
Oracle® Cloud
Using the SOAP Adapter with Oracle
Integration Generation 2

E85422-48
January 2024

Oracle Cloud Using the SOAP Adapter with Oracle Integration Generation 2,

E85422-48

Copyright © 2017, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Resources vii

Conventions vii

1 Understand the SOAP Adapter

SOAP Adapter Capabilities 1-1

SOAP Adapter Restrictions 1-3

What Application Version Is Supported? 1-4

Workflow to Create and Add a SOAP Adapter Connection to an Integration 1-4

2 SOAP Adapter Concepts

Authenticate Requests for Invoking Oracle Integration Flows 2-12

About Requests to Invoke Integrations 2-13

About OAuth 2.0 Grants 2-15

Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments 2-21

Use OAuth 2.0 Grants in Identity Domain Environments 2-39

3 Create a SOAP Adapter Connection

Prerequisites for Creating a Connection 3-1

Create a Connection 3-1

Configure Connection Properties 3-2

Configure Connection Security 3-3

Configure an Agent Group 3-5

Test the Connection 3-6

Upload an SSL Certificate 3-6

iii

4 Add the SOAP Adapter Connection to an Integration

Basic Info Page 4-1

Trigger Operation Page 4-2

Trigger Callback Operation Page 4-2

Invoke Operation Page 4-3

Header Page 4-3

Request Header Page 4-4

Response Header Page 4-5

Invoke Callback Operation Page 4-5

Summary Page 4-6

5 Implement Common Patterns Using the SOAP Adapter

Best Practices for Invoking SOAP Endpoints 5-1

Configure MTOM Support in the SOAP Adapter 5-2

Consume Taleo SOAP APIs 5-6

Invoke a SOAP-Based Integration with a Timestamp 5-6

Configure Custom SOAP Headers for the SOAP Adapter 5-6

Call Oracle Fusion Applications Business Intelligence Publisher Report Services 5-9

Integrate PeopleSoft with Oracle Integration 5-10

Create a Keystore File for a Two-Way, SSL-Based Integration 5-11

Invoke a SOAP Endpoint with an Explicit Authorization Header 5-21

Implement Oracle Enterprise Scheduler Web Service Calls 5-22

6 Troubleshoot the SOAP Adapter

Regenerate the SOAP Adapter Connection After WSDL Definition Updates 6-1

Use the Correct SoapUI Version to Load and Test SOAP Endpoints 6-2

Edit Adapter Connections in Active Integrations 6-2

Multiple SOAP Adapter Invokes with Custom Headers Created Prior to 17.4.3 6-3

SOAP Endpoint Invocation Fails with OSB-380001: mustUnderstand Error 6-4

Specify Connection Property Values with the REST API 6-4

Callback Integrations Fail with a Configured SOAP Action Mismatch Error 6-5

Integrations Fail with SAML Security Policy Selected in Inbound Direction 6-6

Schemas Not Successfully Loaded in Mapper When Using Headers Configured with
WSDLs Ending in asmx 6-6

Resolve SOAP Action Mismatch Errors in the SoapUI 6-6

Resolve Exceptions While Invoking Oracle Integration From External Clients 6-7

Connection Error When Using the Incorrect TLS Version 6-8

Extra Information is Included in the Response Headers Returned as Part of the Response
Message 6-9

iv

Basic Authentication Fields are Unavailable when Updating a SOAP Adapter Connection
after Importing a 16.2.5 Integration 6-10

Unexpected Use of the Suppression Insertion of Timestamp into WS-Security Header
Feature in the SOAP Adapter Causes an Unrelated Error Response 6-10

Pre-17.2.5 Integration Failures with an Invoke SOAP Adapter Configured with the Basic
Authentication Security Policy and Suppress Timestamp Set to No 6-10

v

Preface

This guide describes how to configure this adapter as a connection in an integration in
Oracle Integration.

Note:

The use of this adapter may differ depending on the features you have, or
whether your instance was provisioned using Standard or Enterprise edition.
These differences are noted throughout this guide.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
This guide is intended for developers who want to use this adapter in integrations in
Oracle Integration.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

initiative to build a more inclusive culture that positively impacts our employees, customers,
and partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as Oracle's
offerings and industry standards evolve. Because of these technical constraints, our effort to
remove insensitive terms is ongoing and will take time and external cooperation.

Related Resources
See these Oracle resources:

• Oracle Cloud

http://cloud.oracle.com
• Using Integrations in Oracle Integration Generation 2

• Using the Oracle Mapper with Oracle Integration Generation 2

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

http://cloud.oracle.com
https://www.oracle.com/pls/topic/lookup?ctx=oic&id=ICSUG-GUID-1A01B559-8A46-4D9E-8313-E5400C3A0C9B
https://www.oracle.com/pls/topic/lookup?ctx=oic&id=OCMAP-GUID-C8ED0D16-0602-4EC9-B68B-54A911C23DF3

1
Understand the SOAP Adapter

Review the following conceptual topics to learn about the SOAP Adapter and how to use it as
a connection in integrations in Oracle Integration. A typical workflow of adapter and
integration tasks is also provided.

Topics:

• SOAP Adapter Capabilities

• SOAP Adapter Restrictions

• What Application Version Is Supported?

• Workflow to Create and Add a SOAP Adapter Connection to an Integration

Note:

There are overall service limits with Oracle Integration. A service limit is the quota
or allowance set on a resource. See Service Limits.

SOAP Adapter Capabilities
The SOAP Adapter can consume an external SOAP API in an integration in Oracle
Integration. The message received from Oracle Integration can be passed as payload to an
external SOAP endpoint by the SOAP Adapter. Any response received from the endpoint can
be sent to the next action in the integration for further processing.

The SOAP Adapter can expose inbound SOAP endpoints for accepting SOAP requests that
are addressed to a specific URI. The request body is passed to the next activity present in
the integration as the message payload, along with the SOAP and HTTP headers.

Note:

The SOAP Adapter treats all endpoints as they are exposed. The SOAP Adapter
does not filter or change any of the APIs exposed by the application to which you
are connecting. If there is a native adapter for the application to which you are
connecting, use that adapter instead. If you choose to use the SOAP Adapter
instead of the native adapter, the API restrictions and deprecation policies apply as
specified in the respective application’s documentation. To connect to the Oracle
HCM Cloud SOAP APIs, see Oracle HCM Cloud Adapter Capabilities.

The SOAP Adapter provides the following capabilities.

SOAP Adapter Capabilities When Configured as a Trigger

• SOAP Adapter capabilities when configured as a trigger:

1-1

Important:

Integrations exposed as SOAP APIs (using a SOAP Adapter-specific
connection configured as a trigger) cannot accept attachments.

– Ensures that an incoming structured payload (XML) from a client does not
exceed 50 MB in size. If the size of the payload exceeds 50 MB, an HTTP
error code message is returned to the client.

For additional details about 50 MB payload support, limits, and best practices,
see Service Limits in Provisioning and Administering Oracle Integration
Generation 2.

– Allows configuring only HTTPS protocol-based SOAP endpoints for accepting
incoming SOAP requests.

– Supports configuring the inbound SOAP endpoints using the following security
policies: HTTP Basic Authentication, WS-Username token-based
authentication, OAuth 2.0, and Security Assertion Markup Language (SAML)
(see SAML Policy Security Support in the Trigger (Inbound) Direction and
OAuth 2.0 Policy Security Support in the Trigger (Inbound) Direction).

– Supports accessing of standard and custom SOAP/HTTP header properties
present in the incoming SOAP request and making them available as part of
an Oracle Integration message for any processing in subsequent actions (see
Support for Adding Standard and Custom SOAP and HTTP Headers).

– Enables you to implement the following message exchange patterns on the
inbound SOAP endpoint: synchronous request/response, one-way request,
and asynchronous request with callback support. See Asynchronous Trigger
Support in Orchestrated Integrations.

– Supports TLS server v1.2 in the trigger (inbound) direction.

SOAP Adapter Capabilities When Configured as an Invoke

• SOAP Adapter capabilities when configured as an invoke:

– Ensures that an outgoing structured payload (XML) does not exceed 50 MB in
size. If the size of the payload exceeds 50 MB, an HTTP error code message
is returned.

– Ensures that an incoming unstructured payload (MTOM) from a client does not
exceed 1 GB in size. If the size of the payload exceeds 1 GB, an HTTP error
code message is returned to the client.

– Allows invocation of an HTTPS protocol-based external SOAP endpoint,
thereby encrypting the communications using transport layer security (TLS)
(see Transport Layer Security Version Support).

– Allows invocation of HTTP protocol-based SOAP endpoints.

– Allows invocation of external SOAP endpoints that are unprotected and
protected using HTTP Basic Authentication and WS-Username token-based
authentication.

– Allows invocation of external SOAP endpoints hosted on TLS servers v1.1 and
v1.2.

Chapter 1
SOAP Adapter Capabilities

1-2

– Supports invocation of two-way, SSL-enabled external SOAP endpoints (see Two-
Way SSL Support for Outbound Connections).

– Supports configuration of standard and custom SOAP/HTTP header properties
available to the outbound SOAP request (see Support for Adding Standard and
Custom SOAP and HTTP Headers).

– Supports invocation of external SOAP endpoints that implement the following
message exchange patterns: synchronous request/response, one-way request, and
asynchronous request with callback support (using WS-Addressing) (see
Asynchronous Callback Response Support in the Invoke (Outbound) Direction).

– Supports propagation of the subject between co-located modules (for example,
integrations to processes and processes to integrations). This enables the module to
provide custom features and restrictions based on the current subject. When an
integration invokes another process or integration, the subject is propagated using a
JWT token. Similarly, when a process invokes an integration, it propagates the
subject using JWT (see Support for Invoking Co-located SOAP Endpoints).

– Supports the dynamic discovery of endpoints. This is useful for scenarios in which
the endpoint invoked by the SOAP Adapter must be dynamically configured based on
runtime logic (see Support for Dynamic Endpoints).

– Supports the following:

* Sending binary and nonbinary content as an MTOM attachment (up to 1 GB) as
part of a request message while invoking external SOAP APIs.

* Receiving binary and nonbinary content as an MTOM attachment (up to 1 GB) as
part of a response message while invoking external SOAP APIs.

SOAP Adapter Restrictions
Note the following SOAP Adapter restrictions.

• Transport Layer Security (TLS) version 1.3 is not supported.

• Two-way SSL is not supported for calls to external services through the connectivity
agent. Two-way SSL requires direct connectivity from Oracle Integration without the
connectivity agent.

• You cannot invoke a SOAP endpoint from Oracle Integration that is using SAML-based
security. This is by design. The SAML security policy is only supported with trigger
connections.

• The SOAP Adapter does not support RPC-style WSDL binding.

• Integrations exposed as SOAP APIs (using a SOAP Adapter-specific connection
configured as a trigger) cannot accept attachments.

• Without specifying a header, multiple parts in a document-style WSDL are not supported.

• You cannot switch from an asynchronous trigger/callback invoke to nonasynchronous
trigger/invoke.

• NT LAN Manager (NTLM) authentication is not supported.

• SOAP WSDL 1.2 binding is not supported in the inbound direction. That version is only
supported in the outbound direction.

• Operation overloading in the WSDL file is not supported with the SOAP Adapter. For
example, assume your WSDL file includes the following operations with the same name,
but different cases:

Chapter 1
SOAP Adapter Restrictions

1-3

– getDocumentStatus

– GetDocumentStatus

Each operation is also using a different request payload.

If you select the GetDocumentStatus operation in the Adapter Endpoint
Configuration Wizard, it is invoked at runtime, but the request payload
corresponds to the getDocumentStatus operation. The mapper also shows the
payload corresponding to the getDocumentStatus operation. If you change the
order in the WSDL and upload it on the Connections page, this leads to activation
failure. Oracle recommends the following:

– Use unique operation names.

– Comment out the other operation in the uploaded WSDL when creating a
connection.

What Application Version Is Supported?
For information about which application version is supported by this adapter, see the
Connectivity Certification Matrix.

See Connectivity Certification Matrix.

Workflow to Create and Add a SOAP Adapter Connection to
an Integration

You follow a very simple workflow to create a connection with an adapter and include
the connection in an integration in Oracle Integration.

Step Description More Information

1 Create the adapter connections
for the applications you want to
integrate. The connections can
be reused in multiple
integrations and are typically
created by the administrator.

Create a SOAP Adapter Connection

2 Create the integration. When
you do this, you add trigger and
invoke connections to the
integration.

Create Integrations and Add the SOAP Adapter
Connection to an Integration

3 Map data between the trigger
connection data structure and
the invoke connection data
structure.

Map Data in Using Integrations in Oracle Integration
Generation 2

4 (Optional) Create lookups that
map the different values used by
those applications to identify the
same type of object (such as
gender codes or country codes).

Manage Lookups in Using Integrations in Oracle
Integration Generation 2

5 Activate the integration. Manage Integrations in Using Integrations in Oracle
Integration Generation 2

Chapter 1
What Application Version Is Supported?

1-4

https://docs.oracle.com/en/cloud/paas/integration-cloud/certification-matrix/adaptercertificationmatrix.pdf

Step Description More Information

6 Monitor the integration on the
dashboard.

Monitor Integrations in Using Integrations in Oracle
Integration Generation 2

7 Track payload fields in
messages during runtime.

Assign Business Identifiers for Tracking Fields in
Messages and Manage Business Identifiers for
Tracking Fields in Messages in Using Integrations in
Oracle Integration Generation 2

8 Manage errors at the integration
level, connection level, or
specific integration instance
level.

Manage Errors in Using Integrations in Oracle
Integration Generation 2

Chapter 1
Workflow to Create and Add a SOAP Adapter Connection to an Integration

1-5

2
SOAP Adapter Concepts

The following sections describe SOAP Adapter capabilities in more detail.

Topics:

• SOAP Specifications

• Transport Layer Security Version Support

• Version Suppression of the Timestamp in the WS-Security Header

• Ability to Specify if the Timestamp is Not Required in the Response Message

• SOAP Action Validation Disabling for Inbound Requests

• Asynchronous Callback Response Support in the Invoke (Outbound) Direction

• Support for Adding Standard and Custom SOAP and HTTP Headers

• Support for Multiple Part Messages in Document-Style WSDLs

• Two-Way SSL Support for Outbound Connections

• SAML Policy Security Support in the Trigger (Inbound) Direction

• OAuth 2.0 Policy Security Support in the Trigger (Inbound) Direction

• Asynchronous Trigger Support in Orchestrated Integrations

• Support for Invoking Co-located SOAP Endpoints

• Support for Uploading a WSDL with Schemas in a ZIP File

• Support for Using MTOM to Transfer Large Binary Payloads

• Support for Dynamic Endpoints

SOAP Specifications

The following specifications are supported:

• SOAP 1.2

• WS-I Security (for SSL, TLS, and ciphers)

• SOAP 1.1 binding for MTOM

• WS-Addressing

• WS-Security Username Token

Transport Layer Security Version Support

Specifying the transport Layer Security (TLS) version of the target server is supported. The
TLS protocol provides privacy and data integrity between two communicating computer
applications. See Configure Connection Properties.

2-1

Version Suppression of the Timestamp in the WS-Security Header

Version suppression of the timestamp in the WS-Security header is supported.
Suppression applies to the Username Password Token security policy in the invoke
(outbound) direction. In secure Web Services transactions, a WS-Utility (WSU)
timestamp can be inserted into a WS-Security header to define the lifetime of the
message in which it is placed. See Configure Connection Properties.

Ability to Specify if the Timestamp is Not Required in the Response Message

You can specify if the timestamp is not required in the response message. See
Configure Connection Properties.

SOAP Action Validation Disabling for Inbound Requests

Disabling SOAP action validation for inbound requests on the Operations page of the
Adapter Endpoint Configuration Wizard is supported. This is useful for environments in
which your WSDL includes custom code and you want to bypass validation. See
Invoke Operation Page and Callback Integrations Fail with a Configured SOAP Action
Mismatch Error.

Asynchronous Callback Response Support in the Invoke (Outbound) Direction

An asynchronous callback response in the invoke (outbound) direction is supported.
This feature is enabled when the WSDL used in the connection defines a one-way
operation in the selected service/port. The callback response endpoint must be
specified through a different integration flow. The callback endpoint can be secured
with any policy supported by the SOAP Adapter on the trigger side.

Based on the operation selection, if it is a one-way operation, you are asked to select
the expected response type (no response or delayed response) on the Callback
Operation page of the Adapter Endpoint Configuration Wizard.

• No Response: One-way invocation.

• Delayed Response: Specify the callback port type, operation, callback flow
identifier, and version.

The callback flow identifier and version are used to determine the callback endpoint
and sent in the ReplyTo header while sending a request to the outbound endpoint.

Support for Adding Standard and Custom SOAP and HTTP Headers

Adding standard and custom SOAP and HTTP headers to outbound and inbound
requests and handling the responses with headers to propagate back to the user are
supported. This configuration enables header configuration for the inbound service
and header propagation for the outbound service. WS-Addressing headers
propagation is not supported (for example, MessageId, ReplyTo, FaultTo, and so on).
All header information and body elements are encapsulated under a single element so
the mapper can display request and response information. See Add the SOAP
Adapter Connection to an Integration.

Chapter 2

2-2

Support for Multiple Part Messages in Document-Style WSDLs

Note:

The SOAP Adapter does not support RPC-style WSDL bindings. Only document-
style WSDL bindings are supported.

• Multiple part messages in document-style WSDLs is supported. The support is provided
for both inbound and outbound adapter configurations.

Standard SOAP headers can be defined in a WSDL in two ways:

– Implicit headers:

With this type, the request header and body part are in different message types. In
the binding section of the WSDL, the header uses the part name within the message
type and message type name. The body does not have any part names explicitly
defined in it.

<wsdl:message name="CreateUserRequestHeader">
<wsdl:part name="requestHeader" element=" tns:UserCreate"/>
</wsdl:message>
<wsdl:message name="CreateUserRequest">
<wsdl:part element="tns:UserCreateHeader" name="parameters"/>
</wsdl:message>
<wsdl:binding name="UserBinding" type="tns:UserEndPoint">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/
soap/http" />
<wsdl:operation name="CreateUser">
<soap:operation soapAction="http://example.com/CreateUser" />
<wsdl:input> <soap:body use="literal" />
<soap:header use="literal" part="requestHeader"
message="tns:CreateUserRequestHeader"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:binding/>

– Explicit headers:

With this type, there are multiple parts in a single message type in the WSDL: one for
the header and one for the body payload. The header is specified by its part name.
The body uses its own name.

