
Oracle® Cloud
Developing Applications with Oracle Mobile
Hub

Release 20.2.3
F16462-07
July 2021

Oracle Cloud Developing Applications with Oracle Mobile Hub, Release 20.2.3

F16462-07

Copyright © 2018, 2021, Oracle and/or its affiliates.

Primary Authors: Patrick Keegan, John Bassett, Chris Kutler, Catherine Pickersgill, Susan Post, Jennifer
Shipman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiv

Documentation Accessibility xxiv

Conventions xxiv

1 A Developer’s View of Oracle Mobile Hub

Client SDKs 1-1

Features for Your Apps 1-1

Custom APIs 1-2

Backends 1-2

Security 1-3

2 Android Apps

Get the SDK 2-1

Create a Backend 2-1

Add the SDK 2-1

Configure SDK Properties 2-2

Authentication Properties 2-4

OAuth 2-4

HTTP Basic 2-5

Token Exchange 2-5

Facebook Login 2-5

Configure Your Android Manifest File 2-6

Call Mobile APIs 2-7

Load the Backend's Configuration 2-7

Authenticate and Log In 2-7

OAuth Consumer 2-7

SSO with a Third-Party Token 2-8

SSO with a Third-Party Token — Staying Logged In 2-9

HTTP Basic 2-10

Facebook 2-11

iii

Call Platform APIs 2-12

Call Custom APIs 2-12

Libraries and Dependencies 2-13

Next Steps 2-14

3 iOS Applications

Get SDK 3-1

Create a Backend 3-1

Add the SDK 3-1

Configure SDK Properties 3-2

Authentication Properties 3-4

OAuth 3-4

HTTP Basic 3-5

Token Exchange 3-5

Call Mobile APIs 3-6

Load the Backend's Configuration 3-6

Authenticate and Log In 3-6

OAuth Consumer and HTTP Basic 3-6

SSO with a Third-Party Token 3-7

SSO with a Third-Party Token — Staying Logged In 3-7

Call Platform APIs 3-8

Call Custom APIs 3-9

Libraries and Dependencies 3-9

Next Steps 3-10

4 Cordova Applications

Get the SDK 4-1

Create a Backend 4-1

Add the SDK 4-1

Add Support for Push Notifications 4-2

Configure SDK Properties 4-3

Authentication Properties 4-5

OAuth 4-5

HTTP Basic 4-5

Token Exchange 4-6

Facebook Login 4-6

Call Mobile APIs 4-7

Load the Backend's Configuration 4-7

Authenticate and Log In 4-7

iv

OAuth and HTTP Basic 4-8

SSO with a Third-Party Token 4-8

Facebook 4-8

Secure Browser-Based Apps Against Cross-Site Request Forgery Attacks 4-8

Call Platform APIs 4-9

Call Custom APIs 4-9

Use TypeScript 4-10

Set Up the SDK 4-10

Call Mobile APIs 4-11

Add Support for Location Services (Ionic Only) 4-11

Add Support for Push Notifications (Ionic only) 4-11

Libraries 4-12

Next Steps 4-13

5 JavaScript Applications

Get the SDK 5-1

Create a Backend 5-1

Add the SDK 5-1

Configure SDK Properties 5-2

Authentication Properties 5-3

OAuth 5-3

HTTP Basic 5-4

Token Exchange 5-4

Facebook Login 5-5

Calling Mobile APIs 5-5

Load the Backend's Configuration 5-6

Authenticate and Log In 5-6

OAuth and HTTP Basic 5-6

SSO with a Third-Party Token 5-6

Facebook 5-7

Secure Browser-Based Apps Against Cross-Site Request Forgery Attacks 5-7

Call Platform APIs 5-7

Call Custom APIs 5-7

Use TypeScript 5-8

Set Up the SDK 5-8

Call Mobile APIs 5-9

Add Support for Location Services (Ionic Only) 5-9

Add Support for Push Notifications (Ionic only) 5-10

Libraries 5-11

v

Next Steps 5-11

6 Xamarin Android Apps

Get the SDK 6-1

Create a Backend 6-1

Add the SDK 6-1

Configure SDK Properties 6-3

Authentication Properties 6-6

OAuth 6-6

HTTP Basic 6-6

Token Exchange 6-7

Facebook Login 6-7

Configure Your Android Manifest File 6-7

Call Mobile APIs 6-8

Load the Backend's Configuration 6-9

Authenticate and Log In 6-9

OAuth Consumer 6-9

SSO with a Third-Party Token 6-10

HTTP Basic 6-11

Facebook 6-12

Call Platform APIs 6-13

User Management 6-13

Location 6-14

Storage 6-19

Notifications 6-20

Analytics 6-21

App Policies 6-21

Call Custom APIs 6-22

7 Xamarin iOS Apps

Get the SDK 7-1

Create a Backend 7-1

Add the SDK 7-1

Configure SDK Properties 7-2

Authentication Properties 7-3

OAuth 7-3

HTTP Basic 7-4

Token Exchange 7-4

Call Mobile APIs 7-5

vi

Load the Backend's Configuration 7-5

Authenticate and Log In 7-5

OAuth 7-6

HTTP Basic 7-6

SSO with a Third-Party Token 7-6

Facebook 7-7

Call Platform APIs 7-7

User Management 7-7

Location 7-8

Storage 7-12

Notifications 7-13

Analytics 7-16

App Policies 7-16

Call Custom APIs 7-17

8 Notifications

What Can I Do with Notifications? 8-1

Set Up a Mobile App for Notifications 8-1

Set Up the Device Handshake for Notifications 8-2

Set Up a Device Handshake for Android (FCM) 8-2

Set Up a Device Handshake for iOS 8-5

Set Up a Device Handshake for Windows 8-6

Send Notifications to and from Your App 8-6

Testing Notifications from the UI 8-7

Cancel a Scheduled Notification from the UI 8-8

Send Notifications Using the Notifications API 8-8

REST 8-9

iOS 8-14

Cordova/JavaScript/TypeScript 8-16

How Are Notifications Sent and Received? 8-18

What is the Device ID or Notification Token? 8-19

Troubleshoot Notifications 8-19

Check Notification Status in the UI 8-20

Check Notification Status with the Notifications REST API 8-21

9 My Profile

User Types 9-1

Get User Profile Information 9-1

Get Specific User Information 9-3

vii

Update User Profile Information 9-4

10

Storage

What Can I Do with Storage? 10-1

Android 10-1

Add an Object to a Collection 10-1

Fetch an Object 10-1

Get Multiple Objects from a Collection 10-2

Get a Shared Collection 10-2

Retrieve an Object 10-2

Update an Object 10-3

Upload a New Object to a Collection 10-3

iOS 10-3

Add an Object to a Collection 10-3

Delete an Object 10-4

Download Data to a Collection 10-4

Get a User Isolated Collection 10-5

Get Multiple Objects from a Collection 10-5

Get Object Data as a Stream 10-5

Retrieve a Storage Object 10-6

Updating an Object 10-6

Uploading Data to a Collection 10-6

Cordova, JavaScript, and TypeScript 10-7

Add an Object to a Collection 10-7

Delete an Object 10-8

Fetch an Object 10-8

Get a Collection 10-8

Get an Object from a User Isolated Collection 10-9

Get Multiple Objects from a Collection 10-9

Update an Object 10-9

Custom Code 10-10

Retrieve and Store Collections and Objects 10-10

REST API 10-10

Storage API Endpoints 10-10

Get a Single Collection 10-10

Get All Collections Associated with a Mobile Backend 10-11

Store an Object 10-11

Specify the Object Identifier 10-11

Create an Object (If One Doesn't Already Exist) 10-11

Generate an Object Identifier 10-12

viii

What Happens When an Object is Created? 10-12

Update an Object 10-12

What Happens When an Object Is Updated? 10-12

Optimistic Locking 10-12

Retrieve a List of Objects 10-13

Page Through a List of Objects 10-13

Order 10-14

Query 10-14

Retrieve an Object 10-14

Delete an Object 10-15

Optimize Performance 10-15

Check If Exists 10-15

Get If Newer 10-15

Read Part of an Object (Chunk Data) 10-16

Test Runtime Operations Using the Endpoints Page 10-16

Manage Collections 10-17

Shared and User Isolated Collections 10-17

Storage Configuration 10-20

Define a Collection 10-20

Collection Metadata 10-22

Add Access Permissions to a Collection 10-22

Add Objects to a Collection 10-23

Object Metadata 10-24

Update the Collection 10-24

Offline Data Storage 10-25

Associate a Collection with a Backend 10-25

Remove a Collection from a Backend 10-26

11

Data Offline and Sync

Building Apps that Work Offline Using Sync Express 11-1

Add Sync Express to Your App 11-1

Install the cordova-plugin-file 11-2

Configure Your App to Use Sync Express 11-2

Configure Your App to Handle items Arrays 11-5

Make Your App Synchronize Offline Changes Automatically 11-5

Building Apps that Work Offline Using the Synchronization Library 11-5

What Can I Do with the Synchronization Library? 11-6

Synchronization Library Process Flow 11-8

Video: Overview of the Data Offline & Synchronization API 11-8

Android Synchronization Library 11-9

ix

Set Up Your Mobile App for the Android Synchronization Library 11-9

Fetch Resources 11-9

Fetch Filtered Resources 11-12

Specify Which Resources to Synchronize First 11-16

Change a Resource’s Synchronization Policies 11-16

Detect and Handle Conflicts 11-18

Review and Discard Offline Edits 11-21

iOS Synchronization Library 11-24

Set Up Your Mobile App for the iOS Synchronization Library 11-24

Fetch Resources 11-24

Fetch Filtered Resources 11-27

Specify Which Resources To Synchronize First 11-29

Change a Resource’s Synchronization Policies 11-29

Detect and Handle Conflicts 11-30

Review and Discard Offline Edits 11-34

Make Custom APIs Synchronizable 11-36

Design a Synchronization-Compatible API 11-36

Implement a Synchronization-Compatible API 11-37

Configure Synchronization Policies for the Custom API 11-37

Synchronization Policies 11-38

Video: Introduction to the Data Offline & Sync Policies 11-39

Synchronization Policy Options 11-39

Video: Deep-Dive into the Data Offline & Sync Policies 11-42

Synchronization Policy Levels and Precedence 11-43

Define Synchronization Policies and Cache Settings in the Configuration File 11-44

