
Oracle® Cloud
Device Connectivity Guide for Oracle Fusion
Cloud IoT Intelligent Applications

23.3.1
E86271-29
July 2023

Oracle Cloud Device Connectivity Guide for Oracle Fusion Cloud IoT Intelligent Applications, 23.3.1

E86271-29

Copyright © 2018, 2023, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documents vii

Conventions vii

1 Learn About Device Connectivity

About IoT Devices 1-1

About the IoT Connectivity Protocols 1-1

Methods to Connect Devices to Oracle Fusion Cloud IoT Intelligent Applications 1-3

About Selecting the Method to Connect Devices 1-3

Get Started 1-5

Supported Browsers 1-5

Supported Platforms 1-6

How to Get Support 1-6

Locate Diagnostic Information for Oracle Support 1-6

2 Develop Device Software Using the Client Software Libraries

Device Virtualization 2-1

Use Media with the Client Libraries 2-2

Upload the Sample Device Models 2-3

Client Library Best Practices 2-7

Use the Java SE Client Software Libraries 2-8

Set Up Your Development Environment to Use the Java SE Client Software Libraries 2-8

Prepare an Embedded Device to Use the Java SE Client Software Library 2-14

Create the Java SE Client Software Library Sample Applications 2-15

Use the Provisioning Tool to Create the Truststore 2-15

Run the Sample Java SE Directly Connected Device Applications 2-16

Run the Sample Java SE Gateway Application 2-18

Run the Sample Java SE Gateway Application Using Apache Felix 2-19

iii

Run the Sample Java SE Enterprise Applications 2-24

Build the Java SE Client Software Libraries 2-29

Use the JavaScript Client Software Libraries 2-30

Set Up Your Development Environment to Use the JavaScript Client Software Libraries 2-30

Prepare Your Device to Use the JavaScript Client Software Library 2-31

Run the Sample JavaScript Directly Connected Device Applications 2-32

Run the Sample JavaScript Gateway Application 2-33

Run the Sample JavaScript Enterprise Applications 2-34

Use the Android Client Software Libraries 2-35

Set Up Your Development Environment to Use the Android Client Software Libraries 2-35

Prepare Your Device to Use the Android Client Software Libraries 2-36

Create the Android Client Software Library Sample Applications 2-37

Run the Sample Android Directly Connected Device Application 2-38

Run the Sample Android Enterprise Application 2-39

Use the Python Client Software Libraries 2-41

Set Up Your Development Environment to Use the Python Client Software Library 2-41

Prepare Your Device to Use the Python Client Software Library 2-41

Run the Sample Python Directly Connected Device Application 2-42

Run the Sample Python Gateway Application 2-43

Use the C POSIX Client Software Libraries 2-44

Prepare Your Device to Use the C POSIX Client Software Libraries 2-44

Build the C POSIX Client Software Library Sample Applications 2-45

Run the C POSIX Sample Applications 2-45

Run the C POSIX Sample Gateway Application 2-46

Build the C POSIX Client Software Libraries 2-47

Set Up Your Development Environment to use Mac OS X 2-48

Build the C POSIX Client Software Libraries on Mac OS X 2-49

Build the C POSIX Client Software Library Sample Applications 2-49

Run the C POSIX Sample Applications on Mac OS X 2-50

Use the Windows Client Software Libraries 2-51

Set Up Your Development Environment to Use the Windows Client Software Libraries 2-51

Prepare Your Device to Use the Windows Client Software Library 2-52

Create the Windows Client Software Library Sample Applications 2-53

Run the Windows Sample Applications 2-54

Build the Windows Client Software Libraries 2-55

Use the iOS Client Software Libraries 2-56

Set Up Your Development Environment to Use the iOS Client Software Libraries 2-56

Run the Sample Directly Connected Device Application 2-57

Run the Sample Gateway Application 2-58

Run the Sample Enterprise Applications 2-60

Build the iOS Client Software Libraries 2-62

iv

Network Provisioning Support in Client Libraries 2-63

3 Integrate Oracle IoT Cloud Service with Third Party Device Management
Applications

Register and Provision a Device Using Third Party Device Management Application 3-1

Add Device Models to Oracle IoT Cloud Service 3-2

Specify Devices as Third Party Partner Devices in Oracle IoT Cloud Service 3-3

Register Devices with Oracle IoT Cloud Service 3-4

Activate and Deactivate Devices in Oracle IoT Cloud Service 3-4

Delete Devices from Oracle IoT Cloud Service 3-4

v

Preface

Welcome to the developer documentation for Oracle Fusion Cloud IoT Intelligent
Applications. Use this documentation to learn how to access Oracle Fusion Cloud IoT
Intelligent Applications, manage the devices connected to an Oracle Fusion Cloud IoT
Intelligent Applications instance, deploy software to those devices, analyze data from
those devices in real time, and integrate that data with enterprise applications, web
services, or with other Oracle Cloud Oracle Cloud Services, such as Oracle Business
Intelligence Cloud Service, JD Edwards, and Oracle Mobile Cloud Service.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Documents

• Conventions

Audience
This documentation is designed for application developers who create software
applications that use the Oracle Fusion Cloud IoT Intelligent Applications client
software libraries and REST APIs to communicate with their devices. This document
assumes a familiarity with web technologies and an intermediate understanding of the
Java programming language.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

initiative to build a more inclusive culture that positively impacts our employees, customers,
and partners, we are working to remove insensitive terms from our products and
documentation. We are also mindful of the necessity to maintain compatibility with our
customers' existing technologies and the need to ensure continuity of service as Oracle's
offerings and industry standards evolve. Because of these technical constraints, our effort to
remove insensitive terms is ongoing and will take time and external cooperation.

Related Documents
For more information, see these Oracle resources:

• Oracle Cloud at http://cloud.oracle.com

• Getting Started with Oracle Cloud

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

http://cloud.oracle.com/

1
Learn About Device Connectivity

There are many types of Internet of Things (IoT) devices, and they can connect to an IoT
network using different standards and protocols. Oracle Fusion Cloud IoT Intelligent
Applications supports multiple methods to connect to the devices, and you can select a
method that's compatible to your enterprise's environment and devices.

Topics:

• About IoT Devices

• About the IoT Connectivity Protocols

• Methods to Connect Devices to Oracle Fusion Cloud IoT Intelligent Applications

• About Selecting the Method to Connect Devices

• Get Started

About IoT Devices
An IoT device is any device that can connect to the internet and transmits data.

IoT enables internet connectivity to any set of physical devices that are beyond standard
devices such as a desktop, laptop, mobile gadgets, or tablets. To connect to the internet,
these physical devices or machines are integrated with sensors, electronic devices, or digital
technology. They can also connect to each other, can transfer data, and can be remotely
monitored and managed. The IoT devices can be used to automate tasks in any industry,
enterprise, or a home environment.

Examples and Applications of IoT Devices

• In a production environment of a factory, machines integrated with multiple sensors can
provide real-time status of the factory shop floor.

• In the fleet industry, vehicles have standardized on-board diagnostics (OBD) II devices
that use wireless technology to transmit real-time status, location, and the health of
vehicles.

• In the construction and mining industry, assets and protection gear are tracked using
sensors that communicate over radio frequencies.

• In the agriculture industry, soil conditions can be monitored by using sensors to create
optimal plans for watering and fertilizing.

About the IoT Connectivity Protocols
Besides HTTP, other protocols that are optimal and suitable for communication in IoT are
Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP),
WebSocket, Extensible Messaging and Presence Protocol (XMPP), and Advanced Message
Queuing Protocol (AMQP).

1-1

REST connectivity over the internet is used as the communication architecture for the
IoT devices. Typically, the IoT devices are resource constrained, and there may be
data loss or a high memory requirement in this type of communication. Alternatively, a
few protocols that are effective are MQTT, CoAP, XMPP, WebSocket, and AMQP.

Description and Application of the IoT Protocols

Name Description Security Use Case

MQTT Simple and lightweight
IoT protocol designed
for constrained
devices and low
network bandwidth.
See mqtt.org.

In an MQTT packet,
you can pass an user
name and password,
but it doesn't support
additional security.
You can use SSL in
the network for
encryption,
independent from the
MQTT protocol.

Small medical devices
with limited network
connectivity, mobile
apps in mobile
devices, sensors in
remote locations that
communicate with a
gateway.

CoAP Protocol based on the
REST model and is
suitable for
constrained devices
such as a
microcontroller or a
constrained network
because it functions
with minimum
resources in the
device or the network.

CoAP applies
datagram transport
layer security (DTLS)
that's equivalent to
3072-bit RSA keys.

Smart energy
applications and
building automation
applications.

WebSocket A full-duplex
communication
channel over a TCP
connection.

WebSocket protocol
defines a ws:// and
wss:// prefixes
indicate a WebSocket
and a WebSocket
secure connection,
respectively.

Implement WebSocket
in runtime
environments or
libraries that act as
servers or clients. You
can apply WebSockets
in an IoT network
where chunks of data
are transmitted
continuously within
multiple devices.

XMPP Uses the XML text
format for
communication and
runs over TCP. It's not
fast and uses polling
to check for updates
when needed. See
https://xmpp.org

XMPP uses a security
mechanism based on
Transport Layer
Security (TLS) and
Simple Authentication
and Security Layer
(SASL).

Use XMPP to connect
your home thermostat
to a web server so that
you can access it from
your phone. It's used
in consumer-oriented
IoT applications.

AMQP The message queue
asynchronous protocol
is for communication
of transactional
messages between
servers. See https://
www.amqp.org/

AMQP provides
TLS/SSL and SASL
for security.

AMQP is best used in
sever-based analytical
functions. It's
effectively used in the
banking industry.

Oracle IoT Cloud Service supports HTTP and MQTT.

Chapter 1
About the IoT Connectivity Protocols

1-2

http://mqtt.org
https://xmpp.org/
https://www.amqp.org/
https://www.amqp.org/

Methods to Connect Devices to Oracle Fusion Cloud IoT
Intelligent Applications

Connect your devices to Oracle Fusion Cloud IoT Intelligent Applications by selecting a
method that works for your type of device, network, and protocol.

Typically, there are three ways to connect your device to Oracle Fusion Cloud IoT Intelligent
Applications.

• Use Oracle IoT Client Libraries that are embedded in edge applications and enable
devices to connect to Oracle Fusion Cloud IoT Intelligent Applications. They provide
functionality such as security life-cycle management and bidirectional messaging. There
are client libraries for different platforms such as Java, JavaScript, Android, iOS, C Posix,
C, Apache Felix and Python in Windows, iOS, and Linux environments.

• Use the packaged plug-ins or adapters that acquire on-premises data, and securely
communicate with Oracle Fusion Cloud IoT Intelligent Applications. These adapters
enable you to quickly create prototypes and validate the connectivity. Some standard
adapters are: an on-premises gateway device, an OPC UA Server, and a Historian.

• Use connectors to ingest data from existing data sources. Components of connectors
allow Oracle Fusion Cloud IoT Intelligent Applications to accept data in new protocols
and data formats. Connectors can perform data ingestion from packaged adapters or
custom adapters, then performs data mapping and normalization to a format compliant
with Oracle Fusion Cloud IoT Intelligent Applications. Some examples of packaged
adapters are LoRA, M2M/telematic providers, and device partners. Custom adapters use
proprietary data protocols or CSV.

About Selecting the Method to Connect Devices
You have several options to connect devices to Oracle Fusion Cloud IoT Intelligent
Applications. You select the method based on the types of devices, protocols, and existing
environment.

The diagram and the comparison table help you to select the best option for you to connect
your devices toOracle Fusion Cloud IoT Intelligent Applications based on your setup and
protocols.

Chapter 1
Methods to Connect Devices to Oracle Fusion Cloud IoT Intelligent Applications

1-3

Device Integration Models

Options to Select the Method

Scenario Option to Connect the
Devices

Example

Devices that support
proprietary protocols.

Sensors and machines
connect indirectly to Oracle
Fusion Cloud IoT Intelligent
Applications through a
standardized industrial
gateway using proprietary
protocols.

A device uses the MODBUS
protocol to connect with an
industrial IoT gateway from
vendors such as Cisco, Dell,
Bosch, Intel, or Multitech
which, in turn, connects to
Oracle Fusion Cloud IoT
Intelligent Applications using
the HTTP protocol

Machine with a powerful in-
built sensor that supports
HTTP protocol.

Directly connect with Oracle
Fusion Cloud IoT Intelligent
Applications using HTTP.

A device such as an on-board
communicator directly
exchanges messages with
Oracle Fusion Cloud IoT
Intelligent Applications by
using the HTTP protocol.

Devices that are already
connected to an existing third-
party cloud service using
proprietary protocols.

Third-party clouds can
connect with Oracle Fusion
Cloud IoT Intelligent
Applications using HTTP. This
results in the devices getting
indirectly connected to Oracle
Fusion Cloud IoT Intelligent
Applications.

A device such as an OBD II
data logger connects to a
third-party cloud service using
its proprietary protocol. The
third-party device cloud
connects to Oracle Fusion
Cloud IoT Intelligent
Applications using the HTTP
protocol.

Chapter 1
About Selecting the Method to Connect Devices

1-4

Scenario Option to Connect the
Devices

Example

Devices and gateways that are
already connected to existing
network providers that provide
wireless connectivity to the
devices.

The network providers can
transmit the device data to
Oracle Fusion Cloud IoT
Intelligent Applications using
HTTP or MQTT.

Network providers use LoRA,
NB-IoT, or IoT MVNO for
wireless connectivity with
devices such as an asset
tracker or a telematics
gateway. The network provider
can transmit the device
messages to Oracle Fusion
Cloud IoT Intelligent
Applications using HTTP or
MQTT.

Existing database with device
data on events, time stamps,
and alarms.

The on-premises database
can connect to Oracle Fusion
Cloud IoT Intelligent
Applications using HTTP and
transfer the device messages.

Machines using the Historian
service save and store
messages in a database or
multiple databases over the
supervisory control and data
acquisition (SCADA) network.
An on-premises Historian
service such as Pi from OSI
Soft connects to Oracle Fusion
Cloud IoT Intelligent
Applications and provides the
machine data for analysis.

Existing on-premises industrial
gateway software

On-premises industrial
gateway software applications
manage machine data. Oracle
Fusion Cloud IoT Intelligent
Applications can connect to
these gateway applications
using HTTP to obtain the
machine data.

Machines that use OPC
Unified Architecture (UA), a
machine-to -machine protocol
to transfer machine data to
industrial gateway software
such as Metrikon or Kepware
and that, in turn, can connect
to Oracle Fusion Cloud IoT
Intelligent Applications and
send device messages
received from the machines.

Get Started
Use this information to learn about the supported browsers, how to get support, and how to
provide diagnostic information to Oracle support if you face an issue.

For details on ordering your Oracle Fusion Cloud IoT Intelligent Applications applications,
activating your order, signing in to the management console, and accessing your IoT
applications, refer to the Administering Oracle Internet of Things Cloud Service guide.

Supported Browsers

Supported Browsers

Oracle Fusion Cloud IoT Intelligent Applications supports the following web browsers:

• Google Chrome

• Microsoft Edge

Chapter 1
Get Started

1-5

• Mozilla Firefox

• Apple Safari

See Oracle Software Web Browser Support Policy for more information

Supported Platforms
The Oracle Fusion Cloud IoT Intelligent Applications gateway software and client
software libraries can run on multiple platforms.

See Oracle IoT Cloud Service Client Software Certified System Configurations for the
current list of supported platforms.

How to Get Support
Use these resources to resolve problems:

• Click the Contact Us () icon in the Oracle My Services management console
and then select a support option.

• Visit the Oracle Help Center at http://docs.oracle.com/en/.

• If you’re an Oracle Premier Support Customer, then visit My Oracle Support.

• Contact Oracle Technical Support. See Contacting Oracle Support in Getting
Started with Oracle Cloud.

Locate Diagnostic Information for Oracle Support
To resolve support issues quickly, send the Oracle support team the diagnostic
information listed in the table.

To locate and view diagnostic information, see Find Diagnostic Information to Help with
Troubleshooting.

Diagnostic
Information

Description Example

Server Version
Number

Record the version number of the
Oracle Cloud instance.

17.1.5.0

Client Platform
Version

Record the client platform
version.

Client library information for each
platform.

Java or Android
Compiler Version

Record the version number of the
device Java or Android compiler.

Android 7.0

Chapter 1
Get Started

1-6

https://www.oracle.com/middleware/technologies/browser-policy.html
http://www.oracle.com/technetwork/topics/cloud/downloads/iot-system-configurations-2705480.html
http://docs.oracle.com/en/
https://support.oracle.com/epmos/faces/MosIndex.jspx?_afrLoop=302793667031560&_afrWindowMode=0&_adf.ctrl-state=iqrh0x0gn_4

Diagnostic
Information

Description Example

Error Message Record the error message or
attach a screen image. Operation failed. Cause:

{"type":"https://
www.w3.org/Protocols/
rfc2616/rfc2616-
sec10.html","title":"Projec
t was not found:
ProjectId{iotAppId='0-AD',
serviceId='0-
AD'}","status":"404"}

Oracle Fusion Cloud
IoT Intelligent
Applications URL

Record the URL of the Oracle
Fusion Cloud IoT Intelligent
Applications instance.

https:/
targetcloudinstance.com

Error Message Time
Stamp

Record the time and date the
error occurred.

Tue, Feb 7, 2017 1:07:42 PM

Log File Provide a log file that documents
the issue.

log.txt

Screen Images Attach relevant screen images of
the error message or the page
where the error occurred.

Include a screen image with
annotations.

Navigation Path Provide the navigation path to the
page where the error occurred.

Device Model > Device Model Details

Chapter 1
Get Started

1-7

2
Develop Device Software Using the Client
Software Libraries

Oracle Fusion Cloud IoT Intelligent Applications client software libraries are provided to
simplify how the devices work with Oracle Fusion Cloud IoT Intelligent Applications.

