
Oracle® Cloud
Using the Oracle Mapper with Oracle
Integration Generation 2

E85415-27
June 2023

Oracle Cloud Using the Oracle Mapper with Oracle Integration Generation 2,

E85415-27

Copyright © 2017, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Diversity and Inclusion v

Related Resources vi

Conventions vi

1 Get Started with the Mapper

About Mappings 1-1

About Mapping Data Between Applications 1-3

View User-Friendly Element Names 1-4

About the Expression Builder 1-10

Access the Mapper 1-12

2 Map Data

Accept Mapping Recommendations with the Recommendations Engine 2-1

Disable and Enable the Oracle Recommendations Engine 2-1

Accept Target Element Mapping Recommendations 2-2

Search Data Fields 2-3

Filter the Source or Target Data Structures 2-4

Edit XSLT Code in the Mapper 2-4

Test Your Mappings 2-10

Delete Mappings and Target Element Nodes 2-12

Troubleshoot Errors 2-13

Repeat a Target Element to Map to Different Sources 2-14

Map Multiple Source Structures to a Target Structure 2-14

Extend a Data Type 2-16

Import a Map File into an Orchestrated Integration 2-16

iii

3 Work with Functions, Operators, and XSLT Statements

Add Functions, Operators, and XSLT Statements 3-1

Get Help to Use Functions 3-4

Automatically Create for-each Statements 3-5

Create Conditional Mappings 3-6

Set Default Values in the Mapper 3-8

Reference Lookups 3-8

Create the lookupValue Function 3-9

Access the Build Lookup Function Wizard 3-10

Select the Lookup Table 3-10

Select the Source and Target Columns 3-11

Specify the Default Value 3-11

Review Your Lookup Table Selections 3-11

Work with Multiple Value Statements 3-12

4 Mapper Use Cases

Convert an Integer to a String 4-1

Use Conditional Mappings 4-2

Use a Counter Inside a For-Each Loop to Track the Number of Loop Iterations 4-6

Create an XSLT Map to Read Multiple Correlated Payloads 4-7

Perform Date Conversions in the Mapper 4-9

Perform Data Manipulations in the Mapper 4-12

Pass Single Quotes in a Mapper Variable 4-15

5 Troubleshoot the Mapper

Current-dateTime Function Does Not Return the Same Number of Digits for All Timestamp
Values 5-1

Import XSLT Code into the Mapper 5-1

Function Not Found Errors During Validation in the Mapper 5-2

format-number Function Error 5-2

Transform an Incoming UTC Timestamp into a Standard Timestamp 5-2

CDATA in XSLT String Functions Causes Problems 5-3

iv

Preface

Using the Oracle Mapper with Oracle Integration Generation 2 describes how to use the
mapper to map source data structures to target data structures.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
Using the Oracle Mapper with Oracle Integration Generation 2 is intended for users who want
to use the mapper to map source data structures to target data structures.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and
partners, we are working to remove insensitive terms from our products and documentation.
We are also mindful of the necessity to maintain compatibility with our customers' existing
technologies and the need to ensure continuity of service as Oracle's offerings and industry
standards evolve. Because of these technical constraints, our effort to remove insensitive
terms is ongoing and will take time and external cooperation.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Resources
See these Oracle resources:

• Oracle Cloud

http://cloud.oracle.com
• Using Integrations in Oracle Integration Generation 2

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://cloud.oracle.com

1
Get Started with the Mapper

Review the following topics for an overview of how to use the mapper to map source data
structures to target data structures.

Topics

• About Mappings

• About Mapping Data Between Applications

• About the Expression Builder

• Access the Mapper

About Mappings
One of the key tasks to any integration is defining how data is transferred, or mapped,
between two applications.

In most cases, the messages you want to transfer between the applications in an integration
have different data structures. A visual mapper enables you to map element nodes between
applications by dragging source element nodes onto target element nodes. When you open
the mapper for a request or response message in an integration, the data structures are
automatically populated with the information pulled from the source and target connections.
You can expand and load data structure levels on demand to display additional levels. There
is no limit on the levels of display.

The maps you create are called transformation maps, and use the eXtensible Stylesheet
Language (XSL) to describe the data mappings, which let you perform complex data
manipulation and transformation. A standard set of XSLT constructs are provided (for
example, xsl:if, xsl:for-each, and others). A specialized function is also provided for you
to reference lookups directly from the mapper.

1-1

Note:

The mapper supports XSL version 2.0. Version 1.0 is not supported.

The mapper supports both qualified and unqualified schemas (that is, schemas without
elementFormDefault=”qualified”). Elements and attributes with and without
namespace prefixes are also supported.

Substitution groups in schemas are supported. You can see all the substitutable
elements in a base element in the mapper, and select the one to use.

Extended data types are also supported.

Elements and attributes for which mapping is required are identified by a blue asterisk
(*) to the left of their names. To display only required fields, click the Filter icon in the
mapper toolbar, select Required Fields, and click Apply.

You can also right-click elements and attributes and select Node Info to show specific
schema details such as the data type, if mapping is required, and so on.

Additional custom annotations can also be displayed. These annotations are currently
only available with the Oracle Sales Cloud Adapter. The Oracle Engagement Cloud
Adapter obtains this information from the applications and annotates it in the
integration WSDL. This information is then read and made visible as annotations in the
mapper (for example, title and description). This information can help you better
understand what data is being mapped.

The mapper toolbar provides the following functionality.

Element Description

Click to return to the mapping canvas when
you are inside the Code, Test, or Recommend
page.

You can view the XSLT code being created as
you design your mappings.

Once you complete designing your mappings,
you can test them by entering sample content
of the message to process in the mapping
tester.

If you enable the recommendations engine,
you can accept the target element
recommendations of the engine when creating
mappings. This eliminates the need to analyze
and perform each individual source-to-target
mapping.

Chapter 1
About Mappings

1-2

Element Description

Click to disable user-friendly, source and target
element names in the mapper. By default,
user-friendly element names are shown.

Click to show the XSLT functions.

You can select the following options:

• Select to show the namespace prefixes on
source and target element nodes.

• Select to show the types (prefixes and
data types) on source and target element
nodes.

You can filter the display of element nodes,
error messages, and warnings in the source or
target data structures.

You can select to undo the previous action
performed in the mapper. For example, if you
perform a mapping, then press this button, the
mapping is removed. The link is disabled when
all actions have been undone.

You can redo the action that was undone.

You can maximize the size of the mapper. This
is useful when working with large schemas.

You can add functions, operators, and XSLT
expressions to your mappings.

About Mapping Data Between Applications
Once you create an integration and have the source and target connections in place, you can
define how data is mapped between the element nodes in the two data structures.

The mapper appears with the element nodes of the source data structure on the left and the
target data structure on the right.

1. To map fields directly, click a source element nodes and drag it to the corresponding field
in the target element node.

Chapter 1
About Mapping Data Between Applications

1-3

A blue line connects the two nodes. An Expression Builder below the mapper is
displayed to show the XPath expression.

2. To use functions, operators, or XSLT statements in your mapping, see Work with
Functions, Operators, and XSLT Statements.

3. When you are done mapping data, click Close, then click Apply to save your
changes when prompted. You can also click Validate to save your changes.

View User-Friendly Element Names
You can view user-friendly display names instead of technical names for source and
target elements in the mapper tree and for expressions in the Expression Builder. This
eliminates the need to try and understand the technical, often cryptic, names that are
difficult to correlate to the user-friendly display names you see in the endpoint
application's user interface. User-friendly names are displayed by default, but you can
also toggle to the technical names.

• Toggle Between User-Friendly Names and Technical Names

• Adapter Names

• Root Elements in Source and Target Trees

• Child Elements in Source and Target Trees

• Search For Data in the Source and Target Trees

• User-Friendly Expression for Mapping

• Expression Builder

• Other Sections of the User Interface

Toggle Between User-Friendly Names and Technical Names

By default, user-friendly names are displayed in the source and target mapper trees
when you open the mapper. Name display is controlled by the

button at the top of the mapper.

Chapter 1
View User-Friendly Element Names

1-4

1. Click

to switch to technical names.
The button changes colors to blue and technical names for the source and target
elements are displayed.

2. Click

to switch back to user-friendly names.

Adapter Names

In user-friendly mode, adapter names are displayed along with the adapter's associated icon
and the type of payload (request/response). For this example, the source REST Adapter and
Oracle Commerce Cloud Adapter and the target REST Adapter are displayed.

1. Click

to switch to technical names. The adapter names are removed.

Chapter 1
View User-Friendly Element Names

1-5

Root Elements in Source and Target Trees

User-friendly names for the root elements of the different payloads enable you to
easily correlate them with the associated invoke/trigger connection, the adapter used,
and the type of payload (request/response). The icon of the root element corresponds
to the associated adapter.

The format of user-friendly names for the root elements differs based on the variable
type or the associated adapter. The following table lists the format of user-friendly
names for the root elements for different variable types.

Adapter/Variable Type Format of User-Friendly
Name

Example

Application Adapter trigger/invoke_action_name
payload_type (request/
response)
(Associated_Adapter_Name)

SendInventoryAdjustments
Request (SOAP)

System Adapter See the Example column. Schedule - Schedule

$self (for technical mode) or
Integration Metadata (for user-
friendly mode)

Tracking Variables If a user-friendly name is
entered for the tracking
variable in the Business
Identifiers For Tracking page,
that becomes the user-friendly
name for the variable in the
mapper.

If the Tracking Name field in
the Business Identifiers For
Tracking page is not populated
for the variable, the system
constructs the user-friendly
name for the tracking variable
in the format of Tracking
Variable 1/2/3.