<wsdl:message name="CreateUserRequest">
<wsdl:part element="tns:UserCreateHeader" name="parameters"/>
<wsdl:part name="requestHeader" element=" tns:UserCreate"/>
</wsdl:message>
<wsdl:binding name="UserBinding" type="tns:UserEndPoint">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/
soap/http" />
<wsdl:operation name="CreateUser">

Chapter 2

2-3

<soap:operation soapAction="http://example.com/CreateUser" />
<wsdl:input> <soap:body use="literal" />
<soap:header use="literal" part="requestHeader"
message="tns:CreateUserRequest"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:binding/>

Note:

Without specifying a header, multiple parts in a document-style
WSDL are not supported.

When you invoke the Adapter Endpoint Configuration Wizard to configure the
SOAP Adapter as a trigger or invoke, the Operations page detects that the WSDL
includes defined SOAP request and/or response headers and automatically
enables the button to configure SOAP headers for the endpoint. You can select No
to remove the headers for the endpoint. You cannot modify these headers. The
subsequent Request Header and Response Header pages of the WSDL load and
show the specific headers defined in the WSDL. See Add the SOAP Adapter
Connection to an Integration.

Two-Way SSL Support for Outbound Connections

The use of two-way SSL for outbound communications is supported. This feature
enables an integration to invoke web services hosted on a two-way, SSL-enabled
server and receive a response in return.

You must satisfy the following requirements to use this feature:

• Upload the following certificates in the Upload Certificate dialog in Oracle
Integration. See Upload an SSL Certificate.

– Upload a two-way SSL identity certificate type. This certificate is created from
the client server on which two-way SSL must be enabled

– Upload a trust certificate type for the outbound call. This is the certificate for
the client server that hosts your web service.

• Specify a WSDL URL with secure HTTP (https) on the Connection Properties
dialog. This WSDL must use the web service URL hosted on the two-way, SSL-
enabled server.

• Two-way SSL is only supported with the JCA transport mechanism of the SOAP
Adapter. The HTTP transport mechanism of the SOAP Adapter is not supported.

• Configure the server that hosts the web service for two-way SSL communication.

• Configure the SOAP Adapter as both a trigger and invoke. When you create the
integration, you configure this same SOAP Adapter connection as both the trigger
and invoke.

Chapter 2

2-4

SAML Policy Security Support in the Trigger (Inbound) Direction

The Security Assertion Markup Language (SAML) is an XML-based, open-standard data
format for exchanging authorization and authentication information between two different
systems, typically an identity provider and a service provider. A SOAP Adapter trigger-
specific connection can be configured to protect inbound SOAP endpoints using SAML token-
based authentication. This configuration can be used to implement use cases that involve
receiving callback messages from Oracle ERP Cloud upon completion of file-based data
import (FBDI) jobs and upon completion of asynchronous operations in any Oracle ERP
Cloud application, such as fusion order management (FOM). However, any client that
supports SAML bearer token authentication can use this policy.

OAuth 2.0 Policy Security Support in the Trigger (Inbound) Direction

Integrations exposing SOAP endpoints using the SOAP Adapter as a trigger connection can
be OAuth 2.0-protected. OAuth 2.0 is an industry-standard protocol for authorization. OAuth
2.0 focuses on client developer simplicity while providing specific authorization flows for web
applications.

Asynchronous Trigger Support in Orchestrated Integrations

When a call is made to an asynchronous service, the response is expected at a later time
and possibly to a different endpoint. If the response is expected at a different endpoint, the
endpoint information must be passed to the asynchronous service during the request using
the WS-Addressing ReplyTo header. In this case, the Oracle Integration endpoint with the
SOAP Adapter configured as the (trigger) inbound connection acts as an asynchronous
service. Oracle Integration determines if the selected operation is asynchronous and then
enables you to provide callback endpoint details through a ReplyTo standard header and to
use this information to invoke the callback response.

The following requirements must be satisfied to use this feature:

• This feature is only available when the SOAP Adapter is included in orchestrated
integrations.

• The asynchronous service uses only the SOAP Adapter-supported OWSM policies. The
callback endpoint being specified in the ReplyTo header must support one of the security
policies available on the Connections page for the invoke-only role.

• The corresponding callback invoke must also be configured when the trigger is
configured for an asynchronous response.

• The request payload contains a Reply-To header that contains the value of the endpoint
to which to send the asynchronous response.

In the trigger direction, you must configure the Adapter Endpoint Configuration Wizard as
follows:

• On the Callback Operations Page, you select Delayed Response because a callback
response is expected.

• On the Headers page, the Do you want to configure headers for this Endpoint option
is automatically enabled. The SOAP Headers option is automatically selected in the
Request Headers section and cannot be changed.

• On the Request Headers page, the WS-Addressing ReplyTo, MessageID, and Action
headers are automatically populated in the Standard SOAP Headers tab.

In the invoke direction, you must configure the Adapter Endpoint Configuration Wizard as
follows:

Chapter 2

2-5

• On the Welcome page, select Yes to configure the SOAP Adapter as a callback
invoke.

• On the Operations page, the list of port types is displayed (instead of the service
and port). You must select the callback port type and callback operation. The
Callback Operations page is disabled as it is not an outbound asynchronous case.

• On the Headers page, the headers configuration option is automatically enabled.
The SOAP Headers option is automatically selected in the Request Headers
section and cannot be changed.

• On the Request Headers page, the WS-Addressing ReplyTo, MessageID, Action
headers are populated in the Standard SOAP Headers tab.

During integration creation, you must explicitly map the WS-Addressing headers from
Inbound Request to Callback Invoke Request in addition to the other required
mapping options. During runtime, when Oracle Integration is invoked with the request
having a wsa:ReplyTo header, the service invokes the endpoint sent in the header with
the response.

Note:

You cannot switch from an asynchronous trigger/callback invoke to
nonasynchronous trigger/invoke.

Support for Invoking Co-located SOAP Endpoints

You can propagate the subject between co-located modules (for example, Integrations
to Processes and Processes to Integrations). This enables the module to provide
custom features and restrictions based on the current subject.

Oracle Integration can automatically determine if an outbound (invoke) SOAP endpoint
being invoked by an integration is local (co-located) or remote to Oracle Integration
and then optimize the invoke call to the endpoint. Co-located means the integrations
are running on the same host instance or in the same domain. If the outbound
endpoint is co-located, the endpoint is invoked using an optimized HTTP request using
a JSON Web Token (JWT) token for authorization. The optimized HTTP request is a
plain HTTP request (non-SSL) sent directly to the managed server. The currently
configured security policy is overwritten by a JWT token. JWT is a JSON-based open
standard (RFC 7519) for creating access tokens that assert some number of claims.
For example, a server can generate a token that has the claim "logged in as admin"
and provide that to a client. The client can then use that token to prove that it is logged
in as admin. The tokens are signed by the server's key. Therefore, the client and
server can both verify that the token is legitimate.

Support for Uploading a WSDL with Schemas in a ZIP File

When creating a connection, you can upload a ZIP file with a WSDL and
dependencies such as other WSDLs and XSDs nested inside the ZIP. This can be
useful in scenarios in which you adopt the standard canonical model (OAGIS) in
integrations. If you upload a ZIP, you must ensure that the WSDLs are available in the
top two directory levels. This makes the WSDLs available for selection in the Service
WSDL dropdown list on the Connections page. There can be any number of WSDLs
at these two levels. Any WSDLs below these levels do not appear for you to select in
the Service WSDL dropdown list.

Chapter 2

2-6

The following use cases are supported:

• The ZIP file contains the main WSDL (for this example, named SalesOrderEBSV2.wsdl)
in the immediate folder and its dependencies (EBM, other XSDs, and so on) nested
deeply inside a folder.

For this example, the main WSDL reference must be corrected to reference
EnterpriseObjectLibrary as shown.

<xsd:import namespace="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
SalesOrder/V2" schemaLocation="./EnterpriseObjectLibrary/Core/EBO/
SalesOrder/V2/SalesOrderEBM.xsd"/>
<xsd:import namespace="http://xmlns.oracle.com/EnterpriseObjects/Core/
Common/V2" schemaLocation="./EnterpriseObjectLibrary/Core/Common/V2/
Meta.xsd"/>

• The ZIP file contains a main WSDL (for this example, named service.wsdl) and
references another WSDL and XSDs:

• The ZIP file contains a WSDL (for this example, named service.wsdl) and any number
of XSD dependencies in the same directory.

Support for Using MTOM to Transfer Large Binary Payloads

Message Transmission Optimization Mechanism (MTOM) support is provided. MTOM is a
W3C Message Transmission Optimization Mechanism, a method for efficiently sending binary
data to and from web services. Binary objects in SOAP are represented as base64 encoded
messages, which essentially expands the data by about 33%. For large payloads, this can

Chapter 2

2-7

significantly impact performance and transmission time. MTOM provides a solution to
transfer a large binary payload using optimization. MTOM/XOP optimizes a SOAP
message and the XOP processing serializes it into a MIME multipart/related message.
The XOP processing extracts the base64-encoded data from the SOAP message and
packages it as separate binary attachments within the MIME message. See Configure
MTOM Support in the SOAP Adapter.

MTOM is currently supported only on the invoke connection in an integration.

Note:

MTOM upload/download cannot be invoked asynchronously with a large
payload and high concurrency. This scenario can result in an out-of-memory
error depending upon payload size and concurrency. Take care in your
design. For example, in a scheduled orchestrated integration with scheduling
set to every 10 minutes, four flows can run consistently with 512 MB payload
every 10 minutes on a two-node Oracle Integration cluster without any out-
of-memory errors.

Support for Dynamic Endpoints

The SOAP Adapter supports the dynamic discovery of endpoints. This is useful for
scenarios in which the endpoint that the SOAP Adapter invokes must be dynamically
configured based on runtime logic. This feature is applicable for both new integrations
and existing integrations (edited to add new invokes) that include the SOAP Adapter
as an invoke connection. The endpoint invoked must support the same security
policies as supported in Oracle Integration. However, WS-Addressing is not used.
Instead, two types of properties in the mapper are provided for configuring dynamic
invocation. These properties are used during runtime to override the properties
configured on the Connections page during design time.

• Endpoint Properties: Override the endpoint details.

– EndpointURI: Replaces the existing endpoint URI specified on the
Connections page before invoking the endpoint.

– SoapAction: Replaces the existing SOAP action validation setting before
invoking the endpoint.

• Security Properties: Override the endpoint credential details, if required.

– If the connection uses Username Password Token:

* Username: Replaces the username credentials before invoking the
endpoint.

* Password: Replaces the password credentials before invoking the
endpoint.

* ignoreNonce: Accepts a boolean true/false value. The default is false.
Setting this value to true in the request prevents the Nonce and Created
headers from being sent in the Username Password Token.

* ignoreCreated: Accepts a boolean true/false value. The default is false.
Setting this value to true in the request prevents the Nonce and Created
headers from being sent in the Username Password Token.

Chapter 2

2-8

For Username Password Token, Oracle Integration supports the WS-Security 2004
version (SOAP Message Security 1.0 specification) in the outbound direction. This
contains a SOAP message security header:

<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://
docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsu:Timestamp wsu:Id="TS-910919AD52F5349E1B16034288264664">
 <wsu:Created>2020-10-23T04:53:46.466Z</wsu:Created>
 <wsu:Expires>2020-10-23T04:54:46.466Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:UsernameToken
wsu:Id="UsernameToken-910919AD52F5349E1B16034288238563">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">password</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">VG04/
faWm6rFXSuu8kBGJg==</wsse:Nonce>
 <wsu:Created>2020-10-23T04:53:43.856Z</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>

The specification says Nonce and Created are optional and useful to avoid distributed
denial-of-service (DDOS) attacks. To support endpoints that only support Username
Password Token without Nonce and Created, the ignoreNonce and ignoreCreated
connectivity properties are provided in the outbound request mapper for SOAP
Adapter connections that use Username Password Token.

– If the connection uses Basic Authentication Security:

* Authorization: Replaces the authorization header before invoking the endpoint.

The following dynamic properties are visible for configuration in the mapper and used
during runtime to override the properties configured during design time.

– Sample outbound request: The ConnectivityProperties section and the Headers
and/or Body sections are displayed with properties for configuration. The
ConnectivityProperties section is not visible if this is a callback invoke request.

Chapter 2

2-9

When expanded, ConnectivityProperties shows the following for an
outbound request.

– Username Password Token security policy: The EndpointProperties section
and SecurityProperties section are visible with properties for configuration
under the main ConnectivityProperties section.

Chapter 2

2-10

– Basic Authentication security policy: The EndpointProperties section and
SecurityProperties section are visible with properties for configuration under the
main ConnectivityProperties section.

– No security policy: The EndpointProperties section is visible with properties for
configuration under the main ConnectivityProperties section.

Chapter 2

2-11

Note:

• Overriding security properties with the dynamic endpoint invocation
feature logs the details mapped when trace is enabled during activation
of the integration.

• When using dynamic endpoints with the SOAP Adapter, be aware that if
you activate an integration using this feature with Enable tracing and
Include payload selected, the password used in the payload during
runtime is exposed in clear text in the log file.

Authenticate Requests for Invoking Oracle Integration Flows
Integrations support multiple authentication methods suited to different applications
and use cases. The adapters used as a trigger connection to stand up the endpoints/
listener for a specific integration can support one or multiple authentication methods.

The following sections discuss the use cases, pros and cons, prerequisites, and
instructions necessary for sending a request for each of the supported authentication
methods.

Topics:

• About Requests to Invoke Integrations

• About OAuth 2.0 Grants

• Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments

• Use OAuth 2.0 Grants in Identity Domain Environments

See OAuth Grant Types.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-12

https://oauth.net/2/grant-types/

About Requests to Invoke Integrations
All integrations using this adapter as a trigger connection are protected by default using
HTTP Basic Authentication and OAuth token-based authentication.

You currently can authenticate your requests to invoke integrations in either of the following
ways:

• Using HTTP Basic Authentication by sending the credentials of the user (that is, created
in Oracle Identity Cloud Service) through the HTTP authorization header

• Sending an OAuth access token in the header while invoking an Oracle Integration
endpoint after acquiring the access token from Oracle Identity Cloud Service that serves
as the OAuth authorization provider

You must have the ServiceUser role in Oracle Identity Cloud Service to invoke integrations.

Invoke Integration Endpoints Using HTTP Basic Authentication

This authentication method allows the credentials belonging to an Oracle Integration user to
send the request to invoke an integration. You must create this user in the Oracle Integration
identity provider Oracle Identity Cloud Service and ensure that the user was granted the role
for invoking an integration.

The user can be:

• Human - representing a business user such as a sales representative, technician, or any
other person for invoking an integration

• Nonhuman - representing a service integration account used by an external client
application for invoking an integration

Even though it's easy to implement the authentication scheme, this is the least secure way to
send a request to Oracle Integration for invoking an integration. Also, Oracle Integration
doesn't recommend this authentication scheme.

In addition, the customer must ensure the credentials, when reset, are provided to the client
application that invokes the integration to ensure a new set of credentials are being used
from then on.

Assign appropriate user(s) to the various Oracle Integration roles. For standard/production
configurations, use the ServiceUser role. (See Oracle Integration Roles in Provisioning and
Administering Oracle Integration Generation 2.)

1. From the menu on the Oracle Cloud Infrastructure home page, select Identity &
Security, then select Federation.

2. In the Federation table, click OracleIdentityCloudService.

3. In the Oracle Identity Cloud Service Console field, click the URL.

4. Click the applications page icon.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-13

5. Click the application.

6. To assign a user, go to the Application Roles section of Oracle Identity Cloud
Service.

7. Make a request to trigger an endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Basic <base64-encoded username:password>'

Invoke Integration Endpoints Using OAuth Token-Based Authentication

This authentication scheme allows the external client to acquire a token that is also
sent as part of the request sent to invoke an integration.

The most important step for an application in the OAuth flow is how the application
receives an access token (and optionally a refresh token). A grant type is the
mechanism used to retrieve the token. OAuth defines several different access grant
types that represent different authorization mechanisms.

Applications can request an access token to access protected endpoints in different
ways, depending on the type of grant type specified in the Oracle Identity Cloud
Service application. A grant is a credential representing the resource owner's
authorization to access a protected resource.

The following sections discuss the various grant types and their pros/cons, along with
instructions on how to configure the specific grant type.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-14

About OAuth 2.0 Grants
There are several OAuth 2.0 grant types you can use in Oracle Integration. Review the
following information to identify the grant type to use for your use case.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-15

Grant Type About the Grant Type Use Cases and Risks

JWT user assertion

(recommended)

A user assertion is a user
token that contains identity
information about the user.
The user can either represent
a human or a service
integration account created for
identifying a specific calling
application.

The user assertion is used
directly as an authorization
grant to obtain an access
token. The client details are
provided either as an
authentication header in the
request or as a client
assertion.

The user assertion grant is
more secure than the resource
owner password credentials
grant because the user’s
credentials are never exposed.

The user assertion workflow:

• Is used with confidential
clients. The OAuth clients
are trusted to assert a
user/service integration
account identity on behalf
of the user/service
integration account.

• The resource owner's
credentials (Oracle
Integration user) are
never accessible to the
client application. It just
uses the assertion of the
resource owner.

• It isn’t redirection-based.
It takes a request only
from the client application
to the authorization
server. The user is not
redirected between
interfaces to authorize the
request.

This user assertion grant
works as follows:

• The client requests an
access token by providing
a user assertion. The
client details are provided
either as an
authentication header in
the request or as a client
assertion.

• The OAuth service
authenticates the client

This grant is used by
applications that want to
programmatically invoke
integrations without any user
intervention.

The client application
impersonates the user by
sending the user assertion to
Oracle Identity Cloud Service
while requesting token access.
An access token is returned in
the user context.

The user can either represent
a human or a service
integration account created for
identifying a specific calling
application.

Oracle Integration
recommends the use of this
grant for acquiring an OAuth
access token by the
applications that must
programmatically start the
integration without any user
intervention.

Risks
Carefully use this grant (only
with first party/trusted clients)
because it allows for trivial
impersonation to more highly
privileged accounts on
services.

Usage
See Prerequisites for JWT
User Assertions.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-16

Grant Type About the Grant Type Use Cases and Risks

and, if valid, supplies an
access token.

The JWT user assertion
characteristics are as follows:

• Does not require the
client to have knowledge
of user credentials.

• There is no browser-
based end user
interaction.

• A refresh token is
allowed.

• An access token is in the
context of the end user.

In this OAuth flow:

• A user attempts to access
a client application by
sending a generated user
assertion.

• The client application
requests an access token,
and often a refresh token,
by providing a user
assertion or a third-party
user assertion.

• The Oracle Identity Cloud
Service authorization
server returns the access
token to the client
application.

• The client application
uses the access token in
an API call to invoke the
integration.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-17

Grant Type About the Grant Type Use Cases and Risks

Authorization code The authorization code grant
type is used by web and
mobile applications. It differs
from most of the other grant
types by first requiring the
application to launch a
browser to begin the
integration. At a high level, the
integration consists of the
following steps:

• The application opens a
browser to send the user
to the OAuth server.

