
Oracle® Cloud
Using Stream Analytics in Oracle Integration
Classic

E89784-07
January 2019

Oracle Cloud Using Stream Analytics in Oracle Integration Classic,

E89784-07

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Resources vii

Conventions vii

1 Get Started with Stream Analytics

About Stream Analytics 1-1

Why Stream Analytics? 1-2

How Does Stream Analytics Work? 1-3

Before You Begin with Stream Analytics 1-3

Connection 1-4

Kafka Connection 1-4

Database Connection 1-4

Sources 1-4

Stream 1-5

Reference 1-5

Geo Fence 1-6

Target 1-6

Pipeline 1-6

Query Stage 1-6

Rule Stage 1-9

Pattern Stage 1-11

Query Group 1-11

Live Output Table 1-11

Visualizations 1-13

Draft and Published Pipelines 1-14

Oracle GoldenGate Integration 1-15

Access Stream Analytics 1-16

About Stream Analytics Roles and Users 1-16

iii

2 Administer Stream Analytics

Typical Workflow for Administering Stream Analytics 2-1

Configure Stream Analytics System Settings 2-1

Configure User Preferences 2-3

3 Work with Stream Analytics Artifacts

About the Catalog 3-1

Create a Connection 3-2

Create a Stream 3-2

Create a Reference 3-4

Create a Dashboard 3-6

Create a Cube 3-8

Create a Target 3-11

Create a Geo Fence 3-13

Create a Pipeline 3-15

Configure a Pipeline 3-16

Add a Query Stage 3-16

Adding and Correlating Sources and References 3-16

Adding Filters 3-16

Adding Summaries 3-17

Adding Group Bys 3-17

Adding Visualizations 3-17

Updating Visualizations 3-18

Working with a Live Output Table 3-19

Using the Expression Builder 3-19

Add a Pattern Stage 3-20

Add a Rule Stage 3-21

Add a Query Group Stage 3-21

Add a Query Group: Stream 3-21

Add a Query Group: Table 3-22

Configure a Target 3-23

Publish a Pipeline 3-23

Use the Topology Viewer 3-23

4 Work with Patterns

About Stream Analytics Patterns 4-1

About the Spatial: Speed Pattern 4-3

About the Geo Code Pattern 4-4

About the Interaction: Single Stream Pattern 4-5

iv

About the Interaction: Two Stream Pattern 4-5

About the Spatial: Point to Polygon Pattern 4-6

About the Proximity: Single Stream Pattern 4-7

About the Proximity: Two Stream Pattern 4-7

About the Proximity: Stream with Geo Fence Pattern 4-8

About the Direction Pattern 4-9

About the Geo Fence Pattern 4-10

About the Geo Fence Filter: Inside Pattern 4-11

About the Reverse Geo Code: Near By Pattern 4-12

About the Reverse Geo Code: Near By Place Pattern 4-12

About the Correlation Pattern 4-13

About the Quantile Pattern 4-13

About the Standard Deviation Pattern 4-14

About the Median Pattern 4-14

About the Detect Duplicates Pattern 4-15

About the Change Detector Pattern 4-15

About the W Pattern 4-17

Rule 4-18

About the ‘A’ Followed by ‘B’ Pattern 4-19

About the Top N Pattern 4-20

About the Bottom N Pattern 4-20

About the Up Trend Pattern 4-21

About the ‘A’ Not Followed by ‘B’ Pattern 4-22

About the Down Trend Pattern 4-23

About the Union Pattern 4-24

About the Fluctuation Pattern 4-24

About the Inverse W Pattern 4-25

About the Eliminate Duplicates Pattern 4-26

About the Detect Missing Heartbeat Pattern 4-26

About the Left Outer Join Pattern 4-27

Create a Pipeline for a Pattern 4-28

5 Expression Builder Functions

Bessel Functions 5-1

Conversion Functions 5-2

boolean(value1) 5-2

double(value1) 5-2

float(value1) 5-3

Date Functions 5-3

Day(date) 5-3

v

hour(date) 5-4

minute(date) 5-4

month(date) 5-4

second(date) 5-5

Year(date) 5-5

Geometry Functions 5-5

Interval Functions 5-6

Math Functions 5-6

maximum(value1, value2) 5-8

minimum(value1, value2) 5-8

round(value1) 5-9

toDegrees(value1) 5-9

toRadians(value1) 5-9

Null-related Functions 5-10

nvl(value1, value2) 5-10

Statistical Functions 5-10

String Functions 5-11

coalesce(value1,...) 5-12

length(value1) 5-13

lower(value1) 5-13

replace(string, match, replacement) 5-13

substring(string, from, to) 5-14

upper(value1) 5-14

6 Troubleshoot Stream Analytics

Troubleshoot Live Output 6-1

Ensure that Pipeline is Deployed Successfully 6-1

Ensure that the Input Stream is Supplying Continuous Stream of Events to the
Pipeline 6-3

Ensure that CQL Queries for Each Query Stage Emit Output 6-3

Ensure that the Output of Stage is Available 6-4

Determine the Spark Application Name Corresponding to a Pipeline 6-5

Access CQL Engine Metrics 6-6

Troubleshoot Pipeline Deployment 6-7

vi

Preface

User's Guide describes how to get started with the product, how to build a simple
pipeline, and how to build pipelines for specific use cases.

Topics:

• Audience

• Documentation Accessibility

• Related Resources

• Conventions

Audience
This document is intended for users of Stream Analytics, provisioned as part of the
Integration Analytics service type.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Resources
See these Oracle resources:

• Oracle Cloud at http://cloud.oracle.com.

• Oracle Integration documentation in the Oracle Cloud Library on the Oracle Help
Center.

Conventions
The following text conventions are used in this document:

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://cloud.oracle.com

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

1
Get Started with Stream Analytics

Stream Analytics allows for the creation of custom operational dashboards that provide
real-time monitoring and analyses of event streams in an Apache Spark based
system. Stream Analytics enables customers to identify events of interest in their
Apache Spark based system, execute queries against those event streams in real time
and drive operational dashboards or raise alerts based on that analysis. Stream
Analytics runs as a set of native Spark pipelines.

Topics:

• About Stream Analytics

• Why Stream Analytics?

• How Does Stream Analytics Work?

• Before You Begin with Stream Analytics

• Access Stream Analytics

• About Stream Analytics Roles and Users

About Stream Analytics
Stream Analytics is an in-memory technology for real-time analytic computations on
streaming data. The streaming data can originate from IoT sensors, web pipelines, log
files, point-of-sale devices, ATM machines, social media, or from any other data
source. Stream Analytics is available as a managed service in Oracle Cloud and as an
on premises installation.

Stream Analytics is used to identify business threats and opportunities by filtering,
aggregating, correlating, and analyzing high volume of data in real time.

Once a situation or alert is detected, appropriate action can be taken by triggering a
business workflow using Oracle Integration or by sending results to a presentation
service such as Oracle Analytics Cloud.

More precisely, Stream Analytics can be used in the following scenarios:

• Build complex event processing pipelines by blending and transforming data from
disparate transactional and non-transactional sources.

• Perform temporal analytics based on time and event windows.

• Perform location-based analytics using built-in spatial patterns.

• Detect patterns in time-series data and execute real-time actions.

• Build operational dashboards by visualizing processed data streams.

• Use Machine Learning to score current event and predict next event.

• Run ad-hoc queries on results of processed data streams.

Some industry specific examples include:

1-1

• Detecting real-time fraud based on incoming transaction data.

• Tracking transaction losses and margins in real-time to renegotiate with vendors
and suppliers.

• Improving asset maintenance by tracking healthy operating parameters and pro-
actively scheduling maintenance.

• Improving margins by continuously tracking demand and optimizing markdowns
instead of randomly lowering prices.

• Readjusting prices by continuously tracking demand, inventory levels, and product
sentiment on social media etc.

• Marketing and making real-time offers based on customer location and loyalty.

• Instantly identifying shopping cart defections and improving conversion rates.

• Upselling products and services by instantly identifying customer’s presence on
company website.

• Improving asset utilization by tracking average time it takes to load and unload
merchandise.

• Improving turnaround time by preparing dock and staff based on estimated arrival
time of fleet.

• Revising schedule estimates based on actual time to enter and exit loading zones,
and so on.

Why Stream Analytics?
Various reasons and advantages encourage you to use Stream Analytics instead of
similar products available in the industry.

Oracle Managed

There is no infrastructure to worry and you can get started in minutes with Stream
Analytics. Scale out when your data volume and velocity increases without worrying
about virtual machines, cluster management, and so on.

Simplicity

Author powerful data processing pipeliness using self-service web-based tool in
Stream Analytics. The tool automatically generates a Spark pipeline along with instant
visual validation of pipeline logic.

Built on Apache Spark

Stream Analytics can attach to any version-compliant Yarn cluster running Spark and
is first in the industry to bring event-by-event processing to Spark Streaming.

Enterprise Grade

Stream Analytics is built on Apache Spark to provide full horizontal scale out and 24x7
availability of mission-critical workloads. Automated check-pointing ensures exact-
once processing and zero data loss. Built-in governance provides full accountability of
who did what and when to the system. As part of management and monitoring, Stream
Analytics provides a visual representation of pipeline topology/relationships along with
dataflow metrics to indicate number of events ingested, events dropped, and
throughput of each pipeline.

Chapter 1
Why Stream Analytics?

1-2

How Does Stream Analytics Work?
Stream Analytics starts with ingesting data from Kafka with first-class support for
GoldenGate change data capture. Examining and analyzing the stream is performed
by creating data pipelines.

A data pipeline can query data using time windows, look for patterns, and apply
conditional logic while the data is still in motion. The query language used in Stream
Analytics is called Continuous Query Language (CQL) and is similar to SQL. But CQL
includes additional constructs for pattern matching and recognition. Though CQL is
declarative, there is no need to write any code in Stream Analytics. The web-based
tool automatically generates queries and the Spark Streaming pipeline. Once data is
analyzed and situation is detected, the pipeline can terminate to trigger BPM
workflows in Oracle Integration or save results into a Data Lake for deeper insights
and intelligence using Oracle Analytics Cloud.

The following diagram illustrates the architecture of Stream Analytics:

The analyzed data is used to build operational dashboards, trigger workflows, and it is
saved to Data Lakes for business intelligence and ad-hoc queries.

Before You Begin with Stream Analytics
In Stream Analytics you typically start your work in the Catalog. The Catalog is a
repository of entities that can be created by the user. There are different types of
entities and in this section we are going to introduce each type one by one.

Every entity in the Catalog has a common subset of properties: a name, a description
and several (zero, one or more) tags assigned to it. The tags assigned to an entity can
later be used to filter the list of entities in the Catalog. In other words, tags can be used
to arrange the entities into logical groups, such as projects by assigning the project
name to the entity.

Chapter 1
How Does Stream Analytics Work?

1-3

Entities may have one or more additional properties based on the entity’s type and
purpose. The main and most important entity type is the pipeline, which represents a
stream processing pipeline. However, other entities, such as Connections, Streams,
References and Targets are required to create and/or make effective use of the
pipeline.

Connection
A connection is a very basic artifact and the first entity that you need to create in the
Catalog. It is a collection of metadata (such as URLs, credential and the like) required
to connect to an external system. A connection is the basis for creation of sources
(Streams, References or Geo Fences) and Targets.

It is possible to reuse the same connection to create multiple sources and/or targets.
In other words, it can is reused to access different resources in the same system: for
example different Kafka topics in the same Kafka cluster, or different database tables
in the same Oracle database.

In this release, the only supported connection types are Kafka and Database.

Kafka Connection
A Kafka connection has just a single parameter, the Zookeeper server URL above all
the standard properties (name, description, tags) of catalog objects.

The Zookeper URL is of the format host:port. If the port is not provided by the user, the
system will assume the default Zookeeper port, i.e. 2181. Authentication to Kafka is
not supported in this release.

Database Connection
Stream Analytics supports connecting to an Oracle database.

To connect to an Oracle database, you must provide the following parameters:

• Service name/SID

• hostname

• port

• username

• password

Sources
There are two kinds of sources in Stream Analytics: streams and references. Though
serve as an input to a pipeline, they are quite different. A stream is a representation of
streaming data while a reference is that of static data. Streaming data is flowing into
the system and is to be processed, whereas static data is used to enrich streaming
data by pulling the static data from a static data source.

The initial or primary source of a pipeline must always be a stream. However
additional sources can be both streams and/or references.

Chapter 1
Before You Begin with Stream Analytics

1-4

Stream
A Stream is a source of dynamic data. The data is flowing, it is not static or frozen. For
example, stock prices of a particular company can be considered as a stream as the
data arrives in every second or even more frequently. Another example of streaming
data is the position (geographical location) of vehicles (e.g. trucks) which again can
change continuously as each vehicle is moving. Each vehicle reports its own position
to a central system periodically, e.g. every second, and the central system receives
the position messages as a stream.

Streams can be transmitted using different network protocols, messaging systems as
well as using many different message formats. In this release, the supported stream
types are: Kafka and GoldenGate.

To create a Kafka stream, you must create a Kafka connection first, and then select
that connection in the stream creation wizard. In addition to the connection, the user
needs to specify the Kafka topic that represents the stream of data.

Shape
A Shape is the format of the data. In Stream Analytics, each message (or event, in
stream processing terminology) in a Stream or Target must have the same format and
this format must be specified when creating the Stream or Target. You can think of the
shape as the streaming analogy of the database table structure for static data. Each
shape consists of a number of fields and each field has a name and a data type. In the
Stream creation wizard, it is possible to assign an alias to a field, so that the field can
later be referenced by this user-given alias.

Assume that the stream contains data about orders. In this case, the shape may
contain the following fields: an order id of type string, a customer id of type integer,
product id of type integer, a quantity of type integer and a unit price of type Number.

Reference
A reference is a source of static data that provides contextual information about the
event data. The metadata and contextual information of event data is stored in a
reference. In this release, the only supported reference type is an Oracle Database
table. A reference is basically a link/connection to a specific database table (rather
than just to a database).

References are used to enrich data that arrives from a Stream. Referring back to the
previous example, the order stream contains order events and each event contains a
product Id and a customer Id. Assume that there are two database tables, each
containing information about the products and the customers, respectively. After
creating two references, one for the products table and one for the customer table,
Stream Analytics can use these references to enrich the incoming streams with
information from these tables, such as product name, manufacturer, customer name,
address, etc.

While references take their data from a database table, a caching mechanism can be
applied. By turning on caching (a configuration option of the reference), it is possible to
add a caching layer in between the pipeline and the database table. This improves the
performance of accessing static data, at the price of higher memory consumption by
the pipeline. Once the data is loaded into cache, the reference fetches data from the
cache only. Any update on the reference table does not take effect.

Chapter 1
Before You Begin with Stream Analytics

1-5

Geo Fence
A geo fence is a virtual boundary in a real world geographical area. This virtual
boundary can be used to find object position with respect to the geo fence.

For example, the object position can be:

• Near to geo fence

• Exit geo fence

• Based on Stay Duration in geo fence

• Enters geo fence

• Present inside geo fence

Target
A target represents an external system where the results of the stream processing is
being directed to. Just like streams, targets are the links to the outside world. Streams
are the input to a pipeline, whereas targets are the output. While a pipeline can
consume and process multiple streams, as of this release, a pipeline can have
maximum one target.

It can have no target, but that configuration does not really make sense, as the
purpose of creating a pipeline is to process streaming data and direct the output to an
external system, i.e a target.

Pipeline
A pipeline defines the pipeline logic and is a sequence of data processing stages. A
stage can be one of the following types – Query, Pattern, Rule, Query Group.

A pipeline always starts with a stream and can optionally end with a target. The output
stream of one stage is used as an input to another stage and a pipeline can be of
arbitrary length with any combination of above stage types.

You can edit/update configuration on any stage, not limited to last stage (the stage
before the target) in a draft pipeline.

Query Stage
A query stage is used to configure a SQL-like query on the data stream and comprises
additional sources for joins, filters, summaries, group by, time windows, and so on.

For example, the query below calculates hourly total sales where transaction amount
is greater than a dollar and outputs the result every 1 second.