My Business Identifier

Tracking Variable 1

Tracking Variable 2

Tracking Variable 3

Other Variables For all other variables (that is,
simple variables and the root
element of the complex
variables), the user-friendly
name is automatically
constructed using the name
with which the variable was
created (without the $ prefix).

counter

studentName

Chapter 1
View User-Friendly Element Names

1-6

Child Elements in Source and Target Trees

The user-friendly names for the child elements in the source and target trees are derived
from the associated schema files. If the schema files are generated with user-friendly names
for the elements, the elements get rendered with those names in user-friendly mode in the
mapper.

If the schema files do not contain user-friendly names for the elements defined, the child
elements are displayed with the technical name in both user-friendly mode and technical
mode.

Figure 1-1 Child Elements Shown with User-Friendly Names

Chapter 1
View User-Friendly Element Names

1-7

Figure 1-2 Child Elements Shown with Technical Names

The attributes of the schema elements are rendered with the @ prefix followed by the
attribute name in the mapper. With user-friendly names, the @ prefix is not appended to
the front of the name or in user-friendly mode. In technical mode, the attributes are
shown appended with the @ prefix.

User-friendly names do not include the namespace prefix. The option to view element
names with the prefix Show prefixes available in the View menu of the mapper is
disabled when the mapper is in user-friendly mode. The option is enabled once you
switch to technical mode.

Search For Data in the Source and Target Trees

The source and target trees can be searched with the element name in either user-
friendly mode or technical mode.

For example, assume the mapper is in user-friendly mode and an element exists
whose user-friendly name is BEG: Beginning Segment for Purchase Order and
technical name is BegSegPO. If SegPO is the search string used to search for the
element, the search highlights the element irrespective of your current mode.

Chapter 1
View User-Friendly Element Names

1-8

User-Friendly Expression for Mapping

Just as the source and target element technical names are simplified by their user-friendly
names, the mapping expression created is represented in a simplified form.

This is a user interface-only entity. That is, the user friendly expression for a mapping is
displayed in the mapper. However, it does not get saved in the XSL file. Click the Code tab of
the mapper after creating a mapping. The Code tab shows the XSL file that is generated
behind the scenes. Note that the file contains only the technical mapping, and not the user-
friendly expression. The mappings work as they always have at runtime. At design time, the
mapper displays the mappings as user-friendly expressions in user-friendly mode and as
technical expressions in technical mode.

The user-friendly expression for a mapping is created when a mapping is constructed in the
mapper. The user-friendly expression is created based on the user-friendly name for the
components in the mapping.

Consider the following mapping:

concat($EDI-Translate/nsmpr0:executeResponse/ns31:TranslateOutput/
ns31:translation-status,
$EDI-Translate/nsmpr0:executeResponse/ns31:TranslateOutput/ns31:tracking-
info)

This mapping refers to a concat function whose parameters are two elements from the
payload. The user-friendly expression for this mapping is as follows:

concat(translation-status, tracking-info)

where:

• translation-status is the user-friendly name of the element $EDI-Translate/
nsmpr0:executeResponse/ns31:TranslateOutput/ns31:translation-status

• tracking-info is the user-friendly name of the element $EDI-Translate/
nsmpr0:executeResponse/ns31:TranslateOutput/ns31:tracking-info

Expression Builder

When you navigate to the mapper, the Expression Builder launches in user-friendly mode by
default when you select a target element.

The Expression Builder shows the mapping for the target element selected. As with the
mapper, the Expression Builder also has two modes. User-friendly mode shows the mapping
as a user-friendly expression.

Figure 1-3 User-Friendly Names in Expression Builder

Chapter 1
View User-Friendly Element Names

1-9

To toggle the Expression Builder between the two modes, click the toggle button
available on the right side of the Expression Builder. You can manually edit the existing
mapping in the Expression Builder.

Figure 1-4 Technical Names in the Expression Builder

Other Sections of the User Interface

Other sections of the mapper in which the source and target elements are displayed all
show the names in synchronization with the mode that is selected for the mapper
(user-friendly or technical). For example:

• The Test button (where the root elements of each source are displayed as the
headers of the tabs)

• The Filter button (where one of the options to filter the tree data is by source
name, which shows the root elements of the different sources)

This means that if the mapper is in user-friendly mode, these sections of the user
interface also show the user-friendly names of the elements. If the mapper is in
technical mode, these sections show the technical names of the elements.

About the Expression Builder
Use the Expression Builder to view and edit your XPath expressions. This section
provides an overview of the Expression Builder.

Displaying the Expression Builder

1. Click a target element node.

The Expression Builder is displayed. A shuttle button () is displayed on the

left side of the field. Save () and erase () buttons are displayed on the right
side of the field.

Chapter 1
About the Expression Builder

1-10

2. Drag a source element node to a target element node.

The XPath expression is added to the Expression Builder.

3. If you want to remove the value, click , then click to completely remove the
mapping.

4. Drag the source element node to the Expression Builder. You can also highlight the

source element node and click to add a value to the Expression Builder.

Chapter 1
About the Expression Builder

1-11

5. Click to save the mapping.

Using Set Text Mode

When there is no mapping in the Expression Builder, there is an button. This
option enables you to enter text in an element node. You can only have XPath
expression or text in the Expression Builder. You cannot have both types.

1. Highlight a target element node and click in the Expression Builder to enter set
text mode.

2. Enter text in the Expression Builder.

A letter icon is added to the node. When you place your cursor over the icon, the
text you entered is displayed.

Note:

If you drag a source target node into the Expression Builder while in set
text mode, the mapping value is literally added as text, and not as an
XPath expression.

Entering Literal Values

You can enter literal values in the Expression Builder when you are not in set text
mode.

1. Enter text in the Expression Builder.

This creates a value-of expression in the XSTL file instead of straight text. See
Edit XSLT Code in the Mapper.

Access the Mapper
To create mappings in an integration, you need to first access the mapper. The method
for accessing the mapper is based on the integration pattern you are using.

To create mappings in App Driven Orchestration integrations and Scheduled
Orchestration integrations:
As you add triggers and invokes to an App Driven Orchestration integration, a map
icon is automatically added. You can also add ad-hoc mappings to this type of
integration, such as adding a mapper to a switch action.

1. Click an existing mapper icon or drag a mapper into your integration from the
Actions panel to the appropriate location in your integration.

2. Click Edit.

Chapter 1
Access the Mapper

1-12

If you click the View icon, note the following details:

• You cannot add or edit mappings.

• You cannot validate mappings.

• You cannot save or erase the XPath expression in the Expression Builder.

• You cannot create or delete elements or mappings in the target context menus.

• You cannot drag source element nodes to target element nodes.

• You can view XSLT code and test your mappings.

3. See Creating Integrations.

To create mappings in Basic Routing integrations:

1. In the middle of the integration, click the Mapper icon for the request, response, or fault
map to edit.

2. Click Edit.

See Creating Integrations.

Chapter 1
Access the Mapper

1-13

2
Map Data

Use the mapper to drag element nodes in the source structure to element nodes in the target
structure.

Topics

• Accept Mapping Recommendations with the Recommendations Engine

• Search Data Fields

• Filter the Source or Target Data Structures

• Edit XSLT Code in the Mapper

• Testing Your Mappings

• Deleting Mapping Statements

• Troubleshoot Errors

• Repeat a Target Element to Map to Different Sources

• Map Multiple Source Structures to a Target Structure

• Extend a Data Type

• Import a Map File into an Orchestrated Integration

Accept Mapping Recommendations with the Recommendations
Engine

You can accept the target element node recommendations of the recommendations engine
when creating mappings. This eliminates the need to analyze and perform each individual
source-to-target mapping. The findings of the recommendations engine are particularly useful
when you have a new integration in which mapping has not yet been created. You can also
use the recommendations engine with previously-created mappings.

Topics

• Disable and Enable the Oracle Recommendations Engine

• Accept Target Element Mapping Recommendations

Disable and Enable the Oracle Recommendations Engine
By default, the recommendations engine is enabled. When enabled, all integrations on this
instance are published to the recommendations engine. If you want, you can disable this
feature.

To disable or re-enable the recommendations engine:

1. In the left navigation pane, click Home > Settings > Integrations > Recommendations.

2-1

2. Deselect the Contribute integration mappings to Oracle Recommends. check
box, then click Save in the upper right corner.

3. To re-enable, select the Contribute integration mappings to Oracle
Recommends. check box, then click Save in the upper right corner.

Accept Target Element Mapping Recommendations
The mapper includes a recommendations engine for creating mappings. This
eliminates the need to analyze and perform each individual source-to-target mapping.
The findings of the recommendations engine are particularly useful when you have a
new integration in which mapping has not yet been created. You can also use the
recommendations engine with previously-created mappings.

Note:

Ensure that you first enable the recommendations engine. See Disable and
Enable the Oracle Recommendations Engine.

To use the mapping recommendations of the recommendations engine:

1. Go to the Integrations page, and find the integration in which to use the mapping
recommendations of the recommendations engine.

2. Open the mapper.

3. Click Recommend in the upper left corner.

The page shows the recommended source and target element nodes mappings.

4. Click Strength. The strength of each recommended mapping is displayed at the
top.

5. If you want to accept the all recommendations, click Select All.

6. To deselect a mapping, click the right mark or click the mapping line and click
Select.

7. Perform one of the following steps:

a. Click Designer to exit the Recommendations page and return to the mapper.

b. Click Apply Recommendations to apply the selected mappings. The
recommendations you selected are displayed in the mapper. Click Validate to
save the changes.