• The user sees the
authorization prompt and
approves the application
request.

• The user is redirected
back to the application
with authorization code in
the query string.

• The application
exchanges the
authorization code for an
access token.

The authorization code has
the following characteristics:

• Does not require the
client to have knowledge
of user credentials.

• Is a browser-based end
user interaction.

• A refresh token is
allowed.

• An access token is in the
context of the end user.

In this OAuth flow:

• A user clicks a link in a
web server client
application to request
access to protected
resources.

• The client application
redirects the browser to
the Oracle Identity Cloud
Service authorization
endpoint with a request
for an authorization code:

oauth2/v1/
authorize

• The
Oracle Identity Cloud
Service authorization

This grant is used by the
applications such as web
portals and mobile
applications involving user
interactions that may end up
invoking the integrations. In
this type of use case, the user
signing in to the web portal/
mobile application explicitly
provides the consent by
authenticating against Oracle
Integration to let their
application start the
integration.

Usage
See Prerequisites for
Authorization Code.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-18

Grant Type About the Grant Type Use Cases and Risks

server returns an
authorization code to the
client application through
a browser redirect after
the resource owner gives
consent.

• The client application
subsequently exchanges
the authorization code for
an access token, and
often a refresh token.

• The
Oracle Identity Cloud
Service authorization
server returns the access
token to the client
application.

• The client application
uses the access token in
an API call to invoke the
integration.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-19

Grant Type About the Grant Type Use Cases and Risks

Resource owner password
credential (ROPC)

The resource owner’s
password credentials (that is,
the user name and password)
can be used by the OAuth
client directly as an
authorization grant to obtain
an access token.

The resource owner password
credentials grant type is
suitable for cases where the
resource owner has a trust
relationship with the OAuth
client.

When using the resource
owner password credentials
grant, the user provides the
credentials (user name and
password) directly to the
application. The application
then uses the credentials to
obtain an access token from
the OAuth token service.

The resource owner password
credentials grant is a grant
workflow where the client
application, together with its
client identifier and secret,
sends the user name and
password in exchange for an
access token. Instead of the
user having to log in and
approve the authorization
request in a web interface, the
user can enter the user name
and password in the client
application user interface
directly. This workflow has
different security properties
than other OAuth workflows.
The primary difference is that
the user’s password is
accessible to the application.
This requires a strong trust of
the application by the user.

The resource owner password
credentials grant has the
following characteristics:

• The client is required to
have knowledge of user
credentials.

• Is not a browser-based
end user interaction.

• A refresh token is
allowed.

• An access token is in the
context of the end user.

This grant can be used by
applications that want to
programmatically invoke the
integration without any user
intervention.

Use this grant only with
trusted first-party clients that
securely handle user
credentials.

Even though this grant type
can be used by client
applications to acquire an
OAuth access token to use for
sending the request to invoke
an integration in a
programmatic manner, Oracle
Integration does not
recommend the resource
owner password credential
grant because of the following
risks:

Risks
• This grant type carries a

higher risk than other
grant types because it
maintains the password
anti-pattern this protocol
seeks to avoid. The client
can abuse the password
or the password can
unintentionally be
disclosed to an attacker
(for example, through log
files or other records kept
by the client).

• The application can
request a scope with
complete access to user
resources once it
possesses the password
credential.

• Passwords expire.
• This grant is currently in a

deprecated state.
Usage
See Prerequisites for
Resource Owner Password
Credentials.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-20

Grant Type About the Grant Type Use Cases and Risks

In this OAuth flow:

• The user clicks a link in
the client application
requesting access to
protected resources.

• The client application
requests the resource
owner's user name and
password.

• The user logs in with their
user name and password.

• The client application
exchanges those
credentials for an access
token, and often a refresh
token, from the Oracle
Identity Cloud Service
authorization server.

• The Oracle Identity Cloud
Service authorization
server returns the access
token to the client
application.

• The client application
uses the access token in
an API call to invoke the
integration.

Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments
To use an OAuth 2.0 grant type with this adapter in Oracle Integration, you must perform the
following prerequisites.

• Prerequisites for All Grants

• Prerequisites for JWT User Assertion

• Prerequisites for Authorization Code

• Prerequisites for Resource Owner Password Credentials

Note:

Understand the following restrictions before performing OAuth 2.0 grants.

• Do not let external client applications use the system-created Oracle Identity
Cloud Service application to authenticate against Oracle Integration endpoints.

• The scope of the client application is for accessing all deployed integrations in
that service instance. There is no support for limiting access to a subset of
integrations.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-21

Prerequisites for All Grants

Perform the following tasks for each grant type you use.

• Obtain the Oracle Identity Cloud Service URL.

1. Go to the URL for your Oracle Integration instance.
For example, if your Oracle Integration instance is https://
myhost.example.com/ic/home, when you go to that URL, you are redirected to
a URL such as:

 https://idcs-c2881.identity.myhost.example.com/ui/v1/signin

2. Replace /signin with /adminconsole to access Oracle Identity Cloud Service.
For example:

https://idcs-c2881.identity.myhost.example.com/ui/v1/adminconsole

You'll be prompted to sign in again to the Oracle Identity Cloud Service
Console.

3. Log in to the Oracle Identity Cloud Service Console with your identity domain
administrator credentials.

• Check the Oracle Integration application in Oracle Identity Cloud Service.
When an Oracle Integration instance is provisioned, an Oracle Identity Cloud
Service application is created for that Oracle Integration instance. The application
name is OICINST_service_instance_name.

1. Log in to the Oracle instance to get the service instance name.

https://myhost.example.com/ic/home

2. Log in to Oracle Identity Cloud Service to get the application.

3. Go to Applications and find the application with the above name to access
the application.

Alternatively, you can find the application through the Oracle Cloud Dashboard.
When you click the IDCS Application link on the details page of the Oracle
Integration instance (for this example, named OIC), it opens the Oracle Identity
Cloud Service application for Oracle Integration that is already created.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-22

Prerequisites for JWT User Assertion

Perform the following tasks.

• Validate the Oracle Integration application and user roles.

1. Verify that the Is Refresh Token Allowed option is enabled for the Oracle Identity
Cloud Service application.

2. Check under the Configuration > Resources section of the application. Note also
that there is a special scope predefined (urn:opc:resource:consumer::all), which
can trigger integrations using OAuth.

3. Add the appropriate user(s) to the various Oracle Integration roles. For standard/
production configurations, use the ServiceUser role. (See Oracle Integration Roles in
Provisioning and Administering Oracle Integration Generation 2.)

4. To assign the user, go to the Application Roles section of the application.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-23

• Generate the key:

1. Generate the self-signed key pair.

keytool -genkey -keyalg RSA -alias <your_alias> -keystore
<keystore_file> -storepass <password> -validity 365 -keysize 2048

##example
keytool -genkey -keyalg RSA -alias assert -keystore
sampleKeystore.jks -storepass samplePasswd -validity 365 -
keysize 2048

2. Export the public key for signing the JWT assertion.

keytool -exportcert -alias <your_alias> -file <filename> -
keystore <keystore_file> -storepass <password>

##example
keytool -exportcert -alias assert -file assert.cer -keystore
sampleKeystore.jks -storepass samplePasswd

This should show a success message e.g. Certificate stored in
file <assert.cer>

3. Convert the keystore to P12 format.

keytool -importkeystore -srckeystore <filename> -srcstorepass
<password> -srckeypass <password> -srcalias <your_alias> -
destalias <your_alias> -destkeystore <destFileName> -
deststoretype PKCS12 -deststorepass <password> -destkeypass
<password>

##example
keytool -importkeystore -srckeystore sampleKeystore.jks -
srcstorepass samplePasswd -srckeypass samplePasswd -srcalias
assert -destalias assert -destkeystore assert.p12 -deststoretype
PKCS12 -deststorepass samplePasswd -destkeypass samplePasswd

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-24

This should show a success message e.g. Importing keystore
sampleKeystore.jks to assert.p12...

4. Export the private key from the P12 keystore.

openssl pkcs12 -in <destFileName> -nodes -nocerts -out <pem_file>

##example
openssl pkcs12 -in assert.p12 -nodes -nocerts -out private_key.pem

This should show a success message: MAC verified OK

• Configure the client application:
To trigger the integration with OAuth, a client application is required.

1. In the Oracle Identity Cloud Service Console, go to the Application section to create
a new application that allows you to trigger an integration with OAuth.

The application is added as a confidential application.

2. Complete the Details section, and go to the Client section.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-25

3. In the Client section, select Configure this application as a client now and
add the following.

a. Select Client Credentials and JWT Assertion for the Allowed Grant
Types.

b. In the Security section, select Trusted Client and upload the certificate
created in the previous section (Generate the key - Step 2).

c. Select Specific in the Authorized Resources section.

d. Click Add Scope under the Resources section.

e. Find the Oracle Integration application, and click >.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-26

f. Add the scope containing urn:opc:resource:consumer::all, and click >.
The scope containing urn:opc:resource:consumer::all is added.

g. Save your changes.

4. Skip the rest of the wizard steps and save the application.

5. Activate the application for use.

• Add a certificate as a trusted partner:
Even though you imported the signing certificate in the application, Oracle Identity Cloud
Service requires you to also have the certificate as a trusted partner certificate. Upload
the certificate created in the previous section. (See Generate the key - Step 2.)

• Generate the JWT user assertion:

1. Generate the JWT user assertion using the generated private key and simple Java
code.

Note:

You can use the https://github.com/jwtk/jjwt library to generate the user
assertion. There are many libraries listed at https://jwt.io/ for multiple
technologies.

Sample:
header:
{
"alg": "RS256",
"typ": "JWT",
"kid": "assert"
}

payload:
{
"sub": "ssaInstanceAdmin",
"jti": "8c7df446-bfae-40be-be09-0ab55c655436",
"iat": 1589889699,
"exp": 1589909699,
"iss": "d702f5b31ee645ecbc49d05983aaee54",

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-27

https://github.com/jwtk/jjwt
https://jwt.io/

"aud": "https://identity.oraclecloud.com/"
}

Where:

– sub specifies the user name for whom user assertion is generated.

– jti is a unique identifier

– iat is issued (epoch seconds).

– exp is the token expiry (epoch seconds).

– iss is the client ID.

– aud must include the Oracle Identity Cloud Service audience https://
identity.oracle.com/. The signing algorithm must be RS256.

– kid specifies the key to use to verify the signature. Therefore, it must match
with the uploaded certificate alias in Oracle Identity Cloud Service.

• Validate the client application:

1. Once you generate the JWT user assertion, generate the Oracle Identity
Cloud Service access token as follows.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded
clientid:secret>' -H 'Content-Type: application/x-www-form-
urlencoded;charset=UTF-8' --request POST https://<IDCS-Service-
Instance>.identity.oraclecloud.com/oauth2/v1/token -d
'grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-
bearer&assertion=<user assertion>&scope=<app_scope>'

###where
grant type - urn:ietf:params:oauth:grant-type:jwt-bearer
<base64-clientid-secret> - Base 64 encode
clientId:ClientSecret
<user assertion> - User assertion generated
<app scope> - Scope added while creating application in
client configuration section (Ends with
urn:opc:resource:consumer::all)

2. Capture the access_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600
}

3. Use an access_token in the authorization header to invoke the Oracle
Integration trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-28

Prerequisites for Authorization Code

Perform the following tasks.

• Validate the Oracle Integration application and user roles:

1. Verify that the Is Refresh Token Allowed option is enabled for the Oracle Identity
Cloud Service application.

2. Check the Configuration > Resources section of the application. Note also that
there is a special predefined scope (urn:opc:resource:consumer::all) that permits
triggering of the Oracle Integration integrations using OAuth.

3. Add the appropriate user(s) to the various Oracle Integration roles. For standard/
production configurations, use the ServiceUser role. (See Oracle Integration Roles in
Provisioning and Administering Oracle Integration Generation 2.)

4. To assign the user, go to the Application Roles section of the application.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-29

• Configure the client application:
To allow you to trigger the Oracle Integration integration with OAuth, the client
application is required.

1. In the Oracle Identity Cloud Service Console, go to the Application section to
create a new application that allows you to trigger the Oracle Integration
integration with OAuth.

The application is added as a confidential application.

2. Complete the Details section, and go to the Client section.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-30

3. In the Client selection, select Configure this application as a client now and add
the following.

a. Select Refresh Token and Authorization Code for Allowed Grant Types.

b. Set the redirect URL to the URL of the client application (for example, https://
sample_client_app/oauth2/callback). After user login, Oracle Identity Cloud
Service redirects to this URL with the authorization code.

c. Select Specific in the Authorized Resources section.

d. Click Add Scope under the Resources section.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-31

e. Find the Oracle Integration application, and click >.

f. Add the scope containing urn:opc:resource:consumer::all, and click >.

The scope containing urn:opc:resource:consumer::all is added.

g. Save your changes.

4. Skip the rest of the wizard steps and save the application.

5. Activate the application for use.

• Validate the client application:

1. To fetch the authorization code, make the following request from the browser.

##Syntax
GET https://<IDCS-Service-Instance>.identity.oraclecloud.com/
oauth2/v1/authorize?client_id=<client-

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-32

id>&response_type=code&redirect_uri=<client-redirect-
uri>&scope=<app_scope>%20offline_access&nonce=<nonce-
value>&state=<unique_value>

###where
<client-id> - ID of Client application generated.
<client-redirect-uri> - Redirect URI, in client application.
<app_scope> - scope added while creating application in client
configuration. (Ends with urn:opc:resource:consumer::all)
nonce - Optional, unique value to mitigate replay attacks
state - Recommended, Opaque to IDCS. Value used to maintain
state between the request and the callback
##Example
GET https://<idcs-host>/oauth2/v1/authorize?
client_id=<clientID>&response_type=code&redirect_uri=https://
app.getpostman.com/oauth2/callback&scope=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_access
&nonce=121&state=12345544

2. If the user is not already logged in, Oracle Identity Cloud Service challenges the user
to authenticate. Oracle Identity Cloud Service checks the user's credentials. (For
authentication, the user assigned the ServiceUser Role must be used.)
Post successful authentication, Oracle Identity Cloud Service redirects back to the
client redirect URL with the authorization code and state added to the URL.

##Response URL
https://<redirect_URL>?code=<code_value>=&state=<state_value>

###Client should validate state received is same as one sent in
request.

3. Capture the code value from the above response and make the following request to
Oracle Identity Cloud Service to get the access token.

##Syntax
curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://<IDCS-Service-Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=authorization_code&code=<authz-
code>&redirect_uri=<client-redirect-uri>

###where
<base64-clientid-secret> - BAse 64 encode clientId:ClientSecret
<authz-code> - code value received as response on redirect.
<client-redirect-uri> - Redirect URI, in client application.

##Example
curl -i -H 'Authorization: Basic MDMx..NGY1' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<idcs_host>/oauth2/v1/token -d
'grant_type=authorization_code&code=AQAg...3jKM4Gc=&redirect_uri=https
://app.getpostman.com/oauth2/callback

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-33

4. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

5. Use the access_token in the authorization header to invoke the Oracle
Integration trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

6. To update the access token, use the refresh token and make the request to
Oracle Identity Cloud Service.

7. Capture the access_token and refresh_token from a response for further
use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8'
--request POST https://<IDCS-Service-
Instance>.identity.oraclecloud.com/oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://IDCS-Service-Instance.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM
5S0MkrFSpzc='

Prerequisites for Resource Owner Password Credentials

Perform the following tasks.

• Validate the Oracle Integration application and user roles:

1. Verify that the Is Refresh Token Allowed option is enabled for the Oracle
Integration Oracle Identity Cloud Service application.

2. Check under the Configuration > Resources section of Application. Note
also that there is a special predefined scope
(urn:opc:resource:consumer::all) that allows the triggering of integrations
with OAuth.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-34

3. Add the appropriate user(s) to the various Oracle Integration roles. For standard/
production configurations, use the ServiceUser role. (See Oracle Integration Roles in
Provisioning and Administering Oracle Integration Generation 2.)

4. To assign the user, go to the Application Roles section of the application.

• Configure the client application:

1. In the Oracle Identity Cloud Service console, Go to the Application section to create
a new application that allows you to trigger an integration with OAuth. The application
is added as a confidential application.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-35

2. Complete the Details section, and go to the Client section.

3. In the Client selection, select Configure this application as a client now
and add the following.

a. Select Resource Owner and Refresh Token for Allowed Grant Types.

b. Select Specific in the Authorized Resources section.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-36

c. Click Add Scope under the Resources section.

d. Find the Oracle Integration application.

e. Add the scope containing urn:opc:resource:consumer::all, and click >.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-37

The scope containing urn:opc:resource:consumer::all is added.

f. Save your changes.

4. Skip the rest of the wizard steps and save the application.

5. Activate the application for use.

• Validate the client application:

1. To fetch the access client, make a request to Oracle Identity Cloud Service
with the user name and password in the payload.

##Syntax
curl -i -H 'Authorization: Basic
<base64Encoded_clientid:secret>' -H 'Content-Type: application/x-
www-form-urlencoded;charset=UTF-8' --request POST https://<IDCS-
Service-Instance>.identity.oraclecloud.com/oauth2/v1/token -d
'grant_type=password&username=<user-
name>&password=<password>&scope=<App_Scope>%20offline_access'

###where
<base64-clientid-secret> - Base 64 encode
clientId:ClientSecret
<username> - user for token needs to be issued (must be in
serviceuser role).
<password> - password for above user
<app_scope> - Scope added while creating application in
client configuration section (Ends with
urn:opc:resource:consumer::all)
##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://<idcs_host>/oauth2/v1/token -d
'grant_type=password&username=sampleUser&password=SamplePassword&
scope=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_a
ccess'

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-38

2. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

3. Use the access_token in the authorization header to invoke the Oracle Integration
trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

4. To update the access token, use the refresh token and make a request to Oracle
Identity Cloud Service.

5. Capture the access_token and refresh_token from the response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://<IDCS-Service-Instance>.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<IDCS-Service-Instance>.identity.oraclecloud.com/oauth2/v1/
token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0Mk
rFSpzc='

Use OAuth 2.0 Grants in Identity Domain Environments
To use an OAuth 2.0 grant type with this adapter in an identity domain environment of Oracle
Integration, you must perform the following prerequisites.

• Access the Identity Domain

• Prerequisites for Resource Owner Password Credentials

• Prerequisites for JWT User Assertion

• Prerequisites for Authorization Code

Access the Identity Domain

• Log in to the Oracle Cloud Infrastructure Console with your identity domain administrator
credentials.

1. In the navigation pane, click Identity & Security.

2. Click Domains.

3. Select your compartment.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-39

4. Click the identity domain.

5. In the navigation pane, click Integrated applications.
This is the location at which you create the client application for your grant
type.

Prerequisites for Resource Owner Password Credentials

To trigger the integration with OAuth, a client application is required.