Select sum (TransactionAmount) As HourlySales
From SalesStream [Range 1 Hour Slide 1 Second]
Where TransactionAmount > 1

Queries like above or more complex queries can all be configured in the query stage
with zero coding and with no intimate knowledge of Continuous Query Language or

Chapter 1
Before You Begin with Stream Analytics

1-6

CQL. The CQL language is similar to SQL but with additional constructs for temporal
analytics and pattern matching.

A query stage has the following sub sections:

• Filter

• Correlation

• Summary/Group By

• Range

• Evaluation Frequency

Filter
The filter section in a query stage or query group stage allows events in the data
stream to be filtered out.

Only events which satisfy the filter condition are passed to the downstream stage. For
example, in a data stream containing SensorId and Temperature, you can filter events
where Temperature is lower than or equal to 70 degrees by setting the filter condition
to Temperature > 70.

Correlation
A correlation is used to enrich the incoming event in the data stream with static data in
a database table or with data from other streams.

For example, if the event in the data stream only includes SensorId and Sensor
Temperature, the event could be enriched with data from a table to obtain SensorMake,
SensorLocation, SensorThreshold, and many more.

Correlating an event with other sources requires the join condition to be based on a
common key. In the above example, the SensorId from the stream cand be used to
correlate with SensorKey in the database table. The following query illustrates the
above data enrichment scenario producing sensor details for all sensors whose
temperature exceeds their pre-defined threshold.

Select T.SensorId, T.Temperature, D.SensorName, D.SensorLocation
From TemperatureStream[Now] T, SensorDetailsTable D
Where T.SensorId = D.SensorKey And T.Temperature > D.SensorThreshold

Queries like above and more complex queries can be automatically generated by
configuring sources and filter sections of the query stage.

Summary
A data stream is a continuous sequence of events but we can summarize the data
over any time range including an unbounded range.

Chapter 1
Before You Begin with Stream Analytics

1-7

For example, you can continuously compute the maximum temperature for each
sensor from the beginning of time by configuring a query like the one below in a Query
stage.

Select SesnsorId, max(Temperature)
From TemperatureStream
Group By SensorId

Group By
A group by collects the data of all the rows with an identical column value. Group by is
used in conjunction with Summaries (aggregate functions) to provide information about
each group.

Here is an example configuration that generates a query for computing the average
temperature of each sensor at the end of the hour and using readings from last one
hour.

Select SesnsorId, avg(Temperature)
From TemperatureStream [Range 1 Hour Slide 1 Hour]
Group By SensorId

Example

If you add multiple group bys, the data is grouped on multiple columns. For example,
you have a stream that gives you sales numbers for geographical locations. You have
the following columns BEFORE group by:

COUNTRY CITY REVENUE
US SF 500
US NY 1000
INDIA BOMBAY 800
INDIA BOMBAY 1500
INDIA BOMBAY 700
.........

Calculate sum of revenue (summary) by country (groupby) to get:

COUNTRY SUM_OF_REVENUE
US 1500
INDIA 3000

Add CITY as another group by, to get your aggregations grouped by city in addition to
country:

COUNTRY CITY SUM_OF_REVENUE
US NY 1000
US SF 500
INDIA BOMBAY 1500
INDIA BANGALORE 1500

Chapter 1
Before You Begin with Stream Analytics

1-8

Range
A range is a window applied on the data stream. Since data stream is an unbounded
sequence of events it is often necessary to apply a window when computing
aggregates.

Examples of ranges include – Last 1 Hour of events, Last 5 Minutes of events, Last
10 Events, and many more. Applying a range retains data in memory so be cautious
with use of window ranges. For example, if data is arriving at the rate of 2000 events
per second and if each event is 1KB then we have 2MB of data per second. Applying a
1-hour window on this data stream consumes 2MB times 3600 or 7.2GB of memory.

The supported time units in a range are:

• now

• nanoseconds

• microseconds

• milliseconds

• seconds

• minutes

• hours

• events

Evaluation Frequency
Evaluation Frequency or a Window Slide (commonly referred to) determines the
frequency at which results are desired.

For example, the configured query below outputs total sales every 1 second but using
transactions from last 1 hour.

Select sum (TransactionAmount) As HourlySales
From SalesStream [Range 1 Hour Slide 1 Second]

In other words, Evaluation Frequency determines how often you want to see the
results. In the above query, if result is only desired at the end of the hour then we set
the Evaluation Frequency to 1 hour.

Rule Stage
A rule stage is a stage in the pipeline where you apply conditional (IF - THEN) logic to
the events in the stream. You can check for specific conditions and assign values to
fields based on the results of your checks.

You can add multiple rules to the stage and they will get applied to pipeline in the
sequence they are added.

Chapter 1
Before You Begin with Stream Analytics

1-9

Rule
A rule is a set of conditions applied to the incoming stream and a set of actions
performed on the stream when conditions are true. Each event is analyzed
independently of other events.

For example, assume that your stream is a stream from pressure sensors and has the
following fields:

• sensor_id

• pressure

• status

If you want to assign a status value based on the pressure, you can define the
following rules:

• if the pressure is less than or equal to 50, the status must be set to GREEN

• if the pressure is between 50 and 100, the status must be set to YELLOW

• if the pressure is greater than 100, the status must be set to RED.

To achieve this, you need to create these rules in a rule stage. The YELLOW rule for
example, looks as shown below:

The rules get applied to the events sequentially and actions are triggered if the
conditions are met. If you look at the data in the previous screen, the pressure value is
120 in the last row and hence the RED rule conditions resolve to true.

You must be careful while defining the rules. Logical loops or contradictory rules lead
to the application never returning any outgoing events. For example, the following
rules force the application into running forever without any outgoing events:

• Rule 1: if n > 0, set n to -1

• Rule 2: if n <=0, set n to 1

Chapter 1
Before You Begin with Stream Analytics

1-10

Pattern Stage
Patterns are a stage within a pipeline. When working from a pattern, you need to
specify a few key fields to discover an interesting result. You can create pattern stages
within the pipeline. Patterns are not stand-alone artifacts. They need to be embedded
within a pipeline.

Query Group
A query group stage lets you do aggregations on multiple group bys and multiple
windows. It is a collection of groups, where each of the group has its own window,
filters that affect the data processing only within that group.

A query group has two types of stages:

• Stream

• Table

Query Group Stage: Stream
A query group stage of the type stream is where you can apply aggregate functions
with different group-bys and window ranges to your streaming data. You can have
multiple query groups in one stage.

Query Group Stage: Table
A query group stage of the type table is where you can apply aggregate functions with
different group bys and window ranges to a database table data recreated in memory.
Use this stage on a change data capture stream, such as GoldenGate. You can have
multiple query groups in one stage.

Live Output Table
The Live Output table is the main feedback mechanism from the pipelines that you
build. The Live Output table will display events that go out of your pipeline, after your
processing logic has been applied on the incoming stream or streams.

The Live Output table will be displayed for each stage of your pipeline and will include
output of that particular stage. On the source stage the Live Output table will display
events as they arrive in the stream. On the target stage, the Live Output stage will
display events as they will flow to the target.

The Live Output table is also a powerful tool for event shape manipulation. With the
Live Output table you can:

• Add new fields to the event using an extensive library of functions in the
expression builder, and remove new fields

• Change the order of the event fields

• Rename event fields

• Remove existing fields from the output of the stage

• Add a timestamp field to each event

Chapter 1
Before You Begin with Stream Analytics

1-11

• Hide fields from view (but retain them in the output)

• Pause and restart event display in the browser (not affecting downstream stages
or targets)

The interaction with the table should be intuitively clear to anyone who has worked
with popular spreadsheet pipelines.

Expression Builder

The expression builder provides functionality to add new fields to your output based on
existing fields. You can use a rich library of functions to manipulate your event data. A
simple example is string concatenation; you can construct a full name from first and
last names:

Note:

The event shape manipulation functionality is available on the table in the
query stage.

The expression builder has syntax highlighting and code completion. You can also see
the function signature, input parameters and the return value in the Expression Editor.

Chapter 1
Before You Begin with Stream Analytics

1-12

Visualizations
Visualization is mapping of the data (information) to a graphical or tabular format which
can be used to answer a specific analytical question.

It translates data, its properties and relationships into an easy to interpretable visual
object consisting of points, lines, shapes and colors. It effectively represents the
results of the meaningful multi-dimensional questions. It also enables to discover the
influential patterns out of the represented data (information) using the visual analysis.

Visualizations

Visualizations are divided into two categories:

• Axis based

Axis based visualizations display series and groups of data. Series and groups are
analogous to the rows and columns of a grid of data. Typically, the rows in the grid
appear as a series in visualization, and the columns in the grid appear as groups.

Axis based visualizations enables users to visualize the data along two graph axis
x and y like sum of sales over regions or sum of sales over time period. X axis
values can be categorical in nature like regions or can be based on time series
values whereas Y axis represents the measured value like sum(sales). These
charts are useful for visualizing trends in a set of values over time and comparing
these values across series.

• Spatial

Spatial visualizations are used when geography is especially important in
analyzing an event. It represents business data superimposed on a single geo
fence.

Types of Visualizations

Visualizations can be further classified into the following categories:

• Bar

Bar visualization is one of the widely used visualization types which represents
data as a series of vertical bars. It is best suited for comparison of the values
represented along y axis where different categories are spread across x axis. In a
Bar visualization vertical columns represent metrics (measured values). The
horizontal axis displays multiple or non-consecutive categories.

In Horizontal Bar, the axis positions are switched. The vertical axis displays
multiple or non-consecutive categories. The horizontal columns represents metrics
(measured values). It is preferable when the category names are long text values
and requires more space in order to be displayed.

• Line

Line visualization represents data as a line, as a series of data points, or as data
points that are connected by a line. Line visualization require data for at least two
points for each member in a group. The X-axis is a single consecutive dimension,
such as a date-time field, and the data lines are likely to cross. X axis can also
have non date-time categories. Y axis represents the metrics (measured value). It
is preferred to use line visualization when data set is continuous in nature. It is
best suited for trend-based plotting of data over a period of time. In Line

Chapter 1
Before You Begin with Stream Analytics

1-13

visualization, emphasis is on the continuation or the flow of the values (a trend) but
individual value comparison can also be carried out. Multiple series can also be
compared with the line visualizations.

It can have a horizontal orientation where axis are switched i.e. y axis holds
categories whereas x axis shows metrics.

• Area

Area visualization represents data as a filled-in area. Area visualization requires at
least two groups of data along an axis. The X-axis is a single consecutive
dimension, such as a date-time field, and the data lines are unlikely to cross. Y
axis represents the metrics (measured value). X axis can also have non date-time
categories. This visualization is mainly suitable for presenting accumulative value
changes over time.

It can have a horizontal orientation where axis are switched i.e. y axis holds
categories whereas x axis shows metrics.

• Stacked Bar

A Stacked visualization displays sets of values stacked in a single segmented
column instead of side-by-side in separate columns. It is used to show a
composition. Bars for each set of data are appended to previous sets of data. The
size of the stack represents a cumulative data total.

• Spatial

Geo Spatial visualization allows displaying location of an object on a geo fence
and takes user to the area where events are occurring. User can configure
visualization to specify latitude, longitude, identifier etc. Customization of
visualization by specifying different pins like arrows with different colors based on
certain condition is also allowed.

Draft and Published Pipelines
Stream Analytics supports two lifecycle states, namely draft and published.

Draft Pipelines

Pipelines in the draft state possess the following characteristics:

• Are visible only to the owner

• Can be edited

• Work only when the pipeline editor is open. When you exit catalog or close your
browser, the draft pipeline will be removed from the Spark cluster.

• Do not send events to a downstream target even if a target is configured

A newly created pipeline is in draft state. This is where you can explore your streams
and implement the business logic. You do not have to do the implementation all at
once; the pipeline will not run between your editing sessions.

Published pipelines

Pipelines in the published state possess the following characteristics:

• Are visible to any user

• Cannot be edited

Chapter 1
Before You Begin with Stream Analytics

1-14

• Will continue to run in the Spark cluster even after you exit the pipeline

• Send events to a downstream target

After you are done with the implementation and satisfied, you can add a target and
publish your pipeline. The published pipeline runs continually on the Spark Cluster.

If you want to edit a published pipeline, you must unpublish it first.

Oracle GoldenGate Integration
Oracle GoldenGate is a comprehensive software package for real-time data
integration and replication in heterogeneous IT environments. The product set enables
high availability solutions, real-time data integration, transactional change data
capture, data replication, transformations, and verification between operational and
analytical enterprise systems.

Use Case

When to use Oracle GoldenGate integration in Stream Analytics? You use this
integration when you want to analyze your transaction data without stressing your
production database and without waiting for offline reports to be built. Stream Analytics
listens to the transaction event stream pushed by Oracle GoldenGate to Kafka and
provide you with operational data in real time when transactions occur.

There exists an Orders table in a database. The table is continually affected by
transactions (insert/update/delete) and Oracle GoldenGate is replicating the
transactions to Kafka. The schema for the Orders table is {OrderId, OrderStatus,
ProductSKU, QuantitySold, Revenue}.

The stream from Oracle GoldenGate includes two sets of the original table columns,
one to record the state before transaction (for update and delete transactions), and
another to record the state after transaction (for insert and update transactions). It also
includes the op_type and op_ts columns. The op_type column carries transactional
semantics (I (Insert) or U (update) or D (Delete)). The op_ts column is the transaction
timestamp.

An order can be canceled either by deleting the row or by updating the order status to
Canceled. The default order status is Booked. Orders can also be revised up or down
by changing quantity and therefore the revenue. Revenue goes down when quantity is
lowered and goes up when quantity is increased.

Solution

A solution is as follows:

1. Create a GoldenGate stream pointing to the Kafka topic GoldenGate replicates the
transactions to.

2. Create a pipeline using the GoldenGate stream and add a Query Group Stage of
the type Table. In this stage, use the transactional semantics in the op_ts column
to rebuild the Orders table in memory, so that you can see a snapshot of the
latest transactions in your table for as long as you specify (remember that the
longer the time window, the more the memory consumed).

You can then run any filters, group bys and aggregations on this snapshot. For
example:

Chapter 1
Before You Begin with Stream Analytics

1-15

• Total Revenue by for the past 24 hours

• Total Revenue by ProductSKU for the past 24 hours

• Average QuantitySold by ProductSKU for the past one hour.

Tip:

To enhance the data, before adding the Query Group Stage, you can add a
regular Query Stage where you can join the transaction event stream with a
reference database table to obtain more dimensions for your reports, such as
Product Category or Vendor.

Access Stream Analytics
Stream Analytics is a feature within Oracle Integration.

After you provision Stream Analytics, you can access it from Oracle Integration.

• If you have already registered Stream Analytics, click Streams in the left pane to
launch and navigate to Stream Analytics.

• If you are accessing Stream Analytics for the first time, click Register and provide
the deployment details to register an instance of Stream Analytics. Click Streams
in the left pane to launch and navigate to Stream Analytics.

About Stream Analytics Roles and Users
Stream Analytics delivers multiple experiences targeting the specific skillsets of every
persona associated with complex business process lifecycles.

The roles and users are:

• Developer — has full access to the design time user interface with privileges to
create, edit, and delete pipelines. The privileges do not include the Publish
privilege.

• Viewer — has full access to the design time user interface with privileges to view
pipelines and published dashboards. This role has only read access and no
Publish privilege.

Chapter 1
Access Stream Analytics

1-16

• Administrator — has administration or super user access. This is the only role
allowed to modify pipeline role permission grants and memberships.

• Architect — has full access to the design time user interface with the privileges to
create, edit, and delete all artifacts: pipelines, streams, maps, connections,
references, targets, and patterns. The privileges do not include the Publish
privilege.

• Operator — has the privileges to deploy and undeploy pipelines and to monitor the
infrastructure such as the deployed pipelines, Spark Cluster, WebLogic Servers,
etc.

Note:

A user with this role permission can publish/unpublish the pipeline only if
the user also has the Developer role.

For additional information about the privileges, see Privileges Available to Roles in
Stream Analytics.

Chapter 1
About Stream Analytics Roles and Users

1-17

2
Administer Stream Analytics

Administering Stream Analytics is essential to get the required results.

Topics:

• Typical Workflow for Administering Stream Analytics

• Configure Stream Analytics System Settings

• Configure User Preferences

Typical Workflow for Administering Stream Analytics
The typical workflow lists the artifacts required to create a pipeline in Stream Analytics.