Chapter 2
Accept Mapping Recommendations with the Recommendations Engine

2-2

c. Click Close and select Apply to save the mapping and exit the page.

Search Data Fields
The mapper displays the source data structure on the left and the target data structure on the
right. You can search for specific element nodes or attributes (identified by the @ prefix) in
either the source or target structure.

To search data fields:

1. In the Sources or Target section, click .

2. Enter the full or partial name, and click .

The tree is automatically expanded and scrolls to the first match. If you entered straight
text (for example, country), any element nodes and attributes of the same name are
found. If you search by attribute (for example, @country), only the attributes of the same
name are displayed.

3. Click the V icon to scroll to the next match.

4. When done, click the X icon to dismiss the search facility.

Chapter 2
Search Data Fields

2-3

Filter the Source or Target Data Structures
You can filter the display of the source and target structures. This enables you to show
only the details in which you are interested.

To filter the source or target data structures:

1. Click in the Target section of the mapping toolbar.

2. Specify map filtering options based on the following criteria.

• View the mapped element nodes, unmapped element nodes, or both.

• View all element node types (required element nodes and custom element
nodes you created in a prebuilt Oracle Integration that was edited in
customization mode).

• View the source data structures in the integration (main source and secondary
sources).

• View validation details (view only errors, only warnings, or only mappings with
no issues).

3. Click Apply.

Based on your selections, icons are displayed in the mapper toolbar. For example,

 is displayed for both data structures if you selected to show
mapped element nodes in both the Sources and Target sections.

4. To remove the selected filtering, click .

Edit XSLT Code in the Mapper
You can directly edit the XSLT code of your mappings inside the mapper. This action is
useful for use cases in which mapping is not possible in the graphical mapper. This
eliminates the need to export your XSLT code from Oracle Integration, edit the code

Chapter 2
Filter the Source or Target Data Structures

2-4

manually in a text editor or in a separate graphical tool such as Eclipse or Oracle JDeveloper,
and then re-import the code into the mapper in Oracle Integration.

Editing of XSLT code for advanced use cases such as the following is supported:

• Create internal variables using <xsl:variable>
• Correlate multiple sources grouped by key fields using <xsl:for-each-group>
• Dynamically create target name-value pairs based on runtime data using <xsl:element>,

<xsl:attribute>
• Implement "push style" XSLT using <xsl:template>, <xsl:call-template>, and

<xsl:apply-templates>
• Write your own functions in XSLT using <xsl:function>
• Copy node sets using <xsl:copy> and <xsl:copy-of>
1. Click Code.

The current XSLT code for your mappings is displayed.

See the following sections for XSLT code editing guidelines:

• Restrictions on Editing

• Toolbar Options

• Edit the XSLT Code

• Code Validation

Restrictions on Editing

The following sections of your XSLT code remain read-only and cannot be edited.

• Attribute version numbers:

<xsl:stylesheet version="2.0"

• The mapper schema section where sources and targets are specified:

<oracle-xsl-mapper:schema xml:id="id_2">
 <!--SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT
MODIFY.-->
 <oracle-xsl-mapper:mapSources xml:id="id_3">
 <oracle-xsl-mapper:source type="WSDL" xml:id="id_4">
 <oracle-xsl-mapper:schema location="../../

Chapter 2
Edit XSLT Code in the Mapper

2-5

application_8/outbound_9/resourcegroup_10/echoRequest_REQUEST.wsdl"
xml:id="id_5"/>
 <oracle-xsl-mapper:rootElement
name="execute" namespace="http://xmlns.oracle.com/cloud/adapter/
REST/echoRequest_REQUEST/types" xml:id="id_6"/>
 </oracle-xsl-mapper:source>
 <oracle-xsl-mapper:source type="WSDL"
xml:id="id_20">
 <oracle-xsl-mapper:schema location="../../
processor_83/resourcegroup_84/sList_REQUEST.wsdl" xml:id="id_21"/>
 <oracle-xsl-mapper:rootElement
name="ListFilesResponse" namespace="http://xmlns.oracle.com/cloud/
adapter/stagefile/sList_REQUEST/types" xml:id="id_22"/>
 <oracle-xsl-mapper:param name="sList"
xml:id="id_23"/>
 </oracle-xsl-mapper:source>
 <oracle-xsl-mapper:source type="XSD"
xml:id="id_24">
 <oracle-xsl-mapper:schema location="../../
processor_27/resourcegroup_28/ICSIntegrationMetadata.xsd"
xml:id="id_25"/>
 <oracle-xsl-mapper:rootElement
name="metadata" namespace="http://www.oracle.com/2014/03/ic/
integration/metadata" xml:id="id_26"/>
 <oracle-xsl-mapper:param name="self"
xml:id="id_27"/>
 </oracle-xsl-mapper:source>
 </oracle-xsl-mapper:mapSources>
 <oracle-xsl-mapper:mapTargets xml:id="id_7">
 <oracle-xsl-mapper:target type="WSDL"
xml:id="id_8">
 <oracle-xsl-mapper:schema location="../../
application_8/outbound_9/resourcegroup_10/echoRequest_REQUEST.wsdl"
xml:id="id_9"/>
 <oracle-xsl-mapper:rootElement
name="executeResponse" namespace="http://xmlns.oracle.com/cloud/
adapter/REST/echoRequest_REQUEST/types" xml:id="id_10"/>
 </oracle-xsl-mapper:target>
 </oracle-xsl-mapper:mapTargets>
 <!--GENERATED BY ORACLE XSL MAPPER 12.1.2.0.0-->
 </oracle-xsl-mapper:schema>

• The global parameter declaration section:

<xsl:param name="sList" xml:id="id_28"/>
 <xsl:param name="self" xml:id="id_29"/>
 <xsl:param name="tracking_var_1" xml:id="id_30"/>
 <xsl:param name="tracking_var_2" xml:id="id_31"/>
 <xsl:param name="tracking_var_3" xml:id="id_32"/>
 <xsl:param name="var_assignment_1" xml:id="id_33"/>

Toolbar Options

The toolbar above your XSLT code provides a series of shortcuts for navigating
through and editing XSLT code.

Chapter 2
Edit XSLT Code in the Mapper

2-6

Option Description

Undo your last editing changes to the XSLT code.

Redo your last editing changes to the XSLT code.

Search for specific entries in your XSLT code. Use
the next
(

) and previous
(

) buttons to navigate through the code.

Find and replace specific entries in your XSLT
code.

1. Enter the text to replace, and press Enter:

2. Enter the text to substitute, and press Enter:

3. Replace the text individually or globally when
prompted.

Enter the line number in your XSLT code to
access.

Edit the XSLT Code

The following section of your XSLT code is where the changes you make in the graphical
designer are reflected. You can also edit the XSLT code in this section and see your changes
reflected in the designer.

<xsl:template match="/" xml:id="id_11">
 <nstrgmpr:executeResponse xml:id="id_12">
 <nstrgdfl:response-wrapper xml:id="id_16">
 <nstrgdfl:Message xml:id="id_17">
 <xsl:value-of select="/nstrgmpr:execute/
nstrgmpr:TemplateParameters/nsmpr0:message" xml:id="id_18"/>
 </nstrgdfl:Message>
 <nstrgdfl:Welcome xml:id="id_19">"Welcome to OIC!!!
Echo was successful."</nstrgdfl:Welcome>
 </nstrgdfl:response-wrapper>
 </nstrgmpr:executeResponse>
 </xsl:template>

Chapter 2
Edit XSLT Code in the Mapper

2-7

For example, assume you have the following XSLT code that you want to replace:

<nstrgdfl:Welcome
 <nstrgdfl:Welcome xml:id="id_19">"Welcome to OIC!!! Echo
was successful."
</nstrgdfl:Welcome>

This code is currently visible in the mapper as literal text:

1. Replace the literal value of "Welcome to OIC!!! Echo was successful." with the
variable $tracking_var_3:

<nstrgdfl:Welcome xml:id="id_19">
 <xsl:value-of select="$tracking_var_3" xml:id="id_18"/>
</nstrgdfl:Welcome>

2. Click Designer.
The designer is updated to reflect your changes:

Note:

If you make changes that the mapper does not recognize and attempt to
click Designer, the tab is disabled and a message is displayed indicating
that the change is not supported. You must resolve those issues before
you can return to the designer.

3. Click Validate or Close (which also performs validation) to exit the mapper, then
click Apply to save your changes when prompted.

Code Validation

As you make updates to the XSLT code, your changes are validated. Validation
safeguards prevent you from returning to the designer if there are errors. For example:

Chapter 2
Edit XSLT Code in the Mapper

2-8

• Typographical errors:

1. Assume you make a typographical error such as forgetting the f at the end of
xsl:value o.

2. Click Designer. An error message is displayed in the banner and you are prevented
from returning to the designer until you fix the error.

Unknown: xsl:value-o

3. Correct the error and click Designer to return to the designer.

• XML syntax errors:

1. Assume you make an XML syntax error such as forgetting to enter a closing bracket
(>) after Welcome in the following code. The subsequent code is highlighted in red to
indicate an error.

2. Click Designer. An error message is displayed in the banner and you are prevented
from returning to the designer or accessing other tabs such as Test until you fix the
error.

There are syntax errors in the edited code. Please fix them before
navigating away from the tab

3. Correct the error and click Designer to return to the designer.

• Unsupported constructs in the mapper (for example, you import XSLT code into the
mapper that includes unsupported functions):

1. Click the edit icon to open the mapper.

The Code tab opens by default with the following message.

