}<#else></#if>"
 incidentNumberVariable: "incidentNumber"
 transitions:
 error: "incidentError"
 next: "exitIncident"

Property Description Required?

serviceName The name of the integration as configured in Settings >
Additional Services > Customer Service Integration.

Yes

subject The text for the subject of the incident. Yes

attachmentUrl The URL of a document or image that's related to the
incident. Note that adding attachments is not supported
for DA as Agent skills.

No

agentReportFilter (For Oracle Fusion Service incidents), text to filter the
incidents. The default value is ODA.

No

Appendix B
User Interface Components

B-47

Property Description Required?

addChatTranscript (For Oracle Fusion Service incidents only.) When set to
true, chat transcript is added to the incident. Defaults to
false.
Insights must be enabled for the skill in order for the chat
transcript to be made available.

A transcript can only be added to the incident when
using a DA as an Agent integration in combination with
Web Chat for Service or Oracle Inlay Toolkit inlays.

No

customFields A map that contains the description and, optionally,
contactInfo, which can contain additional details
about the incident.
The map is passed unvalidated as a text version of the
object and inserted into the incident message as a
private note.

No

contactProperties A map of name/value pairs that contains the information
that's required to look up or create customer service
contact information. It must contain email, and can
optionally contain firstName and lastName.
If email isn't provided, then you must provide both
firstName and lastName.

Only for Oracle B2C
Service

incidentNumberVariabl
e

The name of the string context variable in which to store
the incident number.

No

System.IntelligentAdvisor
Use this component to access an Oracle Intelligent Advisor interview from a skill.

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Intelligent Advisor.

You must create an Intelligent Advisor service integration before you can use this
component. See Add an Intelligent Advisor Service. In addition, the interview must
have been deployed to the Intelligent Advisor Hub and activated on the chat service
channel. The interview must be for anonymous users. You can't access interviews for
portal users or agent users.

You can use the component's properties to specify the following interview settings:

• Whether to display the titles and the explanation

• The labels for the yes, no, and uncertain buttons

• The strings that the user enters to reset, go back to the previous question (undo),
and exit the interview

• The text to display at the end of the interview

• How to phrase the question about whether to display the explanation

• The string the user enters to indicate they are done uploading files

Appendix B
User Interface Components

B-48

• The attribute values and connector params to pass to the interview

• The project locale to use

Here's an example:

 loanAdvisorIA:
 component: "System.IntelligentAdvisor"
 properties:
 intelligentAdvisorService: "myService"
 deployment: "Loan Advisor"
 # default yesLabel: "yes"
 # default noLabel: "no"
 uncertainLabel: "not sure"
 endLabel: "You can ask me another question if there's something else
that I can help
 you with."
 # default doneLabel: "/done"
 # default undoLabel: "/back"
 # default resetLabel: "/reset"
 # default exitLabel: "/exit"
 showExplanation: "ask"
 # default explanationAskLabel: "Do you want to see the explanation?"
 # default removeHtml: false
 transitions:
 error: "handleIAError"
 next: "endOfFlow"

 handleIAError:
 component: "System.Output"
 properties:
 text: |
 We are having a problem with a connection.
 Can you please send email to
 contact@example.com to let them know that
 the loan advisor isn't working? Thank you.
 transitions:
 next: "endOfFlow"

See Use the Intelligent Advisor Component in Your Skill for an example that uses the
component in a dialog flow.

Appendix B
User Interface Components

B-49

Tip:

The default values for all the label properties are stored in the skill's resource
bundle. To change a default, open the skill's Resources Bundle page, click

, select the Configuration tab, and change the message for the
IntelligentAdvisor - <property name> key. If you use the skill's resource
bundle to change the default, then you don't need to include the label
property in the component unless you want to override the default.
The configuration resource bundle also allows you to change the
IntelligentAdvisor - defaultValue, IntelligentAdvisor - doneHelp,
IntelligentAdvisor - maskLabel, IntelligentAdvisor -
outOfOrderMessage, IntelligentAdvisor - resumeSessionPrompt,
IntelligentAdvisor - numberMinMax, IntelligentAdvisor -
outOfOrderMessage, IntelligentAdvisor - resumeSessionPrompt, and
IntelligentAdvisor - yesNoMessage messages. For example, the
IntelligentAdvisor - doneHelp message is output for attachment fields, and
it defaults to When you are done with the upload, say {0}. You might
want to change it to something like Say {0} to let me know that you are
done uploading.

Property Description Required?

currency The ISO-4217 currency code for the
currency that's used in the interview.
When this code is specified, the user
only can input currency values in the
formats that are allowed for that
currency. You can set this property to
blank or exclude it if the interview
doesn't prompt for currency amounts
or is not expecting any certain
currency.

No

deployment The name of the active deployment
project on the Intelligent Advisor
Hub.

Yes

doneLabel The text that the users type to
indicate that they are done uploading
a file.
The default is /done.

No

endLabel Text to display in the chat at the end
of the interview.
The default is Interview ended.
You can set the property to "" to
prevent text from being displayed.

No

exitLabel The text that users type to indicate
that they want to exit the interview.
The default is /exit.

No

explanationAskLabel The question to ask when
showExplanation is set to ask.
The default is Do you want to
see the explanation?

No

Appendix B
User Interface Components

B-50

Property Description Required?

hideScreenTitle Indicates whether to hide all the
screen titles in the interview.
The default is false, meaning that
the screen titles must be displayed.

No

intelligentAdvisorService The name of the Intelligent Advisor
service as configured in Settings >
Additional Services.

Yes

interviewAttributes The name of a context variable of
type string in which to store the
interview's attribute values. The
attribute values are stored as an
array of key/value pairs.

No

locale This property affects both the target
interview and date and number
resolution.

The component initiates the version
of the named interview (deployment)
that's associated with the language
specified by the component's
locale property. If there isn't a Hub
deployment for the specified locale,
then the component uses the default
locale that's associated with the
deployment.

For date and number input, the
values are resolved per the DATE
and NUMBER entity settings. When
Consider End User Locale is
switched to On for the entity, then the
value is resolved for the locale that is
specified by this property (or the
default if not specified). See Locale-
Based Entity Resolution.

This property defaults to the
profile.locale value. If
profile.locale doesn't have a
value, then it uses the channel's
locale.

No

noLabel The label to use to represent
Boolean FALSE values.
The default is No.

No

params A map of key-value connection
parameters to pass upon the start of
interview. This is typically needed for
interviews with external data
integration.

No

removeHtml Indicates whether to remove the
HTML markup from the text. The
default is false.

No

resetLabel The text that users type to indicate
that they want to go back to the first
question.
The default is /reset.

No

Appendix B
User Interface Components

B-51

Property Description Required?

seedData A map of Intelligent Advisor attribute
names and values to pass to the
interview. For date and time
attributes, use the standard
Intelligent Advisor date and time
formats. For example: start_date:
"2010-01-31".
The attribute that you are passing the
value to must have the Seed from
URL parameter option enabled in
Policy Modeling.

No

showExplanation Specifies whether to show the
Intelligent Advisor explanation. The
allowed values are never, always
and ask.
If you set to ask, then use the
explanationAskLabel property to
specify the text for asking if the user
wants to see the explanation.

The default is never.

No

uncertainLabel The label that the user can type if
they don't know the value. This label
appears for optional Boolean radio
buttons.
The default is Uncertain.

No

undoLabel The text that the users type to
indicate that they want to go back to
the previous question.
The default is /back.

No

yesLabel The label to use to represent
Boolean TRUE values.
The default is Yes.

No

System.KnowledgeSearch

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Knowledge Search.

Use this component to search Oracle B2C Service Knowledge Foundation or Oracle
Fusion Service Knowledge Management for information about a given search term
and to display the results.

For Oracle B2C Service, the results that the service returns depend on whether the
answers are public and what the access level, product, or category settings are.

Note that you must create a knowledge search service before you can use this
component. See Add a Knowledge Search Service.

Appendix B
User Interface Components

B-52

Here's an example of using this component. It searches a Knowledge Management service
for all information that's related to the user's last utterance. For additional examples, see Use
the System.KnowledgeSearch Component.

 searchFor: knowledgeSearch:
 component: "System.KnowledgeSearch"
 properties:
 searchServiceName: "myKnowledgeSearch"
 searchTerm: "${iResult.value.query}"
 searchPrelude: "I don't know the answer for that. Let me search for an
answer."
 resultSizeLimit: 5
 resultVersion: "Special Response"
 resultVersionExclusive: true
 resultLinkLabel: "Show More"
 searchLinkLabel: "Open Page with All Answers" # For B2B set to "Go to
search home page"
 noResultText: "I don't have an answer for that. Try rephrasing your
question."
 transitions:
 actions:
 resultSent: "reset"
 noResult: "reset"
 serverError: "handleSearchServerProblem"
 error: "handleSearchError"
 next: "reset"

Tip:

The default values for the defaultAttachmentLabel, noResultText, and
resultLinkLabel properties are stored in the skill's resource bundle. To change a
default, open the skill's Resources Bundle page, click , select the Configuration
tab, and change the message for the KnowledgeSearch - <property name> key. If
you use the skill's resource bundle to change the default, then you don't need to
include the property in the component unless you want to override the default.

Property Description Required?

cardLayout Specifies whether to display the
result cards vertically or horizontally.
Defaults to horizontal.

No

customFilters A list of search result filters
presented as name-value pairs. The
allowable filter names are product
and category. Each of them allows
only one filter declaration. See Filter
Results by Product and Category.

No

Appendix B
User Interface Components

B-53

Property Description Required?

customProperties Oracle B2C Service only: A map of
key/value pairs to send to the search
service. Currently, this property
supports only the word_connector
key. You use the word_connector
property set to AND to prepend every
word in the search term with +.

No

defaultAttachmentLabel The default label to use for the result
card's URL action that's linked with
an attachment whenever the
attachment doesn't have a
configured display name. When
used, it's appended by an index
number. For example, if the second
attachment doesn't have a display
name, then the default attachment
label is appended with 2.

Defaults to Download.

No

locale Defaults to the value of the
profile.locale variable.
For Oracle B2C Service multi-
interface knowledge integration
services, the five-character ISO or
BCP locale code that specifies which
interface to use to perform the
search (example: en_GB). If there
isn't an interface that supports the
locale, then the default interface is
used. See Implement Multi-Lingual
Knowledge Search.

For Oracle Fusion Service it fetches
the articles that are associated with
the specified locale. If matching
articles don't exist for the locale, it
returns noResult.

No

noResultText The text to output when no search
result is available.

Defaults to the text from the
KnowledgeSearch - noResultText
resource bundle entry

No

resultLinkLabel The label to use for the result card's
URL action (button) that links to the
web version of the information.

Defaults to the text from the
KnowledgeSearch -
resultLinkLabel resource bundle
entry

If you set this property to ${r""}
then the result link button is not
displayed and the full text is output.
This is not recommended if you have
very long articles that would be hard
to read in a typically-sized skill
widget.

No

Appendix B
User Interface Components

B-54

Property Description Required?

resultSizeLimit The maximum number of results to
display.

The default is 10.

No

resultVersion Oracle B2C Service only: The
preferred version to return when
there are multiple versions for a
result.

You can set this property to either
Answer or Special Response.

You can leverage special responses
to display output that's specifically
tailored for chat conversations as
opposed to web pages.

The default version is Answer. The
default might change in a later
release.

No

resultVersionExclusive Oracle B2C Service only: Specifies
whether only results that are
available in the preferred version
should be displayed.

When false, it first includes all
matching answers that are available
with the preferred version
(resultVersion). If the number of
included answers is less than the
limit, then it continues to include
answers in the non-preferred version
until the limit is met.

The default is false.

No

searchLinkLabel Oracle B2C Service: The label to use
for the card message payload action
that's linked to the web page with the
full search result list.

Oracle Fusion Service: The label to
use for the card message payload
action that's linked to the home
search page.

If this property isn't set, then the card
message payload doesn't display the
action.

No

searchPrelude The text to output before the search
result is displayed.

If this property isn't set, then the text
from the KnowledgeSearch -
searchPrelude resource bundle
entry is output.

If you don't want the search prelude
to be displayed, then set this
property to ${r""}.

No

searchServiceName The name of the knowledge search
integration as configured in Settings.

Yes

Appendix B
User Interface Components

B-55

Property Description Required?

searchTerm The text to use as the search term
for the knowledge search invocation.
A search term is required for Oracle
Fusion Service Knowledge
Management. For Oracle B2C
Service Knowledge Foundation, it
returns the most popular articles if no
search term is provided.
For search term techniques, see Use
the System.KnowledgeSearch
Component.

Yes

System.KnowledgeSearch Transitions

Action Description

resultSent The search returned at least one result.

noResult There were no results for the search term.

serverError An error occurred on the knowledge search service's
server during the invocation, such as a server error fault
or an unexpected error fault.
When this error occurs, the error message is stored in
system.state.<state-
name>.serverError.message.

System.AgentTransfer
You use the System.AgentTransfer component in DA-as-agent digital assistants to
transfer the conversation back to the chat service. The conversation will be routed to a
live agent per the chat rules that have been configured in the chat service.

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Agent Transfer.

This component is for conversations that originate in a service chat, as described in
The Digital Assistant as Agent Framework in Action. For conversations that originate in
the skill, use System.AgentConversation instead.

Here's an example of using this component to transfer the conversation back to the
chat service.

 transferToAgent:
 component: "System.AgentTransfer"
 properties:
 maxEngagementsInQueue: "8"
 maxWaitSeconds: "300"
 waitingMessage: "Let me see if a human agent is available to
help you. Hold tight."

Appendix B
User Interface Components

B-56

 rejectedMessage: "No agents are available at this time. Please try
again later."
 errorMessage: "We're unable to transfer you to a human agent because
there was a system error."
 transitions:
 actions:
 accepted: "reset"
 rejected: "handleRejected"
 error: "offerMoreHelp"
 next:
 "reset"

Tip:

In skills with platform version 21.04 and later, the default values for the
acceptedMessage, errorMessage, rejectedMessage, and waitingMessage
properties are stored in the skill's resource bundle. To change a default, open the
skill's Resources Bundle page, click , select the Configuration tab, and change
the message for the AgentTransfer - <property name> key. If you use the skill's
resource bundle to change the default message, then you don't need to include the
message property in the component unless you want to override the default.

Property Description Required?

agentStatusVariable The name of the context variable of type map to use to
store the agent availability status information. No
information is stored if the property is not specified. To
reference a map variable, use a value expression like
this: ${<mapVariableName>.value.<key>}. For
example,
agentStatus.value.expectedWaitMinutes.
To learn about the values returned in this variable, see
System.AgentTransferCondition.

No

Appendix B
User Interface Components

B-57

Property Description Required?

allowTransferIf Specifies the conditions under which the skill should
transfer the chat session.
• agentsAreRequestingNewEngagements:

(default) For Oracle B2C Service agents who must
pull chats (request new engagements), this is the
most restrictive set of conditions, and the user
doesn't have to wait too long before they speak to
an agent. The skill attempts to transfer the
conversation only if there are agents who have
requested new engagements. In all other cases, this
option has the same behavior as
agentSessionsAreAvailable. Don't use this
option forOracle Fusion Service Chat, since the total
Oracle Fusion Service agents requesting new
engagements is always 0.

• agentSessionsAreAvailable: The skill attempts
to transfer the conversation if any of the available
agents have not reached the maximum number of
chats that they are allowed to have at one time. The
user may have to wait if the agents are involved in
long-running conversations or are doing some post-
chat follow-up.

• agentsAreAvailable: The skill attempts to
transfer the conversation if there are any agents
online regardless of whether they have reached
their maximum number of chats or are requesting
new engagements. With this option, the users may
have long waits.

If the specified conditions aren't met, then the rejected
action occurs.

No

customProperties A map that holds information to pass to the service. See
Pass Information to the Service.

No

errorMessage The message that's shown to the user when a system
error occurs while transferring the chat session to an
agent. Defaults to We were unable to transfer
you because there was a system error. You can
set the property to a blank or empty string to suppress
message output.

No

maxEngagementsInQueue The maximum number allowed for engagements waiting
in the destination queue. When the chat request is sent,
the chat service responds with the current number of
engagements waiting in the queue. If this value exceeds
maxEngagementsInQueue, then the rejected action
occurs. Defaults to -1, which means that there's no
engagement limit.
Note that for Oracle Fusion Service Chat, the response
is always 0, so this property is of no value for Oracle
Fusion Service.

No

Appendix B
User Interface Components

B-58

Property Description Required?

maxWaitSeconds The maximum number of estimated wait seconds that
are allowed. When the chat service receives the transfer
request, it responds with the estimated wait time. If this
value exceeds maxWaitSeconds, then the rejected
action occurs. This property defaults to -1, which means
that there's no maximum wait time. When set to -1, the
digital assistant transfers the user to a human agent
regardless of what the estimated wait time is.
Note that the rejected action is based on the
estimated wait time and not the actual wait time. After
the conversation is transferred, the digital assistant
doesn't have control over the conversation, nor does it
have access to information about it. Therefore, it's
possible for the actual wait time to exceed the estimated
wait time.

No

rejectedMessage The message that's shown to the users whenever one of
the following occurs:
• The allowTransferIf conditions weren't met.

• The estimated wait time exceeds maxWaitSeconds.

• The number of engagements in the queue exceeds
maxEngagementsInQueue.

Defaults to Agent rejected. You can set the property
to a blank or empty string to suppress message output.

No

waitingMessage The message that's shown to users when they're
transferred to a queue. Defaults to Agent chat
session established. Waiting for agent to
join. You can set the property to a blank or empty
string to suppress message output.

No

This component can return the following actions:

Action Description

accepted The accepted transition is set when the chat is
successfully transferred to a queue.
Note that after a chat request is accepted, the
conversation must end with a return. For example, you
can navigate to a state that outputs a string (which is not
seen by the user), or sets a variable.

 transitions:
 actions:
 accepted: "reset"
 rejected: "handleRejected"
 error: "offerMoreHelp"
 next: "reset"

Appendix B
User Interface Components

B-59

Action Description

rejected The rejected transition is set when one of the following
occurs:
• The allowTransferIf conditions weren't met.

• The estimated wait time exceeds maxWaitSeconds
• The number of engagements in the queue exceeds

maxEngagementsInQueue.

error The error transition is set when there's a system error
that prevents the transfer to a human agent.

System.AgentTransferCondition
You can use the System.AgentTransferCondition component in DA-as-agent digital
assistants to determine whether agents are available and, if so, the expected wait
time.

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Agent Transfer Condition.

You use the component's properties to specify the transfer conditions, and it returns an
action that indicates whether the conditions were met. In addition, it sets the values of
the named context map variable as follows:

queueId (integer, optional): The engagement queue ID,
expectedTotalWaitSeconds (integer, optional): Expected wait time in
the queue in seconds
 (-1 if there's inadequate information, zero or greater
otherwise).,
expectedWaitSeconds (integer, optional): The number representing the
"ss" segment of the expected wait time of format mm:ss
 (-1 if there's inadequate information, zero or greater
otherwise).,
expectedWaitMinutes (integer, optional): The number representing the
"mm" segment of the expected wait time of format mm:ss
 (-1 if there's inadequate information, zero or greater
otherwise).,
availableAgentSessions (integer, optional): Total number of sessions
available across all agents.,
totalAvailableAgents (integer, optional): Total number of agents whose
status is available.,
totalUnavailableAgents (integer, optional): Total number of agents
whose status is unavailable.,
totalAgentsRequestingNewEngagement (integer, optional): Total number
of agents who are available and have capacity.,
outsideOperatingHours (boolean, optional): True if outside operating
hours. False if inside operating hours.,
engagementsInQueue (integer, optional): The number of engagements
currently in the queue.,

Appendix B
User Interface Components

B-60

sessionId (string, optional): The session ID.,
clientId (integer, optional): The client ID.

Here's an example of using this component to find out if agents are available, report the wait
time, and allow the users to cancel the transfer request if they don't want to wait that long.

 handleAgentRequest:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - type: "text"
 text: "I understand. Give me a moment while I see who might be
available to help you."
 transitions:
 next: "evaluateAgentTransferCondition"

 ############################
 # Agent Transfer
 ############################

 # See if there are any agents available

 evaluateAgentTransferCondition:
 component: "System.AgentTransferCondition"
 properties:
 maxWaitSeconds: 300
 maxEngagementsInQueue: 20
 allowTransferIf: "agentsAreAvailable"
 agentStatusVariable: "agentStatus"
 transitions:
 actions:
 conditionsMet: "askIfWillWait"
 conditionsNotMet: "handleRejected"
 error: "handleTransferError"
 next: "done"

 askIfWillWait:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "$
{rb('promptTextForTransferDecision','minutes,seconds',agentStatus.value.expec
tedWaitMinutes,agentStatus.value.expectedWaitSeconds)}"
 separateBubbles: true
 actions:
 - label: "Yes, I'll wait"
 type: "postback"
 keyword: "yes"
 payload:

Appendix B
User Interface Components

B-61

 action: "yes"
 name: "Yes"
 - label: "No, nevermind"
 keyword: "no"
 type: "postback"
 payload:
 action: "no"
 name: "No"
 transitions:
 actions:
 yes: "transferToAgent"
 no: "handleCancelled"
 textReceived: "intent"
 next: "handleCancelled"

 # Perform the actual transfer
 #
 # The maxWaitSeconds, maxEngagementsInQueue, allowTransferIf,
 # and customProperties, if any, should match those used for
 # System.AgentTransferCondition

 transferToAgent:
 component: "System.AgentTransfer"
 properties:
 maxWaitSeconds: 300
 maxEngagementsInQueue: 20
 allowTransferIf: "agentsAreAvailable"
 transitions:
 actions:
 accepted: "done"
 rejected: "handleRejected"
 error: "handleTransferError"
 next: "handleTransferError"

Appendix B
User Interface Components

B-62

Tip:

Here's a suggested resource bundle definition that you can use to display the
expected wait time:

This might take {minutes, plural,
 =-1 {}
 =0 {}
 =1 {1 minute and }
 other {# minutes and }
}{seconds, plural,
 =-1 {a while}
 =0 {{minutes, plural,
 =0 {a short wait time}
 other {0 seconds}
 }}
 =1 {1 second}
 other {# seconds}
} to connect. Are you willing to wait?

Property Description Required?

agentStatusVariable The name of the context variable of type map to use to
store the agent availability status information. No
information is stored if the property is not specified. To
reference a map variable, use a value expression like
this: ${<mapVariableName>.value.<key>}. For
example,
agentStatus.value.expectedWaitMinutes.

No

allowTransferIf Specifies the base set of conditions that must be met.
• agentsAreRequestingNewEngagements:

(default) For B2C agents who must pull chats
(request new engagements), requires that agents
have pulled chats. In all other cases, this option has
the same behavior as
agentSessionsAreAvailable.

• agentSessionsAreAvailable: Requires that
agents are requesting chats.

• agentsAreAvailable: Requires that at least one
agent is active regardless of whether they have
reached their maximum number of chats or are
requesting new engagements.

If the specified conditions aren't met, then the
conditionsNotMet action occurs.

No

customProperties A map that holds information to pass to the service. See
Pass Information to the Service. This property is
supported in version 21.04 and later.

No

Appendix B
User Interface Components

B-63

Property Description Required?

errorMessage The message shown to the user when Digital Assistant
experiences trouble with the agent chat service. Defaults
to We were unable to check the agent
transfer conditions because there was a
system error. This default string is stored in the
configuration resource bundle under the
systemComponent_AgentTransferCondition_errorM
essage key. You can set the property to a blank or
empty string to suppress message output.

No

maxEngagementsInQueue The maximum number allowed for engagements waiting
in the destination queue. When the request is sent, the
chat service responds with the current number of
engagements waiting in the queue. If this value exceeds
maxEngagementsInQueue, then the
conditionsNotMet action occurs. Defaults to -1,
which means that there's no engagement limit.

No

maxWaitSeconds The maximum number of estimated wait seconds that
are allowed. When the chat service receives the request,
it responds with the estimated wait time. If this value
exceeds maxWaitSeconds, then the
conditionsNotMet action occurs. This property
defaults to -1, which means that there's no maximum
wait time.
Note that the conditionsNotMet action is based on
the estimated wait time and not the actual wait time.

No

This component can return the following actions:

Action Description

conditionsMet The conditionsMet transition is set when when it's
inside business hours and the maxWaitSeconds,
maxEngagementsInQueue and allowTransferIf
conditions are met.

conditionsNotMet The conditionsNotMet transition is set when one of
the following occurs:
• It's outside business hours.
• The allowTransferIf conditions weren't met.

• The estimated wait time exceeds maxWaitSeconds
• The number of engagements in the queue exceeds

maxEngagementsInQueue.

error The error transition is set when there's an issue with
the connection to the agent chat service during the
agent conditions check.

Live-Agent-Transfer Components
• System.AgentInitiation

• System.AgentConversation

Appendix B
User Interface Components

B-64

System.AgentInitiation
If you want to transfer a skill's conversation to an Oracle B2C Service agent, add this
component to the dialog flow to initiate the handshake with the agent-integration channel
that's specified by the agentChannel property. You must call this component before you call
the System.AgentConversation component.

