
Oracle® Cloud
Using Oracle Application Performance
Monitoring

E60699-46
February 2021

Oracle Cloud Using Oracle Application Performance Monitoring,

E60699-46

Copyright © 2015, 2021, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Related Resources vi

Conventions vi

1 Introduction to Oracle Application Performance Monitoring

About Oracle Application Performance Monitoring 1-1

Roles in Oracle Application Performance Monitoring 1-1

Read This Before You Begin 1-2

2 Isolate and Diagnose Application Performance Issues

Typical Workflow for Isolating Application Performance Issues 2-1

View Alerts 2-2

Troubleshoot a Slow Page 2-3

Drill Down to Server Request Details 2-4

Find Issues in Associated Tiers 2-6

Find Issues in Pages Using Geomaps 2-8

Drill Down to Related Logs 2-9

Isolate Issues through Diagrams 2-11

Typical Workflow for Using Synthetic Monitoring 2-13

Define Synthetic Tests 2-14

Monitor Application Performance through Synthetic Tests 2-16

Create Alert Rules Based on Synthetic Tests 2-17

Troubleshoot Synthetic Tests 2-18

3 Monitor Application Performance

Typical Workflow for Monitoring Application Performance 3-1

Monitor End User Experience 3-2

Monitor Page Performance 3-2

iii

Monitor Ajax Calls 3-3

Monitor End User Experience through Sessions 3-4

Monitor Server Request Performance 3-5

View Metrics for a Group of Server Requests 3-7

Monitor All Objects Related to an Application 3-7

Define APM Applications 3-7

Use APM Applications 3-8

Monitoring End User Experience of a Web Application 3-10

Define APM Web Applications 3-10

Additional Reporting Classification 3-10

Use APM Web Applications 3-11

View Web Application Metrics 3-11

View Web Application Pages 3-11

View Detailed Information about a Server Request Instance 3-12

Monitor the Performance of an Application Server 3-13

Collect Thread Profiler Data for an Application Server 3-14

Collect JFR Data for an Application Server 3-14

Viewing and Downloading JFR Dump 3-15

Disabling JFR Dump 3-15

Collect Class Histogram for an Application Server 3-15

Disabling Class Histogram 3-16

Collect Heap Dump for an Application Server 3-16

Disabling Heap Dump 3-17

Integrate Application Performance Monitoring Events with JFR 3-17

Create and Manage Filters 3-18

4 Administer Oracle Application Performance Monitoring

Typical Tasks for Administering Oracle Application Performance Monitoring 4-1

Customize APDEX Settings 4-2

Associate Entities Using Tags 4-2

Deleting Tags 4-3

Associate Application Servers to a Database Automatically 4-3

Define Locations for Synthetic Tests 4-7

Migrating Synthetic Tests to Firefox 61 4-10

Configure Errors and Error Messages 4-10

Enable Privacy Settings 4-15

Create Alert Rules 4-15

Monitor a Web Application through Servlet Monitoring 4-17

Servlet Configuration Options 4-20

Examples of Servlet Configuration 4-26

iv

Set Up Custom Instrumentation 4-35

Use the Thread Profiler 4-36

Enable Custom Instrumentation 4-36

Custom Instrumentation Reference 4-37

A Technologies Supported by Oracle Application Performance
Monitoring

B Supported Selenium Commands in Synthetic Tests

v

Preface

Oracle Application Performance Monitoring provides a platform for monitoring and
managing your applications.

Topics:

• Audience

• Related Resources

• Conventions

Audience
Using Oracle Application Performance Monitoring is intended for users who want to
monitor the performance of their applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources
For more information, see these Oracle resources:

• Oracle Cloud

http://cloud.oracle.com

• Installing and Configuring Oracle Application Performance Monitoring

• Using Oracle Log Analytics

Conventions
The following text conventions are used in this document:

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://cloud.oracle.com

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vii

1
Introduction to Oracle Application
Performance Monitoring

Oracle Application Performance Monitoring provides a platform for monitoring and
managing your web applications.

Topics

• About Oracle Application Performance Monitoring

• Understanding Oracle Application Performance Monitoring Roles

• Read This Before You Begin

About Oracle Application Performance Monitoring
Today's e-businesses depend heavily on their applications to allow critical business
processes to be performed online. As more emphasis is placed on accessing
information quickly, remotely, and accurately, you should take proactive steps to
ensure that your online customers can successfully complete a transaction. Oracle
Application Performance Monitoring (APM) is a cloud service that provides deep
visibility into the performance of your application.

With Oracle Application Performance Monitoring, you can:

• Rapidly isolate application performance issues

• Drill down to related logs in context of a problem and find its root cause

• Gain end-to-end visibility into the performance of your application across all tiers

• Monitor end-user experience

Oracle Application Performance Monitoring is designed to provide insight into the
application's performance, down to the operation and method level, as well as
application requests across servers. Also, APM provides direct visibility into the
production performance of applications, in shared environments. With the Oracle Log
Analytics service integration, users can examine application logs seamlessly in the
context of various application problems. Additionally, using the Oracle Infrastructure
Monitoring service, administrators can get additional finer-grained monitoring data,
such as specific page data or Ajax call data as well as per Service reporting
metrics, which can help troubleshoot and optimize applications performance next to
discovering the applications infrastructure.

Roles in Oracle Application Performance Monitoring
When your Oracle Application Performance Monitoring service instance is created, the
following roles are provisioned by default:

1-1

Role Tasks

Oracle Management Cloud Administrator • Set up Oracle Application Performance Monitoring
by deploying APM Java Agents on target hosts

• Manage APM Java Agents
• Configure alert rules

Oracle Management Cloud User • View and monitor application performance
• Drill down to related logs
• View alerts

Read This Before You Begin
Here are some of the common terms and basic concepts regarding Oracle Application
Performance Monitoring.

Asynchronous JavaScript and XML (AJAX) is a group of Web technologies used
to implement asynchronous Web applications that communicate with a server in the
background, without interfering with the current state of pages.

The APM Java Agent is a lightweight agent, which runs in the Java Virtual Machine
(JVM) of a web application and collects performance monitoring data for Java web
applications running in your data center or in the cloud.

An application server is a server on which applications and services are installed,
hosted and operated. It is part of the middle-tier in a three tier architecture.

An application request is typically an HTTP request sent by the client application to
the server.

A server request is an application server request that can come via HTTP or some
other service. A server request might be called by an HTML page, an AJAX request, or
another server request.

Garbage collection, built into many programming languages, is an automatic way of
managing the memory available to various objects. The garbage collection mechanism
tracks objects still being used, marks the objects no longer in use as garbage and
through the process of garbage collection it automatically frees up the memory for use
by other objects. In the case of Java, garbage collection is done within the Java Virtual
Machine environment.

Garbage collection overhead refers to the additional resources, processing time,
used by the garbage collection mechanism.

Software applications can choose to implement various garbage collection types
depending on the performance goals. In Java, for example, developers can choose to
implement garbage collection of type single threaded (serial), multi-threaded (parallel),
concurrent mark then sweep (CMS) or parallel collection in multiple memory zones.
Each method uses various resources and CPU time, affecting the overall application
performance.

The heap, for example the Java heap, is a repository of Java objects. The heap is the
sum of active objects, dead objects (marked for garbage collection) and free memory.
Heap size tuning in Java refers to minimizing the time that the Java Virtual Machine
(JVM) spends doing garbage collection while maximizing the number of clients that
the application server can handle at a given time. A heap map provides the memory
details of a given process.

Chapter 1
Read This Before You Begin

1-2

WebLogic Server is Oracle’s Java EE application server, part of Oracle Fusion
Middleware suite of products, used for building and deploying enterprise applications.

A WebLogic Server cluster consists of multiple WebLogic Server instances running
simultaneously and working together to provide increased scalability and reliability.

A WebLogic domain is a logically related group of WebLogic Server resources.
Domains include a special WebLogic Server instance called the Administration
Server, which is the central point from which you configure and manage all resources
in the domain. Usually, you configure a domain to include additional WebLogic
Server instances called Managed Servers. You deploy Web applications, EJBs, and
other resources onto the Managed Servers and use the Administration Server for
configuration and management purposes only.

Oracle Home refers to a directory where Oracle products are installed, pointed to by
an environment variable. Multiple active Oracle Homes can exist on the same host.

Oracle Java Virtual Machine (JVM) is a standard, Java-compatible environment that
runs any pure Java application. It supports the standard Java binary format and the
standard Java APIs.

Servlets are Java programming language classes that dynamically process requests
and construct responses.

Chapter 1
Read This Before You Begin

1-3

2
Isolate and Diagnose Application
Performance Issues

Using Oracle Application Performance Monitoring, you can monitor performance of
your application by following transactions across servers to identify the exact tier
causing an application issue, see if the issue is specific to a geography and see
application logs automatically in context of the application performance. Synthetic
Monitoring helps in simulating a path in the application that a user would normally
take, and ensure that the user can transition through the different web pages in the
path smoothly. This helps is recognizing application performance issues before the
end user experiences it.

Topics

• Typical Workflow for Isolating Application Performance Issues

• Typical Workflow for Using Synthetic Monitoring

Typical Workflow for Isolating Application Performance
Issues

This section uses an example scenario to illustrate how you can isolate application
performance issues. In this example scenario, as a DevOps administrator, you’re
responsible for administering and supporting one of your enterprise applications used
by your customers interested in carpool and vanpool services. Your line of business
executives see a sudden drop in sales on your company website, and they ask you
to investigate the reasons for drop in sales on the website. The ordering application is
critical to your business, and it’s used by your customers daily to place service orders
on your website.

Enterprise application deployments are complex. They involve various software tiers
comprising applications, databases, web servers, and so on. You need simple and
effective ways to isolate application issues and troubleshoot problems quickly.

You start troubleshooting this specific problem by:

• Viewing alerts to see if the average response time for any page has exceeded the
threshold

• Checking if the errors are specific to any geography and drilling down to isolate the
exact problem location

• Isolating the problem down to the application servers and databases

• Drilling down to logs to determine the exact root cause of the problem causing
drop in sales on your website

Here are the common tasks to isolate application performance issues.

2-1

Task Description More Information

View alerts From the list of alerts, pick an alert and view
details.

View Alerts

Troubleshoot a
slow page

View details about the page to identify a
possible problem in the page.

Troubleshoot a Slow Page

Identify a slow
request

Identify which request is slowing down the
performance of the application.

Drill Down to Server
Request Details

Identify issues in
associated tiers

Inspect associated tiers and identify issues. Find Issues in Associated
Tiers

Identify issues
based on location

Identify if issues are being seen in a specific
country

Using Geomaps to Find
Issues in Pages

View related logs Drill down to related logs to identify issues. Drill Down to Related Logs

View Diagrams to
spot issues

Study Diagrams to easily spot issues Isolate Issues through
Diagrams

View Alerts
Oracle Application Performance Monitoring notifies you of application performance
issues. As a DevOps administrator, you start troubleshooting by viewing such alerts,
which provide a starting point to isolate the problem.

You can view alerts from the Alerts page and also from the entity page on which the
alert was created. Alerts are created for fixed thresholds or anomalies for metrics on
Pages, AJAX calls, and Server Requests.

View alerts from the Alerts page

1. In the Oracle Application Performance Monitoring home page, in the left navigation
pane, click Alerts.

OR

In the Alerts tile on the Home Page, click the number of Alerts. You can also click
the number of Critical Alerts, or Warnings to view only the specific alerts.

The Alerts page displays all the alerts that need your attention.

2. Select APM in the Service dropdown to view Alerts from Oracle Application
Performance Monitoring. You can further filter based on severity. You can view
the following details of an alert.

Detail Description

Message The last alert message seen on this object. Click the
message to view details and history of the alert.

Entity and Entity Type The object for which the alert exists. Click the entity
to open the object. Entity type is the type of object, a
Page, or an AJAX call.

Duration Duration for which this alert has been open.

3. The icon in the first column indicates the type of alert — the status of an alert
could be Critical, Warning, Clear (closed), and Fatal being the most severe. Click
the arrow next to the icon to view some more details of the alert like Created Date,
the Updated Date, and a brief history. In case of a closed alert, the Closed Date is
displayed.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-2

4. Click the alert Message to view the details of the alert more closely.

5. Click the Entity to view details of the entity on which the alert was created.

View alerts from the entity page

If an alert is created on an entity based on alert rules, the alert will be displayed in the
entity page for that time period. You can view the alerts in the Alerts pane on the entity
page.

• The Alert pane displays the number of new alerts, open alerts that were carried
over from previous time periods, and alerts that are still open at the end of the
selected time period.

• The Alerts tab lists all the alerts during the selected time period and their current
status. Click the arrow next to the status of the alert to view details.

• If the alert is an early warning, a chart indicates when the trigger event occurred. A
prediction of how soon an error might occur is indicated.

Troubleshoot a Slow Page
Oracle Application Performance Monitoring helps identify a page that is loading slowly
and points to possible reasons for the decrease in speed.

With Oracle Application Performance Monitoring, you can get an insight into how your
application is performing at the user-end. The performance of your application’s web
pages are monitored, and if your users are experiencing issues with any specific
page, Oracle Application Performance Monitoring alerts you. With Oracle Application
Performance Monitoring, you can also diagnose the reason for a slow page, and
identify if the actual issue is at the server level or with the browser.
To identify the reason for a slow page:

1. You can start from the Pages tile in the home page or Pages list.

The Pages list gives some quick information about the listed pages. Below the
page icon, you can see which browser was used. The Apdex value indicates the
overall performance of the application. The Page User Satisfaction graph indicates
the user experience with the page. The Page Load Time and the Views and Errors
provide further data points on page performance.

2. If a particular page, say cart.jsp seems to be taking an unusually long time to
load, as indicated by Average Load Time or Max Load Time. Click the page name
to view page details.

The Alerts pane shows the number of alerts for the page for the selected time
period. The Apdex pane shows the Application Performance Index for the selected
time period, along with a chart for user satisfaction. The Average Page Load
Breakdown chart indicates which phase of the page load is taking a long time.
In this example, you can see that loading the First Byte is taking the most time,
indicating a server side issue. This needs to be inspected further.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-3

If you see a break in the Page Load Time graph, it could be because the Page
was not used during that time period, and hence no data was recorded. This is
applicable to all entities.

3. You can diagnose performance of AJAX calls seen on the page. Click the Ajax
Calls tab to view the list of AJAX calls on the page, and view details for any AJAX
call with slow response time.

AJAX requests are automatically correlated with their page details and server
requests for rapid identification of problems.

4. Click the Server Requests tab to see which server requests were called to serve
the page. If a server request appears to be slow, you can click the server request
to view details and locate an issue, if any.

5. Click the Instances tab to view instances of pages and to navigate to sessions
related to those page instances. You can diagnose performance issue or error in
the context of a user session from here.

6. Click the Alerts tab to view all the alerts which were active for the page during the
selected time period. Click an alert to view history of the alert.

Drill Down to Server Request Details
Oracle Application Performance Monitoring automatically discovers, classifies, and
measures all your server requests. You get the information you need to understand
what tier, request, and operation the application issue resides in. Let’s start monitoring
server requests to investigate which requests have issues.

To identify the reason for a slow request:

1. Monitor the response time for top five requests in the home page, or across all the
requests in the Server Request list.

2. If you find that the response time of a particular request is more than what’s
acceptable, then view the details of the request.

In this example, the request checkout seems to have a high max response time of
over 5 seconds, and over 30% errors. This means that on an average, users are
not seeing this high max response time, but at least some users are experiencing
up to over 5 seconds of max response time. Let us inspect this further.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-4

3. Click to view details of the server request.

4. In the Diagram tab, see a pictorial representation of the calls made by the server
request. You can see how many calls the request has received, how many internal
and external calls it has made and if there are any errors in any of these calls.
Hover over the objects in the diagram to view details in the Tooltip pane.

5. Click Metrics to view further details of the server request.

You can see in this example, that the max response time of the request has
peaked to 5.41 seconds at 5.31 AM. This is higher than the expected value of 2
seconds.

6. Drill down to the details of the application server to check for any issues resulting
in a slow request.

7. Inspect further to see if an associated tier is causing a slow request. Drill down to
the Database tab and see if the issue is originating in the Database tier.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-5

8. Click the Alerts tab to view all the alerts which were active for the server request
during the selected time period. Click an alert to view history of the alert.

The details displayed in the Server Request page, the contextual details displayed
in the Application Server page, and the logs for the application server will help you
identify the reason for a slow request.

Find Issues in Associated Tiers
Oracle Application Performance Monitoring helps you recognize bottlenecks in tiers
associated with server requests.