2. Expand the number to the left of the error for details. For example:

Chapter 2
Edit XSLT Code in the Mapper

2-9

These are coding patterns and constructors that are not supported in the
designer. The designer does not know how to render or manage them. When
the XSTL code includes unsupported patterns or constructors, you cannot
navigate to the designer.

Test Your Mappings
Once you complete designing your mappings, you can test them by entering sample
content of the message to process in the mapping tester. When you execute the test,
output is generated from the sample content.

To test a mapping:

Note:

Custom JavaScript functions cannot be tested.

Two elements are generated when the element is defined as repeating. This is useful
for generating payloads containing at least two repeating elements to test for-each
loops in the mapper.

1. In the mapper toolbar, click Test.

The mapping tester appears. The names of the source data structures for your
mapping are displayed at the top. Two instances are also generated and displayed
for repeating nodes.

2. In the Input panel, you can manually enter the payload, copy and paste the
payload, or click Generate Inputs to automatically generate and test the payload.
Payloads for scalar parameters are not created.

Chapter 2
Test Your Mappings

2-10

If your mapping includes multiple source data structures, both names are displayed.
Payloads for both sources can be generated.

Note:

If the payload is very large, it is not automatically generated and you receive the
following error message:

Payload could not be generated for the
''$SourceApplicationObject'' schema due to excessive size and a
lack of system memory

3. Scroll through the input payload and note the following details:

• Unbounded, repeating elements are displayed multiple times.

• Schemas of up to 20 levels in depth can be displayed.

• Random values are automatically generated for payload elements. Based on the
data type of the element, the correct values (for example, numerical or string values)
are generated.

• You can manually edit the randomly-generated values, as necessary.

4. Click Execute to generate results in the Target panel.

5. Review the results in the Target panel to ensure that your input payload was processed
correctly.

Chapter 2
Test Your Mappings

2-11

6. Test your mapping and, as necessary, return to the mapper to make mapping
changes, such as changing the XSLT statements or functions used.

7. To clear the Input and Target panels, click Clear.

8. When testing is complete, click Designer to return to the mapper.

Multiple entries are generated for template parameters. There should be only be
one instance of each template parameter. This is the expected behavior. For
example, /subscriptions/{SubscriptionPUID}/child/products/
{SubscriptionProductPUID} generates repeating elements for template
parameters SubscriptionPUID and SubscriptionProductPUID.

Delete Mappings and Target Element Nodes
You can delete mappings and target element nodes from a context menu. You can
select this option for a parent to delete all children. For example, if you select the root,
all mappings are deleted.

Deleting Mappings

To delete mappings:

1. Find the source-to-target mapping to delete.

2. Right-click the target element node name, and select Delete Mapping.

Chapter 2
Delete Mappings and Target Element Nodes

2-12

Deleting Target Nodes

To delete target nodes:

1. Find the source-to-target mapping.

2. Right-click the target element node name to delete, and select Delete Target Node.

This action deletes the mapping and the target element. The element node is now grayed
out (considered a ghost node). If you click Code and view the XSLT file of the mapping,
note that this element does not exist. However, you can still map to it.

3. If you want to create this target element node, select Create Target Node to create it
again in the XSLT file. As a short cut, you can also create a target element node by
simply dragging a source element node to it.

Note:

• If you delete a parent element node, all of its child element nodes and any
of their mappings are also deleted.

• If you drag an XSLT statement to a target element node, the node must
already exist (cannot be a ghost node). In those cases, you must first right-
click the target element node and select Create Target Node.

Troubleshoot Errors
Your mappings can contain errors. These errors must be resolved before you can activate
your integration. These errors may become visible when you click Validate during mapping
design. Errors may also become visible when you complete your mapping without errors, but
make changes in the overall integration such as regenerating a WSDL. When you return to
the mapper, these errors are visible.

Error messages are identified by red icons and warning messages are identified by yellow
icons above the Sources section of the mapper.

To troubleshoot errors:

1. Expand the numbers in the red and yellow icons to show additional messages.

2. Click the message to access the error or warning in your mappings.

Chapter 2
Troubleshoot Errors

2-13

For this example, there are two invalid target errors. The targets are in the XSLT
file, but not in the schema. This may have occurred because the WSDL was
regenerated after you previously completed mapping.

When adding functions to your mappings, you can also receive errors if you do not
enter all the parameters in the Expression Builder. For example, you add a concat
function to your mapping, but forget to add one or both parameters to the function.

3. To show only the mappings with errors and warnings, click and select
Errors and Warnings. See Filter the Source or Target Data Structures.

Repeat a Target Element to Map to Different Sources
You can repeat a target element in the mapper. This enables you to map different
sources to the same target element. Elements defined in the target schema with the
maxOccurs attribute set to a value greater than one can be repeated.

To repeat a target element to map to different sources:

1. In the target data structure, right-click the element node to repeat, and select
Repeat Node. This option is only available on elements that you can repeat.
Elements that can be repeated are identified by a special icon with two bars to the
left of the name. When you place your cursor over these elements, the words
Repeating: true are displayed in the information text.

The element is repeated and displayed below the existing element. Elements that
are repeated show the count (for example, 1 of 2 for the existing element and 2 of
2 for the repeated element. You can repeat an element multiple times.

2. Expand the existing and repeated elements to see that the attributes in each
element are repeated.

3. Drag appropriate source mappings to the repeated targets.

Note:

If you create a repeatable element in which you do not do any mapping,
click Close, and apply your changes when prompted, the empty element
is not saved.

Map Multiple Source Structures to a Target Structure
You can map fields from multiple source structures to a single target structure in
certain parts of integrations (for example, integrations in which message enrichment

Chapter 2
Repeat a Target Element to Map to Different Sources

2-14

points have been added or integrations with a response mapping). This action applies to the
creation of new maps.

To map multiple source structures to a target structure:

1. In the mapper, note that two source structures are displayed:

• The initial request mapping source (for this example, process)

• The secondary request (for this example, $TargetApplicationObject1)

2. Expand the initial source data structure and drag appropriate source element nodes to
target element nodes.

3. Expand the secondary source data structure and drag appropriate source element nodes
to target element nodes.

4. To test the mappings, see Test Your Mappings.

5. When complete, click Close, then apply your changes when prompted.

Chapter 2
Map Multiple Source Structures to a Target Structure

2-15

Extend a Data Type
You can extend a data type in the mapper. An extended data type is a primitive data
type or container with a supplementary name and some additional properties.
Extended data types are user-defined types based on the primitive data types
boolean, integer, real, string, and date, and the composite type container.

1. Right click a target element and select Extended Data Types.

2. From the Ext Datatypes list, select the data type to extend.

Import a Map File into an Orchestrated Integration
You can import an XSL map file that was previously exported from the same
integration. This action overwrites the existing mapping file. For example, you can
export the map from a specific integration, edit the XSL file as per a user requirement,
save it, and import it back into the same integration. You cannot import an XSL map
file into an orchestrated integration that was exported from a different integration in
Oracle Integration or from an application in Oracle JDeveloper.

1. Right-click the map in which you want to import an integration, and select More
Actions > Import.

Chapter 2
Extend a Data Type

2-16

2. Browse for the map file to import, then click Import. You only import the map file of an
exported integration into Oracle Integration. You do not import the entire integration in
which the map file is included into Oracle Integration.

Chapter 2
Import a Map File into an Orchestrated Integration

2-17

3
Work with Functions, Operators, and XSLT
Statements

You can add functions, operators, and XSLT statements to your mappings.

Topics

• Add Functions, Operators, and XSLT Statements

• Create Conditional Mappings

• Referencing Lookups

• Create the lookupValue Function

• Work with Multiple Value Statements

• Set Default Values in the Mapper

Add Functions, Operators, and XSLT Statements
You can add functions, operators, and XSLT statements to your mappings.

Working with Functions

1. In the Target section, highlight the element node to which to connect.

2. In the upper right corner, click to launch the Components panel.

3. Expand Functions.

4. Select a function. For this example, String is expanded and concat is dragged to the
target element node. The element can be an existing or ghost (not yet created) element.

A function icon is added to the Mapping Canvas section for the target element node
and the function XPath expression is added to the Expression Builder at the bottom of the
page. This icon indicates that a function is used in this mapping.

3-1

Note:

You can also initially drag functions to the Expression Builder and then
connect the source element(s) to the function.

5. In the Sources section, drag the source element nodes to the function in the
Expression Builder. For this example, effectiveStartDate and effectiveEndDate
are dragged to the two sides of the comma in the concat(,) function in the
Expression Builder. Do not drag source element nodes to the function icon in the
Mapping Canvas section.

6. Click to save your updates.

You can also drag functions onto existing mappings. Assume you have the
following simple mapping.

7. Drag a function (for this example, concat) onto the line in the Mapping Canvas
that connects the two elements.

This action adds the function to the line and shows the concat function in the
Expression Builder. The existing source element mapping is added to the left side
of the comma.

Chapter 3
Add Functions, Operators, and XSLT Statements

3-2

8. Drag the second source element to the right of the comma.

9. Click to save the function.

The concat function is shown as complete.

Working with Operators

1. Expand the Operators section.

2. Drag an operator to the target element node (for this example, a = is added). The =
operator is also added to the Expression Builder. The element node can be a created or
ghost element node.

3. Drag appropriate source elements to both sides of the operator or manually enter values.

4. Click to save the operation.

The operator icon is displayed in the Mapping Canvas.

Chapter 3
Add Functions, Operators, and XSLT Statements

3-3

Working with XSLT Statements

1. Click Advanced.

An XSLT header is added to the Components panel.

2. Expand XSLT.

3. Browse for and drag the appropriate XSLT statement onto the target element node
or use the search facility to manually enter and search for the XSLT statement.