The prerequisites for a pipeline are:

• A reference is used to create a stream.

• A target is required to create a connection.

• A connection is required to create a stream.

• A stream is required to create a pipeline.

Configure Stream Analytics System Settings
Only users with the Administrator role can set the console settings in Stream Analytics.

To set/update console settings:

1. Click the user name in the top right corner of the screen.

2. Click System Settings.

The System Settings page opens.

3. Click Environment.

4. Specify the server names and URLs where the Kafka Zookeeper, Yarn Resource
Manager, and Spark Standalone are deployed and running.

2-1

• Kafka Zookeeper Connection — the URL where the Zookeeper server or
servers are configured, separated by comma. This value is required to push
events to the stream.

• Runtime Server — the runtime server you want your Stream Analytics
instance to run on

• YARN Resource Manager URL — the URL where the YARN Resource
Manager is configured, if the runtime server is Yarn

• Spark REST URL — the URL where the Spark REST Proxy is configured, if
the runtime server is Spark

• Storage — the type of storage for all your artifacts within Stream Analytics

• Path — the path where the storage exists

• HA Namenodes — the namenodes of HA cluster

• Hadoop Authentication — the type of Hadoop authentication you would like

5. Click Pipelines. Specify the various settings for the pipeline within Stream
Analytics.

• Batch Duration — the default duration of the batch for each pipeline

• Executor Count — the default number of executors per pipeline

• Cores per Executor — the default number of cores. A minimum value of 2 is
required.

• Executor Memory — the default allocated memory for each executor instance
in megabytes

• Cores per Driver — the default number of cores

• Driver Memory — the default allocated memory per driver instance in
megabytes

• High Availability — toggle the default HA value as on/off for each pipeline

Chapter 2
Configure Stream Analytics System Settings

2-2

6. Click Analytics. Enable Analytics and specify the Druid Zookeeper Connection
details. This is required to work with cubes.

7. Click Proxy. If you set proper proxy, the back-end system will use these settings
to test the REST target.

8. Click Save.

Configure User Preferences
Based on the preferences that users set in this page, the characteristics of Stream
Analytics vary.

To set/update user preferences:

1. Click the user name in the top right corner of the screen.

2. Click Preferences. The Preferences page opens.

General

Provides a set of general preferences that you can view and set according to your
requirements.

Start Page

Chapter 2
Configure User Preferences

2-3

Select if you want the Home page, the Catalog page, or the Patterns page to appear
as the Start Page.

View Mode

Provides a set of view mode preferences that you can view and set according to your
requirements.

Browser mode

Select this option to view the pipeline in a browser mode, just like any other web
pipeline appears in a browser.

Presentation mode (projector)

Select this option to view the pipeline in a presentation mode, as if the pipeline is being
viewed on a projector as a presentation. When you select the Presentation mode, a
different color skin is applied to the pipeline.

Notifications

Provides a set of notifications preferences that you can view and set according to your
requirements.

Show Information Notifications

Select this option if you want the information notifications to appear in the pipeline.
This option is selected by default.

Information Notification duration (in seconds)

Choose the number of seconds for which the notifications appear. The default value is
5.

Catalog

Provides a set of catalog preferences that you can view and set according to your
requirements.

Chapter 2
Configure User Preferences

2-4

Default Sorting Column

Select the column by which you want the columns to be sorted. This value will be used
as the default for all columns until you change the value again.

Default Sorting Order

Select the order by which you want the columns to be sorted. This value will be used
as the default value for all columns until you change the value again.

Default Page Size

Select the value to be used as the default page size. Based on the value selected, the
number of records that appear on a page vary. This value will be used as the default
for all pages until you change the value again.

Pipeline

Provides a set of pipeline preferences that you can view and set according to your
requirements.

Select Yes if you want to display the User Assistance text for the pipelines in the
Pipeline Editor.

Live Output Stream

Provides a set of pipeline live output stream preferences that you can view and set
according to your requirements.

Select a value that you want to be applied as the default table size for the data in Live
Output Stream of a pipeline.

Timestamp

Provides a set of pipeline timestamp preferences that you can view and set according
to your requirements.

Chapter 2
Configure User Preferences

2-5

Chapter 2
Configure User Preferences

2-6

3
Work with Stream Analytics Artifacts

Stream Analytics has various artifacts like connections, references, streams, targets,
and more. Artifacts are important resources that you can use to create pipelines.

Topics:

• About the Catalog

• Create a Connection

• Create a Stream

• Create a Reference

• Create a Dashboard

• Create a Cube

• Create a Target

• Create a Geo Fence

• Create a Pipeline

• Configure a Pipeline

• Publish a Pipeline

• Use the Topology Viewer

About the Catalog
The Catalog page is the location where resources including pipelines, streams,
references, maps, connections, and targets are listed. This is the go-to place for you to
perform any tasks in Stream Analytics.

You can mark a resource as a favorite in the Catalog by clicking on the Star icon. Click
the icon again to remove it from your favorites. You can also delete a resource or view
its topology using the menu icon to the right of the favorite icon.

The tags applied to items in the Catalog are also listed on the screen below the left
navigation pane. You can click any of these tags to display only the items with that tag
in the Catalog. The tag appears at the top of the screen. Click Clear All at the top of
the screen to clear the Catalog and display all the items.

You can include or exclude pipelines, streams, references, maps, connections, and
targets using the View All link in the left panel under Show Me. When you click View
All, a check mark appears beside it and all the components are displayed in the
Catalog.

When you want to display or view only a few or selective items in the Catalog, deselect
View All and select the individual components. Only the selected components will
appear in the Catalog.

3-1

Create a Connection
To create a connection:

1. Click Catalog in the left pane.

2. From the Create New Item menu, select Connection.

3. Provide details for the following fields on the Type Properties page and click
Next:

• Name — name of the connection

• Description — description of the connection

• Tags — tags you want to use for the connection

• Connection Type — type of connection: Database or Kafka

4. Enter Connection Details on the next screen and click Save.

When the connection type is Kafka, provide Zookeeper URLs.

When the connection type is Database:

• Connect using — select the way you want to identify the database; SID or
Service name

• Service name/SID — the details of the service name or SID

• Host name — the host name on which the database is running

• Port — the port on which the database is running. Usually it is 1521

• Username — the user name with which you connect to the database

• Password — the password you use to login to the database

A connection with the specified details is created.

Create a Stream
A stream is a source of events with a given content (shape).

To create a stream:

1. Navigate to Catalog.

Chapter 3
Create a Connection

3-2

2. Select Stream in the Create New Item menu.

3. Provide details for the following fields on the Type Properties page and click
Next:

• Name — name of the stream

• Description — description of the stream

• Tags — tags you want to use for the stream

• Stream Type — select suitable stream type. Supported types are Kafka and
GoldenGate

4. Provide details for the following fields on the Source Details page and click Next:

• Connection — the connection for the stream

• Topic Name — the topic name that receives events you want to analyze

5. Select one of the mechanisms to define the shape on the Shape page:

• Infer Shape

• Select Existing Shape

• Manual Shape

Infer Shape detects the shape automatically from the input data stream. You can
infer the shape from Kafka or from JSON schema/message in a file. You can also
save the auto detected shape and use it later.

Select Existing Shape lets you choose one of the existing shapes from the drop-
down list.

Chapter 3
Create a Stream

3-3

Manual Shape populates the existing fields and also allows you to add or remove
columns from the shape. You can also update the datatype of the fields.

A stream is created with specified details.

Create a Reference
A reference defines a read-only source of reference data to enrich a stream. A stream
containing a customer name could use a reference containing customer data to add
the customer’s address to the stream by doing a lookup using the customer name. A
reference currently can only refer to database tables. A reference requires a database
connection.

To create a reference:

1. Navigate to Catalog.

2. Select Reference in the Create New Item menu.

3. Provide details for the following fields on the Type Properties page and click
Next:

• Name — name of the reference

• Description — description of the reference

• Tags — tags you want to use for the reference

• Reference Type — the reference type of the reference

Chapter 3
Create a Reference

3-4

4. Provide details for the following fields on the Source Details page and click Next:

• Connection — the connection for the stream

• Enable Caching — select this option to enable caching for better performance
at the cost of higher memory usage of the Spark applications. Caching is
supported only for single equality join condition. When you enable caching,
any update to the reference table does not take effect as the data is fetched
from the cache.

5. Provide details for the following fields on the Shape page and click Save:

• Name — name of the database table

NOT_SUPPORTED:

Ensure that you do not use any of the CQL reserved words as the
column names. If you use the reserved keywords, you cannot deploy
the pipeline.

Chapter 3
Create a Reference

3-5

When the datatype of the table data is not supported, the table columns do not have
auto generated datatype. Only the following datatypes are supported:

• numeric

• interval day to second

• text

• timestamp (without timezone)

• date time (without timezone)

A reference is created with the specified details.

Create a Dashboard
A dashboard is a visualization tool that helps you look at and analyze the data related
to a pipeline based on various metrics like slices.

A dashboard is an analytics feature. You can create dashboards in Stream Analytics to
have a quick view at the metrics.

To create a dashboard:

1. Go to the Catalog.

2. Select Dashboard in the Create New Item menu.

The Create Dashboard screen appears.

Chapter 3
Create a Dashboard

3-6

3. Provide suitable details for the following fields:

• Name — enter a name for the dashboard. this is a mandatory field.

• Description — enter a suitable description for the dashboard. This is an
optional field.

• Tags — enter or select logical tags to easily identify the dashboard in the
catalog. This is an optional field.

4. Click Next.

5. Enter a custom stylesheet for the dashboard. This is an optional step.

6. Click Save.

You can see the dashboard in the Catalog.

After you have created the dashboard, it is just an empty dashboard. You need to start
adding details to the dashboard.

Editing a Dashboard

To edit a dashboard:

1. Click the required dashboard in the catalog.

The dashboard opens in the dashboard editor.

2. Click the Add a new slice to the dashboard icon to see a list of existing slices.
Go through the list, select one or more slices and add them to the dashboard.

3. Click the Specify refresh interval icon to select the refresh frequency for the
dashboard.

Chapter 3
Create a Dashboard

3-7

This just a client side setting and is not persisted with the Superset Version
0.17.0.

4. Click the Apply CSS to the dashboard icon to select a CSS. You can also edit
the CSS in the live editor.

5. Click the Save icon to save the changes you have made to the dashboard.

6. Within the added slice, click the Explore chart icon to open the chart editor of the
slice.

You can see the metadata of the slice.

7. Click Save as to make the following changes to the dashboard:

a. Overwrite the current slice with a different name

b. Add the slice to an existing dashboard

c. Add the slice to a new dashboard

Create a Cube
A cube is a data structure that helps in quickly analyzing the data related to a business
problem on multiple dimensions.

The cube feature works only when you have enabled Analytics. Verify this in System
Settings.

To create a cube:

1. Go to the Catalog.

2. From the Create New Item menu, select Cube.

3. On the Create Cube — Type Properties screen, provide suitable details for the
following fields:

• Name — enter a name for the cube. This is a mandatory field.

Chapter 3
Create a Cube

3-8

• Description — enter a suitable description for the cube. This is an optional
field.

• Tags — enter or select logical tags for the cube. This is an optional field.

• Source Type — select the source type from the drop-down list. Currently,
Published Pipeline is the only supported type. This is a mandatory field.

4. Click Next and provide suitable details for the following fields on the Ingestion
Detailsscreen:

• Pipelines — select a pipeline to be used as the base for the cube. This is a
mandatory field.

• Timestamp — select a column from the pipeline to be used as the timestamp.
This is a mandatory field.

• Timestamp format — select or set a suitable format for the timestamp using
Joda time format. This is a mandatory field. auto is the default value.

• Metrics — select metrics for creating measures

• Dimensions — select dimensions for group by

• High Cardinality Dimensions — high cardinality dimensions such as unique
IDs. Hyperlog approximation will be used.

5. Click Next and select the required values for the Metric on the Metric Capabilities
screen.

Chapter 3
Create a Cube

3-9

6. Click Next and make any changes, if required, on the Advanced Settings screen.

• Segment granularity — select the granularity with which you want to create
segments

• Query granularity — select the minimum granularity to be able to query
results and the granularity of the data inside the segment

• Task count — select the maximum number of reading tasks in a replica set.
This means that the maximum number of reading tasks is
taskCount*replicas and the total number of tasks (reading + publishing) is
higher than this. The number of reading tasks is less than taskCount if
taskCount > {numKafkaPartitions}.

• Task duration — select the length of time before tasks stop reading and
begin publishing their segment. The segments are only pushed to deep
storage and loadable by historical nodes when the indexing task completes.

• Maximum rows in memory — enter a number greater than or equal to 0.
This number indicates the number of rows to aggregate before persisting. This
number is the post-aggregation rows, so it is not equivalent to the number of
input events, but the number of aggregated rows that those events result in.
This is used to manage the required JVM heap size. Maximum heap memory
usage for indexing scales with maxRowsInMemory*(2 + maxPendingPersists).

• Maximum rows per segment — enter a number greater than or equal to 0.
This is the number of rows to aggregate into a segment; this number is post-
aggregation rows.

• Immediate Persist Period — select the period that determines the rate at
which intermediate persists occur. This allows the data cube is ready for query
earlier before the indexing task finishes.

• Report Parse Exception — select this option to throw exceptions
encountered during parsing and halt ingestion.

• Advanced IO Config — specify name-value pair in a CSV format. Available
configurations are replicas, startDelay, period, useEarliestOffset,
completionTimeout, and lateMessageRejectionPeriod.

• Advanced Tuning Config — specify name-value pair in CSV format.
Available configurations are maxPendingPersists, handoffConditionTimeout,
resetOffsetAutomatically, workerThreads, chatThreads, httpTimeout, and
shutdownTimeout.

Chapter 3
Create a Cube

3-10

7. Click Save to save the changes you have made.

You can see the cube you have created in the catalog.

Create a Target
A target defines a destination for output data coming from a pipeline.

To create a target:

1. Navigate to Catalog.

2. Select Target in the Create New Item menu.

3. Provide details for the following fields on the Type Properties page and click
Save and Next:

• Name — name of the target

• Description — description of the target

• Tags — tags you want to use for the target

• Target Type — the transport type of the target. Supported types are Kafka
and REST.

Chapter 3
Create a Target

3-11

4. Provide details for the following fields on the Target Details page and click Next:

When the target type is Kafka:

• Connection — the connection for the target

• Topic Name — the Kafka topic to be used in the target

When the target type is REST:

• URL — enter the REST service URL. This is a mandatory field.

• Custom HTTP headers — set the custom headers for HTTP. This is an
optional field.

• Batch processing — select this option to send events in batches and not one
by one. Enable this option for high throughput pipelines. This is an optional
field.

Click Test connection to check if the connection has been established
successfully.

Testing REST targets is a heuristic process. It uses proxy settings. The testing
process uses GET request to ping the given URL and returns success if the server
returns OK (status code 200). The return content is of the type of application/
json.

5. Select one of the mechanisms to define the shape on the Shape page and click
Save:

• Select Existing Shape lets you choose one of the existing shapes from the
drop-down list.

• Manual Shape populates the existing fields and also allows you to add or
remove columns from the shape. You can also update the datatype of the
fields.

Chapter 3
Create a Target

3-12

A target is created with specified details.

Creating Target from Pipeline Editor

Alternatively, you can also create a target from the pipeline editor. When you click
Create in the target stage, you are navigated to the Create Target dialog box. Provide
all the required details and complete the target creation process. When you create a
target from the pipeline editor, the shape gets pre-populated with the shape from the
last stage.

Create a Geo Fence
Geo fences are further classified into two categories: manual geo fence and database-
based geo fence.

Create a Manual Geo Fence

To create a manual geo fence:

1. Navigate to the Catalog page.

2. Click Create New Item and select Geo Fence from the drop-down list.

The Create Geo Fence dialog opens.

3. Enter a suitable name for the Geo Fence.

4. Select Manually Created Geo Fence as the Type.

5. Click Save.

The Geo Fence Editor opens. In this editor you can create the geo fence
according to your requirement.

6. Within the Geo Fence Editor, Zoom In or Zoom Out to navigate to the required
area using the zoom icons in the toolbar located on the top-left side of the screen.