To isolate the application performance problem down to the application infrastructure,
such as database or application servers, navigate from the server request to the
Database tab or to the Application Server page. To recognize issues in associated
tiers:

1. Identify a slow request and view the request summary.

2. Place the cursor at any time point on the Tier Average Response graph to view
the response time of each tier at that point. The Tier Average Response cell
displays the various response times of each tier — the App Server, the Database,
or the External Tier.

In this example, the bulk of the average response time is spent on processing in
the application server tier. The Tier Average Response graph also shows how
the tiers trend over time - in this example you can see that in the selected time
range, the application server tier is consistently contributing more to the average
response time than the other tiers.

In this example the request’s response time has peaked to 5.41 seconds at 5.31
AM. This is higher than the expected value of 2 seconds.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-6

3. In the Diagram tab, see if all operations in the application server are slow, or if one
particular operation is slow.

4. The Application Sever tile shows a view of the performance of application server.
Drill down to the application server page to check if the issue is in the application
server tier.

5. Drill down to check if the issue is in the database tier. To diagnose issues with the
database tier, go to the Database tab to analyze the specific SQL statements and
view the database logs.

6. If both the tiers do not seem to have an issue, check the external tier for possible
issues.

7. Click the Instances tab to view details of a specific instance. You can drill down
into the logs of an instance to get more details on the faults.

Here’s an example of the faults in an instance.

You can also see these faults in the Diagram tab, and on the Links tab.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-7

Find Issues in Pages Using Geomaps
Oracle Application Performance Monitoring helps you isolate issues in pages based on
geography.

You can inspect if any issues in pages are cropping up in a certain location through the
Pages By Geography pane in the home page. To isolate issues related to pages in a
specific geographic location:

1. In the Oracle Application Performance Monitoring home page, select a
measurement by which you want to see pages, in the Pages By Geography
pane.

The color coded map indicates the locations where page usage has been
observed and measured.

2. Click a color coded continent and click the Zoom In icon to drill down to the
countries where the selected measurement is further applied.

3. Select a country within the continent and click the Zoom In icon to view details
specific to the country.

The countries are color-coded based on the values of the metric selected in the drop
down, with the lightest being the least number of pages of a selected metric. Hover
over a country to view all measurements Oracle Application Performance Monitoring
has observed for page-views within that country.
List of countries in the Geomap
You can drill-down and view regions within the following countries in the geomap:

• 'BEL': Belguim

• 'CHN': China

• 'FRA': France

• 'DEU': Germany

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-8

• 'GBR': Great Brittain / United Kingdom

• 'IND': India

• 'ITA' : Italy

• 'JPN': Japan

• 'ESP': Spain

• 'THA': Thailand

• 'NLD': The Netherlands / Holland

• 'USA' : United States of America

Drill Down to Related Logs
To isolate the application performance problem further, you can view and inspect
log events of a request instance or an application server that might be causing the
problem.

You can view logs from:

• Application Server details page to see logs for that one application server.

• Server request details page to see logs for the application server and databases
relevant to the server request.

• Server request Database tab to see logs for the databases relevant to the server
request.

• Server request Instances to see logs for the application server and database(s)
specific to that server request instance.

To view log events of a server request or an application server:

1. Drill down to logs related to a server request:

a. In the Server Request Details page, go to the Instances tab and select an
instance.

b. In the Server Request Instance page, click View Related Logs above the
summary pane.

2. Drill down to logs related to an application server:

a. Select the application server and view details.

b. Click View Log above the Application Server summary pane.

Here’s an example of how to drill down to related logs to isolate an issue.

1. Let us start from the cart.jsp page, for which an alert was displayed, primarily
because the response time for the page was very high.

2. Drill down to view details of the checkout Ajax call.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-9

Notice that the Ajax call has encountered a high number of errors.

3. The call processing and the response times indicate a very slow call along the
timeline. The call has encountered some errors.

4. The corresponding server request checkout indicates errors. Let us drill down
further to view details of the server request checkout. The errors seem to be very
high, close to 40%.

5. The Diagram tab displays all calls made by the server request. Hover over an
object or an arrow to view details of the object or the call.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-10

6. Let us drill down to Instances to see what operation is failing. In the Instances tab,
pick an instance which has a fault. Click View Related Logs to inspect this further
by viewing logs.

7. The log points to the time when the fault occurred, and indicates issues at the
application server and the database levels.

Isolate Issues through Diagrams
The Diagram tab in the Server Request details page gives a quick diagrammatic view
of all the objects associates with the server request.

Here is the diagram of a server request with all the connected objects like the SQL
calls, server requests and AJAX calls. The question mark indicates an unknown caller.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-11

Using the Diagram

The diagram represents the server request in the center, with all the calls made to and
from the server request represented by a node. Hover over any connector between
two nodes to cut out other traffic, and view details about the specific call. Hover over
any node to view only the connections to and from the selected node. This helps
in isolating the specific call you are looking for, to enable quicker identification of
issues. Here is example of how hovering over a connector and a node cuts out other
information from the diagram.

Using the Calls table

The Calls table that appears below the diagram lists all the calls made to and from the
server request, showing only information pertaining to the object currently selected in
the diagram. You can drill down further from this table to view the details of the server
request, or of a related AJAX call to isolate a problem.

Using the Context menu

You can right-click on any node in the diagram to see a context menu through which
you can easily move forward with troubleshooting and isolating the cause for an issue.
The options available in the context menu depends on the type of object the selected
node represents.

For example, right click a SQL call and select Isolate this Operation’s Calls. This will
remove all other nodes from your diagram. From among the existing nodes, click on a
server request node to display the operation’s inward and outward paths.

Chapter 2
Typical Workflow for Isolating Application Performance Issues

2-12

Typical Workflow for Using Synthetic Monitoring
You can use Synthetic Monitoring to script or record user paths, and use this to
simulate user transactions on the application. These paths can be continuously
monitored through Application Performance Monitoring, and potential issues can be
caught early, before the end user experiences it.

Note:

You can define and use Synthetic Monitoring only if you have installed the
Cloud Agent on Linux.

Here’s a typical workflow for setting up and using Synthetic Monitoring:

Task Description More Information

Deploy Cloud
Agents

This is a requirement before you can
define locations.
This is applicable only for private
locations.

See Install Cloud Agents in
Installing and Managing Oracle
Management Cloud Agents.

To ensure that you can define
and use Synthetic Monitoring, the
Cloud Agent should be installed
on Linux.

Check for pre-
requisites

Review the list of pre-requisites.
This is applicable only for private
locations.

Pre-requisites for Locations

Define Locations Define locations. This is done by an
APM Administrator.
This is applicable only for private
locations.

Define Locations

Define Synthetic
Tests

You can define synthetic tests for a
HTTP Ping, Page Load or a Scripted
Action.

Define Synthetic Tests

Review Synthetic
Test reports

Use the Synthetic Test reports to
monitor the performance of your
applications.

Monitor Application Performance
through Synthetic Tests

View Sessions For synthetic tests of type Scripted
Actions, you can view details of
the session when the test was
run. This option is available only
if you are running synthetic tests
on an application that is also being
monitored by Oracle Application
Performance Monitoring.

• Navigate to Sessions from the
Instances tab. See Monitor
Application Performance
through Synthetic Tests

• Monitor End User Experience
through Sessions

View HAR Reports View HAR reports for HTTP Ping or
Scripted Action. This is available for
public locations.

• View HAR reports from the
Instances tab.

• Download HAR files.
See Monitor End User Experience
through Sessions.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-13

Define Synthetic Tests
You can schedule synthetic tests for various locations and ensure that the
performance of the application is monitored at all times.

To define a synthetic test:

1. In the left navigation pane, click Administration and select Synthetic Tests.

2. In the Create Synthetic Monitoring Test window, choose the Type of test to
create.

• HTTP Ping — Testing the connectivity to and performance of your application

• Page Load — Testing the performance of a single URL, being loaded by a
browser

• Scripted Actions — Testing the performance of a complete workflow recorded
using Selenium scripting.

• Rest Web Service — Testing the performance of a complete workflow that
uses REST web service.

3. If you are creating a synthetic test of the type HTTP Ping, provide these additional
details:

• Name: Provide a name for the synthetic test you are creating.

• URL: Select HTTP or HTTPS and specify the URL you want to test.

• Location: Choose the location/s from where you want to run the test.

• Application: Optionally, select an application within which the result of this test
will be displayed. Associating the test to an application ensures that the test
results and alerts will be visible with the application reporting context in the
Oracle Management Cloud UI.

• Frequency: Specify at what interval you want the test to be executed.

• Verify certificate: Check this option if you want to verify the validity of the SSL
certificate during the tests.

• Redirect: Check this option if you want the test to fail in case there is a
redirection.

4. If you are creating a synthetic test of the type Page Load, provide these additional
details:

• Name: Provide a name for the synthetic test you are creating.

• URL: Select HTTP or HTTPS and specify the URL you want to test.

• Location: Choose the location/s from where you want to run the test.
Private locations defined by your administrator, and public locations that are
configured are listed here.

• Application: Optionally, select an application within which the result of this test
will be displayed. Associating the test to an application ensures that the test
results and alerts will be visible with the application reporting context in the
Oracle Management Cloud UI.

• Frequency: Specify at what interval you want the test to be executed.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-14

5. If you are creating a synthetic test of the type Scripted Actions, provide these
additional details:

• Name: Provide a name for the synthetic test you are creating.

• Base URL: Select HTTP or HTTPS and specify the base URL on which to run
the test. In the script, the Base URL will replace the URL from where you have
recorded the Selenium test.

• Select File: Click Choose File to browse and select the Selenium script for the
synthetic test. The selected file can be of the format .java or .side.

Note:

a. If it is a .java file, ensure that the script is exported from
Selenium either as a Java JUnit for WebDriver or a Java TestNG
file. Ensure you run the complete recording in Selenium before
exporting the script.

b. If you are creating a .side file, note that you can create Test
Suites using Selenium IDE. Ensure that your .side file contains
only one test, and that you have run the complete recording in
Selenium before exporting the script. To see the list of supported
Selenium commands, see Supported Selenium Commands in
Synthetic Tests.

• Optionally, click Preview File to view the contents of the uploaded script. Note
that any edits to the script should be done through Selenium IDE or other
preferred tools.

• Location: Choose the location/s from where you want to run the test.
Private locations defined by your administrator, and public locations that are
configured are listed here.

• Application: Optionally, select an application within which the result of this test
will be displayed. Associating the test to an application ensures that the test
results and alerts will be visible with the application reporting context in the
Oracle Management Cloud UI.

• Frequency: Specify at what interval you want the test to be executed.

6. If you are creating a synthetic test of the type Rest Web Service, provide these
additional details:

• Name: Provide a name for the synthetic test you are creating.

• URL: Select HTTP or HTTPS and specify the REST URL on which to run the
test.

• Location: Choose the location/s from where you want to run the test.
Private locations defined by your administrator, and public locations that are
configured are listed here.

• Application: Optionally, select an application within which the result of this test
will be displayed. Associating the test to an application ensures that the test
results and alerts will be visible with the application reporting context in the
Oracle Management Cloud UI.

• Set the time Interval and Request Time Out.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-15

• Select Authentication if required.

• For Request Configuration, select a Method — either GET or POST. Specify
the Query and Header parameters as required.

• For Response Configuration, specify the Expected Http Status Code. Check
the Verify Content option, and specify a regular expression to validate the
response output as required.

• Select the Redirect is Failure option if the test should fail on redirection.

7. Click Save.

The schedule will be displayed in the list of Synthetic Tests, and will run as per the
frequency specified in the schedule. You can edit a saved synthetic test by clicking the
name of the test.

Monitor Application Performance through Synthetic Tests
You can monitor the performance of your application through synthetic tests and
identify possible issues before they occur.

Oracle Application Performance Monitoring enables you to define and run synthetic
workflows on your application. You can define a test for a HTTP ping, test for a specific
page, or record a Selenium based script of a workflow on your application, and run
these monitoring tests on your application anytime without having to wait for the actual
workflow to occur.

You can view the results of the scheduled test and monitor the performance of the
application, view the usage of resources and isolate possible issues.

To view the reports of scheduled synthetic test:

1. In the left navigation pane, select Synthetic Tests. All the scheduled synthetic
tests are listed in the Synthetic Tests pane.

From this pane, you can view high level data about the listed synthetic tests, like
the type of test, application, location, frequency, execution time, and availability.
Scan through these details to identify the synthetic test you would like to drill down
into.

2. You can sort the listed synthetic tests on a number of criteria. Sort the tests based
on Status to view the tests with errors on top. A green check mark over the test
icon indicates a successful test, and a red X indicates errors while running the test.

3. Examine the metrics and select the synthetic test report to drill down into. Click the
synthetic test. The Synthetic Test page displays details of the synthetic test.

4. The Metrics tab displays information on availability, execution time, time
breakdown, transfer rate and download size. The details in this tab are for all
the tests executed across all locations, and depends on the type of synthetic test.

• HTTP Ping: This report displays information like availability, execution time,
transfer rate, download size and ping time breakdown.

• Page Load: This report displays information like availability, execution time
and total load time breakdown.

• Scripted Action: This report displays information for multiple pages that are
part of the script and includes data points like AJAX calls and total load time
breakdown.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-16

5. The Instances tab displays details for individual tests that were run across all
locations.

You can view the status of the test run at a specific time, for a specific location. If
there is an error in the test, the error message is displayed in this pane.

• For synthetic tests of type Scripted Actions, you can view details of the
session when the test was run. In the Instances tab, click View Session.
This option is available only if you are running synthetic tests on an application
that is also being monitored by Oracle Application Performance Monitoring.
The Session page displays a timeline view of the session along with details of
multiple pages accessed during a user session. You can further drill down into
the details of the individual pages within the timeline. See Monitoring End User
Experience through Sessions.

• For synthetic tests created on public locations, and for of the type Scripted
Action and Page Load, you can view HAR reports. In the Instances tab, click
View Har.

The Har Statistics page displays details of the HTTP pages. You can view a
summary of the data as graphs and detailed tables.

Note:

On Firefox, if you are trying to view HAR files, the browser might
display an error ‘Unresponsive Script’. Click Continue and wait for
the script to complete. This usually happens when the HAR files are
large (above 600 KB).

• To download the content, click Download Har or Download Screenshot.
When downloading the content as a screenshot, it will be downloaded to the
local host as a zip file.

Create Alert Rules Based on Synthetic Tests
Create Alert Rules when selected Synthetic Tests meet defined conditions and send a
notification when the alert is raised, worsens in severity, or is cleared.

To create a synthetic test alert rule:

1. From the left-hand navigation, click APM, then select Alert Rules.

2. Click Create Alert Rule. Enter a name and click Add Entities.

3. In the Select Entities menu, select Individually and click a Synthetic Test.

4. Click Add Condition and select a Test Failed metric with a warning or critical
threshold greater than 0. Click Add.
The "number of consecutive minutes that metric should be outside threshold
before generating alert" dialog should be less than the Collection Frequency
selected for the Synthetic Test.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-17

Figure 2-1 Test Failed Synthetic Alert Rule

5. Create a new condition with the same parameters for the Test Error metric.

6. Add the required notification channels.

7. Click Save.

Metric and Frequency Examples:

• Number of consecutive minutes >= Test frequency: This will generate an alert
on the first test failure.

• Number of consecutive minutes >= 2*Test frequency: This will generate an
alert on two consecutive failures.

• Test Failed > 0: This will evaluate a warning alert when there is a test failure.

• Test Failed >= 1: will evaluate true when there is a test failure.

• Test Failed > 1: will Not evaluate true when there is a test failure as on Failure
metric value will be "1"

Test Failed > 0.5: will evaluate true when there is a test failure.

To learn more about Alert Rules, see Create Alert Rules.

Troubleshoot Synthetic Tests
If you run into problems while using Synthetic Tests, here are some tips to debug.

Debug Cloud Agent Location

You can run Synthetic Tests on a private or a public location. For a test to run
successfully on a cloud agent, a few basic set of prerequisites, called Location
Compatibility have to be in place. To check for Location Compatibility:

1. On the Oracle Management Cloud home page, click APM. In the left navigation
pane, select APM Admin, and then, Locations.

2. For the required location, click Compatibility Check.

A green tick mark indicates that all the prerequisites are met; else a warning or
error is displayed.

3. Click on the status indication icon to view these details.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-18

a. Agent Version — Indicates the version of the cloud agent. Ensure that the
Cloud Agent version is 1.33 or higher.

b. Firefox Version — Indicates the version of the browser. Ensure that you
have the correct Firefox version for your system to successfully execute the
Selenium tests.

• Oracle Linux 6: Firefox version 45

• Oracle Linux 7: Firefox version 61-66

Note:

Firefox is the only supported browser. Other Firefox versions
including Beta versions are unsupported.