• Configure the client application

• Add roles to the client application

Configure the client application

1. Click Add application.

2. Select Confidential Application, then click Launch workflow.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-40

3. Enter a name. The remaining fields on this page are optional and can be ignored.

4. Click Next.

5. In the Client configuration box, select Configure this application as a client now.

6. For resource owner password credentials, select Resource owner and Refresh token in
the Allowed grant types section.

7. Complete the following steps:

a. Leave the Redirect URL, Post-logout redirect URL, and Logout URL fields blank.

b. For Client type, ensure that Confidential is selected.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-41

c. Bypass several fields and scroll down to the Token issuance policy section.

d. Select Specific in the Authorized resources section.

e. Click the Add Resources check box.

f. Click Add scope.

g. Find the Oracle Integration application for your instance, and click .

h. Select the two scopes appended with the following details:

• urn:opc:resource:consumer::all

• ic/api/

i. Click Add.
The scopes are displayed in the Resources section.

j. Ignore the Add app roles check box. This selection is not required.

k. Click Next, then click Finish.

The details page for the client application is displayed.

8. Click Activate, and then Activate application to activate the client application for
use.

9. In the General Information section, note the client ID and client secret values.
These values are required for the third-party application that is communicating with
the identity domain.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-42

Add roles to the client application

1. In the navigation pane, click Oracle Cloud Services.

2. Select the specific application corresponding to the Oracle Integration instance.

3. In the navigation pane, click Application roles.

4. Select the following for the resource owner password credentials grant type:

a. Expand ServiceInvoker, then click Manage next to either Assigned users or
Assigned groups. For example, if you click Assigned users:

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-43

b. Click Show available users.

c. Select the user and click Assign, then click Close.

5. Validate the client application for the resource owner password credentials grant
type.

a. To fetch the access client, make a request with the user name and password
in the payload.

##Syntax
curl -i -H 'Authorization: Basic
<base64Encoded_clientid:secret>' -H 'Content-Type: application/x-
www-form-urlencoded;charset=UTF-8' --request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=password&username=<user-
name>&password=<password>&scope=<App_Scope>%20offline_access'

###where
<base64-clientid-secret> - Base 64 encode
clientId:ClientSecret
<username> - user for token needs to be issued (must be in
serviceinvoker role).
<password> - password for above user
<app_scope> - Scope added while creating application in
client configuration section (Ends with
urn:opc:resource:consumer::all)
##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://<identity_domain_host>/oauth2/v1/token -d
'grant_type=password&username=sampleUser&password=SamplePassword&
scope=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_a
ccess'

b. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

c. Use the access_token in the authorization header to invoke the Oracle
Integration trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

d. To update the access token, use the refresh token and make a request.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-44

e. Capture the access_token and refresh_token from the response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/oauth2/v1/
token -d 'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0Mk
rFSpzc='

Prerequisites for JWT User Assertion

• Generate the key

• Configure the client application

• Add a certificate as a trusted partner

• Generate the JWT user assertion

• Validate the client application

Generate the key

You must first generate the key to import when you configure the client application for the
JWT user assertion.

1. Generate the self-signed key pair.

keytool -genkey -keyalg RSA -alias <your_alias> -keystore <keystore_file>
-storepass <password> -validity 365 -keysize 2048

##example
keytool -genkey -keyalg RSA -alias assert -keystore sampleKeystore.jks -
storepass samplePasswd -validity 365 -keysize 2048

2. Export the public key for signing the JWT assertion.

keytool -exportcert -alias <your_alias> -file <filename> -keystore
<keystore_file> -storepass <password>

##example
keytool -exportcert -alias assert -file assert.cer -keystore
sampleKeystore.jks -storepass samplePasswd

This should show a success message e.g. Certificate stored in file
<assert.cer>

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-45

3. Convert the keystore to P12 format.

keytool -importkeystore -srckeystore <filename> -srcstorepass
<password> -srckeypass <password> -srcalias <your_alias> -destalias
<your_alias> -destkeystore <destFileName> -deststoretype PKCS12 -
deststorepass <password> -destkeypass <password>

##example
keytool -importkeystore -srckeystore sampleKeystore.jks -
srcstorepass samplePasswd -srckeypass samplePasswd -srcalias assert
-destalias assert -destkeystore assert.p12 -deststoretype PKCS12 -
deststorepass samplePasswd -destkeypass samplePasswd

This should show a success message e.g. Importing keystore
sampleKeystore.jks to assert.p12...

4. Export the private key from the P12 keystore.

openssl pkcs12 -in <destFileName> -nodes -nocerts -out <pem_file>

##example
openssl pkcs12 -in assert.p12 -nodes -nocerts -out private_key.pem

This should show a success message: MAC verified OK

Configure the client application

To trigger the integration with OAuth, a client application is required.

1. Click Add application.

2. Select Confidential Application, and click Launch workflow.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-46

3. Enter a name. The remaining fields on this page are optional and can be ignored.

4. Click Next.

5. In the Client configuration box, select Configure this application as a client now.

6. For JWT user assertions, select JWT assertion and Refresh token in the Allowed
grant types section.

7. Complete the following steps for the grant type:

a. Leave the Redirect URL, Post-logout redirect URL, and Logout URL fields blank.

b. In the Client type section, select Trusted.

c. Upload the certificate created in section Generate the key. This action adds the
certificate as a trusted partner.

d. Bypass several fields and scroll down to the Token issuance policy section.

e. Select Specific in the Authorized resources section.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-47

f. Click the Add Resources check box.

g. Click Add scope.

h. Find the Oracle Integration application for your instance, and click .

i. Select the two scopes appended with the following details:

• urn:opc:resource:consumer::all

• ic/api/

j. Click Add.
The scopes are displayed in the Resources section.

k. Ignore the Add app roles check box. This selection is not required.

l. Click Next, then click Finish.
The details page for the client application is displayed.

m. Click Activate, and then Activate application to activate the client application
for use.

n. In the General Information section, note the client ID and client secret values.
These values are required for the third-party application that is communicating
with the identity domain.

8. In the navigation pane, click Oracle Cloud Services.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-48

9. Select the specific application corresponding to the Oracle Integration instance.

10. In the navigation pane, click Application roles.

11. Expand ServiceInvoker, then click Manage next to either Assigned users or Assigned
groups. For example, if you click Assigned users:

12. Click Show available users.

13. Select the user and click Assign, then click Close.

Add a certificate as a trusted partner

In addition to importing the signing certificate into the client application, you are also required
to include the certificate as a trusted partner certificate.

1. In the navigation pane, click Settings.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-49

2. Click Trusted partner certificates.

3. Click Import certificate to upload the certificate created in section Generate the
key.

Generate the JWT user assertion

1. Generate the JWT user assertion using the generated private key and simple Java
code.

Note:

You can use the https://github.com/jwtk/jjwt library to generate the user
assertion. There are many libraries listed at https://jwt.io/ for multiple
technologies.

Sample:
header:
{
"alg": "RS256",
"typ": "JWT",
"kid": "assert"
}

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-50

https://github.com/jwtk/jjwt
https://jwt.io/

payload:
{
"sub": "ssaInstanceAdmin",
"jti": "8c7df446-bfae-40be-be09-0ab55c655436",
"iat": 1589889699,
"exp": 1589909699,
"iss": "d702f5b31ee645ecbc49d05983aaee54",
"aud": "https://identity.oraclecloud.com/"
}

Where:

• sub specifies the user name for whom user assertion is generated.

• jti is a unique identifier

• iat is issued (epoch seconds).

• exp is the token expiry (epoch seconds).

• iss is the client ID.

• aud must include the identity domain audience https://identity.oracle.com/. The
signing algorithm must be RS256.

• kid specifies the key to use to verify the signature. Therefore, it must match with the
uploaded certificate alias.

Validate the client application

1. Once you generate the JWT user assertion, generate the access token as follows.

##Syntax
curl -i -H 'Authorization: Basic <base64Encoded clientid:secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --request
POST https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-
type%3Ajwt-bearer&assertion=<user assertion>&scope=<app_scope>'

###where
grant type - urn:ietf:params:oauth:grant-type:jwt-bearer
<base64-clientid-secret> - Base 64 encode clientId:ClientSecret
<user assertion> - User assertion generated
<app scope> - Scope added while creating application in client
configuration section (Ends with urn:opc:resource:consumer::all)

2. Capture the access_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600
}

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-51

3. Use an access_token in the authorization header to invoke the Oracle Integration
trigger endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

Prerequisites for Authorization Code

• Configure the client application

• Validate the Oracle Integration application and user roles

• Validate the client application

Configure the client application

To trigger the integration with OAuth, a client application is required.

1. Click Add application.

2. Select Confidential Application. then click Launch workflow.

3. Enter a name. The remaining fields on this page are optional and can be ignored.

4. Click Next.

5. In the Client configuration box, select Configure this application as a client
now.

6. Select the grant type to use:

a. For authorization code, select Refresh token and Authorization code in the
Allowed grant types section.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-52

b. In the Redirect URL field, enter the redirect URL of the client application. After user
login, this URL is redirected to with the authorization code. You can specify multiple
redirect URLs. This is useful for development environments in which you have
multiple instances, but only one client application due to licensing issues.

Note:

If you don't know the following information, check with your administrator:

• If your instance is new or upgraded from Oracle Integration Generation
2 Generation 2 to Oracle Integration Generation 2.

• The complete instance URL with the region included (required for new
instances).

For
Connections…

Include the Region
as Part of the
Redirect URL?

Example of Redirect URL to Specify…

Created on new
Oracle
Integration
Generation 2
instances

Yes. https://
OIC_instance_URL.region.ocp.oracleclo
ud.com/icsapis/agent/oauth/callback

Created on
instances
upgraded from
Oracle
Integration
Generation 2
Generation 2 to
Oracle
Integration
Generation 2

No.
This applies to both:

• New connections
created after the
upgrade

• Existing
connections that
were part of the
upgrade

https://
OIC_instance_URL.ocp.oraclecloud.com/
icsapis/agent/oauth/callback

c. In the Client type section, click Confidential.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-53

d. Select Specific in the Authorized resources section.

e. Click the Add Resources check box.

f. Click Add scope.

g. Find the Oracle Integration application for your instance, and click .

h. Select the two scopes appended with the following details:

• urn:opc:resource:consumer::all

• ic/api/

i. Click Add.
The scopes are displayed in the Resources section.

j. Ignore the Add app roles check box. This selection is not required.

k. Click Next, then click Finish.
The details page for the client application is displayed.

l. Click Activate, and then Activate application to activate the client application
for use.

m. In the General Information section, note the client ID and client secret values.
These values are required for the third-party application that is communicating
with the identity domain.

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-54

Validate the Oracle Integration application and user roles

1. In the navigation pane, click Oracle Cloud Services.

2. Select the specific application corresponding to the Oracle Integration instance.

3. In the navigation pane, click Application roles.

4. Expand ServiceInvoker, then click Manage next to either Assigned users or Assigned
groups. For example, if you click Assigned users:

5. Click Show available users.

6. Select the user and click Assign, then click Close.

Validate the client application

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-55

1. To fetch the authorization code, make the following request from the browser.

##Syntax
GET https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/authorize?client_id=<client-
id>&response_type=code&redirect_uri=<client-redirect-
uri>&scope=<app_scope>%20offline_access&nonce=<nonce-
value>&state=<unique_value>

###where
<client-id> - ID of Client application generated.
<client-redirect-uri> - Redirect URI, in client application.
<app_scope> - scope added while creating application in client
configuration. (Ends with urn:opc:resource:consumer::all)
nonce - Optional, unique value to mitigate replay attacks
state - Recommended, Opaque to IDCS. Value used to maintain
state between the request and the callback
##Example
GET https://<identity_domain_host>/oauth2/v1/authorize?
client_id=<clientID>&response_type=code&redirect_uri=https://
app.getpostman.com/oauth2/callback&scope=https://
<Resource_APP_Audience>urn:opc:resource:consumer::all%20offline_acce
ss&nonce=121&state=12345544

2. If the user is not already logged in, you are challenged to authenticate your user
credentials. (For authentication, the user assigned the ServiceInvoker role must
be used.)
After authentication is successful, the client URL is redirected to with the
authorization code and state added to the URL.

##Response URL
https://<redirect_URL>?code=<code_value>=&state=<state_value>

###Client should validate state received is same as one sent in
request.

3. Capture the code value from the above response and make the following request
to get the access token.

##Syntax
curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H
'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' --
request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d 'grant_type=authorization_code&code=<authz-
code>&redirect_uri=<client-redirect-uri>

###where
<base64-clientid-secret> - BAse 64 encode clientId:ClientSecret
<authz-code> - code value received as response on redirect.
<client-redirect-uri> - Redirect URI, in client application.

##Example
curl -i -H 'Authorization: Basic MDMx..NGY1' -H 'Content-Type:

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-56

application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<identity_domain_host>/oauth2/v1/token -d
'grant_type=authorization_code&code=AQAg...3jKM4Gc=&redirect_uri=https://
app.getpostman.com/oauth2/callback

4. Capture the access_token and refresh_token from the response.

{
 "access_token": "eyJ4NXQjG...dfsdfsFgets2ed",
 "token_type": "Bearer",
 "expires_in": 3600,
 "refresh_token": "AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSpzc="
}

5. Use the access_token in the authorization header to invoke the Oracle Integration trigger
endpoint.

curl --location --request GET 'https://OIC host/OIC endpoint' \
--header 'Authorization: Bearer eyJ4NXQjG...dfsdfsFgets2ed'

6. To update the access token, use the refresh token and make the request.

7. Capture the access_token and refresh_token from a response for further use.

curl -i -H 'Authorization: Basic <base64-clientid-secret>' -H 'Content-
Type: application/x-www-form-urlencoded;charset=UTF-8' --request POST
https://<Identity_Domain_Service_Instance>.identity.oraclecloud.com/
oauth2/v1/token -d
'grant_type=refresh_token&refresh_token=<refresh_token>'

##Example
curl -i -H 'Authorization: Basic OGQyM...ZDA0Mjcz' -H 'Content-Type:
application/x-www-form-urlencoded;charset=UTF-8' --request POST https://
<Identity_Domain_Service_Instance>.identity.oraclecloud.com/oauth2/v1/
token -d
'grant_type=refresh_token&refresh_token=AQAgY2MzNjVlOTVhOTRh...vM5S0MkrFSp
zc='

Chapter 2
Authenticate Requests for Invoking Oracle Integration Flows

2-57

3
Create a SOAP Adapter Connection

A connection is based on an adapter. You define connections to the specific cloud
applications that you want to integrate.

Topics:

• Prerequisites for Creating a Connection

• Create a Connection

• Upload an SSL Certificate

Prerequisites for Creating a Connection
Ensure that the WSDL to use is reachable. There is no restriction on the type of WSDL to
use.

Create a Connection
Before you can build an integration, you have to create the connections to the applications
with which you want to share data.

To create a connection in Oracle Integration:

1. In the left navigation pane, click Home > Integrations > Connections.

2. Click Create.

Note:

You can also create a connection in the integration canvas of:

• An orchestrated integration (See Define Inbound Triggers and Outbound
Invokes.)

• A basic routing integration (See Add a Trigger (Source) Connection.)

3. In the Create Connection — Select Adapter dialog, select the adapter to use for this
connection. To find the adapter, scroll through the list, or enter a partial or full name in the
Search field and click

Search.

4. In the Create Connection dialog, enter the information that describes this connection.

a. Enter a meaningful name to help others find your connection when they begin to
create their own integrations. The name you enter is automatically added in capital
letters to the Identifier field. If you modify the identifier name, don't include blank
spaces (for example, SALES OPPORTUNITY).

3-1

b. Enter optional keywords (tags). You can search on the connection keywords
on the Connections page.

c. Select the role (direction) in which to use this connection (trigger, invoke, or
both). Only the roles supported by the adapter are displayed for selection.
When you select a role, only the connection properties and security policies
appropriate to that role are displayed on the Connections page. If you select
an adapter that supports both invoke and trigger, but select only one of those
roles, you'll get an error when you try to drag the adapter into the section you
didn't select. For example, let's say you configure a connection for the Oracle
Service Cloud (RightNow) Adapter as only an invoke. Dragging the adapter to
a trigger section in the integration produces an error.

d. Enter an optional description of the connection.

5. Click Create.

Your connection is created. You're now ready to configure the connection details,
such as connection properties, security policies, connection login credentials, and
(for certain connections) agent group.

Configure Connection Properties
Enter connection information so your application can process requests.

1. Go to the Connection Properties section.

2. In the WSDL URL field, specify the URL in either of two ways:

a. Click

, then click Browse to select the WSDL to upload.

If you upload a ZIP file, the file is validated and the page is refreshed to
display the Service WSDL list. The relative paths of all WSDLs in the ZIP are
displayed. Select the WSDL to use in the connection.

b. Manually specify the WSDL to use.

3. From the TLS Version (Optional) list, it is recommended that you not select a
value for the Transport Layer Security (TLS) version of the target server. Oracle
Integration automatically uses the latest TLS version for SSL communication.
TLSv1 is no longer supported. If you previously configured a connection in a
version prior to Oracle Integration Generation 2 to use TLSv1.1, either update the
connection by not selecting a value for this field or select TLSv1.2.

The TLS protocol provides privacy and data integrity between two communicating
computer applications.

• TLSv1.1

• TLSv1.2

4. In the Suppress insertion of timestamp into the request (Optional) field,
optionally suppress the timestamp in the WS-Security header. Suppression applies
to the Username Password Token security policy in the invoke (outbound)
direction. In secure Web Services transactions, a WS-Utility (WSU) timestamp can
be inserted into a WS-Security header to define the lifetime of the message in
which it is placed.

Chapter 3
Create a Connection

3-2

• Yes: No timestamp is added to the WS-Security header sent as part of the outbound
request. For inbound requests with the basic authentication security policy, no
timestamp is required to be sent by the client.

• No: Clients are expected to send a timestamp in the WS-Security header with the
request.

5. In the Ignore timestamp in the response message (Optional) field, specify if the
timestamp is not required in the response message.

• Yes: The timestamp is not required in the response message. If the timestamp is
present in the SOAP security header when the response is received from the
service , it is ignored.

• No: The timestamp is received in the response from the service is not ignored.

6. In the Enable two way SSL for outbound connections (Optional) field, select Yes if
you want to enable two-way SSL communication.

7. In the Identity keystore alias name (Optional) field, enter the key alias name
configured for two-way SSL communication. Both the client and server pass certificates
to each other to establish an SSL link when two-way SSL is enabled. This value should
match the alias that was provided to import identity to Oracle Integration. This is the
name you entered in the Key Alias Name field when uploading the identity certificate in
the Upload Certificate dialog. See Upload an SSL Certificate.

Configure Connection Security
Configure security for your SOAP Adapter connection by selecting the security policy.