Topics

• Device Virtualization

• Use Media with the Client Libraries

• Upload the Sample Device Models

• Client Library Best Practices

• Use the JavaScript Client Software Libraries

• Use the Java SE Client Software Libraries

• Use the Android Client Software Libraries

• Use the C POSIX Client Software Libraries

• Use the Windows Client Software Libraries

• Build the iOS Client Software Libraries

• Network Provisioning Support in Client Libraries

Device Virtualization
Virtualization is the act of creating a virtual (rather than physical) version of a computer
application, storage device, or a computer network resource. Virtualization makes the logical
server, storage, and network independent of the deployed physical infrastructure resources.

Oracle Internet of Things Cloud Service uses virtualization to make it easier to integrate
external devices and data with Oracle Internet of Things Cloud Service. Oracle Internet of
Things Cloud Service exposes every connected device as a set of resources called a device
model. The use of device virtualization abstracts any complexity associated with device
connectivity and standardizes device integration with the enterprise. With it, enterprise
applications can directly address any device from Oracle Internet of Things Cloud Service
regardless of network protocol and firewall restrictions.

A device model is a single entity that represents the interface through which Oracle Internet
of Things Cloud Service can interact with a specific device type, regardless of the vendor,
underlying standard, or specification that defined that device model. It can represent any
object on the device side that can send messages or respond to REST requests. This object
type includes devices, gateways, device adapters, and device applications. Through a device
model, Oracle Internet of Things Cloud Service has access to the following:

• metadata associated with a device type

• message formats generated by a device

2-1

• exposed web resources that can be used to send commands

• device capabilities, such as device software management

Use Media with the Client Libraries
Using media with the Oracle IoT Cloud Service Device Libraries, such as images,
videos, or other large binaries, involves the Oracle Storage Cloud Service.

To allow links and references in device model attributes and device model format
fields, the URI type has been added to the list of device model attribute types.
This URI type is encoded as a JSON String for communication, but adheres to the
format restrictions of the Universal Resource Identifier format as defined in RFC 3986.
A URI provides a standard syntax, while at the same time allowing flexibility in defining
the semantics of what a resource is. The basic syntax of a URI is[scheme:]scheme-
specific-part[#fragment]. With the Java SE client libraries, this may be represented
as a java.net.URI class. For other client libraries, use an equivalent data type, or a
string if none is available.

Storage Cloud Service

The Oracle Storage Cloud Service must be used to store media provided by the client
and referenced within device model attributes. See the Oracle Storage Cloud Service
documentation for more details. Note that the administrator may want to establish user
accounts for the specific purposes of device media storage and configure these
accounts to restrict access to only specific containers within the cloud service. Storage
service credentials should be independent of other storage service credentials
provisioned within the Oracle cloud.

The following fields need to be provisioned:

• The storage cloud service server name (for example,
a210401.storage.oraclecloud.com)

• The storage service identity (for example, Storage-a210401)

• The storage service container (for example, MediaStorageContainer)

• The storage service username

• The storage service password

Device Virtualization in the Java Client Libraries

Using device virtualization, an application first creates an
oracle.iot.client.StorageObject object via the
Client.createStorageObject() method. The name parameter is used as the
unique name of the object in the storage cloud REST API (i.e., the 'object' in /v1/
{account}/{container}/{object}).

If content is being uploaded, the application sets the input path on the
StorageObject via the setInputPath() method. The storage object is then set as
the value of an attribute in the virtual device, and the attribute has to have type URI in
the device model. The content is then uploaded. The DataMessage for the attribute,
format or field is not sent until the content upload is complete. An error from uploading
content to the storage cloud will result in an onError() callback to the virtual device.

Chapter 2
Use Media with the Client Libraries

2-2

https://tools.ietf.org/html/rfc3986
https://docs.oracle.com/javase/8/docs/api/java/net/URI.html

If content is being downloaded, the application sets the output path on the StorageObject
via the setOutputPath() method, and then calls sync() on the storage object. The
sync() call does not block. The caller can then add a callback for sync events to the storage
object.

Upload the Sample Device Models
To complete the Oracle Fusion Cloud IoT Intelligent Applications samples, the humidity and
temperature sensor device models must be uploaded to your Oracle Fusion Cloud IoT
Intelligent Applications instance.

The humidity sensor device model sends a humidity reading every 5 seconds. When the
maximum threshold is set, the maximum threshold value and the humidity level are included
in subsequent data messages. When the default maximum humidity threshold of 60% is
reached or exceeded, an alert is sent.

The temperature sensor device model sends a temperature reading every 5 seconds. The
minimum and maximum temperature values are included with the outgoing data message,
when the device is turned on, and whenever a value changes. When the maximum or
minimum temperature thresholds are set, the maximum and minimum threshold values and
the current temperature are included in subsequent data messages. When the minimum or
maximum temperature thresholds are reached or exceeded, a tooCold or tooHot alert is
sent. Optionally, the threshold values can be included in the alert message (the default is
NO). The default thresholds for the minimum and maximum temperature are 0 and 65
degrees.

When a REST call is invoked, the minimum and maximum temperature values are reset to
the current temperature. When a device is turned off, data and alert messages are not sent
until it is turned on.

1. Open a text editor.

2. Copy and paste this text into the text editor for the humidity sensor device model:

{
 "urn": "urn:com:oracle:iot:device:humidity_sensor",
 "name": "Humidity Sensor",
 "description": "Device model for sensor that measures humidity.",
 "attributes": [
 {
 "name": "humidity",
 "description": "Measures humidity between 0% and 100%",
 "type": "INTEGER",
 "range": "0,100"
 },
 {
 "name": "maxThreshold",
 "description": "Maximum humidity threshold",
 "type": "INTEGER",
 "range": "60,100",
 "writable": true,
 "defaultValue":80
 }
],
 "formats": [
 {

Chapter 2
Upload the Sample Device Models

2-3

 "urn":
"urn:com:oracle:iot:device:humidity_sensor:too_humid",
 "name": "tooHumidAlert",
 "description": "Sample alert when humidity reaches the
maximum humidity threshold",
 "type": "ALERT",
 "value": {
 "fields": [
 {
 "name": "humidity",
 "type": "INTEGER",
 "optional": false
 }
]
 }
 }
]
}

3. Save the file as HumiditySensor.json and then close the text editor.

4. Open a command prompt and then run this curl command to upload the humidity
sensor device model to your Oracle Fusion Cloud IoT Intelligent Applications
instance:

curl -k -u "<username>:<password>" https://
<your_Oracle_IoT_CloudService_instance>:<instance_port_number>/iot/a
pi/v2/deviceModels -X POST -d @HumiditySensor.json -H "Content-
Type:application/json" -H "Accept:application/json"

Replace <username>, <password>, and <your_Oracle_IoT_CloudService
instance>, and <instance_port_number> variables with the values for your
environment. For example:

curl -k -u "joeuser@xyz.com:password" https://
myiotserver.com:7105/iot/api/v2/deviceModels -X POST -d
@HumiditySensor.json -H "Content-Type:application/json" -H
"Accept:application/json"

5. Open a text editor.

6. Copy and then paste this text into the text editor for the temperature sensor device
model:

{
 "urn": "urn:com:oracle:iot:device:temperature_sensor",
 "name": "Temperature Sensor",
 "description": "Device model for sensor that measures
temperature.",
 "attributes": [
 {
 "name": "temp",
 "description": "Measures temperature value between -20
and +80 Cel",
 "range": "-20,80",

Chapter 2
Upload the Sample Device Models

2-4

 "type": "NUMBER"
 },
 {
 "name": "unit",
 "description": "Measurement unit, such as Cel for Celsius.",
 "type": "STRING",
 "defaultValue":"C"
 },
 {
 "name": "minTemp",
 "alias": "minimumTemperature",
 "description": "The minimum value measured by the sensor
since power ON or reset",
 "type": "NUMBER"
 },
 {
 "name": "maxTemp",
 "alias": "maximumTemperature",
 "description": "The maximum value measured by the sensor
since power ON or reset",
 "type": "NUMBER"
 },
 {
 "name": "minThreshold",
 "description": "The minimum temperature threshold",
 "type": "INTEGER",
 "range": "-20,0",
 "writable": true,
 "defaultValue":0
 },
 {
 "name": "maxThreshold",
 "description": "The maximum temperature threshold",
 "type": "INTEGER",
 "range": "65,80",
 "writable": true,
 "defaultValue":70
 },
 {
 "name": "startTime",
 "description": "The time (measured in EPOCH) at which the
system was powered ON or reset",
 "type": "DATETIME"
 }
],
 "actions": [
 {
 "name": "reset",
 "description": "Reset the minimum and maximum measured values
to current value"
 },
 {
 "name": "power",
 "description": "Turns system ON or OFF",
 "argType": "BOOLEAN"

Chapter 2
Upload the Sample Device Models

2-5

 }
],
 "formats": [
 {
 "urn":
"urn:com:oracle:iot:device:temperature_sensor:too_hot",
 "name": "tooHotAlert",
 "description": "Temperature has reached the maximum
temperature threshold",
 "type": "ALERT",
 "value": {
 "fields": [
 {
 "name": "temp",
 "type": "NUMBER",
 "optional": false
 },
 {
 "name": "unit",
 "type": "STRING",
 "optional": false
 },
 {
 "name": "maxThreshold",
 "type": "NUMBER",
 "optional": true
 }
]
 }
 },
 {
 "urn":
"urn:com:oracle:iot:device:temperature_sensor:too_cold",
 "name": "tooColdAlert",
 "description": "Temperature has reached the minimum
temperature threshold",
 "type": "ALERT",
 "value": {
 "fields": [
 {
 "name": "temp",
 "type": "NUMBER",
 "optional": false
 },
 {
 "name": "unit",
 "type": "STRING",
 "optional": false
 },
 {
 "name": "minThreshold",
 "type": "NUMBER",
 "optional": true
 }
]

Chapter 2
Upload the Sample Device Models

2-6

 }
 }
]
}

7. Save the file as TemperatureSensor.json and then close the text editor.

8. Open a command prompt and then run this curl command to upload the temperature
sensor device model to your Oracle Fusion Cloud IoT Intelligent Applications:

curl -k -u "<username>:<password>" https://
<your_Oracle_IoT_CloudService_instance>:<instance_port_number>/iot/api/v2/
deviceModels -X POST -d @TemperatureSensor.json -H "Content-
Type:application/json" -H "Accept:application/json"

Replace the <username>, <password>, and <your_Oracle_IoT_CloudService instance>,
and <instance_port_number> variables with the values for your environment. For
example:

curl -k -u "joeuser@abc.com:password" https://
myiotserver.com:7105/iot/api/v2/deviceModels -X POST -d
@TemperatureSensor.json -H "Content-Type:application/json" -H
"Accept:application/json"

Client Library Best Practices
Make sure that your application using the Oracle Fusion Cloud IoT Intelligent Applications
client library APIs performs a well-defined set of tasks for using the Client Library APIs.

Note:

When publishing an application, a new provisioning file must be created for the
application. You can't use the same provisioning file for multiple applications.

Before you write the application, you need to make certain decisions or obtain certain
information so that your application performs the necessary tasks:

• Determine the resources you will use to exchange data between your device and the
server

• Determine the message formats you will use

• Determine how to communicate securely between the server and the client (using the
device ID and other properties)

Once you assemble this information, you can write an application that performs the following
tasks:

• Instantiates the application class

• Retrieves any properties needed by the application

• Initializes a device client

Chapter 2
Client Library Best Practices

2-7

• Obtains or creates a private key for secure communication with the server

• Registers request handlers for all resources that will be used

• Retrieves resource values from the device and sends messages to the server
about them, or sets them as needed

• Tracks message delivery

• At the end, releases resources by unregistering the request handlers and closing
the device client.

Use the Java SE Client Software Libraries
You can develop applications using the Oracle IoT Cloud Service Client Software
Libraries for the Java SE platform by downloading the binary provided with the
libraries. To run the examples that use the Client Software Library APIs, you can
download the samples bundle provided. To customize the Client Software Libraries for
your specific development environment, you can download and build the source files.

Topics

• Set Up Your Development Environment to Use the Java SE Client Software
Libraries

• Prepare an Embedded Device to Use the Java SE Client Software Library

• Create the Java SE Client Software Library Sample Applications

• Use the Provisioning Tool to Create the Truststore

• Run the Sample Java SE Directly Connected Device Applications

• Run the Sample Java SE Gateway Application

• Run the Sample Java SE Gateway Application Using Apache Felix

• Run the Sample Java SE Enterprise Applications

• Build the Java SE Client Software Libraries

Set Up Your Development Environment to Use the Java SE Client
Software Libraries

Before you can develop applications that let your devices to communicate with Oracle
Fusion Cloud IoT Intelligent Applications, you first download, install, and configure the
Java SE client software libraries.

1. Ensure that the time in your system is current. If the date and time must be
adjusted, do the following:

a. For the Windows 7 and 8 platform, click the time and date in the lower right
corner of the desktop. When the resulting popup window opens, select
Change Date and Time Settings... at the bottom. Use the Date and Time
dialog, shown below, to reset the date and time.

Chapter 2
Use the Java SE Client Software Libraries

2-8

b. For the Windows 10 platform, right click the time and date in the lower right corner of
the desktop, and select Adjust Date and Time from the popup menu. Use the Time
and Language settings panel, shown below, to reset the date and time.

Chapter 2
Use the Java SE Client Software Libraries

2-9

c. For the Mac platform, select System Preferences... from the Apple menu in
the upper left corner of the desktop, then choose Date and Time. Reset the
date and time accordingly.

Chapter 2
Use the Java SE Client Software Libraries

2-10

d. For the Linux platform, open a command prompt and use the date command, such
as the following:

date -s "19 APR 2017 11:14:00"

2. Download and install Gradle. Instructions on installation for various platforms can be
found on the Gradle website.

3. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent Applications
client software libraries download site.

4. Scroll to Java SE Client Software Library and download the Binaries, Source Code
and Samples zip files from the Java SE Client Software Library table. This table
describes the contents of each zip file:

Filename Description

iotcs-csl-javase-bin-
<version>.zip

Contains the Java SE client software library
binary files.

iotcs-csl-javase-src-
<version>.zip

Contains the Java SE client software library
binary file source code.

iotcs-csl-javase-samples-
<version>.zip

Contains the Java SE sample applications.

5. Extract the contents of the zip files. The files are saved to these directories:

Chapter 2
Use the Java SE Client Software Libraries

2-11

https://gradle.org/install/
http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

Filename Directory

iotcs-csl-javase-bin-
<version>.zip

iotcs/csl/javase/bin

iotcs-csl-javase-src-
<version>.zip

iotcs/csl/javase/src

iotcs-csl-javase-samples-
<version>.zip

iotcs/csl/javase/samples

6. Set the CL_HOME, GRADLE_HOME, and, JAVA_HOME environment variables to their
appropriate values. Sample values for the Linux platform are listed in the following
table.

System Variable Name Example

CL_HOME /home/<user>/iotcs/csl/javase/
GRADLE_HOME /opt/gradle-<version>
JAVA_HOME /usr/java/jdk<version>

a. For the Windows 7 platform, open the Control Panel and select System. Then,
choose Advanced System Settings in the upper left of the dialog. In the
System Properties dialog, choose the Advanced tab, then press the
Environment Variables button. Add the new environment variables to either the
user or system section.

b. For the Windows 10 platform, open Settings and select System. Then, select
the About tab on the left side, and choose Advanced System Settings in the
upper right of the dialog. In the System Properties dialog, choose the
Advanced tab, then press the Environment Variables button. Add the new
environment variables to either the user or system section.

c. For the Mac platform, create or edit the file ~/.bash_profile and add one line
for each entry, such as the following examples:

export CL_HOME=~/iotcs/csl/javase/
export GRADLE_HOME=/opt/local/share/java/gradle
export JAVA_HOME=/Library/Java/JavaVirtualMachines/
jdk1.8.0_65.jdk/Contents/Home

d. For the Linux platform, create or edit the file ~/.profile (or equivalent for the
command line shell) and add one for each entry, as in the Mac example.

7. Modify the PATH variable to include the path to the Java and Gradle executables.
Use the instructions for each platform in the previous step to access the
environment variables for each operating system.

For example, in the Linux environment, you can add the following to the existing
PATH variable.

export PATH=$JAVA_HOME/bin:$GRADLE_HOME/bin:$PATH

8. If your computer is on a Virtual Private Network, or behind a firewall:

Chapter 2
Use the Java SE Client Software Libraries

2-12

a. Open the gradle.properties file, located in the Gradle user home directory and
add these lines:

systemProp.http.proxyHost=<your_proxy_server.com>
systemProp.http.proxyPort=<your_proxy_port>
systemProp.https.proxyHost=<your_proxy_server.com>
systemProp.https.proxyPort=<your_proxy_port>

b. Save your changes and close the gradle.properties file.

9. Start your favorite IDE and install the Gradle Support plugin.

10. Register your device, record the password, and download the provisioning file. See
Registering and Activating Devices.

11. Using the web interface, create a new application named JavaSECLApp. See Creating a
New Application.

12. Associate the humidity and temperature sensor device models with the JavaSECLApp
application. See Assign a Device Model to a Cloud Service.

13. Add an integration named JavaSECLApp to the application. See Integrating Enterprise
Applications with Oracle IoT Cloud Service.

14. Download the provisioning file for the integration:

a. Log in to your Oracle Fusion Cloud IoT Intelligent Applications instance.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Applications and then Browse Applications.

d. Click JavaSECLApp and then Integration.

e. Select the JavaSECLApp integration and click the Edit () icon.

f. Click the Overview tab.