You can check if Firefox is present on the cloud agent machine by running the
command firefox --version.

c. Proxy Status — Indicates the status of the proxy. Ensure that the proxy
specified is correct and reachable. Edit the location to correct the proxy
information, if required.

d. Proxy Error Message — Displays an error message in case of an error in the
proxy settings.

e. X-Server Unavailable Ports — Indicates the X-Server ports that are not
available. Create X-Server on the ports that are missing.

f. X-Server Unavailable Ports Message — Displays an error message if there
are unavailable X-Server ports.

Debug Cloud Agent Crash Due to Memory Issues

When running Synthetic Tests that generate big HAR files, the Cloud Agent may run
into memory issues and crash. When the Cloud Agent crashes, a log file is generated
with name: hs_err_pid<pid>.log. It should look like the following:

Stack: [0x00007f771c697000,0x00007f771c798000],
sp=0x00007f771c795220, free space=1016k
 Native frames: (J=compiled Java code, j=interpreted, Vv=VM code,
C=native code)
 C [libzip.so+0x11d10] newEntry.isra.4+0x60 C
[libzip.so+0x12b57] ZIP_GetNextEntry+0x37
 J 3024 java.util.zip.ZipFile.getNextEntry(JI)J (0 bytes) @
0x00007f776995def6 [0x00007f776995de40+0xb6]
 J 1477 C1 java.util.zip.ZipFile$ZipEntryIterator.next()Ljava/
util/zip/ZipEntry; (212 bytes) @ 0x00007f77694d6b4c
[0x00007f77694d68a0+0x2ac]
 J 1475 C1
java.util.zip.ZipFile$ZipEntryIterator.nextElement()Ljava/lang/Object;
(5 bytes) @ 0x00007f77694d5f84 [0x00007f77694d5ec0+0xc4]
 j
oracle.sysman.emd.fetchlets.gfmsynmon.common.CommonUtil.addToZipfile(Lja
va/io/File;Ljava/lang/String;Ljava/lang/String;Ljava/lang/
String;)Ljava/io/File;+106
 j

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-19

oracle.sysman.emd.fetchlets.gfmsynmon.selenium.HarFetchletUtils.prepareC
ombinedZip(Ljava/io/File;)Ljava/io/File;+349
 j
oracle.sysman.emd.fetchlets.gfmsynmon.selenium.HarFetchlet.getMetric(Lja
va/util/Properties;Ljava/util/ArrayList;Loracle/sysman/emSDK/agent/
datacollection/CollectionFactory;Loracle/sysman/emSDK/agent/fetchlet/
FetchletContext;Loracle/sysman/emSDK/agent/TargetID;Ljava/util/
Map;Loracle/sysman/emSDK/agent/fetchlet/StateFullCallbacks;)Loracle/
sysman/emSDK/agent/datacollection/CollectionResult;+428
 j
oracle.sysman.gcagent.target.interaction.execution.FetchletFactory.getMe
tric(Ljava/util/Prop

To solve this issue, follow these steps:

1. Navigate to your Cloud Agent installation folder, and edit emd.properties with a
text editor.

2. Search for the agentJavaDefines property and add the following flags:

agentJavaDefines=-Xmx2G -XX:MaxPermSize=128M -
Dsun.zip.disableMemoryMapping=true

Note:

The -Xmx2G flag assigns 2GB as the maximum memory
allocation pool for a Java Virtual Machine (JVM). The -
Dsun.zip.disableMemoryMapping=true flag is needed for Cloud
Agents versions 1.49 and below.

Debug Test Execution

You can check for the status of synthetic tests, and debug if they are not getting
executed properly by following these steps.

1. Create a synthetic test with a private or a public location. Wait for a few minutes
before checking for its deployment. A test on a private location takes about 5
minutes to deploy, and about 15 minutes to deploy on a public location.

2. On the Oracle Management Cloud home page, click APM. In the left navigation
pane, select APM Admin, and then, Synthetic Test Definitions.

3. For the required location, click Check Deployment. The status of the test is
displayed in the Test Status dialog box.

a. Location Name — Indicates the name of the private or public location.

b. Deployment Status — Indicates whether the test got deployed on the Agent
or the Cloud Container.

c. Last Run Status — Indicates the time the test was last run. If the test was not
executed, check for its location compatibility.

d. Last Deployment Time — Indicates the last time the test was deployed onto
the Agent or the Cloud Container.

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-20

This time is first recorded when the test is created, and updated for each edit
of the test. If the Deployment Status is Failed, and the test Run Status is
Successful, then it means that the last update of the test failed.

Debug Log Location

You can check the logs to diagnose the failed test execution by following these steps:

1. Change directory to the agent_inst folder:
$ cd $AGENT_HOME/agent_inst

2. Check test name in emd/targets.xml and note test_meid:
<Property NAME="test_meid" VALUE="06E1665FE0A82B8057506B2A45F8FFC6"/>

3. Check logs in test_meid/log folder:
$ cd $AGENT_HOME/sysman/ApplicationsState/beacon/
06E1665FE0A82B8057506B2A45F8FFC6>/log/*

Chapter 2
Typical Workflow for Using Synthetic Monitoring

2-21

3
Monitor Application Performance

End users of your applications usually complain about the speed of retrieving data
from web pages and general page response times. You need ways to monitor several
aspects of web pages and their interactions. This data helps you find and resolve
issues before your end users complain.

Topics

• Typical Workflow for Monitoring Application Performance

• Monitor End User Experience

• Monitor Server Request Performance

• Monitor All Objects Related to an Application

• Monitoring End User Experience of a Web Application

• View Detailed Information about a Server Request Instance

• Monitor the Performance of an Application Server

Typical Workflow for Monitoring Application Performance
Monitoring Application Performance comprises of monitoring end user experience,
performance of Server Requests, Application Servers, and other entities. Here are the
common tasks for monitoring application performance.

Task Description More Information

Monitor end user
experience through
performance of
pages

Watch the performance of your application’s
pages and monitor end-user experience

Monitor Page
Performance

Monitor end user
experience through
Ajax requests

See if an Ajax call is the cause for the slow
page and is affecting end-user experience

Monitor Ajax Requests

Monitor user
sessions

Check if a particular user session is running
into errors

Monitor End User
Experience through
Sessions

Monitor server
request performance

See if a server request or an application
server is encountering errors

Monitor Server Request
Performance

Monitor end user
experience based
on a web application

Group a set of objects matching defined filter
criteria to monitor end user experience

Monitoring End User
Experience of a Web
Application

3-1

Monitor End User Experience
Monitoring the experience of end users of today’s applications involves closely
watching various aspects of an application, including monitoring of page performance,
monitoring of AJAX requests, and monitoring of application request performance.

Let’s consider an example of a RideShare application. As a DevOps administrator, you
need to monitor the performance of:

• The page cart.jsp, the page where the orders are completed.

• The AJAX call checkout, the request that will be called by the page cart.jsp.

• The application request checkout that is associated with the page cart.jsp.

Monitor Page Performance
Your customers access web pages in your application, and they expect superior
performance. Slow page loads, high page response times, failed transactions frustrate
your application users. As the DevOps administrator, you need tools to monitor page
performance and get deep visibility into all web pages, transactions, and so on. Oracle
Application Performance Monitoring also enables you to track errors that affect page
performance.

In the Oracle Application Performance Monitoring home page, the Pages tile displays
the top five pages. Click the page that you want to view details about.
If the page you are looking for is not among the top five:

1. In the left pane, click Pages to see a list of Pages.

2. Click the name of a page to view the page details.

• In the above example, the page cart.jsp started its loading with the first byte at 5
milliseconds, and the page became interactive at 135 milliseconds. The page was
completely loaded and ready for customer input at 158 milliseconds, and this is
probably an issue because the page load time is high.

•

The page was viewed more than 400 times.

• Check the Anomalous Periods and Average Load Time Baseline options to view
the baseline and anomalies on the average load time and for page views. The
anomalies are depicted as spots above and below the baseline.

Chapter 3
Monitor End User Experience

3-2

To improve grouping of pages, and to enhance the ability to identify performance
issues, patterns in URLs that are related to unique numeric identifiers will be replaced
by the character '*'.

Example: The URLs http://www.oracle.com/01234/page and http://
www.oracle.com/12345/page both will be reported as http://www.oracle.com/*/
page.

Monitor Ajax Calls
As the DevOps administrator, your goal is to improve and accelerate the performance
of your applications. End users don’t know what causes slow performance, but you
need more visibility into several aspects of your application that affect end-user
experience. Oracle Application Performance Monitoring enables you to track Ajax
errors in your application. Poor performance of Ajax requests affects the experience
of your end users, and it reflects poorly on your website. You should monitor Ajax
interactions of web pages in your application, so you can find out and resolve issues.

In the Oracle Application Performance Monitoring home page, the Pages tile displays
the top five pages. Click the page that you want to view details about. If the page you
are looking for is not among the top five:

1. In the left pane, click Pages to see a list of Pages.

2. Click the name of a page to view the page details.

3. Select the Ajax Calls tab and click a call to view its details.

Alternatively, you can also use the Search pane to search for a Ajax call directly.

• In the example here, the response time of the AJAX call checkout is very slow at
over 3 seconds.

Chapter 3
Monitor End User Experience

3-3

• The response time for the call seems to be very high, and this is a concern. In the
graphs, you can see that the call response time peaked to 2.18 seconds at 12.00
AM.

•

The Successful Calls graph shows the number of successful calls that were
encountered through the selected time period.

Check the Anomalous Periods and Calls Baseline options to view the baseline and
anomalies on successful calls. The anomalies are depicted as spots above and
below the baseline. You can also see the baseline and anomalies for Ajax Call
Response Time.

To improve grouping of Ajax Calls, and to enhance the ability to identify performance
issues, patterns in URLs that are related to unique numeric identifiers will be replaced
by the character '*'.

Example: The URLs http://www.oracle.com/01234/page and http://
www.oracle.com/12345/page both will be reported as http://www.oracle.com/*/
page.

Ajax calls with the same URLs are grouped and can be seen from the Server
Requests page. When the same Ajax call is served by different application servers,
these will show-up as different server requests. This allows you to compare different
application servers handling the same server requests.

Monitor End User Experience through Sessions
Oracle Application Performance Monitoring enables monitoring of end user experience
by providing data on user sessions.

The sessions page gives a quick view of the status of every user session. You can sort
the sessions based on their health or number of errors, to see sessions with possible
issues on top of the list.

You can also see an aggregate view on sessions by location by clicking the Graph
icon. This functionality also offers slice options by creating your own filters and can
help you identify relevant sessions for further diagnosing.

To view a user session:

1. In the left pane, click Session List to see a list of user sessions.

Scan the list of sessions to see if any session indicates possible issues. Check the
indication below each Session icon to see which browser was used. The Session
Health indicator and the number of errors will help you decide if any session needs
attention.

2. Click the date and time of a session to view its details.

Chapter 3
Monitor End User Experience

3-4

• The Summary at the top of the page gives you a quick view of the session,
with a graphical representation of the session health, based on page views
rated Good, Fair or Poor.

• The Timeline displays the various objects spread across the selected period.
You can use the slider to view data for the selected time period.

Long running sessions will be split into 12 hour segments to improve the ability
to locate session segments of interest.

• The legends below the timeline are toggle buttons which help you filter the
data you want to view on the timeline.

• Drill down to a Page or an AJAX call from the data displayed below the
timeline to view details of the page or the AJAX call.

Monitor Server Request Performance
You must monitor HTTP requests to see how your application behaves as load varies.
Clients, such as browsers used by your application users, perform various operations
on your application resources and objects. Using Oracle Application Performance
Monitoring, you can assess server-side performance down to the operation and
method level. You can view and monitor application requests linked across servers.
This level of detail helps you understand how clients access your application, and you
can take action to improve end-user experience.

In the Oracle Application Performance Monitoring home page, the Server Request tile
displays the top five server requests. Click the server request that you want to view
details about. If the server request you are looking for is not among the top five:

1. In the left pane, click Server Requests to see a list of server requests.

2. Click the name of a server request to view details of the server request.

In the Diagram tab, see a pictorial representation of the calls made by the server
request. You can see how many calls the request has received, how many internal
and external calls it has made and if there are any errors in any of these calls.
Hover over the objects in the diagram to view details in the Tooltip pane.

3. Click Metrics to view further details of the server request.

Chapter 3
Monitor Server Request Performance

3-5

Use the Anomalies legend to turn on/off the information about anomalies and
baselines. You can also turn off other elements like Maximum Time and Minimum
Time to simplify your view.

• In the above example, the response time of the server request is highest at
over 2 seconds, twice between 3 and 6 pm.

• The average response time of the external tier seems to be the highest among
the three tiers.

• Check the Anomalous Periods and Average Response Time Baseline options
to view the baseline and anomalies on request response time. The anomalies
are depicted as spots above and below the baseline. You can also see the
baseline and anomalies for Successful Calls.

4. Select the Links tab to view all the links related to the request.

The Links tab links all application requests across servers. The tab also lists the
callers of the server request, as well as the operation invocations made within the
server request. If the server request makes external calls to other server requests,
the user can click the other server request to navigate to its details.

Chapter 3
Monitor Server Request Performance

3-6

View Metrics for a Group of Server Requests
You can view combined metrics for a group of related Server Requests.

Related Server Requests are grouped together into Logical Server Requests or
LSRs, and you can view metrics for all these server requests together. LSRs are
based on a unique combination of these 3 values — Server request start operation
time, Deployment Time, and Genre Type. LSRs are available on applications created
with the criterion AppServers with Classifications.

1. In the left navigation pane, select Applications to view a list of Applications.

For each application listed, you can see the criteria of the application definition.

2. Click the name of the application you want to access or view more details for. The
application details page is displayed.

If this application was defined by AppServers with Classifications, you can view
its LSR metrics.

3. In the left navigation pane, select Logical Server Requests. All the Server
Requests based on your definition are listed here, irrespective of applications.

4. Click the name of the LSR you want to view details for.

The Metrics tab displays details like Request Response Time, Tier Average
Response and Call details. The Server Requests tab lists all associated server
requests. You can drill down to view further details of the server requests.

Monitor All Objects Related to an Application
You can monitor all objects related to an application from the Applications page.

Define APM Applications
With Applications, you can define and save a filter to pull together a set of pages or
server requests in the application, that match the defined filter criteria at a particular
time point.

An administrator can create an Application Definition for pages with a specific URL,
or server request with a specific name, deployment or application server. To create an
Application Definition:

Chapter 3
Monitor All Objects Related to an Application

3-7

1. In the left navigation pane, select Application Definitions to view the Application
Definitions screen.

2. Click Create Application Definition.

3. In the Create Application Definition screen, provide a name for the application
definition.

4. Choose the object on which to base your application definition. The application
definition can be a collection of Pages, Server Requests, Mobile Clients, or
Application Servers with Classifications.

5. Click Select Criteria to specify the criteria for the selected object.

• Pages – Specify the contents of your page URL.

• Server Requests – Specify the name of the application server host, the
deployment or the server request.

• Mobile Clients — Specify the name of the mobile client, or the version of the
mobile client.

• AppServers with Classifications — Specify the classification based on which
the AppServers will be filtered. If you want to see database information for an
application, choose this option.

The classifications that are available have been added by your administrator.
See Adding Application Classifications in Installing and Configuring Application
Performance Monitoring and talk to your administrator to get classifications
added.

All objects that meet these criteria will be part of the application definition. All
entities that are related to the filtered objects are also part of the application. For
example, if a Page is part of the application definition, all related AJAX calls and
Application Servers are part of the application definition even though they are not
part of the filter you defined.

6. Click Apply. Add one or more criteria as required.

7. Click Save.

Soon after creating an application, the Last Evaluated field will temporarily display
Pending. Refresh the page (F5) to monitor when it changes from Pending to an
actual date/time when the application was evaluated.

The new application definition is listed in the Application Definitions page. You can
select an application as a filter in the Home page, Page List page, Application Server
List page, and Server Request List page. This will narrow the page focus to just the
elements that are included in the scope of the Application Definition. You can delete an
Application Definition by clicking the X icon in the respective row.

Use APM Applications
You can access an application to filter a set of pages or server requests in the
application, that match the particular filter criteria defined in the application. All the
related objects are part of the application definition too.

To use an Application:

1. In the left navigation pane, select Applications to view a list of Applications.

Chapter 3
Monitor All Objects Related to an Application

3-8

For each application listed, you can see the criteria of the application definition. An
overall status of the application can be seen through information about End Users,
Server Requests and the database tier.

2. Click the name of the application you want to access or view more details for.

The application’s home page displays detailed information about the application
and related entities. You can see widgets for APM Alerts, Infrastructure Health (if
Infrastructure Monitoring is enabled), and detailed information about associated
entities in various tabs. All entities that are related to the filtered objects are also
part of the application. For example, if a Page is part of the application definition,
all related AJAX calls and Application Servers are part of the application definition
even though they are not part of the filter you defined.