1. Go to the Security section.

2. Select the security policy.

The page is refreshed to display the login credential fields.

3. Specify the login credentials. For trigger (inbound) connections, the security policy must
be either username password token, basic authentication, SAML, or OAuth 2.0. This is
because all Oracle Integration inbound endpoints are protected with any of these policies.

When configuring the SOAP Adapter with the trigger-only role, you cannot select No
Security Policy because all Oracle Integration endpoints are protected.

• New connections do not show No Security Policy in the dropdown list.

• Existing connections default to the Username Password Token security policy.

• Connections updated with the REST APIs are automatically changed to use the
Username Password Token security policy by default even though the request
payload used No Security Policy.

Chapter 3
Create a Connection

3-3

Security Policy Fields

Basic Authentication
(In the trigger (inbound)
direction, supports HTTP
basic authentication over
SSL: oracle/
wss_http_token_over_ssl_se
rvice_policy).

Note the following behavior:

• If the invoking client is
secured with Oracle
Web Services Manager
(OWSM) using an
oracle/wss* policy, the
client receives a failure.

• In the inbound (trigger)
direction, if the
Suppress insertion of
timestamp into the
request (Optional) field
is enabled, then oracle/
http_basic_auth_over_ss
l_service_policy is
supported.

• In customer-managed
environments, when
configuring a trigger
SOAP Adapter with
Basic Authentication, the
wss_http_token_service
_policy policy is used
regardless of whether
the Suppress insertion
of timestamp into the
request option is set to
Yes or No in the
Connections page.
Therefore, with or
without the timestamp
added in the SOAP
header, as long as the
username and password
credentials are valid, the
connection runs
successfully at runtime.

If Basic Authentication is
required for both trigger and
invoke connections, create
one connection with the
Trigger and Invoke role that
uses the Basic Authentication
security policy.

• Username — Enter the name of a user who has
access to the destination web service.

• Password — Enter the password.
• Confirm Password — Reenter the password.

Username Password Token
(In the trigger (inbound)
direction, supports oracle/
wss_username_token_over_
ssl_service_policy.)

• Username — Enter the name of a user
• Password — Enter the password.
• Confirm Password — Reenter the password.

No Security Policy No fields are displayed.

Chapter 3
Create a Connection

3-4

Security Policy Fields

Security Assertion Markup
Language (SAML)

This policy is only available when configuring the SOAP
Adapter as a trigger. If you attempt to add the SOAP
Adapter with this security policy configuration as an invoke
in an integration, you receive an error.

• Username — Optionally enter the name of the SAML
user.

OAuth 2.0 This policy is only available when configuring the SOAP
Adapter as a trigger. If you attempt to add the SOAP
Adapter with this security policy configuration as an invoke
in an integration, you receive an error.

No fields are displayed.

If you select a security policy, the following behavior occurs.

If the Inbound SOAP Connection is
Configured with Security Policy...

Then...

Username Password Token • The client should send the username/
password and timestamp as part of the
WSEE header.

• The response includes only the SOAP
payload.

Basic Authentication • The client should send the username/
password in the HTTP headers and
timestamp as part of the WSEE header.

• The response includes only the SOAP
payload.

Basic Authentication and the Suppress
insertion of timestamp into the request
(Optional) field is enabled

• The client should send the username/
password in the HTTP headers.

• The response includes only the SOAP
payload.

Note:

If no timestamp is included as part of the header, configure the SOAP Adapter
connection with the Basic Authentication security policy (oracle/
http_basic_auth_over_ssl_client_policy) and set Suppress insertion of
timestamp into the request (Optional) to Yes.

Configure an Agent Group
Configure an agent group for accessing the service hosted on your premises behind the fire
wall.

1. Click Configure Agents.

The Select an Agent Group page appears.

2. Click the name of the agent group.

3. Click Use.

Chapter 3
Create a Connection

3-5

To configure an agent group, you must download and install the on-premises
connectivity agent. See Download and Run the Connectivity Agent Installer and About
Connectivity Agents and Integrations Between On-Premises Applications and Oracle
Integration in Using Integrations in Oracle Integration Generation 2.

Test the Connection
Test your connection to ensure that it's configured successfully.

1. In the page title bar, click Test. What happens next depends on whether your
connection uses a Web Services Description Language (WSDL) file.

If Your
Connection...

Then...

Doesn't use a WSDL The test starts automatically and validates the inputs you provided
for the connection.

Uses a WSDL A dialog prompts you to select the type of connection testing to
perform:

• Validate and Test: Performs a full validation of the WSDL,
including processing of the imported schemas and WSDLs.
Complete validation can take several minutes depending on
the number of imported schemas and WSDLs. No requests are
sent to the operations exposed in the WSDL.

• Test: Connects to the WSDL URL and performs a syntax
check on the WSDL. No requests are sent to the operations
exposed in the WSDL.

2. Wait for a message about the results of the connection test.

• If the test was successful, then the connection is configured properly.

• If the test failed, then edit the configuration details you entered. Check for
typos, verify URLs and credentials, and download the diagnostic logs for
additional details. Continue to test until the connection is successful.

3. When complete, click Save.

Upload an SSL Certificate
Certificates are used to validate outbound SSL connections. If you make an SSL
connection in which the root certificate does not exist in Oracle Integration, an
exception is thrown. In that case, you must upload the appropriate certificate. A
certificate enables Oracle Integration to connect with external services. If the external
endpoint requires a specific certificate, request the certificate and then upload it into
Oracle Integration.

To upload an SSL certificate:

1. In the left navigation pane, click Home > Settings > Certificates.
All certificates currently uploaded to the trust store are displayed in the Certificates
dialog. The

link enables you to filter by name, certificate expiration date, status, type, category,
and installation method (user-installed or system-installed). Certificates installed
by the system cannot be deleted.

Chapter 3
Upload an SSL Certificate

3-6

2. Click Upload at the top of the page.
The Upload Certificate dialog box is displayed.

3. Enter an alias name and optional description.

4. In the Type field, select the certificate type. Each certificate type enables Oracle
Integration to connect with external services.

• X.509 (SSL transport)

• SAML (Authentication & Authorization)

• PGP (Encryption & Decryption)

X.509 (SSL transport)

1. Select a certificate category.

a. Trust: Use this option to upload a trust certificate.

i. Click Browse, then select the trust file (for example, .cer or .crt) to upload.

b. Identity: Use this option to upload a certificate for two-way SSL communication.

i. Click Browse, then select the keystore file (.jks) to upload.

ii. Enter the comma-separated list of passwords corresponding to key aliases.

Note:

When an identity certificate file (JKS) contains more than one private
key, all the private keys must have the same password. If the private
keys are protected with different passwords, the private keys cannot be
extracted from the keystore.

iii. Enter the password of the keystore being imported.

c. Click Upload.

SAML (Authentication & Authorization)

1. Note that Message Protection is automatically selected as the only available certificate
category and cannot be deselected. Use this option to upload a keystore certificate with
SAML token support. Create, read, update, and delete (CRUD) operations are supported
with this type of certificate.

Chapter 3
Upload an SSL Certificate

3-7

2. Click Browse, then select the certificate file (.cer or .crt) to upload.

3. Click Upload.

PGP (Encryption & Decryption)

1. Select a certificate category. Pretty Good Privacy (PGP) provides cryptographic
privacy and authentication for communication. PGP is used for signing, encrypting,
and decrypting files. You can select the private key to use for encryption or
decryption when configuring the stage file action.

a. Private: Uses a private key of the target location to decrypt the file.

i. Click Browse, then select the PGP file to upload.

ii. Enter the PGP private key password.

b. Public: Uses a public key of the target location to encrypt the file.

i. Click Browse, then select the PGP file to upload.

ii. In the ASCII-Armor Encryption Format field, select Yes or No. Yes
shows the format of the encrypted message in ASCII armor. ASCII armor
is a binary-to-textual encoding converter. ASCII armor formats encrypted
messaging in ASCII. This enables messages to be sent in a standard
messaging format. This selection impacts the visibility of message
content. No causes the message to be sent in binary format.

iii. From the Cipher Algorithm list, select the algorithm to use. Symmetric-
key algorithms for cryptography use the same cryptographic keys for both
encryption of plain text and decryption of cipher text.

c. Click Upload.

Chapter 3
Upload an SSL Certificate

3-8

4
Add the SOAP Adapter Connection to an
Integration

When you drag the SOAP Adapter into the trigger or invoke area of an integration, the
Adapter Endpoint Configuration Wizard appears. This wizard guides you through the
configuration of the SOAP Adapter endpoint properties.

These topics describe the wizard pages that guide you through configuration of the SOAP
Adapter as a trigger or invoke in an integration.

Topics:

• Basic Info Page

• Trigger Operation Page

• Trigger Callback Operation Page

• Invoke Operation Page

• Header Page

• Request Header Page

• Response Header Page

• Summary Page

Basic Info Page
You can enter a name and description on the Basic Info page of each adapter in your
integration.

Element Description

What do you want to call
your endpoint?

Provide a meaningful name so that others can understand the
responsibilities of this connection. You can include English alphabetic
characters, numbers, underscores, and hyphens in the name. You can't
include the following characters:

• No blank spaces (for example, My Inbound Connection)

• No special characters (for example, #;83& or righ(t)now4)
except underscores and hyphens

• No multibyte characters

What does this endpoint
do?

Enter an optional description of the connection’s responsibilities. For
example:

This connection receives an inbound request to
synchronize account information with the cloud
application.

4-1

Element Description

Do you want to configure
this as a callback invoke?

Select Yes to configure the SOAP Adapter as a callback invoke. This
option is only available when configuring the SOAP Adapter as an
invoke in an orchestrated integration. See Asynchronous Trigger
Support in Orchestrated Integrations.

Trigger Operation Page
Enter the port type and operation for the SOAP Adapter. If your WSDL includes only a
single service, port type, and operation, they are automatically selected. If the WSDL
includes multiple services and port types, then select the ones to use in your
integration. Based on the selected values, other objects such as the request object,
response object, and fault object may also be automatically displayed.

Element Description

Selected Port Type Displays the selected port type. If your WSDL
includes multiple port types, select the port
type.

Select the Operation Displays the selected operation. If your WSDL
includes multiple operations, select the
operation.

Request Object Displays the request object (if your WSDL
includes request objects).

Response Object Displays the response object (if your WSDL
includes response objects).

Disable SoapAction validation Select Yes to disable SOAP action validation
for inbound requests. This is useful for
environments in which your WSDL includes
custom code and you want to bypass
validation. When set to No (the default), Oracle
Integration validates the SOAP action to
ensure that it matches the WSDL.

Trigger Callback Operation Page
Enter the trigger callback response operation details for the SOAP Adapter. This page
is only displayed when the SOAP Adapter is used in orchestrated integrations or a
one-way operation is selected on the Operations page.

Element Description

No Response Select if a one-way call without a response is
expected.

Delayed Response Select if a delayed callback response is
expected.

Chapter 4
Trigger Operation Page

4-2

Invoke Operation Page
Enter the service, port, and operation for the SOAP Adapter invoke connection or enter the
port type and operation for the SOAP Adapter callback invoke connection. If the WSDL file
you specified during SOAP Adapter connectivity configuration includes only a single service,
port type, or operation, they are automatically selected for use. If the WSDL included multiple
services, port types, or operations, then select the ones to use in this integration.

Element Description

Selected Port Type Displays the selected port type. If your WSDL
includes multiple port types, select the port type.

Selected Operation Displays the selected operation. If your WSDL
includes multiple operations, select the operation.

Request Object Displays the request object (if your WSDL includes
request objects).

Response Object Displays the response object (if your WSDL
includes response objects).

Header Page
Enter the header details for the SOAP Adapter. The following table describes the key
information on the Oracle SOAP Adapter Header page. The headers you specify are applied
to the request and/or response object of the selected operation. The selected elements are
included under respective wrapper elements in the integration WSDL and are displayed in the
mapper as a request and/or response.

Element Description

Configure MTOM Attachment Options MTOM attachment options are shown when a
base64Binary element is present in the WSDL
messages for a given operation in both the
request and response messages (for synchronous
integrations).

• Send attachments in request: Select to
configure MTOM for the outbound request.

• Accept attachments in response: Select to
configure MTOM for the outbound response.

Do you want to configure headers for this
Endpoint?

Select Yes, then select the headers to include.

Yes is automatically selected for you in the
following situations:

• Your endpoint already contains SOAP
headers.

• An asynchronous trigger (trigger with a one-
way operation selected on the Operations
Page and Delayed Response selected on the
Callback Operations page) or callback invoke
(invoke with Do you want to configure this
as a callback invoke? set to Yes on the
Basic Info page) was configured. The
selection is disabled in this case and cannot
be modified.

Chapter 4
Invoke Operation Page

4-3

Element Description

SOAP Headers This option is automatically selected in the
following situations and cannot be modified:

• Your endpoint already contains SOAP
headers.

• An asynchronous trigger (trigger with a one-
way operation selected on the Operations
Page and Delayed Response selected on the
Callback Operations page) or callback invoke
(invoke with Do you want to configure this
as a callback invoke? set to Yes on the
Basic Info page) was configured.

Standard HTTP Headers Select this check box to add standard HTTP
headers in the request and/or response.

Custom HTTP Headers Select this check box to add custom HTTP
headers in the request and/or response.

Custom SOAP Headers Select this check box to add custom SOAP
headers in the request and/or response.

Note:

Based on the selections made on this page, separate tabbed pages are
shown in the Request Header page and/or Response Header page for
configuring the selected headers.

Request Header Page
Enter the request header details for the SOAP Adapter. You can configure and view
standard HTTP, custom HTTP, and custom SOAP request header parameters for the
SOAP Adapter based on the selections made on the Header page.

Tabbed Page Description

SOAP Headers View the SOAP headers contained in the
WSDL defined on the Connections page.
These headers cannot be modified:

If an asynchronous trigger (a trigger with a
one-way operation selected on the Operations
page and Delayed Response selected on the
Callback Operations page) or callback invoke
(Do you want to configure this as a
callback invoke? set to Yes on the Basic Info
Page) were configured, ReplyTo, MessageID,
and Action WS-Addressing are displayed.

Standard HTTP Headers Configure the standard HTTP headers. Click
the Add icon to add headers from the
prepopulated list. Some of the mandatory
standard HTTP headers are disabled for
selection because allowing them to change
may provide unexpected results (for example,
authorization).

Chapter 4
Request Header Page

4-4

Tabbed Page Description

Custom HTTP Headers Configure the custom HTTP headers. Click the
Add icon to add custom HTTP header names
and descriptions.

Custom SOAP Headers Configure the custom SOAP headers. Click
Browse to add a schema file from which to
select custom SOAP headers to be configured
in the integration WSDL. Select a header
element from the uploaded schema and click
Add Header. See Configure Custom SOAP
Headers for the SOAP Adapter.

Response Header Page
Enter the response header details for the SOAP Adapter. You can configure and view
standard HTTP, custom HTTP, and custom SOAP response header parameters for the SOAP
Adapter based on the selections made in the Header page.

Tabbed Page Description

SOAP Headers View the SOAP headers contained in the WSDL
defined on the Connections page. These headers
cannot be modified.

Standard HTTP Headers Configure the standard HTTP headers. Click the
Add icon to add headers from the prepopulated
list. Some of the mandatory standard HTTP
headers are disabled for selection because
allowing them to change may provide unexpected
results (for example, authorization).

Custom HTTP Headers Configure the custom HTTP headers. Click the
Add icon to add custom HTTP header names and
descriptions.

Custom SOAP Headers Configure the custom SOAP headers. Click
Browse to add a schema file from which to select
custom SOAP headers to be configured in the
integration WSDL. Select a header element from
the uploaded schema and click Add Header. See
Configure Custom SOAP Headers for the SOAP
Adapter.

Invoke Callback Operation Page
Enter the callback response operation details for the SOAP Adapter. This page is also visible
for the normal invokes (Do you want to configure this as a callback invoke is set to No on
the Basic Info Page) case in which the one-way operation was selected on the Operations
Page.

Element Description

No Response Select if a no callback response is expected.

Delayed Response Select if a delayed callback response is expected.

Chapter 4
Response Header Page

4-5

Element Description

Select the Port Type Select the port type to use for the asynchronous
callback response.

Selected Callback Operation View the callback operation associated with the
selected port type. In the case of multiple
operations, Select the operation.

Flow Identifier Specify the name of the callback integration. (that
is, to be used in the request integration). The
identifier value must be the same as the callback
integration flow identifier seen in Oracle
Integration integrations.

Flow Version Specify the version number of the callback
integration. The version value must be the same
as the callback integration flow version seen in
Oracle Integration integrations.

Summary Page
You can review the specified adapter configuration values on the Summary page.

Element Description

Summary Displays a summary of the configuration values you defined on
previous pages of the wizard.

The information that is displayed can vary by adapter. For some
adapters, the selected business objects and operation name are
displayed. For adapters for which a generated XSD file is
provided, click the XSD link to view a read-only version of the file.

To return to a previous page to update any values, click the
appropriate tab in the left panel or click Back.

To cancel your configuration details, click Cancel.

Chapter 4
Summary Page

4-6

5
Implement Common Patterns Using the
SOAP Adapter

You can use the SOAP Adapter to implement the following common patterns.

Topics:

• Best Practices for Invoking SOAP Endpoints

• Configure MTOM Support in the SOAP Adapter

• Consume Taleo SOAP APIs

• Invoke a SOAP-Based Integration with a Timestamp

• Configure Custom SOAP Headers for the SOAP Adapter

• Call Oracle Fusion Applications Business Intelligence Publisher Report Services

• Integrate PeopleSoft with Oracle Integration

• Create a Keystore File for a Two-Way, SSL-Based Integration

• Invoke a SOAP Endpoint with an Explicit Authorization Header

• Implement Oracle Enterprise Scheduler Web Service Calls

Note:

Oracle Integration offers a number of prebuilt integrations, known as recipes, that
provide you with a head start in building your integrations. You can start with a
recipe, and then customize it to fit your needs and requirements. Depending upon
the solution provided, a variety of adapters are configured in the prebuilt
integrations.
See the Recipes and Accelerators page on the Oracle Help Center.

Best Practices for Invoking SOAP Endpoints
Follow these best practices for invoking SOAP endpoints with the SOAP Adapter.

• If you receive errors (for example, 401, 429, or 50x errors) while invoking SOAP endpoints
with the SOAP Adapter, ensure that you employ instance retries.

• Client applications should cache the token while invoking OAuth-protected SOAP
endpoints.

5-1

Configure MTOM Support in the SOAP Adapter
This use case describes how to configure Message Transmission Optimization
Mechanism (MTOM) support in the SOAP Adapter.

See SOAP Adapter Capabilities for conceptual information.