Note the following conventions:

• You can drag statements onto parent or child elements. Note the following
conventions about dragging XSLT statements:

– A green icon is displayed when you drag the XSLT statement to the front
or the back of the element.

– If a green icon is not displayed, you cannot insert as a parent.

– Drag the statement to the end of the name to insert it as a parent.

– Drag the statement to the front of the name to insert it as a child.

• You can only drag XSLT statements onto created elements. If the element on
which you want to drag the statement is grayed out (is a ghost node), right-
click the element and select Create Target Node.

For example, drag an if statement to the target element, then map a source
element to the target element.

Or drag a for-each statement to a repeatable element.

Get Help to Use Functions
Online help is provided to use the functions in the mapper.

1. In the upper right corner, click to launch the Components panel.

2. Expand Functions.

3. Select a function. For this example, current-date is selected.

A message with a link is displayed.

Chapter 3
Add Functions, Operators, and XSLT Statements

3-4

4. Click the link. Details about the function are displayed at the https://www.w3.org/TR/
xpath-functions site, including a summary, signature, properties to specify, rules, any
specific usage notes, and examples.

Automatically Create for-each Statements
You can automatically create for-each statements when mapping between repeatable source
and target elements in the mapper.

To automatically create for-each statements:

1. In the Source section, identify the repeatable source and target elements to which to

map. Repeatable elements are identified by the icon to the left of the name. When you
right-click these elements and select Node Info, Repeating: true is displayed in the
message details about the element.

2. In the Source section, map the child repeatable element to the child target repeatable
element. You cannot map repeatable elements to nonrepeatable elements.

The mapper creates a for-each statement to loop through the source Relationship
element and place the mapping into the target Organization element. This statement
does not include a value to select because parent elements do not typically contain
attributes to map.

3. Click Code to view the for-each statement.

<xsl:for-each select="/nssrcmpr:createOrganizationAsync/
nssrcmpr:organizationParty/nsmpr5:Relationship">
 <nstrgmpr:Organization xml:id="id_27">
 <rnb_v1_2:ID xml:id="id_28" id="{/

Chapter 3
Automatically Create for-each Statements

3-5

https://www.w3.org/TR/xpath-functions
https://www.w3.org/TR/xpath-functions

nssrcmpr:createOrganizationAsync/nssrcmpr:organizationParty/
nsmpr5:PartyId}"/>
 <rnb_v1_2:LookupName xml:id="id_30">
 <xsl:value-of xml:id="id_31" select="/
nssrcmpr:createOrganizationAsync/nssrcmpr:organizationParty/
nsmpr5:PartyName"/>
 </rnb_v1_2:LookupName>
 <rnb_v1_2:CreatedTime xml:id="id_34">
 <xsl:value-of xml:id="id_35" select="/
nssrcmpr:createOrganizationAsync/nssrcmpr:organizationParty/
nsmpr5:CreationDate"/>
 </rnb_v1_2:CreatedTime>
 <rnb_v1_2:UpdatedTime xml:id="id_32">
 <xsl:value-of xml:id="id_36" select="/
nssrcmpr:createOrganizationAsync/nssrcmpr:organizationParty/
nsmpr5:LastUpdateDate"/>
 </rnb_v1_2:UpdatedTime>
 <rno_v1_2:Addresses xml:id="id_37">
 <rno_v1_2:TypedAddressList
xml:id="id_38">
 <rno_v1_2:Country xml:id="id_41">
 <rnb_v1_2:ID xml:id="id_42"
id="{/nssrcmpr:createOrganizationAsync/nssrcmpr:organizationParty/
nsmpr5:Country}"/>
 </rno_v1_2:Country>
 <rno_v1_2:Street xml:id="id_39">
 <xsl:value-of
xml:id="id_40" select="/nssrcmpr:createOrganizationAsync/
nssrcmpr:organizationParty/nsmpr5:Address1"/>
 </rno_v1_2:Street>
 </rno_v1_2:TypedAddressList>
 </rno_v1_2:Addresses>
 <rno_v1_2:NameFurigana>
 <xsl:value-of select="/
nssrcmpr:createOrganizationAsync/nssrcmpr:organizationParty/
nsmpr5:HQBranchIndicator"/>
 </rno_v1_2:NameFurigana>
 </nstrgmpr:Organization>
</xsl:for-each>

Create Conditional Mappings
The if and choose statements are two ways to create conditions. If statements allow
you to specify a single condition. Choose/when/otherwise statements allow you to
specify multiple conditions, similar to if/then/else.

To create conditional mapping:

1. Drag a source to a target to create a mapping.

2. Click , then select Advanced.

3. In the upper right corner, click to launch the Components panel.

4. Expand XSLT, and drag appropriate XSLT statements onto the target element.

Chapter 3
Create Conditional Mappings

3-6

You can either search or browse for the function.

5. Drag the if or choose function onto the target element. (for this example, an if statement
is dragged to an ID element).

The if statement is displayed.

6. If you add a choose statement, you may specify additional when and otherwise
conditions.

• Highlight the choose action, then drag and drop a when or otherwise statement.

Chapter 3
Create Conditional Mappings

3-7

7. Click Close, then apply your changes when prompted.

See Use Conditional Mappings.

Set Default Values in the Mapper
You may have scenarios in which you need to set some fields to default values. The
mapper contains a set of functions that you can use to set default values (for example,
the when function that you can use to set default values).

For example, the following conditional mapping is performed.

In the payload, you can set the default value in the mapper.

This syntax checks if the iD node is present in the payload. If so, it assigns that value.
Otherwise, it adds the default value, which in this case is 1000.

Reference Lookups
A special lookup function in the mapper enables you to call a lookup from a mapping
to determine the value to populate into a field when transferring data between
applications.

To reference a lookup from a data mapping:

Chapter 3
Reference Lookups

3-8

1. Drag the source element node to a target element node to create a simple mapping.

2. In the upper right corner, click to launch the Components panel.

3. Type lookupValue in the Search field, and click Search.

4. Drag the function onto the target element node.

The mapper prompts you to select a previously created lookup.

5. Search by lookup name.

When you select a lookup in the Lookup Tables column, you see preview data for that
lookup on the right based on the connections you selected as the source and target.

6. Select a lookup and click Use.

7. The system automatically populates the following parameters in the lookup function:

• dvmLocation: with the lookup name you selected

• srcColumn: with the source application type

• srcValue: with the existing mapping expression

• targetColumn: with the target application type

8. Enter a defaultValue parameter. This is the value sent to the target if the lookup function
is unable to find a match for the value passed from the source.

9. Click Save and Close.

Note:

Lookups referenced using the lookupValue function in the Expression Builder are
included in an exported integration JAR file. When you import the integration, the
referenced lookups are also imported and are visible in the Expression Builder. For
information exporting integrations, see Exporting an Integration.

Create the lookupValue Function
You can create the parameter values for the lookupValue function with the Build Lookup
Function wizard. This wizard enables you to define the lookup table, source column, target

Chapter 3
Create the lookupValue Function

3-9

column, and default value to use in the function. For these parameter values to be
selectable in the wizard, you must have already created a lookup on the Lookups
page.

Topics

• Access the Build Lookup Function Wizard

• Select the Lookup Table

• Select the Source and Target Columns

• Specify the Default Value

• Review Your Lookup Table Selections

Access the Build Lookup Function Wizard
The Build Lookup Function wizard for creating the lookupValue function parameter
values is accessible from the mapper.

To access the Build Lookup Function wizard:

Note:

You must already have created lookups to use this wizard. See Creating a
Lookup of Using Integrations in Oracle Integration Generation 2.

1. In the upper right corner, click to launch the Components panel.

2. Expand Functions > Integration Cloud.

3. Drag the dvm:lookupValue function on the line in the Mapping Canvas section of
an existing mapping.

Note:

If you drag the function to a ghost (not yet created) element, the element
is first created.

The Build Lookup Function wizard is displayed. To create the function parameter
values, see section Select the Lookup Table.

Select the Lookup Table
Select the lookup table to use in the lookupValue function.

Note:

You must already have created a lookup. Otherwise, no lookups are
displayed for selection.

Chapter 3
Create the lookupValue Function

3-10

Element Description

Lookup Table Select the lookup table to use in the function. You
can view the lookup description by clicking the
information icon in the table. This can guide you in
selecting the required lookup table. The number of
columns defined in the lookup is also displayed.

Select the Source and Target Columns
Select the source and target columns to use in the lookupValue function.

The lookupValue function requires one source column and one target column. When you
select a source and target column, the values available with the columns are displayed.

Element Description

Select Source Column Click the source column header to select from a
list of available columns for this lookup table. The
data included with the selected column is
displayed. Both adapter and domain name
columns are displayed.

Select Target Column Click the target column header to select from a list
of available columns for this lookup table. The data
included with the selected column is displayed.
Both adapter and domain name columns are
displayed.

Specify the Default Value
Select the default value to use in the lookupValue function.

Enter the default value to use if no match is found. If there is no match that satisfies all the
search values, the lookup fails and the default value is returned.

Element Description

Default Value Enter a default value to use if no match is found
(for example, an actual default value to use or an
error message such as No Value Found).

Review Your Lookup Table Selections
You can review the lookup table values to use in the lookupValue function on the Summary
page.

You can review the lookup table values from the Summary page. The Summary page is the
final wizard page after you have completed your configuration.

Chapter 3
Create the lookupValue Function

3-11

Element Description

Parameter and Value Table Displays a summary of the parameters and
values you defined on previous pages of the
wizard.