• Click the number of Alerts to view the list of open alerts on the application.

• The Infrastructure Health widget gives you an overall picture of the
infrastructure.

• View details of browser and application performance in the Application
Metrics tab.

• In the Performance Analysis tab, see how the server requests are distributed
across application servers through the graph.

• In the End Users tab, see the geo-map for all the pages in the application.

• Click the Topology icon on top left corner of the pane to view/hide the
application topology.

Viewing Flow Topology of an Application

Application Flow Topology allows you to see how the traffic of an application flows
across various objects. You can see how the objects relate to each other based on
the call flows that Oracle Application Performance Monitoring monitors for the selected
application.

View relationships between browser clients-application servers-databases, or between
pages-AJAX calls- server requests-databases. You can also view aggregated metrics
for average response time, calls, and errors.

For example, the AppServer layer shows how calls flow from browser clients (pages
and/or AJAX calls) to appservers, between appservers themselves, and to databases.
The Server Request layer shows more details like call flow from specific pages to
specific server requests.

To view the topology of an application:

1. In the left navigation pane, select Applications to view a list of Applications.

2. Select the application and in the left navigation pane, select Flow Topology.

The topology diagram provides a quick overview of the performance of the
application and all the objects interacting with the application.

3. Hover over the objects to view further details.

4. Select an object in the diagram to highlight the path of the object. The details of
the selected object are listed below the diagram.

5. Select different Diagram Controls to view other aspects of the topology.

Chapter 3
Monitor All Objects Related to an Application

3-9

Monitoring End User Experience of a Web Application
You can monitor all objects related to a web application from the Web Applications
page.

Define APM Web Applications
With Web Applications, you can define and save a filter to pull together a set of pages
in the application, that match the defined filter criteria at a particular time point.

An administrator can create a Web Application Definition for pages with a specific URL
or name. To create a Web Application Definition:

1. From the main menu, select Monitoring, then click Monitoring Admin.

2. Click APM Web Application Definition.

3. Click Create.

4. In the Create Web Application screen, provide a name for the web application
definition.

5. Choose the scope on which to base your web application definition. The web
application scope can be a Page URL or OMC Tag. Various operators are
available such as: "contains", "starts with", etc. For more complex rules, you can
extend the scope matching several rules in a logical tree.

Figure 3-1 Web Application Scope

In this example, the web application definition is looking for page URLs that
contain example.com and does not contain test02.

The new web application definition is listed in the Web Application Definitions page.
You can select a web application as a filter in the Home page, Page List page, and
Application Server List page. This will narrow the page focus to just the elements that
are included in the scope of the Web Application Definition. You can delete a Web
Application Definition by clicking the X icon in the respective row.

Additional Reporting Classification
Configure the URL and context values from the traffic collected from pages, page
updates, and Ajax calls for your Web Application definition.

Data can be extracted from the input source and optionally manipulated. Input sources
are typically:

• Base URL

Chapter 3
Monitoring End User Experience of a Web Application

3-10

• URL Argument

• Page Title

• Attribute 1

• Attribute 2

You can manipulate the output by selecting Use Regular Expressions. After selecting
the input source, add a search pattern and type what it's going to be replaced by. Test
the regular expression by typing an example in the Test On text field and click Run.

In addition to the custom regular expressions defined by the user, Oracle Application
Performance Monitoring also provides Always Applied Output Manipulation to the
definition.

The manipulations include the following:

• Removal of date strings from URLs, page titles, and attributes

• Removal of time strings from URLs, page titles, and attributes

• Removal of email addresses from page titles and attributes

Test Configuration

Click Collect Sample Data to collect a 15 minute sample of live traffic. Once the
sample has gathered data, you can run the definition and view how data will be
manipulated by this web application.

Use APM Web Applications
You can define a web application to match a set of pages to a set filter criteria.

Specific web application metrics like sessions, pages, and AJAX calls can be seen
from the APM UI in context of the web application entity. Graphs related to the
web applications metrics can be seen from the Monitoring UI in context of the web
application entity. For quick access to the data from web applications, select a web
application via a global filter, which sets the context for further navigation in the APM
or Monitoring UI.

View Web Application Metrics
From the Web Application metric page, you can access diagnostic data, Ajax calls,
and Sessions in more detail.

1. From the Monitoring menu, click Entities.

2. Filter by APM Web Application Entity Types.

3. Click on the APM Web Application Entity.

Click the Actions button to monitor Pages, Ajax calls, and Sessions related to the
Web Application metric.

View Web Application Pages
Visualize page data related to the Web Application using Oracle Application
Performance Monitoring.

Chapter 3
Monitoring End User Experience of a Web Application

3-11

From the Web Application Pages UI, you can use different filters from the drop-down
menu or use quick filters such as:

• Load: This will show server requests that helped construct the page.

• Partial: This will show end user interactions that triggered some update to the
page through Ajax calls.

• Full: This will show pages that modified the URL due to user activity, meaning that
the updated pages can be bookmarked and are accessible in browser history.

Partial and Full page loads will be seen in the context of Single Page Applications
(SPA), where Ajax calls are executed to update page content instead of loading a
complete new page. These filters will offer links to the relevant server requests.

View Detailed Information about a Server Request Instance
If you have deployed APM Java Agent, you can view detailed information about a
Server Request Instance.

Viewing Detailed Information about a Server Request Instance

You can view detailed information of a server request instance to get an insight into
performance of major operations. You can view information like usage of CPU and
Heap resources, memory allocation and thread stack that will help you analyze a
server request instance. To view detailed information of a server request instance:

1. In the Server Request Instance list page, view the summary for an instance.
You can view details like CPU usage, memory allocation and the total number of
snapshots taken.

2. Click the Instance that needs attention.

The Instance details page is displayed.

3. In the Call Tree tab, click to view a snapshot of the instance.

• The Snapshot pane indicates when the first snapshot was taken, frequency of
the snapshot, and the total number of snapshots.

• Details about the instance like memory allocation, CPU usage, Block Time and
garbage collection overhead are also displayed.

Scroll through the pane to view other details. This pane displays all the stacks for
the specific operation, aggregated as a tree.

4. Click the Snapshots Timeline tab to view a chart of the snapshots across time.
Click an item on the chart to view the stack information window. Each snapshot is
represented by a circle on the chart. The status of the snapshot is depicted by the
color of the circle.

Viewing Error Details for a Server Request Instance

If a Server Request Instance is indicating failure, you can view the details of the error
in the Error Details pane. To view details of an error in a server request instance:

1. In the Server Request Instance list page, look for instances with status as Failure,

indicated by a red X in the Status column, .

Chapter 3
View Detailed Information about a Server Request Instance

3-12

2. Optionally, click the Server Request Instance with the error to view the Server
Request Instance details page.

3. The Failure icon displays an additional badge for Error Context, . Click to view
details of the error in the Error Details pane.

The Error Details pane displays error messages, codes and error stack.

Note:

Detailed information for a server request instance and the Error Details pane
are available only if you have deployed the APM Java Agent or the APM .Net
Agent, and is not available with other APM Agents.

Monitor the Performance of an Application Server
Oracle Application Performance Monitoring lets you view details about an Application
Server.

In the Oracle Application Performance Monitoring Home Page, the AppServers tile
displays the top five Application Servers. Click the Application Server that you want to
view the details for. If the Application Server you are looking for is not among the top
five:

1. In the left navigation pane, click AppServers to see a list of AppServers.

All the Application Servers that are currently running are displayed here.

2. Click the Application Server for which to view the details.

You can view graphs of memory and CPU usage, garbage collection, response
time, load and thread pool.

3. Click the Metrics tab to view metrics of the application server over a selected time
range.

4. Click the Server Requests to view a list of server requests being handled by the
application server. Click a server request to view its summary.

5. Click the Database tab to view details of the SQL calls.

6. Click Thread Profiler to view a list of all thread profilers belonging to this
application server. You can click on a thread profiler to view its summary.

7. In the quick menu on the top right corner, click Start Thread Profiler to capture
thread data (like stack snapshots, thread memory allocation, CPU consumption,
blocked time) for a small duration of time that you can specify.

8. From the quick menu, click View Log to view log events for the application server.

The Log Visual Analyzer displays the error logs for the Application Server. You can
change the time range and view data accordingly.

Chapter 3
Monitor the Performance of an Application Server

3-13

Collect Thread Profiler Data for an Application Server
You can collect detailed data that are not generally captured by Oracle Application
Performance Monitoring through the Thread Profiler.

Thread Profiler can collect detailed data about an application server for a small
duration of time. It can collect a variety of data like thread data (stack snapshots,
thread memory allocation, CPU consumption, blocked time), Garbage Collection data,
JVM parameters, and System Parameters. This data can be used to understand JVM
activities or threads based on CPU or Memory consumption.
You can have a maximum of 5 Thread Profiler schedules defined for an APM agent at
a time. In case you already have five thread profiler schedules, ensure you delete an
old schedule before creating another one.

To define a thread profiler schedule:

1. From the AppServer details page of the required Application Server, click the quick
menu icon, and select Start Thread Profiler.

OR

From the left navigation menu, select Diagnostic Snapshots, select Thread
Profiles and click Start Thread Profiler.

2. In the Thread Profiler dialog box, specify the details:

• Specify a Name for the thread profiler, if you want to change the default name.

• Select an AppServer if it is not already selected.

• Specify a Duration for the profiler. You can choose up to 5 minutes.

• Optionally, provide a Description for the profiler.

3. Click Start Profiler.

You can view this Thread Profiler from the Thread Profiles page. You can also
view the thread profile View Diagnostic Snapshots option from the quick menu in
the respective AppServer details page.

Collect JFR Data for an Application Server
Your Oracle Application Performance Monitoring Java agent can collect diagnostic
data using the Java Flight Recorder (JFR).

Prerequisites:

1. JFR dump is supported only on HotSpot JDKs (Sun, JRockit, Oracle JDKs), and
not on IBM JDK.

2. JFR dumps can be analyzed through JMC (Java Mission Control). For Oracle JDK
1.7.0_04 and later (but earlier than JDK 1.8.0_40), JVM process should be run
with the following Java options:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

These Java options are not required for JDK 1.8.0_40 and later.

3. Before you can collect JFR data, ensure that the JFR is running.

Chapter 3
Monitor the Performance of an Application Server

3-14

To collect JFR data:

1. From the AppServer details page of the required Application Server, click the quick
menu icon, and select Dump JFR.

OR

From the left navigation menu, select Diagnostic Snapshots, select JFR Dumps
and click Dump JFR.

2. In the Dump JFR dialog box, specify the details:

• Specify a Name for the JFR dump, if you want to change the default name,
which is a time stamp.

• Optionally, click Add Description and provide a description for the JFR dump.

• Select an AppServer if it is not already selected.

3. Click Dump JFR.

The JFR dump collection starts in the next harvesting cycle of the APM agent (in
about a minute), and it takes a few minutes to perform this operation.

You can view the JFR Dump from the JFR Dumps page. You can also view the
JFR dump from the View Diagnostic Snapshots option from the quick menu in
the respective AppServer details page.

Viewing and Downloading JFR Dump
To view and download JFR dump:

1. From the left navigation menu, select Diagnostic Snapshots, and select JFR
Dumps.

2. To download the .jfr file, click the download button at the right end of the
respective JFR Dump row.

3. To view the JFR Summary, click the name of the JFR Dump. The JFR Summary
page is displayed.

4. In the JFR Summary page, click the download button to download the JFR Report.

Disabling JFR Dump
To disable JFR dump:

1. Navigate to the folder apmagent/config/<AppServer Name>, and edit the
Properties.json file.

2. Set the static property oracle.apmaas.agent.deepdive.disableJFR to true. To
enable, set the property to false.

3. Restart the application server.

Collect Class Histogram for an Application Server
Your Oracle Application Performance Monitoring Java agent can collect Class
Histogram data for analysis of the performance of your application server.

Prerequisites:

1. Class Histogram is supported only on Sun and JRockit JDKs.

Chapter 3
Monitor the Performance of an Application Server

3-15

2. Ensure that tools.jar is set in the Java classpath.

To collect Class Histogram for an application server:

1. From the AppServer details page of the required Application Server, click the quick
menu icon, and select Class Histogram.

OR

From the left navigation menu, select Diagnostic Snapshots, select Class
Histograms and click Create Class Histogram.

2. In the Create Class Histogram screen, specify the details:

• Specify a Name for the Class Histogram if you want to change the default
name, which is a time stamp.

• Optionally, click Add Description and provide a description for the Class
Histogram.

• Select an AppServer if it is not already selected.

3. Click Create Class Histogram.

The Class Histogram is created in the next harvesting cycle of the APM agent (in
about a minute), and it takes a few minutes to perform this operation. Once the
Class Histogram is created, it is listed in the Class Histograms page, with the class
count details. Click the name of the Class Histogram to view the summary.

You can view the Class Histogram from the Class Histograms page, and also
from the quick menu in the respective AppServer details page.

Disabling Class Histogram
To disable Class Histogram:

1. Navigate to the folder apmagent/config/<AppServer Name>, and edit the
Properties.json file.

2. Set the static property oracle.apmaas.agent.deepdive.disableClassHistogram
to true. To enable, set the property to false.

3. Restart the application server.

Collect Heap Dump for an Application Server
Your Oracle Application Performance Monitoring Java agent can collect Heap Dump
data for analysis of the performance of your application server.

Prerequisites:

1. Heap Dump can be taken on Sun (V1.6 or later), JRockit and IBM (v1.6 and
above) JDKs.

2. In case of IBM 1.6 JDK, set the environment variable IBM_HEAPDUMPDIR to the
directory in which the Heap Dump has to be stored. If this variable is not set, the
Heap Dump will be stored in the directory from where the application server is
running.

To collect Heap Dump:

1. From the AppServer details page of the required Application Server, click the quick
menu icon, and select Take Heap Dump.

Chapter 3
Monitor the Performance of an Application Server

3-16

OR

From the left navigation menu, select Diagnostic Snapshots, select Heap
Dumps and click Take Heap Dump.

2. In the Take Heap Dump screen, specify the details:

• Specify a Name for the Heap Dump if you want to change the default name,
which is a time stamp.

• Optionally, click Add Description and provide a description for the Heap
Dump.

• Select an AppServer if it is not already selected.

3. Click Take Heap Dump.

The Heap Dump collection starts in the next harvesting cycle of the APM agent
(in about a minute), and it takes a few minutes to perform this operation. The path
where the heap dump file is stored is displayed after the heap dump is taken.

You can view the Heap Dump from the Heap Dumps page, and also from the
quick menu in the respective AppServer details page.

Disabling Heap Dump
To disable Heap Dump:

1. Navigate to the folder apmagent/config/<AppServer Name>, and edit the
Properties.json file.

2. Set the static property oracle.apmaas.agent.deepdive.disableHeapDump to true.
To enable, set the property to false.

3. Restart the application server.

Integrate Application Performance Monitoring Events with JFR
Application Performance Monitoring events are integrated with JFR by default.

APM Events are integrated with JFR using Java Mission Control (JMC). The data
captured by the APM Agent can then be viewed on JMC, thereby providing more
insight into all APM Events.

Prerequisites:

• Ensure that the JFR support is set to ON.

• A JFR recording should be running.

• In the Properties.json file located in the apmagent/AdminServer folder, ensure
that the following property is set to TRUE:

oracle.apmaas.agent.deepdive.jfrEvent

By default, this property is set to TRUE, which means that the JFR- APM Event
integration is enabled.

To view Application Performance Monitoring Events in JMC:

1. If the above prerequisites are met, once you deploy the APM Java Agent, you will
see the complete list of APM Events when you start a recording.

Chapter 3
Monitor the Performance of an Application Server

3-17

You can enable all or specific events from the list. Follow JMC documentation for
instructions on how to enable events.

2. Once you have a recording of the JFR, you can see the APM events that you have
selected, and data about those events in the JMC UI.

Various tabs in JMC provide details on APM Events, and metrics about APM
entities.

Create and Manage Filters
Filters are a way to display useful information for the task at hand in Oracle Application
Performance Monitoring.

1. To create or manage a filter, click Manage Filter.

2. In the Manage Filter screen, choose an attribute to filter and its search criteria.

Figure 3-2 Page Views Filter

In the manage filter screen, the filter is set to display pages that have more than
100 page views.

3. Click Save Filter. In the Save Filter screen, select a Name, Description, and click
Monitored Filter.
The filtered set of pages will show as aggregated metrics in the Web Application.