SOAP Message Examples and Structure

The following example shows a SOAP message with inline binary content:

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;
type="application/soap+xml"; start="<claim@insurance.com>"

--MIME_boundary
Content-Type: application/soap+xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim@insurance.com>

<Envelope>
 <Body>
 <ReceiveImage>
 <filename>abc.jpg</filename>
 
 </ReceiveImage>
 </Body>
</Envelope>

The following example shows a SOAP message with MTOM/XOP:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:xop='http://www.w3.org/2004/08/xop/include'
xmlns:xop-mime='http://www.w3.org/2005/05/xmlmime'>
 <soap:Body>
 <Order>
 <orderNumber>ABC</orderNumber>
 <orderType>backorder</orderType>
 <image xop-mime:content-type='image/jpeg'>
 <image xop-mime:content-type='image/jpeg'>
 </image>
 </Order>
 </soap:Body>
</soap:Envelope>

--MIME_boundary

Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <image@insurance.com> 4

Chapter 5
Configure MTOM Support in the SOAP Adapter

5-2

...binary JPG image...

--MIME_boundary--

The MTOM message structure is as follows:

• The start parameter indicates which part of the MIME message is the root XOP
document.

• The Content-ID value identifies a part of the MIME message. In this case, it is the root
XOP document.

• The <xop:Include> element references the JPEG binary attachment.

• The Content-ID identifies the JPEG in the binary attachment.

application/octet-stream MIME attachment

A MIME attachment with the content type application/octet-stream is a binary file. It is
typically an application or document that must be opened in an application, such as a
spreadsheet or word processor. If the attachment has a file name extension associated with
it, you may be able to identify the type of file. For example, an .exe extension indicates it is a
Windows or DOS program (executable). A file ending in .doc can probably be opened in
Microsoft Word. In addition to the generic application/octet-stream content type, you may
also encounter attachments that have different subtypes (for example, application/
postscript, application/x-macbinary, and application-msword). They are similar to
application/octet-stream, but apply to specific types of files.

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized Packaging
(MTOM/XOP) describes a method for optimizing the transmission of XML data of type
xs:base64Binary in SOAP messages. When the transport protocol is HTTP, MIME
attachments carry that data while at the same time allowing both the sender and the receiver
direct access to the XML data in the SOAP message without having to be aware that any
MIME artifacts were used to marshal the xs:base64Binary data. The binary data optimization
process involves the following:

• Encoding the binary data

• Removing the binary data from the SOAP envelope

• Compressing and attaching the binary data to the MIME package

• Adding references to that package in the SOAP envelope

When MTOM is enabled, the MTOM specification does not require that the web service
runtime use XOP binary optimization when transmitting base64binary data. Instead, the
specification enables runtime to choose to do so. This is because in certain cases the runtime
may decide that it is more efficient to send base64binary data directly in the SOAP message
(for example, when transporting small amounts of data in which the overhead of conversion
and transport consumes more resources than just inlining the data as is). However, the
Oracle WebLogic Server web services implementation for the MTOM for JAX-RPC service
always uses MTOM/XOP when MTOM is enabled.

Design Time

When you configure the SOAP Adapter as an invoke connection in an integration, MTOM
attachment options are shown in the Adapter Endpoint Configuration Wizard when a

Chapter 5
Configure MTOM Support in the SOAP Adapter

5-3

base64Binary element is present in the WSDL messages for a given operation in both
request and response messages (for synchronous).

1. Specify the base64Binary element-based WSDL in the Connections page when
configuring the SOAP Adapter.

2. Enable the appropriate Send attachments in request (for outbound request) and
Accept attachments in response (for outbound response) options to enable
MTOM processing for that endpoint.

MTOM support cannot be configured in a trigger connection.

If you select to enable MTOM for a request message, the XPath for that binary node is
calculated and stored in the JCA file as an interaction spec property.

For example:

<property name="attachmentXpathInfo" value="/*[namespace-uri()='http://
www.oracle.com/UCM' and
local-name()='GenericRequest']/*[namespace-uri()='http://
www.oracle.com/UCM' and local-name()=
'Service']/*[namespace-uri()='http://www.oracle.com/UCM' and local-
name()='Document']/*[namespace-uri()
='http://www.oracle.com/UCM' and local-name()='File']/*[namespace-
uri()='http://www.oracle.com/UCM'
and local-name()='Contents']"/>

For a response message, the property attachmentXpathInfoForResponse is used in
the JCA file to represent the XPath.

Mapping

1. For an outbound request, any attachment reference from the virtual file system
(VFS) can be mapped to the base64Binary element of the outbound message. As
shown below, attachmentReference from the REST source is mapped to the
base64Binary element of the message.

Chapter 5
Configure MTOM Support in the SOAP Adapter

5-4

2. For an outbound response, the attachment is saved to the VFS and the base64Binary
element of the payload holds the VFS reference. The VFS reference can be further used
to map it to a REST resource or an FTP Adapter:

Runtime

During runtime, MTOM processing is triggered based on the availability of the
attachmentXpathInfo and attachmentXpathInfoForResponse properties in the JCA file. This
information is persisted during design time.

In the outbound request, the XPath information given by attachmentXpathInfo in the JCA file
creates an attachment in the cloud message and structures the SOAP message in the
MTOM-specific format.

In the outbound response, the logic checks if there is any attachment received in the
response of the cloud message, which is further saved in the VFS. The node represented by
the property attachmentXpathInfoForResponse substitutes it with the VFS reference of the
attachment in the cloud message.

Chapter 5
Configure MTOM Support in the SOAP Adapter

5-5

Consume Taleo SOAP APIs
Taleo enterprise edition SOAP APIs are protected. To use these APIs with the SOAP
Adapter, you must use the WSDL file upload feature in the Connection Properties
dialog of the Connections page instead of specifying the WSDL with the HTTP URI.

See Configure Connection Properties.

Invoke a SOAP-Based Integration with a Timestamp
You can use an interface such as SoapUI to invoke a SOAP-based web service
integration in Oracle Integration. If you attempt to invoke a SOAP-based web service
through SoapUI, you can receive the following error regardless of the security policy
you selected in the Connections page (Username Password Token, Basic
Authentication, or No Security Policy).

OWSM ICS Service request handler failed: InvalidSecurity

If this error occurs, add a timestamp to your WSS security. For example:

<soap:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsu:Timestamp wsu:Id="IS-918F6052E6918D5F2414550387589204">
 <wsu:Created>2017-04-17T17:20:50.9200</wsu:Created>
 <wsu:Expires>2017-04-17T17:21:50.9200</wsu:Expires>
</wsu:Timestamp>
<wsse:UsernameToken>
<wsse:Username>Joe</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-username-token-profile-1.0#PasswordText">My_password</
wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
 </soap:Header>

Configure Custom SOAP Headers for the SOAP Adapter
Oracle Integration supports adding custom SOAP headers that are not defined in the
WSDL definition provided on the Connection page. You add custom headers by
uploading a schema on the Custom SOAP Headers tab on the Request Headers
page and/or Response Headers page, respectively, of the Adapter Endpoint
Configuration Wizard.

Add Custom SOAP Headers

Configure custom SOAP headers and specify a valid schema from which an element
can be selected as a custom SOAP header in the Adapter Endpoint Configuration
Wizard:

Chapter 5
Consume Taleo SOAP APIs

5-6

1. On the Header page, select Yes for Do you want to configure headers for this
Endpoint?.

2. For What types of Headers do you want to configure, select Custom SOAP Headers
in the Request Headers and Response Headers columns, as applicable.

3. On the Request page and/or Response page, upload a valid schema from which an
element can be selected as a custom SOAP header. Note the following restrictions on
schemas to upload.

• The schema to upload must have a targetNamespace.

• Endpoints that expect custom SOAP headers without a namespace are not
supported.

• Ensure the schema is defined with elementFormDefault as qualified (for child
elements with a namespace prefix) or unqualified (for child elements without a
namespace prefix), as required.

• A schema with dependencies (imports/includes/cross references) is not supported.
See Example Schemas.

• Only one element can be selected as a header from the uploaded schema. To select
multiple elements:

– For the same targetNamespace, a schema must be uploaded again for each
element.

– For a different targetNamespace, a different schema with required
targetNamespace can be used.

4. Select the required element from the list of elements displayed from the uploaded
schema.

5. Click Add Header to add the element to the configured headers table.

Delete Custom SOAP Headers

1. On the Request and/or Response page, select the check box next to the required header
element in the configured headers table.

Chapter 5
Configure Custom SOAP Headers for the SOAP Adapter

5-7

2. Click Delete Header to remove the element from the configured headers table.

Example Schemas

The following schema includes a targetNamespace. A prefix for a child is required.

Schema XML

<xsd:schema
elementFormDefault="qualified"
targetNamespace="http://
xmlns.oracle.com/
sample" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
 <xsd:element name="headerRoot">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element
name="headerChild"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

<hdr:headerRoot xmlns:hdr=http://
xmlns.oracle.com/sample>
<hdr:headerChild>headerValue</
hdr:headerChild>
</hdr:headerRoot >

The following schema includes a targetNamespace. A prefix for a child is not required.

Schema XML

<xsd:schema
elementFormDefault="unqualifi
ed" targetNamespace="http://
xmlns.oracle.
com/sample" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
 <xsd:element name="headerRoot">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element
name="headerChild"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

<hdr:headerRoot xmlns:hdr=http://
xmlns.oracle.com/sample>
<headerChild>headerValue</
headerChild>
</hdr:headerRoot >

Chapter 5
Configure Custom SOAP Headers for the SOAP Adapter

5-8

Call Oracle Fusion Applications Business Intelligence Publisher
Report Services

Oracle Fusion Applications provides web services for Business Intelligence (BI) Publisher
services to execute reports synchronously and get responses using the following services.

• Public Services: Expects credentials in the payload/body of the SOAP envelope.

– ReportService: runReport method (See ReportService in Developer's Guide for
Oracle Business Intelligence Publisher.)

* xmlpserver/services/v2/ReportService?wsdl
– ScheduleService: getDocumentData method (See ScheduleService in Developer's

Guide for Oracle Business Intelligence Publisher.)

* xmlpserver/services/v2/ScheduleService?wsdl
• Protected Services: Expects credentials as part of headers in the SOAP envelope.

Note:

This service is recommended if you have to use synchronous calls for BI
reports.

– ExternalReportWSSService: runReport method

* xmlpserver/services/ExternalReportWSSService?wsdl
– ScheduleReportWSSService: getDocumentData method

* xmlpserver/services/ScheduleReportWSSService?wsdl
When the SOAP Adapter calls an Oracle Fusion Applications business intelligence publisher
(BIP) report synchronously, the report data is always returned as a base64-encoded string in
the response. These services do not support attachments in the response. In this case,
the feature to configure MTOM support in the SOAP Adapter does not work.

Handling the BI Response

The BI response can be parsed in the integration with the following approaches:

• Recommended: Use the decodeBase64ToReference mapper function to convert the
base64 string to a file reference and use the file reference in a stage file action/FTP
Adapter read file operation scenario for further processing.

• Alternative: Write the base64 string using an opaque schema to a file using a stage file
action/FTP Adapter write file operation scenario, then read the file using a stage file
action/FTP Adapter scenario for further processing.

Chapter 5
Call Oracle Fusion Applications Business Intelligence Publisher Report Services

5-9

https://docs.oracle.com/middleware/12212/bip/BIPDV/reportservice.htm#BIPDV824
https://docs.oracle.com/middleware/12212/bip/BIPDV/scheduleservice.htm#BIPDV004

Note:

Upon calling a BIP report synchronously, the request sent to the BIP web
service initiates report generation and sends a response back after the report
is generated. This can cause latency issues in an Oracle Integration
environment.

For the above reason, calling BI report services synchronously with the SOAP Adapter
is recommended for short-running and/or small size reports. Be aware of the payload
size restrictions. See Service Limits in Provisioning and Administering Oracle
Integration Generation 2.

For anything above those limits (that is, long-running and/or large size reports), the
recommended approaches are as follows:

Using Oracle Universal Content Management (UCM)

Using the Oracle ERP Cloud Adapter and SOAP Adapter:

1. Create a BIP report to schedule/execute and configure the report so that the report
response is deposited to UCM.

2. Create a custom ESS job, then execute the BIP report data sent through step 3.

3. Create an Oracle ERP Cloud Adapter invoke connection using the
ErpIntegrationService and choose the exportBulkData operation. Ensure that the
jobName is set to the custom ESS job created in step 2. jobOptions are set with
EnableEvent=Y. This enables an event when the job is completed.

4. Create an Oracle ERP Cloud Adapter trigger connection to subscribe to the
ExportBulkDataEvent. This provides a documentId in the event payload that is
deposited in UCM.

5. Create a SOAP Adapter invoke using the UCM web service (GenericSoapService)
and GET_FILE command in the operation to get the BIP report response as an
attachment.

Using FTP

1. Configure the BI report to place the report response in FTP.

2. Create a custom ESS job in Oracle Fusion Applications to execute the BIP report.

3. Submit the ESS job using the ESS web service. See Implement Oracle Enterprise
Scheduler Web Service Calls.

4. Get the response from FTP as an attachment once the job completes and the
callback is received.

Integrate PeopleSoft with Oracle Integration
You can integrate PeopleSoft with Oracle and non-Oracle Cloud applications using
Oracle Integration. This use case describes how to synchronize contact information
from Salesforce.com with PeopleSoft, which is a SOAP web service-based integration.

• PeopleSoft Integration using Oracle Integration – Part 1

• PeopleSoft Integration using Oracle Integration – Part 2

Chapter 5
Integrate PeopleSoft with Oracle Integration

5-10

https://blogs.oracle.com/integration/peoplesoft-integration-using-oracle-integration-cloud-%e2%80%93-part-1
https://blogs.oracle.com/integration/peoplesoft-integration-using-oracle-integration-%e2%80%93-part-2

Create a Keystore File for a Two-Way, SSL-Based Integration
If you need to create an integration that communicates with a two-way, SSL-enabled server,
you must create the keystore file required for establishing an Oracle Integration identity to
facilitate a two-way, SSL-based integration.

You can obtain the client certificate in a variety of ways. Select the method that is best for
your environment. For example, you can obtain the certificate directly from many certificate
authorities. The steps in this section describe how to generate a certificate signing request
(CSR) and have it signed by a well known certificate authority.

Note:

• This section describes how to configure Oracle Integration for use in outbound,
two-way SSL integrations. To use Oracle Integration in inbound, two-way SSL
integrations, you can use the Oracle Cloud Infrastructure API Gateway. The
Oracle Cloud Infrastructure API Gateway is integrated with the Oracle Cloud
Infrastructure certificates service. This approach enables you to deliver APIs
implemented with Oracle Integration that enforce client mTLS.

• Two-way SSL is not supported for calls to external services through the
connectivity agent. Two-way SSL requires direct connectivity from Oracle
Integration without the connectivity agent.

See this blog and Adding mTLS support to API Deployments.

• Commonly Used Terms and Tools

• Commands to Create a Client Certificate with the keytool Utility

• Example: Create a Client Certificate with the keytool Utility

• Manage Certificates with openSSL

• Certificate Management - Two-Way SSL or mTLS

Commonly Used Terms and Tools

Term Description

Secure socket layer (SSL) and Transport Layer
Security (TLS)

SSL and TLS, its successor, are protocols for
establishing authenticated and encrypted links
between networked computers.

Digital certificate A data file that holds the cryptographic key
provided to an organization or entity by a trusted
authority. A simple analogy is a driver’s license.
The license uniquely identifies the person to whom
it is issued. The license is issued by the DMV, a
trusted authority.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-11

https://blogs.oracle.com/cloud-infrastructure/post/announcing-support-for-client-mtls-in-oci-api-gateway
https://docs.oracle.com/en-us/iaas/Content/APIGateway/Tasks/apigatewayaddingmtlssupport.htm

Term Description

Certificate A public key and private key form a pair used to
encrypt and decrypt data. Public keys can be
freely given to anyone who needs to securely
exchange data. Private keys must never be shared
and must be stored securely. If private keys are
listed or compromised, the issuing certificate
authority must be notified so they can be added to
the certificate revocation list.

Certificate authority (or certification authority) An entity that issues digital certificates. A digital
certificate certifies the ownership of a public key
by the named subject of the certificate.

Certificate encoding/formats • Privacy Enhanced Mail (PEM): The full
specification of PEM is in RFC 7468. PEM is
the most commonly-used X509 certificate
format. It's a base64-encoded string enclosed
between:-----BEGIN CERTIFICATE-----
and -----END CERTIFICATE-----

• Distinguished Encoding Rules (DER): Binary
Format. Cannot be viewed in an editor.

• Public Key Cryptography Standards (PKCS):
These are a group of public key cryptography
standards devised and published by RSA
Security LLC. See https://
datatracker.ietf.org/wg/pkix/documents/.

TrustStore A password-protected repository for trust or public
certificates. The default location in Java
is $JAVA_HOME/jre/lib/security/cacerts.
All well known certificate authority root and
intermediate certificates are available in the JDK
truststore.

Keystore A password-protected repository to hold client or
private certificates. Since this store holds private
keys, it is imperative that the store resides in a
secure location.

Certificate chain A certificate chain is an ordered list of certificates
ending with the root certificate. For trust to be
established, the entire certificate chain is
traversed. Each certificate is validated by finding
the public key of the next issuing certificate
authority or intermediate certificate authority, until
the root certificate is reached. Certificate chains
are usually cached to validate the certificate
locally.

The two most commonly used tools for SSL are the following:

Tool Description

keytool A JDK utility used to perform CRUD operations
on a truststore and keystore and to administer
certificates. All the commands require the
password that was used to create the store.
Consult your Java truststore documentation for
the default password.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-12

https://datatracker.ietf.org/wg/pkix/documents/
https://datatracker.ietf.org/wg/pkix/documents/

Tool Description

openssl This is a robust, commercial-grade, full-
featured toolkit for the TLS and SSL protocols.
It is also a general-purpose cryptography
library.

Commands to Create a Client Certificate with the keytool Utility

Commonly used keytool commands are as follows.

Caution:

Replace the italicized variables in the commands below with values appropriate to
your environment.

Description Command

List the entire contents of the store keytool -list -keystore
path_to_the_keystore

List the contents in the store for a specific alias keytool -list -keystore
path_to_the_keystore -alias alias_name

View the contents of a certificate keytool -printcert -v -file
name_of_the_file

Export a certificate from the store keytool -export -alias alias_name -file
certificate_name -keystore
path_to_the_store

Import a new certificate into the store keytool -import -trustcacerts -file
path_to_the_certificate -alias
alias_name -keystore path_to_the_store

To create a client certificate:

Caution:

Italicized variables indicate placeholder variables for which you must supply
particular values. If you copy the commands below, ensure that you replace the
variables shown in italics with values appropriate to your environment.