This component is for conversations that originate in the skill. Do not use this component for
conversations that originate in Oracle B2C Service chat, as described in The Digital Assistant
as Agent Framework in Action.

Here's an example of using this component to initiate the handshake with the Oracle B2C
Service instance that's defined by the agent integration channel named
ServiceCloudIntegration.

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 waitingMessage: "Waiting for an agent..."
 rejectedMessage: "Agents are not available right now."
 resumedMessage: "We're connecting you to an agent..."
 errorMessage: "Oops! We're having system issues. We're sorry, but we
can't connect you with an agent right now."
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "tryAgain"
 error: "tryAgain"
 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 exitKeywords: "bye, exit, take care, goodbye, quit"
 expiryMessage: "Your chat with the agent timed out."
 conclusionMessage: "Your chat with the agent has ended."
 waitMessage: "You are number ${system.message.messagePayload.position}
in the queue. Your waiting time is $
{(system.message.messagePayload.waitTime>60)?then('$
{(system.message.messagePayload.waitTime/60)?int} mins','$
{system.message.messagePayload.waitTime} seconds')}."
 transitions:
 next: "endPrompt"
 actions:
 agentLeft: "endPrompt"
 expired: "sessionExpired"
 error" "agentConversationError"

Appendix B
User Interface Components

B-65

Tip:

In skills with platform version 21.04 and later, the default values for the
agentActionsMessage, errorMessage, rejectedMessage, resumedMessage,
and waitingMessage properties are stored in the skill's resource bundle. To
change a default, open the skill's Resources Bundle page, click , select
the Configuration tab, and change the message for the AgentInitiation -
<property name> key. If you use the skill's resource bundle to change the
default message, then you don't need to include the message property in the
component unless you want to override the default.

Appendix B
User Interface Components

B-66

Property Description Required?

agentActions A list of actions that the agent can trigger to terminate
the chat and move the flow to the state defined for the
transition action. In the customer service
representative's console, these actions display as slash
commands when the agent conversation is initiated, as
shown in this example:

Here are the available actions that you
can send to transfer the conversation
back to the bot. Prepend the action with
a forward slash (for example, /
actionName).
/OrderPizza : Order Pizza : Order a
pizza.
/ShowMenu : Show Menu : Show order
options.

The action names must correspond to the
System.AgentConversation’s actions properties.
For example, in the following agentInitiation state,
the ShowMenu and OrderPizza entries in the
agentActions property correspond to actions that are
defined for the agentConversation state:

 agentInitiation:
 component: "System.AgentInitiation"
 ...
 properties:
 agentChannel:
"ServiceCloudIntegration"
 agentActions:
 - action: "OrderPizza"
 label: "Order Pizza"
 description: "Order a pizza."
 - action: "ShowMenu"
 label: "Show Menu"
 description: "Show order
options. "
 …
 agentConversation:
 component: "System.AgentConversation"
 ...
 transitions:
 next: "terminatedWithoutAction"
 actions:
 ShowMenu: "ShowMenu"
 OrderPizza: "OrderPizza"

You can define the agentActions list elements in
several ways:

No

Appendix B
User Interface Components

B-67

Property Description Required?

• As a list of maps, where each map must contain an
action property, a value property, and optionally, a
description property. For example:

 - action: "action1"
 label: "label1"
 description: "description1"
 - action: "action2"
 label: "label2"
 description: "description2"

• As a JSON array, where each object in the array
must contain an action property, a value property,
and optionally, a description property. For example:

 [
 {action: "action1",
 label: "label1",
 description: "description1"},
 {action: "action2",
 label: "label2",
 description:
"description2"}
]

• As a comma-delimited string of action values. The
label and description are the same as the action
value. For example:

"action1, action2"

agentActionsMessage If the agentActions property is set, then the agent
console displays this value instead of the default
message. For example:
agentActionsMessage: "\nYou can terminate
when done or send one of these actions.\n"

No

agentChannel Names the Agent Integration channel. This value, the
name of the Agent Integration channel, and the
agentChannel property defined for the
System.AgentConversation component must all
match.

Yes

Appendix B
User Interface Components

B-68

Property Description Required?

allowTransferIf Specifies the conditions under which the skill should
transfer the chat session. The component uses the
queueId value to identify the queue from which to
obtain the statistics. You should verify that the chat rules
will actually transfer the conversation to the identified
queue, and not some other queue.
• agentsAreRequestingNewEngagements: This is

the most restrictive set of conditions. The skill
attempts to transfer the conversation only if there
are agents who have requested new engagements
(pulled chats) and are assigned to the specified
queue or, if the chat server automatically pushes
chats to agents, there are agents who are available
to receive chats, haven't reached their maximum
number of chats, and are assigned to the specified
queue. With this option, the user doesn't have to
wait too long before they speak to the agent.

• agentSessionsAreAvailable: The skill attempts
to transfer the conversation if there are available
agents who haven't reached their maximum number
of chats and are assigned to the specified queue.
The user may have to wait if the agents are involved
in long-running conversations or are doing some
post-chat follow-up.

• agentsAreAvailable: The skill attempts to
transfer the conversation if there are any agents
online who are assigned to the specified queue
regardless of whether they have reached their
maximum number of chats or are requesting new
engagements. With this option, the users may have
long waits.

If the specified condition is not met, the component
returns rejected.

When you include this property, you must also include
the queueId property.

This property is only available in instances of Oracle
Digital Assistant that were provisioned on Oracle Cloud
Infrastructure (sometimes referred to as the Generation
2 cloud infrastructure).

No

Appendix B
User Interface Components

B-69

Property Description Required?

chatResponseVariable Names the map variable that holds the agent response
information. After the System.AgentInitiation
component connects successfully, the map contains the
following properties:

{
 "sessionID": "string", // agent
session id

 "completedSurveyID": {
 "id": "int"
 },

 "engagementID": { // survey id
 "id": "int"
 },

 "cancelledSurveyID": {
 "id": "int"
 }
}

No

customProperties A map that holds the incident ID, interface, contact, or
custom fields (or a combination thereof) to pass to the
service. To reference a map variable, use a value
expression like this: ${mapVariableName.value}. See
Pass Customer Information to a Live Chat.

No

errorMessage The message to display when there's a problem
establishing a connection with Oracle B2C Service. For
example, the password in the Agent Integration channel
is no longer valid, or there's a problem with the server.

No

nlpResultVariable The variable that stores the customer’s query message. No

rejectedMessage A message that displays if the AgentInitiation
handshake was rejected, such as if it's outside of the
configured operating hours. For example:
rejectedMessaage: "Sorry, no agents are
available at this time."

No

resumedMessage A message (such as, Just a minute...we're connecting
you to an agent.) that displays when the customer's chat
with the customer service representative resumes.
Adding this property prevents customers whose
requests have already been queued from receiving a
misleading Resuming chat with agent message when
they repeatedly request a live chat.

No

Appendix B
User Interface Components

B-70

Property Description Required?

subject The subject line that displays in the agent's console after
the hand off to the agent platform. By default, this is the
last customer message stored in the
nlpResultVariable property, but you can also define
this using a variable that you set earlier in the dialog flow
definition. For example, you can define a string type
context variable whose value gets set prior to the
System.AgentInitiation component:
subject: "A customer needs help regarding $
{context_variable.value}"

No

queueId The ID of the queue that the component must use to
determine whether the specified allowTransferIf
condition is met. This must be the ID of the queue that
the Oracle B2C Service chat rules will route that
conversation to.
This property is ignored if the allowTransferIf
property isn't present.

Required when the
allowTransferIf
property is present.

transcriptDateTimeFor
mat

The format for the date and time in the conversation
transcript messages that are forwarded to the agent.
Refer to the DateTimeFormatter Java class for valid
patterns. Example: dd/MM/yyyy HH:mm. Defaults to
yyyy-mmm-ddThh:mm:ssZ.

No

transcriptTimezoneNam
e

The Internet Assigned Numbers Authority (IANA) name
of the time zone to use to format the conversation
transcript using transcriptDateTimeFormat property.
Example: America/Sao_Paulo. Defaults to Europe/
London. If you don't include the
transcriptDateTimeFormat property, then this
property is ignored.

No

waitingMessage A message that displays while customers wait to
connect to an agent. For example:
waitingMessage: "You’ve joined the chat
session. An agent will be right with you.

No

System.AgentInitiation Transitions
The System.AgentInitiation component returns the accepted, rejected, and error
actions. These actions can each point to a different state, with the accepted action typically
naming the state for the System.AgentConversation component:

 agentInitiation:
 component: "System.AgentInitiation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 ...
 transitions:
 actions:
 accepted: "agentConversation"
 rejected: "noAgentsAvailable"
 error: "handshakeError"

Appendix B
User Interface Components

B-71

Action Description

accepted The handshake completed successfully and the state
can transition to the state with the
System.AgentConversation component.

error There's a problem establishing a connection with Oracle
B2C Service. For example, the password in the Agent
Integration channel is no longer valid, or there's a
problem with the Service Cloud server.

rejected Oracle B2C Service has rejected the connection
request. Some of the reasons for rejecting a connection
request are:
• No agents are available (requires

allowTransferIf and queueId properties)

• It's outside of the configured operating hours
• It's a holiday
• There's a problem with the chat server
Note that if you don't set allowTransferIf and
queueId, the rejected action will not occur when no
agents are available, instead, the transfer will remain in
a wait condition.

System.AgentConversation
Use this component to transfer a skill's conversation to an Oracle B2C Service live
agent and to manage the skill-live agent interchange. Note that you must call the
System.AgentInitiation component before you can use this component.

System.AgentConversation is for conversations that originate in the skill. Do not use
this component for conversations that originate in Oracle B2C Service chat, as
described in The Digital Assistant as Agent Framework in Action.

Here's an example of using this component to transfer the conversation to the Oracle
B2C Service instance that's defined by the agent integration channel named
ServiceCloudIntegration.

 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 errorMessage: "Oops, we lost connection with the agent. If you
need further help, please call customer support."
 exitKeywords: "bye, exit, take care, goodbye, quit"
 expiryMessage: "Your chat with the agent timed out"
 waitExpiryMessage: "The chat expired while waiting for an agent"
 conclusionMessage: "Your chat with the agent has ended."
 waitMessage: "You are number $
{system.message.messagePayload.position} in the queue. Your waiting
time is ${(system.message.messagePayload.waitTime>60)?then('$
{(system.message.messagePayload.waitTime/60)?int} mins','$
{system.message.messagePayload.waitTime} seconds')}."
 transitions:
 next: "endPrompt"

Appendix B
User Interface Components

B-72

 actions:
 agentLeft: "endPrompt"
 expired: "sessionExpired"
 waitExpired: "expiredWhileWaiting"
 error: "handleConnectionError"

Property Description Required?

agentChannel Names the Agent Integration
channel. This value, the name of the
Agent Integration channel, and the
agentChannel property defined for
the System.AgentInitiation
component must all match.

Yes

conclusionMessage An automated message sent to the
customer when either the user enters
an exit keyword, the agentLeft
action is triggered, or the agent
terminates the conversation without
sending one of the agentActions.
For example, Your chat with the
agent has ended.

No

errorMessage The message that the chat displays if
there is a problem with the
connection to Oracle B2C Service.
The default message is Chat
session error. The reason is
{cause}.
This property only works with
instances of Oracle Digital Assistant
that were provisioned on Oracle
Cloud Infrastructure (sometimes
referred to as the Generation 2 cloud
infrastructure).

No

exitKeywords A comma-delimited list of typical exit
words used by a customer to end the
conversation with the live agent. For
example:
exitKeywords: "bye, exit,
take care, goodbye, quit"
The property value defaults to bye,
take care, see you, goodbye.

No

expiryMessage A message that displays when the
expired action is triggered. The
default message is Chat session
expired. Thanks for chatting
with us.
Note that the conclusionMessage
is not output if the expiryMessage
is output.

The expiry message isn't output
when the conversation concludes
because the Service Cloud
USER_WAIT_QUEUE_TIMEOUT was
exceeded.

No

Appendix B
User Interface Components

B-73

Property Description Required?

nlpResultVariable The nlpResultVariable variable
that holds the customer's query
message.

No

waitExpiryMessage The message that's shown to the
user when the chat expires while
waiting for an agent. The default
message is The request for
live chat expired while
waiting for an agent.

No

waitMessage By default, after the conversation
transfer is initiated, the skill displays
the wait message that the live chat
service sends to the skill, such as the
queue position and wait time. Use
this property to customize the
message. For example:
waitMessage: "You are
number $
{system.message.messagePaylo
ad.position} in the queue.
Your waiting time is $
{(system.message.messagePayl
oad.waitTime>60)?then('$
{(system.message.messagePayl
oad.waitTime/60)?int}
mins','$
{system.message.messagePaylo
ad.waitTime} seconds')}."

No

System.AgentConversation Transitions
The System.AgentConversation can trigger the expired, agentLeft, error, or
waitExpired action. In addition, it can trigger any action from the
System.AgentInitiation component's agentActions property. You need to add a
next transition as well, because a customer might enter one of the exitKeywords to
leave the chat before any of these actions can get triggered.

 agentConversation:
 component: "System.AgentConversation"
 properties:
 agentChannel: "ServiceCloudIntegration"
 nlpResultVariable: "iResult"
 exitKeywords: "bye, adios, take care, goodbye"
 ...
 transitions:
 next: "endPrompt"
 actions:
 agentLeft: "endPrompt"
 expired: "endPrompt"
 waitExpired: "endPrompt"
 error: "agentConversationError"

Appendix B
User Interface Components

B-74

 ...
 endPrompt:
 component: "System.List"
 properties:
 prompt: "Your session has ended. What would you like to do?"
 options:
 - label: "Order a Pizza"
 value: "OrderPizza"
 - label: "Nothing. I'm done here."
 value: "Finished"
 autoNumberPostbackActions: true
 transitions:
 actions:
 OrderPizza: "resolvePizzaSize"
 Finished: "done"
...

Action Description

agentActions If the System.AgentInitiation component has
an agentActions property, then this component
should have a transition action for every supported
action that's specified by agentActions.

agentLeft The agent terminated the session without using a
slash action (for example, /Order). Alternatively,
the session ended because there was no activity
within the time specified by the Oracle B2C
Service CS_IDLE_TIMEOUT configuration and that
configuration is less than the Session Expiration
setting for the agent-integration channel. See the
expired action for more information.
Note that this action is not returned when the user
leaves the conversation by entering an exit
keyword. In that case, the flow transitions to the
state that's named by the next transition, or, if
there is no next transition, to the next state in the
flow.

error There is a problem connecting to the live agent
service.

This action only works with instances of Oracle
Digital Assistant that were provisioned on Oracle
Cloud Infrastructure (sometimes referred to as the
Generation 2 cloud infrastructure).

Appendix B
User Interface Components

B-75

Action Description

expired If the Oracle B2C Service CS_IDLE_TIMEOUT is
equal to or more than the Session Expiration
setting for the agent-integration channel, then this
action is triggered when neither the end-user nor
the agent sends a message within the session
expiration limit. If CS_IDLE_TIMEOUT is less than
the Session Expiration setting for the agent-
integration channel, and there is no activity, then
Oracle B2C Service terminates the chat and the
agentLeft action is triggered instead.

By default, CS_IDLE_TIMEOUT is 10 minutes.

The expired action isn't returned when the
conversation concludes because the Service
Cloud USER_WAIT_QUEUE_TIMEOUT was
exceeded. Consider setting this configuration to a
high value, such as 7200 seconds (2 hours).

To view or change your Oracle B2C Service
instance's settings, open the Desktop Console,
click Navigation, click the first Configuration item
in the menu, and click Configuration Settings.
Then search the for the setting in the Chat folder.

waitExpired The chat request expired while waiting for an
agent. This happens when the wait time exceeds
the value in the chat client's
USER_WAIT_QUEUE_TIMEOUT setting.

System.ResolveEntities

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see Resolve Entity.

Iterates through all the entity fields in the composite bag, converses with the user and
resolves all the fields. The component randomly chooses the prompts that you provide
for each entity while resolving that entity.

Property Description Required

variable Refers to the composite bag entity context variable that’s
populated by this component. If all child entities of the
composite entity variable already have a value, then the
dialog flow transitions to the next state without sending the
user a message.

Yes

Appendix B
User Interface Components

B-76

Property Description Required

nlpResultVariabl
e

Populates the variable property (which references the
composite bag entity variable) using the values stored in
the nlpresult context variable. You can define this
property by naming the nlpresult variable (typically,
iResult). When the framework resolves a single child
entity, then the variable property gets populated with just
that entity value. When the nlpresult variable holds
values for all of the child entities, then the dialog flow
transitions to the next state. You can use this property in
place of the SetVariable states that populate the child
entity values.

No

maxPrompts Specifies the number of attempts allotted to the user to
enter a valid value that matches the child entity type. If the
maximum number of attempts is exceeded for the first child
entity, this property resets to 0 and the bot outputs the
prompt for the next child entity. As described in Create a
Composite Bag Entity, individual entities in the composite
bag can override this setting when the Maximum User
Input Attempts option is set.

No

autoNumberPostba
ckActions

When you set to true, this option prefixes numbers to
options. Even when you haven’t set this option to true,
auto-numbering can be enforced on list items when the
digital assistant’s Enable Auto Numbering on Postback
Actions configuration is set to true. Channel-specific auto-
numbering can be applied to any skill bot that's registered
to a digital assistant:

${(system.channelType=='twilio')?
then('true','false')}

No

useFullEntityMat
ches

When set to true, custom entity values are stored as
JSON objects (similar to built-in entity values). This enables
you to create expressions to access properties such as
value, primaryLanguageValue, and originalString,
which are particularly important for skills that are currently
or eventually might become multi-lingual.

footerText Enhances the output on text-only channels. As described in
Footers, you can use FreeMarker expressions to
conditionalize the footer text for text-only channels.

No

Appendix B
User Interface Components

B-77

Property Description Required

headerText A message that displays before the component prompts the
user for the next item in the bag. You can use this header to
provide feedback on the previous entities in the bag that
have been matched (or updated).

headerText: "<#list
system.entityToResolve.value.updatedEntities
>I have updated <#items as ent>$
{ent.description}<#sep> and </#items>. </
#list><#list
system.entityToResolve.value.outOfOrderMatch
es>I got <#items as ent>$
{ent.description}<#sep> and </#items>. </
#list>"

No

transitionAfterM
atch

A boolean that, when you set it to true, enables a
temporary transition from the entity matching performed by
this component to a custom component. By default, this is
false. This property is ignored (and the match transition is
not triggered) if you've registered an entity event handler.

No

cancelPolicy Determines the timing of the cancel transition:
• immediate—Immediately after the allotted

maxPrompts attempts have been met for an entity in
the bag.

• lastEntity—When the last entity in the bag has
been matched with a value.

This property is ignored if you've registered an entity event
handler with an item- or event-level maxPromptsReached
handler.

No

Calendar Components
Use these calendar components to interact with Outlook and Google calendars:

• System.CreateCalendarEvent: Create an event

• System.DeleteCalendarEvent: Cancel an event

• System.GetCalendarEventDetails: Get details about an event

• System.ListCalendarEvents: Get data for a filtered set of events

• System.SelectCalendarEvent: Select an event from a filtered list

• System.SendInviteResponse: Change an event's response status

• System.UpdateCalendarEvent: Change an event

Calendar Authorization
To enable interaction between a skill and a calendar provider, you need to set up a
service and modify the skill and dialog flow to enable the user to sign into their
calendar through that service.

Appendix B
User Interface Components

B-78

Before you use any calendar component, you must register an application with the calendar
provider and create an authorization code service. See these topics to learn how:

• Register an Application with Google OAuth2 Authorization

• Register an Application with Microsoft Identity Platform

• Add an Authorization Code Service

In your dialog flow, you use the System.OAuth2AccountLink component to prompt the user to
sign into their calendar through the authorization code service that you created. Note that you
can't set the component's enableSingleSignOn property to true when you use the
component for calendar component authorization.

You can leverage the "requires authorization" feature to automatically ensure that the user
has signed in (obtained an access token) before invoking any calendar components. This
feature only asks the user to sign in if they don't have an access token yet or it has expired
and can't be refreshed. You can use the skill's Requires Authorization configuration to set
the default for the whole skill, and then use the state-level requiresAuthorization setting to
override the default. That is, you use the skill setting to set the default, and then only include
the component requiresAuthorization setting in the states for which the default doesn't
apply.

To use the requires authorization feature, you must you add a system.authorizeUser action
to the defaultTransitions node to name the state that starts the authorization flow. For
example:

defaultTransitions:
 error: "globalErrorHandler"
 actions:
 system.authorizeUser: "userAuthN.performOAuth"

Before a skill transitions to a state that requires authorization, it checks to see if there's a
valid access token for the calendar service. If not, it does the following actions:

1. Invokes the state that you've defined for the system.authorizedUser action in the
defaultTransitions node.

2. Asks the user to sign in.

3. Transitions to the state that required authorization (that is, the state defined by $
{system.requestedState}).

Here's an authorization dialog flow example:

defaultTransitions:
 error: "globalErrorHandler"
 actions:
 system.authorizeUser: "userAuthN.performOAuth"

...

 ############################
 # Authenticate
 ############################

 userAuthN.performOAuth:
 component: "System.OAuth2AccountLink"

Appendix B
User Interface Components

B-79

 properties:
 prompt: "User Authentication"
 variable: "code"
 linkLabel: "Sign into ${system.config.calendarProvider}"
 authenticationService: "${system.config.authService}"
 accessTokenVariableName: "user.accessToken"
 authenticatedUserVariableName: "user.authenticatedUser"
 enableSingleSignOn: false # SSO not supported for calendar
components
 transitions:
 actions:
 pass : "${system.requestedState}"
 fail : "handleFailedLogin"
 textReceived: "intent"
 handleFailedLogin:
 component: "System.Output"
 requiresAuthorization: false
 properties:
 text: "Sorry, you aren't authorized to do that"
 transitions:
 return: "doneHandleFailedLogin"

For a skill that's mostly focused on calendar components, consider setting the skill's
Requires Authorization configuration to true, and then set the value to false only for
those states that don't require authorization. In this example, any user can execute the
initTimezoneOffset and intent states. Therefore, requiresAuthorization is set to
false for those states. The states that work with the calendar components don't need
to include requiresAuthorization because the default is true.

 initTimezoneOffset:
 requiresAuthorization: false
 component: "System.SetVariable"
 properties:
 variable: "timezoneOffset"
 value: <#attempt>${profile.timezoneOffset}<#recover>0</
#attempt>
 transitions:
 next: "intent"

 intent:
 component: "System.Intent"
 requiresAuthorization: false
 properties:
 variable: "iResult"
 transitions:
 actions:
 SetupMeeting: "setUpMeeting"
 CancelMeeting: "cancelMeeting"
 ListMeetings: "listMeetings"
 UpdateMeeting: "updateMeeting"
 ListInvites: "listInvites"
 RespondInvites: "respondInvites"
 LogoutUser: "logoutUser"
 unresolvedIntent: "greeting"

Appendix B
User Interface Components

B-80

...
 cancelMeeting.performDelete:
 component: "System.DeleteCalendarEvent"
 properties:
 eventId: "${eventId}"
 provider: "${system.config.calendarProvider}"
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "cancelMeeting.printSuccessMessage"
 cancelMeeting.printSuccessMessage:
 component: "System.Output"
 properties:
 text: "I've cancelled the meeting"
 transitions:
 return: "doneCancel"

Working with Calendar Dates and Times
When working with the calendar components, it's important to understand the relationship
between calendar start and end times, DATE and TIME entities, and the local timezone.

When you create, update, or retrieve events, you use the local datetime for the start and end
values, and you use either the timezoneOffset or the timezone property to tell the
component how to calculate the universal time (UTC).

The calendar components' timezoneOffset is different from the profile.timezoneOffset.
For calendar components, timezoneOffset is the value that the component must add to the
start and end values to obtain the UTC. You can derive a calendar component's'
timezoneOffset property value by multiplying profile.timezoneOffset by -1.

The profile.timezoneOffset might not always be available. This depends on whether the
client provided the offset. For example, someone might build an Oracle Web app that doesn't
set profile.timezoneOffset. Therefore, it's a good idea to create a default timezone for
cases where the profile.timezoneOffset hasn't been set. For example:

 initTimezoneOffset:
 requiresAuthorization: false
 component: "System.SetVariable"
 properties:
 variable: "timezoneOffset"
 value: <#attempt>${profile.timezoneOffset}<#recover>$
{system.config.defaultTimezoneOffset}</#attempt>
 transitions:
 next: "intent

When you retrieve an event, the component returns the datetime values in UTC format. For
example: 2021-04-15T22:00:00.000Z. Your skill needs to convert the value to the local time.

 updateMeeting.printEventDetails:
 component: "System.Output"
 properties:

Appendix B
User Interface Components

B-81

 keepTurn: true
 text: |
 You selected:
 ${eventDetails.value.subject}
 ${(eventDetails.value.start?datetime.iso?long - timezoneOffset?
number?long)?number_to_date?string['MMM d']}
 ${(eventDetails.value.start?datetime.iso?long - timezoneOffset?
number?long)?number_to_date?string['hh:mm a']}-$
{(eventDetails.value.end?datetime.iso?long - timezoneOffset?number?
long)?number_to_date?string['hh:mm a']}
 Location: ${eventDetails.value.location}
 Attendees: ${eventDetails.value.attendees?join(', ')}
 transitions:
 next: "updateMeeting.selectItemToChange"

When you use the DATE and TIME entities, here are some things to consider:

• If you use a composite bag that has both a DATE entity and one or more TIME
entities, then you must disable Out of Order Extraction. Otherwise, when the
entities are resolved, you don't have control over which values resolve to the
DATE entity and which values resolve to the TIME entity (or both). For example,
when the TIME is resolved, it might change the value of the DATE entity.