Chapter 3
Create and Manage Filters

3-18

4
Administer Oracle Application Performance
Monitoring

An Oracle Application Performance Monitoring administrator can deploy and
administer the service in your environment.

Topics

• Typical Tasks for Administering Oracle Application Performance Monitoring

• Define Servlet Configuration Options

• Set Alert Rules

• Define Applications

• Customize APDEX Settings

• Associate Entities Using Tags

• Monitor a Web Application through Servlet Monitoring

• Define Locations for Synthetic Tests

• Configure Errors and Error Messages

• Set Up Custom Instrumentation

• Enable Privacy Settings

Typical Tasks for Administering Oracle Application
Performance Monitoring

Here are the administrative tasks for Oracle Application Performance Monitoring.

Task Description More Information

Deploy Oracle
Application
Performance
Monitoring

Download and install Oracle Application
Performance Monitoring

Deploy Oracle Application
Performance Monitoring

Specify servlet
configuration
options

Specify how your web application / servlet
is being monitored by Oracle Application
Performance Monitoring.

Define Servlet
Configuration Options

Set rules for
alerts

Set rules for email alerts Set Alert Rules

Set up Synthetic
Monitoring

Set up synthetic monitoring, and monitor
application performance through synthetic
tests

Typical Workflow for Using
Synthetic Monitoring

Set up End User
Monitoring

Set up End User Monitoring with manual
browser injection, enable and configure
settings

Set Up End User
Monitoring

4-1

Task Description More Information

Set up Synthetic
Monitoring

Set up Synthetic Monitoring by simulating user
paths to detect possible errors

Set Up Synthetic
Monitoring

Set up Custom
Instrumentation

Set up Custom Instrumentation and start
monitoring technologies not supported out-of-
the-box.

Set Up Custom
Instrumentation

Enable Privacy
Settings

Enable Privacy Settings to stop APM from
storing personal identifiable information.

Enable Privacy Settings

Customize APDEX Settings
The Application Performance Index, APDEX is a measurement of overall performance
of your application.

APDEX is a summary of various measurements, with appropriate weightage on certain
important results. Outliers which are otherwise ignored are given due importance in
this index. The formula used to calculate APDEX = (Number of Satisfactory samples +
(Number of Tolerating samples) / 2) / Total samples.

Session Health uses APDEX results for page and AJAX requests, along with the
impact of error executions of java scripts and AJAX requests. With the Session health
settings, you can influence the weightage given to the various components while
calculating session health.

You can customize settings for the Application Performance Index. To customize
settings for APDEX:

1. In the left navigation pane, click Administration and select Metric Settings.

2. In the APDEX Settings pane, provide Satisfactory and Tolerable values for Page
Load Time and Ajax Call Response Time.

3. In the Session Health Settings pane, provide a weightage for each element of the
formula used to calculate session health:

a. Page Performance Weight

b. Ajax Performance Weight

c. Javascript Errors Weight

d. Ajax Errors Weight

4. Click Save on the top right corner of the screen to save your settings.

The new settings will be used to determine APDEX value and to rate the session
health. Note that elements for which there is no data (Example: No page views) will
not be considered in the formula.

Associate Entities Using Tags
You can associate Application Servers to Database using tags.

To associate an application server to a database:

1. From the Oracle Management Cloud left navigation menu, click Administration
and select Entities Configuration.

Chapter 4
Customize APDEX Settings

4-2

2. Select Tags to view a list of tags that have already been discovered.

3. In the Tags screen, click New Key to create a new association with tags.

4. In the Create New Key screen, provide a name and value for the key.

Deleting Tags
1. From the Oracle Management Cloud left navigation menu, click Administration

and select Entities Configuration.

2. Select Tags to view a list of tags that have already been discovered.

3. In the Tags screen, search for the tag using the search box.

4. Select the tag, and click the Delete Tag button.

5. Click OK to confirm the operation.

The selected tag is deleted.

Associate Application Servers to a Database Automatically
Application Performance Monitoring automatically creates an association between
the App Server and the Database. When the association is not automatic, you can
dynamically make the association through matching association tags.

Associate Application Servers to a Database through tags for a new Target

After installing and deploying Application Performance Monitoring, you can associate
application servers to a database through tags. The below procedure is for a fresh
installation of Application Performance Monitoring.

To associate an APM-Invisible Database with Application Server using tags:

1. Download the APM Agent Software Installer and provision APM Agent. See Types
of APM Agents to install the correct APM Agent.

2. Shut down the application server to which you are associating the database.

3. Add the below property in the Properties file to generate an association from the
application server to the database:

For APM Java agent:

a. From the apmagent/config folder, edit the AgentStartup.properties file and
add the below property:

<KeyName>=<Tag Value>
oracle.apmaas.agent.appServer.uses = Tag_Weblogic_To_Oracle

b. Generic property tag: In the AgentStartup.properties file, you can add
a new list of tags in the format tag-name [= tag-value] to the below
property:

oracle.apmaas.agent.appServer.tags

Chapter 4
Associate Application Servers to a Database Automatically

4-3

Example:

oracle.apmaas.agent.appServer.tags=credToUse=exampletag1,examplet
ag2,tag3=exampletag3

The above property will create 3 tags:

• credToUse=exampletag1

• exampletag2

• tag3=exampletag3

For APM .Net agent:

• From the <Path where APM Agent Software is extracted>\Oracle
APM .NET Agent folder, edit the AgentConfig.ini file and add the below
property:

<KeyName>=<Tag Value>
oracle.apmaas.agent.appServer.uses = Tag_DotNet_To_Oracle

In the above configuration file, the following is the Source Entity Marker tag:

 assoc_source:<AssociationHint>=<AssociationTag>

Where:

• assoc_source:<AssociationHint> is the tag key.

<AssociationHint> can be any free form text used to identify, and therefore
associate the set of destination entities. The <AssociationHint> used for the
source entity, should match the one used for the destination entity(entities).

• <AssociationTag> is the tag value.

<AssociationTag> is the intended association tag. It is optional, and if a value
is not provided, it defaults to omc_uses association tag.

An entity can be tagged with one or more source marker tags if the source entity
can have different associations with different sets of destination entities. Ensure
that the source marker tag is unique.

4. Start the application server.

5. Verify that the tags are added to the application.

a. From the Oracle Management Cloud left navigation menu, click
Administration and select Entities Configuration.

b. Select Tags to view a list of tags that have already been discovered.

6. Verify that the application server is associated with the database in any of these
ways:

• From the Application Definition screen, view the topology.

• From the App Server screen, click the Topology button to see the association.

You can also associate an App Server to a database from the APM UI. See
Associating Entities Using Tags.

Chapter 4
Associate Application Servers to a Database Automatically

4-4

Discovering App Servers and Database entity using tag from Monitoring Service
for a New Installation

1. Install the Oracle Cloud Agent.

2. To discover the database, modify the db.json and add the tag element.

Example:

{ "entities":[
 {
 "name":"Oracle_DB",
 "type":"omc_oracle_db",
 "displayName":"Oracle_DB",
 "timezoneRegion":"PDT",
 "credentialRefs":["SQLCreds"],
 "properties":{
 "host_name":
{"displayName":"MachineName","value":"sample.test.com"},
 "port":
{"displayName":"OraclePort","value":"1000"},
 "protocol":{"displayName":"Protocol","value":"TCP"},
 "sid":
{"displayName":"SID","value":"sample"},
 "capability": {"displayName": "capability","value":
"monitoring"}
 },
"tags": {
 "assoc_dest:<assoc_name>" : ""
 }
 }
]}

Where <assoc_name> can be any string based on user preference. Discover the
database entity using cloud agent (omcli add_entity agent db.json).

3. To discover the application server, modify the app server json and add the tag
element.

Example:

{
"entities":[
 {
 "name":"Tomcat_Sample_Demo8",
 "tags": {
 "assoc_source:<assoc_name>" : ""
 },
 "type":"omc_tomcat",
 "displayName":"Tomcat_Sample_Demo8",
 "timezoneRegion":"PDT",
 "properties":{
 "host_name":{
 "displayName":"Host",
 "value":"abcd.test.com"

Chapter 4
Associate Application Servers to a Database Automatically

4-5

 },
 "jmx_port":{
 "displayName":"JMX Port Number",
 "value":"9999"},
 "jmx_user_name":{
 "displayName":"JMX User Name",
 "value":""},
 "jmx_password":{
 "displayName":"JMX Password",
 "value":""},
 "jmx_protocol":{
 "displayName":"Communication Protocol",
 "value":"rmi"},
 "jmx_service":{
 "displayName":"Service Name",
 "value":"jmxrmi"},
 "ssl_trust_store":{
 "displayName":"SSL Trust Store (required when SSL is
enabled)",
 "value":""},
 "ssl_trust_store_password":{
 "displayName":"SSL Trust Store JMXPassword (required
when SSL is enabled)",
 "value":""},
 "ssl_trust_store_password":{
 "displayName":"SSL Trust Store JMXPassword (required
when SSL is enabled)",
 "value":""},"version":{
 "displayName":"Apache Tomcat Version",
 "value":"8"},
 "catalina_base_directory_path":{
 "displayName":"Catalina Base Directory Path",
 "value":"/scratch/opt/apache-tomcat-8.0.29"},
 "LoggingConfigurationFilePath":{
 "displayName":"Logging Configuration File Path",
 "value":""},
 "LogLocationCatalina":{
 "displayName":"Log Location Catalina",
 "value":""},
 "LogLocationLocalhost":{
 "displayName":"Log Location Local Host",
 "value":""},
 "LogLocationHostManager":{
 "displayName":"Log Location Manager",
 "value":""},
 "LogLocationHostManager":{
 "displayName":"Log Location Host Manager",
 "value":""},
 "capability": {
 "displayName": "capability",
 "value": "monitoring"}

 }
 }

Chapter 4
Associate Application Servers to a Database Automatically

4-6

]
}

where <assoc_name> string should be same as in the database json in step
2. Discover the Tomcat entity using cloud agent (omcli add_entity agent
tomcat.json.)

4. "omc_uses" association should be automatically created between Tomcat and the
database entity.

Update the App Servers and Database entity using tag from monitoring Service

You can add new tags to existing entities, but cannot update existing tags from the
cloud agent omcli cmd. Here is a sample json:

{ "entities":[
 {
 "name":"Sample_DB",
 "type":"omc_sample_db",
 "displayName":"Sample_DB",
 "timezoneRegion":"PDT",
 "credentialRefs":["SQLCreds"],
 "properties":{
 "host_name":
{"displayName":"MachineName","value":"sample.test.com"},
 "port":
{"displayName":"OraclePort","value":"1111"},
 "protocol":{"displayName":"Protocol","value":"TCP"},
 "sid":{"displayName":"SID","value":"orcl12c"},
 "capability": {"displayName": "capability","value":
"monitoring"}
 },
"tags": {
 "assoc_dest:<assoc_name>" : "",
 "assoc_dest:<assoc_name2>" : "",

 "key1" : "value1"

 }
 }
]}

Use the omcli update_entity agent db.json command to upload the new tags from
the entity json to Oracle Management Cloud.

Define Locations for Synthetic Tests
An administrator defines locations from where synthetic tests will be run.

Prerequisites before you can define locations for synthetic tests:

• Install Firefox browser on the machine where the cloud agent is installed:

– Oracle Linux 6: Firefox version 45

– Oracle Linux 7: Firefox version 61-66

Chapter 4
Define Locations for Synthetic Tests

4-7

Note:

Firefox is the only supported browser. Other Firefox versions including
Beta versions are unsupported.

You can check if Firefox is present on the cloud agent machine by running the
command firefox --version.

Install the relevant Firefox version on the host, and specify the correct path of the
Firefox executable while defining a location. To migrate existing tests from Firefox
45 to Firefox 61, see Migrating Synthetic Tests to Firefox 61.

• Firefox should be part of the PATH shell variable of the user used to run the cloud
agent. For example, if Firefox executable is available at /scratch/firefox, then /
scratch/firefox should be part of the PATH variable.

• Install a Cloud Agent on the machine where the tests will be run. See Deploying
Cloud Agents in Deploying and Managing Oracle Management Cloud Agents for
instructions.

• Ensure Perl is installed on the machine running the Cloud Agent.

• Create an X Server pool, a set of X Servers which will be used to execute the
Selenium test.

You can check if an X Server pool exists by running the command ps —ef. For
example, to check if there are any Xvfb X servers running, run following command:

ps -ef | grep Xvfb

• Any X Server can be used, but the recommended X Server is Xvfb. To create an X
Server pool using Xvfb, run the following commands:

Xvfb :1
Xvfb :2
Xvfb :3
Xvfb :4
Xvfb :5

Every time the above commands are run, an X Server with the specified display
port is created. These display ports can be used to specify the X Server pools,
while creating a location.

Note:

In case of an error when you run the above command, run this command
instead:

Xvfb :1 -nolisten inet6

The following is an example on how to setup Xvfb server and auto-start at system
boot:

Chapter 4
Define Locations for Synthetic Tests

4-8

1. $ sudo mkdir -p /usr/local/sbin # (if not already present)

2. $ sudo cp xvfb_start.sh xvfb_stop.sh /usr/local/sbin

3. $ sudo chmod 744 /usr/local/sbin/xvfb_start.sh /usr/local/sbin/
xvfb_stop.sh

4. $ sudo cp etc_systemd_system_oracle.service /etc/systemd/system/
xvfb.service

5. $ sudo systemctl daemon-reload

6. $ sudo systemctl enable xvfb

7. $ sudo systemctl start xvfb

8. $ sudo systemctl status xvfb

• In the file /etc/hosts, replace

127.0.0.1 localhost.localdomain loghost localhost

with

127.0.0.1 localhost localhost.localdomain loghost.

• The cloud agent should not be installed in a symbolic link directory, when installing
the cloud agent the value provided for AGENT_BASE_DIRECTORY parameter
should not be a symbolic link.

To define locations:

1. In the left navigation pane, click Administration.

2. Select Locations to view a list of locations that are available.

3. On the Locations screen, click Add Location.

4. In the Add Location screen, specify information about the new location:

• Name: Specify a name for the location

• Available Agents: Select a cloud agent for the location.

• Specify other optional details for the location — Longitude, Latitude, City and
Country.

• Optionally specify Proxy details for the location — Host, Port, Username and
Password.

• Capacity: Specify the maximum number of machines for this location.

• X Server Pool: Specify the X Server pool to be used while executing the
Selenium test. If you have X servers running on ports, you can specify the port
number.

Example: If X servers are running on display ports 1, 2 and 3, specify 1-3 as
value for this property.

• Firefox Path: Specify the path of Firefox executable. Example: /usr/bin/
firefox.

5. Click Save.

The new location will be displayed in the list of Locations, and will be available for
selection while creating a synthetic test.

Chapter 4
Define Locations for Synthetic Tests

4-9

Migrating Synthetic Tests to Firefox 61
1. Install version 61 (or higher) of Firefox on the machine where you will install the

Cloud Agent.

2. On the same machine, install Cloud Agent version 1.33 or higher.

3. Define a Location using this Cloud Agent.

4. Once this Location is active in the system, edit your synthetic test/s and add this
new location to the test/s.

5. Wait for Synthetic Tests to run on this new Location. You can verify this in the
Instances tab where you will see data coming from two Locations. You can then
edit the test and delete the location which was created using an older version of
Firefox.

Configure Errors and Error Messages
APM Java Agent can automatically detect operation invocation errors while monitoring
application flows. An invocation error could be defined as an unexpected event
happening as an operation is invoked. To detect such events and classify them as
errors, APM agents rely on a set of default rules:

• HTTP response status code that ranges from 400 to 599

• Exceptions thrown during operations execution

• SOAP message response with a Fault block

• OSB error codes

In some cases, however, you may want to ignore an error and have the invocation
classified as success. For example, based on your Application behavior, you might
want to treat HTTP 403 response codes as success. With Error configuration, you can
modify the default error classification rules, customizing them using an opt-out / opt-in
mechanism, excluding or including your own defined rules.

To configure errors:

1. Open the file Error.json in an editor from the following path:

• To configure errors on all the APM Agents in a domain, edit this file -
<DOMAIN_HOME>/apmagent/config/Error.json.

• To configure errors on the APM Agent on a specific server, edit this file -
<DOMAIN_HOME>/apmagent/config/<server-name>/Error.json.

2. Delete the content of the Error.json file. Replace it with the following lines,
modifying to specify your error rules:

{
 "type" : "error",
 "configurationsPerComponentType" :
 [
 {
 "componentTypes" : [],
 "excludeReturnCodes" : {},
 "excludeReturnCodesRegex" : {},

Chapter 4
Configure Errors and Error Messages

4-10

 "excludeErrors" : {},
 "excludeErrorMessages" : {},
 "includeReturnCodes" : {},
 "includeReturnCodesRegex" : {},
 "includeErrors" : {},
 "includeErrorMessages" : {},
 "includeFirst" : false
 }
]
}

3. Save and close the Error.json file. You do not have to restart the application
server for these rules to take effect.

Example: Here's an example where a HTTP error 403 is converted from an error
to an acceptable event.