Define Synchronization Policies and Cache Settings in a Response Header 11-49

Get Cache Hits and Misses 11-50

How Synchronization Works with the Storage APIs 11-50

12

Location

What Can I Do With Location? 12-1

A Few Important Location Terms 12-1

Android 12-2

Query for Location Objects 12-2

Retrieve a Location Object 12-3

iOS 12-5

Query for Location Objects 12-5

Retrieve a Location Object 12-6

Retrieve iBeacon Identifiers 12-7

Define a Geofence 12-8

x

Retrieve Custom Attributes 12-9

REST API - Location 12-10

Query for Location Devices, Places and Assets 12-10

Querying for Location Devices 12-10

Querying for Places 12-14

Querying for Assets 12-18

Retrieve Location Objects and Properties 12-20

Set Up Location Devices, Places and Assets 12-21

Define Places 12-21

Upload Places Using a CSV File 12-21

Define Location Assets 12-22

Upload Assets Using a CSV File 12-23

Register Location Devices 12-23

Upload Location Devices Using a CSV File 12-24

13

Database

What Can I Do with Database APIs? 13-1

Database Access API 13-1

Call the Database Access API from Custom Code 13-1

Create and Restructure Database Tables 13-3

Add and Update Table Rows 13-5

Retrieve Table Rows 13-6

Delete Table Rows 13-8

Execute SQL on a Table 13-9

Passing Parameters to the SQL Statement 13-10

Labeling Calculated Columns in Select Statements 13-12

Preserving Case in SQL Statements 13-12

Preventing SQL Injection 13-12

Database Management API 13-14

Create a Table Explicitly 13-14

14

Analytics

What Can I Do With Analytics? 14-1

How the Analytics Reports Are Created 14-1

Enable Your Mobile Apps to Report Event Data 14-1

Adding Location Properties to the context Event 14-4

Integrate Analytics into a Mobile App Using the Mobile Client SDK 14-5

Understand Different Types of Analytics Reports 14-5

Access the Analytics Reports 14-5

xi

API Calls Reports 14-6

API Calls Count 14-7

API Calls Response Time 14-7

Events Report 14-7

Events 14-8

User and Session Reports 14-8

User Reports 14-9

Why User Counts Can Vary 14-9

User Session Reports 14-9

New Users 14-9

Active Users 14-10

Session Count 14-11

Session Duration 14-11

Improve User Retention with Funnel Analysis 14-12

Create a Funnel 14-13

Analyze Funnels 14-13

Create Custom Analytics Reports 14-14

How Do I Create a Custom Analytics Report? 14-15

My Reports 14-15

How Do I Run a Custom Report? 14-16

How Do I Edit a Custom Report? 14-17

Track Sessions and Log Events for Mobile Apps 14-17

Create Events and Sessions Using the iOS Library 14-18

Call the Analytics Service 14-18

Designate Sessions 14-18

Associate a Session With Your Mobile App Being in the Foreground 14-19

Add Custom Properties to Events 14-19

Receive the Status of Event Posts 14-20

Create Events and Sessions Using the Android Library 14-21

Take a Look at Events and Sessions in Android Apps 14-23

Define Sessions 14-24

Export Event Data 14-24

Purge Analytics Data 14-27

Troubleshoot Analytics Reports 14-28

15

Live Experience

Add Live Experience to Your Apps 15-1

xii

16

App Policies

What Are App Policies and What Can I Do With Them? 16-1

Set an App Policy 16-1

Android 16-2

Retrieve App Policies 16-2

iOS 16-3

Retrieve App Policies 16-3

Cordova 16-4

Retrieve App Policies 16-4

JavaScript 16-4

Retrieve App Policies 16-4

REST 16-4

Retrieve App Policies 16-4

Update an App Policy Value in a Published Mobile Backend 16-5

17

Backends

What Are Backends and How Can I Use Them? 17-1

What's the Backend Development Process? 17-1

Create and Populate Backends 17-1

Create a Backend 17-2

Backend Authentication and Connection Info 17-2

Role-Based Backends 17-3

Associate APIs with a Backend 17-3

Associate Storage Collections with a Backend 17-4

Notification Profiles and Client Apps 17-4

How Notification Profiles Work 17-4

How App Clients Work 17-4

Get Network Credentials for Notifications 17-5

Android: Google API Key 17-5

iOS: Apple Secure Certificates 17-6

Windows: WNS Credentials 17-6

Syniverse: SMS Credentials 17-7

Create a Notifications Profile 17-8

Register an App Client 17-9

What Can I Change in a Backend? 17-10

Connect Your App to a Backend 17-11

xiii

18

Mobile Users and Roles

Add Users and Groups in IDCS 18-1

Other Ways to Add Users 18-2

Create Mobile Roles 18-2

Assign Roles for Users That Are Set Up in IDCS 18-2

Roles for Users That Are Set Up in a 3rd-Party IdP 18-2

Role-Based Backends and APIs 18-2

Permissions Required for Platform APIs 18-3

19

Authentication in Mobile Hub

OAuth Consumer Authentication in Mobile Hub 19-1

HTTP Basic Authentication in Mobile Hub 19-2

Enterprise Single Sign-On in Mobile Hub 19-2

Third-Party SAML and JWT Tokens 19-2

SAML Tokens and Virtual Users 19-3

JWT Tokens and Virtual Users 19-7

User Mapping from a Third-Party IdP to IDCS 19-24

Browser-Based SSO through Mobile Hub 19-24

Test APIs in a Backend with SSO Login 19-25