• When an utterance contains text such as "yesterday", "today", or "tomorrow", the
parser doesn't take the local time zone into consideration. Therefore, it's possible
that, in the early morning and late afternoon, the wrong date might be used. For
that reason, it's a good idea to echo back the resolved date so that the user can
verify it before the skill adds an event or updates an event's start or end time.

• To set a calendar's start and end property values, you must use the date from the
DATE entity and the time from the TIME entity. For example:

 start: "${newEvent.value.date.date?number_to_date?
string['yyyy-MM-dd']}T${newEvent.value.startTime.date?
number_to_date?string['HH:mm:ss']}"
 end: "${newEvent.value.date.date?number_to_date?string['yyyy-
MM-dd']}T${newEvent.value.endTime.date?number_to_date?
string['HH:mm:ss']}"

Handling Calendar Errors
The calendar provider may reject an event request. For example, it might return an
error if the user tries to create an event that has an end time earlier than the start time.
In most cases, the calendar provider returns a 400 error, which, in turn, transitions the
skill to the global error handler.

Consider validating the values to prevent these errors from occurring. Here are
examples of composite bag entity validations:

• DATE entity: For new and updated meetings, validate that the date is on or after
the current date.

${(meetingSlot.value.date.date?number?long gte ((.now?date?long -
timezoneOffset?number?long)?number_to_date?string['yyyy-MM-dd']
+'T00:00:00')?datetime.iso?long)?then('true','false')}

Appendix B
User Interface Components

B-82

• TIME entity: For new and updated meetings, verify that the date and start time are on or
after the current datetime.

${(((meetingSlot.value.date.date?number_to_date?string['yyyy-MM-dd']
+'T'+meetingSlot.value.startTime.date?number_to_date?string['HH:mm:ss'])?
datetime.iso?long) gte (.now?date?long - timezoneOffset?number))?
then('true','false')}

For all end times, verify that the end time is after the start time.

${(newEvent.value.startTime.date?number_to_time <
newEvent.value.endTime.date?number_to_time)?then('true','false')}

To handle calendar-provider rejections gracefully, add your own global error handler. For
example:

defaultTransitions:
 error: "globalErrorHandler"
 actions:
 system.authorizeUser: "userAuthN.performOAuth"

...

 globalErrorHandler:
 requiresAuthorization: false
 component: "System.Output"
 properties:
 text: "Sorry, we were unable to do the action that you requested."
 transitions:
 return: "done"

Alternatively, you can use the error transition to create error handlers that are appropriate for
each case:

 setUpMeeting.performSchedule:
 component: "System.CreateCalendarEvent"
 properties:
 start: "${newEvent.value.date.date?number_to_date?string['yyyy-MM-
dd']}T${newEvent.value.startTime.date?number_to_date?string['HH:mm:ss']}"
 end: "${newEvent.value.date.date?number_to_date?string['yyyy-MM-dd']}T$
{newEvent.value.endTime.date?number_to_date?string['HH:mm:ss']}"
 subject: "${newEvent.value.subject}"
 location: "${newEvent.value.location}"
 attendees: "${newEvent.value.attendees}"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "setUpMeeting.printResults"
 error: "handleCreateEventError"

Appendix B
User Interface Components

B-83

...

 handleCreateEventError:
 requiresAuthorization: false
 component: "System.Output"
 properties:
 text: "Sorry, there's a problem with the event that you wanted
to create."
 transitions:
 return: "done"

System.CreateCalendarEvent
Use this component to add an event to an Outlook or Google calendar. Note that you
can't create recurring or all-day events.

The user must be signed in to the calendar provider to access this component. You
can use the "requires authorization" feature to manage user sign in, as described in
Calendar Authorization.

To learn how to set the start and end values, see Working with Calendar Dates and
Times.

Here's an example of how to use this component. In this example, a composite bag
entity is used to get the date, start and end times, subject, location, and attendees.

 ####################
 # Create Meeting
 ####################

 setUpMeeting:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 processUserMessage: true
 variable: "newEvent"
 nlpResultVariable: "iResult"
 cancelPolicy: "immediate"
 transitionAfterMatch: "false"
 metadata:
 responseItems:
 - type: "text"
 text: "${system.entityToResolve.value.prompt}"
 actions:
 - label: "${enumValue}"
 type: "postback"
 iteratorVariable:
"system.entityToResolve.value.enumValues"
 payload:
 variables:
 newEvent: "${enumValue}"
 globalActions:
 - label: "Cancel"
 type: "postback"

Appendix B
User Interface Components

B-84

 visible:
 onInvalidUserInput: false
 payload:
 action: "cancel"
 transitions:
 actions:
 cancel: "allDone"
 next: "setUpMeeting.askConfirm"
 setUpMeeting.askConfirm:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: |
 Create ${newEvent.value.subject} meeting on $
{newEvent.value.date.date?number_to_date?string['MMM d']}
 from ${newEvent.value.startTime.date?number_to_date?
string['hh:mm a']} to ${newEvent.value.endTime.date?number_to_date?
string['hh:mm a']}
 at ${newEvent.value.location} with ${newEvent.value.attendees}?
 name: "confirmCreate"
 separateBubbles: true
 actions:
 - label: "Yes"
 type: "postback"
 keyword: "yes"
 payload:
 action: "yes"
 name: "Yes"
 - label: "No"
 keyword: "no"
 type: "postback"
 payload:
 action: "no"
 name: "No"
 transitions:
 next: "intent"
 actions:
 yes: "setUpMeeting.performSchedule"
 no: "allDone"
 textReceived: "intent"
 setUpMeeting.performSchedule:
 component: "System.CreateCalendarEvent"
 properties:
 start: "${newEvent.value.date.date?number_to_date?string['yyyy-MM-
dd']}T${newEvent.value.startTime.date?number_to_date?string['HH:mm:ss']}"
 end: "${newEvent.value.date.date?number_to_date?string['yyyy-MM-dd']}T$
{newEvent.value.endTime.date?number_to_date?string['HH:mm:ss']}"
 subject: "${newEvent.value.subject}"
 location: "${newEvent.value.location}"
 attendees: "${newEvent.value.attendees}"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}

Appendix B
User Interface Components

B-85

 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "setUpMeeting.printResults"
 error: "handleCreateCalendarError"
 setUpMeeting.printResults:
 component: "System.Output"
 properties:
 text: "The ${newEvent.value.date.date?number_to_date?string['MMM
d']} meeting is now on your calendar."
 keepTurn: true
 transitions:
 next: "setUpMeeting.getMeetings"
...

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and
later.

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

start The meeting's start date and time in
the format yyyy-MM-
dd'T'HH:mm:ss For example,
2021-02-26T09:55:00.

Yes

Appendix B
User Interface Components

B-86

Property Description Required?

end The meeting's end date and time in
the format yyyy-MM-
dd'T'HH:mm:ss. For example,
2021-02-26T09:55:00.

Yes

subject The subject of the meeting. Yes

attendees A comma separated list of attendees.
Note that the calendar provider can't
send a notification to an attendee if
the ID isn't a valid account ID for that
provider.

Yes

Appendix B
User Interface Components

B-87

Property Description Required?

timezoneOffset The amount of time in milliseconds to
add to universal time (UTC) to get
standard time in the user's time
zone. For example, if the local time
zone is UTC-2, then the
timezoneOffset is -7200000. The
default value is 0.

Note:

You
can
derive
the
timezo
neOffs
et
propert
y for
the
current
user
based
on the
value of
the
user
context
variable
profil
e.time
zoneOf
fset.
Howev
er, if
you do
so, you
must
multiply
profil
e.time
zoneOf
fset
by -1.

You can specify timezoneOffset or
timezone but not both.

No

Appendix B
User Interface Components

B-88

Property Description Required?

timezone The local time zone's ID as identified
by https://www.iana.org/time-zones.
Also referred to as the TZ database
name. For example: America/
Los_Angeles. The default is UTC.
You can specify timezoneOffset or
timezone but not both.

No

System.DeleteCalendarEvent
Use this component to delete an event from an Outlook or Google calendar. Note that you
can't delete recurring or all-day events.

The user must be signed in to the calendar provider to access this component. You can use
the "requires authorization" feature to manage user sign in, as described in Calendar
Authorization.

Here's an example of how to use this component.

 ####################
 # Cancel Meeting
 ####################

 # Want to select from deletable meetings

 cancelMeeting:
 component: "System.SetVariable"
 properties:
 variable: "stateAfterList"
 value: "cancelMeeting.confirmCancel"
 transitions:
 next: "cancelMeeting.setListType"
 cancelMeeting.setListType:
 component: "System.SetVariable"
 properties:
 variable: "listType"
 # Only show deletable meetings
 value: "DELETE"
 transitions:
 next: "cancelMeeting.setListPrompt"
 cancelMeeting.setListPrompt:
 component: "System.SetVariable"
 properties:
 variable: "listPrompt"
 value: "to cancel"
 transitions:
 next: "listMeetings.commonEntryPoint"

 # List meetings common code returns to this state
 cancelMeeting.confirmCancel:
 component: "System.ResetVariables"

Appendix B
User Interface Components

B-89

https://www.iana.org/time-zones

 properties:
 variableList: "confirmAction"
 transitions:
 next: "cancelMeeting.askConfirm"
 cancelMeeting.askConfirm:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "Are you sure you want to cancel this meeting?"
 name: "confirmCcancel"
 separateBubbles: true
 actions:
 - label: "Yes"
 type: "postback"
 keyword: "yes"
 payload:
 action: "yes"
 name: "Yes"
 - label: "No"
 keyword: "no"
 type: "postback"
 payload:
 action: "no"
 name: "No"
 transitions:
 next: "intent"
 actions:
 yes: "cancelMeeting.performDelete"
 no: "allDone"
 textReceived: "intent"
 cancelMeeting.performDelete:
 component: "System.DeleteCalendarEvent"
 properties:
 eventId: "${eventId}"
 provider: "${system.config.calendarProvider}"
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "cancelMeeting.printSuccessMessage"
 cancelMeeting.printSuccessMessage:
 component: "System.Output"
 properties:
 text: "I've cancelled the meeting"
 transitions:
 return: "doneCancel"
 ...

 ############################
 # List Meetings Shared Code
 ############################

Appendix B
User Interface Components

B-90

 listMeetings.commonEntryPoint:
 component: "System.SetVariable"
 properties:
 variable: "inputDate"
 value: "${iResult.value.entityMatches['DATE'][0]}"
 transitions:
 next: "listMeetings.setDate"
 listMeetings.setDate:
 component: "System.SetVariable"
 properties:
 variable: "start"
 value: "${inputDate.value?has_content?then(inputDate.value.date?
number_to_date?string['yyyy-MM-dd'], (.now?date?long - timezoneOffset?number?
long)?number_to_date?string['yyyy-MM-dd'])}T00:00:00"
 transitions:
 next: "listMeetings.clearInputDate"
 listMeetings.clearInputDate:
 component: "System.ResetVariables"
 properties:
 variableList: "inputDate"
 transitions:
 next: "listMeetings.filterByAttendees"
 listMeetings.filterByAttendees:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "Do you want to list only meetings with a particular
attendee?"
 name: "confirmFilter"
 separateBubbles: true
 actions:
 - label: "Yes"
 type: "postback"
 keyword: "yes"
 payload:
 action: "yes"
 name: "Yes"
 - label: "No"
 keyword: "no"
 type: "postback"
 payload:
 action: "no"
 name: "No"
 transitions:
 next: "intent"
 actions:
 yes: "listMeetings.resolveAttendeesFilter"
 no: "listMeetings.clearAttendeesFilter"
 textReceived: "intent"

 # clear filter

Appendix B
User Interface Components

B-91

 listMeetings.clearAttendeesFilter:
 component: "System.ResetVariables"
 properties:
 variableList: "attendees"
 transitions:
 next: "listMeetings.performList"

 # resolve filter

 listMeetings.resolveAttendeesFilter:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 processUserMessage: true
 variable: "attendees"
 nlpResultVariable: "iResult"
 metadata:
 responseItems:
 - type: "text"
 text: "Who is the attendee?"
 transitions:
 next: "listMeetings.performAttendeesList"
 actions:
 textReceived: "listMeetings.performAttendeesList"

 # perform attendees list

 listMeetings.performAttendeesList:
 component: "System.SelectCalendarEvent"
 properties:
 listType: "${listType}"
 start: "${start}"
 attendees: "${attendees}"
 prompt: "Choose the ${start?datetime.iso?long?number_to_date?
string['MMM d']} meeting ${listPrompt}:"
 eventIdVariableName: "eventId"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 actions:
 found: "${stateAfterList}"
 notfound: "listMeetings.printNotFoundMessage"
 next: "globalErrorHandler"

 # perform list

 listMeetings.performList:
 component: "System.SelectCalendarEvent"
 properties:
 listType: "${listType}"
 start: "${start}"
 prompt: "Choose the ${start?datetime.iso?long?number_to_date?

Appendix B
User Interface Components

B-92

string['MMM d']} meeting ${listPrompt}:"
 eventIdVariableName: "eventId"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 actions:
 found: "${stateAfterList}"
 notfound: "listMeetings.printNotFoundMessage"
 next: "globalErrorHandler"

 listMeetings.printNotFoundMessage:
 component: "System.Output"
 properties:
 text: "There are no meetings on ${start?datetime.iso?long?
number_to_date?string['MMM d']}"
 transitions:
 return: "doneListMeetings"
...

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and later.

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

Appendix B
User Interface Components

B-93

Property Description Required?

eventId The ID of the event to delete. You
can use
System.ListCalendarEvents or
System.SelectCalendarEvent to
get an eventId.

Yes

System.GetCalendarEventDetails
Use this component to get an event's details from an Outlook or Google calendar.

The user must be signed in to the calendar provider to access this component. You
can use the "requires authorization" feature to manage user sign in, as described in
Calendar Authorization.

The details are returned in the variable that's specified by the
eventDetailsVariableName property in the following JSON format:

{
 "isAllDay": boolean,
 "subject": string,
 "inviteResponse": string,
 "attendees": [
 "string",
 ...
],
 "start": format yyyy-MM-dd'T'HH:mm:ss.SSSZ,
 "end": format yyyy-MM-dd'T'HH:mm:ss.SSSZ,
 "location": string,
 "isRecurring": boolean,
 "id": string
}

The start and end properties are UTC values. To learn how to convert the start and
end values to local time, see Working with Calendar Dates and Times.

Here's an example of how to use this component.

 listMeetings.performGetDetails:
 component: "System.GetCalendarEventDetails"
 properties:
 eventId: "${eventId}"
 eventDetailsVariableName: "eventDetails"
 provider: "${system.config.calendarProvider}"
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "listMeetings.checkIfResults"
 # In case the eventId is no longer valid
 listMeetings.checkIfResults:
 component: "System.ConditionExists"
 properties:

Appendix B
User Interface Components

B-94

 variable: "eventDetails"
 transitions:
 actions:
 exists: "listMeetings.printEventDetails"
 notexists: "globalErrorHandler"
 listMeetings.printEventDetails:
 component: "System.Output"
 properties:
 text: |
 ${eventDetails.value.subject}
 ${(eventDetails.value.start?datetime.iso?long - timezoneOffset?
number?long)?number_to_date?string['MMM d']}
 ${(eventDetails.value.start?datetime.iso?long - timezoneOffset?
number?long)?number_to_date?string['hh:mm a']}-${(eventDetails.value.end?
datetime.iso?long - timezoneOffset?number?long)?number_to_date?string['hh:mm
a']}
 Location: ${eventDetails.value.location}
 Attendees: ${eventDetails.value.attendees?join(', ')}
 transitions:
 return: "doneGetDetails"

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and later.

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

Appendix B
User Interface Components

B-95

Property Description Required?

eventId The ID of the event to retrieve. You
can use
System.ListCalendarEvents or
System.SelectCalendarEvent to
get an eventId.

Yes

eventDetailsVariableName The name of the context variable in
which to store the details.

Yes

System.ListCalendarEvents
Use this component to get an array of Outlook or Google events for a named calender
owner. You can filter the list by these attributes:

• The event can be deleted

• The event can be updated

• The user was invited to the event

• How the user has responded to an invitation

• The event includes one or more named attendees

• The meeting starts after a date and time

• The meeting ends before a date and time

The user must be signed in to the calendar provider to access this component. You
can use the "requires authorization" feature to manage user sign in, as described in
Calendar Authorization.

The list is returned in the variable that's specified by the eventListVariableName
property in the following JSON format:

[{
 "isAllDay": boolean,
 "subject": string,
 "inviteResponse": string,
 "start": format yyyy-MM-dd'T'HH:mm:ss.SSSZ,
 "end": format yyyy-MM-dd'T'HH:mm:ss.SSSZ,
 "isRecurring": boolean,
 "id": string
}, …]

To learn how to set the start and end values, see Working with Calendar Dates and
Times. That topic also shows how to convert the JSON start and end property values
to local time.

Here's an example of how to use this component.

 ############################
 # List Invites
 ############################

 listInvites:

Appendix B
User Interface Components

B-96

 component: "System.ListCalendarEvents"
 properties:
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 listType: "INVITED"
 response: "PENDING,ACCEPTED,TENTATIVE,DECLINED"
 eventListVariableName: "eventList"
 start: "${(.now?date?long - timezoneOffset?number?long)?number_to_date?
string['yyyy-MM-dd']}T00:00:00"
 transitions:
 next: "globalErrorHandler"
 actions:
 found: "listInvites.printMeetings"
 notfound: "listInvites.notFound"
 listInvites.printMeetings:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 metadata:
 responseItems:
 - type: "text"
 # display the local time
 text: |
 ${eventList.subject} [${eventList.inviteResponse}]
 ${(eventList.start?datetime.iso?long - timezoneOffset?number?
long)?number_to_date?string['MMM d hh:mm a']} to ${(eventList.end?
datetime.iso?long - timezoneOffset?number?long)?number_to_date?string['hh:mm
a']}
 name: "event"
 separateBubbles: true
 iteratorVariable: "eventList"
 processUserMessage: false
 transitions:
 return: "listInvitesDone"
 listInvites.notFound:
 component: "System.Output"
 properties:
 keepTurn: true
 text: "You don't have any invitations for the next 14 days"
 transitions:
 return: "listInvitesDone"

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and later.

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

Appendix B
User Interface Components

B-97

Property Description Required?

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

listType Indicates the type of list. Must be one
of the following:
• ALL: All types of the calender

owner's meetings
• DELETE: All of the meetings that

the calender owner can delete
• UPDATE: All of the meetings that

the calender owner can update
• INVITED: All of the meetings

that the calender owner has
been invited to

Yes

eventListVariableName The name of the context variable in
which to store the events list.

Yes

start The earliest date and time for which
meetings should be included in the
list (format: yyyy-MM-
dd'T'HH:mm:ss). For example,
2021-02-26T09:55:00.

Yes

end The latest date and time for which
meetings should be included in the
list (format: yyyy-MM-
dd'T'HH:mm:ss). For example,
2021-02-26T09:55:00.
For list type INVITED the default is
14 days after the start date and time.
For all other types, the default is 24
hours after the start date and time.

No

Appendix B
User Interface Components

B-98

Property Description Required?

attendees A comma-separated, case-
insensitive list of strings to use to
filter the list by attendees. Only
meetings where one or more
attendee values contain one or more
strings in the list are included in the
output.

No

response A comma-separated list of invitation
statuses to filter the list on when the
listType is INVITED. The allowable
statuses are:
• ACCEPTED
• TENTATIVE
• DECLINED
• PENDING
The default is PENDING,TENTATIVE,
which outputs only invitations which
are waiting for a response or have
been accepted tentatively.

No

Appendix B
User Interface Components

B-99

Property Description Required?

timezoneOffset The amount of time in milliseconds to
add to universal time (UTC) to get
standard time in the user's time
zone. For example, if the local time
zone is UTC-2, then the
timezoneOffset is -7200000. The
default value is 0.

Note:

You
can
derive
the
timezo
neOffs
et
propert
y for
the
current
user
based
on the
value of
the
user
context
variable
profil
e.time
zoneOf
fset.
Howev
er, if
you do
so, you
must
multiply
profil
e.time
zoneOf
fset
by -1.

You can specify timezoneOffset or
timezone but not both.

No

Appendix B
User Interface Components

B-100

Property Description Required?

timezone The local time zone's ID as identified
by https://www.iana.org/time-zones.
Also referred to as the TZ database
name. For example: America/
Los_Angeles. The default is UTC.
You can specify timezoneOffset or
timezone but not both.

No

This component can return the following actions:

Action Description

found One or more events were returned.

notfound There are no matching events.

System.SelectCalendarEvent
Use this component to display a list of Outlook or Google events that the user can select
from. The component saves the ID of the selected event in the variable that's specified by the
eventIdVariableName property.

You can filter the list to select from by these attributes:

• The event can be deleted

• The event can be updated

• The user was invited to the event

• How the user has responded to an invitation

• The event includes one or more named attendees

• The meeting starts after a date and time

• The meeting ends before a date and time

The user must be signed in to the calendar provider to access this component. You can use
the "requires authorization" feature to manage user sign in, as described in Calendar
Authorization.

To learn how to set the start and end values, see Working with Calendar Dates and Times.

Here's an example of how to use this component.

 ############################
 # Respond Invites
 ############################

 respondInvites.performList:
 component: "System.SelectCalendarEvent"
 properties:
 listType: "INVITED"
 response: "${inviteFilter}"
 # Note: For list type INVITED the default end date is 14 days after
the start date and time.

Appendix B
User Interface Components

B-101

https://www.iana.org/time-zones

 start: "${(.now?date?long - timezoneOffset?number?long)?
number_to_date?string['yyyy-MM-dd']}T00:00:00"
 prompt: "Select the invitation to send the response to:"
 eventIdVariableName: "eventId"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "globalErrorHandler"
 actions:
 found: "respondInvites.resolveInviteResponse"
 notfound: "respondInvites.printNotFoundMessage"

 respondInvites.printNotFoundMessage:
 component: "System.Output"
 properties:
 text: "There are no meeting invites."
 transitions:
 return: "allDone"
 ...

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and
later.

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

Appendix B
User Interface Components

B-102

Property Description Required?

listType Indicates the type of list. Must be one
of the following:
• ALL: All types of the calender

owner's meetings
• DELETE: All of the meetings that

the calender owner can delete
• UPDATE: All of the meetings that

the calender owner can update
• INVITED: All of the meetings

that are not organized by the
calender owner but the owner is
invited to attend.

Yes

eventIdVariableName The name of the context variable in
which to store the event's ID.

Yes

start The earliest date and time for which
meetings should be included in the
list (format: yyyy-MM-
dd'T'HH:mm:ss). For example,
2021-02-26T09:55:00.

Yes

end The latest date and time for which
meetings should be included in the
list (format: yyyy-MM-
dd'T'HH:mm:ss). For example,
2021-02-26T09:55:00.
For list type INVITED the default is
14 days after the start date and time.
For all other types, the default is 24
hours after the start date and time.

No

attendees A comma-separated, case-
insensitive list of strings to use to
filter the list by attendees. Only
meetings where one or more
attendee values contain one or more
strings in the list are included in the
output.

No

response A comma-separated list of invitation
statuses to filter the list on when the
listType is INVITED. The allowable
statuses are:
• ACCEPTED
• TENTATIVE
• DECLINED
• PENDING
The default is PENDING,TENTATIVE,
which outputs only invitations which
are waiting for a response or have
been accepted tentatively.

No

Appendix B
User Interface Components

B-103

Property Description Required?

prompt The text that appears before the list.
The default is You have the
following meeting(s): You don't
need to include this property unless
you want to override the default.

Tip:

In skills
with
platfor
m
version
21.04
and
later,
the
default
value is
stored
in the
skill's
resourc
e
bundle.
To
change
the
default,
open
the
skill's
Resour
ces
Bundle
page,
click ,
select
the
Config
uration
tab,
and
change
the
messa
ge for
the
Select
Calend
arEven
t -
prompt
key.

No

Appendix B
User Interface Components

B-104

Property Description Required?

allDayLabel The text to indicate all-day events.
The default is All day.

No

recurringLabel The text to indicate a recurring event.
The default is Recurring.

No

acceptedLabel The text to indicate that the calendar
owner accepted the invitation. The
default is Accepted.

No

tentativeLabel The text to indicate that the calendar
owner tentatively accepted the
invitation. The default is Tentative.

No

declinedLabel The text to indicate that the calendar
owner declined the invitation. The
default is Declined.