{
 "type" : "error",
 "configurationsPerComponentType" :
 [
 {
 "componentTypes" : ["SERVLET"],
 "excludeReturnCodes" : {"HTTP 403" : []},
 ...
 "includeFirst" : false
 }
]
}

You can use configurationsPerComponentType to define the error rules. Each rule
(exclude/include) is expressed as a key-value pair, where the key defines the error
code selection and value defines the list of operations the rule applies to. The value
is optional and if not specified, the error code selection applies to all operations of the
specified componentTypes. Here are the rules you can use to configure the errors:

Rule Type Property Type Description

Component Type componentTypes Array List of component
types the configuration
should be applied
for. The same
configuration can be
applied to multiple
types.

Opt-out (Exclude
Rules)

excludeReturnCode
s

Map Key - an error code in
String

Value - an array of
operation names in
String

excludeReturnCode
sRegex

Map Key - Regex pattern
for the error code

Value - a list of regex
patterns for operation
names

Chapter 4
Configure Errors and Error Messages

4-11

Rule Type Property Type Description

excludeErrors Map Key - a string of error
type. Error type key
has to be exactly the
same as the error type
shown in Error Detail
page.

Value - a list of regex
patterns for operation
names

excludeErrorMessa
ges

Map Key - a regex pattern
of an error message

Value - a list of regex
patterns for operation
names

Opt-in (Include Rules) includeReturnCode
s

Map Key - error code in
String

Value - an array of
operation names in
String

includeReturnCode
sRegex

Map Key - Regex pattern
for the error code

Value - a list of regex
patterns for operation
names

includeErrors Map Key - a string of error
type. Error type key
has to be exactly the
same as the error type
shown in Error Detail
page.

Value - a list of regex
patterns for operation
names

includeErrorMessa
ges

Map Key - a regex pattern
of an error message

Value - a list of regex
patterns for operation
names

Include First includeFirst boolean Determines which set
of properties the
configuration apply
first to exclude or
include server request
instances from being
marked as fault.

Notes on how these error rules work:

• includeFirst

– If includeFirst is false, opt-out rules are applied first in the following order:
excludeReturnCodes → excludeReturnCodesRegex
→ excludeThrowableClasses →

Chapter 4
Configure Errors and Error Messages

4-12

excludeThrowableMessages→includeReturnCodes →
includeHttpReturnCodesRegex → includeThrowableClasses →
includeThrowableMessages

– If includeFirst is true, opt-in rules are applied first::
includeReturnCodes → includeHttpReturnCodesRegex →
includeThrowableClasses → includeThrowableMessages →
excludeReturnCodes → excludeReturnCodesRegex →
excludeThrowableClasses → excludeThrowableMessages

• Opt-in and Opt-out properties are independent of each other. A server request
needs to satisfy only one of those properties in the configuration.

• All operations:
For opt-in and opt-out properties, specify an empty list value or a list with an empty
string to exclude or include any operation name with a key. For example, if you
want agent to not report any error with HTTP 500 return code regardless of its
operation name, you would define the following:

excludeReturnCodes : {"HTTP 500" : []}
or,
excludeReturnCodes : {"HTTP 500" : [""]}

• Look for these values in these APM views:

Server Request Instance page, Error
Details tab

Operation name

Server Request Instance page, Call
Tree table – Operation name

– Component Type

Error Details pane – Error

– Error code

– Error message

• Using Opt-in Properties: Use Opt-in properties if you use regex to opt-out many
errors from the default rules but want to allow some cases to be still treated as
errors. For example, if you want to exclude HTTP 5XX from the rules except HTTP
500, set the value of includeFirst to true so that opt-in properties can be applied
first in the configuration.

{
 "type" : "error",
 "configurationsPerComponentType" :
 [
 {
 "componentTypes" : ["SERVLET"],
 "excludeReturnCodes" : {},
 "excludeReturnCodesRegex" : {"HTTP 5[0-9][0-9]" : []},
 "excludeErrors" : {},
 "excludeErrorMessages" : {},
 "includeReturnCodes" : {"HTTP 500" : ["/hello/errorConfigTest/
throwException (GET)", "/hello/errorConfigTest/throwException

Chapter 4
Configure Errors and Error Messages

4-13

(POST)"]},
 "includeReturnCodesRegex" : {},
 "includeErrors" : {},
 "includeErrorMessages" : {},
 "includeFirst" : true
 }
]
}

• Two Types with Overlapping Properties
Two or more component types can share the same customized rules if you specify
all the types:

{
 "type" : "error",
 "configurationsPerComponentType" :
 [
 {
 "componentTypes" : ["SERVLET", "JAXRS", "SOA"],
 "excludeReturnCodes" : {},
 "excludeReturnCodesRegex" : {},
 "excludeErrors" : {"java.lang.RuntimeException" : ["/hello/
errorConfigTest/throwException .*"]},
 "excludeErrorMessages" : {},
 "includeReturnCodes" : {},
 "includeReturnCodesRegex" : {},
 "includeErrors" : {},
 "includeErrorMessages" : {},
 "includeFirst" : false
 }
]
}

• One Type with Multiple Configurations
One type can belong to more than one configurationsPerComponentType if
properties in configurationsPerComponentType do not overlap. This is useful if
one type share the same properties as other component types but have one or
two property that don't. Make sure there is no duplicate property in two different
configurationsPerComponentType to avoid redundancy.

{
 "type" : "error",
 "configurationsPerComponentType" :
 [
 {
 "componentTypes" : ["SERVLET", "JAXRS", "SOA"],
 "excludeReturnCodes" : {},
 "excludeReturnCodesRegex" : {},
 "excludeErrors" : {"java.lang.RuntimeException" : ["/hello/
errorConfigTest/throwException .*"]},
 "excludeErrorMessages" : {},
 "includeReturnCodes" : {},
 "includeReturnCodesRegex" : {},
 "includeErrors" : {},
 "includeErrorMessages" : {},

Chapter 4
Configure Errors and Error Messages

4-14

 "includeFirst" : false
 },
 {
 "componentTypes" : ["SERVLET"],
 "excludeReturnCodes" : {"HTTP 500" : ["/hello/errorConfigTest/
throwException (GET)"]},
 "excludeReturnCodesRegex" : {},
 "excludeErrors" : {},
 "excludeErrorMessages" : {},
 "includeReturnCodes" : {},
 "includeReturnCodesRegex" : {},
 "includeErrors" : {},
 "includeErrorMessages" : {},
 "includeFirst" : false
 }
]
}

Enable Privacy Settings
Enable Privacy Settings to stop APM from storing personal identifiable information.

Storage of certain data can be toggled in these settings like:

• Storing full URLs, not only the domains

• Storing page titles and click names

To enable or disable privacy settings:

1. Log into Oracle Management Cloud and click APM.

2. In the APM Admin page, click Privacy Settings.

Note that Web Application data will not be affected. Follow instructions on the
configuration page to configure IP address reporting and URL related privacy settings
based on your reporting requirements. It is strongly recommended to avoid collecting
any personally identifiable information.

Create Alert Rules
The Oracle Application Performance Monitoring administrator can create alert rules
from the Alerts Home Page.

Alerts are created for fixed thresholds, anomalies and early warnings for metrics on
Pages, AJAX calls, and Server Requests. To create alert rules:

1. In the Alerts page, click Alert Rules.

2. Select APM in the Service drop-down to create a rule in Oracle Application
Performance Monitoring.

3. Click Create Alert Rule.

4. Specify the values for your alert rule.

a. Specify a Rule Name.

b. Click Add Description and add a description for the rule.

Chapter 4
Enable Privacy Settings

4-15

c. Click Add Entities. Specify details of the entity in the Add Entities window,
select an Entity Type and click Add.

• Select an entity definition — By Entity Type, By Application, or Individually.

• If you selected Entity Type, choose one or more types of entity.

If you selected Application, choose one or more application. This will help
you create an alert for an entity of a specific application.

If you selected Individually, select an entity type and choose one or more
entities.

Click Add All or Add Selected.

The new entity is listed under Entities. You can add another entity, or edit or
delete an entity.

d. Click Add Condition to specify the trigger for the alert.

e. In the Add Condition window, choose the condition type and specify the
parameters.

i. Fixed Metric: Fixed metric conditions will trigger warning and/or critical
alerts and notifications based on the threshold values you provide in the
condition. They will send the alerts when the system detects that the
threshold has been crossed for a particular metric on a particular entity.

• Choose a Metric on which to base the condition.

• Choose an Operator, specify a Warning Threshold and a Critical
Threshold.

• Specify a time in the Generate alerts when the metric is outside the
specified threshold for __ minutes field and click Add.

ii. Anomaly: Anomaly conditions will trigger alerts and related notifications
when the system detects anomalous behavior deviations from the
historical baseline.

• Choose a Metric on which to base the condition.

• Click Add.

iii. Early Warning: Early warning conditions will trigger a warning alert
when, based on historical performance, the system predicts the provided
threshold will be crossed in the future.

• Choose a Metric on which to base the condition.

• Choose an Operator and specify a Warning Threshold.

• Click Add.

The condition is listed in the Alert Conditions list. You can add another
condition, or edit or delete a condition.

f. Optionally, provide one or more Email addresses to which email notifications
will be sent when the alert gets created.

g. Optionally, provide one or more User Names to which mobile notifications will
be sent when the alert gets created.

5. Click Save.

Chapter 4
Create Alert Rules

4-16

Your new alert rule is displayed in the Alert Rules page. If an event that matches the
listed specifications occurs, an alert is displayed in the Alerts page. You can click the
alert message or the entity in the alert to view details.

Monitor a Web Application through Servlet Monitoring
Oracle Application Performance Monitoring is capable of monitoring Java web
applications by instrumenting the application's Filters and Servlets, through Servlet
Monitoring.

When a request is made to a web application / Servlet, a Server Request will be
created with type SERVLET. The name of this Server Request will be the request URL
path, without the schema, port, host, and query parameters.

For example, if a user calls http://localhost:7654/contextRoot/test.jspx?
param1=value1¶m2=value2, the default Server Request name will be /
contextRoot/test.jspx.

Topics:

• Frameworks

• Special Cases

• Configuring Servlet Monitoring

• Browser Agent Configuration

Frameworks

Servlet Monitoring detects some popular UI frameworks automatically and appends
the name of the framework to the Server Request type. For example, if the framework
detected is JSF, the Server Request type will be SERVLET_JSF. Here is the list of
frameworks that are detected:

• STRUTS1

• STRUTS2

• JSF

• SPRING_MVC

• JERSEY

• APACHE_CXF

• RESTEASY

• APACHE_WINK

• RESTLET

• LIFERAY

• Oracle ADF-UI

Note: For the framework Oracle ADF-UI, the Server Request type will be
SERVLET_ADF_UI.

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-17

Special Cases

There are two special Servlet related Server Requests that are used to prevent an
excessive number of unique Server Requests.

• Not-Found: Groups together Server Requests that resulted in a HTTP 404 (Not
Found) response status.

• Invalid-URL: Groups together Server Requests that resulted in a HTTP 500
response status due to using an invalid URL. For example, you will see this Server
Request if the following Servlet frameworks are used with invalid URLs:

– JSF (JavaServer Faces) 2.x

– Struts 1.x

Configuring Servlet Monitoring

You can configure Servlet Monitoring to prevent monitoring of certain pages/resources
in your application.

Without a configuration, Servlet Monitoring would monitor all requests to the web
application. In many cases, however, you may not want to monitor all requests.
For example, you might not want to monitor requests for static resources such as
images and HTML files. For this reason, there is a default servlet configuration that is
configured to not monitor requests with the following file extensions: bmp, css, png,
swz, jar, htm, html, dtd, mpeg, jpg, dat, mpg, mid, properties, js, ico,
class, tif, gif, jpeg, swf, cur, and woff. This selective monitoring is specified
by way of a snippet of JSON configuration code that appears in the default servlet
configuration:

{
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur", ".woff"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal", "/empbs"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default",
 "patternReplacements" : [
 {"patternString" : "[0-9][0-9][0-9][0-9][:-][01]?[0-9][:-]
[0-9]?[0-9](T)?", "replaceString" : "*$1"},
 {"patternString" : "[012]?[0-9]:[0-9][0-9]:[0-9][0-9](Z)?",
"replaceString" : "*$1"},
 {"patternString" : "/_/.*", "replaceString" : "/*"},
 {"patternString" : "/[0-9a-zA-Z_\\.]{14,}[=|-]{1,2}(/|$)",
"replaceString" : "/*$1"},

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-18

 {"patternString" : "([a-fA-F\\._\\:-]*[0-9]+){2,}[a-fA-F_\
\:-]*([/\\.])?", "replaceString" : "*$2"}
]
 }

You can edit this default JSON configuration code in order to control the types
of requests that are monitored. You can also add JSON values to control how
your application's Server Request names are abbreviated for display in the Oracle
Application Performance Monitoring UI (Server Request names are derived from
request URLs).

The servlet configuration can be found in two places:

• <DOMAIN_HOME>/apmagent/config/Servlet.json - If this file is modified, all agents
on this domain will be updated to use the new configuration.

• <DOMAIN_HOME>/apmagent/config/<server-name>/Servlet.json - If this file is
modified, only the agent on that specific server will be updated to use the new
configuration.

After the configuration is changed, you need not restart the application server, as the
agent will automatically detect the change, and update within a minute.

• To see a list of JSON properties that can be used in your configuration code, see
Servlet Configuration Options.

• To see a list of examples of configuration, see Examples of Servlet Configuration.

Browser Agent Configuration

Browser Agent Configuration uses the same format as the Servlet Configuration,
but targets Pages instead of Server Requests. When a Page is excluded, Browser
Injection will not be performed on it, which will cause the Page and its AJAX Calls to
not be monitored. This configuration uses the following options:

• Extension exclusion (extensionGroup and extensionGroups)

• excludedContextRoots

• excludedServletClasses

• excludedServletPackages

• Pattern Matching

The type option determines if the configuration targets Servlet Monitoring or the
Browser Agent. Servlet uses servlet and Browser Agent uses browseragent. For
example, here is the default BrowserAgent.json:

{
 "type" : "browseragent",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar", ".htm",
".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid", ".properties", ".js",
".ico", ".class", ".tif", ".gif", ".jpeg", ".swf", ".cur", ".woff"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal", "/empbs"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-19

"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default"
 }
}

Note the type at the top. In addition, the default browser agent configuration does not
exclude .html by default, since .html is necessary to monitor some web application
frameworks properly (such as Jet).

The Browser Agent configuration can be found in two places:

• <DOMAIN_HOME>/apmagent/config/BrowserAgent.json - If this file is modified, all
agents on this domain will be updated to use the new configuration.

• <DOMAIN_HOME>/apmagent/config/<server-name>/BrowserAgent.json - If this file
is modified, only the agent on that specific server will be updated to use the new
configuration.

If the BrowserAgent.json is removed and the application server is restarted, it will use
the Servlet.json configuration instead.

Servlet Configuration Options
You can specify various servlet configuration options to change how your web
application / servlet is being monitored by Oracle Application Performance Monitoring.

Topics:

• ServletConfiguration

• UrlConfiguration

• ScopeConfiguration

• PatternMatcher

• PatternMapping

• PatternReplacement

• FrameworkOptions

• AdfOptions

ServletConfiguration

The following is the outermost object in the .json file, and represents the
ServletConfiguration class:

{
 "type": "servlet",
 "extensionGroups": {
 "default" : [".htm", ".html", ".dtd", ".mpeg", ".jpg",
".dat"],
 "test" : [".js", "htm", "html"]
 },

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-20

 "excludedContextRoots": ["/console", "/em"],
 "excludedFrameworks": ["JERSEY", "STRUTS1"],
 "excludedServletClasses": ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet"],
 "excludedServletPackages": ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig": {},
 "frameworkConfigs": {
 "ADF_UI" : {},
 "STRUTS2" : {}
 },
 "deploymentConfigs": {
 "/queryRunner" : {},
 "/simpleServlet" : {}
 },
 "urlConfigs": [{}, {}]
}

Here is the list of classes in the above code, and their description.