To return to a previous page to update any
values, click the appropriate tab in the left
panel or click Back.

Resulting Expression Displays the expression you defined on the
previous pages of the wizard. The
lookupValue function takes the following
format:

 lookupValue(dvmLocation,
srcColumn, srcValue,
targetColumn, defaultValue)

Where:

• dvmLocation: The lookup table selected
on the Select Lookup Table page.

• srcColumn: The source column selected
on the Select Columns page.

• srcValue: The source value you enter in
the New Condition field of the Expression
Builder after completing this wizard. Click
Done to complete this wizard, then define
the srcValue parameter value.

• targetColumn: The target column
selected on the Select Columns page.

• defaultValue: The default value entered
on the Default Value page.

For example, a defined lookupValue function
after you have completed the wizard and
defined the srcValue parameter value in the
Expression Builder can look as follows:

dvm:lookupValue('tenant/resources/
dvms/
Country','rightnow','US','mysoap',
'No data found')

When you click Done, the function icon is created in the mapper and the function
XPath expression is displayed in the Expression Builder.

Work with Multiple Value Statements
You can add multiple value-of statements or multiple XSLT statements under a leaf
node.

To work with multiple value statements:

1. Click and ensure that Advanced is selected.

Chapter 3
Work with Multiple Value Statements

3-12

2. Drag a value-of statement to a leaf element target in the mapper. For this example,
value-of is added as a child of POHeaderId.

Multiple value-of statements are added to the leaf node.

3. Define appropriate mapping logic for each value-of statement. For example, add a
choose statement and a when statement with a defined value to the first value-of
statement and an otherwise statement to the second value-of statement.

Chapter 3
Work with Multiple Value Statements

3-13

Note:

Multiple value-of XSLT statements in a leaf node continue to remain visible
in the mapper even if you disable Advanced.

Chapter 3
Work with Multiple Value Statements

3-14

4
Mapper Use Cases

Learn about use cases with the mapper.

Topics:

• Convert an Integer to a String

• Use Conditional Mappings

• Use a Counter Inside a For-Each Loop to Track the Number of Loop Iterations

• Create an XSLT Map to Read Multiple Correlated Payloads

• Perform Date Conversions in the Mapper

• Perform Data Manipulations in the Mapper

• Pass Single Quotes in a Mapper Variable

Convert an Integer to a String
You can use convert an integer to a string in the mapper.

1. Open the mapper.

2. In the Target section, highlight the integer element node to convert to a string.

3. In the upper far right corner, click to open the Components panel.

4. Expand Functions > Conversion.

5. Select the string function and drag it to the target element node.

A function icon is added to the mapping canvas for the target element node and the
string function XPath expression is added to the Expression Builder at the bottom of the
page.

6. Drag the source integer node (or you can use a literal) inside the parenthesis and click
the Checkmark icon to save.

For example:

string (12345)

7. Click Validate.

You can navigate to Test > Generate Inputs > Execute to see how the XPath function
performs at runtime.

4-1

Use Conditional Mappings
You may have a requirement to map data dynamically depending on other data in your
integration. This requirement can be achieved with conditional mappings.

Consider the following pseudo code sample of the mapping logic. Three conditions are
provided.

if PER03 == 'TE' {
 Contact.Phone = PER04
}
if PER05 == 'TE' {
 Contact.Phone = PER06
}
if PER07 == 'TE' {
 Contact.Phone = PER08
}

1. Click .

2. In the upper right corner, click .

3. Expand XSLT to display the statements required to create conditional mappings.

4. Locate the target element (for this example, named phone) in the tree.

This is the element for which to create conditional mappings.

5. If the selected element is a lighter color and italicized, that means the element
does not exist in the mapper’s output. Right-click and select Create Target Node.
You cannot insert conditions around phone without this step.

6. Drag and drop the choose statement as a child of phone.

Chapter 4
Use Conditional Mappings

4-2

The cursor position surrounding phone indicates whether the choose statement can be
inserted as a child (bottom left) or a parent (upper right). For this case, choose is
inserted as a child.

7. Drag and drop a when statement as a child of the choose statement three times to
create placeholders for the three conditions. You can also drop a when statement as a
sibling before or as a sibling after another when statement.

Chapter 4
Use Conditional Mappings

4-3

Each condition also needs a corresponding mapping value.

8. Drag and drop a value-of statement as a child of each when statement. The tree
structure needed to create conditional expressions and mapping expressions is
now complete.

Expressions for the first condition and mapping can now be created.

if PER03 == 'TE' { Contact.Phone = PER04 }

Chapter 4
Use Conditional Mappings

4-4

9. Select the first when statement in the target tree to create the first condition.

10. Drag and drop PER03 from the source tree into the expression.

11. Enter = "TE" to complete the expression.

12. Click the checkmark to save the expression.

13. To create the mapping, select the value-of statement under the first when.

14. Drag and drop PER04 into the target value-of statement.

The first conditional mapping is complete.

15. Repeat these steps for the second and third conditional mappings to complete the
mapping logic.

if PER05 == 'TE' {
 Contact.Phone = PER06
}
if PER07 == 'TE' {
 Contact.Phone = PER08
}

16. Save the mapping and integration.

The completed design looks as follows.

Chapter 4
Use Conditional Mappings

4-5

Use a Counter Inside a For-Each Loop to Track the Number
of Loop Iterations

You can use a counter inside a for-each loop to track the number of iterations
processed by the loop. This task can be achieved with an xsl:variable through direct
edit of the XSLT code.

For example:

• Use the count() and position() XPath functions.

– The count(location path to the element) returns the number of instances
for the node-set (for the element).

– Within an <xsl:for-each> loop, the position() function returns the iteration
number.

• The XSL code snippet for the payload looks as follows:

• The pseudo XSL code snippet looks as follows:

Chapter 4
Use a Counter Inside a For-Each Loop to Track the Number of Loop Iterations

4-6

• The output looks as follows:

See Edit XSLT Code in the Mapper.

Create an XSLT Map to Read Multiple Correlated Payloads
You can create XSLT maps to loop thought different sources (input payloads) with instances
that are correlated by key fields.

Example for 1:0..n and 1:1 Relationships Between Sources

The following business units and employees example is provided:

• Each business unit can have 0..n employees (1:0..n relationship).

• The G/L accounts source with a 1:1 correlation with business units.

You can create an XSLT map that combines them.

The sources (input payloads) for this example are as follows:

• $BusinessUnits

<company>
 <bu>
 <id>SD</id> <name>Software Development</name>
 <accounbtid>i9</accountid>
 </bu>
 <bu>
 <id>BS</id> <name>Sales</name>
 <accounbtid>i1</accountid>
 </bu>
 <bu>
 <id>MD</id> <name>Marketing</name>
 <accounbtid>i2</accountid>
 </bu>
 </company>

• $Employees

<people>
 <emp> <buid>SD</buid> <name>Joe Smith</name> </emp>
 <emp> <buid>SD</buid> <name>Mike Jones</name> </emp>

Chapter 4
Create an XSLT Map to Read Multiple Correlated Payloads

4-7

 <emp> <buid>BS</buid> <name>Dave Johnson</name> </emp>
 </people>

• $GLAccounts

<gl>
 <account> <id>i1</id> <number>001.345</number> </account>
 <account> <id>i2</id> <number>001.477</number> </account>
 <account> <id>i9</id> <number>001.223</number> </account>
</gl>

The link between $BusinessUnits and $Employees is the business unit ID. The header
is $BusinessUnit and the detail is $Employees. The link for the GL accounts and
business units is the account ID.

The following output is needed:

<xxx>
 <yyy>
 <BU id='SD'>Software Development</BU>
 <empName>Joe Smith</empName>
 <accNumber>001.223</accNumber>
 </yyy>
 <yyy>
 <BU id='SD'>Software Development</BU>
 <empName>Mike Jones</empName>
 <accNumber>001.223</accNumber>
 </yyy>
 <yyy>
 <BU id='BS'>Sales</BU>
 <empName>Dave Johnson</empName>
 <accNumber>001.345</accNumber>
 </yyy>
</xxx>

Solution

When the instances (records) of the sources have a 1:1 correlation, you can use a
predicate.

When the instances have 1:0..n correlation, using an xsl:for-each-group performs
better than using predicates because it avoids overparsing the source.

The XSLT content is as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<xsl:stylesheet version="2.0" xmlns:xsd="http://www.w3.org/2001/
XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:param name="BusinessUnits" />
 <xsl:param name="Employees" />
 <xsl:param name="GLAccounts"/>
 <xsl:template match="/" >

Chapter 4
Create an XSLT Map to Read Multiple Correlated Payloads

4-8

 <xxx>
 <xsl:for-each-group select="$Employees/people/employee" group-
by="buid">
 <!-- this section will be executed only once per 'buid' -->
 <!-- Store the Business Unit Record in a variable -->
 <xsl:variable name="BURecord">
 <xsl:copy-of select="$BusinessUnits/company/bu[id =
fn:current-grouping-key()]"/>
 </xsl:variable>
 <!-- Store the GL Account Record in a variable -->
 <xsl:variable name="GLAccountRecord">
 <xsl:copy-of select="$GLAccounts/gl/account[id = $BURecord/bu/
accountid]" />
 </xsl:variable>
 <!-- end: executed only once per 'buid' -->
 <xsl:for-each select="current-group()">
 <!-- iterates the employees within the current 'buid' -->
 <yyy>
 <BU id="{./buid}">
 <xsl:value-of select="$BURecord/bu/name" />
 </BU>
 <empName>
 <xsl:value-of select="./name" />
 </empName>
 <accNumber>
 <xsl:value-of select="$GLAccountRecord/account/
number"/>
 </accNumber>
 </yyy>
 </xsl:for-each>
 </xsl:for-each-group>
 </xxx>
 </xsl:template>
</xsl:stylesheet>

Summary

• When there is a 1:1 relationship, using predicates instead of <xsl:for-each-group> is
faster because XSLT does not need to sort the data to create the group.