No

pendingLabel The text to indicate that the calendar
owner hasn't responded to the
invitation. The default is Pending.

No

Appendix B
User Interface Components

B-105

Property Description Required?

timezoneOffset The amount of time in milliseconds to
add to universal time (UTC) to get
standard time in the user's time
zone. For example, if the local time
zone is UTC-2, then the
timezoneOffset is -7200000. The
default value is 0.

Note:

You
can
derive
the
timezo
neOffs
et
propert
y for
the
current
user
based
on the
value of
the
user
context
variable
profil
e.time
zoneOf
fset.
Howev
er, if
you do
so, you
must
multiply
profil
e.time
zoneOf
fset
by -1.

You can specify timezoneOffset or
timezone but not both.

No

Appendix B
User Interface Components

B-106

Property Description Required?

timezone The local time zone's ID as identified
by https://www.iana.org/time-zones.
Also referred to as the TZ database
name. For example: America/
Los_Angeles. The default is UTC.
You can specify timezoneOffset or
timezone but not both.

No

This component can return the following actions:

Action Description

found One or more events were returned.

notfound There are no matching events.

System.SendInviteResponse
Use this component to accept, tentatively accept, or decline an invitation for an Outlook or
Google calendar event.

The user must be signed in to the calendar provider to access this component. You can use
the "requires authorization" feature to manage user sign in, as described in Calendar
Authorization.

Here's an example of how to use this component.

 ############################
 # Respond Invites
 ############################

 respondInvites:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "Which types of meeting invitations do you want to respond
to?"
 name: "getInviteFilter"
 separateBubbles: true
 actions:
 - label: "Pending and tentatively accepted invitations"
 type: "postback"
 keyword: "PENDING,TENTATIVE"
 payload:
 variables:
 inviteFilter: "PENDING,TENTATIVE"
 - label: "All invitations"
 keyword: "PENDING,ACCEPTED,TENTATIVE,DECLINED"
 type: "postback"

Appendix B
User Interface Components

B-107

https://www.iana.org/time-zones

 payload:
 variables:
 inviteFilter: "PENDING,ACCEPTED,TENTATIVE,DECLINED"
 - label: "Cancel"
 keyword: "cancel"
 type: "postback"
 payload:
 action: "allDone"
 transitions:
 actions:
 allDone: "allDone"
 textReceived: "intent"
 next: "respondInvites.performList"
 respondInvites.performList:
 component: "System.SelectCalendarEvent"
 properties:
 listType: "INVITED"
 response: "${inviteFilter}"
 # Note: For list type INVITED the default end date is 14 days
after the start date and time.
 start: "${(.now?date?long - timezoneOffset?number?long)?
number_to_date?string['yyyy-MM-dd']}T00:00:00"
 prompt: "Select the invitation to send the response to:"
 eventIdVariableName: "eventId"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "globalErrorHandler"
 actions:
 found: "respondInvites.resolveInviteResponse"
 notfound: "respondInvites.printNotFoundMessage"
 respondInvites.printNotFoundMessage:
 component: "System.Output"
 properties:
 text: "There are no meeting invites."
 transitions:
 return: "allDone"

 ############################
 # Invite Response
 ############################

 respondInvites.resolveInviteResponse:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "Choose a response:"
 name: "getInviteResponse"
 separateBubbles: true

Appendix B
User Interface Components

B-108

 actions:
 - label: "Accept"
 type: "postback"
 keyword: "ACCEPTED"
 payload:
 variables:
 inviteResponse: "ACCEPTED"
 - label: "Tentatively accept"
 keyword: "TENTATIVE"
 type: "postback"
 payload:
 variables:
 inviteResponse: "TENTATIVE"
 - label: "Decline"
 keyword: "DECLINED"
 type: "postback"
 payload:
 variables:
 inviteResponse: "DECLINED"
 - label: "Don't send a response"
 keyword: "CANCEL"
 type: "postback"
 payload:
 action: "allDone"
 transitions:
 actions:
 allDone: "allDone"
 textReceived: "intent"
 next: "respondInvites.performRespond"
 respondInvites.performRespond:
 component: "System.SendInviteResponse"
 properties:
 eventId: "${eventId}"
 response: "${inviteResponse}"
 provider: "${system.config.calendarProvider}"
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "respondInvites.printSuccessMessage"
 respondInvites.printSuccessMessage:
 component: "System.Output"
 properties:
 text: "I've sent the meeting invitation response"
 transitions:
 return: "doneSendInviteResponse"

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and later.

Appendix B
User Interface Components

B-109

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

eventId The ID of the event to send the
response to. You can use
System.ListCalendarEvents or
System.SelectCalendarEvent to
get the ID of calender events to
which the calendar owner was
invited.

Yes

response The response to send. The allowable
responses are:
• ACCEPTED
• TENTATIVE
• DECLINED

Yes

System.UpdateCalendarEvent
Use this component to make changes to an Outlook or Google calendar event. Note
that you can't update recurring or all-day events.

The user must be signed in to the calendar provider to access this component. You
can use the "requires authorization" feature to manage user sign in, as described in
Calendar Authorization.

To learn how to set the start and end values, see Working with Calendar Dates and
Times.

Here's an example of how to use this component. In this example, a composite bag
entity is used to get the date, the start time, and the end time.

 ####################

Appendix B
User Interface Components

B-110

 # Update Meeting
 ####################

 updateMeeting:
 component: "System.SetVariable"
 properties:
 variable: "stateAfterList"
 value: "updateMeeting.performGetDetails"
 transitions:
 next: "updateMeeting.setListType"
 updateMeeting.setListType:
 component: "System.SetVariable"
 properties:
 variable: "listType"
 # Only show updateable meetings
 value: "UPDATE"
 transitions:
 next: "updateMeeting.setListPrompt"
 updateMeeting.setListPrompt:
 component: "System.SetVariable"
 properties:
 variable: "listPrompt"
 value: "to update"
 transitions:
 next: "listMeetings.commonEntryPoint"

 # List meetings common code returns to this state
 updateMeeting.performGetDetails:
 component: "System.GetCalendarEventDetails"
 properties:
 eventId: "${eventId}"
 eventDetailsVariableName: "eventDetails"
 provider: "${system.config.calendarProvider}"
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "updateMeeting.checkIfResults"
 updateMeeting.checkIfResults:
 component: "System.ConditionExists"
 properties:
 variable: "eventDetails"
 transitions:
 actions:
 exists: "updateMeeting.printEventDetails"
 notexists: "globalErrorHandler"
 updateMeeting.printEventDetails:
 component: "System.Output"
 properties:
 keepTurn: true
 text: |
 You selected:
 ${eventDetails.value.subject}
 ${(eventDetails.value.start?datetime.iso?long - timezoneOffset?
number?long)?number_to_date?string['MMM d']}

Appendix B
User Interface Components

B-111

 ${(eventDetails.value.start?datetime.iso?long - timezoneOffset?
number?long)?number_to_date?string['hh:mm a']}-$
{(eventDetails.value.end?datetime.iso?long - timezoneOffset?number?
long)?number_to_date?string['hh:mm a']}
 Location: ${eventDetails.value.location}
 Attendees: ${eventDetails.value.attendees?join(', ')}
 transitions:
 next: "updateMeeting.updateTime"

 # Change meeting time

 updateMeeting.updateTime:
 component: "System.ResolveEntities"
 properties:
 variable: "meetingSlot"
 nlpResultVariable: "iResult"
 maxPrompts: 5
 cancelPolicy: "immediate"
 transitions:
 actions:
 cancel: "allDone"
 next: "updateMeeting.setStart"
 updateMeeting.setStart:
 component: "System.SetVariable"
 properties:
 variable: "start"
 value: "${meetingSlot.value.date.date?number_to_date?
string['yyyy-MM-dd']}T${meetingSlot.value.startTime.date?
number_to_date?string['HH:mm:ss']}"
 transitions:
 next: "updateMeeting.setEnd"
 updateMeeting.setEnd:
 component: "System.SetVariable"
 properties:
 variable: "end"
 value: "${meetingSlot.value.date.date?number_to_date?
string['yyyy-MM-dd']}T${meetingSlot.value.endTime.date?number_to_date?
string['HH:mm:ss']}"
 transitions:
 next: "updateMeeting.updateTime.performUpdate"
 updateMeeting.updateTime.performUpdate:
 component: "System.UpdateCalendarEvent"
 properties:
 eventId: "${eventId}"
 start: "${start}"
 end: "${end}"
 provider: "${system.config.calendarProvider}"
 #timezone: "${system.config.timezoneID}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 next: "updateMeeting.printSuccessMessage"
 error: "handleUpdateCalendarError"

Appendix B
User Interface Components

B-112

 ...

 ############################
 # List Meetings Shared Code
 ############################

 listMeetings.commonEntryPoint:
 component: "System.SetVariable"
 properties:
 variable: "inputDate"
 value: "${iResult.value.entityMatches['DATE'][0]}"
 transitions:
 next: "listMeetings.setDate"
 listMeetings.setDate:
 component: "System.SetVariable"
 properties:
 variable: "start"
 value: "${inputDate.value?has_content?then(inputDate.value.date?
number_to_date?string['yyyy-MM-dd'], (.now?date?long - timezoneOffset?number?
long)?number_to_date?string['yyyy-MM-dd'])}T00:00:00"
 transitions:
 next: "listMeetings.clearInputDate"
 listMeetings.clearInputDate:
 component: "System.ResetVariables"
 properties:
 variableList: "inputDate"
 transitions:
 next: "listMeetings.filterByAttendees"
 listMeetings.filterByAttendees:
 component: "System.CommonResponse"
 properties:
 processUserMessage: true
 metadata:
 responseItems:
 - type: "text"
 text: "Do you want to list only meetings with a particular
attendee?"
 name: "confirmFilter"
 separateBubbles: true
 actions:
 - label: "Yes"
 type: "postback"
 keyword: "yes"
 payload:
 action: "yes"
 name: "Yes"
 - label: "No"
 keyword: "no"
 type: "postback"
 payload:
 action: "no"
 name: "No"
 transitions:
 next: "intent"
 actions:

Appendix B
User Interface Components

B-113

 yes: "listMeetings.resolveAttendeesFilter"
 no: "listMeetings.clearAttendeesFilter"
 textReceived: "intent"

 # clear filter

 listMeetings.clearAttendeesFilter:
 component: "System.ResetVariables"
 properties:
 variableList: "attendees"
 transitions:
 next: "listMeetings.performList"

 # resolve filter

 listMeetings.resolveAttendeesFilter:
 component: "System.CommonResponse"
 properties:
 keepTurn: true
 processUserMessage: true
 variable: "attendees"
 nlpResultVariable: "iResult"
 metadata:
 responseItems:
 - type: "text"
 text: "Who is the attendee?"
 transitions:
 next: "listMeetings.performAttendeesList"
 actions:
 textReceived: "listMeetings.performAttendeesList"

 # perform attendees list

 listMeetings.performAttendeesList:
 component: "System.SelectCalendarEvent"
 properties:
 listType: "${listType}"
 start: "${start}"
 attendees: "${attendees}"
 prompt: "Choose the ${start?datetime.iso?long?number_to_date?
string['MMM d']} meeting ${listPrompt}:"
 eventIdVariableName: "eventId"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 actions:
 found: "${stateAfterList}"
 notfound: "listMeetings.printNotFoundMessage"
 next: "globalErrorHandler"

 # perform list

Appendix B
User Interface Components

B-114

 listMeetings.performList:
 component: "System.SelectCalendarEvent"
 properties:
 listType: "${listType}"
 start: "${start}"
 prompt: "Choose the ${start?datetime.iso?long?number_to_date?
string['MMM d']} meeting ${listPrompt}:"
 eventIdVariableName: "eventId"
 provider: "${system.config.calendarProvider}"
 timezoneOffset: ${timezoneOffset?number * -1}
 calendarOwner: "${user.authenticatedUser}"
 calendarId: "${user.authenticatedUser}"
 credential: "${user.accessToken}"
 transitions:
 actions:
 found: "${stateAfterList}"
 notfound: "listMeetings.printNotFoundMessage"
 next: "globalErrorHandler"

 listMeetings.printNotFoundMessage:
 component: "System.Output"
 properties:
 text: "There are no meetings on ${start?datetime.iso?long?
number_to_date?string['MMM d']}"
 transitions:
 return: "doneListMeetings"
...

Note:

This component is supported in Oracle Digital Assistant Version 21.02 and later.

Property Description Required?

provider The calendar provider. The allowed
values are Google and Outlook.

Yes

calendarOwner The user ID of the calendar owner. It
must be a valid account ID for the
calendar provider, such as the value
of the variable that's identified by the
System.OAuth2AccountLink
component's
authenticatedUserVariable
property, which is set when the user
authenticates.

Yes

calendarId The name of the calendar. For the
user's default calendar, set to the
same value as the calendarOwner
property.

Yes

Appendix B
User Interface Components

B-115

Property Description Required?

credential The provider's access token. This is
the value of the variable that's
identified by the
System.OAuth2AccountLink
component's
accessTokenVariableName
property, which is set when the user
authenticates.

Yes

eventId The ID of the event to update. You
can use
System.ListCalendarEvents or
System.SelectCalendarEvent to
get an eventId.

Yes

start The new start date and time in the
format yyyy-MM-dd'T'HH:mm:ss
For example,
2021-02-26T09:55:00.

No

end The new end date and time in the
format yyyy-MM-dd'T'HH:mm:ss
For example,
2021-02-26T09:55:00.

No

subject The new subject of the meeting. Yes

attendees A comma separated list of attendees.
This list replaces the previous list.
Note that the calendar provider can't
send a notification to an attendee if
the ID isn't a valid account ID for that
provider.

Yes

Appendix B
User Interface Components

B-116

Property Description Required?

timezoneOffset The amount of time in milliseconds to
add to universal time (UTC) to get
standard time in the user's time
zone. For example, if the local time
zone is UTC-2, then the
timezoneOffset is -7200000. The
default value is 0.

Note:

You
can
derive
the
timezo
neOffs
et
propert
y for
the
current
user
based
on the
value of
the
user
context
variable
profil
e.time
zoneOf
fset.
Howev
er, if
you do
so, you
must
multiply
profil
e.time
zoneOf
fset
by -1.

You can specify timezoneOffset or
timezone but not both.

No

Appendix B
User Interface Components

B-117

Property Description Required?

timezone The local time zone's ID as identified
by https://www.iana.org/time-zones.
Also referred to as the TZ database
name. For example: America/
Los_Angeles. The default is UTC.
You can specify timezoneOffset or
timezone but not both.

No

Footers

Use footers in System.List and System.CommonResponse for additional user
guidance when your bot runs on text-only channels..

This footer displays on all channels, even ones that support buttons like Facebook.
However, you can configure channel-specific rendering for the footer. To do this:

• Define the autoNumberPostbackActions variable using the system.message
expression.

setAutoNumbering:
 component: "System.SetVariable"
 properties:
 variable: "autoNumberPostbackActions"
 value: "${(system.channelType=='facebook')?
then('true','false')}"

• Define the footerText definition with an Apache FreeMarker if directive to
display or hide the footer based on the channel type.

footerText: <#if autoNumberPostbackActions.value>"Make your choice
by entering the menu option number."</#if>

Appendix B
User Interface Components

B-118

https://www.iana.org/time-zones

Note:

On Facebook, the System.CommonResponse renders the footer text in its own text
bubble that appears just before the global actions (the quick replies). The footer
can’t display after these actions, because that requires a second footer text bubble
that causes the actions to disappear.

The translate Property
YAML-based user interface and input components all have a translate property that
overrides the global autoTranslate variable setting:

• If you set the autoTranslate variable to false (the default), then no autotranslation
occurs on the component unless you set the translate property to true.

• If you set the autoTranslate variable to true, then the translate property is implicitly
set to true as well, which means that the label, title, description, prompt and text strings
will be translated.

For example, If you enabled autotranslate by setting it to true, then setting a component’s
translate property to false excludes its prompt, title, description, label and text strings from
translation. Conversely, if you don’t enable autotranslate, but a component's translate
property is set to true, then the component’s prompt, title, description, label, and text string is
translated into the detected user language using the configured translation service. (Input
components translate the user input into English.)

autoTranslate is set to... ...and the component’s
translate property is set to...

...then the user input, prompt,
label, text, title, and
description get translated

true not set yes

true true yes

true false no

false not set no

false false no

false true yes

Note:

Flows designed with the Visual Flow Designer don't have the translate property or
autoTranslatecontext variable. To configure translation for those skills you use the
Translate User Input Message and Translate Bot Response Message
properties.

Appendix B
User Interface Components

B-119

System.Feedback

Note:

This topic covers use of this component in YAML mode. For information on
using it in the Visual Flow Designer, see User Feedback.

The System.Feedback component enables you to collect feedback data for Insights by
presenting users with a rating scale after they've completed a transactional flow. If
you're using the 21.10 SDK or later, this component outputs a horizontal star rating
system. If you're using an earlier SDK, the component outputs this rating scale as a
simple list that allows users to tap the button that corresponds with their rating.

While you can change the behavior of this component using the component properties,
you can change its look and feel when you use the SDK (version 21.10 or later). For
example, you can replace the default star icons used for the feedback buttons with
another icon.

System.Feedback Component Properties

Property Description

maxRating The maximum rating that a user can submit.
By default, the maximum value is 5. You can
adjust this value downward.

enableTextFeedback A boolean, which if set to true, enables the
user to submit text feedback if the rating is less
than, or equal to, the threshold value. By
default, this property is set to false (no
feedback enabled).

threshold The value for evaluating the transition between
the above and below actions. By default, the
threshold between positive and negative
feedback is set as 2 for the default maxRating
value, which is 5.

footerText The text that displays at the bottom of the
feedback dialog.

System.Feedback Component Transitions
Each transition action must name a state in the dialog flow that terminates the
conversation with a return: "done" transition.

Action Description

above Set when the user input is a valid value that's
above the threshold value.

below Set when user input is a valid value that's
equal to, or below, the threshold value.).

Appendix B
User Interface Components

B-120

Action Description

cancel Set when users decline the rating by clicking
Skip.

You can use the following system variables for the messages output by the transition states:

• system.userFeedbackRating – Returns the user's rating.

• system.userFeedbackText – When enableTextFeedback is set to true, your skill can
prompt for feedback when the ratings fall below the threshold value.
system.userFeedbackText returns the user's input ($
{system.userFeedbackText.value}).

...
 getUserFeedback:
 component: "System.Feedback"
 properties:
 threshold: 2
 maxRating: 5
 enableTextFeedback: true
 transitions:
 actions:
 above: "positiveFeedback"
 below: "negativeFeedback"
 cancel: "cancelFeedback"
 positiveFeedback:
 component: "System.Output"
 properties:
 text: "Thank you for your rating of $
{system.userFeedbackRating.value}."
 transitions:
 return: "done"
 negativeFeedback:
 component: "System.Output"
 properties:
 text: "You gave us a score of ${system.userFeedbackRating.value} and
entered ${system.userFeedbackText.value}. We appreciate your feedback."
 transitions:
 return: "done"
 cancelFeedback:
 component: "System.Output"
 properties:
 text: "Feedback cancelled."
 transitions:
 return: "done"
...

Appendix B
User Interface Components

B-121

System.Text

Note:

This component is deprecated, and there is no longer a template available
for it. Instead you can use one of the many templates based on the Common
Response component that are offered in the User Messaging section of the
Add Component dialog.

The System.Text component enables your bot to set a context or user variable by
asking the user to enter some text.

When the Dialog Engine enters a System.Text state for the first time, it prompts the
user to enter some text. When the user enters a value, the Dialog Engine returns to
this state. The component processes the user response and if it can convert the user
input to the variable type, it stores the value in the variable. The Dialog Engine moves
on to another state when this variable has a value.

Note:

The Dialog Engine skips over the System.Text state of the variable already
has a value.

Property Description Require
d?

prompt A text string that describes the input required from
the user. You can dynamically add values to it using
a value expression. For example: Hello $
{profile.firstName}, how many pizzas do
you want?

Yes

variable The name of the variable, which can be either a user
variable or one of the variables declared in the
context node.

Yes

nlpResultVariable Sets the variable property with an entity value
(when that entity value hasn’t already been set for
the referenced variable). You can enable
nlpResultVariable to return a value when you
define it using a variable that holds the NLP results
(such as iresult: "nlpresult" that’s used in
our sample bots). By doing this, the
nlpResultVariable property can still populate the
value when it’s null if it finds a resolved entity that
matches the one referenced by the variable. The
dialog transitions to the next state when the
nlpResultVariable sets the value. You can use
this property in place of the System.SetVariable
component.

No

maxPrompts The number of times that component prompts the
user for valid input. See Limiting the Number of User
Prompts.

No

Appendix B
User Interface Components

B-122

Property Description Require
d?

translate Use this property to override the boolean value that
you’ve set for the autotranslate context variable.
If you haven’t set this variable, or if you set it to
false, then you can set this property to true to
enable autotranslation for this component only. If you
set the autotranslation variable is set to true,
you can set this property to false to exclude this
component from autotranslation. See Translation
Services in Skills.

No

See Transitions for Common Response Components for the predefined action types that you
can use with this component.

How Do I Use the System.Text Component?
In this example, the type variable holds the values expected by the PizzaType entity, like
cheese, Veggie Lover, and Hawaiian. When this information is missing from the user input,
the bot can still get it because its dialog flow transitions to the type state, whose System.Text
component prompts them to explicitly state what they want. Keep in mind that even at this
point, the user input still needs to resolve to the PizzaType entity to transition to the next
state.

main: true
name: "PizzaBot"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"

...

 type:
 component: "System.Text"
 properties:
 prompt: "What Type of Pizza do you want?"
 variable: "type"
 transitions:
 ...

Appendix B
User Interface Components

B-123

System.List

Note:

This component is deprecated, and there is no longer a template available
for it. Instead you can use one of the many templates based on the Common
Response component that are offered in the User Messaging section of the
Add Component dialog.

The System.List component is designed to output a list of options. Depending on
whether a variable value has been set (or even defined for this component), the
navigation from the component can be triggered by the user's choice, or by the value
set for the user or context variable.

Property Description Required?

options You can specify the options using comma-
separated text strings, Apache FreeMarker
expressions, and as a list of maps. The options
Property and Action Lists both provide examples
of the latter approach.

Yes

prompt The text string that prompts the user. Yes

variable The name of the variable whose value is
populated by the user input. The Dialog Engine
skips this state if the variable value has already
been set and doesn’t output the list options for
the user.

No

nlpResultVariabl
e

Sets the variable property with an entity value
(when that entity value hasn’t already been set for
the referenced variable). You can enable
nlpResultVariable to return a value when you
define it with the variable that holds the NLP
results (such as iResult: "nlpresult" that’s
used in our sample skills). By doing this, the
nlpResultVariable property can still populate
the value when it’s null if it finds a resolved entity
that matches the one referenced by the variable.
The dialog transitions to the next state when the
nlpResultVariable sets the value. You can
use this property in place of the
System.SetVariable component. Action Lists
describes how you can use the variable and
nlpResultVariable properties to change the
list display behavior.

No—Use this
property when the
variable property
names an entity-type
variable.

maxPrompts The number of times that component prompts the
user for valid input. See Limiting the Number of
User Prompts.

No

Appendix B
User Interface Components

B-124

Property Description Required?

translate Use this property to override the boolean value
that you’ve set for the autotranslate context
variable. If you haven’t set this variable, or if you
set it to false, then you can set this property to
true to enable autotranslation for this component
only. If you set the autotranslation variable is
set to true, you can set this property to false to
exclude this component from autotranslation. See
Translation Services in Skills.

No

autoNumberPostba
ckActions

When set to true, this option prefixes numbers to
options. Even when you haven’t set this option to
true, auto-numbering can be enforced on list
items when the digital assistant’s Enable Auto
Numbering on Postback Actions configuration
is set to true. Channel-specific auto-numbering
can be applied to any skill that's registered to a
digital assistant:$
{(system.channelType=='twilio')?
then('true','false')}

No

footerText Enhances the output on text-only channels. As
described in Footers, you can use FreeMarker
expressions to conditionalize the footer text for
text-only channels.

No

See Transitions for Common Response Components for the predefined action types that you
can use with this component.

Value Lists
You can use the System.List component to return a value that satisfies a context variable
that’s defined as a primitive (like greeting: "string" in the dialog flow template) or as an
entity, as shown in the following snippet. In this dialog flow, the options:
"Thick,Thin,Stuffed,Pan" definition returns a value that matches crust variable. The
options property defined for size is a value expression (${size.type.enumValues}) that
returns the Large, Medium, Small, and Personal list values as options. See Apache
FreeMarker Template Language Syntax.