1. Go to the Java bin directory.

%JAVA_HOME%/jre/bin

2. Enter the following command to create a JKS keystore to hold the certificates.

keytool -genkey -keyalg RSA -alias alias_name -keystore
identityKeystore.jks -storepass password_for_the_keystore -validity 360 -
keysize 2048

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-13

3. When prompted, change the values provided based on your company's security
policy.

What is your first and last name?
 [Unknown]: <FQDN>
What is the name of your organizational unit?
 [Unknown]: Your_functional_org
What is the name of your organization?
 [Unknown]: Company
What is the name of your City or Locality?
 [Unknown]: City_name
What is the name of your State or Province?
 [Unknown]: State_name
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=<>, OU=<>, O=<>, L=Redwood Shores, ST=California, C=US
correct?
 [no]: yes
Enter key password for <oicclient>
 (RETURN if same as keystore password):

4. Verify the existence of the JKS keystore file.

ls

5. Create a certificate that is ready to be signed.

keytool -certreq -alias alias_name -keystore name_of_keystore -
storepass password -storetype JKS -file name_of_csr_certificate.csr

6. List the JKS keystore and certificate files in the directory.

ls

7. Validate your CSR file at the following site.

https://ssltools.digicert.com/checker/views/csrCheck.jsp

8. Provide the .csr certificate file to a signing authority. A signed certificate and any
root and intermediate certificates are signed and returned by the authority. A self-
signed certificate can be used for testing, but is not allowed in a production
environment.

9. If you have root and intermediate certificates, perform the following substeps.
Otherwise, go to Step 10.

a. If you have a root certificate, enter the following command to import the signed
root certificate.

keytool -import -keystore keystore_name -file
path_to_root_certificate -alias root_alias_name

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-14

The following example is what you see when importing the DigiCert root certificate.

Enter keystore password:
Owner: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert
Inc, C=US
Issuer: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert
Inc, C=US
Serial number: 83be056904246b1a1756ac95991c74a
Valid from: Thu Nov 09 16:00:00 PST 2006 until: Sun Nov 09 16:00:00
PST 2031
Certificate fingerprints:
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1: A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26:DB:2
5:7F:89:34:A4:43:C7:01:61
 Signature algorithm name: SHA1withRSA
 Version: 3Extensions:#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]#3: ObjectId: 2.5.29.15 Criticality=true
KeyUsage [
 DigitalSignature
 Key_CertSign
 Crl_Sign
]#4: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]Trust this certificate? [no]: yes
Certificate was added to keystore

b. If you have an intermediate certificate, enter the following command to import the
signed intermediate certificate.

keytool -import -keystore keystore_name -file
path_to_intermediate_certificate -alias intermediate_certificate_alias

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-15

10. If you have only a single certificate, enter the following command to import the
signed certificate.

keytool -import -keystore keystore_name -file
path_to_signed_certificate -alias
the_same_alias_used_to_create_the_keystore

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

11. Check if all the certificates are in the store.

keytool -list -keystore

12. Export the public certifcate.

keytool -export -alias certificate_alias -keystore
identity_keystore -file your_public_certificate_filename

Enter keystore password: replace_with_strong_password

13. Export the public certificate to provide to the server.

keytool -export -alias certificate_alias -keystore
identityKeystore.jks -file your_public_certificate_filename
Enter keystore password:
Certificate stored in file your_public_certificate_filename

14. Import the new keystore into Oracle Integration as an X509 identity certificate.

15. List the entire contents of the store.

keytool -list -keystore path_to_the_keystore

Example: Create a Client Certificate with the keytool Utility

This section provides an example of how to create a client certificate. It uses actual file
names. Replace those names with values appropriate to your environment.

1. Enter the following command to create a JKS keystore to hold the certificates.

keytool -genkey -keyalg RSA -alias oicclient -keystore
identityKeystore.jks -storepass replace_with_strong_password -
validity 360 -keysize 2048

Where the following values are entered for this example:

• -alias is the oicclient keystore alias.

• -keystore is the identityKeystore.jks keystore file.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-16

2. When prompted, change the values provided based on your company's security policy.

What is your first and last name?
 [Unknown]: Joe Smith
What is the name of your organizational unit?
 [Unknown]: Development
What is the name of your organization?
 [Unknown]: GlobalChips
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: California
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=<>, OU=<>, O=<>, L=Redwood Shores, ST=California, C=US correct?
 [no]: yes
Enter key password for oicclient
 (RETURN if same as keystore password):

3. Verify the existence of the JKS keystore file.

ls

4. Create a certificate that is ready to be signed.

keytool -certreq -alias oicclient -keystore identityKeystore.jks -
storepass replace_with_strong_password -storetype JKS -file oicclient.csr

Where the following values are entered for this example:

• -alias is the oicclient keystore alias.

• -keystore is the identityKeystore.jks keystore file.

• -file is the oicclient.csr certificate file.

5. List the JKS keystore and certificate files in the directory.

ls
oicclient.csr identityKeystore.jks

6. Validate your .csr certificate file at the following site.

https://ssltools.digicert.com/checker/views/csrCheck.jsp

7. Provide the .csr certificate file to a signing authority. The certificate and any root and
intermediate certificates are signed and returned by the authority. A self-signed certificate
can be used for testing, but is not allowed in a production environment.

8. If you have root and intermediate certificates, perform the following substeps. Otherwise,
go to Step 9.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-17

a. If you have a root certificate, enter the following command to import the signed
root certificate.

keytool -import -keystore identityKeystore.jks -file
DigiCertGlobalRootCA.crt -alias DigiCertCARoot

Where the following values are entered for this example:

• -keystore is the identityKeystore.jks keystore file.

• -file is the DigiCertGlobalRootCA.crt signed root certificate file.

• -alias is the DigiCertCARoot alias.

Enter keystore password: replace_with_strong_password
Owner: CN=DigiCert Global Root CA, OU=www.digicert.com,
O=DigiCert Inc, C=US
Issuer: CN=DigiCert Global Root CA, OU=www.digicert.com,
O=DigiCert Inc, C=US
Serial number: 83be056904246b1a1756ac95991c74a
Valid from: Thu Nov 09 16:00:00 PST 2006 until: Sun Nov 09
16:00:00 PST 2031
Certificate fingerprints:
 MD5: 79:E4:A9:84:0D:7D:3A:96:D7:C0:4F:E2:43:4C:89:2E
 SHA1:
A8:98:5D:3A:65:E5:E5:C4:B2:D7:D6:6D:40:C6:DD:2F:B1:9C:54:36
 SHA256:
43:48:A0:E9:44:4C:78:CB:26:5E:05:8D:5E:89:44:B4:D8:4F:96:62:BD:26
:DB:25:7F:89:34:A4:43:C7:01:61
 Signature algorithm name: SHA1withRSA
 Version: 3Extensions:#1: ObjectId: 2.5.29.35
Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]
]#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]#3: ObjectId: 2.5.29.15 Criticality=true
KeyUsage [
 DigitalSignature
 Key_CertSign
 Crl_Sign
]#4: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 03 DE 50 35 56 D1 4C BB 66 F0 A3 E2 1B 1B C3
97 ..P5V.L.f.......
0010: B2 3D D1 55 .=.U
]

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-18

]Trust this certificate? [no]: yes
Certificate was added to keystore

b. If you have an intermediate certificate, enter the following command to import the
signed intermediate certificate.

keytool -import -keystore identityKeystore.jks -file
DigiCertGlobalInterCA.crt -alias DigiCertCAInter

Where the following values are entered for this example:

• -keystore is the identityKeystore.jks keystore file.

• -file is the DigiCertGlobalInterCA.crt signed intermediate certificate.

• -alias is the DigiCertCAInter alias.

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

9. If you have only a single certificate, enter the following command to import the signed
certificate.

keytool -import -keystore identityKeystore.jks -file
my_company_signedcert.pem -alias oiclient

Where the following values are entered for this example:

• -keystore is the identityKeystore.jks keystore file.

• -file is the my_company_signedcert.pem signed certificate.

• -alias is the oiclient alias.

Enter keystore password: replace_with_strong_password
Certificate was added to keystore

10. Check if all the certificates are in the store.

keytool -list -keystore identityKeystore.jks

11. Export the public certificate corresponding to the private identity certificate.

keytool -export -alias oicclient -keystore identityKeystore.jks -file
my_company_signedcert.pem

Where the following values are entered for this example:

• -alias is the oicclient keystore alias.

• -keystore is the identityKeystore.jks keystore file.

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-19

• -file is the my_company_signedcert.pem public certificate file.

Enter keystore password: replace_with_strong_password
Certificate stored in file my_company_signedcert.pem

12. Import the new keystore (.jks file) into Oracle Integration as an X509 identity
certificate.

13. List the entire contents of the store.

keytool -list -keystore identityKeystore.jks

Manage Certificates with openSSL

Commonly used openssl commands are as follows:

Description Command

Check a certificate openssl x509 -in certificate_name -
text -noout

Get all certificates from a server openssl s_client -connect
host:ssl_port -showcerts

Convert a DER format certificate to PEM
format

openssl x509 -inform der -in
path_to_DER_certificate -out
path_to_PEM_certificate

Convert a .pfx file to a JKS store keytool -importkeystore -srckeystore
path_to_.pfx_file -srcstoretype
pkcs12 -destkeystore
path_to_the_jks_file -deststoretype
JKS -srcstorepass pfx_passwd -
deststorepass pfx_passwd

Convert a .jks file to PKCS12 format keytool -importkeystore -srckeystore
path_to_.jks_file -destkeystore
full_path_to_.p12_file-srcstoretype
JKS - deststoretype PKCS12 -
deststorepass pkcs12_store_password

Extract a private key from a .pfx file openssl pkcs12 -info -in
path_to_.pfx_file -nodes -nocerts -
out private_key_file_name

Extract a public certificate from a .pfx file openssl pkcs12 -in path_to_.pfx_file
-out path_to_certificate_file -
nokeys

Certificate Management - Two-Way SSL or mTLS

See Debugging SSL/TLS Connections.

To upload an identity certificate:

1. In the navigation pane, select Home > Settings > Certificates.

2. Click Upload.

3. Set the alias name to the alias listed in the keystore for the identity certificate. (Use
keytool -list to see the contents of the keystore.)

Chapter 5
Create a Keystore File for a Two-Way, SSL-Based Integration

5-20

https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/ReadDebug.html

4. Make sure the certificate category is set to Identity.

5. Upload the client certificate file in JKS format.

6. Enter the keystore and key passwords used to create the JKS store. If there is a
mismatch in the passwords, Oracle Integration cannot access the identity certificates.

7. Create a new adapter connection (SOAP Adapter or REST Adapter connection) in Oracle
Integration.

8. On the Connections page, select the two-way SSL checkbox and associate the alias
required by the connection to use to complete the SSL connection. This alias must match
the value that was entered in the Upload Certificate dialog.

To test Mutual TLS authentication (mTLS):

1. Test access to the endpoint from the browser first. Import the client certificate in .p12
format into the browser of choice.

2. Enter the endpoint in the browser bar and press Enter. A message is displayed asking
you to use the client certificate that was imported.

3. Follow the prompts in the message. If the certificate is valid, content is loaded in the
browser.

4. If the browser test was successful, test the REST/SOAP adapter connection in Oracle
Integration.

Invoke a SOAP Endpoint with an Explicit Authorization Header
For the Basic Authentication security policy, the runtime message includes an Authorization
HTTP header with a BASIC mechanism only (for example, Authorization: Basic
base64_content_of_credentials).

The authorization header can be overridden in the mapper under Connectivity Properties >
Security Properties > Authorization in the outbound request mapping to pass dynamic
credentials. However, this header also restricts use to the BASIC mechanism only.

To support a different mechanism such as the BEARER mechanism (for OAuth or JWT token)
in the outbound direction, the Authorization HTTP header is enabled in the SOAP Adapter
Request-Headers page. Perform the following steps to enable this support.

1. Create a SOAP Adapter connection.

2. Select No Security Policy.

3. Configure the SOAP Adapter as an invoke connection in your integration.

a. Select Yes for Configure Headers on the Headers page.

b. Select the Standard HTTP Headers checkbox in the Request Headers section.

c. Click + to enable the header list on the Request-Headers page.

d. Select the Authorization header.

Chapter 5
Invoke a SOAP Endpoint with an Explicit Authorization Header

5-21

4. Complete adapter configuration.

5. Open the mapper.
The Authorization HTTP header is visible under the Headers > HTTPHeaders
section of the request mapping. Use this to pass any value to the target endpoint.

Implement Oracle Enterprise Scheduler Web Service Calls
Oracle Fusion Applications provide a web service to submit and access Oracle
Enterprise Scheduler jobs called the Oracle Enterprise Scheduler Web Service.

Oracle Enterprise Scheduler Web Service URL:

https://{FA_HOST}:{FA_PORT}/ess/esswebservice?WSDL

When this service URL is used directly within the SOAP Adapter, the following error
occurs.

SOAPADAPTR-20027: Cause - Unable to parse definition as configured
wsdl is not supported, Action - Verify WSDL definition and please make
sure
that your schema documents are correct

Chapter 5
Implement Oracle Enterprise Scheduler Web Service Calls

5-22

This error occurs due to the peculiarity of its WSDL structure: the service URL has a concrete
WSDL definition with abstract contents in a separate WSDL used as an import.

The concrete Oracle Enterprise Scheduler Web Service URL only has bindings and a service
section in the definition. This imports another WSDL URL (shown below) that contains
abstract information (types, messages, and portTypes sections) in the definition.

Oracle Enterprise Scheduler Web Service abstract URL:

https://{FA_HOST}:{FA_PORT}/ess/esswebservice?WSDL=ESSWebServiceAbstract.wsdl

Receive a Callback from Oracle Enterprise Scheduler Jobs

To receive a callback from Oracle Enterprise Scheduler jobs, an Oracle Integration SOAP
endpoint must be exposed. For this, create an integration with a SOAP Adapter as a trigger
connection configured with the following information.

1. Create a SOAP Adapter connection with the trigger role.

a. Enter the Oracle Enterprise Scheduler Web Service abstract URL in the WSDL URL
field.

b. Select the Security Assertion Markup Language (SAML) security policy.

2. Use this SOAP Adapter connection as a trigger connection in an integration.

a. On the Operations page of the Adapter Endpoint Configuration Wizard, select the
ESSWebServiceCallback port type.

b. Complete integration design and activate the integration.

3. Ensure that the callback integration endpoint is specified in the corresponding request
integration: ReplyTo EndpointURI.

Submit Requests to Oracle Enterprise Scheduler Jobs

To submit requests to Oracle Enterprise Scheduler, the SOAP Adapter must invoke the
Oracle Enterprise Scheduler web service. Since the structure of the Oracle Enterprise
Scheduler web service is not supported by the SOAP Adapter and requests to the service
require WS-Addressing headers to be passed, the following steps describe how to implement
this service call.

• Configure the connection using an uploaded WSDL instead of a URL.

1. Create a SOAP Adapter connection with the invoke role.

2. Obtain the WSDL file to use from support note 2377662.1 at https://
support.oracle.com.

3. Change the soap:address location in the WSDL to the specific Oracle Fusion
Applications environment.

<soap:address location="https://{FA_HOST}:{FA_PORT}/ess/
esswebservice"/>

4. On the Connections page for the SOAP Adapter, click the Upload WSDL button and
select the WSDL you updated.

5. Select the Username Password Token security policy.

• Configure the invoke connection.

Chapter 5
Implement Oracle Enterprise Scheduler Web Service Calls

5-23

https://support.oracle.com
https://support.oracle.com

The service expects WS-Addressing headers for most calls. Because WS-
Addressing headers are not supported out-of-the-box for typical invoke
connections, configure the invoke connection to use custom SOAP headers. See
Configure Custom SOAP Headers for the SOAP Adapter.

Most requests require wsa:Action and wsa:MessageId headers. The following
schema can be used to configure the WS-Addressing headers for the invoke
connection.

Sample WS-Addressing Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.w3.org/2005/08/addressing"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:wsa="http://
www.w3.org/2005/08/addressing">
 <xsd:element name="MessageID" type="xsd:string"/>
 <xsd:element name="Action" type="xsd:string"/>
</xsd:schema>

Troubleshoot

Error Cause

Service invocation fails with the following error:

A required header representing a
Message Addressing Property is
not present.

One or more of the WS-Addressing headers
are missing in the request.

Service invocation fails with the following error:

Job definition with name
{JOB_DEFINITION_NAME} not found.

The Oracle Enterprise Scheduler web service
endpoint URL should be the following:

https://{FA_HOST}:{FA_PORT}/ess/
esswebservice

and not this:

https://{FA_HOST}:
{FA_PORT}/bi/ess/esswebservice

Service invocation fails with the following error:

java.lang.NullPointerException

The Oracle Enterprise Scheduler web service
request expects a requestParameters
element in the request sent. Ensure that you
create a target node for this element in the
request mapper so that the element is created
in the runtime request with an empty/null
value. You can also map #NULL for this
element.

Chapter 5
Implement Oracle Enterprise Scheduler Web Service Calls

5-24

Error Cause

Service invocation fails with the following error:

User $USER does not have
sufficient privilege to perform
operation submitRequest.

See this blog for possible reasons.

Chapter 5
Implement Oracle Enterprise Scheduler Web Service Calls

5-25

https://blogs.oracle.com/fadevrel/using-the-web-service-for-enterprise-scheduling-service-ess

6
Troubleshoot the SOAP Adapter

Review the following topics to learn about troubleshooting issues with the SOAP Adapter.

Topics:

• Regenerate the SOAP Adapter Connection After WSDL Definition Updates

• Use the Correct SoapUI Version to Load and Test SOAP Endpoints

• Edit Adapter Connections in Active Integrations

• Multiple SOAP Adapter Invokes with Custom Headers Created Prior to 17.4.3

• SOAP Endpoint Invocation Fails with OSB-380001: mustUnderstand Error

• Specify Connection Property Values with the REST API

• Callback Integrations Fail with a Configured SOAP Action Mismatch Error

• Integrations Fail with SAML Security Policy Selected in Inbound Direction

• Schemas Not Successfully Loaded in Mapper When Using Headers Configured with
WSDLs Ending in asmx

• Resolve SOAP Action Mismatch Errors in the SoapUI

• Resolve Exceptions While Invoking Oracle Integration From External Clients

• Connection Error When Using the Incorrect TLS Version

• Extra Information is Included in the Response Headers Returned as Part of the
Response Message

• Basic Authentication Fields are Unavailable when Updating a SOAP Adapter Connection
after Importing a 16.2.5 Integration

• Unexpected Use of the Suppression Insertion of Timestamp into WS-Security Header
Feature in the SOAP Adapter Causes an Unrelated Error Response

• Pre-17.2.5 Integration Failures with an Invoke SOAP Adapter Configured with the Basic
Authentication Security Policy and Suppress Timestamp Set to No

Additional integration troubleshooting information is provided. See Troubleshoot Oracle
Integration in Using Integrations in Oracle Integration Generation 2 and the Oracle Integration
Troubleshooting page on the Oracle Help Center.