Class Description

type (String) Indicates the type of JSON configuration. The servlet configuration
uses servlet. The Browser Agent configuration, which uses the same
JSON format uses browseragent.

extensionGroups
(Map)

Key is the group name, value is the array of file extensions (For
example, .jpg, .png, .gif). Extensions that do not start with a "." will
have it added in the agent run-time. The group name is used in the
ScopeConfiguration object.

excludedContextR
oots (Array)

List of context-roots that should not be monitored. Context-roots that do
not start with a "/" will have it added in the agent run-time.

excludedFramewor
ks (Array)

List of frameworks that should not be monitored. You can exclude
any of these frameworks: STRUTS1, STRUTS2, JSF, SPRING_MVC,
JERSEY, APACHE_CXF, RESTEASY, APACHE_WINK, RESTLET,
LIFERAY, ADF_UI. Through the apmUi you can specify which
Server Requests are related to which frameworks based on the type
(SERVLET_FRAMEWORK_NAME).

excludedServletC
lasses (Array)

List of full servlet class names that should not be monitored.

excludedServletP
ackages (Array)

List of servlet Java packages that should not be monitored.

defaultConfig
(Object)

ScopeConfiguration object. This will be used if a request does not
use any of the specified frameworkConfigs, deploymentConfigs, or
urlConfigs.

frameworkConfigs
(Map)

Key is framework name. Value is ScopeConfiguration object.
Currently supported framework names: STRUTS1, STRUTS2,
JSF, SPRING_MVC, GWT, JERSEY, APACHE_CXF, RESTEASY,
APACHE_WINK, RESTLET, LIFERAY, ADF_UI. This can be used to
create a configuration that targets all requests that are from a particular
framework. deploymentConfigs and urlConfigs take precedence
over this.

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-21

Class Description

deploymentConfig
s (Map)

Key is context-root. Value is ScopeConfiguration object. This can be
used to create a configuration that targets all requests that are for a
particular deployment/application. urlConfigs takes precedence over
this.

urlConfigs (Array) List of UrlConfiguration objects. This can be used to create a
configuration that targets all requests with URLs that fit a particular
regex pattern.

UrlConfiguration

The UrlConfiguration is used to create ScopeConfigurations that are based on a
regex pattern, instead of a framework name or context-root.

Note:

This check is run on every request. Use this option only if the context root is
not sufficient.

{
 "patternString" : ".*/test/.*",
 "config" : {}
}

Class Description

patternString
(String)

A regex pattern. This is used to determine if the specified config
should be used.

config (Object) ScopeConfiguration object.

ScopeConfiguration

ScopeConfiguration is the configuration that targets a specific scope (framework,
deployment, URL).

{
 "extensionGroup" : "default",
 "patternMatching" : [{}, {}],
 "patternMappings" : [{}, {}],
 "patternReplacements" : [{}, {}],
 "frameworkOptions" : {},
 "parameterGroups" : [["param5"], ["param1", "param4",
"param2"], ["param3", "param1", "param2"], ["param6"]],
 "headerGroups" : [["header5"], ["header1", "header4",
"header2"], ["header3", "header1", "header2"], ["header6"]]
}

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-22

Class Description

extensionGroup
(String)

Specifies which extension group this particular scope uses. All
extensions in the specified extension group will be excluded.

patternMatching
(Array)

List of PatternMatcher objects. It works on a match first system. The
first pattern that matches the URL determines if it is excluded or not.

patternMappings
(Array)

List of PatternMapping objects.

patternReplaceme
nts (Array)

List of PatternReplacement objects.

frameworkOptions
(Object)

FrameworkOptions object.

parameterGroups
(Array)

Array of arrays. Each group contains a list of parameters (GET or
POST). Servlet Monitoring will check each group in the order specified.
If all of the parameters in the group are present, it will add them
all to the Server Request name in a format similar to query strings
(?param1=value1¶m2=value2). If at least one is missing, it will
move onto the next group.

headerGroups
(Array)

Array of arrays. Each group contains a list of HTTP request header
names. Servlet Monitoring will check each group in the order specified.
If all of the headers in the group are present, it will add them all to
the Server Request name in the following format: [header1=value1]
[header2=value2]

PatternMatcher

This is used to help filter out particular requests by using URL-based regex patterns.

{
 "patternString" : ".*/patternMatching/discover/this",
 "excluded" : false,
 "includeQueryString": false
}

Class Description

patternString
(String)

A regex pattern.

excluded (Boolean) If true, the URL will be excluded if it matches this pattern. If false, the
URL will be monitored if it matches this pattern. Defaults to false if
unspecified.

includeQueryStri
ng (Boolean)

If true, the query string at the end of the URL will be included when
applying the pattern. Defaults to false if unspecified.

PatternMapping

This is used to help alter request URLs that match a specified URL-based regex
pattern. In particular, it helps group REST-like URLs into a single Server Request.

{
 "patternString" : ".*/patternMapping/convertThis",
 "formatString" : "/patternMapping/intoThis",
 "formatType" : "BASIC",

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-23

 "includeQueryString" : false
}

Class Description

patternString
(String)

A regex pattern.

formatString
(String)

Used to create a MessageFormat object. You can specify "{#}" in a
format to insert particular values. These values are determined by the
formatType setting.

formatType
(String)

Determines how the Server Request name is formatted. Options are:
BASIC, POSITION, and GROUP.

includeQueryStri
ng (Boolean)

If true, the query string at the end of the URL will
be included when applying the pattern. Defaults to false if
unspecified. For example, in the URL http://localhost:7654/
simpleServlet/test/1/2/3?param1=value1¶m2=value2,
only /simpleServlet/test/1/2/3 will be applied to the regex
pattern by default. If includeQueryString is true, it will include ?
param1=value1¶m2=value2.

PatternReplacement

This is used to help alter request URLs that contain one or more specified regex
patterns. All specified PatternReplacements will be applied to the request URL. This is
useful for removing common patterns across multiple URL formats, such as dates, IDs,
and numbers.

{
 "patternString" : "/[0-9]+/",
 "replaceString" : "/num/"
}

Class Description

patternString
(String)

A regex pattern.

replaceString
(String)

Used to replace each occurrence the regex pattern matches.
Note that this utilizes Matcher.replaceAll, so if the regex pattern
has a group specified, it can be referenced here using $1, $2, etc.

FrameworkOptions

This is a collection of framework specific options. Currently, options are available only
for ADF-UI.

{
 "adf": {}
}

Class Description

adf (Object) AdfOptions object

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-24

AdfOptions

ADF-UI specific configuration options. Some ADF-UI applications are setup to run
under a single page, which can cause all requests to fall under a single Server
Request by default. These options will help you split apart the Server Request.

All the options utilize the oracle.adf.view.rich.monitoring.UserActivityInfo
parameter. The available options will append the following three properties from the
UserActivityInfo: regionViewId, componentClientId, and eventType.

If all the three properties are enabled, the format/order will be:

/server/request/name/{regionViewId}/{componentClientId}/{eventType}

{
 "appendRegionViewId": true,
 "removeActivityId": false,
 "componentClientIds" : ["r1:0:sayHello", "r2:0:sayGoodbye"],
 "eventTypes" : ["action", "dialog"],
 "appendAllComponentClientIds": false,
 "appendAllEventTypes": false
}

Class Description

appendRegionView
Id (Boolean)

Appends the regionViewId value from UserActivityInfo to the
Server Request name if true.

removeActivityId
(Boolean)

regionViewId typically has the following format: taskFlowName/
activityId. If removeActivityId is true, the /activityId will be
stripped out. appendRegionViewId must also be true.

componentClientI
ds (Array)

List of componentClientIds that, if detected, will be appended onto
the end of the Server Request name. Specified componentClientIds
will be stripped of sections that contain only numbers. For example,
r1:0:sayHello will be reduced to r1:sayHello.

eventTypes (Array) List of eventTypes that, if detected, will be appended onto the end of
the Server Request name.

appendAllCompone
ntClientIds
(Boolean)

Appends the componentClientId value from UserActivityInfo to
the Server Request name if true. Overrides componentClientIds.

appendAllEventTy
pes (Boolean)

Appends the eventType value from UserActivityInfo to the Server
Request name if true. Overrides eventTypes.

By default, an ADF-UI application will not provide the
oracle.adf.view.rich.monitoring.UserActivityInfo parameter. To enable it, add
the following context-param to the application's web.xml:

<context-param>
 <description>
 This parameter notifies ADF Faces that the ExecutionContextProvider
 service provider is enabled. When enabled, this will start
 monitoring and aggregating user activity information for the client
 initiated requests. By default, this param is not set or is false.
 </description>
 <param-name>

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-25

 oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER
 </param-name>
 <param-value>true</param-value>
</context-param>

Examples of Servlet Configuration
Given below are examples of various configuration options.

• Multiple Scopes

• Pattern Matching

• Pattern Mapping

• Pattern Replacement

• Partition By Parameter/Header

• ADF-UI

Multiple Scopes

If multiple scopes are configured, ScopeConfigurations are checked in the following
order, and work on a match-first system: url > deployment > framework > default.
The following actions occur on the agent:

1. Request is picked up by Servlet Monitoring.

2. Request URL is checked against any specified urlConfig pattern strings. If a
match is found, that ScopeConfiguration will be used. Otherwise, the request
moves on.

3. Then, the request moves onto deployments. If the context-root matches any
specified under deploymentConfigs, that ScopeConfiguration will be used.
Otherwise, the request moves on.

4. Next, the request moves onto frameworks. If a framework is detected, and it
matches any specified under frameworkConfigs, that ScopeConfiguration will be
used. Otherwise, the request moves on.

5. Finally, the request will use the defaultConfig if nothing else matched.

Below is an example of multiple scopes:

{
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur", ".woff"],
 "framework" : [".json"],
 "deployment" : [".docx"],
 "url" : [".fake"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal", "/empbs"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-26

"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default"
 },
 "frameworkConfigs": {
 "ADF_UI" : {
 "extensionGroup" : "framework"
 }
 },
 "deploymentConfigs": {
 "/simpleServlet" : {
 "extensionGroup" : "deployment"
 }
 },
 "urlConfigs": [{
 "patternString" : ".*/specialCase/.*",
 "config" : {
 "extensionGroup" : "url"
 }
 }]
}

Here are some example URLs and the result of the above configuration:

1. http://localhost:7654/simpleServlet/test (context-root: /
simpleServlet, framework: none)

• /simpleServlet/test does not fit the .*/specialCase/.* pattern, so that is
skipped.

• The deploymentConfig settings are specified for /simpleServlet. For this
request, the deployment extensionGroup will be used.

• Request is not excluded because it doesn't end with .docx.

2. http://localhost:7654/a/faces/specialCase/test.fake (context-root: /a,
framework: ADF-UI)

• /a/b/c/specialCase/test.fake fits the .*/specialCase/.* pattern. For this
request, the url extensionGroup will be used.

• Even though the framework of the request is ADF-UI (which has a
frameworkConfig), urlConfig was matched first, so it takes priority.

• Request ends up getting excluded because .fake is in the url
extensionGroup.

3. http://localhost:7654/b/faces/another/case.fake (context-root: /b,
framework: ADF-UI)

• /b/faces/another/case.fake doesn't match the urlConfig pattern.

• It also doesn't have the context-root /simpleServlet.

• It does, however, use the ADF-UI framework. For this request, the framework
extensionGroup will be used.

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-27

• Request is not excluded because it doesn't end with .json.

4. http://localhost:1234/simpleServlet/test (context-root: /, framework:
none)

• /simpleServlet/test doesn't match the urlConfig's pattern.

• This is an important step - While the URL does start with the /simpleServlet,
it is not the context-root. In this scenario, the deployment is using a blank
context-root ("/"). As a result, it doesn't match the deploymentConfig.

• It also doesn't match the frameworkConfig.

• Since it did not match other configurations, the defaultConfig is used. For
this request, the "default" extensionGroup will be used.

• Request is not excluded because it doesn't end with any of the extensions
listed in the default group.

Pattern Matching

Pattern matching helps filter out requests that you do not want to monitor.

{
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default",
 "patternMatching" : [{
 "patternString" : ".*/patternMatching/discover/this",
 "excluded" : false
 }, {
 "patternString" : ".*/patternMatching/and/discover/this",
 "excluded" : false
 }, {
 "patternString" : ".*",
 "excluded" : true
 }]
 }
}

Servlet Monitoring will step through each pattern in the order specified. It uses
match-first logic. For example, if the request URL is http://localhost:7654/

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-28

simpleServlet/patternMatching/and/discover/this and we use the configuration
above:

• /simpleServlet/patternMatching/and/discover/this would be applied to the
first pattern, and fail.

• It would then be applied to the next pattern. This time it matches. This particular
pattern has excluded set to false (that is, included). This means that the request
will be monitored.

• Despite the third pattern excluding everything, it was already matched against the
second pattern, so the process is complete.

With the way the three patterns are setup, only URLs that end with /
patternMatching/discover/this and /patternMatching/and/discover/this would
be monitored. Every other request would be excluded by the third pattern.

Note:

If a pattern fails to match any of the specified patterns, it will be considered
included.

Pattern Mapping

Pattern mapping helps manipulate request URLs into more manageable Server
Request names in Oracle Application Performance Monitoring. This is handy for
handling things such as REST URLs, which commonly have parameters in the URL
itself.

{
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default",
 "patternMappings" : [{
 "patternString" : ".*/patternMapping/convertThis",
 "formatString" : "/patternMapping/intoThis",
 "formatType" : "BASIC"
 }, {
 "patternString" : ".*/patternMapping/this/is/a/path",
 "formatString" : "/{2}/{5}/{6}/{3}/{4}",
 "formatType" : "POSITION"

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-29

 }, {
 "patternString" : ".*/patternMapping/regexGroup/(.*)/blank/
(.*)",
 "formatString" : "/patternMapping/{2}/{1}",
 "formatType" : "GROUP"
 }]
 }
}

For example, let's say there is a REST service that accepts the following URL
format: http://localhost:7654/calculator/add/{value1}/{value2}. By default all
variations of value1 and value2 will be its own Server Request. A pattern mapping can
be created to merge all of these into a single /calculator/add Server Request.

In the above example, there are three pattern mapping examples, which use different
formatType values: BASIC, POSITION, and GROUP.

• Example 1 (BASIC) is simple: any URLs that match the pattern will always use /
patternMapping/intoThis as the Server Request name.

• Example 2 (POSITION) is a bit more complicated. In the URL path /cr/
patternMapping/this/is/a/path this is the URL position for each part of the
URL:

1. cr

2. patternMapping

3. this

4. is

5. a

6. path

When this is applied to the formatString, we get /patternMapping/a/path/
this/is.

• Example 3 (GROUP) uses Regex groups. In the URL path /cr/patternMapping/
regexGroup/example/blank/test, group 1 will be example, and group 2 will be
test. When applied to the format, this becomes /patternMapping/test/example.

Pattern Replacement

Pattern replacement helps manipulate request URLs into more manageable Server
Request names in Oracle Application Performance Monitoring. This is handy for
handling common patterns that may appear in URLs such as IDs (numbers, Hex,
Base64), Dates, Times, etc.

 {
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur", ".woff"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-30

"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal", "/empbs"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default",
 "patternReplacements" : [
 {"patternString" : "/[0-9]+/", "replaceString" : "/num/"},
 {"patternString" : "test([A-Z])", "replaceString" : "t$1"}
]
 }
}

For example, let's use the following URL: http://localhost:7654/testA/1234/
testB/4321/testC

The above configuration specified two patternReplacements, which will be applied to
the URL path in the order specified.

Start: /testA/1234/testB/4321/testC First replacement: /testA/num/testB/num/
testC Second replacement: /tA/num/tB/num/tC

The Server Request name will end up being /tA/num/tB/num/tC for that URL.

Partition By Parameter/Header

Here are a few example request URLs, and how the configuration alters them:

{
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/
bea_wls_deployment_internal"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default",
 "parameterGroups" : [["param5"], ["param1", "param4",
"param2"], ["param3", "param1", "param2"], ["param6"]],
 "headerGroups" : [["header5"], ["header1", "header4",
"header2"], ["header3", "header1", "header2"], ["header6"]]
 }
}

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-31

1. http://localhost:7654/simpleServlet/testingParams?
param1=value1¶m2=value2¶m3=value3 (no headers)

• The first parameter group is checked. param5 is not set, so the group is
skipped.

• The second parameter group is checked. param1 is set, but param4 is not, so
the group is skipped (doesn't reach the check for param2).

• The third parameter group is checked. param3, param1, and param2 are all set,
so this group will be used.

• The values of all three parameters are acquired and placed in the final Server
Request name (in the order specified): /simpleServlet/testingParams?
param3=value3¶m1=value1¶m2=value2

2. http://localhost:7654/simpleServlet/testingParams?param5=value5
(Headers: header6 = headerValue6)

• The first parameter group is checked. param5 is set, so this group will be
used.

• The first three header groups are skipped because none of them are set.

• The final group is checked. header6 is set, so this group will be used.