This example also shows how the nlpResultVariable property’s iResult definition allows
the component to set the entity values for the variable properties for the crust and size
states when these values haven’t been previously set. Like the Text component, the
System.List component doesn’t require any transitions.

main: true
name: "PizzaBot"

...

context:
 variables:
 size: "PizzaSize"
 crust: "PizzaCrust"
 iResult: "nlpresult"

Appendix B
User Interface Components

B-125

...

states:

...

crust:
 component: "System.List"
 properties:
 options: "Thick,Thin,Stuffed,Pan"
 prompt: "What crust do you want for your pizza?"
 variable: "crust"
main: true
name: "PizzaBot"

...

context:
 variables:
 size: "PizzaSize"
 crust: "PizzaCrust"
 iResult: "nlpresult"
...

states:

...

crust:
 component: "System.List"
 properties:
 options: "Thick,Thin,Stuffed,Pan"
 prompt: "What crust do you want for your pizza?"
 variable: "crust"
 nlpResultVariable: "iresult"
 transitions:
 next: "size"
size:
 component: "System.List"
 properties:
 options: "${size.type.enumValues}"
 prompt: "What size Pizza do you want?"
 variable: "size"
 nlpResultVariable: "iresult"
 transitions:
 ...

Appendix B
User Interface Components

B-126

Note:

Users aren’t limited to the options displayed in the list. They can resolve the entity
by entering a word that the entity recognizes, like a synonym. Instead of choosing
from among the pizza size options in the list, for example, users can instead enter
big, a synonym defined for the PizzaSize entity’s Large option. See Custom
Entities.

The options Property
You can set the options property using any of the following:

• A list of maps—While you can set the options property as a text string or value
expression, you can also configure the options property as list of maps. Each one has a
label property, a value property, and an optional keyword property. You can localize your
list options when you follow this approach because, as noted by the following example,
you can reference a resource bundle. See Resource Bundles for Skills to find out more
about using the dot notation. When users enter a value that matches one of the values

Appendix B
User Interface Components

B-127

specified in the keyword property, the bot reacts in the same way that it would if
the user tapped the list option itself.

askPizzaSize:
 component: "System.List"
 properties:
 prompt: What size do you want?"
 options:
 - value: "small"
 label: "${rb.pizza_size_small}"
 keyword: "1"
 - value: "medium"
 label: "${rb.pizza_size_medium}"
 keyword: "2"
 - value: "large"
 label: "${rb.pizza_size_large}"
 keyword: "3"
 variable: "pizzaSize"

• A text string of comma-separated options, like "small, medium, large" in the
following snippet. You can’t add label and value properties when you define
options as a string.

askPizzaSize:
 component: "System.List"
 properties:
 prompt: "What size do you want?"
 options: "small, medium, large"
 variable: "pizzaSize"

• An Apache FreeMarker value expression that loops over either a list of strings, or
a list of maps, where each map must contain both the label and value properties
and optionally, a keyword property.

askPizzaSize:
 component: "System.List"
 properties:
 prompt: "What size do you want?"
 options: "${pizzaSize.value.enumValues}"
 variable: "pizzaSize"

Refer to the Apache FreeMarker Manual to find out more about the syntax.

Action Lists
Instead of using the System.Switch component for conditional navigation, you can use
action lists. The System.List's optional variable and nlpResultVariable properties
set the list display behavior and subsequent transition based on user input.

• When you don't configure these properties, the transition action is based on the
option selected by the skill user:

showMenu:
 component: "System.List"

Appendix B
User Interface Components

B-128

https://freemarker.apache.org/docs/index.html

 properties:
 prompt: "Hello, this is our menu today"
 options:

 - value: "pasta"
 label: "Pasta"
 - value: "pizza"
 label: "Pizza"

 transitions:
 actions:
 pasta: "orderPasta"
 pizza: "orderPizza"

• When you add the variable and nlpResultVariable properties, the list display gets
bypassed when the user's input is matched. In the following snippet, the list of options
gets bypassed when the nlpResultVariable, sets the size variable from user input like I
want to order a large pizza. The transition appropriate to the value is then triggered.

getPizzaSize:
 component: "System.List"
 properties:
 prompt: "What size of pizza"
 variable: "size"
 nlpResultVariable: "iResult"
 options:

 - label: "Small"
 value: "Small"
 - label: "Large"
 value: "Large"
 transitions:
 actions:
 Large: "Large"
 Small: "Small"

System.Output
Use the System.Output component to output a message that doesn't require a user
response, or doesn't require your skill to process the user's response.

Note:

This component is deprecated, and there is no longer a template available for it.
Instead you can use one of the many templates based on the
System.CommonResponse that are offered in the User Messaging section of the Add
Component dialog.

Property Description Required?

text A text string Yes – This field requires a value.

Appendix B
User Interface Components

B-129

Property Description Required?

keepTurn A boolean value for relinquishing
(false) or retaining the skill’s
control of the dialog flow (true).
Use keepTurn: true when you
want to output an unbroken
sequence of skill messages
wherein no interjections from the
user are accepted.

No

translate Use this property to override the
boolean value that you’ve set for
the autotranslate context
variable. If you haven’t set that
variable, or if you set it to false,
then you can set this property to
true to enable autotranslation
for this component only. If you
set the autotranslation
variable to true, you can set this
property to false to exclude this
component from autotranslation.
See Translation Services in
Skills.

No

How Do I Use the System.Output Component
The System.Output component requires the string definition for the text property. As
illustrated in the following example of a confirmation message, you can add value
expressions to this string.

done:
 component: "System.Output"
 properties:
 text: "Your ${size.value}, ${type.value} pizza with $
{crust.value} crust is on its way. Thank you for your order."

By default, the Dialog Engine waits for user input after it outputs a statement from your
skill. If you override this behavior, add the optional keepTurn property and set it to true
to direct the Dialog Engine to the next state defined by the transitions property.
When no transition as been defined, the Dialog Engine moves to the next state in the
sequence.

 wait:
 component: "System.Output"
 properties:
 text: "Please wait, we're reviewing your order"
 keepTurn: true
 transitions:
 next: "ready"
 waitmore:
 component: "System.Output"
 properties:
 text: "Almost done..."

Appendix B
User Interface Components

B-130

 keepTurn: true
 transitions:
 next: "done"
 done:
 component: "System.Output"
 properties:
 text: "Your ${size.value}, ${type.value} pizza with ${crust.value}
crust is on its way. Thank you for your order."
 transitions:
 return: "done"

Defining Value Expressions for the System.Output Component
You can define one or more value expressions for the text property. For example, the
following snippet uses different expressions for outputting the text for an order confirmation
(pizza size and type).

confirmation:
 component: "System.Output"
 properties:
 text: "Your ${size.value} ${type.value} pizza is on its way."
 transitions:
 return: "done"

Each expression must always return a value. If even one expression returns a null value,
then the skill outputs raw text for each expression in the string, leaving your users with ouput
like this:

Your ${size.value} ${type.value} is on its way.

Appendix B
User Interface Components

B-131

It’s all or nothing. To make sure that your skill always outputs text that your users can
understand, substitute a default value for a null value using the Apache Freemarker
default value operator: ${size.value!\”piping\”} ${type.value!\”hot\”}. The
double quotes indicate that the default value is a not a variable reference, but is
instead the constant value that the operator expects. For example:

text: "Your ${size.value!\"piping\"} ${type.value!\"hot\"} pizza is on
its way."

Appendix B
User Interface Components

B-132

Note:

Always escape the quotation marks (\"...\") that enclose the default value when
you use the Freemarker operator. Your dialog flow’s OBotML syntax won’t be valid
unless you use this escape sequence each time that you define a default value
operation, or set off output text with double quotes. For example, the following
System.Output component definition allows users to read the message as You said,
“Cancel this order.”

confirmCancel:
 component: "System.Output"
 properties:
 text: "You said, \"Cancel this order.\""
 transitions:
 return: "cancelOrder"

Appendix B
User Interface Components

B-133

Translating the Output Text
You can suppress or enable the System.Output component’s autotranslated text on a
per-component basis using the translate property. By setting it to false, as in the
following snippet, the components outputs the text as is, with no translation. By setting
this property to true , you can enable autotranslation when the autoTranslate
variable is either set to false or not defined. See Translation Services in Skills.

Note:

Typically, you would not set the autoTranslate variable to true if you’re
translating text with resource bundles. We do not recommend this approach.

setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value: "true"
 transitions:
 ...
...
pizzaType:
 component: "System.Output"
 properties:
 text: "What type of pizza do you want?"
 translate: false
 transitions:
 ...

Variable Components
These are the components that are available in the Variable category of YAML-based
dialog flow editor.

System.SetVariable
The System.SetVariable component sets the value of a pre-defined variable.

Property Description Required?

variable The name of the variable
that’s defined as one of the
context properties. This can
be a variable defined for an
entity or a predetermined
value, like a string.

Yes

value The target value, which you
can define as a literal or as a
expression that references
another variable.

Yes

Appendix B
Variable Components

B-134

You can also set a predetermined value for a variable using an Apache FreeMarker
expression or, as shown in the following snippet, a literal. You can find out more about
FreeMarker here.

setOAuthRedirectURL:
 component: "System.SetVariable"
 properties:
 variable: "redirectURL"
 value: "https://thatcompany.io/connectors/v2/tenants/5c824-45fd-
b6a2-8ca/listeners/facebook/channels/78B5-BD58-8AF6-F54B141/redirect"
 transitions:
 ...

See System.OAuthAccountLink.

Note:

The structure of the response from the Intent Engine changed with Release 21.12.
Prior to Release 21.12, the payload of the top-level FullEntityMatches and
entityMatches payloads in the nlpResult object included entities that were
referenced by items in composite bag entities, but were not directly associated with
the intent. Starting with Release 21.12, the payloads of the FullEntityMatches and
EntityMatches objects no longer include these entities (they can instead be found
within the lower-level composite bag item objects). As a result, skills upgraded to
21.12 that use System.SetVariable to set variables using the results held in the
nlpResult object using syntax like iResult.value.entityMatches may fail
because the entity values are no longer present. To ensure the continued
functioning of skills – and follow best practices – reference the values in the
composite bag (<variable_name>.value.<item_name>) and use the
System.CommonResponse or SystemResolveEntities components instead of the
System.SetVariable component.

System.ResetVariables
This component resets the values of the variables to null.

This component doesn’t require any transitions, but you can, for example, set a transition
back to a System.Intent state to allow users to input new values.

Appendix B
Variable Components

B-135

https://freemarker.apache.org/docs/index.html

Property Description Required?

variableList A comma-separated list of
variables that need to be
reset.
Use dot notation to reset the
value of a specific bag item in
the composite bag, which is
declared a context variable
(expense in the following
example).

resetExpenseType:
 component:
"System.ResetVariables
"
 properties:
 variableList:
"expense.Type"
 transitions:
 next:
"resolveExpense"

Yes

System.CopyVariables
Copies the variable values.

Define this component using from and to properties as in the following snippet, where
the value is copied to a user context:

setupUserContext:
 component: "System.CopyVariables"
 properties:
 from: "lastQuestion,lastResponse"
 to: "user.lastQuestion,user.lastResponse"

This component needs both of these properties, but their definitions don’t have to
mirror one another. While you can define both from and to as lists of variables, you
can also define from with a single variable and to as a list. If you set an additional to
property, it inherits the variable value of the proceeding from property.

System.SetCustomMetrics
Use this component to instrument your skill for the Custom Metrics report. For
example:

 insights:
 component: "System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Pizza Size"

Appendix B
Variable Components

B-136

 value: "${size}"
 - name: "Pizza Type"
 value: "${type}"
 - name: "Crust Type"
 value: "${crust}"
 transitions:
 next: "summarizeOrder"

Note:

You can define up to six dimensions per skill.

Attribute Description

name The name of the dimension (in 50 characters or
less) as it appears in the Custom Metrics report.
Use only letters, numbers, and spaces. Do not use
special characters.

Appendix B
Variable Components

B-137

Attribute Description

value You can define the dimension value as either a
FreeMarker expression or a text string.
• Use FreeMarker expressions to reference a

context variable declared for an entity. For
example, for a crust: "PizzaCrust"
variable, the syntax is "${crust}". The
syntax for referencing an value list entity item
in a composite bag is "${<composite bag
entity name>.value.<item name>}". For
example, "${pizza.value.Crust}".

• Use a string to track a value that's not set by
variables in the dialog flow definition, but is
instead tracks other aspects of skill usage.

livechatTransfer:
 component:
"System.AgentConversation"
 properties:
...
 transitions:
 actions:
 agentLeft:
"livechatEndPrompt"
 expired:
"livechatEndPrompt"
 error:
"livechatHandleNoTransfer"
 next:
"setInsightsCustomMetrics"

 setInsightsCustomMetrics:
 component:
"System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer"
 value: "transferred"
...

 setInsightsCustomMetrics2:
 component:
"System.SetCustomMetrics"
 properties:
 dimensions:
 - name: "Agent Transfer"
 value: "not transferred"
 transitions:
 return: "done"

Appendix B
Variable Components

B-138

C
Conversation Markers for Insights

For skills with YAML-based dialog flows, you can make the Insights reports easier to read by
adding the following conversation marker properties to the dialog flow:

• insightsInclude: false – Excludes states from the dialog paths that are rendered in
the Insights reports for Intents and Conversations. Adding this property to any state
prevents it from being rendered or counted in the Insights reports, so you may want to
apply it to states that play a supporting function, such as setting a variable value. For
example, adding insightsInclude: false to each System.SetVariable property in a
pizza skill reduces the path to only render the states for the skill-user interaction.

• insightsEndConversation: true – Marks the end of the Insights reporting so that you
can isolate the salient portion of the conversation. You can also use this marker to break
down the reporting by transition.

You can add these properties to any state.

C-1

D
Apache FreeMarker Reference

• Built-In String FreeMarker Operations

• Built-In FreeMarker Number Operations

• Built-In FreeMarker Array Operations

• Built-In FreeMarker Date Operations

Built-In String FreeMarker Operations
The following table shows you how to use some of the built-in string operations using a string
variable called tester as an example. As shown in the following snippet, its value is set to
"hello world " (with three trailing blank spaces):

context:
 variables:
 tester: "string"
…
states:
 setVariable:
 component: "System.SetVariable"
 properties:
 variable: "tester"
 value: "hello world "

Note:

The following text property definition allows the bot to output either the tester
value, or, no string found if no value has been set for the variable.

printVariable:
 component: "System.Output"
 properties:
 text: "${tester.value!'no string found'}"
 transitions:
 ...

Built-In Operation Usage Output

capitalize ${tester.value?
capitalize}

Hello World

last_index_of ${tester.value?
last_index_of('orld')}

7

D-1

https://freemarker.apache.org/docs/ref_builtins_string.html

Built-In Operation Usage Output

left_pad ${tester.value?
left_pad(3,'_')}

___hello world

length ${tester.value?length} 14
lower_case ${tester.value?

lower_case}
hello world

upper_case ${tester.value?
upper_case}

HELLO WORLD

replace ${tester.value?
replace('world',
'friends')}

hello friends

remove_beginning ${tester.value?
remove_beginning('hello')
}

world

trim ${tester.value?trim} hello world (the trailing three
spaces are removed)

ensure_starts_with ${tester.value?
ensure_starts_with('brave
new ')}

brave new hello world

ensure_ends_with ${tester.value?
ensure_ends_with(' my
friend')}$

hello world my friend

contains ${tester.value?
contains('world')?string
('You said world', 'You
did not say world')}

You said world
The contains('world')
expressions returns either true
or false. These boolean values
are replaced with a string using
the string
('string1','string2')
function.

ends_with ${tester.value?
ends_with('world')?string
('Ends with world',
'Doesn't end with
world')}

Ends with world

starts_with ${tester.value?
starts_with('world')?
string ('Starts with
world', 'Doesn't start
with world')}

Doesn't start with world

matches (regular expression
returns true or false)

${tester.value?
matches('^([^0-9]*)$')}

The regular expression returns
true or false depending on
whether the value contains a
number (in which case the
boolean value is returned as
false). The tester value
returns true.

Appendix D
Built-In String FreeMarker Operations

D-2

Built-In Operation Usage Output

matches (regular expression
returns a string)

${tester.value?
matches('^([^0-9]*)$')?}

Same as above, but this time,
true is returned as a string. The
matches('regular
expression') function returns
true or false as boolean types.
To print true or false in a
System.Output component,
use ?string to perform a to-
string conversion.
Note: You can’t use regular
expression to return a group of
values; use them to return a
single matching value (or no
match).

Example: Improving the Confidence Level with Casing
The casing of the user input can impact the confidence level of the intent resolution. For
example, May might refer to the month or the verb. User input can also be erratic (Pizza,
piZza, PIZZA). Instead of catching all of the possible case variations as synonyms in the
entity definition, you can make the casing uniform using the an FTL operator like lower_case
in the following snippet.

getIntent:
 component: "System.Text"
 properties:
 prompt: "Hi, I am a the Pizza Palace bot. How can I help?"
 variable: "userstring"
 transitions:
 next: "toLowercase"
toLowercase:
 component: "System.SetVariable"
 properties:
 variable: "userstring"
 value: "${userstring.value?lower_case}"
 transitions:
 next: "intent"
intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable: "userstring"
 transitions:
 actions:
 orderPizza: "orderPizza"
 cancelOrder: "cancelOrder"
 unresolvedIntent: "handleUnresolved"

To implement this, you first ask the for the user input. In this example, the System.Text
component saves the user input in the userstring variable. The Sytem.SetVariable uses
FTL to change the case of the user input string to lower case and saves the modified string to

Appendix D
Built-In String FreeMarker Operations

D-3

the same userstring variable. Finally, the userstring variable is referenced by the
System.Intent component using the sourceVariable property to run the modified
user string against the intent engine.

Example: Transforming Case with the System.Switch Component
Another component that can be simplified with FTL is System.Switch.

In the following snippet shows different states that get called depending on the user
input (wine or beer), which is stored in the choice variable.

switch:
 component: "System.Switch"
 properties:
 variable: "choice"
 values:
 - "wine"
 - "beer"
 transitions:
 actions:
 wine: "serverWine"
 beer: "serveBeer"
 NONE: "serveWater"

The casing of user input may be inconsistent, even within a word (WiNE). Instead of
adding all possible variations to the System.Switch definition, use an FTL operation
like upper_case to make the casing uniform:

switch:
 component: "System.Switch"
 properties:
 source: "${choice.value?upper_case}"
 values:
 - "WINE"
 - "BEER"
transitions:
 actions:
 WINE: "serveWine"
 BEER: "serverBeer"
 NONE: "serveWater"

Example: Concatenating FTL Expressions
The following snippet shows how concatenating FTL expressions transforms user
input UA1234 and UA 1234, to simply 1234.

normalizeFlightNumber:
 component: "System.SetVariable"
 properties:
 variable: "flight"
 value: "${flight.value?trim?lower_case?remove_beginning('ua ')
 ?remove_beginning('ua')}"

Appendix D
Built-In String FreeMarker Operations

D-4

Built-In FreeMarker Number Operations
The following table lists the built-in number operations and shows how they output the value
set for the negativeValue (-2.5) and positiveValue (0.5175) context variables in the
following snippet.

context:
 variables:
 negativeValue: "float"
 positiveValue: "float"
states:
 setNegativeValue:
 component: "System.SetVariable"
 properties:
 variable: "negativeValue"
 value: -2.5
setPositiveValue:
 component: "System.SetVariable"
 properties:
 variable: "positiveValue"
 value: 0.5175

Operation Example Output

abs ${negativeValue.value?
abs}

2.5
The operator turns the negative
numeric value into a positive
value.

string (used with a numerical
value)

${negativeValue.value?
abs?string.percent}

250%
The operator first changes the
negative value to a positive.
Then it converts it into percent,
implicitly multiplying the value by
100.

string (with the decimal format
value and various currencies)
Tip: Check out Charbase for
other currency symbols.

${positiveValue.value?
string['###.##']}

0.51

${positiveValue.value?
string['###.##%']}

51%
The operator adds adding a
percentage character after
multiplying the value by 100.

${positiveValue.value?
string['##.###\u00A4']}

0.51 $

${positiveValue.value?
string['##.###\u20AC']}

0.51 €

${positiveValue.value?
string['##.###\u00A3']}

0.51 £

round ${negativeValue.value?
round}

-2
The operator rounds to the
nearest whole number. If the
number ends with .5, then it
rounds upwards.

Appendix D
Built-In FreeMarker Number Operations

D-5

https://freemarker.apache.org/docs/ref_builtins_number.html
http://www.charbase.com/block/currency-symbols

Operation Example Output

${positiveValue.value?
round}

1
The operator rounds to the
nearest whole number. If the
number ends with .5, then it
rounds upwards.

floor ${positiveValue.value?
floor}

0
The operator rounds downwards.

ceiling ${positiveValue.value?
ceiling}

1
The operator rounds upwards.

lower_abc ${negativeValue.value?
abs?round?lower_abc}

c
The operator turns the negative
value into a positive, then rounds
it to 3. It returns c, the third letter
of the alphabet.

upper_abc ${negativeValue.value?
abs?round?upper_abc}

C
The operator turns the negative
value into a positive, then rounds
it to 3. It returns C, the third letter
of the alphabet.

is_infinite ${positiveValue.value?
is_infinite?string}

false
The operator returns false,
because a float value is not
infinite according to IEEE 754
(Standard for Floating-Point
Arithmetic).

Note: The returned value would
be a boolean without ?string.

Built-In FreeMarker Array Operations
Array (or sequence) operations enable your bot to, among other things, determine the
size of an array, sort arrays, or find content within an array.

You can use arrays to create mock data for testing, or for defining data structures that
persist beyond user sessions. You can save an array in a custom component, in a
user-scoped variable, or as shown in the following snippet, a context variable. In this
example, there are arrays set for the person and colors variables.

context:
 variables:
 person: "string"
 colors: "string"
...

setPerson:
 component: "System.SetVariable"
 properties:
 variable: "person"
 value:
 - firstName: "Frank"
 lastName: "Normal"

Appendix D
Built-In FreeMarker Array Operations

D-6

https://freemarker.apache.org/docs/ref_builtins_sequence.html

 - firstName: "Grant"
 lastName: "Right"
 - firstName: "Geoff"
 lastName: "Power"
 - firstName: "Marcelo"
 lastName: "Jump"

...

setColors:
 component: "System.SetVariable"
 properties:
 variable: "colors"
 value:
 - "yellow"
 - "blue"
 - "red"
 - "black"
 - "white"
 - "green"

These colors and person arrays are used to illustrate the array operations in the following
table and in Example: Iterating Arrays.

Operator Example Output

size ${person.value?size?
number}

4—The size (four members) of
the person array

array index $
{person.value[1].firstNam
e}

Grant—It’s the value of the
second firstName property in
the person array.

$
{person.value[1].firstNam
e !'unknown'}

Same as the above, but in this
case, the bot outputs unknown if
the second firstName property
has no value.

first ${person.value?
first.firstName}

Frank—The first entry of the
person array. This operation
doesn’t use the array index.

last ${person.value?
last.firstName}

Marcelo—The final lastName
value in the person array.

Appendix D
Built-In FreeMarker Array Operations

D-7

Operator Example Output

sort_by ${person.value?
sort_by('lastName')
[0].firstName}

Marcelo
This operator sorts the person
array by the lastName property
in ascending order. It then prints
the value of the corresponding
firstName property for final
entry in the person array:
• Jump, Marcelo
• Normal, Frank
• Power, Geoff
• Right, Grant

Note: Unless you save the
sorted array in a variable using
System.SetVariable, the data
remains sorted for a single
request only.

${person.value?
sort_by('lastName')?
reverse[0].firstName}

Grant—the values are sorted in
descending order:
• Right, Grant
• Power, Geoff
• Normal, Frank
• Jump, Marcelo

seq_index_of ${colors.value?
seq_index_of('red')}

2—The index value for red in the
colors array.

seq_last_index_of ${colors.value?
seq_last_index_of('red')}

2—The last index value for red in
the

join ${colors.value?join(',')} Returns the colors array as a
comma-separated string:
yellow, blue, red, black,
white, green

seq_contains ${colors.value?
seq_contains('red')?
string('Yes', 'No')

Returns Yes because the array
contains red.
Note: ?seq_contains returns a
boolean value. This value is then
replaced by a string using the ?
string('…','…') expression.

sort ${colors.value?sort?
join(',')}

Returns the colors array as a
comma-separated string in
ascending order: black, blue,
green, red, white, yellow

reverse ${colors.value?sort?
reverse?join(',')}

Returns the colors array as a
comma-separated string in
descending order: yellow,
blue, red, black, white,
green

Returning Intents and Scores
You can use array operations to return the results from the intent and entity
processing. For example:

Appendix D
Built-In FreeMarker Array Operations

D-8

• ${iResult.value.entityMatches[‘name of entity’]} returns an array of entities found
in a user string that’s passed to the System.Intent component and stored in the
iResult: nlpresult variable.

• ${iResult.value.intentMatches.summary[n].intent} returns the name of the intent
that has a confidence ranking of n, where 0 represents the top-ranked intent, 1 represents
the second ranked intent, etc.

• ${iResult.value.intentMatches.summary[n].score} returns the confidence score for
the given intent.

For these two expressions, n is the index of the item you want to look up. For example, the
expression to return the top-resolved intent name would be:

${iResult.value.intentMatches.summary[0].intent}

For the top intent's score, the expression would be:

${iResult.value.intentMatches.summary[0].score}

You can use these expressions for intents that scored above the confidence threshold, but
you can also use them to return intents whose score falls below the confidence threshold.
These expressions are not dependent on the confidence threshold value that's configured in
the Skill's Settings page, so you can use them to return the candidate intents and their
scores even when no intent could be resolved and an unresolvedIntent action has been
triggered. In this case, you can, for example, use these expressions to return the top three
intents and their sub-confidence threshold scores.