You can also use the Marquee Zoom tool to move across locations on the map.

7. Click the Polygon Tool and mark the area around a region to create a geo fence.

Chapter 3
Create a Geo Fence

3-13

8. Enter a name and description, and click Save to save your changes.

Update a Manual Geo Fence

To update a manual geo fence:

1. Navigate to the Catalog page.

2. Click the name of the geo fence you want to update.

The Geo Fence Editor opens. You can edit/update the geo fence here.

Search Within a Manual Geo Fence

You can search the geo fence based on the country and a region or address. The
search field allows you search within the available list of countries. When you click the
search results tile in the left center of the geo fence and select any result, you are
automatically zoomed in to that specific area.

Delete a Manual Geo Fence

To delete a manual geo fence:

1. Navigate to Catalog page.

2. Click Actions, then select Delete Item to delete the selected geo fence.

Create a Database-based Geo Fence

To create a database-based geo fence:

1. Navigate to Catalog page.

2. Click Create New Item and then select Geo Fence from the drop-down list.

The Create Geo Fence dialog opens.

3. Enter a suitable name for the geo fence.

4. Select Geo Fence from Database as the Type.

5. Click Next and select Connection.

6. Click Next.

All tables that have the field type as SDO_GEOMETERY appear in the drop-down list.

7. Select the required table to define the shape.

Chapter 3
Create a Geo Fence

3-14

8. Click Save.

Note:

You cannot edit/update database-based geo fences.

Delete a Database-based Geo Fence

To delete a database-based geo fence:

1. Navigate to Catalog page.

2. Click Actions and then select Delete Item to delete the selected geo fence.

Create a Pipeline
A pipeline is a Spark application where you implement your business logic. It can have
multiple stages such as a query, a pattern stage, a business rule, or a query group.

To create a pipeline:

1. Navigate to Catalog.

2. Select Pipeline in the Create New Item menu.

3. Provide details for the following fields and click Save:

• Name — name of the pipeline

• Description — description of the pipeline

• Tags — tags you want to use for the pipeline

• Stream — the stream you want to use for the pipeline

A pipeline is created with specified details.

Chapter 3
Create a Pipeline

3-15

Configure a Pipeline
You can configure a pipeline to use various stages like query, pattern, rules, query
group.

Add a Query Stage
You can include simple or complex queries on the data stream without any coding to
obtain refined results in the output.

1. Open a pipeline in the Pipeline Editor.

2. Click the Add a Stage button and select Query.

3. Enter a Name and Description for the Query Stage.

4. Click Save.

Adding and Correlating Sources and References
You can correlate sources and references in a pipeline.

To add a correlating source or reference:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage.

3. Click the Sources tab.

4. Click Add a Source.

5. Select a source (stream or reference) from the available list.

6. Click the Window Area in the source next to the clock icon and select appropriate
values for Range and Evaluation Frequency.

7. Under Correlation Conditions, select Match All or Match Any as per your
requirement. Then click Add a Condition.

8. Select the fields from the sources and the appropriate operator to correlate.

Ensure that the fields you use on one correlation line are of compatible types. The
fields that appear in the righ drop-down list depend on the field you select in the
left drop-down list.

9. Repeat these steps for as many sources or references as you want to correlate.

Adding Filters
You can add filters in a pipeline to obtain more accurate streaming data.

To add a filter:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage.

3. Navigate to the Filters tab.

4. Click Add a Filter.

Chapter 3
Configure a Pipeline

3-16

5. Select the required column and a suitable operator and value.

You can also calculated fields within filters.

6. Click Add a Condition to add and apply a condition to the filter.

7. Click Add a Group to add a group to the filter.

8. Repeat these steps for as many filters, conditions, or groups as you want to add.

Adding Summaries

To add a summary:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage and click the Summaries tab.

3. Click Add a Summary.

4. Select the suitable function and the required column.

5. Repeat the above steps to add as many summaries you want.

Adding Group Bys

To add a group by:

1. Open a pipeline in the Pipeline Editor.

2. Select the required query stage and click the Summaries tab.

3. Click Add a Group By.

4. Click Add a Field and select the column on which you want to group by.

A group by is created on the selected column.

When you create a group by, the live output table shows the group by column alone by
default. Turn ON Retain All Columns to display all columns in the output table.

You can add multiple group bys as well.

Adding Visualizations
Visualizations are graphical representation of the streaming data in a pipeline. You can
add visualizations on all stages in the pipeline.

To add a visualization:

1. Open a pipeline in the Pipeline Editor.

2. Select the required stage and click the Visualizations tab.

3. Click Add a Visualization.

4. Select a suitable visualization type from the available list.

• Bar Chart

• Line Chart

• Geo Spatial

• Area Chart

Chapter 3
Configure a Pipeline

3-17

• Pie Chart

• Scatter Chart

• Bubble Chart

• Stacked Bar Chart

5. Provide all the required details to populate data in the visualization.

6. Select Horizontal if you want the visualization to appear with a horizontal
orientation in the Pipeline Editor. This is optional and you can decide based on
your usecase or requirement if you want to change the orientation.

7. Select Save as Slice check box if you want the visualization to be available as a
slice for future reference. Slices can be used in dashboards.

8. Repeat these steps to add as many visualizations as you want.

Updating Visualizations
You can perform update operations like edit and delete on the visualizations after you
add them.

You can open the visualization in a new window/tab using the Maximize
Visualizations icon in the visualization canvas.

Edit Visualization

To edit a visualization:

1. On the stage that has visualizations, click the Visualizations tab.

2. Identify the visualization that you want to edit and click the pencil icon next to the
visualization name.

3. In the Edit Visualization dialog box that appears, make the changes you want.
You can even change the Y Axis and X Axis selections. When you change the Y
Axis and X Axis values, you will notice a difference in the visualization as the basis
on which the graph is plotted has changed.

Change Orientation

Based on the data that you have in the visualization or your requirement, you can
change the orientation of the visualization. You can toggle between horizontal and
vertical orientations by clicking the Flip Chart Layout icon in the visualization canvas.

Delete Visualization

You can delete the visualization if you no longer need it in the pipeline. In the
visualization canvas, click the Delete icon to delete the visualization from the pipeline.
Be careful while you delete the visualization, as it is deleted with immediate effect and
there is no way to restore it once deleted.

Chapter 3
Configure a Pipeline

3-18

Working with a Live Output Table
The streaming data in the pipeline appears in a live output table.

Hide/Unhide Columns

In the live output table, right-click columns and click Hide to hide that column from the
output. To unhide the hidden columns, click Columns and then click the eye icon to
make the columns visible in the output.

Select/Unselect the Columns

Click the Columns link at the top of the output table to view all the columns available.
Use the arrow icons to either select or unselect individual columns or all columns. Only
columns you select appear in the output table.

Pause/Restart the Table

Click Pause/Resume to pause or resume the streaming data in the output table.

Perform Operations on Column Headers

Right-click on any column header to perform the following operations:

• Hide — hides the column from the output table. Click the Columns link and unhide
the hidden columns.

• Remove from output — removes the column from the output table. Click the
Columns link and select the columns to be included in the output table.

• Rename — renames the column to the specified name.

• Function — captures the column in Expression Builder using which you can
perform various operations through the in-built functions.

Add a Timestamp

Include timestamp in the live output table by clicking the clock icon in the output table.

Reorder the Columns

Click and drag the column headers to right or left in the output table to reorder the
columns.

Using the Expression Builder
You can perform calculations on the data streaming in the pipeline using in-built
functions of the Expression Builder.

Stream Analytics supports various functions. For a list of supported functions, see
Expression Builder Functions.

Adding a Constant Value Column

A constant value is a simple string or number. No calculation is performed on a
constant value. Enter a constant value directly in the expression builder to add it to the
live output table.

Chapter 3
Configure a Pipeline

3-19

Using Functions

You can select a CQL Function from the list of available functions and select the input
parameters. Make sure to begin the expression with =”. Click Apply to apply the
function to the streaming data.

Add a Pattern Stage
Patterns are templatized stages. You supply a few parameters for the template and a
stage is generated based on the template.

To add a pattern stage:

1. Open a pipeline in the Pipeline Editor.

2. Click Add a Stage.

3. Select Pattern.

4. Choose the required pattern from the list of available patterns.

5. Enter a Name and Description for the pattern stage.

The selected pattern stage is added to the pipeline.

6. Click Parameters and provide the required values for the parameters.

7. Click Visualizations and add the required visualizations to the pattern stage.

Chapter 3
Configure a Pipeline

3-20

Add a Rule Stage
Using a rule stage, you can add IF-THEN logic to your pipeline. A rule is a set of
conditions and actions applied to a stream.

To add a rule stage:

1. Open a pipeline in the Pipeline Editor.

2. Click Add a Stage.

3. Select Rules.

4. Enter a Name and Description for the rule stage.

5. Click Add a Rule.

6. Enter Rule Name and Description for the rule and click Done to save the rule.

7. Select a suitable condition in the IF statement, THEN statement, and click Add
Action to add actions within the business rules.

The rules are applied to the incoming events one by one and actions are triggered if
the conditions are met.

Add a Query Group Stage
A query group stage allows you to use more than one query group to process your
data - a stream or a table in memory. A query group is a combination of summaries
(aggregation functions), GROUP BYs, filters and a range window. Different query
groups process your input in parallel and the results are combined in the query group
stage output. You can also define input filters that process the incoming stream before
the query group logic is applied, and result filters that are applied on the combined
output of all query groups together.

A query group stage of the stream type applies processing logic to a stream. It is in
essence similar to several parallel query stages grouped together for the sake of
simplicity.

A query group stage of the table type can be added to a stream containing
transactional semantic, such as a change data capture stream produced, to give just
one example, by the Oracle Golden Gate Big Data plugin. The stage of this type will
recreate the original database table in memory using the transactional semantics
contained in the stream. You can then apply query groups to this table in memory to
run real-time analytics on your transactional data without affecting the performance of
your database.

Add a Query Group: Stream
You can apply aggregate functions with different GROUP BY and window ranges to
your streaming data.

To add a query group stage of type stream:

1. Open a pipeline in the Pipeline Editor.

2. Click the Add Stage button, select Query Group and then Stream.

You can add a query stage group only at the end of the pipeline.

Chapter 3
Configure a Pipeline

3-21

3. Enter a name and a description for the query group stage of the type stream and
click Save.

The query group stage of the type stream appears in the pipeline.

4. On the Input Filters tab, click Add a Filter. See Adding Filters to understand the
steps for creating filters.

These filters process data before it enters the query group stage. Hence, you can
only see fields of the original incoming shape.

5. On the Groups tab, click Add a Group. A group can consist one or many of
summaries, filters, and GROUP BYs.

See Adding Summaries and Adding Group Bys for steps.

6. Repeat the previous step to add as many groups as you want.

7. On the Result Filters tab, click Add a Filter to filter the results.

These filters process data before it exits the query group stage. Hence, you can
see combined set of fields that get produced in the outgoing shape.

8. On the Visualizations tab, click Add a Visualization and add the required type of
visualization. See Adding Visualizations for the procedure.

Add a Query Group: Table
You can apply aggregate functions with different GROUP BYs and window ranges to a
database table data recreated in memory.

To add a query group stage of the type table:

1. Open a pipeline in the Pipeline Editor.

2. Click the Add Stage button, select Query Group and then Table.

3. Enter a name and a description for the Query Group Table and click Next.

4. On the Transactions Settings screen, select a column in the Transaction Field
drop-down list.

The transaction column is a column from the output of the previous stage that
carries the transaction semantics (insert/update/delete). Make sure that you use
the values that correspond to your change data capture dataset. The default
values work for Oracle GoldenGate change data capture dataset.

5. On the Field Mappings screen, select the columns that carry the before and after
transaction values from the original database table. For example, in case of Oracle
GoldenGate, the before and after values have before_ and after_ as prefixes,
respectively. Specify a column as primary key in the table.

6. Click Save to create a query group stage of the type table.

You can see the table configuration that you have specified while creating the
table stage in the Table Configuration tab.

7. On the Input Filters tab, click Add a Filter. See Adding Filters to understand the
procedure.

8. On the Groups tab, click Add a Group. A group can consist one or many of
summaries, filters, and GROUP BYs.

See Adding Summaries and Adding Group Bys for steps.

9. Repeat the previous step to add as many groups as you want.

Chapter 3
Configure a Pipeline

3-22

10. On the Result Filters tab, click Add a Filter to filter the results.

11. On the Visualizations tab, click Add a Visualization and add the required type of
visualization. See Adding Visualizations for the procedure.

Configure a Target
A target defines a destination for output data coming from a pipeline.

To configure a target:

1. Open a pipeline in the Pipeline Editor.

2. Click Target in the left tree.

3. Select a target for the pipeline from the drop-down list.

4. Map each of the Target Property and Output Stream Property.

You can also directly create the target from within the pipeline editor. See Create a
Target for the procedure. You can also edit an existing target.

The pipeline is configured with the specified target.

Publish a Pipeline
You must publish a pipeline to make the pipeline available for all users of Stream
Analytics and send data to targets.

A published pipeline will continue to run on your Spark cluster after you exit the
Pipeline Editor, unlike the draft pipelines, which are undeployed to release resources.

To publish a pipeline:

1. Open a draft pipeline in the Pipeline Editor.

2. Click Publish.

The Pipeline Settings dialog box opens.

3. Update any required settings.

4. Click Publish to publish the pipeline.

A confirmation message appears when the pipeline is published.

Use the Topology Viewer
Topology is a graphical representation and illustration of the connected entities and
the dependencies between the artifacts.

The topology viewer helps you in identifying the dependencies that a selected entity
has on other entities. Understanding the dependencies helps you in being cautious
while deleting or undeploying an entity. Stream Analytics supports two contexts for the
topology — Immediate Family and Extended Family.

Chapter 3
Publish a Pipeline

3-23

You can launch the Topology viewer in any of the following ways:

• Select Show topology from the Catalog Actions menu to launch the Topology
Viewer for the selected entity.

• Click the Show Topology icon in the Pipeline Editor.

Click the Show Topology icon at the top-right corner of the editor to open the
topology viewer.By default, the topology of the entity from which you launch the
Topology Viewer is displayed. The context of this topology is Immediate Family,
which indicates that only the immediate dependencies and connections between the
entity and other entities are shown. You can switch the context of the topology to
display the full topology of the entity from which you have launched the Topology
Viewer. The topology in an Extended Family context displays all the dependencies
and connections in the topology in a hierarchical manner.

Note:

The entity for which the topology is shown has a grey box surrounding it in
the Topology Viewer.

Immediate Family

Immediate Family context displays the dependencies between the selected entity and
its child or parent.

The following figure illustrates how a topology looks in the Immediate Family.

Chapter 3
Use the Topology Viewer

3-24

Extended Family

Extended Family context displays the dependencies between the entities in a full
context, that is if an entity has a child entity and a parent entity, and the parent entity
has other dependencies, all the dependencies are shown in the Full context.

The following figure illustrates how a topology looks in the Extended Family.

Chapter 3
Use the Topology Viewer

3-25

4
Work with Patterns

Patterns are a stage within a pipeline. When working from a pattern, you need to
specify a few key fields to discover an interesting result. You can create pattern stages
within the pipeline. Patterns are not stand-alone artifacts, they need to be embedded
within a pipeline.

Topics:

• About Stream Analytics Patterns

• Create a Pipeline for a Pattern

About Stream Analytics Patterns
The visual representation of the event stream varies from one pattern type to another
based on the key fields you choose.

Click Patterns on the Home page to see all the available patterns. Use the filters at
left to view different categories of pattern. You can see full descriptions and learn more
about each pattern by clicking the user assistant icon. Click again to hide the extra
information.

A pattern provides you with the results displayed in a live output stream based on
common business scenarios.

Note:

While entering data in the fields for a specific pattern, ensure that the data
you enter corresponds to the datatype of the field. If there is a mismatch
between the entered data and the datatype, the pattern will not deploy and
throw an error.

You can include or exclude patterns based on their categories using the View All link
in the left panel under Show Me. When you click View All, a check mark appears next
to it and all the patterns are displayed on the page.

When you want to display/view only a few/selective patterns, deselect View All and
select the individual patterns. Only the selected patterns are shown in the catalog.