Token Expiration for SSO Login 19-25

Facebook Login in Mobile Hub 19-26

Register an App for Login Through Facebook 19-26

Enable Facebook Login in a Mobile Backend 19-27

Configure an App to Use Facebook Login 19-27

Add APIs to a Mobile Backend with Facebook Login 19-27

Get a Facebook User Access Token Manually 19-28

Headers Needed for API Calls with Facebook Authentication 19-28

Authentication in Direct REST Calls 19-29

Authenticate with OAuth in Direct REST Calls 19-29

Authenticate with HTTP Basic in Direct REST Calls 19-30

Secure Cross-Site Requests to Oracle Mobile Hub APIs 19-31

20

The Express API Designer

How Do You Get Started? 20-1

How Do You Use the API? 20-1

What are Resources? 20-1

Create An API 20-1

Complete Your Resources 20-3

Add Additional Fields 20-4

xiv

Shape the Payload for Your Resource 20-4

Add More Sample Data 20-5

Referenced Resources 20-5

Fields 20-7

Methods 20-8

Request and Response Bodies 20-9

Read-Only Fields 20-11

Sample Data 20-11

Use the Express API Designer with MAX 20-14

How Do I Surface My API in MAX? 20-14

Who Uses MAX? 20-14

Enable Uploadable Images 20-15

Tips for User-Friendly Business Objects in MAX 20-16

Video: An Introduction to Mobile Application Accelerator (MAX) 20-26

Create Resources with JSON Schemas 20-26

Fields 20-27

Field Types, Formats, and Enums 20-28

Child Objects 20-30

Fields Behaviors for List, Details, Create, and Update Screens 20-31

Collection Actions 20-33

Create Actions 20-36

Update Actions 20-38

Delete Actions 20-39

Custom Actions 20-39

Mock Data 20-39

Which API Designer Should I Use? 20-40

21

Custom API Design

API Design Process 21-1

Completing Your Custom API 21-2

Generating Custom APIs for Connectors 21-3

Generate a Custom API from a Connector 21-4

Completing the Custom API 21-5

Edit the Implementation 21-5

The API Designer 21-8

Spec Out a Custom API 21-9

Creating a Complete Custom API 21-13

Set Up Your API 21-14

Define Endpoints 21-15

Add Methods to Your Resources 21-17

xv

Define a Request for the Method 21-18

Define a Response for the Method 21-19

Test API Endpoints Using Mock Data 21-21

Provide a Schema 21-22

Security in Custom APIs 21-23

Set Access to the API 21-24

Test Your Custom API 21-26

Create Resource Types 21-28

Create Resource Traits 21-29

Providing API Documentation 21-30

How Do I Write in Markdown? 21-32

Getting Diagnostic Information 21-33

API Design Considerations 21-33

Valid URLs 21-33

API Timeouts 21-34

API Resources 21-35

URI Parameters 21-36

Endpoint Requirements for Sync Compatibility 21-37

Schemas 21-38

RAML 21-39

Edit a Custom API 21-41

Video: End-to-End Custom API Demo 21-42

Troubleshoot Custom APIs 21-43

22

Implementing Custom APIs

What Can I Do with Custom Code? 22-1

How Does Custom Code Work? 22-1

Foundation of the Custom Code Service 22-2

Video: Node.js Technology Primer 22-3

Set Up Tooling for Custom Code 22-3

Steps to Implement a Custom API 22-4

Download a JavaScript Scaffold for a Custom API 22-4

Writing Custom Code 22-5

Key JavaScript Constructs in Custom Code 22-5

Access the Body of the Request 22-8

Insert Logging Into Custom Code 22-8

Local Data Storage 22-10

Video: Working with Node - Common Code 22-10

Implementing Synchronization-Compatible APIs 22-10

Video: Working with Custom APIs via Data Offline & Sync 22-10

xvi

Requirements for a Synchronization-Compatible Custom API 22-11

Return Cacheable Data 22-15

Specify Synchronization and Cache Policies 22-17

Call Web Services and APIs from Custom Code 22-18

Package Custom Code into a Module 22-18

Required Artifacts for an API Implementation 22-19

package.json Contents 22-19

Declare the API Implementation Version 22-20

Declare the Node Version 22-21

Package Additional Libraries with Your Implementation 22-21

Upload the Custom Code Module 22-22

Testing and Debugging Custom Code 22-22

Test with Mock Data 22-22

Test Custom Code from the UI 22-23

Debug Offline with the Mobile Hub Custom Code Test Tools 22-24

Tools for Testing Custom Code Outside the UI 22-24

View Custom Code Log Messages 22-24

Get Finer-Grained Request and Response Log Messages 22-25

Log Request and Response Bodies 22-26

Minimize the Performance Cost of Logging Bodies 22-27

Create Custom Log Messages 22-27

Troubleshooting Custom API Implementations 22-27

Diagnose Syntax Errors 22-28

Common Custom Code Errors 22-29

Custom Code Problem parsing JSON: Error: request entity too large 22-29

Custom Code Problem in oracleMobile.rest callback: Argument error, options.body 22-29

Your custom code container is in the process of recovering from an unhandled
error in a earlier request 22-30

Connection fails due to untrusted URL 22-30

database.getAll(table, options, httpOptions) doesn’t return all the rows in a table 22-30

This mobile user doesn't have the necessary permissions to call this endpoint 22-30