If you are using Oracle Fusion Cloud IoT Intelligent Applications version 16 4.1 or
earlier, record the ID and Shared Secret values. These values are required when
you run the provisioning tool to create the trusted assets store .

g. Enter a password in the File Protection Password field to encrypt the provisioning
file that contains the configuration and credentials to activate your integration.

h. Enter the password again in the Confirm Password field.

i. Click Download Provisioning File.

j. Click Save File.

k. Browse to a directory and then click Save.

15. Prepare your device for the installation of the Java SE client software libraries. See
Prepare an Embedded Device to Use the Java SE Client Software Library.

16. Run the Java SE client software library sample applications. See Create the Java SE
Client Software Library Sample Applications.

Chapter 2
Use the Java SE Client Software Libraries

2-13

Prepare an Embedded Device to Use the Java SE Client Software
Library

An embedded device running Linux must be configured correctly and meet the
minimum hardware requirements to successfully install the Java SE client software
library.

1. Make sure the hardware prerequisites are met before you install the Java SE client
software library on your device. For a list of supported platforms, see Oracle IoT
Cloud Service Client Software Certified System Configurations.

2. Open a web browser and browse to Oracle Java SE Embedded Downloads page.

3. Download Oracle Java SE Embedded JDK to your device. These are the available
versions:

Platform Hardware File

Linux/x86 desktop x86 Linux Small Footprint –
Headless

ejdk-<version>–
linux-i586.tar.gz

ARM v6/v7 Linux — Hard
Floating Point

ARM v6/v7 Linux - VFP,
HardFP ABI, Little Endian 1

ejdk-<version>-
linux-armv6-vfp-
hflt.tar.gz

ARM v5/v6/v7 Linux — Soft
Floating Point

ARMv5/ARMv6/ARMv7
Linux - SoftFP ABI, Little
Endian 2.

ejdk-<version>-
linux-arm-
sflt.tar.gz

4. Run this command to extract the contents of the Oracle Java SE Embedded JDK
file. using the example 8u101 version:

cd <eJDK-download-folder-location>/
tar xzvf ejdk-8u101-linux-armv6-vfp-hflt.tar.gz

5. Verify that the ejdk1.8.0_101 folder was created.

6. Run this command to create the Java SE Embedded Compact 2 profile:

cd ejdk1.8.0_73/bin
./jrecreate.sh -d /home/<user>/ejre1.8.0_73_compact2_minimal_vm -p
compact2 --vm minimal

The output should appear similar to this example:

Building JRE using Options {
ejdk-home: /home/janeuser/ejdk1.8.0_101
 dest: /home/janeuser/ejre1.8.0_101_compact2_minimal_vm
 target: linux_arm_vfp_hflt
 vm: minimalruntime: compact2 profile
 debug: false
 keep-debug-info: false
 no-compression: false
 dry-run: false

Chapter 2
Use the Java SE Client Software Libraries

2-14

http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/java/embedded/embedded-se/downloads/index.html

 verbose: false
 extension: []}

7. Install the JDK Compact 2 profile on your device. See Create Your JRE with jrecreate
in the Oracle Java SE Embedded Developer’s Guide.

Create the Java SE Client Software Library Sample Applications
The Java SE client software library sample applications must be created before they can run
on your device.

1. Set up your Java SE development environment. See Set Up Your Development
Environment to Use the Java SE Client Software Libraries.

2. Run one of these commands to create the sample applications:

To build the samples from iotcs-csl-javase-bin-<version>.zip:

cd $CL_HOME/samples
gradle

To build binary JAR files from iotcs-csl-javase-src-<version>.zip:

cd $CL_HOME
gradle
cd $CL_HOME/samples
gradle

3. Run the sample applications. See Run the Sample Java SE Directly Connected Device
Applications.

Use the Provisioning Tool to Create the Truststore
If you are using Oracle Fusion Cloud IoT Intelligent Applications version 16.4.1 or earlier, use
the provisioning tool to create the trusted assets truststore. The truststore contains the Oracle
Fusion Cloud IoT Intelligent Applications authentication certificate and the device ID and
Shared Secret values.

These are the prerequisites for this procedure:

• You have uploaded the humidity and temperature sensor device models.

• You have created the JavaSECLApp application. See Set Up Your Development
Environment to Use the Java SE Client Software Libraries.

• You have created a iotcs/csl/javase/samples directory.

• You know the URL and port number for the Oracle Fusion Cloud IoT Intelligent
Applications instance.

1. Run the following command to create a trusted assets store:

java -cp $CL_HOME/lib/device-library.jar
com.oracle.iot.client.impl.trust.TrustedAssetsProvisioner -serverHost
<iotserver_url> -serverPort <port> -sharedSecret
<device_id_shared_secret> -deviceId <device_ID>

Chapter 2
Use the Java SE Client Software Libraries

2-15

http://docs.oracle.com/javase/8/embedded/develop-apps-platforms/jrecreate.htm

A trusted assets store is created in the current directory. The trusted assets store
contains the Oracle Fusion Cloud IoT Intelligent Applications SSL/TLS
authentication certificate, the client ID and shared secret values, and the
certificates for code bundle verification.

2. Run the following command to create a trust store for the enterprise application
integration:

java -cp $CL_HOME/lib/enterprise-library.jar
com.oracle.iot.client.impl.trust.TrustedAssetsProvisioner -
serverHost <Oracle_IoT_Cloud_Service_instance_url> -serverPort
<Oracle_IoT_Cloud_Service_instance_port> -sharedSecret
<Enterprise_app_integration_Shared_Secret> -endpointId
<Enterprise_app_integtration_ID>

Replace endpointID with the enterprise application integration ID you recorded
when you were Set Up Your Development Environment to Use the Java SE Client
Software Libraries. A trusted assets truststore named
Enterprise_app_integtration_ID.jks is created . The trusted assets truststore
contains the Oracle Fusion Cloud IoT Intelligent Applications SSL/TLS
authentication certificate, the client ID and shared secret values.

Note:

Provisioning fails if the required certificate is not available in the trusted
assets truststore. To correct this issue, create a
SERVER_ROOT_CERTIFICATE environment variable with the location of the
pem file containing the root certificate . A connectivity attempt will be
made to the server using this certificate when the truststore is being
created. If the connection cannot be made, the assets are created with a
warning message.

Run the Sample Java SE Directly Connected Device Applications
Run the sample Java SE directly connected device applications to learn how to use
the client software library APIs. The sample directly connected device applications use
software to simulate temperature and humidity sensors. The sample directly
connected device applications periodically send temperature, humidity, and alert
messages to Oracle Fusion Cloud IoT Intelligent Applications.

About the Sample Java SE Directly Connected Device Applications

Two directly connected device sample applications are available. The first sample
application is located in the com.oracle.iot.sample package and uses virtualization.
The second sample application is located in the com.oracle.iot.sample.ext package
and it uses a messaging API to provide direct control over the client software library.

1. Create the sample applications. See Create the Java SE Client Software Library
Sample Applications.

2. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

Chapter 2
Use the Java SE Client Software Libraries

2-16

3. Register the device and download the provisioning file. See Registering and Activating
Devices.

Note:

If you are using Oracle Fusion Cloud IoT Intelligent Applications version 16.4.1
or earlier, use the provisioning tool to create the trusted assets truststore. See
Use the Provisioning Tool to Create the Truststore.

4. Run this command to start the DirectlyConnectedDeviceSample application:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-samples.jar:$CL_HOME/lib/
device-library.jar:$CL_HOME/lib/ json-20200518.jar
com.oracle.iot.sample.DirectlyConnectedDeviceSample activation_id-
provisioning-file.conf Password123

Replace activation_id , -provisioning-file.conf, and Password123 with the values
you recorded when you registered your device.

To run the application with device policies, add this parameter to the command:

-Dcom.oracle.iot.sample.use_policy=true

The command to start the application with device policies:

java -cp -Dcom.oracle.iot.sample.use_policy=true $CL_HOME/samples/build/
libs/iotcs-csl-samples.jar:$CL_HOME/lib/device-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.DirectlyConnectedDeviceSample
activation_id-provisioning-file.conf Password123

Output similar to the following appears:

Created virtual humidity sensor 6E6BD2A4-65A8-4482-869D-325D9E5291F2
Tue Feb 9 16:13:53 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Set : "humidity"=81,"maxThreshold"=90

 Press enter to exit.

Tue Feb 9 16:13:53 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Set : "humidity"=86
Tue Feb 9 16:13:58 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Set : "humidity"=89
Tue Feb 9 16:14:03 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Set : "humidity"=91
Tue Feb 9 16:14:03 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Alert : "humidity"=91 (tooHumidAlert)
Tue Feb 9 16:14:09 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Set : "humidity"=89
Tue Feb 9 16:14:14 EST 2016 : 6E6BD2A4-65A8-4482-869D-325D9E5291F2 :
Set : "humidity"=86

Chapter 2
Use the Java SE Client Software Libraries

2-17

Run the Sample Java SE Gateway Application
Run the sample Java SE gateway application to learn how to use the client software
library APIs. The sample Java SE gateway application simulates a gateway that polls
humidity and temperature sensors and sends sensor data to the Oracle Fusion Cloud
IoT Intelligent Applications instance.

1. Create the sample applications. See Create the Java SE Client Software Library
Sample Applications.

2. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

3. Register the gateway device and download the provisioning file.

Do not reuse the device from the Running the Sample Java SE Directly Connected
Device Applications procedure. This procedure requires a device with indirect
activation capability.

Note:

If you are using Oracle Fusion Cloud IoT Intelligent Applications version
16 4.1 or earlier, use the provisioning tool to create the trusted assets
truststore. See Use the Provisioning Tool to Create the Truststore.

4. Run this command to start the GatewayDeviceSample application:

 java -cp $CL_HOME/samples/build/libs/iotcs-csl-
samples.jar:$CL_HOME/lib/device-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.GatewaydDeviceSample MY-GW-
SAMPLE-provisioning-file.conf Password123

To run the application with device policies, add this parameter to the command:

-Dcom.oracle.iot.sample.use_policy=true

The command to start the application with device policies:

 java -cp -Dcom.oracle.iot.sample.use_policy=true $CL_HOME/samples/
build/libs/iotcs-csl-samples.jar:$CL_HOME/lib/device-
library.jar:$CL_HOME/lib/json-20200518.jar
com.oracle.iot.sample.GatewaydDeviceSample MY-GW-SAMPLE-
provisioning-file.conf Password123

Output similar to the following appears:

Creating the gateway instance...
Created virtual temperature sensor 0-HA
Created virtual humidity sensor 0-HE

 Press enter to exit.

Tue Feb 9 16:17:53 EST 2016 : 0-HE : Set : "humidity"=81

Chapter 2
Use the Java SE Client Software Libraries

2-18

Tue Feb 9 16:17:52 EST 2016 : 0-HA : Set :
"power"=true,"temp"=58.5,"unit"=°C,"minTemp"=58.5,"maxTemp"=58.5,"minThres
hold"=0,"maxThreshold"=65
Tue Feb 9 16:17:58 EST 2016 : 0-HE : Set : "humidity"=86
Tue Feb 9 16:17:58 EST 2016 : 0-HA : Set : "temp"=62.25,"maxTemp"=62.25
Tue Feb 9 16:18:03 EST 2016 : 0-HE : Set : "humidity"=89
Tue Feb 9 16:18:03 EST 2016 : 0-HA : Set : "temp"=64.99,"maxTemp"=64.99
Tue Feb 9 16:18:08 EST 2016 : 0-HE : Set : "humidity"=91
Tue Feb 9 16:18:08 EST 2016 : 0-HE : Alert : "humidity"=91 (tooHumidAlert)
Tue Feb 9 16:18:08 EST 2016 : 0-HA : Set : "temp"=66.0,"maxTemp"=66.0
Tue Feb 9 16:18:08 EST 2016 : 0-HA : Alert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65
Tue Feb 9 16:18:13 EST 2016 : 0-HE : Set : "humidity"=89
Tue Feb 9 16:18:13 EST 2016 : 0-HA : Set : "temp"=64.99

Run the Sample Java SE Gateway Application Using Apache Felix
Run the sample Java SE gateway application using Apache Felix to learn how to use the
client software library APIs. The sample Java SE gateway application simulates a gateway
that polls humidity and temperature sensors, and sends sensor data to the Oracle Fusion
Cloud IoT Intelligent Applications instance.

1. Set up your Java SE development environment. See Set Up Your Development
Environment to Use the Java SE Client Software Libraries.

2. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

3. Download and extract the content of the latest version of the Apache Felix framework.

4. Copy the following definition of the gateway device application and create a file named
SampleActivator.java in the $CL_HOME/samples/src/main/java/com/oracle/iot/
sample directory.

/*
* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights
reserved.
*
* This software is dual-licensed to you under the MIT License (MIT) and
* the Universal Permissive License (UPL). See the LICENSE file in the root
* directory for license terms. You may choose either license, or both.
*/

package com.oracle.iot.sample;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.BundleException;

/**
 * Activator class for OSGi platform. Refer to the on-line, Oracle IoT
Cloud Service
 * Java Client Library documentation for details on how to run a client
library
 * sample from an OSGi bundle.
 */

Chapter 2
Use the Java SE Client Software Libraries

2-19

http://felix.apache.org/downloads.cgi

public class SampleActivator implements BundleActivator
{
 /**
 * Implements BundleActivator.start().
 *
 * Note: expects following system properties to be set:
'sample.name', 'sample.args'
 *
 * For example: {@code -Dsample.name=GatewayDeviceSample -
Dsample.args="activationId.jks password"}
 * @param context the framework context for the bundle.
 **/
 public void start(BundleContext context) throws Exception
 {
 Thread executeSample = new Thread(new
ExecuteSample(context));
 executeSample.setDaemon(true);
 executeSample.start();
 }

 /**
 * Implements BundleActivator.stop().
 * @param context the framework context for the bundle.
 **/
 public void stop(BundleContext context) throws Exception
 {
 System.err.println("SampleActivator.stop called");
 String sampleName = System.getProperty("sample.name",
"GatewayDeviceSample");
 String classname = "com.oracle.iot.sample."+sampleName;
 Class<?> cls = Class.forName(classname);
 java.lang.reflect.Field f = cls.getDeclaredField("exiting");
 f.set(null, true);
 }
private class ExecuteSample implements Runnable {
 private BundleContext context;
 public ExecuteSample(BundleContext context) { this.context
= context; }
 @Override
 public void run() {
 String sampleName = System.getProperty("sample.name",
"GatewayDeviceSample");
 String classname = "com.oracle.iot.sample."+sampleName;
 try {
 Class<?> cls = Class.forName(classname);
 java.lang.reflect.Field f =
cls.getDeclaredField("isUnderFramework");
 f.set(null, true);

 f = cls.getDeclaredField("exiting");
 f.set(null, false);

 String[] arguments =
System.getProperty("sample.args","").split("\\s+");

Chapter 2
Use the Java SE Client Software Libraries

2-20

 @SuppressWarnings("unchecked")
 final java.lang.reflect.Method meth =
cls.getMethod("main", String[].class);
 meth.invoke(null, (Object) arguments); // static method
doesn't have an instance

 } catch(Exception e) {
 try {
 context.getBundle().stop();
 } catch(BundleException be) {
 }
 }
 }
 }
}

5. Run the following command to create the build directory:

cd $CL_HOME/samples
mkdir -p build/classes

6. Run the following command to build the classes:

javac -d ./build/classes -cp Apache_Felix_directory/bin/felix.jar:../lib/
device-library.jar
src/main/java/com/oracle/iot/sample/GatewayDeviceSample.java
src/main/java/com/oracle/iot/sample/SampleActivator.java
src/main/java/com/oracle/iot/sample/TemperatureSensor.java
src/main/java/com/oracle/iot/sample/HumiditySensor.java

The output classes appear in the $CL_HOME/samples/build/classes/ directory.

7. Create the MANIFEST.MF file in the$CL_HOME/samples directory using the values in the
following table:

Sample Name MANIFEST.MF

GatewayDeviceSample and
DirectlyConnectedDeviceSample

Bundle-ManifestVersion: 2
Bundle-Name: GatewayDevice Sample
Bundle-SymbolicName:
com.oracle.iot.sample
Bundle-Version: 1.0.0
Bundle-Activator:
com.oracle.iot.sample.SampleActivat
or
Import-Package:
org.osgi.framework,oracle.iot.clien
t.device,oracle.iot.client

Chapter 2
Use the Java SE Client Software Libraries

2-21

Sample Name MANIFEST.MF

EnterpriseClientSample Bundle-ManifestVersion: 2
Bundle-Name: GatewayDevice Sample
Bundle-SymbolicName:
com.oracle.iot.sample
Bundle-Version: 1.0.0
Bundle-Activator:
com.oracle.iot.sample.SampleActivat
or
Import-Package:
org.osgi.framework,oracle.iot.clien
t.enterprise,oracle.iot.client

ext.DirectlyConnectedDeviceSample and
ext.GatewayDeviceSample

Bundle-ManifestVersion: 2
Bundle-Name: GatewayDevice Sample
Bundle-SymbolicName:
com.oracle.iot.sample
Bundle-Version: 1.0.0
Bundle-Activator:
com.oracle.iot.sample.SampleActivat
or
Import-Package:
org.osgi.framework,org.json,com.ora
cle.iot.client.device,com.oracle.io
t.client.message,com.oracle.iot.cli
ent.device.util

Note:

Make sure there is a line break after the last line of the MANIFEST.MF file.