• When there is a 1:0..n relationship, using <xsl:for-each-group> performs faster than
using predicates. This is because predicates, in the above example, parse the entire
business unit source and GL account source per every employee.

See:

• XPath predicates

• xsl:for-each example

Perform Date Conversions in the Mapper
You can perform date conversion tasks in the mapper such as converting dates in different
time zones, formats, and timestamps.

• Convert Date from One Time Zone to Another Time Zone

Chapter 4
Perform Date Conversions in the Mapper

4-9

https://www.w3schools.com/xml/xpath_syntax.asp
https://www.xml.com/pub/a/2003/11/05/tr.html

• Convert Date from One Format to Another Format

• Add and Subtract Dates from the Current Date Time

• Convert dateTime to and from Epoch Time

• Convert a Date Timestamp to a UNIX Timestamp

• Convert a Month Number to a Month Name

Convert Date from One Time Zone to Another Time Zone

For example, to convert between India Standard Time (IST) and Greenwich Mean
Time (GMT):

• IST to GMT:

fn:adjust-dateTime-to-
timezone(xsd:dateTime('2021-05-20T10:49:07.859+05:30'),
xsd:dayTimeDuration('PT0H'))

• GMT to IST:

fn:adjust-dateTime-to-
timezone(xsd:dateTime('2021-05-20T10:00:00Z'),
xsd:dayTimeDuration('PT5H30M'))

Convert Date from One Format to Another Format

Format
Definition

XSLT Mapping Explanation

• Source
Format: DD-
MON-YYYY

19-
Nov-2021

• Target
Format:
YYYY-MM-DD

2021-11-1
9

<xsl:variable name="monthListByNum">
<months>
<month id="1" value="jan"/><month id="2"
value="feb"/><month id="3" value="mar"/
><month id="4" value="apr"/>
<month id="5" value="may"/><month id="6"
value="jun"/><month id="7" value="jul"/
><month id="8" value="aug"/>
<month id="9" value="sep"/><month id="10"
value="oct"/><month id="11" value="nov"/
><month id="12" value="dec"/>
</months>
</xsl:variable>

<xsl:value-of select="concat (substring-
after (substring-after ($srcDateString,
'-'), '-'), '-',
$monthListByNum/months/month[@value=fn:lower-
case (substring-before (substring-after
($srcDateString, '-'), '-'))]/@id, '-',
substring-before ($srcDateString, '-'))"
xml:id="id_18"/>

Use an XSLT
variable to
hold the MON
to MM
conversion.
Use string
manipulation
to get the
correct
format.

Chapter 4
Perform Date Conversions in the Mapper

4-10

Add and Subtract Dates from the Current Date Time

• If the data is in xsd:dateTime or IS0-8601 or (YYYY-MM-DDTHH:MM:SS+TZ) format:

– Add 10 days to the current date time:

fn:current-dateTime() + xsd:dayTimeDuration('P10D')

– Add one year to the current date time:

fn:current-dateTime() + xsd:yearMonthDuration('P1Y')

– Subtract 10 days from the current date time:

fn:current-dateTime() - xsd:dayTimeDuration('P10D')

– Subtract one year from the current date time:

fn:current-dateTime() - xsd:yearMonthDuration('P1Y')

• If the data is in xsd:date or YYYY-MM-DD format:

– Convert the data to xsd:dateTime format using
xsd:dateTime(concat($inputDate,'T00:00:00')).

• If the data is in any other format:

– Convert the data to xsd:dateTime format using the xp20:format-dateTime()
function or string functions such as concat(), substring-before(), or substring-
after().

Convert dateTime to and from Epoch Time

• If the data is in xsd:dateTime or IS0-8601 or (YYYY-MM-DDTHH:MM:SS+TZ) format:

– Convert the current dateTime to epoch time:

(fn:current-dateTime() - xsd:dateTime('1970-01-01T00:00:00')) div
xsd:dayTimeDuration('PT1S')

– Convert epoch time to dateTime:

(xsd:dateTime('1970-01-01T00:00:00') + ($epochTime *
xsd:dayTimeDuration('PT1S')))

• If the data is in xsd:date or YYYY-MM-DD format:

– Convert the data to xsd:dateTime format using
xsd:dateTime(concat($inputDate,'T00:00:00')).

• If the data is in any other format:

– Convert the data to xsd:dateTime format using the xp20:format-dateTime()
function or string functions such as concat(), substring-before(), or substring-
after().

Chapter 4
Perform Date Conversions in the Mapper

4-11

Convert a Date Timestamp to a UNIX Timestamp

(fn:current-dateTime() - xsd:dateTime('1970-01-01T00:00:00')) div
xsd:dayTimeDuration('PT1S')

Convert a Month Number to a Month Name

If you have the exact date and time, you can use the format-dateTime function.

xp20:format-dateTime ((fn:current-dateTime (), "[MNn")

Perform Data Manipulations in the Mapper
You can perform data manipulation tasks in the mapper such as padding characters,
rounding numbers, extracting values, adding CDATA content, and calculating the sum
of a node.

• Pad Characters to a String

• Round a Number to the Required Digits

• Extract a Value for a Key-Value Pair Type of XML

• Add CDATA Content to an XML Element

• Calculate the Sum of a Node from a Group of Nodes

Pad Characters to a String

• Left-pad zeroes to nine digits:

fn:format-number (12345, '000000000')

• Right-pad zeroes to nine digits:

concat(string(12345),substring-before(fn:format-number (12345,
'000000000'),
string(12345))

Round a Number to the Required Digits

Round a number to two decimals:

fn:format-number (12345.12345, '#.00')

Chapter 4
Perform Data Manipulations in the Mapper

4-12

Extract a Value for a Key-Value Pair Type of XML

XML Snippet XPath Expression Explanation

<ns:SomeElement
xmlns:ns="http://
xmlns.oracle.com/some/
namespace">
 <ns:ParameterList>
 <ns:Parameter>
 <ns:Name>ID</ns:Name>
 <ns:Value>1</ns:Value>
 </ns:Parameter>
 <ns:Parameter>
 <ns:Name>NAME</ns:Name>
 <ns:Value>Oracle</
ns:Value>
 </ns:Parameter>
 <ns:Parameter>
 <ns:Name>AGE</ns:Name>
 <ns:Value>25</ns:Value>
 </ns:Parameter>
 </ns:ParameterList>
</ns:SomeElement>

Extract the value of parameter name
'NAME':

/ns:SomeElement/
ns:ParameterList
/ns:Parameter[ns:Name='NAME']/
ns:Value

Anything
within the set
braces in an
XPath is
called a
predicate.
The
expression
finds the
parameter
value whose
name is
NAME.

Chapter 4
Perform Data Manipulations in the Mapper

4-13

Add CDATA Content to an XML Element

XSLT Snippet Output XML Explanation

• Input XML:

<?xml version = '1.0' encoding =
'UTF-8'?>
<nstrgmpr:process>
 <nstrgmpr:input>
 <nstrgmpr:data>I SHOULD BE IN CDATA
CONTENT<nstrgmpr:data>
 </nstrgmpr:input>
</nstrgmpr:process>

• XSLT snippet:

<?xml version = '1.0' encoding =
'UTF-8'?>
<xsl:stylesheet version="2.0"
xml:id="id_1"
xmlns:nstrgmpr="http://
xmlns.oracle.com/simpleSvc/SyncSvc/
Sync"
xmlns:oracle-xsl-mapper="http://
www.oracle.com/xsl/mapper/schemas"
xmlns:xsd="http://www.w3.org/2001/
XMLSchema" exclude-result-prefixes="
ora oracle-xsl-mapper
oraext xsi fn xp20 xsl ignore01"
xmlns:ignore01="http://
www.oracle.com/XSL/Transform/java"
ignore01:ignorexmlids="true"
xmlns:xml="http://www.w3.org/XML/1998/
namespace">

<xsl:output method="xml" cdata-
section-elements="nstrgmpr:result"/>

<xsl:template match="/"
xml:id="id_11">
 <nstrgmpr:processResponse
xml:id="id_12">

<nstrgmpr:result xml:id="id_16">
<xsl:value-of select="/
nstrgmpr:process/nstrgmpr:input/
nstrgmpr:data"
xml:id="id_17"/> </nstrgmpr:result>

 </nstrgmpr:processResponse>
 </xsl:template>
</xsl:stylesheet>

<nstrgmpr:proces
sResponse>

<nstrgmpr:result
><![CDATA[I
SHOULD BE IN
CDATA
CONTENT]]></
nstrgmpr:result>
</
nstrgmpr:process
Response>

You must
manually
add the
xsl:output
tag in the
XSLT.

The output
attribute
must be xml.

The attribute
cdata-
section-
elements
indicates
which fields
have the
CDATA
content post-
transformatio
n. In case of
multiple
elements,
the value
must be
separated by
spaces.

The data
should be
normally
mapped to
the element
in which
CDATA
should be
present.

Note: This
approach
doesn't work
for file-based
operations
such as
stage file
actions and
FTP where
the content
is rewritten
from XSLT.