Regenerate the SOAP Adapter Connection After WSDL
Definition Updates

When a WSDL definition is updated in the connection, perform the following steps described
in sequence for the SOAP Adapter to reflect the changes.

Common use cases for regenerating the SOAP Adapter after updating the connection are as
follows:

• The updated WSDL definition in the connection is not reflected in the integration.

6-1

https://www.oracle.com/pls/topic/lookup?ctx=oic&id=integration-troubleshoot
https://www.oracle.com/pls/topic/lookup?ctx=oic&id=integration-troubleshoot

• Regeneration does not occur for the trigger/invoke connection.

• The Regenerate Artifacts option is not available for an orchestrated integration
that contains the trigger/invoke connection.

1. Update and save the SOAP Adapter connection.

2. From the menu at the far right for the updated SOAP Adapter connection, click
Refresh Metadata.

3. Click the Information icon for the connection and look for the Last Refresh
Status to indicate Complete.

4. Edit the integration and edit the SOAP Adapter trigger or invoke connection to start
the Adapter Endpoint Configuration Wizard.

5. Re-navigate through the pages of the wizard until you reach the Summary page,
then click Done.

6. Accept the major changes or minor changes warning message (as applicable
based on the changes to the connection).

The changes are reflected in the mapper and Expression Builder.

Use the Correct SoapUI Version to Load and Test SOAP
Endpoints

When using the SoapUI to load and test Oracle Integration SOAP endpoints, note that
older versions of the SoapUI do not use TLS 1.2 as the default communication
protocol, while Oracle Integration SOAP endpoints support only TLS 1.2 for the
inbound (trigger) direction. This mismatch results in the following error:

unable to load wsdl

To avoid this issue, perform one of the following tasks:

• Use a SoapUI version greater than 5.4.0.

• Set the following flag in SoapUI.vmoptions:

-Dsoapui.https.protocols=TLSv1.2

Edit Adapter Connections in Active Integrations
You can edit adapter connections that are currently in use in active integrations. For
the changes to take effect, you must then reactive the impacted integrations. This is
the expected behavior.

For example, assume you import and activate an orchestrated integration that includes
a SOAP Adapter connection as the initial trigger. You then edit the in-use SOAP
Adapter connection on the Connections page and modify the WSDL URL, test the
connection, and save it. A message is displayed that warns you to reactivate any
integrations using this connection for these changes to take effect.

Chapter 6
Use the Correct SoapUI Version to Load and Test SOAP Endpoints

6-2

Multiple SOAP Adapter Invokes with Custom Headers Created
Prior to 17.4.3

If you have integrations with multiple SOAP Adapter invokes that have custom headers
created prior to 17.4.3, note the following details.

Assume you have the following use case:

• Three different integrations (Flow1, Flow2, and Flow3) use the SOAP Adapter as a
trigger connection with custom HTTP headers configured (created before 17.4.3). A static
namespace is used for the inbound wrapper.

• Flow4 is a delegating pattern integration with multiple invoke connections using the
endpoints of Flow1, Flow2 and Flow3 (created in 18.3.3) This flow uses dynamic
namespaces for all outbound wrappers.

Activating Flow4 causes a failure because there is a conflict with the wrapper schema
between Flow1 and Flow2 when used as an invoke.

Note the following workaround and solutions:

• Workaround:

Ensure that the schema is the same between integrations (for example, Flow1 and
Flow2). If the custom HTTP headers used have a different description, this can cause a
schema conflict. Keep the same description in all integrations for the schema to be
synchronized. If you edit the Flow 2 trigger description to match Flow1 and re-activate the
integration, then recreate the Flow2 invoke in Flow4, the issue is resolved.

• Actual solution:

Recreate the Flow1, Flow2, and Flow3 integrations to use the dynamic wrapper
namespaces that are available after 17.4.3. If the flows are recreated in the latest Oracle
Integration version, dynamic namespaces are available and there is no activation issue
for Flow4. Note that there is significant rework required to recreate the integrations
because it involves some complex logic and the change is in the trigger.

• Alternative solution to avoid rework:

Manually update the namespaces in the Flow1, Flow2, and Flow3 triggers to include
dynamic namespaces and reactivate the integrations, then use them in Flow4.

Note:

Manual updating is not recommended because the change can impact
downstream mappings and assignments based on the integration design.

Chapter 6
Multiple SOAP Adapter Invokes with Custom Headers Created Prior to 17.4.3

6-3

SOAP Endpoint Invocation Fails with OSB-380001:
mustUnderstand Error

If SOAP endpoint invocation fails in an integration with the following OSB-380001 -
mustUnderstand fault, there are several possible solutions.

<fault xmlns="http://www.bea.com/wli/sb/context">
<errorCode>OSB-380001</errorCode><
<reason>Fault received on invocation of target : https://host:port/
endpoint
<![CDATA[Fault Code : codeNS:MustUnderstand Fault String :
Unprocessed
'mustUnderstand' header element:
{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd}
Security]]> </reason>
<location>node>RouteNode1</node><path>response-pipeline</path>
</location>
</fault>

Solutions:

• If the SOAP Adapter connection was created with a static WSDL file or dynamic
WSDL URL (valid URL), but the connection fails at runtime with the following error/
fault message pointing to an unexpected host/port or endpoint URL, ensure that
the WSDL has the correct service endpoint URL.

<service name="PrecisionService">
 <port binding="tns:PrecisionServiceBinding" name="PrecisionPort">
 <soap:address
location="http://correct_host:correct_port/correct_soap_endpoint>"/>
 </port>
</service>

• If the WSDL has incorrect endpoint information as seen in the fault message, fix
the WSDL service port to resolve the issue.

Specify Connection Property Values with the REST API
If using the REST API to specify SOAP Adapter connection properties, the property
values to specify are different than those specified in the Connections page of Oracle
Integration. If you incorrectly specify these values, the security policy is changed and
you receive runtime errors.

To correctly configure these properties, specify the following values as JSON input:

Chapter 6
SOAP Endpoint Invocation Fails with OSB-380001: mustUnderstand Error

6-4

Configuration Property If Yes, Set the Property as
Follows:

If No, Set the Property as
Follows:

Suppress insertion of
timestamp into the request
(Optional)

"propertyName" :
"suppressTimestampForReq
uest",
"propertyValue" : "true"

"propertyName" :
"suppressTimestampForReq
uest",
"propertyValue" :
"false"

Ignore timestamp in the
response message (Optional) "propertyName" :

"ignoreTimestampInRespon
se",
"propertyValue" : "true"

"propertyName" :
"ignoreTimestampInRespon
se",
"propertyValue" :
"false"

Enable two way SSL for
outbound connections
(Optional)

"propertyName" :
"enableTwoWaySSL",
"propertyValue" : "true"

"propertyName" :
"enableTwoWaySSL",
"propertyValue" :
"false"

Specify the Transport Layer Security (TLS) version of the target server as follows.

For cases in which Oracle Integration calls Oracle Integration and you need to specify the
TLS version, it should always be TLSv1.2.

Configuration Property If the Property Value is
TLSv1.1:

If the Property Value is
TLSv1.2:

Target Server's TLS version
(Optional) "propertyName" :

"tlsVersion",
"propertyValue" :
"TLSv1.1"

"propertyName" :
"tlsVersion",
"propertyValue" :
"TLSv1.2"

Callback Integrations Fail with a Configured SOAP Action
Mismatch Error

A callback integration fails with a configured SOAP action mismatch error when the trigger in
the callback integration is configured with a connection using the Upload File checkbox to
upload a WSDL that does not have a binding section.

As a workaround, change Disable SOAP Action Validation to Yes on the Operations page
for the trigger configuration and reactivate the flow.

Chapter 6
Callback Integrations Fail with a Configured SOAP Action Mismatch Error

6-5

Integrations Fail with SAML Security Policy Selected in
Inbound Direction

Verify if the target service issuer certificates (also called DemoCA or CloudCA) are
imported into Oracle Integration using the Message Protection Certificate option.
Verify if the SAML user is configured correctly.

Schemas Not Successfully Loaded in Mapper When Using
Headers Configured with WSDLs Ending in asmx

If headers are configured in the SOAP Adapter to use Dot Net or Microsoft WCF-
based services (a WSDL that generally ends with asmx), the schemas are not
successfully loaded in the mapper because the prefixes for schema and prefix s4 for
the element type are not defined at the schema level.

The schemas are in line to the WSDL with prefix declarations at the WSDL level, but
not at the schema level. The following code sample is from the WSDL:

<wsdl:definitions xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s4="http://webservices.com/1.0/Core/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
targetNamespace="http://tempuri.org/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
....
 <s:schema elementFormDefault="qualified" targetNamespace="http://
webservices.com/1.0/Core/">
 <s:element name="WSHeader" type="s4:WSHeader" />

</wsdl:Definitions>

As a workaround add the prefix declarations manually in the schemas, re-import the
IAR file and proceed. The following is an example of the schema in the WSDL after
artifact generation:

<s:schema elementFormDefault="qualified"
targetNamespace="http://webservices.com/1.0/Core/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s4="http://webservices.com/1.0/Core/">
....
</s:schema>

Resolve SOAP Action Mismatch Errors in the SoapUI
If you have a SOAP action mismatch, a 500 Internal server error occurs while
invoking the integration from the SoapUI. For example, you may have a Salesforce
Adapter configured with an empty SOAP action and expecting an empty SOAP action
from the client. However, clients such as the SoapUI generate requests with a SOAP

Chapter 6
Integrations Fail with SAML Security Policy Selected in Inbound Direction

6-6

action identifier read/available from the WSDL file. To resolve this error, update the default
SOAP action with SOAP headers that include empty values.

1. Start the SoapUI.

2. Import the WSDL.

3. Click the Header tab at the bottom of the page.

4. Click the + button to create a header.

The Add HTTP Header dialog is displayed.

5. Specify the name of the header to add (for example, SoapAction)

6. Update the value for the SOAP action header. For this example, the Value field is left
empty to match the Salesforce Adapter.

7. Verify the updated headers by clicking the Raw tab.

Resolve Exceptions While Invoking Oracle Integration From
External Clients

If you receive an exception error while invoking Oracle Integration from an external client (for
example, SoapUI), Oracle Integration requires a WSS username token. The WSS username
token must be passed from an external client such as SoapUI.

A sample header with a WSS username token looks as follows:

<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsu:Timestamp wsu:Id="TS-135B2A61F1A7AB1C3914919876769232">
 <wsu:Created>2017-04-12T09:01:16.922Z</wsu:Created>
 <wsu:Expires>2017-04-12T09:02:16.922Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:UsernameToken
wsu:Id="UsernameToken-135B2A61F1A7AB1C3914919876702101">
 <wsse:Username>weblogic</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

Chapter 6
Resolve Exceptions While Invoking Oracle Integration From External Clients

6-7

wss-username-
token-profile-1.0#PasswordText">welcome2</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-
message-security-1.0#Base64Binary">Jkyg2D3NCGPBs5q6j/jhQg==</
wsse:Nonce>
 <wsu:Created>2017-04-12T09:01:10.208Z</wsu:Created> </
wsse:UsernameToken>
 </wsse:Security>

To set the WSS username token:

1. Start SoapUI.

2. Click the AUTH tab.

3. Select Basic from the Add Authorization dialog, and click OK.

4. Complete the authorization credentials.

5. Right-click the payload and select the Add WSS Username Token and Add
WSS–Timestamp options.

6. Specify the time in the Specify Time-to-Live value dialog, and click OK.

Connection Error When Using the Incorrect TLS Version
If you receive the following design time or runtime error and you have already imported
your SSL certificate into Oracle Integration, ensure that you are using the correct TLS
version.

Design Time Error:

javax.net.ssl.SSLHandshakeException: Remote host closed connection
during
handshake
or
java.net.SocketException: Connection reset
or
Caused by: javax.net.ssl.SSLHandshakeException: Remote host closed
connection
during handshake
at sun.security.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.java:946)
at
sun.security.ssl.SSLSocketImpl.performInitialHandshake(SSLSocketImpl.ja
va:1312
)
at
sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:1339)
at
sun.security.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.java:1323)
at
sun.net.www.protocol.https.HttpsClient.afterConnect(HttpsClient.java:56
3)
....
.....

Chapter 6
Connection Error When Using the Incorrect TLS Version

6-8

Runtime Error:

"type" : "http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1",
"title" : "Internal Server Error",
"detail" : "Internal server error. Please contact oracle support for
details.",
"o:errorCode" : "500",
"o:errorDetails" : [{
"type" : "UnMappedFault:execute",
"instance" : "\n \n \n \n \n \n SYSTEM_ADMINISTRATOR\n \n \n sysadmin\n \n
\n
...
...

Extra Information is Included in the Response Headers
Returned as Part of the Response Message

When standard HTTP headers are used in the response headers as part of the response
message, extra information is included as part of the returned output data at runtime. This
issue occurs only when headers are used in the SOAP Adapter. Without headers, the output
is returned without extra information in the response message.

The extra information is not an extra namespace. It is a valid namespace matching the prefix
of the element. Without headers, the namespace comes as an attribute in the root element.
With headers, since elements are converted from a wrapper, the child elements are copied
along with their namespaces.

For example, with a connection that uses the same web service, but one with a header
(custom HTTP Header) and another one without a header, the body elements in the response
message are different as shown below:

Without a header:

<nstrgmpr:result>
 <nsmpr6:PartyId>10</nsmpr6:PartyId>
 <nsmpr6:PartyName>Acme Corp</nsmpr6:PartyName>
</nstrgmpr:result>

With a header:

<nsmpr2:result>
 <nsmpr8:PartyId
xmlns:nsmpr8="http://xmlns.oracle.com/apps/cdm/foundation/parties/
organizationService/">10
 </nsmpr8:PartyId>
 <nsmpr8:PartyName
xmlns:nsmpr8="http://xmlns.oracle.com/apps/cdm/foundation/parties/
organizationService/">Acme Corp
 </nsmpr8:PartyName>
 </nsmpr2:result>

Chapter 6
Extra Information is Included in the Response Headers Returned as Part of the Response Message

6-9

Basic Authentication Fields are Unavailable when Updating
a SOAP Adapter Connection after Importing a 16.2.5
Integration

After importing an IAR file that was exported from a 16.2.5 release, while updating a
SOAP Adapter Connection that uses Basic Authentication, the Username and
Password fields are not available in the Configure Security dialog. For a trigger
connection, these credentials are not required because this is a SOAP endpoint. The
credentials to access the endpoint are always the Oracle Integration runtime user and
password. In previous releases, the inbound SOAP Adapter connection accepted
username and password changes.

Unexpected Use of the Suppression Insertion of Timestamp
into WS-Security Header Feature in the SOAP Adapter
Causes an Unrelated Error Response

When creating a SOAP Adapter connection with Suppress insertion of timestamp
into WS-Security header set to Yes on the Connections page and using a WSDL that
requires a timestamp header, the connection fails during runtime with the following
error instead of a message indicating that a valid timestamp is not present:

<errorCode>OSB-380001</errorCode>
<reason>InvalidSecurityToken : The security token is not valid.</
reason>

Pre-17.2.5 Integration Failures with an Invoke SOAP
Adapter Configured with the Basic Authentication Security
Policy and Suppress Timestamp Set to No

Integrations created prior to 17.2.5 that include an invoke SOAP Adapter configured
with the Basic Authentication security policy and Suppress Timestamp set to No fail
at runtime in 17.2.5 with a security error mentioning mustUnderstand. This indicates
that the service is not expecting a timestamp in the request.

As a workaround, deactivate the flow, update the connection with Suppress
Timestamp set to Yes, save the connection, and activate the flow.

Chapter 6
Basic Authentication Fields are Unavailable when Updating a SOAP Adapter Connection after Importing a 16.2.5 Integration

6-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Resources
	Conventions

	1 Understand the SOAP Adapter
	SOAP Adapter Capabilities
	SOAP Adapter Restrictions
	What Application Version Is Supported?
	Workflow to Create and Add a SOAP Adapter Connection to an Integration

	2 SOAP Adapter Concepts
	Authenticate Requests for Invoking Oracle Integration Flows
	About Requests to Invoke Integrations
	About OAuth 2.0 Grants
	Use OAuth 2.0 Grants in Oracle Identity Cloud Service Environments
	Use OAuth 2.0 Grants in Identity Domain Environments

	3 Create a SOAP Adapter Connection
	Prerequisites for Creating a Connection
	Create a Connection
	Configure Connection Properties
	Configure Connection Security
	Configure an Agent Group
	Test the Connection

	Upload an SSL Certificate

	4 Add the SOAP Adapter Connection to an Integration
	Basic Info Page
	Trigger Operation Page
	Trigger Callback Operation Page
	Invoke Operation Page
	Header Page
	Request Header Page
	Response Header Page
	Invoke Callback Operation Page
	Summary Page

	5 Implement Common Patterns Using the SOAP Adapter
	Best Practices for Invoking SOAP Endpoints
	Configure MTOM Support in the SOAP Adapter
	Consume Taleo SOAP APIs
	Invoke a SOAP-Based Integration with a Timestamp
	Configure Custom SOAP Headers for the SOAP Adapter
	Call Oracle Fusion Applications Business Intelligence Publisher Report Services
	Integrate PeopleSoft with Oracle Integration
	Create a Keystore File for a Two-Way, SSL-Based Integration
	Invoke a SOAP Endpoint with an Explicit Authorization Header
	Implement Oracle Enterprise Scheduler Web Service Calls

	6 Troubleshoot the SOAP Adapter
	Regenerate the SOAP Adapter Connection After WSDL Definition Updates
	Use the Correct SoapUI Version to Load and Test SOAP Endpoints
	Edit Adapter Connections in Active Integrations
	Multiple SOAP Adapter Invokes with Custom Headers Created Prior to 17.4.3
	SOAP Endpoint Invocation Fails with OSB-380001: mustUnderstand Error
	Specify Connection Property Values with the REST API
	Callback Integrations Fail with a Configured SOAP Action Mismatch Error
	Integrations Fail with SAML Security Policy Selected in Inbound Direction
	Schemas Not Successfully Loaded in Mapper When Using Headers Configured with WSDLs Ending in asmx
	Resolve SOAP Action Mismatch Errors in the SoapUI
	Resolve Exceptions While Invoking Oracle Integration From External Clients
	Connection Error When Using the Incorrect TLS Version
	Extra Information is Included in the Response Headers Returned as Part of the Response Message
	Basic Authentication Fields are Unavailable when Updating a SOAP Adapter Connection after Importing a 16.2.5 Integration
	Unexpected Use of the Suppression Insertion of Timestamp into WS-Security Header Feature in the SOAP Adapter Causes an Unrelated Error Response
	Pre-17.2.5 Integration Failures with an Invoke SOAP Adapter Configured with the Basic Authentication Security Policy and Suppress Timestamp Set to No