Note:

If you need to refer to the intent that a user has selected after being asked to
disambiguate, you can use ${system.intent.name}. ($
{iResult.value.intentMatches.summary[0].intent} always returns the intent
with the top score, which might not be the intent that the user selects when
disambiguating.

Example: Iterating Arrays
Arrays determine the number of entities in the user input. The following snippet shows how to
determine the size of the array held in the person variable and then iterate over its elements
so that the skill outputs something like:

Appendix D
Built-In FreeMarker Array Operations

D-9

 stateName
 component: "System.CommonResponse"
 properties:
 metadata:
 responseItems:
 - type: "text"
 text: "${person?index+1}. ${person.firstName} $
{person.lastName}"
 name: "Sorry"
 separateBubbles: true
 iteratorVariable: "person"
 processUserMessage: false

Note:

The output described in this code is not sorted (that is, no sort_by operation
is used).

Built-In FreeMarker Date Operations
The following snippet derives the current date using the FreeMarker special variable
reference, .now and the built-in date operator.

PrintToday:
 component: "System.Output"
 properties:
 text: "${.now?date}"
 keepTurn: false

The following table lists some of the built-in date operations that you can use to define
properties and manipulate entity values.

Appendix D
Built-In FreeMarker Date Operations

D-10

https://freemarker.apache.org/docs/ref_builtins_date.html

Operation(s) Example Output

date ${.now?date} The current date

time ${.now?time} The time of day, like 5:46:09 PM

datetime ${.now?datetime} Prints current date and time, like
Jan 17, 2018 5:36:13 PM.

long and number_to_date ${(.now?long + 86400000)?
number_to_date }

Adds 24 hours to the current
date. If the call is made on
January 17, 2018, FreeMarker
outputs January 18, 2018.

string (with formatting styles) ${.now?string.full} Converts the current date to
string formatted as Wednesday,
January 17, 2018 6:35:12 PM
UTC.

${.now?string.long} Converts date to string with the
following formatted output:
January 17, 20186:36:47 PM
UTC.

${.now?string.short} Converts date to string with the
following formatted output:
1/17/18 6:37 PM

${.now?string.medium} Converts date to string with the
following formatted output: Jan
17, 2018 6:38:35.

${.now?string.iso} Prints the date in the ISO 8601
standard like
2018-01-17T18:54:01.129Z.

string (with specified output
formats)

${.now?
string['dd.MM.yyyy,
HH:mm']}

Prints the current date in a
custom format, like 17.01.2018,
18:58.

${.now?string['yyyy']} 2018

datetime (with string and
formatting style)

${date_variable?datetime?
string.short}

Converts the date to a string
formatted as 1/17/18 6:37 PM.
The datetime operator enables
FreeMarker to tell if the variable
holds a date that contains both
date and time information.
Similarly, you can use the date
or time operators to indicate if
the date value contains only the
date or only the time, but using
datetime?string avoids
errors.

Converting the entity value to a
string using
• date
• long
• number_to_date
• formatting styles
• custom date formats

${dateVar.value.date?
long?number_to_date?date?
string.short}

Converts the date from the entity
extraction to a string formatted
as 11/17/18.
The date operator tells
FreeMarker that the variable only
holds a date, not time
information. Using this format
avoids errors.

Appendix D
Built-In FreeMarker Date Operations

D-11

Operation(s) Example Output

${dateVar.value.date?
long?number_to_date?
string.medium}

Converts the date that’s derived
from entity extraction to a string
formatted as Jan 17, 2018.
Note: All other formats like full,
short, long and iso work the
same with dates that are derived
from entity extraction.

${dateVar.value.date?
long?number_to_date?
string['dd.MM.yyyy']}

Prints the date in custom format.
For example: 17.01.2018, 18:58.

${dateVar.value.date?
long?number_to_date?
string['yyyy']}

Prints the date derived from the
entity in a custom format.

Example: Extracting Dates from User Input
The following snippet is from a bot that manages appointments. When a user asks it,
Can you arrange a meeting with Mr. Higgs a day later than tomorrow?, the bot uses a
complex entity, DATE, to extract tomorrow from the request. It outputs the requested
date using ${(theDate.value.date?long + 86400000)?number_to_date} to add 24
hours (or 86,400,000 milliseconds) to the current date.

Appendix D
Built-In FreeMarker Date Operations

D-12

OBotML Code Output

context:
 variables:
 iResult: "nlpresult"
 theDate : "DATE"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 transitions:
 actions:
 unresolvedIntent: "dunno"
 Appointment: "printToday"
printToday:
 component: "System.Output"
 properties:
 text: "Today is: ${.now}"
 keepTurn: true
startAppointement:
 component: "System.SetVariable"
 properties:
 variable: "theDate"
 value: "$
{iResult.value.entityMatches['DATE']
[0]}"
printDateFound:
 component: "System.Output"
 properties:
 text: "Date found is: $
{theDate.value.date}"
 keepTurn: true
printDayAfter:
 component: "System.Output"
 properties:
 text: "A day later is $
{(theDate.value.date?long +
86400000)?number_to_date}"
 transistions:
 return: "done"

Outputs the following messages in response to the
user message, Can you arrange a meeting with
Mr. Higgs a day later than tomorrow?:
• Today is: 1/18/18 8:31 AM
• Date found is: Jan 19, 2018
• A day later is Jan 20, 2018

Example: Setting a Default Date (When No Date Value Is Set)
If the user message doesn’t include any date information, your bot can prompt users for the
date, or provide a default date, as shown by the following snippet (which augments the dialog
flow in the previous example). To perform the latter, your bot needs to check if the date
variable has been set after the NLP engine extracts entities from the user input.

 conditionEquals:
 component: "System.ConditionEquals"

Appendix D
Built-In FreeMarker Date Operations

D-13

 properties:
 variable: "theDate"
 value: null
 transitions:
 actions:
 equal: "setDefaultDate"
 notequal: "printDateFound"

If no date value has been set, the System.SetVariable component defines a default
value in a variable and transform it into a string.

 setDefaultDate:
 component: "System.SetVariable"
 properties:
 variable: "defaultDateInput"
 value: "${.now?datetime?string.long}"

The System.MatchEntity component verifies that this value is a date and then sets
the theDATE variable:

 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "defaultDateInput"
 variable: "theDate"
 transitions:
 actions:
 match: "printDateFound"
 nomatch: "exit"

Appendix D
Built-In FreeMarker Date Operations

D-14

OBotML Output

context:
 variables:
 iResult: "nlpresult"
 theDate : "DATE"
 #need extra variable for default
date input
 defaultDateInput: "string"
states:
 ...

#try to extract date information
from user sentence
 startAppointement:
 component: "System.SetVariable"
 properties:
 variable: "theDate"
 value: "$
{iResult.value.entityMatches['DATE']
[0]}"
#set default date if none found
 conditionEquals:
 component:
"System.ConditionEquals"
 properties:
 variable: "theDate"
 value: null
 transitions:
 actions:
 equal: "setDefaultDate"
 notequal: "printDateFound"
 setDefaultDate:
 component: "System.SetVariable"
 properties:
 variable: "defaultDateInput"
 value: "${.now?datetime?
string.long}"
 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "defaultDateInput"
 variable: "theDate"
 transitions:
 actions:
 match: "printDateFound"
 nomatch: "exit"
 printDateFound:
 component: "System.Output"
 properties:
 text: "Date found is:
 ${theDate.value.date?

The skill outputs the following messages in
response to the user message, Can you arrange a
meeting with Mr. Higgs a day later than
tomorrow?:
• Today is: 1/18/18 8:31 AM
• Date found is: Jan 19, 2018
• A day later is Jan 20, 2018

Appendix D
Built-In FreeMarker Date Operations

D-15

OBotML Output

long?number_to_date?date?
string.medium}"
 keepTurn: true
 printDayAfter:
 component: "System.Output"
 properties:
 text: "A day later is $
{(theDate.value.date?long +
86400000)?number_to_date}"
 transistions:
 return: "done"

FreeMarker-Accessible System Variables
Oracle Digital Assistant has a set of system variables through which you can retrieve
useful information in your dialog flows through FreeMarker expressions.

In their simplest forms, these expressions take the following form:

${system.variableName}

Some variables can hold objects with nested properties that can be accessed using
dot notation after the variable name in the following form.

${system.variableName.propertyName}

In addition, the nested property values can also be objects with nested properties.

Here are the system variables that are available through FreeMarker expressions.

Variable Description

system.actualStat
e

Name of the state the user has navigated to by tapping an older "out-
of-order" button. If the postback payload contains a system.state
property, the dialog engine will navigate to this state and sets this
variable to the name of that state. See also Configure the Dialog Flow
for Unexpected Actions.

system.authorized
Users

A list of all of the users that have been authorized for a given group
chat.

system.channelTyp
e

The type of channel of the current user session. Allowable values:
facebook, androidsdk, iossdk, websdk, slack, twilio, msteams,
cortana, webhook, and test .
If the session is running in the tester, the value corresponds to the
channel type being simulated.

Appendix D
FreeMarker-Accessible System Variables

D-16

Variable Description

system.entityToRe
solve

Object representing the current composite bag item to resolve in the
System.CommonResponse component when the variable property of
the component is referring to a composite bag entity.The object has the
following properties:
• nextRangeStart - index number of the entity's allowable value

list that will be navigated to when tapping the Show More button.
• updatedEntities - list of composite bag items that were

updated based on the last user message.
• needShowMoreButton - Boolean property that can be used in as

an expression for the visible property to conditionally render
the Show More button to navigate to the next set of entity values.

• outOfOrderMatches - list of bag items that were populated with
a value based on the last user message when the user was
prompted for another bag item.

• rangeStartVar - name of the variable that holds the current
range start of the entity values.

• validationErrors - for the current bag item, list of error
messages caused by an invalid value provided in the last user
message.

• allMatches - list of bag items that got a new or updated values
based on the last user message.

• resolvingField - name of current bag item the user is prompted
for.

• userInput - the last user message.

• skippedItems - list of bag items where the maximum number of
prompts for a value is exceeded.

• disambiguationValues - list of allowed entity values that have
matches in the last user message.

• enumValues - list of entity allowed values for the current bag item.

See The system.entityToResolve Variable for examples of how to use
system.entityToResolve.

system.errorActio
n

Error message text of an unexpected error thrown during execution of
the state.

system.errorState Name of the state that has thrown an unexpected error during
execution.

system.expectedSt
ate

When user scrolls up the message history, and taps on an older "out-
of-order" button this variable is populated with the name of the state
that was expected to be executed, but never got executed because the
user decided to tap on this "out-of-order" button. See also Configure
the Dialog Flow for Unexpected Actions.

system.intent.nam
e

Use to refer to the intent that a user has selected after being asked to
disambiguate. (

${iResult.value.intentMatches.summary[0].intent}

always returns the intent with the top score, which might not be the
intent that the user selects when disambiguating.)

system.invalidUse
rInput

Boolean value set to true when the user input cannot be matched to
the requested variable type.

Appendix D
FreeMarker-Accessible System Variables

D-17

Variable Description

system.message Last message received by Oracle Digital Assistant. This variable has
the following properties:
• channelConversation - the channel conversation object, which

has the following properties:
– botId
– channelType - When running in the tester, this will return

test. If you want to get the name of the channel that is being
simulated in the tester, use system.channelType instead.

– channelName
– channelCategory
– groupConversation - Returns true if the conversation is a

group chat.
– userId
– sessionId
– sessionExpiryDuration

• messagePayload - the actual message sent by the user. The
properties you can access depend on the type of message:
– Text message: the text property returning the actual

message entered by the user
– Postback message: the properties of the postback object,

typically action and variables when using the
System.CommonResponse component. For example, when
the user taps a button that sets the variable pizzaSize, this
value can be retrieved using following expression:$
{system.message.messagePayload.variables.pizzaS
ize}

– Location message: the location property, which holds a
location object with following properties:
* title
* url
* latitude
* longitude

• stateCount - the number of states executed to process the last
user message.

• platformVersion - the current runtime platform version.

system.requestedS
tate

If a users enters a conversation at a state that requires authorization
and the user is not in the list of users stored in
system.authorizedUsers, the dialog engine stores the state it
intended to execute in this variable.

system.selectedCa
rdIndex

This variable holds the index of the selected card when using the
facility to optimize card rendering for text-only channels like Twilio. This
optimization allows the user to select a card in a two step process: first
a list of cards is presented, then the user can enter the number of the
cards he wants to select. The corresponding index number of this card
is stored in this variable.

Appendix D
FreeMarker-Accessible System Variables

D-18

Note:

The system variables in the above table are the only ones that you can use in
FreeMarker expressions. Other system variables are not public and their use is
subject to change, which means your skills can't rely on them.

For example, the system.routingFromSkill, system.routingToSkill,
system.routingFromIntent, and system.routingToIntent variables are only
available for specific digital assistant settings. See System Variables for Digital
Assistants.

Appendix D
FreeMarker-Accessible System Variables

D-19

E
Feature Support by Language

The following topics summarize the level of support for each of the languages that are
natively-supported in Oracle Digital Assistant.

General Feature Support by Language

Feature en ar de es fr h
i
it nl pt

Language
Understanding

Yes Yes Yes Yes Yes N
o
Yes Yes Yes

Voice Yes (en-
US, en-
GB, en-
AU, en-
IN)

No Yes Yes Yes Y
e
s
(
h
i
-
I
N
)

Yes No Yes

Insights Yes Yes Yes Yes Yes N
o
Yes Yes Yes

Data Manufacturing Yes Yes Yes Yes Yes N
o
Yes Yes Yes

Entities Support by Language

Built-in Entity en es fr pt nl de it ar

CURRENCY Yes Yes Yes Yes Yes Yes Yes Yes

DATE Yes (full) Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

DURATION Yes No No No No No No No

LOCATION
(feature flag)

Yes Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

NUMBER Yes (full) Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

PERSON Yes Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

Yes (but
uses
English
training
data)

E-1

Built-in Entity en es fr pt nl de it ar

TIME Yes (full) Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

Yes
(basic)

YES_NO Yes Yes Yes Yes Yes Yes Yes Yes

Note:

The EMAIL, PHONE_NUMBER, and URL entities have general suppport that
is not specific to language.

Basic and Full Entity Support
Here's what basic support and full support encompasses for built-in entities.

Entity Type Basic Support Full Support

DATE • Standard date formats as
they are commonly
expressed in the native
language.

• Specific date references
– Months (e.g. "Feb")
– Days (e.g. "Friday",

"Today", "Tomorrow")
– Years (e.g. "2020")

• Relative dates
– e.g. "Next Friday"

• Everything in Basic
Support

• Advanced date handling.
Examples include:
– "the day after

tomorrow"
– Holidays (e.g.

"Thanksgiving")
– "1st of April"

NUMBER Support for common numeric
formats. This includes support
for the native language's radix
characters (period, comma,
and/or space).

• Everything in Basic
Support

• Advanced number
handling. Examples
include:
– Cardinal numbers

(e.g. "twenty five")
– Ordinal numbers (e.g.

"25th", "first")

TIME Support for a specific time in
digits.

N/A

Appendix E
Entities Support by Language

E-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	Part I Overview and Getting Started
	1 Overview of Digital Assistants and Skills
	What are Digital Assistants?
	What a Digital Assistant Does
	What Are Skills?
	Basic Concepts
	Platform Features and Capabilities
	Register for Email Notifications

	2 Users, Groups, and Policies
	Digital Assistant Policies
	Resource-Types
	Verbs
	Example Set of Policies

	Create a Compartment
	Create New IAM Users
	Create Groups
	Add IAM Users to a Group
	Map IDCS Users to an IAM Group
	Create Policies
	Setup and Policies for Oracle Functions
	Create Compartment for Functions and Network Resources
	Set Up a Virtual Cloud Network (VCN)
	Set Up Network Access Permissions
	Set Up Permissions for Functions Developers
	Create a Dynamic Group
	Example: Dynamic Group for a Single Instance

	Create a Policy to Access Oracle Functions

	Policies for OCI Language
	Role-Based Access and Identity Domains
	Create an Identity Domain
	User Roles in IAM
	Create a User in an Identity Domain
	Create a Group in an Identity Domain
	Assign a Role in an Identity Domain

	3 Order the Service and Provision an Instance
	Digital Assistant Product Types
	Place an Order for Oracle Digital Assistant
	Activate a Digital Assistant Subscription
	Set Up Digital Assistant as an Individual Service
	Create an Oracle Digital Assistant Service Instance
	Access the Service Instance from the Infrastructure Console
	Get the Service Instance URL
	Sign-In Options
	Service Limits
	View Service Limits in the Infrastructure Console

	Service Quotas
	Example Quota Policy for Oracle Digital Assistant

	Instance Shapes and Rate and Storage Limits
	Recipe for Quick Setup and Provisioning

	Oracle Fusion Cloud Applications and Digital Assistant
	Linking of Digital Assistant Instances
	Manually Link Digital Assistant Instances
	Administration of Linked Instances
	Unlink an Instance

	Migration from Gen 1 to Gen 2 Infrastructure
	IDCS Application in Migrated Instances
	Differences in Migrated Instances
	Manage User Access in a Migrated Instance
	IP Addresses for the Allowlist

	4 Service Administration
	Manage Features
	Audit Trail
	Example: Searching for Delete Operations

	Events for Digital Assistant Instances
	Event Types
	Example Digital Assistant Service Instance Event

	Metrics, Alarms, Notifications, and Billing
	Digital Assistant Metrics
	View Metrics for a Single Instance
	View Metrics for All Instances
	Monitor Billing

	Stop and Start Instances
	Delete an Instance
	Break Glass
	Temporary Access Approval
	Provide Your Own Key
	Create and Import Your TDE Master Key
	Update the Key

	Disaster Recovery
	Cross-Region Failover
	Set Up Failover

	Private Endpoint
	Set Up a Private Endpoint
	Permissions for Private Endpoints
	Create a Policy to Access a Private Endpoint

	Create a Private Endpoint
	Add a Service for the Private Endpoint in Digital Assistant
	SCAN Proxies for Private Endpoints

	Further Administration Information
	Programmatic Creation and Management of Skills and Digital Assistants
	Packaged Skills
	Importing and Managing Packages

	5 Get Started
	Create a Digital Assistant
	Create a Skill
	Skill Store
	Access the Skill Store
	Install Update from the Skill Store

	6 Sample Digital Assistants and Skills

	Part II Digital Assistant Development Blueprint
	7 Preparation is the Key to Success
	CDX Workshop
	Identify Good Digital Assistant Use Cases
	Define Digital Assistant Success
	Identify What the Digital Assistant Should Not Do
	In-Domain but Out-of-Scope
	Not Suitable for the Channel

	Shape Your Conversational Mindset
	Define a Digital Assistant Persona
	Identify the Team Roles You Need for Bot Development
	Coversation Designer
	Conversation Message Writer
	Model Designer

	Break Down a Big Problem Into Small Ones
	Use Case: Break Expense Functionality Into Multiple Skills
	Splitting Up Intents

	Prepare for Failure
	Small Talk in Digital Assistant Conversations
	Checklist of Preparation Steps
	Learn More

	8 Train Your Model for Natural Language Understanding
	Create Intents
	The Two Types of Intents
	Consider a Naming Convention
	Use Descriptive Conversation Names
	Use the Description Field

	Define the Scope of Your Intents
	Example: Intent Scope Too Narrow
	Example: Intent Scope Too Broad

	Create Intents for What You Don't Know
	Create Entities for the Information You Want to Collect from Users
	Other Entity Features
	Consider a Naming Convention
	Use the Description Field

	Create Utterances for Training and Testing
	Training Utterances vs. Test Utterances
	How to Build Good Utterances
	What to Avoid When Writing Utterances
	How to Get Started with Writing Utterances
	How Many Utterances to Create
	What Level of Confidence Should You Aim For?

	Checklist for Training Your Model
	Learn More

	9 Additional Languages
	Translation Service vs. Multilingual NLU
	Use Resource Bundles Everywhere
	Why Resource Bundles
	About Resource Bundle Strings
	Consider a Naming Convention for Resource Bundle Key Names
	Use Resource Bundles for Keywords

	Use the ICU Message Format
	Impact of Second Language Support on the Bot Persona
	Example: Handling Regional Differences in Messages

	Checklist for Additional Languages
	Learn More

	10 Model Testing
	Create a Baseline
	Perform Positive and Negative Testing
	Checklist for Model Testing
	Learn More

	11 Conversational Design
	Orient Users
	Welcome
	Help
	Letting Users Exit
	Hints and Cues
	Show Quick Responses as Action Buttons

	Ensure Mutual Understanding
	Use Plain Language
	Don't Expect Users to Know the Magic Words
	Give Feedback Within the Conversation
	Disambiguate User Input
	Provide Alternating Prompts
	Gradually Disclose Additional Information
	Varied Responses and Progressive Disclosure
	Confirmation and Reflective Listening
	Close the Gap that Exists Between AI and Human Understanding

	Good Manners
	Small Talk
	Don't Assign Blame
	Use of Empathy
	Brevity

	Keep Interactions Short
	Don't Design Like It's a Web App
	Consider Multi-Language Support
	Checklist for Conversational Design
	Learn More

	12 Channel-Specific Considerations
	Consider Channel Limitations When Designing Your Chatbot
	Design Your Bot for a Single Channel
	Design your Bot for the Highest Common Denominator
	Design Your Bot for All Channels and Optimize for a Few

	Implementing Channel-Specific Bot Responses
	Checklist for Channel Considerations
	Learn More

	13 Implement Conversation Flows
	Use Visual Mode
	Dialog-Driven Conversations
	Use a Naming Convention for Dialog Flow State Names
	Best Practices for Using Variables
	Using Keywords on Action Items
	Consider NLU-Based Action Menus
	Interrupting a Current Conversation for a New Conversation

	Model-Driven Conversations
	Recommended Approach
	How to Design Model-Driven Conversations
	Resource Bundles for Messages and Prompts
	Apache FreeMarker Best Practices

	Checklist for Implementing Conversations
	Learn More

	14 Custom Code and Backend Integration
	Custom Dialog Flow Components
	Use Good Names for Components and Input Parameters
	Avoid Making Assumptions in Your Code
	Think Library
	How to Write Log Messages
	Manage Your Component's Internal State
	Validate Input Parameters
	Use the MessageFactory Class for Component Messages
	Checklist for Custom Components
	Learn More

	Entity Event Handlers
	Add Missing Functionality to Resolve Entities Components
	Manage State
	How to Write Log Messages
	Displaying User Messages
	Checklist for Entity Event Handlers
	Learn More

	Which Component Should You Use?
	Using Resource Bundles for CCS and EEH
	How to Use Named Parameters
	Our Recommendation Regarding Resource Bundles and Custom Components

	Should You Migrate to Entity Event Handlers?
	Best Practices When Migrating to Entity Event Handlers

	15 Build Your Digital Assistant
	About Training of unresolvedIntent in Your Skills
	Digital Assistant is the Home of your Persona
	Resource Bundles
	Disambiguation and Interruption Dialogs

	Checklist for Building Your Digital Assistant
	Learn More

	16 Digital Assistant Testing
	Utterance Testing
	Conversation Testing
	User Testing of Digital Assistants
	Checklist for Digital Assistant Testing
	Learn More

	Part III Digital Assistants
	17 Create, Version, and Publish Digital Assistants
	Create from Scratch
	Clone
	Create by Import
	Publish
	Create New Version
	Delete
	Export a Digital Assistant to Another Instance
	Add a Skill to a Digital Assistant
	Maximum Intents and Training Utterances

	18 Personalize Your Digital Assistant
	Invocation Name
	Modify a Skill's Invocation Name
	Invocation Name Guidelines
	Explicit Invocation Patterns

	System Intents for Digital Assistants
	Specify States for a Digital Assistant's System Intents
	Add Utterances
	Pre-Seeded Training Data in System Intents
	Disable Pre-Seeded Training Data

	Customize Messages and Prompts
	System Variables for Digital Assistants

	Limit the Frequency of Prompts
	Disable a Skill
	Hidden Skills
	Hide a Skill

	Image-Initiated Flows
	Set Values for Custom Parameters
	Auto-Numbering for Digital Assistants
	Disable Selection of Old Actions in a Digital Assistant

	19 Tune Routing Behavior
	Train the Digital Assistant
	What to Test
	The Routing Model
	Start, Welcome, and Help States
	Specify Start, Welcome, and Help States
	Explicit Invocation
	Context Awareness
	help and unresolvedIntent Intents
	exit Intent

	Skill Groups
	Group Context vs. Skill Context
	Delineating Skill Groups
	Naming Skill Groups
	Common Skills and Skill Groups
	Examples: Context Awareness within Skill Groups
	Example: Context Awareness among Skill Groups
	Add Skill Groups
	Set the Skill Group in the Skill
	Set Skill Groups in the Digital Assistant

	Context Pinning
	Win Margin and Consider All
	Interruptions
	Enforce Calls to a Skill's System.Intent Component