What Happens When a Custom API Is Called? 22-30

23

Calling APIs from Custom Code

Send Requests to Platform, Connector, and Custom APIs 23-1

API Request Pattern 23-1

API Response Patterns 23-2

Handle a Stream 23-2

Handle a Promise 23-3

Common options Properties 23-10

Access Mobile Backend Information from Custom Code 23-12

xvii

Platform APIs 23-13

Analytics Collector API 23-13

analytics.postEvent(events, options, httpOptions) 23-13

App Policies API 23-17

appConfig.getProperties(httpOptions) 23-17

Database Access API 23-18

database.delete(table, keys, options, httpOptions) 23-18

database.get(table, keys, options, httpOptions) 23-19

database.getAll(table, options, httpOptions) 23-21

database.insert(table, object, options, httpOptions) 23-23

database.merge(table, object, options, httpOptions) 23-28

database.sql(sql, args, options, httpOptions) 23-31

Location API 23-33

location.assets.getAsset(id, httpOptions) 23-33

location.assets.query(queryObject, httpOptions) 23-36

location.devices.getDevice(id, httpOptions) 23-39

location.devices.query(queryObject, httpOptions) 23-41

location.places.getPlace(id, httpOptions) 23-42

location.places.query(queryObject, httpOptions) 23-44

Location Management API 23-48

location.assets.register(assets, context, httpOptions) 23-48

location.assets.remove(id, context, httpOptions) 23-50

location.assets.update(id, asset, context, httpOptions) 23-51

location.devices.register(devices, context, httpOptions) 23-53

location.devices.remove(id, context, httpOptions) 23-55

location.devices.update(id, device, context, httpOptions) 23-57

location.places.register(places, context, httpOptions) 23-59

location.places.remove(id, context, httpOptions) 23-60

location.places.removeCascade(id, context, httpOptions) 23-62

location.places.update(id, place, context, httpOptions) 23-62

Mobile Devices API 23-65

devices.deregister(device, httpOptions) 23-65

devices.register(device, httpOptions) 23-66

My Profile API 23-67

ums.getMe(httpOptions) 23-67

ums.getUser(options, httpOptions) 23-69

ums.getUserExtended(options, httpOptions) 23-72

ums.updateUser(fields, options, httpOptions) 23-72

Notifications API 23-73

notification.getAll(context, options, httpOptions) 23-73

notification.getById(id, context, options, httpOptions) 23-77

xviii

notification.post(notification, context, options, httpOptions) 23-78

notification.remove(id, context, options, httpOptions) 23-79

Storage API 23-80

storage.doesCollectionExist(collectionId, options, httpOptions) 23-80

storage.doesExist(collectionId, objectId, options, httpOptions) 23-82

storage.getAll(collectionId, options, httpOptions) 23-84

storage.getById(collectionId, objectId, options, httpOptions) 23-88

storage.getCollection(collectionId, options, httpOptions) 23-92

storage.getCollections(options, httpOptions) 23-94

storage.remove(collectionId, objectId, options, httpOptions) 23-96

storage.store(collectionId, object, options, httpOptions) 23-99

storage.storeById(collectionId, objectId, object, options, httpOptions) 23-102

Call a Connector API from Custom Code 23-105

Call a REST Connector 23-108

Call a SOAP Connector 23-109

Call a Connector that Requires Form Data 23-111

Pass Headers to the Target Service 23-112

Override SSL Settings for Connectors 23-113

Call a Custom API from Custom Code 23-114

Specify the API Version in Calls to Custom and Connector APIs 23-117

Legacy Generic REST Methods 23-118

optionsList Argument 23-119

Learn About Your Instance's Custom, Platform, and Connector APIs 23-120

24

Connectors

What Is a Connector API? 24-1

REST Connector APIs 24-1

How REST Connector APIs Work 24-1

Why Use Connectors Instead of Direct Calls to External Resources? 24-1

Create a REST Connector API 24-2

Basic Connector Setup 24-2

Rules 24-3

Security Policies and Overriding Properties 24-5

Test in Advanced Mode 24-7

Security and REST Connector APIs 24-10

Security Policy Types for REST Connector APIs 24-11

CSF Keys and Web Service Certificates 24-12

Query and Header Parameters 24-13

Set Query Parameters in Remote URLs 24-13

About Adding Parameters 24-14

xix

Edit a REST Connector API 24-14

Use Your REST Connector API in an App 24-15

Troubleshoot REST Connector APIs 24-15

SOAP Connector APIs 24-16

How SOAP Connector APIs Work 24-16

Why Use SOAP Connectors Instead of Direct Calls to External Resources? 24-16

Create a SOAP Connector API 24-17

Set the Basic Information for Your SOAP Connector API 24-17

Select a Port 24-19

Set Security Policies and Overriding Properties for SOAP Connector APIs 24-20

Testing a SOAP Connector API 24-22

SOAP Connector API Design Tips 24-26

How Does XML Get Translated into JSON? 24-26

Using XML Instead of JSON 24-27

Security Policy Types for SOAP Connector APIs 24-28

CSF Keys and Web Service Certificates 24-29

Editing a SOAP Connector API 24-30

Use Your Connector API in an App 24-31

Troubleshoot SOAP Connector APIs 24-31

SOAP Connector API Scope 24-32

ICS Connector APIs 24-32

How ICS Connector APIs Work 24-32

ICS Connector API Flow 24-33

Create an ICS Connector API 24-34

Set the Basic Information for Your ICS Connector API 24-35

Connecting to an Integration Cloud Service Instance 24-37

Select or Create an ICS Instance Connection 24-37

Select an Active Integration 24-38

Edit the ICS Connector API 24-39

Set Runtime Security for the ICS Connector API 24-40

Create a New CSF Key 24-41

Test the ICS Connector API 24-41

Security and ICS Connector APIs 24-44

CSF Keys 24-45

Use Your Connector API in an App 24-45

Troubleshoot ICS Connector APIs 24-46

Fusion Applications Connector APIs 24-47

How Fusion Applications Connector APIs Work 24-47

Fusion Applications Connector API Flow 24-48

Create a Fusion Applications Connector API 24-49

Set the Basic Information for Your Fusion Applications Connector API 24-50

xx

Connect to a Fusion Applications Instance 24-51

Create a Fusion Applications Instance Connection 24-52

Select Fusion Applications Resources 24-53

Set Resource Attributes 24-54

Edit the Fusion Applications Connector API 24-56

Set Runtime Security for the Fusion Applications Connector API 24-57

Test the Fusion Applications Connector API 24-59

Security Policy Types for Fusion Applications Connector APIs 24-61

CSF Keys and Web Service Certificates 24-62

Using Your Fusion Application Connector API in an App 24-63

Troubleshoot Fusion Applications Connector APIs 24-63

25

Diagnostics

What Can I Do with Diagnostics? 25-1

View Environment Health 25-1

View Server Load 25-2

View Errors 25-2

View Underperforming Requests 25-2

View Log Messages Related to a Request 25-3

View Storage Usage 25-3

Monitor a Selected Backend 25-3

View API Performance 25-4

Adjust the Performance Threshold Configurations 25-5

View Status Codes for API Calls and Outbound Connector Calls 25-5

Relate Log Messages 25-7

How Client SDK Headers Enable Device and Session Diagnostics 25-8

View Log Messages 25-8

View Message Details 25-10

A Look at Exported Messages 25-12

Configure the Logging Level for Custom Code 25-18

Diagnose Custom Code 25-18

Use Case: Use Correlation to Diagnose Custom Code 25-19

Use Case: Use Correlation to Diagnose Connector Issues 25-21

Crash Diagnostics 25-24

26

Packages

What’s a Package? 26-1

Why Do I Want a Package? 26-1

Export a Package 26-2

xxi

Add Artifacts to the Package 26-2

Review Dependencies During Export 26-3

Set Environment Policies During Export 26-4

Complete the Export 26-5

Re-export a Package 26-6

Import a Package 26-7

Upload the Package 26-7

Examine the Contents of the Import Package 26-8

Set Environment Policies During Import 26-9

What Happens When You Import a Package 26-10

Import Results 26-11

Export Updated Artifacts 26-12

Examine a Package 26-12

Move a Package to the Trash 26-13

Environment Policy Settings for Packaged Artifacts 26-13

A HTTP Headers

API Headers A-1

SDK Headers A-2

B Oracle Mobile Hub Policies

Mobile Hub Policies and Values B-1

C Security Policies for Connector APIs

Security Policies for REST Connector APIs C-1

Security Policies for SOAP Connector APIs C-2

Security Policies for ICS Connector APIs C-10

Security Policies for Fusion Applications Connector APIs C-10

Security Policy Properties C-11