4-1

The following table lists the categories of patterns:

Category Pattern

Enrichment Reverse Geo Code: Near By

Left Outer Join

Outlier Fluctuation

Inclusion Union

Left Outer Join

Missing Event 'A' Not Followed by 'B'

Detect Missing Event

Chapter 4
About Stream Analytics Patterns

4-2

Category Pattern

Spatial Proximity: Stream with Geo Fence

Geo Fence

Spatial: Speed

Interaction: Single Stream

Reverse Geo Code: Near By

Geo Code

Spatial: Point to Polygon

Interaction: Two Stream

Proximity: Two Stream

Direction

Reverse Geo Code: Near By Place

Proximity: Single Stream

Geo Filter

Filter Eliminate Duplicates

Fluctuation

State 'A' Not Followed by 'B'

Inverse W

Detect Missing Event

W

'A' Followed by 'B'

Finance Inverse W

W

Trend 'A' Not Followed by 'B

Top N

Change Detector

Up Trend

Detect Missing Event

Down Trend

'A' Followed by 'B'

Detect Duplicates

Bottom N

Shape Detector Inverse W

W

Statistical Correlation

Quantile

About the Spatial: Speed Pattern
Use this pattern to get the output average speed over the selected window range of a
moving object.

For example, to analyze the average speed of a car.

Make sure that you have set the proxy details in System Settings.

Chapter 4
About Stream Analytics Patterns

4-3

Provide suitable values for the following parameters:

• Latitude: the latitude of the location. Select a suitable value.

• Longitude: the longitude of the location. Select a suitable value.

• Object Key: select a suitable value for the object key.

• Coordinate System: the default value is 8307 and this is the only value
supported.

• Window Range: a time range over which the speed is being calculated for an
event. For example, if window range=5 seconds and object key is phone no., then
all the events with same phone no. received over last 5 seconds are used to
calculate the average speed of that event.

The outgoing shape contains speed as an added field along with the incoming fields.
This is a numeric field, but the speed is measured in meters per second.

About the Geo Code Pattern
When analyzing data, you may encounter situations where you need to obtain the
geographical code of a moving object based.

Use this pattern to get geographic coordinates (like latitude and longitude) for an
address.

Make sure that you have set the proxy details in System Settings.

Provide suitable values for the following parameters:

• Name — select a suitable value that can be uses as the place name. This is a
mandatory parameter.

• Street — select a suitable value that can be used as the street name. This is a
mandatory parameter.

• City — select a suitable value that can be used as the city name. This is a
mandatory parameter.

Chapter 4
About Stream Analytics Patterns

4-4

• Region — select a suitable value that can be used for the region. This is a
mandatory parameter.

• Country — select a suitable value for the country. This is a mandatory parameter.

• Postal Code — select a suitable value for the postal code. This is a mandatory
parameter.

The outgoing shape contains latitude and longitude as additional fields along with
incoming fields.

About the Interaction: Single Stream Pattern
Use this pattern to get interaction of an object with every other object in a stream.

For example, you can see if a set of sailing ships are too close to each other.

Provide suitable values for the following parameters:

• Geometry: the field of type SDO_GEOMETRY data type. Only field of SDO_GEOMETRY
data type should be chosen for such fields.

• Object Key: field used to uniquely identify object on the geo fence and is used for
partitioning of data where supported.

• Coordinate System: the default value is 8307 and this is the only value
supported.

The outgoing shape contains two more fields along with the incoming shape:
isInteract and distance. isInteract is trueif two shapes interact with each other,
i.e., any or some portion of the two objects overlap. distance between them is 0, if no
overlapping is observed; isInteract is false and distance is shown between those
two objects as a positive number.

About the Interaction: Two Stream Pattern
Two shapes are said to interact with each other if any part of the shape overlaps. If
two shapes interact, the distance between them is zero.

Use this pattern to get interaction of an object in one stream with objects in another
stream.

Chapter 4
About Stream Analytics Patterns

4-5

Provide suitable values for the following parameters:

• Geometry: select a suitable value for geometry. This is a mandatory value.

• Object Key: select a suitable value for the object key. This is a mandatory value.

• Event Stream 2: select the second event stream. This is a mandatory value.

• Geometry: select a suitable value for geometry within the second stream. This is a
mandatory value.

• Object Key: select a suitable value for the object key within the second stream.
This is a mandatory value.

• Coordinate System: the default value is 8307 and this is the only value
supported.

The outgoing shape contains two additional fields along with the incoming shape:
isInteract and distance. isInteract is trueif two shapes interact with each other,
i.e., any or some portion of the two objects overlap. distance between them is 0, if no
overlapping is observed; isInteract is false and distance is shown between those
two objects as a positive number.

About the Spatial: Point to Polygon Pattern
Use this pattern to get an object shape based on geographical coordinates, fixed
length and breadth of and object.

For example, if you know the length and breadth of a group of a fleet of ships, you can
get the shape of a ship using the position coordinates, where the coordinates keep
changing as the ship moves.

Provide suitable values for the following parameters:

• Latitude: select a suitable value for the latitude. This is a mandatory parameter.

• Longitude: select a suitable value for the longitude. This is a mandatory
parameter.

Chapter 4
About Stream Analytics Patterns

4-6

• Object Key: select a suitable value for the object key. This is a mandatory
parameter.

• Length: select a suitable field to be used as the reference length of the polygon.

• Width: select a suitable field to be used as the reference width of the polygon.

• Coordinate System: the default value is 8307 and this is the only value
supported.

• Buffer: enter a positive value to be used as the geometry buffer.

The outgoing shape contains Updatedshape as an additional attribute which is the
updated point into geometry of type SDO_GEOMETRY along with the incoming shape.

About the Proximity: Single Stream Pattern
Use this pattern to get proximity of each object with every other object in a stream.

For example, if there is stream of flying airplanes and the distance buffer is 1000
meters. You can raise an alert as the two planes come into a proximity of 1000 meters
or less.

Provide suitable values for the following parameters:

• Latitude: select a suitable value for the latitude. This is a mandatory parameter.

• Longitude: select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key: select a suitable value for the object key. This is a mandatory
parameter.

• Coordinate System: the default value is 8307 and this is the only value
supported.

• Distance Buffer: enter a proximity value for the distance buffer. This is the
distance that two points can be apart and still be considered the same. Select an
appropriate unit for the distance.

The outgoing shape displays distance as another column, which is the distance
between two object under consideration along with the incoming shape.

About the Proximity: Two Stream Pattern
Use use this pattern to get the proximity between objects of two streams.

The distance buffer acts as a filter in this pattern stage. For example, if there is a driver
and passenger stream, you can get the proximity of each passenger with every other
driver using a filter criteria of ‘within a distance of 1 km’.

Chapter 4
About Stream Analytics Patterns

4-7

Provide suitable values for the following parameters:

• Latitude: select a suitable value for the latitude. This is a mandatory parameter.

• Longitude: select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key: select a suitable value for the object key. This is a mandatory value.

• Event Stream 2: select the second event stream. This is a mandatory value.

• Latitude: select a suitable value for the latitude in the second stream. This is a
mandatory parameter.

• Longitude: select a suitable value for the longitude in the second stream. This is a
mandatory parameter.

• Object Key: select a suitable value for the object key in the second stream. This is
a mandatory parameter.

• Coordinate System: the default value is 8307 and this is the only value
supported.

• Distance Buffer: enter a proximity value for the distance buffer. This field acts as
a filter criteria of two objects and the objects that do not fall in this distance
(distance between them is more than chosen distance buffer) are filtered from
result set.

Note:

When a pipeline with this pattern has a database reference with cache
enabled, the pattern does not display any output in the live output stream.

The outgoing shape displays distance as another column, which is the distance
between two object under consideration along with the incoming shape.

About the Proximity: Stream with Geo Fence Pattern
Use this pattern to get proximity of an object with a virtual boundary or geo fence.

For example, if you have certain stores in the city of California, you can send
promotional messages as soon as the customer comes into a proximity of 1000
meters from any of the stores.

Chapter 4
About Stream Analytics Patterns

4-8

Provide suitable values for the following parameters:

• Geo Fence: select a geo fence that you like to analyze.

• Latitude: select a suitable value for the latitude. This is a mandatory parameter.

• Longitude: select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key: select a suitable value for the object key. This is a mandatory
parameter.

• Coordinate System: the default value is 8307 and this is the only value
supported.

• Distance Buffer: enter a proximity value for the distance buffer. This field acts as
a filter criteria for events and the events that do not fall in this distance (distance
between them is more than chosen distance buffer) are filtered from result set.

The outgoing shape displays distance as another column, which is the distance
between the object and geo fence under consideration along with the incoming shape.

About the Direction Pattern
Use this pattern to get the direction of a moving object.

For example, you can evaluate the direction of a moving truck.

Provide suitable values for the following parameters:

• Latitude: select a suitable value for the latitude. This is a mandatory parameter.

• Longitude: select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key: select a suitable value for the object key. This is a mandatory
parameter.

• Coordinate System: the default value is 8307 and this is the only value
supported.

The outgoing shape displays direction as one of the columns, which is of type String
along with the incoming shape.

Chapter 4
About Stream Analytics Patterns

4-9

About the Geo Fence Pattern
Use this pattern when you want to track object relation with a virtual boundary called
goe fence.

Relations can be Enter, Exit, Stay, or Near with respect to a geo fence. For example,
you can trigger an alert when an object enters the geo fence. You can also analyze a
stream containing geo-location data. It helps in determining how events are related to
a polygon in a geo fence.

The geo-location can be:

• Near to Geo Fence

• Exiting Geo Fence

• Staying within Geo Fence for a specified duration

• Entering Geo Fence

Provide suitable values for the following parameters:

• Geo Fence

• Latitude

• Longitude

• Object Key

• Tracking Events

– Near

– Enter

– Exit

– Stay

Chapter 4
About Stream Analytics Patterns

4-10

• Coordinate system

• Distance Buffer — this parameter is enabled only if you select Near option in
Tracking Events. This field acts as a buffer for filtering results. Only those events
or objects which are within the specified distance from the geo fence are displayed
in events table with status as Near.

• Stay Duration — this parameter is enabled only if you select Stay in Tracking
Events. You can specify the stay duration and this duration acts as a filter for
objects inside the geo fence. If an object stays for a duration more than the
specified duration, only then the events are considered, else events are filtered
out.

The outgoing shape displays Status and PlaceName as two extra columns in the
output along with the incoming shape, where Status is one of Enter, Exit, Stay, or
Near based on how the object behaves with geo fence. PlaceName is the name of geo
fence with which status is being evaluated.

About the Geo Fence Filter: Inside Pattern
Use this pattern to when you want to track objects inside a virtual boundary.

For example, if users move from one geographical location to another, you can send
promotional messages to the users when they are inside a specified geo fence.

Provide suitable values for the following parameters:

• Geo Fence — select one of the existing geo fences to analyze. This is a
mandatory field.

• Latitude — select a suitable value for the latitude. This is a mandatory parameter.

• Longitude — select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key — select a suitable value for the object key. This field acts as a
partitioning criteria and also used to uniquely identify objects. This is a mandatory
parameter.

• Coordinate system — the default value is 8307 and this is the only value
supported.

The outgoing shape displays Status and PlaceName as two extra columns in the
output along with the incoming shape, where Status is Inside if the object is inside
geo fence (else the event is not considered) and PlaceName is the name of geo fence
with which status is being evaluated.

Chapter 4
About Stream Analytics Patterns

4-11

About the Reverse Geo Code: Near By Pattern
Use this to obtain nearest place for the specified geographical coordinates.

Make sure that you have set the proxy details in System Settings.

Provide suitable values for the following parameters:

• Latitude — select a suitable value for the latitude. This is a mandatory parameter.

• Longitude — select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key — select a suitable value for the object key. This is a mandatory
parameter.

• Coordinate system — the default value is 8307 and this is the only value
supported.

The outgoing shape displays PlaceName as an additional column along with the
incoming shape. This column is the nearest place for specified longitude and latitude.

About the Reverse Geo Code: Near By Place Pattern
Use this pattern to obtain the near by location with granular information like city,
country, street etc. for the specified latitude and longitude.

Make sure that you have set the proxy details in System Settings.

Provide suitable values for the following parameters:

• Latitude — select a suitable value for the latitude. This is a mandatory parameter.

• Longitude — select a suitable value for the longitude. This is a mandatory
parameter.

• Object Key — select a suitable value for the object key. This is a mandatory
parameter.

• Coordinate system — the default value is 8307 and this is the only value
supported.

Chapter 4
About Stream Analytics Patterns

4-12

The outgoing shape displays PlaceName as an additional column along with the
incoming shape. This column is the nearest place for specified longitude and latitude.

About the Correlation Pattern
Use this pattern if you need to identify correlation between two numeric parameters.

Provide suitable values for the following parameters:

• Partition Criteria: the field by which you want to partition.

• Observable Parameter 1: the first value used to identify the correlation.

• Observable Parameter 2: the second value used to identify the correlation.

• Window: a rolling time period, the duration within which the correlation is
identified.

• Slide: the frequency at which you want to refresh the data.

The outgoing shape is same as the incoming shape.

About the Quantile Pattern
Use this pattern if you need to calculate the value of quantile function.

Provide suitable values for the following parameters:

• Partition Criteria: the field based on which you want to partition.

Chapter 4
About Stream Analytics Patterns

4-13

• Observable Parameter: the observable to calculate the quantile.

• Phi-quantile: the value is used to calculate the quantile of the selected event
stream.

• Window: a rolling time period, within which the events will be collected and
quantile is calculated.

• Slide: how frequent newly updated output will be pushed downstream and into the
browser.

The outgoing shape is the same as the incoming shape.

About the Standard Deviation Pattern
Use this pattern to calculate the standard deviation of the selected values with the
expected values.

Provide suitable values for the following parameters:

• Partition Criteria: the field based on which you want to partition.

• Observable Parameter : the value used to identify the standard deviation.

• Window: a rolling time period, the duration within which the standard deviation is
identified.

• Slide: the frequency at which you want to refresh the data.

The outgoing shape is the same as the incoming shape.

About the Median Pattern
Use this pattern to calculate the median of an event stream with respect to a specific
parameter.

Chapter 4
About Stream Analytics Patterns

4-14

Provide suitable values for the following parameters:

• Partition Criteria: the field based on which you want to partition.

• Observable Parameter: the observable to calculate the median.

• Window: a rolling time period, within which the events will be collected and
median is calculated.

• Slide: how frequent newly updated output will be pushed downstream and into the
browser.

The outgoing shape is same as the incoming shape.

About the Detect Duplicates Pattern
The Detect Duplicates pattern detects duplicate events in your stream according to the
criteria you specify and within a specified time window. Events may be partially or fully
equivalent to be considered duplicates.

Use this pattern to understand how many duplicate events your stream has. For
example, when you suspect that your aggregates are offset, you may want to check
your stream for duplicate events.

Provide suitable values for the following parameters:

• Duplicate Criteria: a list of fields, whose values will be compared between events
to look for identical values. If all the configured fields have identical values, the
incoming event will be considered a duplicate and an outgoing event will be fired.

• Window: a time period, within which the duplicates will be searched for. For
example, if you set the window to 10 seconds, a duplicate event that arrives 9
seconds after the first one will be trigger an outgoing event, while a duplicate event
that arrives 11 seconds after the first one will not do so.

Outgoing Shape

The outgoing shape is the same as the incoming shape with one extra field:
Number_of_Duplicates. This extra field will carry the number of duplicate events that
have been discovered. All the other fields will have values of the last duplicate event.

About the Change Detector Pattern
The Change Detector pattern looks for changes in the values of your event fields and
report the changes once they occur within a specified range window. For example, and
events arrives with value value1 for field field1. If any of the following incoming
events within a specified range window contains a value different from value1, an alert
is triggered. You can designate more than one field to look for changes.

Chapter 4
About Stream Analytics Patterns

4-15

Use it when you need to be aware of changes in a normally stable value. For example,
a sensor reading that is supposed to be the same for certain periods of time and
changes in readings may indicate issues.

The default configuration of this pattern stage is to alert on change of any selected
fields.