	Route Directly from One Skill to Another
	Suppress the Exit Prompt
	Routing Parameters
	Adjust Routing Parameters

	The Routing Tester
	Illustrations of Routing Behavior
	Example: Route to Flow
	Example: Disambiguating Skill Intents
	Example: Explicit Invocation
	Example: Context Awareness

	Tutorial: Digital Assistant Routing
	Test Cases for Digital Assistants
	Test Routing with the Utterance Tester
	Quick Tests
	Test Cases
	Create a Routing Test Case
	Add Test Cases for System Intents
	Import Test Cases for Digital Assistant Test Suites

	20 Languages and Digital Assistants
	Choosing Between Native Language Mode and Translation Service Mode
	Native Language Support in Digital Assistants
	Set Up a Digital Assistant in Native Language Mode
	Complete and In-Progress Languages
	Switch from a Translation Service to Native Language Support
	Language Detection in Digital Assistants with Natively-Supported Languages

	Digital Assistants with Translation Services
	Set Up a Non-English Single-Language Digital Assistant in Translation Service Mode
	Set Up a Multi-Language Digital Assistant in Translation Service Mode
	Add a Translation Service to a Digital Assistant
	Enable Language Detection in Translation-Enabled Digital Assistants
	Translating Output Text
	Explicit Invocation in Translated Digital Assistants

	Conditions for Adding a Skill to a Digital Assistant
	Resource Bundles for Digital Assistants
	Translatable Strings in Digital Assistants
	Create and Edit Resource Bundle Keys
	Reference Resource Bundle Keys for Help Cards in a Digital Assistant
	Reference Resource Bundle Keys for Prompts and Messages
	System Variables in Resource Bundles
	Export and Import Resource Bundles
	Resource Bundle Entries for Digital Assistant Configuration Settings
	Sample Resource Bundle Entries

	21 Digital Assistant Insights
	Chat Session Metrics for Digital Assistants
	Conversation Metrics for Digital Assistants
	Report Types
	Review the Overview Metrics and Graphs
	View the Conversations Report
	Apply the ODA Retrainer
	PII Anonymization
	Enable PII Anonymization

	Create an Export Task

	Live Agent Metrics for Digital Assistants
	Live Agent Conversation Metrics for Digital Assistants

	Events Insights
	Inbound Events
	Outbound Events

	Part IV Skills
	22 Create, Configure, and Version Skills
	Create from Scratch
	Clone
	Create by Import
	Create New Version
	Dialog Mode
	Configure for Use In a Digital Assistant
	Delete
	Publish
	Export a Skill to Another Instance
	The Skill Development Process
	Validate Your Work
	Names You Can't Use for Skills

	23 Platform Version
	Lifecycle Phases of Platform Versions
	Change a Bot's Platform Version
	Best Practices for Managing Platform Versions
	New Features and Changes in Platform Versions
	Extended Bots and Platform Versions
	Platform Versions in Migrated Instances

	24 Intents
	Create an Intent
	Add Entities to Intents
	Value Agnostic Intent Entities

	Import Intents from a CSV File
	Export Intents to a CSV File
	Which Training Model Should I Use?
	Trainer Tm
	Trainer Ht

	Build Your Training Corpus
	Guidelines for Trainer Tm
	Guidelines for Trainer Ht
	Limits for Training Data Shape and Size

	Export Intent Data

	Intent Training and Testing
	Testing Utterances
	The Utterance Tester
	Quick Tests
	Test Cases
	Manage Test Cases
	Create Test Suites
	Create Utterance Test Cases
	Add Test Cases from the Utterance Tester
	Create a Test Case
	Import Test Cases for Skill-Level Test Suites
	Importing Pre-21.04 Versions of the CSV

	Create Test Runs
	Test Run Summary Report
	Summary Report Metrics
	Test Suite Breakdown

	Intents Report
	Intents Report Metrics
	Filter by Test Suite
	Intents Breakdown

	Test Cases Report
	Unreliable Test Cases

	Exported Test Runs
	Failure Testing

	Similar Utterances

	Tutorial: Best Practices for Building and Training Intents
	Reference Intents in the Dialog Flow
	Tune Intent Resolution Before Publishing
	How Confidence Threshold Works
	How Confidence Win Margin Works

	Answer Intents
	Generate Answer Intents from an Existing Knowledge Resource
	Create a Single Answer Intent
	Create Answer Intents from a CSV File

	DO's and DON'Ts for Conversational Design
	Intent Design and Training
	Conversational User Experience
	Test Strategies
	Project Considerations

	Names You Can't Use for Intents

	25 Entities
	Built-In Entities
	Built-In Entities and Their Properties
	The DATE_TIME Entity
	Attributes for Each DATE_TIME Subtype
	DATE Subtype Attributes
	TIME Subtype Attributes
	DATETIME Subtype Attributes
	DURATION Subtype Attributes
	INTERVAL Subtype Attributes
	RECURRING Subtype Attributes

	Ambiguity Resolution Rules for Time and Date Matches
	Resolution Rules for Matches to the Date Subtype
	Resolution Rules for Matches to the Time Subtype

	Locale-Based Entity Resolution
	Locale-Based Date Resolution
	Locale-Based Currency Resolution
	Locale-Based Number Resolution

	Custom Entities
	Composite Bag
	ML Entities
	Value List Entities
	Dynamic Entities
	Regular Expression
	Entity List
	Derived

	Create Entities
	Value List Entities for Multiple Languages
	Word Stemming Support in Fuzzy Match
	Create ML Entities
	Exclude System Entity Matches
	Import Value List Entities from a CSV File
	Export Value List Entities to a CSV File
	Create Dynamic Entities
	Guidelines for Creating ML Entities
	ML Entity Training Guidelines
	ML Entity Testing Guidelines

	Configure Composite Bag Entities
	Create a Composite Bag Entity
	Enhanced Slot Filling
	Add Prompts
	Updating Slotted Values with Apache FreeMarker Expressions
	Enable Out-of-Order Extraction
	Enable Extract With
	Add Validation Rules
	Configure a YAML Dialog Flow for Composite Bag Entities
	The system.entityToResolve Variable
	entityToResolve Expressions

	Entity Event Handlers
	Create Entity Event Handlers with the Event Handler Code Editor
	Add Events
	Add Entity-Level Event Handlers
	Add Item-Level Handlers
	Add Custom Events

	Replace or Remove an Entity Event Handler
	Which IDE Should I Use?
	Simplify Dialog Flows with Entity Event Handlers
	Entity Event Handler Tutorials

	Disambiguate Nested Bag Items and Subtypes
	Add the DATE_TIME Entity to a Composite Bag
	Tutorial: Real-World Entity Extraction with Composite Bag Entities

	Query Entities

	26 Visual Flow Designer
	Basic Concepts
	Visual Designer
	Multiple Flows
	Events
	Variables, Scope, and Parameters
	New, Modified, and Removed Components

	Get Started with the Visual Flow Designer
	Create the Visual Designer Flow Skill
	Map Events

	Build an Intent Event Flow
	Reference Variable Values in FreeMarker Expressions

	Build a Flow for Built-In Events
	Sample Messages for Built-In Event Flows

	Tutorials: Visual Flow Designer
	Flows
	Flow Types
	Main Flow
	Intent Flows
	Utility Flows for Built-In Events and System Transitions
	Custom Sub-Flows

	Variables and Scope
	Notes for Developers Used to YAML-Based Dialog Flows
	Designing Flows
	Create a Flow
	Create the Skill-Level Variables
	Designate a Start State
	Add a State
	Insert a State Between States
	Edit a State's Properties
	Deleting States
	Restore a Deleted State
	Reconnect a Disconnected State
	Insert a New First State
	Copy States

	Intent Detection and Resolution
	Answer Intent Resolution
	Flow Mapping
	Map an Intent to a Flow
	Map a Built-In Event to a Flow
	Map a Transition Event to a Flow
	Invoke One Flow from Another Flow
	Invoke Another Skill from a Flow

	Events and Transitions
	Built-In Events for the Main Flow
	System Transitions for Flows
	Event Listening and Triggering

	Expressions for Variable Values
	Handy Expressions
	Apache FreeMarker Template Language Syntax
	Referencing Entity Values in Multi-Language Skills

	Other Variables Types
	Profile-Scope Variables for User Context
	Save User-Specific Values for Return Visits
	System Variables

	Test the Dialog Flow
	Other Tasks
	User Authorization
	Auto Numbering Response Items
	Limiting the Number of User Prompts
	Resource Bundles and the Visual Flow Designer
	Modify a Resource Bundle Entry

	User Input Form Messages
	The Edit Forms Metadata Template
	Input Form Fields

	Custom Parameters
	Create a Custom Parameter
	Secure Parameters
	Modify the Value for a Custom Parameter in a Published Skill
	Set the Value for a Parameter in Digital Assistant

	Import and Export Flows
	Export Flows
	Import Flows

	Insights for Flows Created in the Visual Flow Designer
	Group Chats
	User Authorization in Group Chats
	Enforce User Authorization for Group Chats
	Enable Messages Without User Mention in Slack Group Chats
	Enable Users to Stop Messages from Being Sent to the Slack App

	What Users Need to Know About Group Chats

	Component Templates
	Send Message
	Ask Question
	Resolve Composite Bag
	User Messaging Templates
	Common Response Component Templates
	Properties for Common Response Component Templates
	Transitions for Common Response Components
	Composite Bag Transitions

	Resolve Entity
	User Feedback

	Variables Templates
	Copy Variables
	Reset Variables
	Set Variable
	Set Custom Metrics

	Language Templates
	Detect Language
	Translate Input
	Translate Output
	Match Entity

	Security Templates
	OAuth Account Link
	OAuth 2.0 Account Link
	OAuth 2.0 Client
	Reset OAuth 2.0 tokens

	Flow Control Templates
	Switch
	Invoke Flow
	Invoke Skill
	End Flow

	Service Integration Templates
	Agent Communication Template
	Agent Initiation
	Transition Actions for Agent Initiation
	Resource Bundle Entries for Agent Initiation

	Agent Conversation
	Transition Actions for Agent Conversation
	Resource Bundle Entries for Agent Conversation

	Agent Transfer
	Transition Actions for Agent Transfer
	Resource Bundle Entries for Agent Transfer

	Agent Transfer Condition
	Transition Actions for Agent Transfer Condition
	Resource Bundle Entries for Agent Transfer Condition

	Call REST Service
	Knowledge Search
	Transition Actions for Knowledge Search
	Resource Bundle Entries for Knowledge Search

	Incident Creation
	Intelligent Advisor
	Intelligent Advisor Properties
	Resource Bundle Entries for Intelligent Advisor

	Webview Component
	Transition Actions for the Webview Component
	Resource Bundle Entries for the Webview Component

	Notify User
	Publish Event

	Component Changes in the Visual Flow Designer
	Message Handling for User Message Components
	Handling Free Text
	Handling Multimedia Messages
	Handling Location Messages
	Postback Actions
	How Out-of-Order Actions Are Detected
	Override Out-of-Order Message Handling with a Message Handling State

	The Metadata Property in Common Response Components
	Keyword Metadata Properties
	Extract Keywords from Messages

	The visible Property
	The Action Metadata Properties
	The payload Properties
	How Do Non-Postback Actions Render on Text-Only Channels?
	The Text Response Item
	The Card Response Item
	How Do Cards Render on Text-Only Channels?
	Optimize Cards on Text-Only Channels with Keywords

	The Attachment Response Item
	Field
	ReadOnly Field
	TextField
	LinkField
	MediaField
	ActionField

	Form
	FormRow
	Column

	The editForm Response Item
	The textInput Field
	The datePicker Field
	The timePicker Field
	The numberInput Field
	The singleSelect Field
	The multiSelect Field
	The toggle field
	Text Field
	Link
	EditFormMessagePayload
	Auto-Submitting a Field

	SubmitFormAction
	FormSubmissionMessagePayload

	Updating the Input Form

	The dataSet Response Item
	DataSet data Properties
	DataSet Data Item Properties

	The system.entityToResolve Variable
	User Message Validation

	Migrate to Visual Dialog Mode
	What Happens When You Migrate to a Visual Flow Designer Skill
	Migration Summary

	27 LLM Integration
	LLM Services
	Create an LLM Service
	Import an LLM Service
	Generative AI Service
	Sample Payloads
	Open AI and Azure Open AI
	Cohere (Command Model)
	Cohere via Oracle Generative AI Service
	Cohere Command - Light
	Llama
	Summarize Payloads

	LLM Transformation Handlers
	Create an LLM Transformation Handler
	LLM Provider Transformation Code Samples
	Azure OpenAI
	Oracle Generative AI Service – Cohere
	Oracle Generative AI - Llama
	Oracle Generative AI - Llama
	Cohere (Command Model) – Direct Access to Cohere

	The Common LLM Interface
	CLMI Request Body Specification
	The Message Object Structure
	Success Response Body Specification
	Candidate Objects
	Error Response Body Specification

	Create the LLM Service
	The Invoke Large Language Model Component
	General Properties
	User Messaging
	Transition Actions for the Invoke Large Language Model Component
	User Ratings for LLM-Generated Content

	Response Validation
	Create LLM Validation and Customization Handlers
	validateRequestPayload Event Properties
	validateResponsePayload Event Properties
	Validation Handler Code Samples
	Custom JSON Validation
	Enhance the User Message for JSON-Formatted Responses

	Custom Entity Validation
	Validation Errors

	Recursive Criticism and Improvement (RCI)
	Automatic RCI
	On Demand RCI

	Advanced Options
	The Prompt Builder
	Prompts: Best Practices
	Handling OOS and OOD Queries
	Scope-Limiting Instructions
	Few-Shot Examples for OOS and OOD Detection
	Model-Specific Considerations for OOS/OOD Prompt Design

	Tokens and Response Size
	Embedded Conversation History in OOS/OOD Prompts

	LLM Interactions in the Skill Tester

	Tutorials: Integrating LLMs

	28 SQL Dialog Skills
	How SQL Dialogs Work
	Supported Queries

	Tutorial: Getting Started with SQL Dialogs
	SQL Dialogs Workflow
	Connect to the Data Service
	Oracle Data Service
	Expressions for OICD Profile Claims

	MySQL Data Service

	Create the SQL Dialog Skill
	Create Query Entities to Model the Data Service
	Train the Skill to Convert Natural Language Utterances into SQL
	Provide Training Data Through Names and Synonyms
	Provide Training Data Through Value Lists
	Provide Training Data Through Regular Expressions
	Provide Training Data Through Utterances

	Provide Query Suggestions for SQL Dialog Users
	Route Utterances to the SQL Dialogs Conversation
	Generate SQL Dialogs Routing Data
	Handcraft SQL Dialogs Routing Data

	Configure Presentation of Entities and Attributes
	Configure Whether to Display Form or Table
	Show One or Two Horizontal Sections in Form
	Set the Title for the Results
	Define an Entity's Default Sort Order
	Define Which Attributes to Include When Not Specified by the Utterance
	Define Which Attributes to Always Include in the Results
	Configure the Results Page Size
	Add Buttons and Links to Results
	Add a Custom Attribute
	Dynamically Configure Presentation Using Event Handlers

	Define Query Rules
	Enable Natural Language Queries for Denormalized Columns
	Test and Repair
	Troubleshooting SQL Queries
	General Limitations in SQL Dialogs
	Troubleshooting Basic Query Issues
	Troubleshooting Date and Time Issues
	Troubleshooting Attribute Selection Issues
	Troubleshooting Group By Issues
	Troubleshooting Entity Issues
	Troubleshooting Other Issues

	Monitor and Improve
	Monitor Using Insights
	Monitor with Query Entity Batch Testing

	OMRQL Reference
	Link Attributes
	Order by *

	29 Languages and Skills
	Language Use Cases for Skills
	Ability to Train in Multiple Languages
	Avoid Using a 3rd-Party Translation Service
	Create a Skill in a Language Not Supported Natively
	Create a Multi-Language Skill that Targets Languages That Are Not Supported Natively
	Create a Multi-Language Skill Without Resource Bundles for Each Language

	Language Mode
	Native Language Support for Skills
	How Native Language Support Works
	Natively-Supported Languages
	Create a Skill with Natively-Supported Languages
	Add Natively-Supported Languages to a Skill
	Switch from a Translation Service to Native Language Support
	Training Corpus for an Additional Language
	Language Detection in Skills with Natively-Supported Languages

	Translation Services in Skills
	Translation Services Supported
	OCI Language
	Google Translation API
	Microsoft Translator

	Register a Translation Service in Oracle Digital Assistant
	Add a Translation Service to Your Skill
	Approaches Based on Translation Services
	Non-English Single-Language Skill Using a Translation Service
	Multi-Language Skills with Auto-Translation
	Translation for Skills in Visual Dialog Mode
	Translation for Skills in YAML Dialog Mode
	Examples: autotranslate Context Variable
	Examples: translate Property
	Opt-In Translation
	Example: Multi-Language Skill with Auto-Translation (Opt-In)
	Opt-Out Translation
	Example: Multi-Language Skill with Auto-Translation for Input (Opt-Out)

	Manipulate Input Before Translation
	Predominant Language

	Resource Bundles for Skills
	Types of Resource Bundle Keys
	Create Resource Bundle Keys
	Add a Language to a Resource Bundle Key
	Translate Conversation Name
	Translate Answers for Answer Intents
	Reference Resource Bundles in the Dialog Flow
	Message Formats
	Simple Messages
	Example: Simple Message
	Messages with Parameters
	Example: Message with Named Parameters
	Example: Message with Numbered Parameters
	Complex Messages
	Messages that Handle Both Singular and Plural
	Other Complex Messages
	Referencing Complex Messages
	Maps for Complex Resource Bundle Values

	Example: Message that Handles Both Singular and Plural Variants
	Example: Message with Nested Parameters

	Resource Bundles and Auto-Translation of Skills
	Conditional Auto-Translation

	Resource Bundle Entry Resolution
	Export and Import Resource Bundles

	Internationalize and Localize Custom Component Responses
	Reference Resource Bundles from the Custom Component
	Use a System Component to Reference a Resource Bundle
	Send Responses Directly to the Translation Service
	Use a System Component to Pass the Message to the Translation Service
	Detect the User Language in a Custom Component

	Resource Bundle Entries for Skill Configuration Settings

	30 The Skill Tester
	Track Conversations
	Test Suites and Test Cases
	Add Test Cases
	Create a Test Case from a Conversation
	Add Input Parameters for User Messages
	Add Variable Placeholders

	Create a Test Case from a JSON Object
	Run Test Cases
	View Test Run Results
	Review Failed Test Cases
	Fix Failed Test Cases

	Import and Export Test Cases

	Test Individual Flows and Application Events

	31 Q&A
	Adding Q&A to a Skill
	Create the Data Source File
	The Data Source Guidelines
	Q&A Modules and Data Sources Management
	Add More Data Sources
	Edit the Q&A Data Source Configuration Parameters
	Add Questions and Answers One-by-One
	Edit Questions and Answers One-by-One
	Export the Q&A Data Set

	Improved Accuracy with Abbreviations and Ignored Words
	Add Ignored Words, Synonyms, and Abbreviations

	Q&A Testing
	Test a Q&A Match
	Create the CSV File for Batch Testing
	Batch Test the Q&A Module

	How Do I Configure the Dialog Flow for Q&A?
	Creating a Skill with Intent and Q&A Flows
	Q&A Dialog Examples
	Q&A Routing for the System.Intent Component
	Foreign and Multi-Language Support for Q&A
	Reusable Q&A Skills

	Configure the Intent and Q&A Routing

	32 Components
	Built-In Components
	Custom Components
	Other Properties Available to Custom Components

	33 Backend Integration
	Access Backends Using the REST Service Component
	Add a REST Service for an Endpoint
	Use the Call REST Service Component

	Access Backends Using Custom Components
	Implement Custom Components
	Step 1: Install the Software for Building Custom Components
	Step 2: Create the Custom Component Package
	Step 3: Create and Build a Custom Component
	Create the Component File
	Add Code to the metadata and invoke Functions
	Control the Flow with keepTurn and transition
	Access the Backend
	Use the SDK to Access Request and Response Payloads
	Custom Components for Multi-Language Skills
	Ensure the Component Works in Digital Assistants

	Run the Component Service in a Development Environment

	Deploy the Component Package to a Service
	Deploy to a Node.js Server
	Deploy to Oracle Cloud Infrastructure Functions
	Get Artifact Names and Permissions for Oracle Cloud Infrastructure Functions Deployment
	Set Up Your User Account for Oracle Functions
	Set Up Your Local Machine for Oracle Functions
	Modify the Custom Component Package for Oracle Functions
	Deploy the Custom Components to Oracle Cloud Infrastructure Functions

	Deploy to Mobile Hub

	Add Component Package to a Skill
	Add Embedded Component Service
	Prepare the Package for an Embedded Container Service
	Upload Package to Create an Embedded Component Service

	Add Oracle Function Service
	Add External Component Service
	Add Mobile Hub Component Service

	Set the Read Timeout for Custom Components
	Export and Import a REST Service Endpoint

	34 Backend Authentication
	Built-In Security Components
	Identity Provider Registration
	Register an Application with IDCS or OAM
	Register an Application with Microsoft Identity Platform
	Register an Application with Google OAuth2 Authorization

	Authentication Services
	Add an Authorization Code Service
	Add a Client Credentials Service

	User Identity in Digital Assistant
	Configuring Unified User Identity
	Enable Channel Account Linking
	End User Privacy: User Consent Options
	Customize the User Consent Prompts and Messages
	Retention of Unified User Data

	35 Webviews
	How Do I Integrate a Webview into a Skill?
	Digital Assistant-Hosted Webviews
	Enable the SPA to Access the Input Parameters and Callback URL
	Defining Placeholders in the index.html File
	Add a Single Placeholder in the <head> Element
	Add Multiple Placehoders in the <head> Element
	Wire the Callback URL to a Done Button in the Web App

	Externally Hosted Webviews
	Create a Webview Service
	Create a Digital Assistant-Hosted Webview Service
	Package Oracle Visual Builder Applications
	Package the Oracle Visual Builder App Locally
	Package the App Using Oracle Developer Cloud Service
	Create an Externally-Hosted Webview Service

	Reference the Returned Data in the Dialog Flow
	Scenario: Integrating a Web App With a Skill
	Configure the index.html File
	Configure the Dialog Flow to Pass Values to the Web App

	36 Skill Quality Reports
	Skill Quality Overview Report
	How to Use the Overview Report

	The Skill Quality Anomalies Report
	How to Use the Anomalies Report

	37 Insights
	Chat Session Insights
	Conversation Insights for Skills
	Report Types
	Review the Summary Metrics and Graphs
	Common Metrics
	Voice Metrics
	Incomplete Conversation Breakdown
	User Metrics
	Enable New User Tracking
	Review Conversation Trends Insights
	View Intent Usage
	Review Intents and Retrain Using Key Phrase Clouds
	Review Key Phrases
	Retrain from the Word Cloud
	Review Native Language Phrases
	Review Language Usage
	Review User Feedback and Ratings
	How to Add the Feedback Component to the Dialog Flow
	Using Custom Metrics to Measure Feedback

	Review Custom Metrics
	Instrument the Skill for Custom Metrics
	Creating Dimensions for Variable Values
	Creating Dimensions that Track Skill Usage
	Export Custom Metrics Data

	Review Intents Insights
	Completed Paths
	Incomplete Paths
	unresolvedIntent

	Review Path Insights
	Query the Paths Report
	Scenario: Querying the Pathing Report

	Review the Skill Conversation Insights
	View Conversation Transcripts
	View Voice Metrics
	How the Insights Reports Handle return Transitions
	How the Insights Reports Handle Empty Transitions

	PII Anonymization
	Enable PII Anonymization
	PII Anonymization in the Export File

	Model the Dialog Flow
	Mark the End of a Conversation
	Streamline the Data Collected by Insights
	Use Cases for Insights Markers
	Use Case 1: You Want to Separate Conversations by Intents or Transitions
	Use Case 2: You Want to Exclude Supporting States from the Insights Pathing Reports
	Tutorial: Optimize Insights Reports with Conversation Markers

	Apply the Retrainer
	Update Intents with the Retrainer
	Moderated Self-Learning
	Support for Translation Services
	Create Data Manufacturing Jobs
	Create a Test Suite

	Review Language Usage
	Export Insights Data
	Create an Export Task
	Review the Export Logs
	Filter the Exported Insights Data
	The Export Log Fields
	Internal States

	Tutorial: Use Oracle Digital Assistant Insights

	Live Agent Insights for Skills
	Review the Deflection Rate
	Live Agent Conversation Metrics for Skills
	Live Agent Conversation Metrics
	Live Agent Handle/Wait Times

	38 External Events
	Workflow for Implementing an Application Event
	Define an Event Type
	Example: Cloud Event Type Schema

	Configure a Skill to Consume an Event
	Create a User Notification for the Event
	Determine the Event Receipient from the Flow
	Create a Handler for the External Event
	Add the Skill to a Digital Assistant