8. Run this command to create the bundle jar file:

jar -cmf MANIFEST.MF osgi-sample.jar -C ./build/classes com

9. Register the gateway device and download the provisioning file.

10. Change directories to Apache_Felix_directory.

11. Run the following command to start Apache Felix, and replace the sample_name
and the sample_args using the values in the table:

java -Dsample.name=sample_name -Dsample.args="sample_args" -jar
FELIX_PATH/bin/felix.jar

To run the application with device policies, add this parameter to the command:

-Dcom.oracle.iot.sample.use_policy=true

Chapter 2
Use the Java SE Client Software Libraries

2-22

Run this command to start the application with device policies:

java -Dcom.oracle.iot.sample.use_policy=true -Dsample.name=sample_name -
Dsample.args="sample_args" -jar FELIX_PATH/bin/felix.jar

sample_name sample_args

DirectlyConnectedDeviceSample provisioning_file_name provisioning_file_password

GatewayDeviceSample provisioning_file_name
provisioning_file_passwordprovisioning_file_name
provisioning_file_password
temperature_sensor_endpointID
humidity_sensor_endpointID

EnterpriseClientSample provisioning_file_name
provisioning_file_passwordprovisioning_file_name
provisioning_file_password deviceID
[,deviceID]provisioning_file_name
provisioning_file_password deviceID][reset | on |
off]
java com.oracle.iot.sample.EnterpriseClientSample

java com.oracle.iot.sample.EnterpriseClientSample
provisioning_file_name provisioning_file_password
deviceID maxThreshold minThreshold

ext.DirectlyConnectedDeviceSample provisioning_file_name provisioning_file_password

ext.GatewayDeviceSample provisioning_file_name
provisioning_file_passwordprovisioning_file_name
provisioning_file_password
temperature_sensor_endpointID
humidity_sensor_endpointID

12. Install the device-library.jar, json–20160212.jar, osgi-sample.jar files, and then
start your bundle using the assigned ID.

The output should be similar to the following example:

Welcome to Apache Felix Gogo
g! install CL_HOME/lib/device-library.jar
Bundle ID: 5
g! install CL_HOME/lib/json-20200518.jar
Bundle ID: 6
g! install CL_HOME/samples/osgi-sample.jar
Bundle ID: 7
g! start 7
Starting to listen for service events.
Creating the gateway instance...
Created virtural temperature sensor 0-2UJQ
Created virtural humidity sensor 0-2YJQ
 Press enter to exit.
Tue Aug 02 17:18:18 EDT 2016 : 0-2YJQ : Set :
"humidity"=81,"maxThreshold"=90
Tue Aug 02 17:18:17 EDT 2016 : 0-2UJQ : Set :
"power"=true,"temp"=58.5,"unit"=°C,"minTemp"=58.5,"maxTemp"=58.5,"minThres
hold"=0,"maxThreshold"=65

Chapter 2
Use the Java SE Client Software Libraries

2-23

Note:

The Bundle ID values may vary.

Run the Sample Java SE Enterprise Applications
Run the Java SE sample enterprise applications to learn how to use the client software
library APIs. The sample enterprise application reads humidity and temperature values
of directly connected or gateway devices. The sample enterprise applications can also
change device attributes by sending commands through Oracle Fusion Cloud IoT
Intelligent Applications.

1. Create the sample applications. See Create the Java SE Client Software Library
Sample Applications.

2. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

3. Register the device and download the provisioning file.

Note:

If you are using Oracle Fusion Cloud IoT Intelligent Applications version
16 4.1 or earlier, use the provisioning tool to create the trusted assets
truststore. See Use the Provisioning Tool to Create the Truststore.

4. Run the DirectlyConnectedDevice or the GatewayDevice sample applications.
See Run the Sample Java SE Directly Connected Device Applications or Run the
Sample Java SE Gateway Application.

5. Run this command to return a list of device IDs that are associated with the
humidity sensor:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-
samples.jar:$CL_HOME/lib/enterprise-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.EnterpriseClientSample
app_integration_ID-provisioning-file.conf Password123

Replace app_integration_ID and -provisioning-file.conf Password123 with
the values that you recorded when adding the integration and registering the
device.

Output similar to the following appears:

0-HA [Temperature Sensor]
0-BQ [Humidity Sensor]
0-HE [Humidity Sensor]

6. Record the device ID, 0-BQ that you used to run the
DirectlyConnectedDeviceDeviceSample sample and the device IDs 0-HE
and 0-HA of the indirectly connected devices that you used to run the
GatewayDeviceSample .

Chapter 2
Use the Java SE Client Software Libraries

2-24

7. Run this command to monitor the humidity and temperature sensors:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-samples.jar:$CL_HOME/lib/
enterprise-library.jar:$CL_HOME/lib/ json-20200518.jar
com.oracle.iot.sample.EnterpriseClientSample app_integration_ID-
provisioning-file.conf Password123 0-HA,0-HE,0-BQ

Note:

Replace app_integration_ID-provisioning-file.conf with the name of the
enterprise integration provisioning file and app_integration2_ID-
provisioning-file.conf with the integration provisioning file for the control
feature of the EnterpriseClientSample application. Replace Password123 with
the password used to secure the provisioning files.

Output similar to the following appears:

 Press enter to exit.

Tue Feb 9 16:34:09 EST 2016 : 0-HE : onChange : "humidity"=89
Tue Feb 9 16:34:13 EST 2016 : 0-BQ : onChange : "humidity"=89
Tue Feb 9 16:34:16 EST 2016 : 0-HE : onChange : "humidity"=91
Tue Feb 9 16:34:16 EST 2016 : 0-BQ : onChange : "humidity"=86
Tue Feb 9 16:34:16 EST 2016 : 0-HI : onChange : "temp"=66.0
Tue Feb 9 16:34:16 EST 2016 : 0-HI : onAlert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65.0 (tooHotAlert)
Tue Feb 9 16:34:16 EST 2016 : 0-HE : onAlert : "humidity"=91
(tooHumidAlert)
Tue Feb 9 16:34:19 EST 2016 : 0-HE : onChange : "humidity"=89
Tue Feb 9 16:34:19 EST 2016 : 0-HI : onChange : "temp"=64.99
Tue Feb 9 16:34:23 EST 2016 : 0-BQ : onChange : "humidity"=81
Tue Feb 9 16:34:26 EST 2016 : 0-HE : onChange : "humidity"=86
Tue Feb 9 16:34:26 EST 2016 : 0-BQ : onChange : "humidity"=76
Tue Feb 9 16:34:26 EST 2016 : 0-HI : onChange : "temp"=62.25
Tue Feb 9 16:34:29 EST 2016 : 0-HE : onChange : "humidity"=81
Tue Feb 9 16:34:29 EST 2016 : 0-HI : onChange : "temp"=58.5

8. Run this command to set the maximum humidity threshold of the
DirectlyConnectedDeviceSample device:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-samples.jar:$CL_HOME/lib/
enterprise-library.jar:$CL_HOME/lib/ json-20200518.jar
com.oracle.iot.sample.EnterpriseClientSample app_integration2_ID-
provisioning-file.conf Password123 0-BQ 67

This message appears:

Tue Feb 9 18:24:56 EST 2016 : 0-BQ : Set : "maxThreshold"=67 ..
... [Humidity readings] ...
Done.

Chapter 2
Use the Java SE Client Software Libraries

2-25

Output similar to the following appears on the device console:

Tue Feb 9 18:25:00 EST 2016 : 0-BQ : Set : "humidity"=73
Tue Feb 9 18:25:00 EST 2016 : 0-BQ : onChange : "maxThreshold"=67
Tue Feb 9 18:25:05 EST 2016 : 0-BQ : Set : "humidity"=57
Tue Feb 9 18:25:10 EST 2016 : 0-BQ : Set : "humidity"=60
Tue Feb 9 18:25:15 EST 2016 : 0-BQ : Set : "humidity"=64
Tue Feb 9 18:25:20 EST 2016 : 0-BQ : Set : "humidity"=67
Tue Feb 9 18:25:20 EST 2016 : 0-BQ : Alert : "humidity"=67
(tooHumidAlert)
Tue Feb 9 18:25:25 EST 2016 : 0-BQ : Set : "humidity"=68
Tue Feb 9 18:25:30 EST 2016 : 0-BQ : Set : "humidity"=67

9. Run this command to reset the EnterpriseClientSample device temperature
sensor:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-
samples.jar:$CL_HOME/lib/enterprise-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.EnterpriseClientSample
app_integration2_ID-provisioning-file.conf Password123 0-HA reset

Output similar to the following appears on the device console:

...
Tue Feb 9 18:18:06 EST 2016 : 0-HA : Call : reset
Tue Feb 9 18:18:10 EST 2016 : 0-HA : Set :
"temp"=58.5,"minTemp"=58.5,"maxTemp"
...

10. Run this command to turn the EnterpriseClientSample device power on or
off:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-
samples.jar:$CL_HOME/lib/enterprise-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.EnterpriseClientSample
app_integration2_ID-provisioning-file.conf Password1230-HA off (or
on to turn on sensor, in this case it is the temperature sensor)

Temperature data stops displaying on the device console:

...
Tue Feb 9 18:21:38 EST 2016 : 0-HA : Call : "power"=false
...

11. Run this command to set the maximum and minimum threshold values for the
EnterpriseClientSample device:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-
samples.jar:$CL_HOME/lib/enterprise-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.EnterpriseClientSample
app_integration2_ID-provisioning-file.conf Password123 0-HA 65 -10

Chapter 2
Use the Java SE Client Software Libraries

2-26

Output similar to the following appears on the device console:

...
Tue Feb 9 18:28:15 EST 2016 : 0-HA : Alert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65

Tue Feb 9 18:28:15 EST 2016 : 0-HA : onChange :
"minThreshold"=-10,"maxThreshold"=65

...

Output similar to the following appears on the EnterpriseClientSample console:

Tue Feb 9 18:28:14 EST 2016 : 0-HA : Set :
"maxThreshold"=65,"minThreshold"=-10 ..
Tue Feb 9 18:28:14 EST 2016 : 0-HA : onChange : "startTime"=Tue Feb 9
18:27:55 EST
2015,"maxTemp"=64.99,"unit"=°C,"minThreshold"=0,"maxThreshold"=65,"temp"=6
4.99,"minTemp"=58.49
Tue Feb 9 18:28:14 EST 2016 : 0-HA : onAlert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65.0 (tooHotAlert)
Tue Feb 9 18:28:14 EST 2016 : 0-HA : onAlert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65.0 (tooHotAlert)
Tue Feb 9 18:28:14 EST 2016 : 0-HA : onAlert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65.0 (tooHotAlert)
Tue Feb 9 18:28:14 EST 2016 : 0-HA : onAlert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65.0 (tooHotAlert)
Tue Feb 9 18:28:14 EST 2016 : 0-HA : onAlert :
"temp"=66.0,"unit"=°C,"maxThreshold"=65.0 (tooHotAlert)
Done.

12. Run this command to start the advanced/.../DirectlyConnectedDeviceSample
application:

java -cp $CL_HOME/samples/advanced/build/libs/iotcs-samples-
advanced.jar$CL_HOME/lib/device-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.DirectlyConnectedDeviceSample
activation_ID-provisioning-file.conf Password123

Output similar to the following appears:

Created virtual humidity sensor 0-BQ
Tue Feb 9 18:34:44 EST 2015 : 0-BQ : Set : "humidity"=81,"maxThreshold"=90

 Press enter to exit.

Tue Feb 9 18:34:44 EST 2015 : 0-BQ : Set : "humidity"=86
Tue Feb 9 18:34:49 EST 2015 : 0-BQ : Set : "humidity"=89
Tue Feb 9 18:34:54 EST 2015 : 0-BQ : Set : "humidity"=91
Tue Feb 9 18:34:54 EST 2015 : 0-BQ : Alert : "humidity"=91 (tooHumidAlert)
Tue Feb 9 18:34:59 EST 2015 : 0-BQ : Set : "humidity"=89
Tue Feb 9 18:35:04 EST 2015 : 0-BQ : Set : "humidity"=86

Chapter 2
Use the Java SE Client Software Libraries

2-27

13. Run this command to start the advanced/.../GatewayDeviceSample application:

java -cp $CL_HOME/samples/advanced/build/libs/iotcs-samples-
advanced.jar$CL_HOME/lib/device-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.GatewayDeviceSample MY-GW-
SAMPLE-provisioning-file.conf Password123

Output similar to the following appears:

Creating the gateway instance...

Created virtural temperature sensor 0-HY
Created virtural humidity sensor 0-H4

 Press enter to exit.

Tue Feb 9 18:32:34 EST 2015 : 0-H4 : Set : "humidity"=81
Tue Feb 9 18:32:33 EST 2015 : 0-HY : Set :
"power"=true,"temp"=58.5,"unit"=°C,"minTemp"=58.5,"maxTemp"=58.5,"mi
nThreshold"=0,"maxThreshold"=65
Tue Feb 9 18:32:39 EST 2015 : 0-H4 : Set : "humidity"=86
Tue Feb 9 18:32:39 EST 2015 : 0-HY : Set :
"temp"=62.25,"maxTemp"=62.25
Tue Feb 9 18:32:44 EST 2015 : 0-H4 : Set : "humidity"=89
Tue Feb 9 18:32:44 EST 2015 : 0-HY : Set :
"temp"=64.99,"maxTemp"=64.99

14. Run the following command to start the advanced/.../GatewayDeviceSample
application:

java -cp $CL_HOME/samples/build/libs/iotcs-csl-
samples.jar:$CL_HOME/lib/device-library.jar:$CL_HOME/lib/
json-20200518.jar com.oracle.iot.sample.GatewayDeviceSample MY-GW-
SAMPLE- provisioning-file.conf Password123 0-HY 0-H4

Output similar to the following appears:

Creating the gateway instance...

Created virtural temperature sensor 0-HY
Created virtural humidity sensor 0-H4

 Press enter to exit.

Tue Feb 9 18:32:34 EST 2015 : 0-H4 : Set : "humidity"=81
Tue Feb 9 18:32:33 EST 2015 : 0-HY : Set :
"power"=true,"temp"=58.5,"unit"=°C,"minTemp"=58.5,"maxTemp"=58.5,"mi
nThreshold"=0,"maxThreshold"=65
Tue Feb 9 18:32:39 EST 2015 : 0-H4 : Set : "humidity"=86
Tue Feb 9 18:32:39 EST 2015 : 0-HY : Set :
"temp"=62.25,"maxTemp"=62.25
Tue Feb 9 18:32:44 EST 2015 : 0-H4 : Set : "humidity"=89

Chapter 2
Use the Java SE Client Software Libraries

2-28

Tue Feb 9 18:32:44 EST 2015 : 0-HY : Set : "temp"=64.99,"maxTemp"=64.99

Build the Java SE Client Software Libraries
Build the client software libraries from the downloaded source files to customize the
functionality of the libraries and change the size of the library JAR files.

1. Download and install Gradle. Versions 2.2.1 to 2.13 are supported.

2. Download and unzip iotcs-csl-javase-src-<VERSION>.zip.

3. Open a command prompt and use the cd command to browse to iotcs/csl/javase.

4. If your computer is on a Virtual Private Network, or behind a firewall:

a. Open the gradle.properties file, located in the Gradle user home directory and
add these lines:

systemProp.http.proxyHost=<your_proxy_server.com>
systemProp.http.proxyPort=<your_proxy_port>
systemProp.https.proxyHost=<your_proxy_server.com>
systemProp.https.proxyPort=<your_proxy_port>

The default value for the Gradle user home directory is USER_HOME/.gradle. To
use a different directory, set the GRADLE_USER_HOME environment variable.

b. Save your changes and close the gradle.properties file.

5. Run one of these commands to build the Client Software Libraries and documentation:

Command Description

gradle Builds the device-library.jar and
enterprise-library.jar library files
and places them in the build/libs folder.

gradle deviceClientJar Compiles the code specific to a device client
and creates build/libs/device-
library.jar

gradle enterpriseClientJar Compiles the code specific to an enterprise
client and creates build/libs/
enterprise-library.jar

gradle —PWITH_VIRTUALIZATION=false Compiles the code specific to a device client
without virtualization support. This reduces the
size of the device-library.jar

gradle -PWITH_ENUMERATION=false Compiles the code specific to an enterprise
client without resource and message
enumeration support. This reduces the size of
the enterprise-library.jar file.

gradle doc Generates the javadoc files and places them in
the build/docs folder.

Chapter 2
Use the Java SE Client Software Libraries

2-29

http://gradle.org/gradle-download/

Use the JavaScript Client Software Libraries
Two JavaScript client software libraries are available. To run sample applications,
download the Samples library. To create a client software library for your specific
development environment, download the Source Code library.

Topics

• Set Up Your Development Environment to Use the JavaScript Client Software
Libraries

• Prepare Your Device to Use the JavaScript Client Software Library

• Run the Sample JavaScript Directly Connected Device Applications

• Run the Sample JavaScript Gateway Application

• Run the Sample JavaScript Enterprise Applications

Set Up Your Development Environment to Use the JavaScript Client
Software Libraries

Before you can develop applications that let your devices to communicate with Oracle
Fusion Cloud IoT Intelligent Applications, you first download and extract the JavaScript
client software libraries.

1. Register your device, record the password, and download the provisioning file.

2. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

3. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent
Applications client software libraries download site.

4. Scroll to JavaScript Client Software Library and download the Binaries, Source
Code, and Samples zip files.

5. Extract the contents of the zip files. The files are saved to these directories:

Filename Directory

iotcs-csl-js-bin-
<version>.zip

iotcs/csl/js/bin

iotcs-csl-js-src-
<version>.zip

iotcs/csl/js/src

iotcs-csl-js-samples-
<version>.zip

iotcs/csl/js/samples

6. Create new applications named JavaScriptCLapp and JavaScriptELapp and
then record the application IDs for each application. See Creating a New
Application.

7. Associate the humidity and temperature sensor device models with the
JavaScriptCLapp and JavaScriptELapp applications.

8. Add integrations named JavaScriptCLapp and JavaScriptELapp to the
applications. See Integrating Enterprise Applications with Oracle IoT Cloud
Service.

Chapter 2
Use the JavaScript Client Software Libraries

2-30

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

9. Download the provisioning file for the JavaScriptCLapp integration:

a. Log in to your Oracle Fusion Cloud IoT Intelligent Applications instance.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Applications and then Browse Applications.

d. Click JavaScriptCLapp and then Integration.

e. Select the JavaScriptCLapp integration and click the Edit () icon.

f. Click the Overview tab.