Provide suitable values for the following parameters:

• Partition Criteria: a field to partition your stream by. For example, your stream
contains events issues by a number of sensors. All sensors send the same but
individual data. You would want to compare readings of a sensor to previous
readings of the same sensor and not just a previous event in your stream, which is
very likely to be from a different sensor. Select a field that would uniquely identify
your sensors, such as sensor Id. This field is optional. For example, if your stream
contains readings from just one sensor, you do not need to partition your data.

• Window range: a time period, within which the values of designated fields are
compared for changes. For example, if you set the window range to 10 seconds,
an event with changes in observed fields will trigger an alert if it arrives within 10
seconds after the initial event. The clock starts at the initial event.

• Change Criteria: a list of fields, whose values will be compared between events to
look for changes. If the fields contain no changes, no alerts will be generated.

• Alert on group changes: this parameter is responsible for the default group
changes support. If it is OFF, then alert on at least one field changes. If it is ON, then
sends alert on every field change.

Outgoing Shape

The outgoing shape is based on the incoming shape, the difference being that all the
fields except the one in the partition criteria parameter will be duplicated to carry both
the initial event values and the change event values. Let's look at an example. Your
incoming event contains the following fields:

• sensor_id

• temperature

• pressure

• location

Normally, you would use sensor_id to partition your data and say you want to look for
changes in temperature. So, select sensor_id in the partition criteria parameter and
temperature in the change criteria parameter. Use a range window that fits your use
case. In this scenario, you will have the following outgoing shape:

Chapter 4
About Stream Analytics Patterns

4-16

• sensor_id

• temperature

• orig_temperature

• pressure

• orig_pressure

• location

• orig_location

The orig_ fields carry values from the initial event. In this scenario, temperature and
orig_temperature values are different, while pressure and orig_pressure, location,
and orig_location may have identical values.

About the W Pattern
The W pattern, also known as a double bottom chart pattern, is used in the technical
analysis of financial trading markets.

Use this pattern to detect when an event data field value rises and falls in “W” fashion
over a specified time window. For example, use this pattern when monitoring a market
data feed stock price movement to determine a buy/sell/hold evaluation.

Provide suitable values for the following parameters:

• Partition Criteria: a field to partition your stream by. For example, a ticker symbol.

• Window: a time period, within which the values of the designated field are
analyzed for the W shape.

• Tracking value: a field, whose values are analyzed for the W shape.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of five new fields.
The new fields are:

• firstW

• firstValleyW

• headW

• secondValleyW

• lastW

Chapter 4
About Stream Analytics Patterns

4-17

The new fields correspond to the tracking value terminal points of the W shape
discovered in the feed. The original fields correspond to the last event in the W
pattern.

Rule
A rule is a set of conditions applied to the incoming stream and a set of actions
performed on the stream when conditions are true. Each event is analyzed
independently of other events.

For example, assume that your stream is a stream from pressure sensors and has the
following fields:

• sensor_id

• pressure

• status

If you want to assign a status value based on the pressure, you can define the
following rules:

• if the pressure is less than or equal to 50, the status must be set to GREEN

• if the pressure is between 50 and 100, the status must be set to YELLOW

• if the pressure is greater than 100, the status must be set to RED.

To achieve this, you need to create these rules in a rule stage. The YELLOW rule for
example, looks as shown below:

The rules get applied to the events sequentially and actions are triggered if the
conditions are met. If you look at the data in the previous screen, the pressure value is
120 in the last row and hence the RED rule conditions resolve to true.

You must be careful while defining the rules. Logical loops or contradictory rules lead
to the application never returning any outgoing events. For example, the following
rules force the application into running forever without any outgoing events:

Chapter 4
About Stream Analytics Patterns

4-18

• Rule 1: if n > 0, set n to -1

• Rule 2: if n <=0, set n to 1

About the ‘A’ Followed by ‘B’ Pattern
The 'A' Followed by 'B' pattern looks for particular events following one another and
will output an event when the specified sequence of events occurs.

Use it when you need to be aware of a certain succession of events happening in you
flow. For example, if an order status BOOKED is followed by an order status SHIPPED
(skipping status PAID), you need to raise an alert.

Provide suitable values for the following parameters:

• Partition Criteria: (Optional) a field to partition your stream by. In the order
example above, it may be order_id.

• State A: field: an initial state field, whose value will be used in the comparison of
two events. In our example, it will be order_status.

• State A: value: the initial field state value. In our example, BOOKED.

• State B: field: a consecutive state field, whose value will be used in the
comparison of two events. In our example, it will be order_status again.

• State B: value: the consecutive field state value. In our example, SHIPPED.

• Duration: the time period, within which to look for state changes.

Outgoing Shape

The outgoing shape is based on the incoming shape. A new abInterval field is added
to carry the value of the time interval between the states in nanosecond. Also, all but
the partition criteria fields are duplicated to carry values from both a and b states. For
example, if you have the following incoming shape:

• order_id

• order_status

• order_revenue

You will get the following outgoing shape:

Chapter 4
About Stream Analytics Patterns

4-19

• order_id

• abInterval

• order_status (this is the value by which you partition your stream)

• aState_order_status (this is the value of order_status in state A, in our example
'BOOKED')

• order_revenue (this is the value of order_revenue in state B)

• aState_order_revenue (this is the value of order_revenue in state A)

About the Top N Pattern
The Top N pattern will output N events with highest values from a collection of events
arriving within a specified time window sorted not in the default order of arrival but the
way you specify.

Use it to get the highest values of fields in your stream within a specified time window.
For example, use it to get N highest values of pressure sensor readings.

Provide suitable values for the following parameters:

• Window Range: a rolling time period, within which the events will be collected and
ordered per your ordering criteria.

• Window Slide: how frequent newly updated output will be pushed downstream
and into the browser.

• Order by Criteria: a list of fields to use to order the collection of events.

• Number of Events: a number of top value events to output.

The outgoing shape is the same as the incoming shape.

About the Bottom N Pattern
The Bottom N pattern will output N events with lowest values from a collection of
events arriving within a specified time window sorted not in the default order of arrival
but the way you specify.

Use it to get the lowest values of fields in your stream within a specified time window.
For example, use it to get N lowest values of pressure sensor readings.

Chapter 4
About Stream Analytics Patterns

4-20

Provide suitable values for the following parameters:

• Window Range: a rolling time period, within which the events will be collected and
ordered per your ordering criteria.

• Window Slide: how frequent newly updated output will be pushed downstream
and into the browser.

• Order by Criteria: a list of fields to use to order the collection of events.

• Number of Events: a number of bottom value events to output.

The outgoing shape is the same as the incoming shape.

About the Up Trend Pattern
The Up Trend pattern detects a situation when a numeric value goes invariably up
over a period of time.

Use the pattern if you need to detect situations of a constant increase in one of your
numeric values. For example, detect a constant increase in pressure from one of your
sensors.

Provide suitable values for the following parameters:

• Partition Criteria: a field by which to partition your stream. For example, your
stream contains events issues by a number of sensors. All sensors send the same
but individual data. You would want to compare readings of a sensor to previous
readings of the same sensor and not just a previous event in your stream, which is
very likely to be from a different sensor. Select a field that would uniquely identify
your sensors, such as sensor id. This field is optional. For example, if your stream
contains readings from just one sensor, you do not need to partition your data.

• Duration: a time period, within which the values of the designated field are
analyzed for the upward trend.

Chapter 4
About Stream Analytics Patterns

4-21

• Tracking value: a field, whose values are analyzed for the upward trend.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of two new fields.
For example, if your incoming event contains the following fields:

• sensor_id

• temperature

• pressure

• location

Normally, you would use sensor_id to partition your data and say you want to look for
the upward trend in temperature. So, select sensor_id in the partition criteria
parameter and temperature in the tracking value parameter. Use a duration that fits
your use case. In this scenario, you will have the following outgoing shape:

• sensor_id

• startValue (this is the value of temperature that starts the trend)

• endValue (this is the value of temperature that ends the trend)

• temperature (the value of the last event)

• pressure (the value of the last event)

• location (the value of the last event)

About the ‘A’ Not Followed by ‘B’ Pattern
The 'A' Not Followed by 'B' pattern will look for a missing second event in a particular
combination of events and will output the first event when the expected second event
does not arrive within the specified time period.

Use it when you need to be aware of a specific event not following its predecessor in
your flow. For example, if an order status BOOKED is not followed by an order status
PAID within a certain time period, you may need to raise an alert.

Provide suitable values for the following parameters:

Chapter 4
About Stream Analytics Patterns

4-22

• Partition Criteria: (Optional) a field to partition your stream by. In the order
example above, it may be order_id.

• State A: field: an initial state field, whose value will be used in the comparison of
two events. In our example, it will be order_status.

• State A: value: the initial field state value. In our example, BOOKED.

• State B: field: a consecutive state field, whose value will be used in the
comparison of two events. In our example, it will be order_status again.

• State B: value: the consecutive field state value. In our example, SHIPPED.

• Duration: the time period, within which to look for state changes.

Outgoing Shape

The outgoing shape is the same as incoming shape. If the second (state B) event does
not arrive within the specified time window, the first (state A) event is pushed to the
output.

About the Down Trend Pattern
The Down Trend pattern detects a situation when a numeric value goes invariably
down over a period of time.

Use this pattern if you need to detect situations of a constant reduction in one of your
numeric values. For example, detect a constant drop in pressure from one of your
sensors.

Provide suitable values for the following parameters:

• Partition Criteria: a field to partition your stream by. For example, your stream
contains events issues by a number of sensors. All sensors send the same but
individual data. You would want to compare readings of a sensor to previous
readings of the same sensor and not just a previous event in your stream, which is
very likely to be from a different sensor. Select a field that would uniquely identify
your sensors, such as sensor id. This field is optional. For example, if your stream
contains readings from just one sensor, you do not need to partition your data.

• Duration: a time period, within which the values of the designated field are
analyzed for the downward trend.

• Tracking value: a field, whose values are analyzed for downward trend.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of two new fields.
Let's look at an example. Your incoming event contains the following fields:

Chapter 4
About Stream Analytics Patterns

4-23

• sensor_id

• temperature

• pressure

• location

Normally, you would use sensor_id to partition your data and say you want to look for
the downward trend in temperature. So, select sensor_id in the partition criteria
parameter and temperature in the tracking value parameter. Use a duration that fits
your use case. In this scenario, you will have the following outgoing shape:

• sensor_id

• startValue (this is the value of temperature that starts the trend)

• endValue (this is the value of temperature that ends the trend)

• temperature (the value of the last event)

• pressure (the value of the last event)

• location (the value of the last event)

The pattern is visually represented based on the data you have entered/selected.

About the Union Pattern
The Union pattern merges two streams with identical shapes into one.

Use this pattern if you have two streams with identical shapes that you want to merge
into one, for example when you have two similar sensors sending data into two
different streams, and you want to process the streams simultaneously, in one
pipeline.

Provide suitable values for the following parameters:

• Second event stream: the stream you want to merge with your primary stream.
Make sure you select a stream with an identical shape.

The outgoing shape is the same as the incoming shape.

About the Fluctuation Pattern
Use this pattern to detect when an event data field value changes in a specific upward
or downward fashion within a specific time window. For example, use this pattern to
identify the variable changes in an Oil Pressure value are maintained within
acceptable ranges.

Chapter 4
About Stream Analytics Patterns

4-24

Provide suitable values for the following parameters:

• Partition Criteria: the field based on which you want to partition.

• Tracking Value: the value is used to track the event data and create a pattern in
the live output stream.

• Window: a rolling time period, the frequency at which you want to refresh the
data.

• Deviation Threshold %: value indicates the percentage of deviation you want to
be included in the pattern. This is the interval in which the pipeline looks for a
matching pattern.

The outgoing shape is same as the incoming shape.

About the Inverse W Pattern
The Inverse W pattern, also known as a double top chart pattern, is used in the
technical analysis of financial trading markets.

Use this pattern when you want to see the financial data in a graphical form.

Provide suitable values for the following parameters:

• Partition Criteria: a field to partition your stream by. For example, a ticker symbol.

• Window: a time period, within which the values of the designated field are
analyzed for the inverse W shape.

• Tracking value: a field, whose values are analyzed for the inverse W shape.

Outgoing Shape

The outgoing shape is based on the incoming shape with an addition of five new fields.
The new fields are:

Chapter 4
About Stream Analytics Patterns

4-25

• firstW

• firstPeakW

• headInverseW

• secondpeakW

• lastW

The new fields correspond to the tracking value terminal points of the inverse W shape
discovered in the feed. The original fields correspond to the last event in the inverse W
pattern.

About the Eliminate Duplicates Pattern
The Eliminate Duplicates pattern looks for duplicate events in your stream within a
specified time window and removes all but the first occurrence. A duplicate event is an
event that has one or more field values identical to values of the same field(s) in
another event. It is up to you to specify what fields are analyzed for duplicate values.
You can configure the pattern to compare just one field or the whole event.

Use it to get rid of noise in your stream. If you know that your stream contains
duplicates that might offset your aggregates, such as counts, use the Eliminate
Duplicates pattern to cleanse your data.

Provide suitable values for the following parameters:

• Duplicate Criteria: a list of fields, whose values will be compared between events
to look for identical values. If all the configured fields have identical values, the
second, third, and subsequent events will be dropped.

• Window: a time period, within which the duplicates will be discarded. For
example, if you set the window to 10 seconds, a duplicate event that arrives 9
seconds after the first one will be discarded, while a duplicate event that arrives 11
seconds after the first one will be accepted and let through.

The outgoing shape is the same as the incoming shape.

About the Detect Missing Heartbeat Pattern
The Detect Missing Heartbeat pattern discovers simple situations when an expected
event is missing.

Use this pattern if you need to detect missing events in your feed. For example, you
have a feed when multiple sensors send their readings every 5 seconds. Use this
pattern to detect sensors that have stopped sending their readings, which may indicate
that the sensor is broken or there is no connection to the sensor.

Chapter 4
About Stream Analytics Patterns

4-26

Provide suitable values for the following parameters:

• Partition Criteria: a field to partition your stream by. For example, your stream
contains events issues by a number of sensors. All sensors send the same but
individual data. You would want to compare readings of a sensor to previous
readings of the same sensor and not just a previous event in your stream, which is
very likely to be from a different sensor. Select a field that would uniquely identify
your sensors, such as sensor id. This field is optional. For example, if your stream
contains readings from just one sensor, you do not need to partition your data.

• Heartbeat interval: a time period, within which missing events are detected. If
there is no event from a sensor within the heartbeat interval after the last event, an
alert is triggered.

Outgoing Shape

The outgoing shape is the same as incoming shape. If there are no missing
heartbeats, no events are output. If there is a missing heartbeat, the previous event,
which was used to calculate the heartbeat interval is output.

About the Left Outer Join Pattern
The Left Outer join pattern joins your flow with another stream or a reference using the
left outer join semantics.

Use this pattern to join a stream or a reference using the left outer join semantics. The
result of this pattern always contains the data of the left table even if the join-condition
does not find any matching data in the right table.

Chapter 4
About Stream Analytics Patterns

4-27

Provide suitable values for the following parameters:

• Enriching Reference/Stream: the stream or reference you want to join to your
flow.

• Correlation Criteria: fields on which the stream / reference will be joined.

• Window Range of the Primary Stream: a rolling time window used to make a
collection of events in your primary flow to be joined with the enriching stream /
reference.

• Window Slide of the Primary Stream: how often the data will be pushed
downstream and to the UI.

• Window Range of the Enriching Stream: a rolling time window used to make a
collection of events in your enriching stream to be joined with the primary flow.
Disabled, if a reference is used.

• Window Slide for the Enriching Stream: how often the data will be pushed
downstream and to the UI. Disabled, if a reference is used.

The outgoing shape is a sum of two incoming shapes.

Create a Pipeline for a Pattern
Instead of creating a pattern stage from within a pipeline, you can also create a
pipeline for a pattern directly.

To create a pipeline for a pattern:

1. Click Patterns in the left tree on the Home page.

The Patterns page appears.

2. Scroll through the list of available patterns and select the required pattern.

3. Click Use this pattern within the selected pattern tile.

Chapter 4
Create a Pipeline for a Pattern

4-28

The Create pipeline using <Pattern> dialog box appears.