Chapter 4
Perform Data Manipulations in the Mapper

4-14

Calculate the Sum of a Node from a Group of Nodes

XML Snippet XPath Expression Explanation

• Input XML

<ns:SomeElement
xmlns:ns="http://
xmlns.oracle.com/
some/namespace/
request">

<ns:ParameterList>
 <ns:Parameter>

<ns:Name>ABC</
ns:Name>

<ns:Value>10</
ns:Value>
 </ns:Parameter>
 <ns:Parameter>

<ns:Name>ABC</
ns:Name>

<ns:Value>20</
ns:Value>
 </ns:Parameter>
 <ns:Parameter>

<ns:Name>DEF</
ns:Name>

<ns:Value>20</
ns:Value>
 </ns:Parameter>
 </
ns:ParameterList>
</ns:SomeElement>

• XSLT snippet:

<nstrgdfl:ResultElement>
<xsl:for-each-group select="/
ns:SomeElement/ns:ParameterList/
ns:Parameter" group-by="ns:Name">
 <nstrgdfl:ParameterList>
 <nstrgdfl:Parameter>
 <nstrgdfl:Name>
 <xsl:value-of
select="fn:current-grouping-
key()"/>
 </nstrgdfl:Name>
 <nstrgdfl:SumOfValues>
 <xsl:value-of
select="sum(fn:current-group/
ns:Value)"/>
 </nstrgdfl:SumOfValues>
 <nstrgdfl:Parameter>
 </nstrgdfl:ParameterList>
</xsl:for-each>
</nstrgdfl:ResultElement>

• Output XML:

<ns:ResultElement30xmlns:ns="http
://xmlns.oracle.com/some/
namespace/response">
 <ns:ParameterList>
 <ns:Parameter>
 <ns:Name>ABC</ns:Name>
 <ns:SumOfValues>1</
ns:Value>
 </ns:Parameter>
 <ns:Parameter>
 <ns:Name>DEF</ns:Name>
 <ns:SumOfValues>20</
ns:Value>
 </ns:Parameter>
 </ns:ParameterList>
</ns:ResultElement>

The SUM function
must be set on
current-
group.

Pass Single Quotes in a Mapper Variable
You can pass single quotes in a mapper variable without using an escape character.
Consider the following example. The Expression Builder shows the following value.

Chapter 4
Pass Single Quotes in a Mapper Variable

4-15

Use an XSL variable to denote single quotes. You can also use an assign action
variable.

<xsl:variable name="quote" value="'"/>;

Use a concat function to append the quotes to the actual value.

<xsl:value-of select="concat($quote,$value,$quote)"/>

Note that the output on the test page and the Track Instances page shows the
following.

apos;ACTIVATED&apos

This is a display issue only and can be ignored. The value is successfully passed.

Chapter 4
Pass Single Quotes in a Mapper Variable

4-16

5
Troubleshoot the Mapper

Review the following topics to learn about troubleshooting issues with the mapper.

Topics:

• Current-dateTime Function Does Not Return the Same Number of Digits for All
Timestamp Values

• Import XSLT Code into the Mapper

• Function Not Found Errors During Validation in the Mapper

• format-number Function Error

• Transform an Incoming UTC Timestamp into a Standard Timestamp

• CDATA in XSLT String Functions Causes Problems

Current-dateTime Function Does Not Return the Same Number
of Digits for All Timestamp Values

The Current-dateTime function in the mapper does not return the same number of digits
for all timestamp values.

For example, the three digit microsecond value is not the same format each time.

YYYY-MM-DDT24:59:59.123Z
YYYY-MM-DDT24:59:59.12Z

If you want the specific format value to be consistent, use the xp20:format-dateTime function
to format the timestamp. For example:

xp20:format-dateTime (fn:current-dateTime(), "[Y0001]-[M01]-[D01]T[H01]:
[m01]:[s01].[f001]")

This function returns the following format:

2020-10-30T21:58:15.172Z

Import XSLT Code into the Mapper
For some functionality that is not available in the mapper, you can import XSLT code.

• To use a nested for-each loop in the target mapper tree and access values from different
sources elements, you can use xsl:variable with different sources. However, the
mapper is locked from editing. As a workaround, you can use imported maps. See Import
a Map File into an Orchestrated Integration.

5-1

• The ability to use copy-of functionality is not currently available. As a workaround,
import XSLT code into the mapper to achieve copy-of functionality. See Import a
Map File into an Orchestrated Integration.

Function Not Found Errors During Validation in the Mapper
If you receive the following error when you attempt to validate your mappings in the
mapper, you are using an unsupported function (for this example, document()). This
error can occur when you import an XSLT file into Oracle Integration that includes
functions that were supported in another tool such as Oracle JDeveloper.

javax.xml.transform.TransformerException: Could not find function:
document:
javax.xml.transform.TransformerException: Could not find function:
document

The mapper validates if all the referenced functions are supported. You can only use
supported functions (those visible in the Functions palette in the mapper user
interface) in the mapper in Oracle Integration.

format-number Function Error
The format-number function fails with a cannot convert string to number error for
nondecimal input instead of returning a Not a Number (NaN) response. This is the
expected current behavior and applies to all design time and runtime usage of this
function.

Transform an Incoming UTC Timestamp into a Standard
Timestamp

You can transform an incoming UTC timestamp into a standard timestamp in the
mapper.

For example, the incoming data is in the following format:

2021-05-24T13:34:45.000000+00:00

and needs to transformed as follows:

2021-05-24 13:34:45

Chapter 5
Function Not Found Errors During Validation in the Mapper

5-2

Specify the following expression in the Expression Builder.

xp20:format-dateTime(string(fn:current-dateTime()),"[Y0001]-[M01]-[D01]
[H01]:[m01]:[s01]")

CDATA in XSLT String Functions Causes Problems
Do not use CDATA in XSLT string functions (value-of turns the content into a string).

For example, assume you are using the mapper to hard code a SOAP Adapter header
attribute. The mapper encodes the data, which causes a problem for the endpoint service at
runtime.

• Mapping:

[Expression for: "header"]
"<![CDATA[<CrosstalkMessage> <CrosstalkHeader>
<ProcessCode>1004</ProcessCode> <MessageType>100</MessageType>
<ExchangePattern>7</ExchangePattern> <EnterpriseId>ace7d6ae-78a8-f3gh-1d04
-9fe0416d053c</EnterpriseId> <Token>h12749ed-913b-7e3e-2aef
-8dd78255cb40</Token> <DestinationId>b3fbf48e-df96-f27d-5fac
-38895618064f</DestinationId> <ContentEncoding>utf-8</ContentEncoding>
<ContentType>text/xml</ContentType> </CrosstalkHeader> </
CrosstalkMessage>
]]>"

• Code:

<tns:header xml:id="id_48">
 <xsl:value-of xml:id="id_82" select="'<!
[CDATA[<CrosstalkMessage>
<CrosstalkHeader> <ProcessCode>1004</ProcessCode>
<MessageType>100</MessageType>
<ExchangePattern>7</ExchangePattern>
<EnterpriseId>ace7d6ae
-78a8-f3gh-1d04-9fe0416d053c</EnterpriseId>
<Token>h12749ed-913b
-7e3e-2aef-8dd78255cb40</Token> <DestinationId>b3fbf48e-df96-
f27d
-5fac-38895618064f</DestinationId> <ContentEncoding>utf
-8</ContentEncoding> <ContentType>text/xml</
ContentType>

Chapter 5
CDATA in XSLT String Functions Causes Problems

5-3

</CrosstalkHeader> </CrosstalkMessage>]]>'"/>
</tns:header>

To achieve this:

• Write the XML structure using a stage file action.

• Read the XML as opaque content.

• Map to the header element by using decodeBase64 of read content.

• Use the cdata-section-elements attribute in XSLT referring to the header
element.

Chapter 5
CDATA in XSLT String Functions Causes Problems

5-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Get Started with the Mapper
	About Mappings
	About Mapping Data Between Applications
	View User-Friendly Element Names
	About the Expression Builder
	Access the Mapper

	2 Map Data
	Accept Mapping Recommendations with the Recommendations Engine
	Disable and Enable the Oracle Recommendations Engine
	Accept Target Element Mapping Recommendations

	Search Data Fields
	Filter the Source or Target Data Structures
	Edit XSLT Code in the Mapper
	Test Your Mappings
	Delete Mappings and Target Element Nodes
	Troubleshoot Errors
	Repeat a Target Element to Map to Different Sources
	Map Multiple Source Structures to a Target Structure
	Extend a Data Type
	Import a Map File into an Orchestrated Integration

	3 Work with Functions, Operators, and XSLT Statements
	Add Functions, Operators, and XSLT Statements
	Get Help to Use Functions

	Automatically Create for-each Statements
	Create Conditional Mappings
	Set Default Values in the Mapper

	Reference Lookups
	Create the lookupValue Function
	Access the Build Lookup Function Wizard
	Select the Lookup Table
	Select the Source and Target Columns
	Specify the Default Value
	Review Your Lookup Table Selections

	Work with Multiple Value Statements

	4 Mapper Use Cases
	Convert an Integer to a String
	Use Conditional Mappings
	Use a Counter Inside a For-Each Loop to Track the Number of Loop Iterations
	Create an XSLT Map to Read Multiple Correlated Payloads
	Perform Date Conversions in the Mapper
	Perform Data Manipulations in the Mapper
	Pass Single Quotes in a Mapper Variable

	5 Troubleshoot the Mapper
	Current-dateTime Function Does Not Return the Same Number of Digits for All Timestamp Values
	Import XSLT Code into the Mapper
	Function Not Found Errors During Validation in the Mapper
	format-number Function Error
	Transform an Incoming UTC Timestamp into a Standard Timestamp
	CDATA in XSLT String Functions Causes Problems