If you are using Oracle Fusion Cloud IoT Intelligent Applications version 16 4.1 or
earlier, record the ID and Shared Secret values. These values are required when
you run the provisioning tool to create the trusted assets store.

g. Enter a password in the File Protection Password field to encrypt the provisioning
file that contains the configuration and credentials to activate your integration.

h. Enter the password again in the Confirm Password field.

i. Click Download Provisioning File.

j. Click Save File.

k. Browse to a directory and then click Save.

10. Repeat the previous step to download the provisioning file for the JavaScriptELapp
integration.

11. Prepare your device for the installation of the JavaScript client software libraries. See
Prepare Your Device to Use the JavaScript Client Software Library.

12. Run the sample applications.

Prepare Your Device to Use the JavaScript Client Software Library
Ensure that the hardware and software prerequisites are met prior to installing the Oracle IoT
Cloud Service Client Library Software for the JavaScript platform on your device. You need to
configure your device with the supported operating system and the latest version of the
required software.

1. Make sure the hardware prerequisites are met before you install the JavaScript client
software library on your device. For a list of supported platforms, see Oracle IoT Cloud
Service Client Software Certified System Configurations.

2. Install npm and Node.js.

3. Download and install gradle.

4. Run this command to install the debug module: npm install -g debug.

5. Run this command to install the sqlite3 module: npm install -g sqlite3.

6. Run this command to install the node-forge module: npm install -g node-forge.

7. To optionally build documentation from sources, run this command: npm install -g
jsdoc.

8. Run this command to set the NODE_PATH environment variable: SET NODE_PATH
“%C:\username\AppData\Roaming\npm\node_modules%”.

Chapter 2
Use the JavaScript Client Software Libraries

2-31

http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
https://gradle.org/install/

9. Run this command to move to the node-forge directory: cd
C:\Users\username\AppData\Roaming\npm\node_modules\node-forge.

If you have trouble running the npm run bundle command in a Windows
environment, run this command: node node_modules\requirejs\bin\r.js -o
minify.js optimize=none out=js/forge.bundle.js

10. Run this command to move to the js directory: cd
C:\Users\username\Documents\iot\csl\js.

11. Create a new folder named External.

12. Copy the file forge.bundle.js from
C:\Users\username\AppData\Roaming\npm\node_modules\node-forge\js to
C:\Users\username\Documents\iot\csl\js\external directory.

13. Copy the provisioning file that you downloaded in Set Up Your Development
Environment to Use the JavaScript Client Software Libraries to the
C:\Users\username\Documents\iot\csl\js\external directory.

14. Open a text editor and the open the EnterpriseClient.html file located at this
path: C:\Users\username\Documents\iot\csl\js\samples.

15. Locate the iotcs.oracle.iot.tam.storePassword value and enter the password
used to protect the provisioning file you downloaded when you registered the
device.

16. Locate the src value and make sure the value is "../modules/enterprise-
library.web.js".

17. Save and close the EnterpriseClient.html file.

18. Continue with either Run the Sample JavaScript Directly Connected Device
Applications or Run the Sample JavaScript Enterprise Applications.

Run the Sample JavaScript Directly Connected Device Applications
Run the sample JavaScript directly connected device applications to learn how to use
the client software library APIs. The sample directly connected device applications use
software to simulate temperature and humidity sensors. The sample directly
connected device applications periodically send temperature, humidity, and alert
messages to Oracle Fusion Cloud IoT Intelligent Applications.

1. Download and install Node.js with npm. For a list of supported platforms, see
Oracle IoT Cloud Service Client Software Certified System .

2. Open a command prompt and run this command to move to the samples directory:
cd C:\Users\username\Documents\iot\csl\js\samples.

3. Run this command to activate a registered device:

run-device-node-sample.bat [sample js file] [[id].conf file path]
[File Protection Password used for the .conf file]

4. Confirm the device is sending humidity and temperature data to Oracle Fusion
Cloud IoT Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management
Console.

Chapter 2
Use the JavaScript Client Software Libraries

2-32

https://nodejs.org/download/release/v10.15.3/node-v10.15.3-x64.msi
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

Run the Sample JavaScript Gateway Application
Run the sample JavaScript gateway application to learn how to use the client software library
APIs. The sample JavaScript gateway application simulates a gateway that polls humidity
and temperature sensors and sends sensor data to the Oracle Fusion Cloud IoT Intelligent
Applications instance.

1. Download and install Node.js with npm. For a list of supported platforms, see Oracle IoT
Cloud Service Client Software Certified System .

2. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

3. Register the gateway device and download the provisioning file.

Do not reuse the device from the Running the Sample Java SE Directly Connected
Device Applications procedure. This procedure requires a device with indirect activation
capability.

Note:

If you are using Oracle Fusion Cloud IoT Intelligent Applications version 16 4.1
or earlier, use the provisioning tool to create the trusted assets truststore. See
Use the Provisioning Tool to Create the Truststore.

4. Run this command to move to the samples directory:

 cd C:\Users\username\Documents\iot\csl\js\samples

5. Run this command to start the GatewayDeviceSample application:

run-device-node-sample.bat GatewayDeviceSample.js [[id].conf file path]
[File Protection Password used for the .conf file]

6. Confirm the device is sending humidity and temperature data to Oracle Fusion Cloud IoT
Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui

Chapter 2
Use the JavaScript Client Software Libraries

2-33

https://nodejs.org/download/release/v10.15.3/node-v10.15.3-x64.msi
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html

For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

Run the Sample JavaScript Enterprise Applications
Run the JavaScript sample enterprise applications to learn how to use the client
software library APIs. The sample enterprise application reads humidity and
temperature values of directly connected or gateway devices. The sample enterprise
applications can also change device attributes by sending commands through Oracle
Fusion Cloud IoT Intelligent Applications.

1. Run this command to install the HTTP server: npm install –g http-server.

If you do not want to install the http-server node module, you can install an
alternate HTTP server.

2. Host the HTTP server in this directory:
C:\Users\username\Documents\iot\csl\js .

3. Open a command prompt and run this command to move to the js directory: cd
C:\Users\username\Documents\iot\csl\js.

4. Run this command to run the HTTP server: js http-server.

5. Run the enterprise application:

a. Open a web browser and enter this URL in the address bar: http://
127.0.0.1:8080/samples/EnterpriseClient.html?trustStore=/external/
[id].conf.

b. Press Enter.

c. Select your JavaScript application.

d. Select the device types to monitor.

e. Select devices to monitor.

f. Set the minimum and maximum temperature and humidity thresholds, reset
the device, or turn it on or off.

6. Confirm the device is sending humidity and temperature data to Oracle Fusion
Cloud IoT Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management
Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

Chapter 2
Use the JavaScript Client Software Libraries

2-34

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

Use the Android Client Software Libraries
Three Android client software libraries are available. To develop applications, download the
Binaries library. To run sample applications, download the Samples library. To create a client
software library for your specific development environment, download and build the Source
Code library.

Topics

• Set Up Your Development Environment to Use the Android Client Software Libraries

• Prepare Your Device to Use the Android Client Software Libraries

• Create the Android Client Software Library Sample Applications

• Run the Sample Android Directly Connected Device Application

• Run the Sample Android Enterprise Application

Set Up Your Development Environment to Use the Android Client Software
Libraries

Before you can develop applications that let your devices communicate with Oracle Fusion
Cloud IoT Intelligent Applications, you first download, install, and configure the Android client
software libraries.

1. Register your device, record the password, and download the provisioning file.

2. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

3. Download and install Gradle. Version 4.x is supported.

4. Download and install Java SE Development Kit (JDK) 8.0 or later.

5. Download and install Android Studio.

6. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent Applications
client software libraries download site.

7. Scroll to Android Client Software Library and download the Binaries, Source Code
and Samples zip files from the Android Client Software Library table.

8. Extract the contents of the zip files. The files are saved to these directories:

Filename Directory

iotcs-csl-android-bin-
<version>.zip

iotcs/csl/<version>/android/bin

iotcs-csl-android-src-
<version>.zip

iotcs/csl/<version>/android/src

iotcs-csl-android-samples-
<version>.zip

iotcs/csl/<version>/android/samples

Chapter 2
Use the Android Client Software Libraries

2-35

http://gradle.org/gradle-download/
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://developer.android.com/sdk/index.html#downloads
http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

9. Create a new application named AndroidELAppln. See Creating a New
Application.

10. Associate the humidity and temperature sensor device models with the
AndroidELAppln application.

11. Add an integration named EnterpriseClientSample to the application. See
Integrating Enterprise Applications with Oracle IoT Cloud Service.

12. Download the provisioning file for the EnterpriseClientSample integration:

a. Log in to your Oracle Fusion Cloud IoT Intelligent Applications instance.

b. Click the Menu () icon next to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Applications and then Browse Applications.

d. Click AndroidELAppln and then Integration.

e. Select the EnterpriseClientSample integration and click the Edit () icon.

f. Click the Overview tab.

If you are using Oracle Fusion Cloud IoT Intelligent Applications version 16 4.1
or earlier, record the ID and Shared Secret values. These values are required
when you run the provisioning tool to create the trusted assets store.

g. Enter a password in the File Protection Password field to encrypt the
provisioning file that contains the credentials required to activate your
integration.

h. Enter the password again in the Confirm Password field.

i. Click Download Provisioning File.

j. Click Save File.

k. Browse to a directory and then click Save.

13. Prepare your device to run the Android client software libraries. See Prepare Your
Device to Use the Android Client Software Libraries .

14. Run the sample applications.

Prepare Your Device to Use the Android Client Software Libraries
A device must be configured correctly and meet the minimum hardware requirements
to successfully install the Android client software libraries.

1. Make sure the hardware prerequisites are met before you install the Android client
libraries on your device. For a list of supported platforms, see Oracle IoT Cloud
Service Client Software Certified System Configurations.

2. Verify device registration:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications management
console.

b. Click the Menu () icon.

c. Click Devices and then Management.

d. Select a device in the device list, or use the Property and Value fields to
search for a device.

Chapter 2
Use the Android Client Software Libraries

2-36

http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html

e. Confirm Registered is displayed in the State column.

3. Confirm the location of your Android software development kit (SDK). Typically, it is
located at this path: C:\users\user-name\AppData\Local\Android\sdk.

4. Set the path for the Android SDK:

a. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\samples.

b. Open the local.properties file in a source code editor.

c. Enter the Android SDK path as the sdk.dir property value.

d. Enter the user name used to access the Android device as the user-name property
value.

e. Save and close the local.properties file.

5. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\lib and make sure the
device-library.aar and enterprise-library.aar files are in the folder.

6. Set the device-library.aar path in the build.gradle file:

a. Browse to C:\Users\user-
name\Documents\iotcs\csl\android\samples\dcd\app.

b. Open the build.gradle file in a source code editor.

c. Confirm the path for the flatDir property value is correct.

d. Save and close the build.gradle file.

7. Set the Android SDK version in the build files:

a. Browse to C:\Users\user-name\AppData\Local\Android\sdk\build-
tools.

b. Record the Android SDK version.

c. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\samples.

d. Open the local.properties file in a source code editor.

e. Enter the installed Android SDK version as the androidBuildToolsVersion property
value.

f. Save and close the local.properties file.

g. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\samples\dcd\app.

h. Open the build.gradle file in a source code editor.

i. Enter the installed Android SDK version as the buildToolsVersion property value.

j. Save and close the build.gradle file.

Create the Android Client Software Library Sample Applications
The Android client library sample applications must be created before they can run on your
device.

Chapter 2
Use the Android Client Software Libraries

2-37

1. Build the directly connected device sample application:

a. Open a command prompt.

b. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\samples.

c. Run this command: gradle build.

2. Confirm the Android application package (APK) was created:

a. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\samples\dcd\ap
p\build\outputs\apk.

b. Confirm the app-debug.apk file is in the folder

3. Build the Enterprise sample application:

a. Open a command prompt.

b. Browse to C:\Users\user-
name\Documents\iotas\cal\<version>\android\samples\EC.

c. Run this command: gradle assemble.

4. Confirm the Android application package (APK) was created:

a. Browse to C:\Users\user-
name\Documents\iotcs\csl\<version>\android\samples\Enterp
riseClientSample\app\build\outputs\apk.

b. Confirm the app-debug.apk file is in the folder

5. Run the sample applications. See Run the Sample Android Directly Connected
Device Application or Run the Sample Android Enterprise Application.

Run the Sample Android Directly Connected Device Application
Run the sample Android directly connected device application to learn how to use the
client software library APIs. The sample directly connected device applications use
software to simulate temperature and humidity sensors. The sample directly
connected device applications periodically send temperature and humidity data to
Oracle Fusion Cloud IoT Intelligent Applications. You can run the application on an
emulator (Android SDK), or on an Android device running Android KitKat 4.4 or later.

Note:

If you have previously installed and configured Android Studio, you do not
need to set the Gradle installation path. If you have an existing emulator, you
do not need to create a new one.

1. Open Android Studio and then select Open an existing Android Studio
project.

2. (Optional) Set the Gradle installation path:

a. Click Cancel.

b. Click the Ellipsis () button.

Chapter 2
Use the Android Client Software Libraries

2-38

c. Browse to the location of your Gradle installation and then click OK.

3. (Optional) Create an emulator:

a. Click Tools, Android, and then AVD Manager.

b. Click Create Virtual Device to create a new emulator.

c. Select Phone in the Category list, select a phone model, and then click Next.

d. Select a system image, click Next, and then click Finish.

4. Open a command prompt and browse to C:\Users\user-
name\AppData\Local\Android\sdk\platform-tools.

5. Run this command to copy the device provisioning file to the emulator SD card:

adb.exe push C:\Users\user-
name\Documents\iotcs\csl\android\bin\provisioning-file.conf /sdcard/

6. Provision the application:

a. Click the Run () icon on the Android Studio toolbar and then select an emulator in
the list.

b. Click ALLOW, click SELECT, enter the provisioning file password, and then click
PROVISION APPLICATION.

To run the application with device policies, select the Use Device Policy check box
that appears on the emulator screen.

c. Review the messages displayed on the emulator screen.

7. Confirm data is being sent from the application to Oracle Fusion Cloud IoT Intelligent
Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications management console.

b. Click the Menu () icon.

c. Click Devices and then Alerts and Messages.

d. Confirm temperature and humidity data is being sent to Oracle Fusion Cloud IoT
Intelligent Applications.

Run the Sample Android Enterprise Application
Run the sample Android enterprise application to learn how to use the client software library
APIs. The sample enterprise application reads humidity and temperature values of directly
connected or gateway devices. The sample enterprise applications can also change device
attributes by sending commands through Oracle Fusion Cloud IoT Intelligent Applications.
You can run the application on an emulator (Android SDK), or on an Android device running
Android KitKat 4.4 or later.

Note:

If you have previously installed and configured Android Studio, you do not need to
set the Gradle installation path. If you have an existing emulator, you do not need to
create a new one.

Chapter 2
Use the Android Client Software Libraries

2-39

1. Open Android Studio and then select Open an existing Android Studio
project.

2. (Optional) Set the Gradle installation path:

a. Click Cancel.

b. Click the Ellipsis () button.

c. Browse to the location of your Gradle installation and then click OK.

3. (Optional) Create an emulator:

a. Click Tools, Android, and then AVD Manager.

b. Click Create Virtual Device to create a new emulator.

c. Select Phone in the Category list, select a phone model, and then click Next.

d. Select a system image, click Next, and then click Finish.

4. Browse to C:\users\user-
name\documents\iotcs\csl\android\samples, select
EnterpriseSampleApplication, and click then click OK.

5. Open a command prompt and browse to C:\Users\user-
name\AppData\Local\Android\sdk\platform-tools.

6. Run this command to copy the device provisioning file to the emulator SD card:

adb.exe push C:\Users\user-
name\Documents\iotcs\csl\android\bin\IntegrationID-provisioning-
file-apps.conf\sdcard\

7. Provision the application:

a. Click the Run () on the Android Studio toolbar and then select an emulator
in the list.

b. Click ALLOW, click SELECT, enter the provisioning file password, and then
click PROVISION APPLICATION.

c. Select Humidity Sensor and Temperature Sensor and then click NEXT.

d. Select a device and then click NEXT.

8. Confirm data is being sent from the application to Oracle Fusion Cloud IoT
Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications management
console.

b. Click the Menu () icon.

c. Click Devices and then Alerts and Messages.

Use the Device_ID Temperature Sensor page to:

• View the start time for the device.

• Monitor the current temperature, the minimum and maximum recorded
temperatures, and the minimum and maximum thresholds for the device.

• Control the device. Use the seek bar to change the minimum and
maximum temperature thresholds, the RESET button to reset

Chapter 2
Use the Android Client Software Libraries

2-40

temperature, the ON, OFF slide button to switch the device on or off, the BACK
button to return to the Select Device to Monitor page.

• Compare the monitoring information with the information displayed in Oracle
Fusion Cloud IoT Intelligent Applications.

Use the Python Client Software Libraries
You can develop IoT applications using the Oracle Fusion Cloud IoT Intelligent Applications
Python Client Software Libraries. Use the library by downloading the binary provided with the
libraries. To run the examples that use the Python Client Software Libraries APIs, you can
download the samples bundle provided. To customize the Python Client Software Libraries
for your specific development environment, you can download and build the source files.

Topics

• Set Up Your Development Environment to Use the Python Client Software Library

• Prepare Your Device to Use the Python Client Software Library

• Run the Sample Python Directly Connected Device Application

• Run the Sample Python Gateway Application

Set Up Your Development Environment to Use the Python Client Software
Library

Before you can develop applications that let your devices to communicate with Oracle Fusion
Cloud IoT Intelligent Applications, you first download and extract the Python client software
library.

1. Log in to your Oracle Internet of Things Cloud Service instance.

2. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

3. Create new a application named PythonCLapp. See Creating a New Application.

4. Associate the humidity sensor device model with the PythonCLapp, record the
password, and download the provisioning file. See Register a Single Device.

5. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent Applications
client software libraries download site.

6. Scroll to Python Client Software Library and download the Binaries and Samples zip
files, iotcs-csl-python-bin-release.zip and iotcs-csl-python-samples-
release.zip, where release is the release and version number.

7. Download and install.

Prepare Your Device to Use the Python Client Software Library
Ensure that the software prerequisites are met prior to installing the Oracle IoT Cloud Service
Client Library Software for the Python platform on your device. You need to configure your
device with the supported operating system and the specific version of the required software.

1. For a list of supported platforms, see Oracle IoT Cloud Service Client Software Certified
System . Download and install the required version of Python release software.

Chapter 2
Use the Python Client Software Libraries

2-41

https://docs.oracle.com/en/cloud/paas/iot-cloud/iotgs/register-single-device.html
http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
https://www.python.org/downloads/

2. Open a command prompt and browse to the directory where you downloaded the
Python Client Libraries zip files.

3. Run this command to create a Python Virtual Environment (PVE): python3 -m
venv [python virtual environment directory].

4. Run the activation script to setup the shell environment: [python virtual
environment directory]\Scripts\activate.bat .

5. Perform this command line option in the same PVE directory in which activate was
invoked, to upgrade the Python's pip setup tool:

6. If your computer is on a Virtual Private Network, or behind a firewall: python3 -m
pip install --proxy=https://proxy:port --upgrade pip

7. Download and extract the requirements.txt file from: requirements.zip into the
same directory where the PVE is located.

8. Run this command to install the requirements in the PVE by using the
requirements.txt file you extracted: pip install -r requirements.txt.

9. If your computer is on a Virtual Private Network, or behind a firewall: pip install
--proxy=https://proxy:port -r requirements.txt

10. Run these commands to install the libraries:

pip install iotcs-csl-python-bin-release.zip
pip install iotcs-csl-python-samples-release.zip

11. Continue with Run the Sample Python Directly Connected Device Application.

Run the Sample Python Directly Connected Device Application
Run the sample Python directly connected device application to learn how to use the
client software library APIs. The sample directly connected device application
periodically send humidity messages to Oracle Fusion Cloud IoT Intelligent
Applications.

1. Copy the provisioning file obtained in Set Up Your Development Environment to
Use the Python Client Software Library to the current directory.

2. Run the following command in the same directory:

python3 -m iotcs.sample.DirectlyConnectedDeviceSample <provisioner
file> <passphrase>

3. Confirm the device is sending messages to Oracle Fusion Cloud IoT Intelligent
Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management
Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

Chapter 2
Use the Python Client Software Libraries

2-42

https://docs.oracle.com/en/cloud/paas/iot-cloud/tutorial-qs-iot-python/files/requirements.zip

c. Click Applications.

d. Click PythonCLapp.

e. Click Data and Explorations.

f. Click Data tab.

g. In Filter By, select Type.

h. In Message Type select Data.

i. Confirm there are incoming messages.

4. Deactivate the virtual environment by using this command:

[python virtual environment directory]\Scripts\deactivate.bat

Run the Sample Python Gateway Application
Run the sample Python gateway application to learn how to use the client software library
APIs. The sample gateway application periodically sends humidity and temperature sensor
messages to Oracle Fusion Cloud IoT Intelligent Applications.

1. Ensure that you install Python. Follow the steps at Prepare Your Device to Use the
Python Client Software Library.

2. Register a new device. See Set Up Your Development Environment to Use the Python
Client Software Library and copy the obtained provisioning file to the current directory.

3. Run the following command in the same directory:

python3 -m iotcs.sample.GatewayDeviceSample <provisioner file>
<passphrase>

4. Confirm the device is sending messages to Oracle Fusion Cloud IoT Intelligent
Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab.

f. Confirm there are incoming messages.

5. Deactivate the virtual environment by using this command:

[python virtual environment directory]\Scripts\deactivate.bat

Chapter 2
Use the Python Client Software Libraries

2-43

Use the C POSIX Client Software Libraries
The C POSIX Client Libraries are designed to enable development of client software
across a variety of platforms and operating systems. Two examples are using a Linux
operating system on an AMD platform, and an Apple Macintosh OS X operating
system running on an AMD platform. Three C POSIX client software libraries are
available. To develop applications, download the Binaries library. To run sample
applications, download the Samples library. To create a client software library for your
specific development environment, download and build the Source Code library.

Topics

• Prepare Your Device to Use the C POSIX Client Software Libraries

• Build the C POSIX Client Software Library Sample Applications

• Run the C POSIX Sample Applications

• Run the C POSIX Sample Gateway Application

• Build the C POSIX Client Software Libraries

• Set Up Your Development Environment to use Mac OS X

• Build the C POSIX Client Software Libraries on Mac OS X

• Build the C POSIX Client Software Library Sample Applications

• Run the C POSIX Sample Applications on Mac OS X

Prepare Your Device to Use the C POSIX Client Software Libraries
A device must be configured correctly and meet the minimum hardware requirements
to successfully install the Oracle Fusion Cloud IoT Intelligent Applications C POSIX
client software libraries.

1. Make sure the hardware prerequisites are met before you install the C POSIX
client software library on your target device. For a list of supported platforms, see
Oracle IoT Cloud Service Client Software Certified System Configurations.

2. Set up your Raspberry Pi device to use Oracle Fusion Cloud IoT Intelligent
Applications. See Set Up a Raspberry Pi Device for Connecting to Oracle IoT
Cloud Service.

3. Open a command prompt on your Raspberry Pi device and run the date command
to make sure the time and date are correct. If the time and date are incorrect:
a. Run the sudo raspi-config command.

b. Select Internationalization Options.

c. Select I2 Change Timezone.

d. Select your geographical area.

e. Select a city nearest to your location.

f. Select Finish.

g. Select Yes.

4. Run this command to install dh-autoreconf: sudo apt-get install dh-
autoreconf.

Chapter 2
Use the C POSIX Client Software Libraries

2-44

http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
https://docs.oracle.com/en/cloud/paas/iot-cloud/tutorial-qs-iot-raspberrypi-setup/index.html
https://docs.oracle.com/en/cloud/paas/iot-cloud/tutorial-qs-iot-raspberrypi-setup/index.html

5. Run this command to instal llibssl-dev: sudo apt-get install libssl-dev.

6. Run the startx command to open the Raspberry Pi graphical user interface (GUI).

7. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent Applications
client software library download site.

8. Scroll to C Client Software Libraries and download the Binaries and Samples zip files
from the POSIX table to the Raspberry Pi home directory (/home/pi).

9. Run this command to unzip the binary files: unzip iotcs-csl-posix-bin-<release
number>.zip.

10. Run this command to unzip the sample files: unzip iotcs-csl-posix-samples-<release
number>.zip

Build the C POSIX Client Software Library Sample Applications
The C POSIX client software library sample applications must be built before they can run on
your device.

1. Open a command prompt on the Raspberry Pi device and run this command to move to
the make directory: cd /home/pi/iotcs/csl/posix/samples/make.

2. Run this command to create the directly connected device sample application: make
clean all LIB_CFG=ts_md_vs.

An application named directly_connected_device_sample.out is created in
the ../build/sample/arm/ts_md_vs directory.

3. Run this command to create the gateway sample application: make clean all
LIB_CFG=ts_md_vs_gw.

An application named gateway_device_sample.out is created in the ../build/
sample/arm/ts_md_vs_gw directory.

Run the C POSIX Sample Applications
Run the C POSIX sample applications to learn how to use the client software library APIs.
The device client samples use software to simulate temperature and humidity sensors. The
device samples periodically send temperature, humidity, and alert messages to Oracle Fusion
Cloud IoT Intelligent Applications. The gateway sample sets a threshold value, resets the
device, and then switches the device on or off. The attributes, actions, and alerts of the
sample temperature and humidity sensors are specified in device models which you upload
to Oracle Fusion Cloud IoT Intelligent Applications.

1. Build the samples. See Build the C POSIX Client Software Library Sample Applications.

2. Register the device and download the provisioning file.

3. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

4. Open a command prompt on the Raspberry Pi device and run this command to set the
operating system variable : export IOTCS_OS_NAME=" Raspbian GNU/Linux".

5. Run this command to set the operating system version variable: export
IOTCS_OS_VERSION="8".

6. Run this command to move to the build/sample directory: cd /home/pi/iotcs/csl/
posix/build/sample/arm/ts_md_vs.

Chapter 2
Use the C POSIX Client Software Libraries

2-45

http://www.oracle.com/technetwork/topics/cloud/downloads/iot-client-libraries-2705514.html

7. Run this command to run the directly connected device sample application: ./
directly_connected_device_sample.out <path_to_your_provisioning_file>
<your_provisioning_file_password>.

8. Confirm the device is sending humidity and temperature data to Oracle Fusion
Cloud IoT Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management
Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

9. Run this command to move to the directory containing the sample gateway
application: cd /home/pi/iotcs/csl/posix/build/sample/arm/ts_md_vs_gw.

10. Run this command to run the gateway sample application: ./
gateway_device_sample.out <path_to_your_provisioning_file>
<your_provisioning_file_password>.

11. Repeat step 8 to confirm the gateway is sending humidity and temperature data to
Oracle Fusion Cloud IoT Intelligent Applications.

Run the C POSIX Sample Gateway Application
Run the C POSIX sample gateway application to learn how to use the client software
library APIs. The gateway sample sets a threshold value, resets the device, and then
switches the device on or off. The attributes, actions, and alerts of the sample
temperature and humidity sensors are specified in device models which you upload to
Oracle Fusion Cloud IoT Intelligent Applications.

1. Build the samples. See Build the C POSIX Client Software Library Sample
Applications.

2. Register the device and download the provisioning file.

3. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

4. Open a command prompt on the Raspberry Pi device and run this command to set
the operating system variable : export IOTCS_OS_NAME=" Raspbian GNU/Linux".

5. Run this command to set the operating system version variable: export
IOTCS_OS_VERSION="8".

6. Run this command to move to the directory containing the sample gateway
application: cd /home/pi/iotcs/csl/posix/build/sample/arm/ts_md_vs_gw

Chapter 2
Use the C POSIX Client Software Libraries

2-46

7. Run this command to run the gateway sample application: ./
gateway_device_sample.out <path_to_your_provisioning_file>
<your_provisioning_file_password>.

8. Confirm the device is sending humidity and temperature data to Oracle Fusion Cloud IoT
Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

Build the C POSIX Client Software Libraries
The C POSIX binary file contains libraries for ARM and x86 platforms with Device Library
(DL) multi threaded implementation with virtualization support and indirect activation support.
These libraries can be used to run the directly connected device sample and gateway device
sample applications. To customize and run the C POSIX sample applications, you use the
libraries in the source code file.

1. Open a web browser and browse to theOracle Fusion Cloud IoT Intelligent Applications
client software libraries download site.

2. Scroll to C Client Software Libraries and download the Source Code zip file from the
POSIX table to the Raspberry Pi home directory (/home/pi).

3. Run this command to unzip the binary files:unzip iotcs-csl-posix-src-<release
number>.zip.

4. Run this command to install Doxygen: sudo apt-get install doxygen.

5. Run this command to move to the make directory: cd /home/pi/iotcs/csl/posix/make.

6. Run this command to compile the source code and build the libdeviceclient.a file:
make clean all LIB_CFG=ts.

7. Run this command to move to the samples/make directory: cd /home/pi/iotcs/csl/
posix/samples/make.

8. Run this command to create the advanced directly connected device sample: make clean
all LIB_CFG=ts.

An application named directly_connected_device_sample.out is created in
the ../build/sample/arm/ts directory.

9. To build additional sample applications, repeat steps 5 to 8 and replace make clean all
LIB_CFG=ts with the command listed in the Command column. The Required Libraries
column lists the Oracle client software libraries that are required to create the sample
application.

Chapter 2
Use the C POSIX Client Software Libraries

2-47

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

Command Required Libraries Description

make LIB_CFG=ts Samples and Source
Code

Creates a device library named
directly_connected_device_sa
mple.out for a single threaded
implementation without virtualization.

make
LIB_CFG=ts_md_gw

Samples and Source
Code

Compiles the code specific to a device
client and creates the
gateway_device_sample.out
device library with a multi-threaded
implementation and a asynchronous
message dispatcher. Use this command to
create gateway support and without
virtualization.

make
LIB_CFG=ts_md_vs

Samples and
Binaries

Creates a
directly_connected_device_sa
mple.out device library for a multi-
threaded implementation with an
asynchronous message dispatcher and
virtualization.

make
LIB_CFG=ts_md_vs_g
w

Samples and
Binaries

Creates a
gateway_device_sample.out
device library for a multi-threaded
implementation with an asynchronous
message dispatcher, gateway support and
virtualization.

Set Up Your Development Environment to use Mac OS X
Before you can develop applications using the C POSIX Client Libraries on a Mac OS
X platform, you first download, install, and configure the C client software libraries and
set up you Mac OS X environment.

1. Register your device, record the password, and download the provisioning file.

2. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent
Applications client software libraries download site.

3. Scroll to C Client Software Libraries and download the Binaries and Samples
zip files from the POSIX table.

4. Extract the contents of the Binaries and Samples zip files.

5. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

6. Open a terminal window and change directories to the iotcs/csl/posix
directory.

7. Install Xcode version 8.1 or Xcode command line tools.

8. Install HomeBrew
9. Run this command to install openssl: brew install openssl
10. Run this command to install doxygen: brew install doxygen

Chapter 2
Use the C POSIX Client Software Libraries

2-48

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

11. Edit or create ~/.bashrc add the following lines and save the file:

PATH=/usr/local/opt/openssl/bin:$PATH
export PATH

12. Source the ~/.bashrc file with this command: source ~/.bashrc
13. Run this command to check that the correct version of openssl is in the path: openssl

version
The result should be OpenSSL x.x.x*, where x.x.x is the latest version number and *
is a lower case letter.

Build the C POSIX Client Software Libraries on Mac OS X
To run the C POSIX samples on the Mac OS X platform, you must first build the libraries from
source code files. You can change which features are supported by the library you build
through a configuration option passed to the build command.

1. Set up your Mac OS X development environment. See Set Up Your Development
Environment to use Mac OS X.

2. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent Applications
client software libraries download site.

3. Scroll to C Client Software Libraries and download the Source Code zip file from the
POSIX table to your development computer.

4. Open a terminal window and change directories to the iotcs/csl/posix/make
directory.

5. Run this command to build the libraries and create the documentation: make
LIB_CFG=<library option> CPP_OPTS="-I/usr/local/opt/openssl/
include" LD_OPTS="-L/usr/local/opt/openssl/lib"
Use the following table to determine which value to enter for <config option>:

Library Option Messaging
Thread Safety

Message
Dispatcher

Virtualization
Support

Gateway

nots false false false false

nots_gw false false false true

ts true false false false

ts_gw true false false true

ts_md true true false false

ts_md_gw true true false true

ts_md_vs true true true false

ts_md_vs_gw true true true true

Build the C POSIX Client Software Library Sample Applications
The C POSIX client software library sample applications must be built before they can run on
your Mac OS X platform.

1. Set up the environment on your Mac OS X platform. See Set Up Your Development
Environment to use Mac OS X

Chapter 2
Use the C POSIX Client Software Libraries

2-49

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

2. Open a terminal window and change directories to: iotcs/csl/posix/samples/
make.

3. Run this command to create the directly connected device sample application:
make LIB_CFG=<library option> CPP_OPTS="-I/usr/local/opt/
openssl/include" LD_OPTS="-L/usr/local/opt/openssl/lib"
An application named directly_connected_device_sample.out is created
in the ../build/sample/x86/ts_md_vs directory.

The value of <library option> must be one of the following:

• nots
• ts
• ts_md
• ts_md_vs

4. Run this command to create the gateway sample application: make
LIB_CFG=<library option> CPP_OPTS="-I/usr/local/opt/openssl/
include" LD_OPTS="-L/usr/local/opt/openssl/lib"
An application named gateway_device_sample.out is created in the ../
build/sample/x86/ts_md_vs_gw directory.

The value of <library option> must be one of the following:

• nots_gw
• ts_gw
• ts_md_gw
• ts_md_vs_gw

Run the C POSIX Sample Applications on Mac OS X
Run the C POSIX sample applications to learn how to use the client software library
APIs. The gateway sample sets a threshold value, resets the device, and then
switches the device on or off. The attributes, actions, and alerts of the sample
temperature and humidity sensors are specified in device models which you upload to
Oracle Fusion Cloud IoT Intelligent Applications.

1. Set up your development environment on Mac OS X. See Set Up Your
Development Environment to use Mac OS X.

2. Build the libraries. See Build the C POSIX Client Software Libraries on Mac OS X.

3. Build the samples. See Build the C POSIX Client Software Library Sample
Applications.

4. Open a terminal window and run these commands:

export IOTCS_OS_NAME=OSX
export IOTCS_OS_VERSION=10.1

5. Change directories to the build/sample/x86/<library option> directory,
where <library option> is the library used to build the sample. For example,
ts_md_vs.

Chapter 2
Use the C POSIX Client Software Libraries

2-50

6. Run this command to run the directly connected device sample application: ./
directly_connected_device_sample.out <path_to_your_provisioning_file>
<your_provisioning_file_password>.

7. Confirm the device is sending humidity and temperature data to Oracle Fusion Cloud IoT
Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui
For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

8. Change directories to the iotcs/csl/posix/build/sample/x86/<library option>
directory, where <library option> is the library used to build the gateway sample. For
example, ts_md_vs_gw.

9. Run this command to run the gateway sample application: ./
gateway_device_sample.out <path_to_your_provisioning_file>
<your_provisioning_file_password>.

10. Repeat step 7 to confirm the gateway is sending humidity and temperature data to Oracle
Fusion Cloud IoT Intelligent Applications.