D Write Swift Applications Using the iOS Client SDK

Add the Bridging Header File D-1

Add the SDK Headers and Libraries to a Swift App D-2

Use SDK Objects in Swift Apps D-3

E Supported Browsers and Languages

Supported Browsers E-1

xxii

Supported Languages E-1

F Identity Provider Integration

Use Case: Configuring OKTA to Obtain a SAML Token F-1

Use Case: Configuring AD FS to Obtain a SAML Token F-2

Creat Users and Groups F-3

Configure the SAML App F-4

Configure Claim Rules F-5

Configure Transform Rules F-5

Specify the Signature Verification Certificate F-6

xxiii

Preface

Welcome to Oracle Mobile Hub.

Audience
This guide is intended for developers who use Oracle Mobile Hub to develop mobile
applications, mobile APIs, and intelligent chatbots.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
A Developer’s View of Oracle Mobile Hub

Welcome to Oracle Mobile Hub! Mobile Hub is a cloud-based service that provides a unified
hub for developing, deploying, maintaining, monitoring, and analyzing your mobile apps and
the resources that they rely on. As a developer, you can use this guide to help you
incorporate Mobile Hub’s features into your apps.

This guide covers what you need to know to:

• Add support for authentication, notifications, geo-location, sync, storage, and other
features to your apps.

• Create custom APIs that your apps can use to connect to your enterprise systems.

Client SDKs
As an app developer, the first thing you’ll want to do is get the Mobile Hub client SDK for your
mobile platform. The client SDKs help you use Mobile Hub features and custom APIs that
you develop through Mobile Hub in your apps.

The SDKs assist app development in the following ways:

You can get the SDKs from the Oracle Technology Network’s Oracle Autonomous Mobile
Cloud Enterprise download page.

For specific info on each SDK, see the following topics:

• Android Apps

• iOS Applications

• Cordova Applications

• JavaScript Applications

• Xamarin Android Apps

• Xamarin iOS Apps

Note:

For information on using the REST APIs directly, see the platform's REST API
reference docs.

Features for Your Apps
Mobile Hub comes with a set of platform APIs that you can use in your apps. You can call
these APIs directly from your app code (via client SDK or REST call) and/or from the
implementation code of custom APIs.

The available platform APIs include the following:

1-1

http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

• Notifications for writing code to send notifications to your mobile apps.

• My Profile to retrieve the current app user’s profile.

• Storage to work with collections and objects (such as images and documents) that
you associate with your backend.

• Data Offline and Sync to build applications that cache REST resources for offline
use and then synchronize all offline changes with the server when the device goes
online again.

• Location to define location devices and places and query for them from your
mobile apps.

• Database Access and Database Management to access the database
associated with your Mobile Hub instance.

• App Policies to retrieve application configuration properties that you have set in
the backend.

Custom APIs
You can create your own custom APIs in Mobile Hub to serve the needs of your apps
and bots.

You design the API using one or both of the following tools:

• Express API Designer: Enables you to quickly create APIs based on CRUD
resources.

• API Designer: Enables you to create or modify an API using the full set of RAML
capabilities.

You implement the API with Node.js-based custom code. From your implementation
code, you can:

• Call Mobile Hub platform APIs for features such as notifications, object storage,
database access, location, and sync.

• Access enterprise services (whether cloud-based on premises) via connectors
APIs. You can create connector APIs based on connector types for REST, SOAP,
Oracle Integration Cloud Service, and Fusion Applications.

Backends
You’ll use backends to group the APIs and other resources that your apps and bots
need.

A backend is a logical grouping of custom APIs, storage collections, and other
resources that serves as a cloud-based companion to one or more related mobile
apps or bots. The backend provides the security context, meaning that the user has to
authenticate through the backend to access those services.

At development time, here are some of the things you do with a backend:

• Add APIs and test their endpoints with mock data.

• Add object storage collections and enable offline data caching.

• Specify roles that users must have to access the applications associated with the
backend.

Chapter 1
Custom APIs

1-2

• Set up notifications for your apps using the services provided by the platform vendors
(such as Apple Push Notifications Service (APNS) for iOS and Firebase Cloud
Messaging (FCM) for Android). If you set up notifications for multiple platforms, you can
initiate a single notification and have it delivered to apps on multiple platforms.

Later, when you deploy, use the backend to manage dependencies for all the artifacts you
need to support the set of mobile apps and bots that use it.

Security
For each backend that you create, you set up how to authenticate with that backend. You can
choose from these mechanisms:

• OAuth, where Oracle Identity Cloud Service (IDCS) is the identity provider, and you use
credentials generated by the backend.

• HTTP Basic, where IDCS is the identity provider, and you use credentials generated by
the backend.

• SAML and JWT tokens from third-party identity providers.

• Browser-based SSO, where IDCS is the identity provider and the app uses OAuth 2.0’s
authorization code grant to get an authorization token.

• Facebook Login.

Further, you can restrict access to resources by defining roles in Mobile Hub and applying
them to backends, APIs, and/or storage collections.

Chapter 1
Security

1-3

2
Android Apps

Oracle Mobile Hub provides an SDK for Android that makes it easy to use Mobile Hub’s
features.

Get the SDK
To get the client SDK for Android, go to the Oracle Digital Assistant and Oracle Mobile Cloud
Downloads page on OTN.

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile Hub
features, such as platform and custom APIs. For your app to access these resources, it
authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page open.

You’ll need to configure your app with some of this information.

Add the SDK
In a basic app setup, without intervening frameworks, you'll add the Android client SDK to an
app.

1. Unzip the Android client SDK zip file.

2. Copy the SDK jars into the libs folder in your app's project. If this folder doesn't exist,
create it at the same level in your hierarchy as your src and build folders.

3. In Android Studio, select File, then New, and then New Module to start the wizard to
import the IDMMobileSDK.jar into the project.

4. Click Import .JAR/.AAR Package, and follow the wizard to import the IDMMobileSDK.jar
into the project.

5. In the source tree for the application, create a folder called assets (at the same level as
the java and res folders).

6. In the SDK bundle, locate the oracle_mobile_cloud_config.xml file and copy it to the
assets folder.

7. In your app's build.gradle file, make sure the following are among the dependencies
registered so that the SDK libraries are available to the app.

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])

2-1

https://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
https://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

 compile 'com.squareup.okhttp3:okhttp:3.9.0'
 compile 'org.slf4j:slf4j-jdk14:1.7.13'
 //to enable the app to receive notifications, include the
following:
 compile 'com.google.firebase:firebase-messaging:11.0.2'
 compile 'com.facebook.android:facebook-android-sdk:4.25.+'
}

8. Open assets/oracle_mobile_cloud_config.xml and fill in the environment
details for the mobile backend that the app will be using.

Configure SDK Properties
To use the client SDK in an Android app, you need to add a
oracle_mobile_cloud_config.xml configuration file to the app and fill it in with
environment details for your backend in Oracle Mobile Hub. In turn, the SDK classes
use this information to construct HTTP headers for REST calls made to Oracle Mobile
Hub.