	Create a Channel for the External App
	Generate an Event from an External App
	Structured Form for Sending Events
	Form for Sending Events in Node.js
	Event Payload Attributes
	Event Context Attributes
	Example: Event Payload
	Example: Payload with IDCS User ID
	Example: Payload with User ID and Channel Name

	Publish an Event from a Skill

	39 Application-Initiated Conversations
	Use Case: An Expense Reporting App
	How Application-Initiated Conversations Work
	Tutorial: Application-Initiated Conversations
	Implementing Application-Initiated Conversations
	Configure the Skill
	Configure a User-Authenticated Skill
	Create a User Channel for the Messaging Platform
	Create a Channel for the External App
	Configure the Digital Assistant
	Configure the External App

	Testing Application-Initiated Conversations from Preview
	Get the System Channel Name and Preview User ID
	Send a Notification to the Skill Preview

	40 Data Manufacturing
	What is a Data Manufacturing Job?
	Annotation Jobs
	Validation Jobs
	Paraphrasing Jobs

	The Data Manufacturing Job Workflow
	Create the Job
	Monitor the Progress of the Crowd Workers
	Review the Results

	Paraphrasing Jobs
	Create the Paraphrasing Job
	Tips for Paraphrasing Jobs
	Review the Paraphrasing Job

	Annotation Jobs
	Create the Intent Annotation Job
	Review the Annotation Job
	Create the Entity Annotation Job

	Validation Jobs
	Create an Intent Paraphrasing Validation Job
	Review a Validation Job
	Create an Entity Annotation Validation Job

	Create Test Suites

	Part V Channels
	41 Channel Basics
	What Are Channels?
	Channel Types
	User Channel Routing
	Route (or Reroute) a Channel
	How Digital Assistant User Channel Routing Works
	Test Rendering for a Channel
	Zero-Downtime Channel Updates

	Rich Text Formatting in Channels
	Session Expiration
	Change the Session Expiration Prompt

	Reset User Channel Sessions
	Enable or Disable Channels
	Channel-Specific Extensions
	Comparison of Channel Capabilities
	Comparison of Channel Message Constraints
	Text Message Constraints
	Horizontal Card Messages
	Vertical Card Messages
	Attachment Messages
	Action Buttons

	42 Voice
	Enable Voice for the Oracle Android Channel
	Enable Voice for the Oracle Web Channel
	Enable Voice on the Oracle iOS Channel
	Improve ASR with Enhanced Speech

	43 Facebook Messenger
	Step 1: Set Up Facebook Messenger
	Step 2: Create the Channel in Digital Assistant
	Step 3: Configure the Facebook Messenger Webhook
	Step 4: Enable the Facebook Channel
	Step 5: Test Your Bot on Facebook Messenger
	Persistent Menu
	Create a Persistent Menu Item
	Persistent Menu Items for a Digital Assistant
	Persistent Menu Items for a Standalone Skill

	Supported Capabilities
	Message Constraints
	Facebook Messenger Channel Extensions

	44 Slack
	Step 1: Get a Slack Workspace
	Step 2: Create a Slack App
	Step 3: Add OAuth Scopes for the Slack App
	Step 4: Add the App to the Workspace
	Step 5: Create a Channel in Digital Assistant
	Step 6: Configure the Webhook URL in the Slack App
	Step 7: Test Your Bot in Slack
	"New" vs. "Classic" Slack Apps
	Supported Capabilities
	Message Constraints
	Slack Channel Extensions
	Slack Modals
	Slack Dialog Window

	45 Microsoft Teams
	Step 1: Create a Bot
	Step 2: Create a Channel in Digital Assistant
	Step 3: Configure the Webhook URL for Microsoft Teams
	Step 4: Enable Apps in Your Office 365 Tenant
	Step 5: Test in Microsoft Teams
	SSO Configuration for Microsoft Teams Channels
	Create an Azure AD Application
	Update the Bot Registration with the SSO Details
	Register the Azure AD App as an Authentication Service in Digital Assistant
	Reference the Authentication Service from Your Skills

	Supported Capabilities
	Message Constraints
	Adaptive Cards in Microsoft Teams
	Example: Adaptive Card in Cards Response Item
	Example: Adaptive Card in Text Response Item
	Submit Actions
	Echo Text of Selected Button in Adaptive Card
	Disable Buttons and Fields in Adaptive Cards
	Tips for Creating Adaptive Cards Definitions

	Disable the Welcome Message for a Digital Assistant
	Enable the Welcome Message for a Skill

	46 Cortana
	Step 1: Create a Bot Channels Registration in Azure
	Step 2: Create a Channel in Digital Assistant
	Step 3: Configure the Webhook URL and Deploy to Cortana
	Step 4: Test Your Bot in Cortana
	Supported Capabilities
	Message Constraints
	Cortana Channel Extensions

	47 Text-Only Channels
	Twilio/SMS
	Step 1: Get an SMS-Enabled Twilo Number
	Step 2: Link Your Bot to the Twilio Number
	Testing Tips
	Supported Capabilities
	Message Constraints
	Twilio Channel Extensions

	48 Oracle Web
	Basic Setup
	What Do You Need?
	Configure the Oracle Web Channel
	Tutorial: Secure Your Oracle Web SDK Chat
	Install the SDK
	Import the Library Using the Asynchronous Module Definition API
	Import the Library Dynamically with JavaScript

	Configure Client Authentication
	The JWT Token

	Customize the Chat Widget
	Network Configuration
	Feature Flags
	Functionality
	Read More and Read Less Buttons for Multi-Paragraph Skill Responses
	Layout
	Custom Header Button Icons
	Custom Colors
	Custom Icons
	Custom Strings
	Configure Share Menu Options
	Custom Share Menu Items
	Customize CSS Classes
	Customize the Timestamp
	Format the Date-Time with Pattern Strings
	Format the Timestamp with Intl.DateTimeFormat Objects
	Customize the Feedback Message Rating Gauge
	Send the Initial Message when the Conversation History is Empty
	Speech Synthesis Service Injection
	Text-to-Speech
	Speech Synthesis Service Interface

	Features
	Absolute and Relative Timestamps
	How Relative Timestamps Behave
	Add a Relative Timestamp

	Autocomplete
	Auto-Submitting a Field
	Replacing a Previous Input Form

	Automatic RTL Layout
	Avatars
	Cross-Tab Conversation Synchronization
	Custom Message Rendering
	Default Client Responses
	Delegation
	beforeDisplay
	beforeSend
	beforePostbackSend
	beforeEndConversation
	render

	Draggable Launch Button
	Dynamic Typing Indicator
	Control Embedded Link Behavior
	Embedded Mode
	End the Conversation Session
	Focus on the First Action in a Message
	Keyboard Shortcuts and Hotkeys
	Headless SDK
	Multi-Lingual Chat
	Enable the Language Menu
	Disable Language Menu
	Language Detection
	Multi-Lingual Chat Quick Reference

	In-Widget Webview
	Configure the Linking Behavior to the Webview
	Open Links from Within the Webview
	Customize the WebView

	Long Polling
	Typing Indicator for User-Agent Conversations
	Voice Recognition
	Voice Visualizer

	Message Model
	Action
	PostbackAction
	CallAction
	urlAction
	ShareAction
	LocationAction
	PopupAction
	SubmitFormAction

	Attachment
	Card
	Location
	PaginationInfo
	FormRow
	Column
	Form
	Row
	Heading
	Field
	selectFieldOption
	Read Only Field
	Text Field
	Link Field
	Media Field
	Action Field

	Editable Field
	Single-Select
	Multi-Select
	DatePicker
	TimePicker
	Toggle
	TextInput
	NumberInput

	EventContextProperties
	Conversation Message
	Message

	User Message
	User Text Message
	User Postback Message
	User inboundEvent Message
	User Form Submission Message
	User Attachment Message
	User Location Message

	Skill Message
	Bot Text Message
	Skill Location Message
	Skill Attachment Message
	Passing File Names
	Feedback Messages
	Skill Card Message
	Card
	Skill Postback Message
	Skill Form Message
	Skill Table Message
	Skill Table-Form Message
	Skill Outbound Event Message
	Skill Edit Form Message
	Skill Raw Message

	Embed Chat in Visual Builder Apps
	Tutorial: Access a Skill from Your Website
	Oracle Web Channel Extensions

	49 Oracle iOS
	What Do You Need?
	Create the Oracle iOS Channel
	Configure the Oracle iOS Channel

	Add the SDK to the Project
	Initialize the SDK in Your App
	App Development Settings
	Initialize the Feature Flag Settings
	Network Configuration
	Feature Flags
	Strings
	UI Properties and Colors
	Icons

	Features
	Absolute and Relative Timestamps
	Configure Relative Timestamps

	Actions Layout
	Agent Avatars
	Dynamically Update Avatars and Agent Details
	Set the User Avatar
	Set the Agent Details
	setAgentDetails(agentDetails: AgentDetails)
	getAgentDetails()

	Attachment Filtering
	public func shareMenuItems(shareMenuItems: ([ShareMenuItem], [ShareMenuCustomItem]))
	public func shareMenuItems() -> ([ShareMenuItem], [ShareMenuCustomItem])

	Auto-Submitting a Field
	Connect, Disconnect, and Destroy Methods
	public func destroy()
	public func disconnect()
	public func connect()
	public func connect(botsConfiguration: BotsConfiguration)

	Default Client Responses
	Delegation
	public func beforeDisplay(message: [String: Any]?) -> [String: Any]?
	public func beforeSend(message: [String: Any]?) -> [String: Any]?
	public func beforeSendPostback(action: [String: Any]?) -> [String: Any]?

	End the Chat Session
	Headless SDK
	public func send(message: UserMessage)
	BotsEventListener

	In-Widget Webview
	Configure the In-Widget Webview

	Message Timestamp Formatting
	Multi-Lingual Chat
	Enable the Language Menu
	Disable Language Menu
	Language Detection
	Multi-Lingual Chat Quick Reference

	Replacing a Previous Input Form
	Share Menu Options
	public func shareMenuItems(shareMenuItems: ([ShareMenuItem], [ShareMenuCustomItem]))
	public func shareMenuItems() -> ([ShareMenuItem], [ShareMenuCustomItem])

	Speech Recognition
	public func startRecording()
	public func stopRecording()
	public func isRecording() -> Bool

	Speech Synthesis
	public func speak(text: String)
	public func stopSpeech()

	Speech Service Injection
	The TTSService Protocol

	Typing Indicator for User-Agent Conversations
	Voice Visualizer

	Message Model
	Attachment
	Location
	Action
	PostbackAction
	CallAction
	urlAction
	SubmitFormAction
	LocationAction

	Card
	Heading
	Field
	selectFieldOption
	Read Only Field
	Text Field
	Link Field
	Media Field
	Action Field

	Editable Field
	Single-Select
	Multi-Select
	DatePicker
	TimePicker
	Toggle
	TextInput
	NumberInput

	Row
	Form
	PaginationInfo
	Conversation Message
	User Message
	User Text Message
	User Postback Message
	User Attachment Message
	User Location Message
	User Form Submission Message

	Skill Message
	Skill Raw Message
	Skill Text Message
	Skill Attachment Message
	Skill Card Message
	Skill Table Message
	Skill Form Message
	Skill Table-Form Message
	Skill Edit Form Message

	Oracle iOS Channel Extensions

	50 Oracle Android
	What Do You Need?
	Create the Oracle Android Channel
	Configure the Oracle Android Channel

	Add the Oracle Android Client SDK to the Project
	Initialize the Oracle Android Client SDK in Your App
	App Development Settings
	Network Configuration
	Feature Flags
	Custom Colors
	Custom Text
	Localization

	Custom Icons
	Set Feature Flags
	Initialize the SDK
	public static void init(Application application, BotsConfiguration botsConfiguration)
	public static void init(Application application, BotsConfiguration botsConfiguration, BotsCallback botsCallback)
	public static void init(Application application, String chatServerUrl, String channelId, String userId, BotsCallback botsCallback)
	public static void init(Application application, String chatServerUrl, AuthenticationTokenProvider authTokenProvider, BotsCallback botsCallback)
	Interface AuthenticationTokenProvider
	Interface BotsCallback
	Show Conversation Activity
	Customize Notifications

	Features
	Absolute and Relative Timestamps
	Configure Relative Timestamps

	Action Buttons Layout
	Attachment Filtering
	public static void shareMenuItems(ArrayList<Object> shareMenuItems)
	public static void shareMenuItems()

	Auto-Submitting a Field
	Replacing a Previous Input Form

	Connect and Disconnect Methods
	Default Client Responses
	Delegation
	public Message beforeDisplay(Message message)
	public Message beforeDisplay(Message message)
	public Message beforeNotification(Message message)

	Display the Conversation History
	End the Chat Session
	public static void endChat()
	CompletionHandler

	Foreground Service
	Headless SDK
	public static void sendMessage(String text)
	EventListener
	public static void setEventListener(EventListener eventListener)

	In-Widget Webview
	Configure the In-Widget Webview

	Multi-Lingual Chat
	Enable the Language Menu
	Disable Language Menu
	Language Detection
	Multi-Lingual Chat Quick Reference

	Share Menu Options
	public static void shareMenuItems()
	public static void shareMenuItems(ArrayList<Object> shareMenuItems)

	Speech Recognition
	public static void startRecording(IBotsSpeechListener listener)
	public static void stopRecording()
	public static boolean isRecording()
	IBotsSpeechListener
	void onError(String error)
	void onSuccess(String utterance)
	void onSuccess(BotsSpeechResult botsSpeechResult)
	void onPartialResult(String utterance)
	void onClose(int code, String message)
	void onOpen()
	onActiveSpeechUpdate(byte[] speechData)

	Speech Synthesis
	public static void initSpeechSynthesisService()
	public static void startBotAudioResponse(String text)
	public static void stopBotAudioResponse()
	public static boolean isSpeaking()
	public static void shutdownBotAudioResponse()

	Speech Service Injection
	The SpeechSynthesisService Interface

	Typing Indicator for User-Agent Conversations
	Update the User Avatar
	public void updatePersonAvatar

	Expose Agent Details
	public AgentDetails getAgentDetails()
	public void setAgentDetails(AgentDetails)
	public AgentDetails getAgentDetails()

	Voice Visualizer

	Message Model
	Action
	PostbackAction
	CallAction
	urlAction
	SubmitFormAction
	LocationAction

	Attachment
	Card
	Location
	Heading
	Field
	selectFieldOption
	Read Only Field
	Text Field
	Link Field
	Media Field
	Action Field

	Editable Field
	Single-Select
	Multi-Select
	DatePicker
	TimePicker
	Toggle
	TextInput
	NumberInput

	Row
	Form
	PaginationInfo
	Conversation Message
	Message

	User Message
	User Text Message
	User Postback Message
	User Attachment Message
	User Form Submission Message
	User Location Message

	Skill Message
	Skill Text Message
	Location Message
	Skill Attachment Message
	Skill Card Message
	Skill Table Message
	Skill Form Message
	Skill Table-Form Message
	Skill Edit Form Message
	Skill Raw Message

	Oracle Android Channel Extensions

	51 Apple Messages for Business
	Step 1: Set Up an Apple Messages for Business Account
	Step 2: Create a Channel in Digital Assistant
	General Capabilities Supported
	Supported Apple Messages for Business Features
	Rich Link
	Example: Rich Link Image
	Example: Rich Link Video

	Quick Reply
	Example: Quick Reply

	List Picker
	Example: Single-Select List Picker Using Cards
	Examples: Single-Select ListPicker Using editForm
	ListPicker (Multi-Select)

	Time Picker
	Example: Time Picker

	Apple Form
	Example: Apple Form

	Authentication
	iMessage App
	Example: iMessage App Payload

	ChannelCustomProperties for Apple Messages for Business

	52 Zoom App
	Step 1: Install Zoom's Digital Assistant App
	Step 2: Create a Channel in Digital Assistant
	Step 3: Create a Connection to the Channel from the App in Zoom
	Open the Connection to Your Digital Assistant
	Uninstall the Digital Assistant for Zoom App
	Zoom App Channel Limitations
	Zoom App Channel Attributes Available to Skill
	Troubleshooting

	53 Webhooks
	Inbound Messages
	Example Payloads: Inbound Messages

	Outbound Messages

	Part VI Extension of Digital Assistants and Skills
	54 Extending Digital Assistants and Skills
	What is Extension and What's it For?
	Cloning vs. Extending
	What Happens When You Extend a Skill or a Digital Assistant
	Important Note for Developers of Base Bots
	Skills
	Extend a Skill
	What You Can Add and Customize in an Extended Skill
	Modifications Which Aren't Preserved When Rebasing
	Disable Intents

	Digital Assistants
	Extend a Digital Assistant
	What You Can Add and Customize in an Extended Digital Assistant
	Disable Skills
	Update a Skill in an Extended Digital Assistant
	Extend a Skill in an Extended Digital Assistant

	Make, Review, and Revert Customizations
	Testing Customizations
	Rebasing
	How Rebasing Works
	Rebase a Skill Extension
	Rebase a Digital Assistant Extension
	How Do I Respond to a Failed Rebase?

	Branching an Extension
	Post-Deployment Lifecycle of an Extended Skill

	Part VII Service Integration
	55 Intelligent Advisor
	How the Intelligent Advisor Framework Works
	Add an Intelligent Advisor Service
	Create and Test Skills From Intelligent Advisor Service Page
	List Available Deployments
	Creating a Conversational Interview
	What Makes an Interview Conversational
	How Artifacts Display in a Conversation
	Tips for Conversational Design of Interviews
	Designing Interviews for Text-Only Channels

	Use the Intelligent Advisor Component in Your Skill
	Pass Attribute Values and Connection Parameters
	Access Interview Attributes

	56 Knowledge Search
	Add a Knowledge Search Service
	Test Knowledge Foundation Search Terms
	Use the System.KnowledgeSearch Component
	Associate Related Questions with a Search Term
	Employ User Utterance as Search Term
	Find Only the Results That Contain Every Word in the Knowledge Foundation Search Term
	Filter Results by Product and Category
	Tailor Knowledge Foundation Response for Chat Conversation
	Remove the View Details Button and Display All the Text
	Implement Multi-Lingual Knowledge Search

	Knowledge Foundation Sample Skill
	How the System.KnowledgeSearch Component Displays in Oracle B2C Service Chat

	57 Live Help Approaches
	DA as an Agent
	Live Agent Transfer

	58 DA as an Agent
	Supported Chat Services for DA as Agent
	The Digital Assistant as Agent Framework in Action
	How the Digital Assistant as Agent Framework Works
	DA-as-Agent Template
	Basic Steps for Creating a Digital-Assistant Agent
	Task 1: Build a DA-as-Agent Digital Assistant
	Build the Skill
	Create and Configure the Skill
	Add Intents and Entities
	Access Contact and Chat Launch Page Information
	Enable Transfer to a Human Agent
	Pass Information to the Service
	Configure When to Attempt Agent Transfer
	Get Agent Availability and Wait Time
	Create an Incident Report
	How the UI Components Display in the Service Chat
	Train the Skill

	Configure the DA-as-Agent Digital Assistant

	Task 2: Configure the Service
	Configure Oracle B2C Service
	Configure a Queue, Profile, and Agent for the Digital-Assistant Agent
	Create a Digital-Assistant Queue
	Create a Digital-Assistant Profile
	Assign the Digital-Assistant Agent to the Digital-Assistant Profile
	Add Chat Rules
	Pass the Initial Utterance to the Digital Assistant

	Configure Oracle Fusion Service

	Task 3: Sign Your Digital Assistant into the Service
	Change DA as Agent Channel Configuration

	59 Insights for Oracle B2C Service Chat and Oracle Fusion Service Chat
	60 Live Agent Transfer
	The Live-Agent-Transfer Framework in Action
	How the Live-Agent-Transfer Framework Works
	Integrate a Skill with a Live Agent
	Create an Agent Integration Channel
	Enable Conversation History Transfer
	Configure the Agent Transfer Dialog Flow
	Enable Agents to Specify the Transition Action
	Override Queue Position and Wait Time Message
	Handle Agent Initiation Rejection and System Errors

	Configure When to Attempt Agent Transfer
	Enable Agents to Specify the Transition Action
	Tutorial: Live Agent Transfer
	Pass Customer Information to a Live Chat
	The incidentID Property
	The Standard customerInformation Object
	The Legacy customerInformation Object
	The Standard customFields Object
	The Legacy customFields Object
	Configure the Fields in the Dialog Flow
	Step 1: Declare the Custom Properties Variable
	Step 2: Set the Values for the customProperties Map Variable
	Step 3: Define the Fields for the customProperties Map Variable
	Step 4: Add the customProperties to the System.AgentInitiation Component

	Tutorial: Pass Customer Information to a Live Chat
	Enable Attachments
	Create an Incident Report
	Get Survey Information
	Transfer the Chat to a Specific Oracle B2C Service Queue
	Tutorial: Transfer to a Live Chat Queue

	Part VIII Analytics
	61 Analytics
	Metrics
	Skill- and Digital Assistant-Level Reports
	Skill Performance
	Compare Metrics Across Different Versions of Skills

	Part IX Data Management
	62 Data Management
	Monitor Insights Data Storage Capacity
	View Storage Indicators
	View Storage Capacity

	Manage Data Capacity with Archive and Purge Tasks
	Free Capacity Manually with Archive and Purge Tasks
	Schedule Automated Archive and Purge Tasks
	The Auto Purge Preferences

	Manage, Track, and Monitor Archive Tasks

	Part X Reference
	A The Dialog Flow Definition
	The Dialog Flow Structure in YAML Mode
	The context Node
	The defaultTransitions Node
	The states Node

	How Do I Write Dialog Flows in OBotML?
	Dialog Flow Syntax
	Flow Navigation and Transitions
	next Transition
	Configure the Dialog Flow for Unexpected Actions
	Call a Skill from Another Skill from a YAML Dialog Flow
	Example: Call a Skill from Another Skill

	User-Scoped Variables in YAML Dialog Flows
	Built-In YAML Components for Setting User Values

	Auto-Numbering for Text-Only Channels in YAML Dialog Flows
	Set Auto-Numbering for YAML Dialog Flows
	Render Content for Text-Only Channels in YAML Dialog Flows

	B Built-In Components: Properties, Transitions, and Usage
	Control Components
	System.ConditionEquals
	How Do I Use Apache FreeMarker Expressions with the System.ConditionEquals Component?

	System.ConditionExists
	System.Switch
	How Do I Use Apache FreeMarker Expressions with the System.Switch Component?

	Language
	System.Intent
	Q&A Properties for the System.Intent Component

	System.MatchEntity
	System.DetectLanguage
	The profile.locale and profile.languageTag Variables

	System.TranslateInput
	Direct Input Translation
	The source Variable
	The sourceVariable Property

	System.TranslateOutput
	System.Qna
	Increase the Precision of the Returned Q&A Using minimumMatch
	keepTurn key-value Maps and Transition Actions
	Q&A Transitions

	Security
	System.OAuth2Client
	System.OAuth2AccountLink
	Store IDCS User Profile for the Duration of the Session
	Handle Multiple Authentication Services

	System.OAuth2ResetTokens
	System.OAuthAccountLink
	The authorizeURL Property

	User Interface Components
	System.CommonResponse
	The Component Properties
	Transitions for the System.CommonResponse Component
	Composite Bag Transitions in the System.CommonResponse Component

	System.Webview
	System.WebView Component Properties
	Transitions for the System.Webview Component

	System.IncidentCreation
	System.IntelligentAdvisor
	System.KnowledgeSearch
	System.KnowledgeSearch Transitions

	System.AgentTransfer
	System.AgentTransferCondition
	Live-Agent-Transfer Components
	System.AgentInitiation
	System.AgentInitiation Transitions
	System.AgentConversation
	System.AgentConversation Transitions

	System.ResolveEntities
	Calendar Components
	Calendar Authorization
	Working with Calendar Dates and Times
	Handling Calendar Errors
	System.CreateCalendarEvent
	System.DeleteCalendarEvent
	System.GetCalendarEventDetails
	System.ListCalendarEvents
	System.SelectCalendarEvent
	System.SendInviteResponse
	System.UpdateCalendarEvent

	Footers
	The translate Property
	System.Feedback
	System.Feedback Component Properties
	System.Feedback Component Transitions

	System.Text
	How Do I Use the System.Text Component?

	System.List
	Value Lists
	The options Property
	Action Lists

	System.Output
	How Do I Use the System.Output Component
	Defining Value Expressions for the System.Output Component
	Translating the Output Text

	Variable Components
	System.SetVariable
	System.ResetVariables
	System.CopyVariables
	System.SetCustomMetrics

	C Conversation Markers for Insights
	D Apache FreeMarker Reference
	Built-In String FreeMarker Operations
	Example: Improving the Confidence Level with Casing
	Example: Transforming Case with the System.Switch Component
	Example: Concatenating FTL Expressions

	Built-In FreeMarker Number Operations
	Built-In FreeMarker Array Operations
	Returning Intents and Scores
	Example: Iterating Arrays

	Built-In FreeMarker Date Operations
	Example: Extracting Dates from User Input
	Example: Setting a Default Date (When No Date Value Is Set)

	FreeMarker-Accessible System Variables

	E Feature Support by Language
	General Feature Support by Language
	Entities Support by Language
	Basic and Full Entity Support