4. Fill in the details for the metadata in the pipeline section.

5. Enter details for the Pattern Stage.

6. Click Save.

Chapter 4
Create a Pipeline for a Pattern

4-29

The pipeline editor opens where you can specify the parameters required for the
pattern. The pipeline also appears in the Catalog.

Chapter 4
Create a Pipeline for a Pattern

4-30

5
Expression Builder Functions

Expression Builder is an editor that allows you to build expressions using various
existing functions. The expressions help you in achieving the required results for your
pipelines.

Topics:

• Bessel Functions

• Conversion Functions

• Date Functions

• Geometry Functions

• Interval Functions

• Math Functions

• Null-related Functions

• Statistical Functions

• String Functions

Bessel Functions
The mathematical cylinder functions for integers are known as Bessel functions.

The following Bessel functions are supported in this release:

Function Name Description

BesselI0(x) Returns the modified Bessel function of order 0 of the double
argument as a double

BesselI0_exp(x) Returns the exponentially scaled modified Bessel function of
order 0 of the double argument as a double

BesselI1(x) Returns the modified Bessel function of order 1 of the double
argument as a double

BesselI1_exp(x) Returns the exponentially scaled modified Bessel function of
order 1 of the double argument as a double

BesselJ(x,x) Returns the Bessel function of the first kind of order n of the
argument as a double

BesselK(x,x) Returns the modified Bessel function of the third kind of order
n of the argument as a double

BesselK0_exp(x) Returns the exponentially scaled modified Bessel function of
the third kind of order 0 of the double argument as a double

BesselK1_exp(x) Returns the exponentially scaled modified Bessel function of
the third kind of order 1 of the double argument as a double

5-1

Function Name Description

BesselY(x) Returns the Bessel function of the second kind of order n of
the double argument as a double

Conversion Functions
The conversion functions help in converting values from one data type to other.

The following conversion functions are supported in this release:

Function Name Description

bigdecimal(value1) Converts the given value to bigdecimal

boolean(value1) Converts the given value to logical

date(value1,value2) Converts the given value to datetime

double(value1) Converts the given value to double

float(value1) Converts the given value to float

int(value1) Converts the given value to integer

long(value1) Converts the given value to long

string(value1,value2) Converts the given value to string

boolean(value1)
Converts the input argument value to logical. The input argument can be one of the
following data type: big integer or integer. Returned value type will be Boolean.

Examples

Function Result

boolean(5) TRUE

boolean(0) FALSE

boolean(NULL) TRUE

boolean() TRUE

boolean(-5) TRUE

double(value1)
Converts the input argument value to double. The input argument can be one of the
following data types: integer, big integer, double, text or float. Returned value will be a
double-precision floating-point number.

Chapter 5
Conversion Functions

5-2

Examples

Function Result

double(“3.14”) 3.14E+0

double(1234.56) 1.235E+003

float(value1)
Converts the input argument value to float. The input argument can be one of the
following data types: integer, big integer, double, text or float. Returned value will be a
single-precision floating-point number.

Examples

Function Result

float(“3.14”) 3.14E+0

float(1234.56) 1.235E+003

Date Functions
The following date functions are supported in this release:

Function Name Description

day(date) Returns day of the date

eventtimestamp() Returns event timestamp from stream

hour(date) Returns hour of the date

minute(date) Returns minute of the date

month(date) Returns month of the date

nanosecond(date) Returns nanosecond of the date

second(date) Returns second of the date

systimestamp() Returns the system’s timestamp on which the application is
running

timeformat(value1,value2) Returns the provided timestamp in required time format

timestamp() Returns the current output time

year(date) Returns year of the date

Day(date)
day(date) function takes as an argument any one of the following data types: time
interval or timestamp. The returned value represents the day of the week in the time
represented by this date object. Returns a big integer indicating the day of the week
represented by this date.

Chapter 5
Date Functions

5-3

Examples

If Sunday=0, Monday=1 and so on, then:

Function Result

day(12/06/17 09:15:22 AM) 3

day(2017:11:23 11:20:25 PM) 4

hour(date)
hour(date) function takes as an argument any one of the following data types: time
interval or timestamp. The returned value represents the hour in the time represented
by this date object. Returns a big integer indicating the hour of the time represented by
this date.

Examples

Function Result

hour(12/06/17 09:15:22 AM) 09

hour(2015:07:21 12:45:35 PM) 12

minute(date)
minute(date) function takes as an argument any one of the following data types: time
interval or timestamp. The returned value represents the minutes in the time
represented by this date object. Returns a big integer indicating the minutes of the
time represented by this date.

Examples

Function Result

minute(12/06/17 09:15:22 AM) 15

minute(2015:07:21 12:45:35 PM) 45

month(date)
month(date) function takes as an argument any one of the following data types: time
interval or timestamp. The returned value represents the month of the year that
contains or begins with the instant in time represented by this date object. Returns a
big integer indicating the month of the year represented by this date.

Examples

Function Result

month(12/06/17 09:15:22 AM) 12

month(2017:09:23 11:20:25 AM) 9

Chapter 5
Date Functions

5-4

second(date)
second(date) function takes as an argument any one of the following data types: time
interval or timestamp. The returned value represents the seconds of the instant in time
represented by this date object. Returns a big integer indicating the seconds of the
time represented by this date.

Example

Function Result

second(12/06/17 09:15:22 AM) 22

second((2015:07:21 12:45:35 PM) 35

Year(date)
year(date) function takes as an argument any one of the following data types: time
interval or time stamp. The returned value represents the year of the instant in time
represented by this date object. Returns a big integer indicating the year represented
by this date.

Examples

Function Result

year(12/06/17 09:15:22 AM) 17

year(2015:07:21 12:45:35 PM) 2015

Geometry Functions
The Geometry functions allow you to convert the given values into a geometrical
shape.

The following interval functions are supported in this release:

Function Name Description

CreatePoint(lat,long,SRID) Returns a 2–dimensional point type geometry
from the given latitude and longitude. The
default SRID is 8307.

The return value is of the datatype sdo
geometry.

distance(lat1,long1,lat2,long2,SRID) Returns distance between the first set of
latitude, longitude and the second set of
latitude, longitude values. The default SRID is
8307.

The return value is of the datatype double.

Chapter 5
Geometry Functions

5-5

Interval Functions
The Interval functions help you in calculating time interval from given values.

The following interval functions are supported in this release:

Function Name Description

numtodsinterval(n,interval_unit) Converts the given value to an INTERVAL DAY
TO SECOND literal. The value of the
interval_unit specifies the unit of n and
must resolve to one of the string values: DAY,
HOUR, MINUTE, or SECOND.

The return value is of the datatype interval.

to_dsinterval(string) Converts a string in format DD HH:MM:SS into
a INTERVAL DAY TO SECOND data type. The
DD indicates the number of days between 0 to
99. The HH:MM:SS indicates the number of
hours, minutes and seconds in the interval
from 0:0:0 to 23:59:59.999999. The seconds
part can accept upto six decimal places.

The return value is of the datatype interval.

Math Functions
The math functions allow you to perform various mathematical operations and
calculations ranging from simple to complex.

The following math functions are supported in this release:

Function Name Description

IEEEremainder(value1,valu
e2)

Computes the remainder operation on two arguments as
prescribed by the IEEE 754 standard

abs(value1) Returns the absolute value of a number

acos(value1) Returns arc cosine of a value

asin(value1) Returns arc sine of a value

atan(value1) Returns arc tangent of a value

atan2(arg1,arg2) Returns polar angle of a point (arg2, arg1)

binomial(base,power) Returns binomial coefficient of the base raised to the
specified power

bitMaskWithBitsSetFromTo(
x)

BitMask with BitsSet (From, To)

cbrt(value1) Returns cubic root of the specified value

ceil(value1) Rounds to ceiling

copySign(value1,value2) Returns the first floating-point argument with the sign of the
second floating-point argument

Chapter 5
Interval Functions

5-6

Function Name Description

cos(value1) Returns cosine of a value

cosh(value1) Returns cosine hyperbolic of a value

exp(x) Returns exponent of a value

expm1(x) More precise equivalent of exp(x); Returns 1 when x is
around zero

factorial(value1) Returns factorial of a natural number

floor(value1) Rounds to floor

getExponent(value1) Returns the unbiased exponent used in the representation of
a double

getSeedAtRowColumn(value1
,value2)

Returns a deterministic seed as an integer from a (seemingly
gigantic) matrix of predefined seeds

hash(value1) Returns an integer hashcode for the specified double value

hypot(value1,value2) Returns square root of sum of squares of the two arguments

leastSignificantBit(value
1)

Returns the least significant 64 bits of this UUID's 128 bit
value

log(value1,value2) Calculates the log value of the given argument to the given
base

log1(value1) Returns the natural logarithm of a number

log10(value1) Calculates the log value of the given argument to base 10

log2(value1) Calculates the log value of the given argument to base 2

logFactorial(value1) Returns the natural logarithm (base e) of the factorial of its
integer argument as a double

longFactorial(value1) Returns the factorial of its integer argument (in the range k
>= 0 && k < 21) as a long

maximum(value1,value2) Returns the maximum of 2 arguments

minimum(value1,value2) Returns the minimum of 2 arguments

mod(value1,value2) Returns modulo of a number

mosttSignificantBit(value
1)

Returns the most significant 64 bits of this UUID's 128 bit
value

nextAfter(value1,value2) Returns the floating-point number adjacent to the first
argument in the direction of the second argument

nextDown(value1) Returns the floating-point value adjacent to the input
argument in the direction of negative infinity

nextUp(value1) Returns the floating-point value adjacent to the input
argument in the direction of positive infinity

Pow(m,n) Returns m raised to the nth power

rint(value1) Returns the double value that is closest in value to the
argument and is equal to a mathematical integer

round(value1) Rounds to the nearest integral value

Chapter 5
Math Functions

5-7

Function Name Description

Scalb(d,scaleFactor) Returns d × 2scaleFactor rounded as if performed by a single
correctly rounded floating-point multiply to a member of the
double value set

signum(value1) Returns signum of an argument as a double value

sin(value1) Returns sine of a value

sinh(value1) Returns sine hyperbolic of a value

sqrt(value1) Returns square root of a value

stirlingCorrection(value1
)

Returns the correction term of the Stirling approximation of
the natural logarithm (base e) of the factorial of the integer
argument as a double

tan(value1) Returns tangent of a value

tanh(value1) Returns tangent hyperbolic of a value

toDegrees(value1) Converts the argument value to degrees

toRadians(value1) Returns the measurement of the angle in radians

ulp(value1) Returns the size of an ulp of the argument

maximum(value1, value2)
Returns the maximum of two arguments. The first argument is a value to compare with
the second argument’s value and can be any one of the following data type: big
integer, double, interval, integer, float. The second argument is a value to compare
with the first argument’s value and can be any one of the following data type: big
integer, double, interval, integer, float.

Examples

Function Result

maximum(1999220,1997220) 1999220

maximum(135.45, 135.50) 135.50

Note:

If the user provides two different data types as input arguments, then Stream
Analytics does implicit conversion to convert one of the argument to the other
argument’s type.

minimum(value1, value2)
Returns the minimum of two arguments. The first argument is a value to compare with
the second argument’s value and can be any one of the following data type: big
integer, double, interval, integer, float. The second argument is a value to compare
with the first argument’s value and can be any one of the following data type: big
integer, double, interval, integer, float.

Chapter 5
Math Functions

5-8

Examples

Function Result

minimum(16324, 16321) 16321

minimum(3.16, 3.10) 3.10

Note:

If the user provides two different data types as arguments, then Stream
Analytics does implicit conversion to convert one argument to the other
argument’s type.

round(value1)
Rounds the argument value to the nearest integer value. The input argument can be of
the following data types: big integer, double, integer, float.

Examples

Function Result

round(7.16) 7

round(38.941) 39

round(3.5) 4

toDegrees(value1)
Converts the argument value to degrees. The input argument is an angle in radians
and can be of type double. The returned value will be the measurement of the angle in
degrees and is of type double.

Examples

Function Result

toDegrees(3.14) 180.0

toDegrees(0.785) 45.0

toRadians(value1)
Converts the argument value to radians. The input argument is an angle in degrees
and can be of type double. The returned value will be the measurement of the angle in
radians and is of type double.

Chapter 5
Math Functions

5-9

Examples

Function Result

toRadians(180.0) 3.14

toRadians(45.0) 0.785

Null-related Functions
The following null-related functions are supported in this release:

Function Name Description

nvl(value1,value2) Replaces null with a value of the same type

nvl(value1, value2)
nvl lets you replace null (returned as a blank) with a value of the same type as the first
argument. For example, in a list of employees and commission, you can substitute Not
Applicable if the employee receives no commission using the nvl(value1,value2)
function as nvl(Not Applicable,Commission).

Example

Function Result

nvl(Not Applicable,Commission) Not Applicable

Statistical Functions
Statistical functions help you in calculating the statistics of different values.

The following statistical functions are supported in this release:

Function Name Description

beta1(value1,value2,value
3)

Returns the area from zero to value3 under the beta density
function

betaComplemented(value1,v
alue2,value3)

Returns the area under the right hand tail (from value3 to
infinity) of the beta density function

binomial2(value1,value2,v
alue3)

Returns the sum of the terms 0 through value1 of the
Binomial probability density. All arguments must be positive.

binomialComplemented(valu
e1,value2,value3)

Returns the sum of the terms value1+1 through value2 of
the binomial probability density. All arguments must be
positive.

chiSquare(value1,value2) Returns the area under the left hand tail (from 0 to value2)
of the chi square probability density function with value1
degrees of freedom. The arguments must both be positive.

Chapter 5
Null-related Functions

5-10

Function Name Description

chiSquareComplemented(val
ue1,value2)

Returns the area under the right hand tail (from value2 to
infinity) of the chi square probability density function with
value1 degrees of freedom. The arguments must both be
positive.

errorFunction(value1) Returns the error function of the normal distribution

errorFunctionComplemente
d(value1)

Returns the complementary error function of the normal
distribution

gamma(value1,value2,value
3)

Returns the gamma function of the arguments

gammaComplemented(value1,
value2,value3)

Returns the integral from value3 to infinity of the gamma
probability density function

incompleteBeta(value1,val
ue2,value3)

Returns the incomplete beta function evaluated from zero to
value3

incompleteGamma(value1,va
lue2)

Returns the incomplete gamma function

incompleteGammaComplemen
t(value1,value2)

Returns the complemented incomplete gamma function

logGamma(value1) Returns the natural logarithm of the gamma function

negativeBinomial(value1,v
alue2,value3)

Returns the sum of the terms 0 through value1 of the
negative binomial distribution. All arguments must be
positive.

negativeBinomialComplemen
ted(value1,value2,value3)

Returns the sum of the terms value1+1 to infinity of the
negative binomial distribution. All arguments must be
positive.

normal(value1,value2,valu
e3)

Returns the area under the normal (Gaussian) probability
density function, integrated from minus infinity to value1
(assumes mean is zero, variance is one)

normalInverse(value1) Returns the value for which the area under the normal
(Gaussian) probability density function is equal to the
argument value1 (assumes mean is zero, variance is one)

poisson(value1,value2) Returns the sum of the first value1 terms of the Poisson
distribution. The arguments must both be positive.

poissonComplemented(value
1,value2)

Returns the sum of the terms value1+1 to infinity of the
poisson distribution

studentT(value1,value2) Returns the integral from minus infinity to value2 of the
Student-t distribution with value1 > 0 degrees of freedom

studentTInverse(value1,va
lue2)

Returns the value, for which the area under the Student-t
probability density function is equal to 1-value1/2. The
function uses the studentT function to determine the return
value iteratively.