You package the configuration file in your app’s main bundle in the assets folder at the
same level as the java and res folders. For example, in the sample GettingStarted
app, it’s in /GettingStarted/src/main/assets.

The file is essentially divided into the following parts:

• The mobileBackend element and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

• Elements that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These elements generally, but don’t have to, appear at the
top of the file.

The following code sample shows the structure of a
oracle_mobile_cloud_config.xml file.

<config>

 <!--This value is required if you are using OAuth to authenticate
against the mobile backend-->
 <oAuthTokenEndPoint>YOUR_OAUTH_TOKEN_END_POINT<oAuthTokenEndPoint>
 <!--Set to true if you want to get logging information-->
 <enableLogger>true</enableLogger>
 <logLevel>DEBUG</logLevel>
 <!--Whether to log HTTP call request and response bodies and
headers-->
 <logHTTP>true</logHTTP>

 <!-- Include the mobileBackend element and its sub-elements if you
are going
 to be using a backend to access custom and platform APIs.-->
 <mobileBackend>
 <name>MBE_NAME</name>
 <baseUrl>BASE_URL</baseUrl>

Chapter 2
Configure SDK Properties

2-2

 <enableAnalytics>true</enableAnalytics>
 <authentication>
 <!--possible values for type are [oauth, basic, facebook,
tokenExchange]-->
 <type>AUTH_TYPE</type>
 <oauth>
 <clientId>CLIENT_ID</clientId>
 <clientSecret>CLIENT_SECRET</clientSecret>
 <enableOffline>true</enableOffline>
 </oauth>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 <enableOffline></enableOffline>
 </basic>
 <facebook>
 <appId>FACEBOOK_APP_ID</appId>

<scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 </facebook>
 <tokenExchange>
 <! tokenExchange can contain an 'oauth' sub-element or a 'basic' sub-
element.
 <oauth>
 <clientId>CLIENT_ID</clientId>
 <clientSecret>CLIENT_SECRET</clientSecret>
 </oauth>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 <tokenExchange>
 </authentication>
 <!-- additional properties go here -->
 </mobileBackend>

</config>

The values that you need to fill in for a given backend can be found on the Settings and App
Profile pages for that mobile backend.

Here are some more notes on the file’s elements.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application gets
its authentication token. This key needs to be provided for all applications that rely on
OAuth to authenticate. You get this from the backend’s Settings page.

• logLevel — Determines how much SDK logging is displayed in the application's console.
The default value is ERROR. Other possible values (in increasing level of detail) are
WARNING, INFO, and DEBUG. It is also possible to specify NONE.

Chapter 2
Configure SDK Properties

2-3

• enableLogger — When set to true, logging is included in your application.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in
requests and responses.

• mobileBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of oauth, basic, facebook, and
tokenExchange.

– One or more sub-elements for authentication types, each containing
authentication credentials.

You can also add the offlineEnabled key and set its value to true.

• enableOffline — If set to true, offline login will be allowed. This applies only to
the Basic and OAuth login types. For this to work, you also need to add the
following to the application's AndroidManifest.xml file:

<receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

Authentication Properties
The contents and sub-elements of authentication depend on what kind of
authentication the app will be using.

OAuth
• Set the value of the <type> element to oauth.

• Fill in the clientID and clientSecret credentials provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
element and set it to false.

• At the top level of the file, supply the oAuthTokenEndPoint value.

The resulting authentication element might look something like this:

<oAuthTokenEndPoint>http://oam-server.oracle.com/oam/oauth2/tokens</
oAuthTokenEndPoint>

<authentication>
 <type>oauth</type>
 <oauth>
 <clientId>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</clientId>

Chapter 2
Configure SDK Properties

2-4

 <clientSecret>vZMRkgniIbhNUiPnSRT2</clientSecret>
 <enableOffline>false</enableOffline>
 </oauth>
</authentication>

HTTP Basic
• Set the value of the type element to basic.

• Fill in the mobileBackendID and anonymousKey that are provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline sub-
element and set it to false.

The resulting authentication element might look something like this:

<authentication>
 <type>basic</type>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 <enableOffline>false</enableOffline>
 </basic>
</authentication>

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the <type> element to tokenExchange.

• Create a <basic> sub-element and fill in the OAuth Consumer credentials provided by
the backend.

The resulting authentication element might look something like this:

<authentication>
 <type>tokenExchange</type>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
 <tokenExchange>
</authentication>

Facebook Login
For Facebook login:

• Set the value of the <type> property to facebook.

• Create a <facebook> sub-element.

• Fill in the <appID> for the Facebook app.

• Fill in <scopes> with any relevant Facebook permissions (optional).

Chapter 2
Configure SDK Properties

2-5

• Within <facebook>, created a <basic> element and fill in the HTTP Basic
credentials provided by the backend.

The resulting authentication element might look something like this:

<authentication>
 <type>facebook</type>
 <facebook>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendId>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 <appID>123456789012345</appId>

<scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 </facebook>
<authentication>

Configure Your Android Manifest File
Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in your application's manifest file,
AndroidManifest.xml. These permissions are required:

• permission.INTERNET — Allows your app to access open network sockets.

• permission.ACCESS_NETWORK_STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, there are a number of permissions
necessary so the app can get notifications. For a rundown on the available
permissions, see Android Manifest Permissions in the Google documentation.

Add the permissions at the top of your AndroidManifest.xml file, as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="oracle.cloud.mobile.sample" >
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <application>
<provider
 android:name="com.facebook.FacebookContentProvider"

Chapter 2
Configure Your Android Manifest File

2-6

http://developer.android.com/reference/android/Manifest.permission.html

android:authorities="com.facebook.app.FacebookContentProvider430660953811847"
 android:exported="true" />
<receiver
 android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 </receiver>

 (.....)
 </application>
</manifest>

Adding the client SDK to your application may require you to configure your
AndroidManifest.xml file to add new permissions or activities. For example, if you add the
Notifications individual SDK library, you may also need to add a new broadcast receiver.

Call Mobile APIs
Here are the general steps for calling mobile APIs:

1. Add an SDK call to your app to load the configuration info.

2. Add an SDK call to your app to handle authentication.

3. Add any other SDK calls that you want to use.

Load the Backend's Configuration
For any calls to Oracle Mobile Hub APIs using the Android client SDK to successfully
complete, you need to have the backend’s configuration loaded from the app’s
oracle_mobile_cloud_config.xml file. You do this using the MobileManager class:

MobileManager.getManager().getMobileBackend(this)

Authenticate and Log In

OAuth Consumer
First you initialize the authorization agent and set the authentication type to OAUTH:

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.OAUTH);

Chapter 2
Call Mobile APIs

2-7

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process:

TextView username, password;
username = (TextView) findViewById(R.id.username);
password = (TextView) findViewById(R.id.password);
String userName = username.getText().toString();
String passWord = password.getText().toString();
mAuthorization.authenticate(mCtx, userName, passWord, mLoginCallback);

Here’s the definition for the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 Log.d(TAG, "OnCompletion Auth Callback");
 if (exception != null) {
 Log.e(TAG, "Exception while receiving the Access Token",
exception);
 } else {
 Log.e(TAG, "Authorization successful");
 }
 }
 }

SSO with a Third-Party Token
First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers, see Third -Party SAML and JWT Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;
Context mCtx = getApplicationContext();

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization =
mobileBackend.getAuthorization(AuthType.TOKENEXCHANGE);

Chapter 2
Call Mobile APIs

2-8

Then you use the authenticateUsingTokenExchange method to attempt authentication.

mAuthorization.authenticateUsingTokenExchange(mCtx, token, false,
mLoginCallback);

Here’s the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 if (exception == null) {
 //redirect to another Activity after login
 Intent intent = new Intent(mCtx, ContentActivity.class);
 startActivity(intent);

 } else {
 Log.e(TAG, "Exception during token exchange:", exception);
 finish();
 }
 }
};

The default expiration time for storing a third-party token in Mobile Hub is 6 hours. You can
adjust this time by changing the Security_TokenExchangeTimeoutSecs policy.