• The values of both the parameter and header are acquired and place in the
final Server Request name: /simpleServlet/testingParams?param5=value5
[header6=headerValue6]

3. http://localhost:7654/simpleServlet/testingParams (Headers:
header1=headerValue1, header2=headerValue2, header3=headerValue3,
header4=headerValue4)

• None of the parameter groups are used.

• The first header group is checked. header5 is not set, so the group is skipped.

• The second header group is checked. All three headers (1, 4, and 2) are
present, so this group will be used.

• Despite the third header group having three present headers (3, and 1, and 2),
we already found a match, so it is not checked.

• The values of all three headers are acquired and placed in the final Server
Request name (in the order specified): /simpleSerlvet/testingParams
[header1=headerValue1][header4=headerValue4][header2=headerValue2]

ADF-UI

Example:

{
 "type" : "servlet",
 "extensionGroups" : {
 "default" : [".bmp", ".css", ".png", ".swz", ".jar",
".htm", ".html", ".dtd", ".mpeg", ".jpg", ".dat", ".mpg", ".mid",
".properties", ".js", ".ico", ".class", ".tif", ".gif", ".jpeg",
".swf", ".cur"]
 },
 "excludedContextRoots" : ["/bea_wls_management_internal2",
"/bea_wls_cluster_internal", "/bea_wls_internal", "/soa-infra", "/

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-32

bea_wls_deployment_internal"],
 "excludedServletClasses" : ["com.siebel.analytics.web.SAWBridge",
"oracle.j2ee.ws.server.provider.ProviderServlet",
"oracle.webcenter.content.http.GetHandlerServlet"],
 "excludedServletPackages" : ["weblogic.wsee.jaxws.",
"weblogic.wsee.server.servlet."],
 "defaultConfig" : {
 "extensionGroup" : "default",
 "frameworkOptions" : {
 "adf": {
 "appendRegionViewId": true,
 "removeActivityId": true,
 "appendAllComponentClientIds": true,
 "appendAllEventTypes": true
 }
 }
 }
}

Here is an example of the oracle.adf.view.rich.monitoring.UserActivityInfo
parameter:

<m xmlns="http://oracle.com/richClient/comm">
 <k v="previous">
 <m>
 <k v="_contextId">

<s>bf24897846148f26:7253b46:139c113330b:-8000-00000000000005a6</s>
 </k>
 <k v="_clientStartTime">
 <s>1347578879624</s>
 </k>
 <k v="_clientEndTime">
 <s>1347578898966</s>
 </k>
 </m>
 </k>
 <k v="secondary">
 <m>
 <k v="_contextId">

<s>bf24897846148f26:7253b46:139c113330b:-8000-00000000000005a6:_adfStrea
ming</s>
 </k>
 <k v="_parentContextId">

<s>bf24897846148f26:7253b46:139c113330b:-8000-00000000000005a6</s>
 </k>
 </m>
 </k>
 <k v="primary">
 <m>
 <k v="_clientStartTime">
 <s>1347578919325</s>

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-33

 </k>
 <k v="_eventInfo">
 <m>
 <k v="eventType">
 <s>action</s>
 </k>
 <k v="componentClientId">
 <s>ptemp:r1:1:tbb1:1:_afrButtonStopNavItem</s>
 </k>
 <k v="componentType">
 <s>oracle.adf.RichCommandTrainStop</s>
 </k>
 <k v="componentDisplayName"/>
 <k v="regionViewId">

 <s>/customer-registration-task-flow/defineAddresses</s>

 </k>
 <k v="regionViewName">

 <s>ptemp:r1</s>

 </k>
 </m>
 </k>
 <k v="_pprTargets">
 <s>ptemp:r1</s>
 </k>
 </m>
 </k>
</m>

Servlet Monitoring supports both the new and old formats of UserActivityInfo (newer
format is more optimized, replacing longer strings with shorter versions. For example:
regionViewId --> rvd, componentClientId --> cld, etc.) If the URL was http://
localhost:7654/adfTest/faces/test.jspx with the above UserActivityInfo and
servlet configuration, the following would occur:

• appendRegionViewId is true, so the regionViewId value is used. In this case, it
is /customer-registration-task-flow/defineAddresses.

• removeActivityId is also true. The activity id in this case is the /
defineAddresses part of the regionViewId. The result is now /customer-
registration-task-flow.

• Next, appendAllComponentClientIds is true, so the componentClientId value
is used. In this case, it is ptemp:r1:1:tbb1:1:_afrButtonStopNavItem. The :
{number}: sections of the componentClientId are removed, resulting in
ptemp:r1:tbb1:_afrButtonStopNavItem.

• Finally, appendAllEventTypes is true, so the eventType value is used. In this case,
it is action.

• The three values are now appended onto the end of the Server
Request name (separated by "/"). The final Server Request name

Chapter 4
Monitor a Web Application through Servlet Monitoring

4-34

ends up being /adfTest/faces/test.jspx/customer-registration-task- flow/
ptemp:r1:tbb1:_afrButtonStopNavItem/action.

Set Up Custom Instrumentation
Use Custom Instrumentation to add monitoring capabilities to technologies not
supported by Oracle Application Performance Monitoring.

Why Use Custom Instrumentation?

• Technology used in application is not supported by Oracle Application
Performance Monitoring.

• To obtain finer granularity of application performance metric breakdown.

Custom Instrumentation Guidelines

Custom Instrumentation is enabled by having the file custom-pointcuts.properties
in Oracle Application Performance Monitoring Agent root config directory or appserver
specific config directory.

For example, if the agent is provisioned to <weblogic_domain_home>, then
custom-pointcuts.properties is automatically read from the location below:

<weblogic_domain_home>/apmagent/config/<appserver_name>/custom-
pointcuts.properties

If the file name of custom pointcuts properties is other than custom-
pointcuts.properties or it is placed in any directory other than appserver specific
config directories, then add the following property to the JVM startup argument with
the path to pointcuts file to enable custom instrumentation:

oracle.apmaas.agent.custom.pointcuts=<path_to_custom_pointcuts_file>

If Java system property is added to java executable argument, it is prefixed with -D.
For example:

-Doracle.apmaas.agent.custom.pointcuts=<path_to_custom_pointcuts_file>

Note:

Log info on custom pointcut:
When agent found and read custom pointcuts properties file, a message gets
printed to standard out:

"APMCS agent - INFO: Reading custom pointcut file [file=<path/to/custom/
pointcuts/properties/file>]"

Enable Method Invocation

To enable Method Invocation in Custom Instrumentation, follow these steps:

Chapter 4
Set Up Custom Instrumentation

4-35

1. Open the AgentStartup.properties file:

<weblogic_domain_home>/apmagent/config/<appserver_name>/
AgentStartup.properties

2. Enable Method Invocation by editing the following line:

oracle.apmaas.agent.probe.custom.enableMethodInvocation=true

Use the Thread Profiler
Use the thread profiler to identify key classes and methods you want to include in
Custom Instrumentation.

Oracle Application Performance Monitoring includes a Thread Profiler to retrieve
thread dump of JVM the APM Agent is running in. The steps below go over how
to get the stack trace of an appserver monitored by Oracle Application Performance
Monitoring.

If the classes and methods have already been identified, proceed to enable Custom
Instrumentation. The full class and methods names will be needed.

1. In the Oracle Management Cloud menu, select Diagnostic Snapshots, then click
Thread Profiles.

2. Click Start Thread Profiler.

3. Fill in the Name field and select and appserver for thread profiling. Click Start
Profiler.

The profiler will start in the pending state. Wait for the specified duration and
refresh the page.

4. Click the profile name to show the Thread Profile Summary.

The Thread Profile Summary includes the class and methods found from the
profiling. The full class and method names will be needed to enable Custom
Instrumentation.

Enable Custom Instrumentation
Enable Custom Instrumentation after the classes and methods that need to be
monitored are identified.

1. Open a new terminal window in your host monitored by APM agent.

2. Navigate to the APM configuration files:

$ cd /<agent_installation>/apmagent/config/<appserver_name>

3. Create a new file called: custom-pointcuts.properties

4. Add the following properties for each of the classes and methods to the file:

• pointcut-<identity>.class=<class name>

• pointcut-<identity>.method=<method name>

Chapter 4
Set Up Custom Instrumentation

4-36

Where: <identity> is an arbitrary unique name (same name for all properties of the
same pointcut) to identify a pointcut.

<class name> and <method name> are the full qualified class name and method
name obtained from thread profiling.

Repeat step 4 for each of the classes and methods to be monitored.

5. Save the file. Restart the appserver to enable custom instrumentation.

Example 4-1 custom-pointcuts.properties file

pointcut-scheduler.class=myapp.scheduler.MySchedule
pointcut-scheduler.method=startProcess

This example file adds a scheduler identity for class myapp and method
startProcess.

Custom Instrumentation Reference

Syntax

Property Name Required Description Example

pointcut-<identity>.class YES Full qualified class name
to be instrumented. Only
the specified class is
instrumented. Sub class of
the specified class can be
done with name modifier
(See Class Modifier).
Also class name support
willcard modifier (See
Class Modifier).

myapp.HelloWorld

myapp.HelloAll

pointcut-<identity>.method YES Name of method to
be instrumented. Method
name support modifier
(See Method Modifier).

sayHello

sayHi

pointcut-
<identity>.paramTypes

NO Comma separated full
qualified class name
of parameters of the
method. If this property
is not specified, all
methods having the same
specified method name of
the specified class are
instrumented. paramTypes
property supports arbitrarily
trailing classes (See
ParaTypes Modifier)

java.lang.String

javax.servlet.Servlet

Chapter 4
Set Up Custom Instrumentation

4-37

Property Name Required Description Example

pointcut-
<identity>.operationName

NO Name of operation.
By default, instrumented
server request name
or operation name is
generated by class name
and method name. The
default can be overridden
by this property with a
custom name.

Hello World

Section Modifier

Type Modifier Description Example

wildcard * Character to match any
character sequence of
class name.
If class name property
is the wildcard
character alone, Custom
Instrumentation will
instrument all classes
which can cause significant
performance impact.

pointcut-hello.class
= myapp.*

pointcut-hello.class
= myapp.Hello*

subclass + Prefix class name with + to
include subclasses of the
specified class.

pointcut-hello.class
=
+myapp.HelloInterface

Method Modifier

Type Modifier Description Examples

wildcard * Character to match
any character
sequence of method
name. If method
name property is
the wildcard character
alone, Custom
Instrumentation will
instrument all methods
of specified class.

pointcut-
hello.method = *

pointcut-
hello.method =
say*

Chapter 4
Set Up Custom Instrumentation

4-38

Parameter Type Modifier

Type Modifier Description Examples

any trailing classes ... To represent any number of
trailing param classes.

pointcut-
hello.paramTypes
= ...
pointcut-
hello.paramTypes =
java.lang.String, ...

pointcut-
hello.paramTypes
= java.lang.String,
int, ...

Operation Name Construction

Variable Description

{class} Simple name of Instrumented class.

{classFQN} Full qualified name of instrumented class.

{method} Instrumented method name.

{paramTypes} Comma separated mehod parameters in
simple class names.

{paramTypesFQN} Comma separated mehod parameters in full
qualified class names.

Example 4-2 Operation Name Construction

pointcut-hello.class = myapp.HelloWorld
pointcut-hello.method = sayHello

Here are some examples of operation name constructions:
pointcut-hello.operationName = Say Hello
pointcut-hello.operationName = Say Hello with Name
pointcut-hello.operationName = {class} {method} to everyone
pointcut-hello.operationName = {classFQN}.{method}
pointcut-hello.operationName = {classFQN}.{method}({paramTypes})

Sample:
pointcut-hello.class = myapp.HelloWorld
pointcut-hello.method = sayHello

pointcut-hi.class = myapp.HelloWorld
pointcut-hi.method = sayHi*
pointcut-hi.operationName = Say Hi

pointcut-hey.class = myapp.HeyWorld
pointcut-hey.method = sayHello
pointcut-hey.paramTypes = java.lang.String
pointcut-hey.operationName = Say Hello with Name

pointcut-helloAll.class = myapp.HelloWorld

Chapter 4
Set Up Custom Instrumentation

4-39

pointcut-helloAll.method = sayHello
pointcut-helloAll.paramTypes = java.lang.String[]
pointcut-helloAll.operationName = {classFQN}.{method} to All

Avoid invalid custom pointcut configuration:

If the custom-pointcuts.properties file is not constructed as per the syntax
given above or if the pointcut entries are not configured properly, then custom
instrumentation will be ignored and there may not be any message printed to standard
output, or logged in any log file.

Common invalid syntax in custom pointcuts properties:

• Mismatch unique pointcut name/id of an entry set

• Reuse of pointcut name/id between multiple entry set

• Typo in class and method names

Example 4-3 Invalid custom.pointcuts.properties files

pointcut-hello.class=myapp.HelloWorld

pointcut-hello1.method=sayHello <== mismatch unique pointcut name

pointcut-hello.class=myapp.HelloWorld <== reuse of 'hello' unique
name as previous entry set.

pointcut-hello.method=sayHelloToAll <== reuse of 'hello' unique name
as previous entry set.

pointcut-helloyou.class = myapp.HelloWor <== typo in class name

pointcut-helloyou.method = sayHelloYou

Chapter 4
Set Up Custom Instrumentation

4-40

A
Technologies Supported by Oracle
Application Performance Monitoring

Oracle Application Performance Monitoring can monitor applications that run on
Java, .Net, Node.js and Ruby.

For the latest and complete support matrix, see Support Note ID 2092363.1.

A-1

B
Supported Selenium Commands in
Synthetic Tests

Here's a list of supported Selenium commands that you can use for recording scripted
actions for your synthetic tests.

Supported Selenium Commands:

• open

• click

• clickAt

• doubleClick

• doubleClickAt

• sendKeys

• type

• setSpeed

• storeText

• storeTitle

• runScript

• submit

• store

• echo

• mouseOver

• mouseOut

• mouseDownAt

• mouseMoveAt

• mouseUpAt

• selectFrame

• select

• verifyText

• verifyTitle

• verifyNotText

• assertText

• assertNotText

• assertTitle

B-1

• setWindowSize

For description of the above commands, refer to Selenium documentation.

Appendix B

B-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	1 Introduction to Oracle Application Performance Monitoring
	About Oracle Application Performance Monitoring
	Roles in Oracle Application Performance Monitoring
	Read This Before You Begin

	2 Isolate and Diagnose Application Performance Issues
	Typical Workflow for Isolating Application Performance Issues
	View Alerts
	Troubleshoot a Slow Page
	Drill Down to Server Request Details
	Find Issues in Associated Tiers
	Find Issues in Pages Using Geomaps
	Drill Down to Related Logs
	Isolate Issues through Diagrams

	Typical Workflow for Using Synthetic Monitoring
	Define Synthetic Tests
	Monitor Application Performance through Synthetic Tests
	Create Alert Rules Based on Synthetic Tests
	Troubleshoot Synthetic Tests

	3 Monitor Application Performance
	Typical Workflow for Monitoring Application Performance
	Monitor End User Experience
	Monitor Page Performance
	Monitor Ajax Calls
	Monitor End User Experience through Sessions

	Monitor Server Request Performance
	View Metrics for a Group of Server Requests

	Monitor All Objects Related to an Application
	Define APM Applications
	Use APM Applications

	Monitoring End User Experience of a Web Application
	Define APM Web Applications
	Additional Reporting Classification

	Use APM Web Applications
	View Web Application Metrics
	View Web Application Pages

	View Detailed Information about a Server Request Instance
	Monitor the Performance of an Application Server
	Collect Thread Profiler Data for an Application Server
	Collect JFR Data for an Application Server
	Viewing and Downloading JFR Dump
	Disabling JFR Dump

	Collect Class Histogram for an Application Server
	Disabling Class Histogram

	Collect Heap Dump for an Application Server
	Disabling Heap Dump

	Integrate Application Performance Monitoring Events with JFR

	Create and Manage Filters

	4 Administer Oracle Application Performance Monitoring
	Typical Tasks for Administering Oracle Application Performance Monitoring
	Customize APDEX Settings
	Associate Entities Using Tags
	Deleting Tags

	Associate Application Servers to a Database Automatically
	Define Locations for Synthetic Tests
	Migrating Synthetic Tests to Firefox 61

	Configure Errors and Error Messages
	Enable Privacy Settings
	Create Alert Rules
	Monitor a Web Application through Servlet Monitoring
	Servlet Configuration Options
	Examples of Servlet Configuration

	Set Up Custom Instrumentation
	Use the Thread Profiler
	Enable Custom Instrumentation
	Custom Instrumentation Reference

	A Technologies Supported by Oracle Application Performance Monitoring
	B Supported Selenium Commands in Synthetic Tests