Use the Windows Client Software Libraries
Three Windows client software libraries are available. To develop applications, download the
Binaries library. To run sample applications, download the Samples library. To create a client
software library for your specific development environment, download and build the Source
Code library.

Topics

• Set Up Your Development Environment to Use the Windows Client Software Libraries

• Prepare Your Device to Use the Windows Client Software Library

• Create the Windows Client Software Library Sample Applications

• Run the Windows Sample Applications

• Build the Windows Client Software Libraries

Set Up Your Development Environment to Use the Windows Client
Software Libraries

Before you can develop applications that let your devices to communicate with Oracle Fusion
Cloud IoT Intelligent Applications, you first download, install, and configure the Windows
client software libraries.

Chapter 2
Use the Windows Client Software Libraries

2-51

1. Prepare your device for the installation of the Windows client software libraries.
See Prepare Your Device to Use the Windows Client Software Library.

2. Register your device, record the password, and download the provisioning file.

3. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent
Applications client software libraries download site.

4. Scroll to C Client Software Libraries and download the Binaries and Samples
zip files from the Windows table.

5. Extract the contents of the Binaries and Samples zip files.

6. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

7. Open a command prompt and run this command to move to the iotcs/csl/
windows/bin directory: cd iotcs/csl/windows/bin.

8. Download the latest version of OpenSSL from https://www.openssl.org/source/. or
run this command to download the OpenSSL file: wget https://
www.openssl.org/source/openssl-x.x.x*.tar.gz where x.x.x is the latest
version number and * is a lower case letter.

This command example assumes the wget utility is installed.

9. Run this command to extract the openssl-x.x.x*.tar.gz file: tar -xvf
openssl-x.x.x*.tar.gz where x.x.x is the latest version number and * is a lower
case letter.

10. Run this command to move to the openssl-x.x.x* folder: cd <filepath>/
openssl-x.x.x* where x.x.x is the latest version number and * is a lower case
letter.

11. Run this command to determine the path to the Visual Studio environment
variable: set| findstr -i comntools.

The command should return a response similar
to:VS150COMNTOOLS=C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\Common7\Tools\

12. Run these batch scripts to set the path and environment variables for command-
line builds:

$(VS150COMNTOOLS)\VsDevCmd.bat
$(VS150COMNTOOLS)\..\..\VC\Auxiliary\Build\vcvars32.bat

13. Run this command to configure OpenSSL for Windows: perl Configure VC-
WIN32 no-asm .

14. Run this command to build the OpenSSL libraries: nmake /nologo .

15. Run this command to copy the generated libraries to the iotcs/csl/
windows/bin folder: copy /y *.lib ...

Prepare Your Device to Use the Windows Client Software Library
A device must be configured correctly and meet the minimum hardware requirements
to successfully install the Windows client software library.

Chapter 2
Use the Windows Client Software Libraries

2-52

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html
https://www.openssl.org/source/

1. Make sure the hardware prerequisites are met before you install the Windows client
software library on your device. For a list of supported platforms, see Oracle IoT Cloud
Service Client Software Certified System Configurations.

2. Make sure the time and date on your device is current. If it isn’t, open a command prompt
and run these commands:

a. Run the date command and update the date.

b. Run the time command and update the time.

3. Download and install Microsoft Visual Studio 2013 or later on your Windows computer.

4. Download and install the Cygwin (version 2.6 or later) make, wget, perl, tar, zip, unzip,
xxd, and curl packages on the device.

5. Run this command to set the PATH system variable to the location of the Cygwin
installation directory: setx path "%path%;c:\cygwin\bin".

6. Set up your development environment to use the Windows client software libraries. See
Set Up Your Development Environment to Use the Windows Client Software Libraries.

Create the Windows Client Software Library Sample Applications
The Windows client software library sample applications must be created before they can run
on your device.

1. Set up your development environment. See Set Up Your Development Environment to
Use the Windows Client Software Libraries.

2. Open a command prompt and run this command to move to the make directory: cd
iotcs/csl/windows/samples/make.

3. Run this command to build a sample application: make build [CC_CFG=
<CC_CFG_Option>][LIB_CFG=<LIB_CFG_Option>][PROXY=<your-company-proxy-
server>].

Replace <CC_CFG_Option> and <LIB_CFG_Option> with one of the commands listed in the
table. Replace <your-company-proxy-server> with the IP address of your company
server if you are running the sample applications behind a corporate firewall.

Command Where Used Description

cl <CC_CFG_Option> Builds the client software library on Windows
computers. This is the default compiler.

gcc <CC_CFG_Option> Builds the client software library on Linux computers
and adds the GNU Compiler Collection (GCC).

nots <LIB_CFG_Option> Builds the directly connected device sample application
with these options: messaging thread safety=false,
messaging dispatcher=false, and virtualization
support=false.

ts <LIB_CFG_Option> Builds the directly connected device sample application
with these options: messaging thread safety=true,
messaging dispatcher= false, and virtualization
support=false.

ts_md_gw <LIB_CFG_Option> Builds the gateway device sample application with
these options: messaging thread safety=true,
messaging dispatcher= true, virtualization
support=false, and indirect activation=true.

Chapter 2
Use the Windows Client Software Libraries

2-53

http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html
http://www.oracle.com/technetwork/indexes/downloads/iot-system-configurations-2705480.html

Command Where Used Description

ts_md_vs <LIB_CFG_Option> Builds a directly connected device sample application
with these options: messaging thread safety=true,
messaging dispatcher= true, and virtualization
support=true.

ts_md_vs_gw <LIB_CFG_Option> Builds a gateway device sample application with these
options: messaging thread safety=true, messaging
dispatcher= true, virtualization support=true, and
indirect activation=true. This is the default value for the
LIB_CFG parameter.

4. (Optional) Run this command to clean the sample applications: make clean
[LIB_CFG=<LIB_CFG_Option>].

5. Run the sample applications. See Run the Windows Sample Applications.

Run the Windows Sample Applications
Run the Windows sample applications to learn how to use the client software library
APIs. The device client samples use software to simulate temperature and humidity
sensors. The device samples periodically send temperature, humidity, and alert
messages to Oracle Fusion Cloud IoT Intelligent Applications. The gateway sample
sets a threshold value, resets the device, and then switches the device on or off. The
attributes, actions, and alerts of the sample temperature and humidity sensors are
specified in device models which you upload to Oracle Fusion Cloud IoT Intelligent
Applications.

1. Create the sample applications. See Create the Windows Client Software Library
Sample Applications.

2. Register the device and download the provisioning file.

3. Upload the humidity and temperature sensor device models to Oracle Fusion
Cloud IoT Intelligent Applications. See Upload the Sample Device Models.

4. Open a command prompt and run this command to set the IOTCS_OS_NAME
environment variable: SET IOTCS_OS_NAME “%Windows%”.

5. Run this command to set the IOTCS_OS_VERSION environment variable: SET
IOTCS_OS_Version “%7%”.

6. Run this command to move to the sample directory: cd iotcs/csl/windows /
build/sample/x86/<sample_directory>. Replace <sample_directory> with
the name of the folder where you created the sample applications.

7. Run this command to run the directly connected device sample application:
sample_name.exe ./trusted_asset_store password. Replace sample_name.exe
with the name of the sample application you want to run, trusted_asset_store
with the path to the provisioning file you downloaded when registering your device,
and password with the password used to protect the provisioning file.

8. Confirm the device is sending humidity and temperature data to Oracle Fusion
Cloud IoT Intelligent Applications:

a. Open the Oracle Fusion Cloud IoT Intelligent Applications Management
Console.

The URL format to access the IoT management console is: <iot instance
name>.<domain name>/ui

Chapter 2
Use the Windows Client Software Libraries

2-54

For example: https://myiotcs.mydomain.oraclecloud.com/ui or https://
myiotcs.mydomain.oracleiotcloud.com/ui.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Devices.

d. Click Alerts and Messages.

e. Click the Messages tab and confirm there are incoming messages.

Build the Windows Client Software Libraries
To customize the Windows sample applications, you use the libraries in the source code file.

1. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent Applications
client software libraries download site.

2. Scroll to C Client Software Libraries and download the Source Code zip file from the
Windows table to your development computer.

3. Open a command prompt and run this command to move to the directory where you
saved the source code zip file: cd C:\users\yourname\downloads.

4. Run this command to unzip the source code files:unzip iotcs-csl-windows-src-
<release number>.zip
This command sample assumes you have unzip.exe or a similar utility installed.

5. Run this command to move to the make folder: cd iotcs\csl\windows\samples\make.

6. Run this command to build a sample application: make build [CC_CFG=
<CC_CFG_Option>][LIB_CFG=<LIB_CFG_Option>][PROXY=<your-company-proxy-
server>].

Replace <CC_CFG_Option> and <LIB_CFG_Option> with one of the commands listed in the
table. Replace <your-company-proxy-server> with the IP address of your company
server if you are running the sample applications behind a corporate firewall.

Command Where Used Description

cl <CC_CFG_Option> Builds the client software library on Windows
computers. This is the default compiler.

gcc <CC_CFG_Option> Builds the client software library on Linux computers
and adds the GNU Compiler Collection (GCC).

all <LIB_CFG_Option> Builds all of the application samples, including: nots,
nots_gw, ts, ts_gw, ts_md, ts_md_gw, ts_md_vs,
ts_md_vs_gw.

nots <LIB_CFG_Option> Builds the directly connected device sample application
with these options: messaging thread safety=false,
messaging dispatcher=false, and virtualization
support=false.

ts <LIB_CFG_Option> Builds the directly connected device sample application
with these options: messaging thread safety=true,
messaging dispatcher= false, and virtualization
support=false.

Chapter 2
Use the Windows Client Software Libraries

2-55

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

Command Where Used Description

ts_md_gw <LIB_CFG_Option> Builds the gateway device sample application with
these options: messaging thread safety=true,
messaging dispatcher= true, virtualization
support=false, and indirect activation=true.

ts_md_vs <LIB_CFG_Option> Builds a directly connected device sample application
with these options: messaging thread safety=true,
messaging dispatcher= true, and virtualization
support=true.

ts_md_vs_gw <LIB_CFG_Option> Builds a gateway device sample application with these
options: messaging thread safety=true, messaging
dispatcher= true, virtualization support=true, and
indirect activation=true. This is the default value for the
LIB_CFG parameter.

7. (Optional) Run this command to clean the sample applications: make clean
[LIB_CFG=<LIB_CFG_Option>].

Use the iOS Client Software Libraries
Three iOS client software libraries are available. To develop applications, download
the Binaries library. To run sample applications, download the Samples library. To
create a client software library for your specific development environment, download
and build the Source Code library.

Topics

• Set Up Your Development Environment to Use the iOS Client Software Libraries

• Run the Sample Directly Connected Device Application

• Run the Sample Gateway Application

• Run the Sample Enterprise Applications

• Build the iOS Client Software Libraries

Set Up Your Development Environment to Use the iOS Client Software
Libraries

Before you can develop applications that let your devices to communicate with Oracle
Fusion Cloud IoT Intelligent Applications, you first download and extract the iOS client
software libraries.

These items are required to complete this procedure:

• An Apple Macintosh computer running Mac OS X version 10.12 or later.

• Xcode version 8.3.2 or later installed on the development computer.

• iOS version 10.3 or later installed on the device.

1. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent
Applications client software libraries download site.

2. Scroll to iOS Client Software Libraries and download the Binaries and Samples
zip files from the iOS table. This table describes the contents of each zip file:

Chapter 2
Use the iOS Client Software Libraries

2-56

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html

Filename Description

iotcs-csl-ios-bin-<version>.zip Contains the iOS client software library binary
files.

iotcs-csl-ios-samples-
<version>.zip

Contains the iOS sample applications.

3. Extract the contents of the zip files. The files are saved to these directories:

Filename Directory

iotcs-csl-ios-bin-<version>.zip iotcs/csl/ios/bin
iotcs-csl-ios-samples-
<version>.zip

iotcs/csl/ios/samples

Run the Sample Directly Connected Device Application
Run the iOS sample directly connected device application to learn how to use the client
software library APIs. The device client samples use software to simulate temperature and
humidity sensors. The class HumiditySensor is used to simulate data points on a sine wave.
The directly connected device sample applications periodically send temperature, humidity,
and alert messages to Oracle Fusion Cloud IoT Intelligent Applications. The attributes,
actions, and alerts of the sample temperature and humidity sensors are specified in device
models which you upload to Oracle Fusion Cloud IoT Intelligent Applications.

About the Sample Directly Connected Device Application

The sample application is located in the iotcs/csl/ios/samples directory and it uses a high-
level, virtual device abstraction that hides the details of sending and receiving data from
Oracle Fusion Cloud IoT Intelligent Applications.

1. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

2. Register the device and download the provisioning file.

3. Run the DirectlyConnectedDeviceSample application:

a. Open Xcode and then open the DirectlyConnectedDeviceSample.xcodeproj file in
the iotcs/csl/ios/samples directory.

b. Right-click the project name and select Add Files to
“DirectlyConnectedDeviceSample”.

c. Browse to the location of the provisioning file and then click Add.

d. Expand the DirectlyConnectedDeviceSample folder and select the
TrustStore.plist file.

e. Click the filename field and enter the name of the provisioning file without the file
extension.

f. Click the fileextension field and enter the file extension of the provisioning file.

g. Click the password field and enter the provisioning file password.

h. Run the DirectlyConnectedDeviceSample application. Output similar to this
image appears:

Chapter 2
Use the iOS Client Software Libraries

2-57

Run the Sample Gateway Application
Run the iOS sample gateway application to learn how to use the client software library
APIs. The gateway device samples use software to simulate temperature and humidity
sensors. The class TemperatureSensor and the class HumiditySensor are used to
simulate data points on a sine wave. The gateway sample applications periodically
send temperature, humidity, and alert messages to Oracle Fusion Cloud IoT Intelligent
Applications. The gateway sample sets a threshold value, resets the device, and then
switches the device on or off. The attributes, actions, and alerts of the sample
temperature and humidity sensors are specified in device models which you upload to
Oracle Fusion Cloud IoT Intelligent Applications.

About the Sample Gateway Application

The sample application is located in the iotcs/csl/ios/samples directory and it uses
a high-level, virtual device abstraction that hides details of sending and receiving data
from Oracle Fusion Cloud IoT Intelligent Applications.

Chapter 2
Use the iOS Client Software Libraries

2-58

1. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

2. Register the device and download the provisioning file.

Note:

Do not reuse the device from the Running the Sample Directly Connected
Device Applications procedure. This procedure requires a device with indirect
activation capability.

3. Run the GatewayDeviceSample application:

a. Open Xcode and then open the GatewayDeviceSample.xcodeproj file located in the
iotcs/csl/ios/samples directory.

b. Right-click the project name and select Add Files to “GatewayDeviceSample”.

c. Browse to the location of the provisioning file and then click Add.

d. Expand the GatewayDeviceSample folder and select the TrustStore.plist file.

e. Click the filename field and enter the name of your provisioning file without the file
extension.

f. Click the fileextension field and enter file the extension of the provisioning file.

g. Click the password field and enter the provisioning file password.

h. Run the GatewayDeviceSample application. Output similar to this image appears:

Chapter 2
Use the iOS Client Software Libraries

2-59

Run the Sample Enterprise Applications
Run the iOS sample enterprise applications to learn how to use the client software
library APIs. The sample enterprise applications simulates software that
communicates with and controls directly connected or gateway devices. The sample
enterprise application reads humidity and temperature values of directly connected or
gateway devices. The sample enterprise applications can also change device
attributes by sending commands through Oracle Fusion Cloud IoT Intelligent
Applications.

About the Sample Enterprise Applications

Two sample enterprise applications are available. one that demonstrates a gateway
connecting using virtualization and a sample that demonstrates a gateway connecting
using direct messaging. The first sample is located in the iotcs/csl/ios/samples
directory and it uses a high-level, virtual device abstraction that hides details of
sending and receiving data from Oracle Fusion Cloud IoT Intelligent Applications. The
second sample is located in the iotcs/csl/ios/samples/advanced folder and it uses
a send and receive model to provide direct control over the client software library.

Chapter 2
Use the iOS Client Software Libraries

2-60

1. Upload the humidity and temperature sensor device models to Oracle Fusion Cloud IoT
Intelligent Applications. See Upload the Sample Device Models.

2. Create a new application named iOS Device. See Creating a New Application.

3. Associate the humidity and temperature sensor device models with the iOS Device
application.

4. Add an integration named iOS Device to the application. See Integrating Enterprise
Applications with Oracle IoT Cloud Service.

5. Download the provisioning file for the integration:

a. Log in to your Oracle Fusion Cloud IoT Intelligent Applications instance.

b. Click the Menu () icon adjacent to the Oracle Fusion Cloud IoT Intelligent
Applications title on the Management Console.

c. Click Applications and then Browse Applications.

d. Click iOS Device and then Integration.

e. Select the iOS Device integration and click the Edit () icon.

f. Click the Overview tab.

If you are using Oracle Fusion Cloud IoT Intelligent Applications version 17.3.3 or
earlier, record the ID and Shared Secret values. These values may be required
when you run the provisioning tool to create the trusted assets store.

g. Enter a password in the File Protection Password field to encrypt the provisioning
file that contains the configuration and credentials to activate your integration.

h. Enter the password again in the Confirm Password field.

i. Click Download Provisioning File.

j. Click Save File.

k. Browse to a directory and then click Save.

6. Run the DirectlyConnectedDevice or the GatewayDevice sample applications. See Run
the Sample Directly Connected Device Application or Run the Sample Gateway
Application.