SSO with a Third-Party Token — Staying Logged In
You can also code the app to keep the user logged in, even when closing and restarting the
app.

In the above example, the authenticateUsingTokenExchange() method is called with the
third parameter (storeToken) set to false. If you set this parameter to true and the token
exchange is successful, the Mobile Hub token is stored in a secure store and the user
remains logged in until the token expires.

You can then use the loadSSOTokenExchange method on the Authorization object to load
the stored token. If a token can’t be retrieved from the secure store, the method returns
false.

Here’s some code that tries to load a saved token and, if it fails, restarts the authentication
process:

try {
 mAuthorization =
MobileManager.getManager().getMobileBackend(this).getAuthorization();
 if (!mAuthorization.loadSSOTokenExchange(mCtx)) {
 //user not logged in, so need to initiate login
 mAuthorization.authenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);
 }

Chapter 2
Call Mobile APIs

2-9

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token and re-authenticate.

mAuthorization.clearSSOTokenExchange(mCtx);
mAuthorization.authenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);

HTTP Basic
The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

First you initialize the authorization agent and set the authentication type to
BASIC_AUTH:

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.BASIC_AUTH)

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

TextView username, password;
username = (TextView) findViewById(R.id.username);
password = (TextView) findViewById(R.id.password);
String userName = username.getText().toString();
String passWord = password.getText().toString();
mAuthorization.authenticate(mCtx, userName, passWord, mLoginCallback);

Here’s the definition for the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 Log.d(TAG, "OnCompletion Auth Callback");
 if (exception != null) {
 Log.e(TAG, "Exception while receiving the Access Token",
exception);
 } else {
 Log.e(TAG, "Authorization successful");
 }

Chapter 2
Call Mobile APIs

2-10

 }
 }

Facebook
For Facebook login, you use classes in the oracle_mobile_android_social library.

First you initialize the authorization agent and set the authentication type to Facebook:

SocialAuthorizationAgent mAuthorization;
SocialMobileBackend socialMobileBackend;
try {
 socialMobileBackend =
SocialMobileBackendManager.getManager().getMobileBackend(mCtx);
} catch(ServiceProxyException e){
 e.printStackTrace();
}
mAuthorization = socialMobileBackend.getSocialAuthorization();
mAuthorization.setAuthType(AuthType.FACEBOOK);

Using a CallbackManager object from Facebook’s SDK, initiate authentication.

private CallbackManager callbackManager;
mAuthorization.setup(getApplicationContext(), callback);
callbackManager = mAuthorization.getCallBackManager();
mAuthorization.authenticateSocial(mCtx);

Here’s code you can use for the callback that is passed above:

private FacebookCallback<LoginResult> callback = new
FacebookCallback<LoginResult>() {
 @Override
 public void onSuccess(LoginResult loginResult) {
 Log.e(TAG, "facebook login successful.");
 }
 @Override
 public void onCancel() {
 }
 @Override
 public void onError(FacebookException e) {
 }
};

Override the onActivityResult() method to use the callback:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 callbackManager.onActivityResult(requestCode, resultCode, data);

Chapter 2
Call Mobile APIs

2-11

Call Platform APIs
Once the mobile backend’s configuration info is loaded into the app, you can make
calls to client SDK classes.

The root object in the Android SDK is MobileManager. The MobileManager object
manages MobileBackend objects.

The MobileBackend object manages connectivity, authentication, and other
transactions between your application and its associated backend, including calls to
platform APIs and any custom APIs you have defined. It manages calls to platform
APIs through instances of ServiceProxy such as Storage and Location.

Here’s an example of how you would use these classes to upload an image using the
Storage API:

try {
 Storage storage =
MobileManager.getManager().getMobileBackend(this).getServiceProxy(Stora
ge.class);
 StorageCollection imagesCollection =
storage.getStorageCollection("FIF_Images");
 StorageObject imageToUpload = new StorageObject(null, imageBytes,
"image/jpeg");
 StorageObject uploadedImage = imagesCollection.post(imageToUpload);
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

The ServiceProxy instance created there manages calls to the Storage platform API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API.

And here’s how you could retrieve an image using the Storage API:

try {
 Storage storage =
MobileManager.getManager().getMobileBackend(this).getServiceProxy(Stora
ge.class);
 StorageCollection imagesCollection =
storage.getStorageCollection("FIF_Images");
 StorageObject image = imagesCollection.get("3x4mp1e-st0r4g3-0bj3ct-
k3y");byte[] imageBytes = image.getPayloadBytes();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

Call Custom APIs
The client SDK provides the CustomHttpResponse class, the
GenericCustomCodeClientCallBack interface, and the invokeCustomCodeJSONRequest
method in the authorization classes to simplify the calling of custom APIs in the
service. You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint

Chapter 2
Call Mobile APIs

2-12

where the request payload is JSON or empty and the response payload is JSON or empty.

You use GenericCustomCodeClientCallBack to create a handler for the response (which is
returned in the form of a CustomHttpResponse object.)

Then, to call the custom API, you call
invokeCustomCodeJSONRequest(GenericCustomCodeClientCallBack restClientCallback,
JSONObject data, String functionName, RestClient.HttpMethod httpMethod) on your
Authorization object.

To make a call to a custom API endpoint, you could use something like this:

import org.json.JSONObject;
import oracle.cloud.mobile.customcode.CustomHttpResponse;
import oracle.cloud.mobile.customcode.GenericCustomCodeClientCallBack;
import oracle.cloud.mobile.mobilebackend.MobileManager;
.......

final GenericCustomCodeClientCallBack genericCustomCodeClientCallBack = new
GenericCustomCodeClientCallBack() {
 @Override
 public void requestCompleted(CustomHttpResponse response, JSONObject
data, Exception e) {
 boolean getResponse = (response.getHttpStatus() >=200 &&
response.getHttpStatus() <300);

 // write any logic based on above response
 }
};
AuthorizationAgent authorization =
MobileManager.getManager().getMobileBackend(this).getAuthorization();

authorization.authenticate(mActivity, "user1", "pass1", successCallback);

........
// after the user successfully authenticates, make a call to the custom API
endpoint
authorization.invokeCustomCodeJSONRequest(genericCustomCodeClientCallBack,
null, "TaskApi/tasks", RestClient.HttpMethod.GET);

Libraries and Dependencies
Libraries

The following SDK libraries (JAR files) are included in the Android client SDK:

• omce-android-sdk-shared-<version-number>.jar - The base library for the SDK,
including functionality required by the other libraries as well as utility classes for
accessing and authenticating with mobile backends.