String Functions
The following String functions are supported in this release:

Chapter 5
String Functions

5-11

Function Name Description

coalesce(value1,...) Returns the first non-null expression in the list. If all
expressions evaluate to null, then the COALESCE function
will return null

concat(value1,...) Returns concatenation of values converted to strings

indexof(string,match) Returns first index of \'match\' in \'string\'or 1 if not
found

initcap(value1) Returns a specified text expression, with the first letter of
each word in uppercase and all other letters in lowercase

length(value1) Returns the length of the specified string

like(value1,value2) Returns a matching pattern

lower(value1) Converts the given string to lower case

lpad(value1,value2,value3
)

Pads the left side of a string with a specific set of characters
(when string1 is not null)

ltrim(value1,value2) Removes all specified characters from the left hand side of a
string

replace(string,match,repl
acement)

Replaces all \'match\' with \'replacement\' in
\'string\'

rpad(value1,value2,value3
)

Pads the right side of a string with a specific set of characters
(when string1 is not null)

rtrim(value1,value2) Removes all specified characters from the right hand side of
a string

substr(string,from) Returns substring of a 'string' when indices are between
'from' (inclusive) and up to the end of the string

substring(string,from,to) Returns substring of a \'string\' when indices are between
\'from\' (inclusive) and \'to\' (exclusive)

translate(value1,value2,v
alue3)

Replaces a sequence of characters in a string with another
set of characters. However, it replaces a single character at a
time.

upper(value1) Converts given string to uppercase

coalesce(value1,...)
coalesce returns the first non-null expression in the list of expressions. You must
specify at least two expressions. If all expressions evaluate to null then the coalesce
function will return null.

For example:

In coalesce(expr1,expr2):

• If expr1 is not null then the function returns expr1.

• If expr1 is null then the function returns expr2.

• If expr1 and expr2 are null then the function returns null.

In coalesce(expr1,expr2,......,exprn)

• If expr1 is not null then the function returns expr1.

Chapter 5
String Functions

5-12

• If expr1 is null then the function returns expr2.

• If expr1 and expr2 are null then the function returns the next non-null expression.

length(value1)
Returns the length in characters of the string passed as an input argument. The input
argument is of the data type text. The returned value is an integer representing the
total length of the string.

If value1 is null, then length(value1) returns null.

If value1 is an empty string, then length(value1) returns null.

Examples

Function Result

length(“one”) 3

length() ERROR: Function has invalid parameters.

length(“john”) 4

length(” “) NULL

length(null) NULL

length(“firstname.lastname@example.c
om”)

30

lower(value1)
Converts a string to all lower-case characters. The input argument is of the data type
text. The returned value is the lowercase of the specified string.

Examples

Function Result

lower(“PRODUCT”) product

lower(“ABCdef”) abcdef

lower(“abc”) abc

replace(string, match, replacement)
Replaces all match characters in a string with replacement characters. The first input
argument is the string and is of the data type text. The second argument is the match
and is of the data type text. The third argument is replacement and is of data type text.
The returned value is a text in which the third string argument (replacement) replaces
the second string argument (match).

If match is not found in the string, then the original string will be returned.

Chapter 5
String Functions

5-13

Examples

Function Result

replace(“aabbccdd”,”cc”,”ff”) aabbffdd

replace(“aabbcccdd”,”cc”,”ff”) aabbffcdd

replace(“aabbddee”,”cc”,”ff”) aabbddee

substring(string, from, to)
Returns a substring of a string when indices are between from (inclusive) and to
(exclusive). The first input argument is the string and is of the data type text. The
second argument is the start index and is an integer. The third argument is the finish
index and is an integer. The returned value is a substring and is of type text.

Examples

Function Result

substring(“abcdefgh”,3,7) cdef

substring(“abcdefgh”,1,6) abcde

upper(value1)
Converts a string to all upper-case characters. The input argument is of the data type
text. The returned value is the uppercase of the specified string.

Examples

Function Result

upper(“name”) NAME

upper(“abcdEFGH”) ABCDEFGH

upper(“ABCD”) ABCD

Chapter 5
String Functions

5-14

6
Troubleshoot Stream Analytics

After you provision and run the pipeline, sometimes you may encounter issues with the
pipeline. Some of those issues are explained here. Each pipeline is composed of
various stages. A stage can be a stream, query, or pattern.

Topics:

• Troubleshoot Live Output

• Determine the Spark Application Name Corresponding to a Pipeline

• Access CQL Engine Metrics

• Troubleshoot Pipeline Deployment

Troubleshoot Live Output
For every pipeline, there will be one Spark streaming pipeline running on Spark
Cluster. If a Stream Analytics pipeline uses one or more Query Stage or Pattern
Stage, then the pipeline will run one or more continuous query for each of these
stages.

For more information about continuous query, see Understanding Oracle CQL.

If there are no output events in Live Output Table for Query Stage or Pattern Stage,
use the following steps to determine or narrow down the problem:

1. Ensure that Pipeline is Deployed Successfully

2. Ensure that the Input Stream is Supplying Continuous Stream of Events to the
Pipeline

3. Ensure that CQL Queries for Each Query Stage Emit Output

4. Ensure that the Output of Stage is Available

Ensure that Pipeline is Deployed Successfully
You can deploy pipelines to any Spark Cluster (version 1.6).

Follow the steps in the below sections to verify that the pipeline is deployed and
running successfully on Spark cluster.

Verify pipeline Deployment on Oracle Big Data Cloud Service - Compute Edition
based Spark Cluster

1. Go to PSM user interface and open the home page for Oracle Big Data Cloud
Service (BDCSCE) instance.

2. Click on the hamburger menu next to instance name and then click Big Data
Cluster Console.

6-1

https://docs.oracle.com/middleware/12212/osa/cql-reference/GUID-A63616D2-0937-4C5A-94C4-887382E51274.htm#CQLLR2353

3. Enter the login credentials and open the Big Data Cluster Console home page.

4. Navigate to Jobs tab.

You can see a list of jobs. Each job corresponds to a spark pipeline running on
your BDCSCE cluster.

5. Find the entry corresponding to your pipeline and check the status. For more
information, see Determine the Spark Application Name Corresponding to a
Pipeline.

If you see the status as Running, then the pipeline is currently deployed and
running successfully.

6. Click the hamburger menu corresponding to the required job to fetch logs and click
Logs to get container wise logs.

You can download these files for further debugging.

Verify pipeline Deployment on Apache Spark Installation based Spark Cluster

1. Open Spark Master user interface.

2. Find the entry corresponding to your pipeline and check the status. For more
information, see Determine the Spark Application Name Corresponding to a
Pipeline.

If you see the status as Running, then the pipeline is currently deployed and
running successfully.

Chapter 6
Troubleshoot Live Output

6-2

Ensure that the Input Stream is Supplying Continuous Stream of
Events to the Pipeline

You must have a continuous supply of events from the input stream.

1. Go to the Catalog.

2. Locate and click the stream you want to troubleshoot.

3. Check the value of the topicName property under the Source Type Parameters
section.

4. Listen to the Kafka topic where the input stream for the pipeline is received.

Since this topic is created using Kafka APIs, you cannot consume this topic with
REST APIs.

a. Listen to the Kafka topic hosted on Oracle Event Hub Cloud Service. You must
use Apache Kafka utilities or any other relevant tool to listed to the topic.

Follow these steps to listen to Kafka topic:

i. Determine the Zookeeper Address. — Go to Oracle Event Hub Cloud
Service Platform home page. Find the IP Address of Zookeeper.

ii. Use following command to listen the Kafka topic:

./kafka-console-consumer.sh --zookeeper IPAddress:2181 --topic
nano

b. Listen to the Kafka topic hosted on a standard Apache Kafka installation.

You can listen to the Kafka topic using utilities from a Kafka Installation.
kafka-console-consumer.sh is a utility script available as part of any Kafka
installation.

Follow these steps to listen to Kafka topic:

i. Determine the Zookeeper Address from Apache Kafka Installation based
Cluster.

ii. Use the following command to listen the Kafka topic:

./kafka-console-consumer.sh --zookeeper IPAddress:2181 --topic
nano

Ensure that CQL Queries for Each Query Stage Emit Output
Check if the CQL queries are emitting output events to monitor CQL Queries using
CQL Engine Metrics.

Follow these steps to check the output events:

1. Open CQL Engine Query Details page. For more information, see Access CQL
Engine Metrics.

2. Check that at least one partition has Total Output Events greater than zero under
the Execution Statistics section.

Chapter 6
Troubleshoot Live Output

6-3

 If your query is running without any error and input data is continuously coming,
then the Total Output Events will keep rising.

Ensure that the Output of Stage is Available
One of the essential things required to troubleshoot a pipeline is to ensure that the
output of stage is available in monitor topic.

Follow these steps to check if the output stream is available in the monitor topic:

1. Ensure that you stay in the pipeline Editor and don’t click Done. Else, the pipeline
will be undeployed.

2. Right-click anywhere in the browser and click Inspect.

3. Select Network from the top tab and then select WS.

4. Refresh the browser.

New websocket connections are created.

5. Locate a websocket whose URL has a parameter with name topic.

The value of the topic param is the name of the Kafka topic where the output of
this stage is pushed.

6. Listen to the Kafka topic where output of the stage is being pushed.

Since this topic is created using Kafka APIs, you cannot consume this topic with
REST APIs. Follow these steps to listen to the Kafka topic:

a. Listen to the Kafka topic hosted on Oracle Event Hub Cloud Service. You must
use Apache Kafka utilities or any other relevant tool to listed to the topic.

Follow these steps to listen to Kafka topic:

Chapter 6
Troubleshoot Live Output

6-4

i. Determine the Zookeeper Address. — Go to Oracle Event Hub Cloud
Service Platform home page. Find the IP Address of Zookeeper.

ii. Use following command to listen the Kafka topic:

./kafka-console-consumer.sh --zookeeper IPAddress:2181 --topic
sx_2_49_12_pipe1_draft_st60

b. Listen to the Kafka topic hosted on a standard Apache Kafka installation.

You can listen to the Kafka topic using utilities from a Kafka Installation.
kafka-console-consumer.sh is a utility script available as part of any Kafka
installation.

Follow these steps to listen to Kafka topic:

i. Determine the Zookeeper Address from Apache Kafka Installation based
Cluster.

ii. Use following command to listen the Kafka topic:

./kafka-console-consumer.sh --zookeeper IPAddress:2181 --topic
sx_2_49_12_pipe1_draft_st60

Example 6-1 Example Title

(Optional) Use sections to add and organize related examples when including an
example with a concept topic.

Determine the Spark Application Name Corresponding to a
Pipeline

You can perform the following steps to check if the output stream is available in
monitor topic.

1. Navigate to Catalog.

2. Open the required pipeline.

3. Ensure that you stay in pipeline editor and do not click Done. Otherwise the
pipeline gets undeployed.

4. Right-click anywhere in the browser and select Inspect.

5. Go to WS tab under the Network tab.

6. Refresh the browser.

New websocket connections are created.

7. Locate a websocket whose URL has a parameter with the name topic.

The value of topic param is the name of Kafka Topic where the output of this stage
(query or pattern) is pushed.

Chapter 6
Determine the Spark Application Name Corresponding to a Pipeline

6-5

The topic name is AppName_StageId. The pipeline name can be derived from topic
name by removing the _StageID from topic name. In the above snapshot, the
pipeline name is sx_2_49_12_pipe1_draft.

Access CQL Engine Metrics
When a pipeline with a query or pattern stage is deployed to a Spark cluster, you can
perform the complex event processing using a set of CQL Engine Metrics running
inside the spark cluster.

Use CQL queries which can do aggregate, correlate, filter, and pattern matching over
a stream of events. Spark provides an out-of-the-box pipeline UI (commonly running
on <host>:4040) that can help users to monitor a running Spark Streaming pipeline.
As CQL queries also run as part of Spark Streaming pipeline, the Spark pipeline UI is
extended to include monitoring capabilities of CQL queries.

To access CQL Engine metrics:

1. Create a pipeline with at least one query or pattern stage.

2. Navigate to Spark Master User Interface.

3. Click the CQL Engine tab.

Chapter 6
Access CQL Engine Metrics

6-6

You can see the details of all queries running inside a Spark CQL pipeline. This
page also shows various streams/relations and external relations registered as
part of the pipeline.

4. Click any query to see the details of that query. the query details page shows
partition-wise details about a particular running query.

5. Click the specific partition link to determine further details about query plan and
operator level details. This page shows the operator level details of a query
processing a particular partition.

Troubleshoot Pipeline Deployment
Sometimes pipeline deployment fails with the following exception:

Spark pipeline did not start successfully after 60000 ms.

This exception usually occurs when you do not have free resources on your cluster.

Workaround:

Use external Spark cluster or get better machine and configure the cluster with more
resources.

Chapter 6
Troubleshoot Pipeline Deployment

6-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Get Started with Stream Analytics
	About Stream Analytics
	Why Stream Analytics?
	How Does Stream Analytics Work?
	Before You Begin with Stream Analytics
	Connection
	Kafka Connection
	Database Connection

	Sources
	Stream
	Shape

	Reference

	Geo Fence
	Target
	Pipeline
	Query Stage
	Filter
	Correlation
	Summary
	Group By
	Range
	Evaluation Frequency

	Rule Stage
	Rule

	Pattern Stage
	Query Group
	Query Group Stage: Stream
	Query Group Stage: Table

	Live Output Table
	Visualizations
	Draft and Published Pipelines

	Oracle GoldenGate Integration

	Access Stream Analytics
	About Stream Analytics Roles and Users

	2 Administer Stream Analytics
	Typical Workflow for Administering Stream Analytics
	Configure Stream Analytics System Settings
	Configure User Preferences

	3 Work with Stream Analytics Artifacts
	About the Catalog
	Create a Connection
	Create a Stream
	Create a Reference
	Create a Dashboard
	Create a Cube
	Create a Target
	Create a Geo Fence
	Create a Pipeline
	Configure a Pipeline
	Add a Query Stage
	Adding and Correlating Sources and References
	Adding Filters
	Adding Summaries
	Adding Group Bys
	Adding Visualizations
	Updating Visualizations
	Working with a Live Output Table
	Using the Expression Builder

	Add a Pattern Stage
	Add a Rule Stage
	Add a Query Group Stage
	Add a Query Group: Stream
	Add a Query Group: Table

	Configure a Target

	Publish a Pipeline
	Use the Topology Viewer

	4 Work with Patterns
	About Stream Analytics Patterns
	About the Spatial: Speed Pattern
	About the Geo Code Pattern
	About the Interaction: Single Stream Pattern
	About the Interaction: Two Stream Pattern
	About the Spatial: Point to Polygon Pattern
	About the Proximity: Single Stream Pattern
	About the Proximity: Two Stream Pattern
	About the Proximity: Stream with Geo Fence Pattern
	About the Direction Pattern
	About the Geo Fence Pattern
	About the Geo Fence Filter: Inside Pattern
	About the Reverse Geo Code: Near By Pattern
	About the Reverse Geo Code: Near By Place Pattern
	About the Correlation Pattern
	About the Quantile Pattern
	About the Standard Deviation Pattern
	About the Median Pattern
	About the Detect Duplicates Pattern
	About the Change Detector Pattern
	About the W Pattern
	Rule

	About the ‘A’ Followed by ‘B’ Pattern
	About the Top N Pattern
	About the Bottom N Pattern
	About the Up Trend Pattern
	About the ‘A’ Not Followed by ‘B’ Pattern
	About the Down Trend Pattern
	About the Union Pattern
	About the Fluctuation Pattern
	About the Inverse W Pattern
	About the Eliminate Duplicates Pattern
	About the Detect Missing Heartbeat Pattern
	About the Left Outer Join Pattern

	Create a Pipeline for a Pattern

	5 Expression Builder Functions
	Bessel Functions
	Conversion Functions
	boolean(value1)
	double(value1)
	float(value1)

	Date Functions
	Day(date)
	hour(date)
	minute(date)
	month(date)
	second(date)
	Year(date)

	Geometry Functions
	Interval Functions
	Math Functions
	maximum(value1, value2)
	minimum(value1, value2)
	round(value1)
	toDegrees(value1)
	toRadians(value1)

	Null-related Functions
	nvl(value1, value2)

	Statistical Functions
	String Functions
	coalesce(value1,...)
	length(value1)
	lower(value1)
	replace(string, match, replacement)
	substring(string, from, to)
	upper(value1)

	6 Troubleshoot Stream Analytics
	Troubleshoot Live Output
	Ensure that Pipeline is Deployed Successfully
	Ensure that the Input Stream is Supplying Continuous Stream of Events to the Pipeline
	Ensure that CQL Queries for Each Query Stage Emit Output
	Ensure that the Output of Stage is Available

	Determine the Spark Application Name Corresponding to a Pipeline
	Access CQL Engine Metrics
	Troubleshoot Pipeline Deployment