7. Run the EnterpriseClientSample application:

a. Open Xcode and then open the EnterpriseClientSample.xcodeproj file located in
the iotcs/csl/ios/samples directory.

b. Right-click the project name and select Add Files to “GatewayDeviceSample”.

c. Browse to the location of the provisioning file and then click Add.

d. Expand the EnterpriseClientSample folder and select the TrustStore.plist file.

e. Click the filename field and enter the name of the provisioning file without the file
extension.

f. Click the fileextension field and enter the file extension of the provisioning file.

g. Click the password field and enter the provisioning file password.

h. Run the EnterpriseClientSample application.

i. On the first screen enter iOS Device and click Next.

j. Select Humidity Sensor.

Chapter 2
Use the iOS Client Software Libraries

2-61

k. Select a device to monitor and control.

l. Click in the New field and enter a value between 65 and 100 and click Apply.
Output similar to this image appears:

Note that the maxThreshold value is changed on the device.

Build the iOS Client Software Libraries
Build the client software libraries from the provided source files.

You can use an automated build script and Gradle or Xcode to build the client software
libraries.

1. Open a web browser and browse to the Oracle Fusion Cloud IoT Intelligent
Applications client software libraries download site.

2. Scroll to iOS Client Software Libraries and download the Source Code zip file
from the iOS table.

3. Extract the contents of the zip file.

4. Download and install Gradle. Versions 2.5 to 2.13 are supported.

Chapter 2
Use the iOS Client Software Libraries

2-62

http://www.oracle.com/technetwork/indexes/downloads/iot-client-libraries-2705514.html
http://gradle.org/gradle-download/

5. If your computer is on a Virtual Private Network, or behind a firewall:

a. Open the gradle.properties file, located in the Gradle user home directory and
add these lines:

systemProp.http.proxyHost=<your_proxy_server.com>
systemProp.http.proxyPort=<your_proxy_port>
systemProp.https.proxyHost=<your_proxy_server.com>
systemProp.https.proxyPort=<your_proxy_port>

The default value for the Gradle user home directory is USER_HOME/.gradle. To
use a different directory, set the GRADLE_USER_HOME environment variable.

b. Save your changes and close the gradle.properties file.

6. Build the iOS libraries using an automated script:

a. Open a terminal window and change directories to iotcs/csl/ios.

b. Run the command gradle build to build the iOS device and enterprise client
software libraries.

To build the device and enterprise libraries individually run one of these commands:

Command Description

build device Builds the iOS device library. The library is created in the
iotcs/csl/ios/lib/DeviceLib.framework directory.

build enterprise Builds the iOS enterprise library. The library is created in the
iotcs/csl/ios/lib/EnterpriseLib.framework
directory.

7. Build the iOS libraries using Xcode:

a. Open Xcode, open DeviceLib.xcodeproj in the iotcs/csl/ios/src/
device/DeviceLib.xcodeproj directory, and then build the project.

b. Open Xcode, open EnterpriseLib.xcodeproj in the iotcs/csl/ios/src/
enterprise/ directory, and then build the project.

Network Provisioning Support in Client Libraries
Network provisioning enables your IoT application to dynamically provide provisioning
information over the network for your devices. IoT applications can use network provisioning
for seamless onboarding and activation of trusted assets.

When registering new devices with Oracle IoT Cloud Service, you need to provision the
devices with information like the server name, port, device ID, and certificate before they can
connect securely with Oracle IoT Cloud Service. Network provisioning enables you to
dynamically provision your devices over the network.

After a device is registered, it waits for the provisioning information from a network
provisioner. Once it receives the provisioning information, the device can perform activation
and start communicating messages with Oracle IoT Cloud Service.

Network provisioning support enables you to build applications that can dynamically register
and provision your devices. A service technician with the required privileges/roles to register
a device, for example, can use the Oracle Asset Monitoring mobile application to scan the

Chapter 2
Network Provisioning Support in Client Libraries

2-63

device details QR code, register the device using these details, and dynamically
provision the device over the network.

To enable network provisioning, the client libraries include the bootstrapper and
network provisioning utilities:

• Bootstrapper: The client libraries include the bootstrapper utility. When the device
is switched on, the bootstrapper looks into the specified trusted assets store to
check if provisioning is complete for the device. If the device isn't provisioned, then
the bootstrapper waits for it to get provisioned before handing over the control to
the device application that completes activation. On subsequent reboots, the
bootstrapper detects that the device is already provisioned and directly launches
the device application.

• Network Provisioner: The network provisioner is a stand-alone application that
discovers available clients waiting to be provisioned, and sends them the
provisioning information required to complete provisioning. The provisioning
information includes information like the server name, port, device ID, and
certificate required for the device to securely connect to the Oracle IoT Cloud
Service server.

The network provisioner uses UDP multicast messages to discover registered
clients waiting to be provisioned. The network provisioner returns this list to the
user, who then selects the device to be provisioned. The network provisioner next
unicasts the provisioning information to the selected device. The device stores the
provisioning information in its trusted assets store, and uses the information to
perform direct activation.

Network Provisioner

Network Provisioner Usage:

networkProvisioner.[sh|bat] [client_host provisioning_file]

Where:

client_host is the IP address of the gateway.

provisioning_file is the name of the file containing the provisioning information in
the unified provisioner format (upf).

For example:

./bin/networkProvisioner 10.0.0.1 ~/Downloads/mytas.ufp

Java Client Library Bootstrapper and Network Provisioner

The Bootstrapper class files are contained in the lib/bootstrapper.jar file.

• Bootstrapper Usage:

java oracle.iot.client.util.Bootstrapper trust_assets_file
trust_assets_password
 application_class_name
[application_argument_0...application_argument_8]

Chapter 2
Network Provisioning Support in Client Libraries

2-64

Where:

trust_assets_file is the relative or fully-qualified filename of the trusted assets store.

trust_assets_password is the password of the trusted assets store. It must match the
file protection password of the provisioning file.

application_class_name is the name of the application to start.

application_argument_0 application_argument_8 are any optional arguments to
be passed to the application.

So, for example:

java -cp ../lib/bootstrapper.jar:./build/libs/iotcs-csl-samples.jar
 oracle.iot.client.util.Bootstrapper MyFile MyPassword123
com.oracle.iot.sample.DirectlyConnectedDeviceSample

• Network Provisioner Usage:

java -jar network-provisioner.jar [client_host Provisioning_file]

Where:

client_host is the IP address of the device where the bootstrapper is running.

provisioning_file is the name of the file containing the provisioning information.

If no arguments are provided, then the network provisioner discovers the available
clients. Else, the network provisioner provisions the specified client.

JavaScript Client Library Bootstrapper and Network Provisioner

• Bootstrapper Usage:

Note:

Make sure that the NODE_PATH environment variable points to the location where
the required node modules are installed.

bootstrapper.[sh|bat] provisioned_file password app_class_name
[app_arg_0...app_arg_8]

Where:

provisioned_file is the relative or fully-qualified filename of the trusted assets store.

password is the password of the trusted assets store. It must match the file protection
password of the provisioning file.

app_class_name is the name of the application to start.

app_arg_0 app_arg_8 are any optional arguments to be passed to the application.

• Network Provisioner Usage:

Chapter 2
Network Provisioning Support in Client Libraries

2-65

Note:

Make sure that the NODE_PATH environment variable points to the location
where the required node modules are installed.

networkProvisioner.[sh|bat] [client_host provisioning_file]

Where:

client_host is the IP address of the device where the bootstrapper is running.

provisioning_file is the name of the file containing the provisioning information
in the unified provisioner format (upf).

If no arguments are provided, then the network provisioner discovers the available
clients. Else, the network provisioner provisions the specified client.

C Client Library Bootstrapper

• Bootstrapper Usage:

Posix
$PATH_TO_BT/bootstrapper taStore=trusted_assets_store
taStorePassword=password
$PATH_TO_SAMPLE/directly_connected_device_sample
trusted_assets_store password
Windows
$PATH_TO_BT/bootstrapper.exe taStore=trusted_assets_store
taStorePassword=password
$PATH_TO_SAMPLE/directly_connected_device_sample.exe
trusted_assets_store password

For MBED, the samples automatically perform bootstrap. If the provisioning
information is not found in the trusted assets store, network provisioning is
attempted over the UDP connection.

Android Client Library and iOS Client Library Samples

The samples can use network provisioning if the network provisioning option is
selected on the Provisioning screen.

Chapter 2
Network Provisioning Support in Client Libraries

2-66

3
Integrate Oracle IoT Cloud Service with Third
Party Device Management Applications

This section provides information about integrating Oracle IoT Cloud Service with third party
device management applications.

Topics

• Register and Provision a Device Using Third Party Device Management Application

Register and Provision a Device Using Third Party Device
Management Application

Register third party devices with Oracle IoT Cloud Service by using REST APIs.

Third party vendors must register all devices with Oracle IoT using REST APIs. See the
REST APIs for registering devices.

Prior to registering the devices, you must decide the device model.

Device Model: Device models must be defined and then registered with Oracle IoT Cloud
Service using the REST API, POST /iot/api/v2/deviceModels.

Device Type: At the time a device activates, it declares its device type. Device type
determines the way a device is connected to Oracle IoT Cloud Service. A device can be
directly connected or indirectly connected to Oracle IoT Cloud Service.

A directly connected device is capable of communicating directly with Oracle IoT Cloud
Service by running an application that uses an Oracle IoT Cloud Service Client Software
Library or by calling the Oracle IoT Cloud Service REST APIs. This device type cannot
register any indirectly connected devices. The only supported direct connection protocol is
HTTPS over TCP/IP.

An indirectly connected device communicates with Oracle IoT Cloud Service through a
Gateway Device. These devices may communicate with the Gateway Device over a non-
HTTPS TCP/IP protocol or interface, such as Bluetooth, Zigbee, I2C, or GPIO. For this
device to indirectly communicate with Oracle IoT Cloud Service, it is required to be connected
to a Gateway Device that has already been activated with Oracle IoT Cloud Service.

Topics

• Add Device Models to Oracle IoT Cloud Service

• Specify Devices as Third Party Partner Devices in Oracle IoT Cloud Service

• Register Devices with Oracle IoT Cloud Service

• Activate and Deactivate Devices in Oracle IoT Cloud Service

• Delete Devices from Oracle IoT Cloud Service

3-1

Add Device Models to Oracle IoT Cloud Service
You need to add device models before registering devices in Oracle IoT Cloud
Service. To add device models, use the REST API, POST /iot/api/v2/deviceModels.

Parameters Description

Uniform Resource Name (URN) A device model uses the URN as its unique ID.

Name Specify a descriptive name for the device.

Description Enter a device description.

Attributes A device model’s attributes represent the basic variables
that the device supports.

The following code snippet gives an example of a JSON message structure for adding
device models:

{
 "urn":"urn:acao:codemax:box22",
 "name":"Codemax 1.1",
 "description":"This device model matches the Codemax specs
v20160513 limited to temp, hygr, lux, noiseAvg and noiseMax. No
feedback support yet.",
 "system":false,
 "attributes":[
 {
 "name":"temp",
 "description":"",
 "type":"NUMBER",
 "range":"0.0,50.0",
 "alias":"Temperature",
 "writable":false
 },
 {
 "name":"hygr",
 "description":"",
 "type":"NUMBER",
 "range":"5.0,85.0",
 "alias":"Hygrometry",
 "writable":false
 },
 {
 "name":"lux",
 "description":"",
 "type":"NUMBER",
 "range":"0.0,10000.0",
 "alias":"Luminosity",
 "writable":false
 },
 {
 "name":"noiseAvg",
 "description":"",
 "type":"NUMBER",

Chapter 3
Register and Provision a Device Using Third Party Device Management Application

3-2

 "range":"0.0,100.0",
 "alias":"Noise_Avg",
 "writable":false
 },
 {
 "name":"noiseMax",
 "description":"",
 "type":"NUMBER",
 "range":"0.0,100.0",
 "alias":"Noise_Max",
 "writable":false
 }
],
 "actions":[

],
 "formats":[

]
}

Note:

The above JSON structure does not contain alerts for out of range values sent by
devices. The structure ignores messages with incorrect values and does not send
them to the Oracle IoT Cloud Service.

This table lists the fields required to specify an attribute within a device model:

Attributes Required Description

Name Yes Specify the name of the attribute.

Description No Enter a description.

Type Yes Specify the type of data represented
by the attribute.

Range No Specify the minimum and maximum
range.

writeable No By default, device model attributes
cannot be modified from Oracle IoT
Cloud Service.

Specify Devices as Third Party Partner Devices in Oracle IoT Cloud
Service

You can register all devices in Oracle IoT Cloud as third party partner devices by using this
REST API: POST /iot/api/v2/private/partners.

Attribute Description

thirdPartyPartnerName Specify the name of the third party vendor.

Chapter 3
Register and Provision a Device Using Third Party Device Management Application

3-3

Attribute Description

thirdPartyPartnerDescr Enter a description for the third party device.

thirdPartyPartnerUrl Provide the URL of the third party dashboard.

Here is an example of how to register a device as a third party entity in Oracle IoT
Cloud Service:

thirdPartyPartnerName: ACME,
thirdPartyPartnerDescr: ACME Live Objects PTE,
thirdPartyPartnerUrl: https://acme-webportal.com,

When you specify the third party partner details using the POST /iot/api/v2/private/
partners REST API, the third party device management application includes the
following metadata for each device in Oracle IoT Cloud:

• X-IOT-External-Device-ID: The ID of the device in the third party Cloud instance.

• X-IOT-External-Device-URL: The URL of the device in the third party Cloud
instance.

Register Devices with Oracle IoT Cloud Service
To register a device with Oracle IoT Cloud Service, use this REST API:
POST /iot/api/v2/devices {serialNumber: <serial_number>, modelNumber:
<model_number>, manufacturer: <manufacturer>, hardwareId: <hardware_id>}.

See REST API Create a new Device.

Activate and Deactivate Devices in Oracle IoT Cloud Service
To activate a device in Oracle IoT Cloud Service that has been temporarily disabled,
use this REST API:PATCH /iot/api/v2/devices/<device-id> {state: ACTIVATED}.
To deactivate a device in Oracle IoT Cloud Service, use this REST API:
PATCH /iot/api/v2/devices/<device-id> {state: DISABLED}.

See REST API Update a Device by ID.

Delete Devices from Oracle IoT Cloud Service
To delete a device from Oracle IoT Cloud Service, use this REST API:
DELETE /iot/api/v2/devices/<device-id>
See REST API Delete a Device by ID.

Chapter 3
Register and Provision a Device Using Third Party Device Management Application

3-4

https://docs.oracle.com/en/cloud/paas/iot-cloud/iotrq/op-iot-api-v2-devices-post.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Learn About Device Connectivity
	About IoT Devices
	About the IoT Connectivity Protocols
	Methods to Connect Devices to Oracle Fusion Cloud IoT Intelligent Applications
	About Selecting the Method to Connect Devices
	Get Started
	Supported Browsers
	Supported Platforms
	How to Get Support
	Locate Diagnostic Information for Oracle Support

	2 Develop Device Software Using the Client Software Libraries
	Device Virtualization
	Use Media with the Client Libraries
	Upload the Sample Device Models
	Client Library Best Practices
	Use the Java SE Client Software Libraries
	Set Up Your Development Environment to Use the Java SE Client Software Libraries
	Prepare an Embedded Device to Use the Java SE Client Software Library
	Create the Java SE Client Software Library Sample Applications
	Use the Provisioning Tool to Create the Truststore
	Run the Sample Java SE Directly Connected Device Applications
	Run the Sample Java SE Gateway Application
	Run the Sample Java SE Gateway Application Using Apache Felix
	Run the Sample Java SE Enterprise Applications
	Build the Java SE Client Software Libraries

	Use the JavaScript Client Software Libraries
	Set Up Your Development Environment to Use the JavaScript Client Software Libraries
	Prepare Your Device to Use the JavaScript Client Software Library
	Run the Sample JavaScript Directly Connected Device Applications
	Run the Sample JavaScript Gateway Application
	Run the Sample JavaScript Enterprise Applications

	Use the Android Client Software Libraries
	Set Up Your Development Environment to Use the Android Client Software Libraries
	Prepare Your Device to Use the Android Client Software Libraries
	Create the Android Client Software Library Sample Applications
	Run the Sample Android Directly Connected Device Application
	Run the Sample Android Enterprise Application

	Use the Python Client Software Libraries
	Set Up Your Development Environment to Use the Python Client Software Library
	Prepare Your Device to Use the Python Client Software Library
	Run the Sample Python Directly Connected Device Application
	Run the Sample Python Gateway Application

	Use the C POSIX Client Software Libraries
	Prepare Your Device to Use the C POSIX Client Software Libraries
	Build the C POSIX Client Software Library Sample Applications
	Run the C POSIX Sample Applications
	Run the C POSIX Sample Gateway Application
	Build the C POSIX Client Software Libraries
	Set Up Your Development Environment to use Mac OS X
	Build the C POSIX Client Software Libraries on Mac OS X
	Build the C POSIX Client Software Library Sample Applications
	Run the C POSIX Sample Applications on Mac OS X

	Use the Windows Client Software Libraries
	Set Up Your Development Environment to Use the Windows Client Software Libraries
	Prepare Your Device to Use the Windows Client Software Library
	Create the Windows Client Software Library Sample Applications
	Run the Windows Sample Applications
	Build the Windows Client Software Libraries

	Use the iOS Client Software Libraries
	Set Up Your Development Environment to Use the iOS Client Software Libraries
	Run the Sample Directly Connected Device Application
	Run the Sample Gateway Application
	Run the Sample Enterprise Applications
	Build the iOS Client Software Libraries

	Network Provisioning Support in Client Libraries

	3 Integrate Oracle IoT Cloud Service with Third Party Device Management Applications
	Register and Provision a Device Using Third Party Device Management Application
	Add Device Models to Oracle IoT Cloud Service
	Specify Devices as Third Party Partner Devices in Oracle IoT Cloud Service
	Register Devices with Oracle IoT Cloud Service
	Activate and Deactivate Devices in Oracle IoT Cloud Service
	Delete Devices from Oracle IoT Cloud Service