• IDMMobileSDK.jar - The identity management library used by all applications.

• omce-android-sdk-location-<version-number> - The Location library, which lets you
access details about location devices that have been registered in Mobile Hub and the
places and assets they are associated with.

Chapter 2
Libraries and Dependencies

2-13

• omce-android-sdk-notifications-<version-number>.jar - The Notifications
library, which lets you set up your application to receive notifications sent from
your mobile backend.

• omce-android-sdk-social-<version-number> - The Social Login library, which
allows you to set up your app to use Facebook login.

• omce-android-sdk-storage-<version-number>.jar - The Storage library, which
lets you write code to access storage collections that are set up with your mobile
backend.

• omce-android-sdk-sync-<version-number> - The Sync Client library, which
allows you to cache application data when the device running your app is
disconnected from the network, then sync up the data when the network
connection is reestablished.

Dependencies

The SDK is modular, so you can package just the libraries that your app needs. Just
be aware of the following dependencies:

• Every Android application developed for Mobile Hub must have the shared
(oracle-mobile_android_shared-<version-number>.jar) and IDMMobileSDK.jar
libraries.

• If the Storage library is installed, the Sync Client library must also be installed.

Next Steps
Once you have the Android SDK set up, you can start using it to add features to your
app.

• Authentication in Mobile Hub

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

• App Policies

Chapter 2
Next Steps

2-14

3
iOS Applications

If you are an iOS app developer, you can use the client SDK that Oracle Mobile Hub provides
for iOS. This SDK simplifies authentication with Mobile Hub and provides Objective-C
wrapper classes for Mobile Hub platform APIs.

Get SDK
To get the client SDK for iOS, go to the Oracle Digital Assistant and Oracle Mobile Cloud
Downloads page on OTN.

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile Hub
features, such as platform and custom APIs. For your app to access these resources, it
authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page open.

You’ll need to configure your app with some of this information.

Add the SDK
In a basic app setup, without intervening frameworks, you'll add the iOS client SDK to an app.

1. Unzip the download file, omce-ios-sdk-{n}.zip (where {n} is the version number of the
SDK) into some directory on your machine.

2. From the extracted contents of the zip, drag and drop the oracle_mobile_ios_sdk
directory to the Xcode project navigator.

• Select Copy items if needed.

• Select Create Groups.

• Click Finish.

Once the .a file for a specific library has been copied into your application’s development
tree in Xcode, the corresponding platform API is available to your app through SDK calls.
At this point, all of the SDK’s static libraries are available to your app.

3. Select the target for your project, select the Build Phases tab, expand Link Binary with
Libraries, click the + button, and add the following libraries:

• CoreData.framework
• CoreLocation.framework
• libsqlite3.0.tbd

3-1

http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

• Security.framework
• SystemConfiguration.framework

4. In the Build Settings section for the project, double-click Other Linker Flags
(under Linking) and add -ObjC.

5. Also in Build Settings, expand Search Paths and:

a. Add oracle_mobile_ios_sdk/release-iphoneos to Library Search Paths.

b. Add oracle_mobile_ios_sdk/release-iphoneos/include to User Header
Search Paths.

6. Expand the Documentation folder of the unpacked zip, copy the OMC.plist file,
and place it in the root of your app’s main application bundle.

7. Edit the just-copied OMC.plist file.

8. Starting with Xcode 7, you need to account for the Application Transport Security
(ATS) policy, which enforces remote communications to be over HTTPS.

For development purposes only, add the following key in app’s Info.plist file to
turn off the ATS policy for the app.

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>

Note:

You shouldn't use this setting in production. To make sure you provide
optimal security for your app, study Apple's documentation and follow
Apple's recommendations for disabling ATS for specific domains and
applying proper security reductions for those domains.

Configure SDK Properties
To use the client SDK in an iOS app, you need to add the OMC.plist configuration file
to the app and fill it in with environment details for your backend in Oracle Mobile Hub,
as well as other configuration information. In turn, the SDK classes use this
information to help manage authorization, logging, event tracking, data
synchronization, and other features.

You package the configuration file in the root of your app’s main bundle.

The file is essentially divided into the following parts:

• The mobileBackend key and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

Chapter 3
Configure SDK Properties

3-2

• Keys that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of the
file.

Here’s the same file in text form:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd"
<plist version="1.0">
<dict>
 <key>logLevel</key>
 <string>debug</string>
 <key>logHTTP</key>
 <true/>
 <key>oAuthTokenEndPoint</key>
 <string>https://MY_TOKEN_ENDPOINT</string>
 <key>mobileBackend</key>
 <dict>
 <key>name</key>
 <string>EasyShoppingMBE</string>
 <key>baseURL</key>
 <string>https://MY_CLOUD_DOMAIN.oracle.com</string>
 <key>authentication</key>
 <dict>
 <key>type</key>
 <string>oauth</string>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>11dac238ffaa4b029e78e982114642ab</string>
 <key>clientSecret</key>
 <string>5624cbdd-a7c5-4c10-a758-6019a5ab8da8</string>
 <key>enableOffline</key>
 <true/>
 </dict>
 </dict>
 </dict>
</dict>
</plist>

And here is a description of some of the more important entries in the OMC.plist file.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application gets
its authentication token. This key needs to be provided for all apps that rely on OAuth to
authenticate. You get this from the backend’s Settings page. The endpoint should be
only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console. The
default value is error. Other possible values (in increasing level of detail) are warning,
info, and debug. It is also possible to set the value to none.

• logHTTP — When set to true, the SDK logs the headers and bodies of all HTTP requests
and responses.

Chapter 3
Configure SDK Properties

3-3

• mobileBackend — A dictionary entry containing authentication details for your
backend and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains a dictionary with the following
elements:

– The type sub-key, with possible (string) values of oauth, basic, facebook,
and tokenExchange.

– One or more sub-keys for authentication types, containing a dictionary with the
authentication credentials.

Within sub-keys for basic and oauth, you can also add the enableOffline
key. By default, this property is set to true.

Authentication Properties
The contents and sub-elements of the mobileBackend/authentication key depend on
what kind of authentication the app will be using.

OAuth
• Set the value of the type key to oauth.

• Create an oauth sub-key and fill in the clientID and clientSecret credentials
provided by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied
but without the oauth2/v1/token that is appended on the backend’s Settings
page.

• Optionally, if you want to disable offline authentication, add the enableOffline
sub-key and set it to false.

The resulting authorization property might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>oauth</string>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>11dac238ffaa4b029e78e982114642ab</string>
 <key>clientSecret</key>
 <string>5624cbdd-a7c5-4c10-a758-6019a5ab8da8</string>
 </dict>
 <key>basic</key>
</dict>

Chapter 3
Configure SDK Properties

3-4

HTTP Basic
• Set the value of the type key to basic.

• Create a basic sub-key and fill in the HTTP Basic credentials (mobileBackendID and
anonymousKey) provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline sub-key
and set it to false.

The resulting authentication entry might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>basic</string>
 <key>basic</key>
 <dict>
 <key>mobileBackendID</key>
 <string>a8c6a34f-61bb-4bee-948c-d43dd2c077d7</string>
 <key>anonymousKey</key>
 <string>dXNlcmlkOnBhc3N3b3Jk</string>
 </dict>
</dict>

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type key to tokenExchange.

• Create a tokenExchange sub-key and fill in the OAuth Consumer credentials provided by
the backend.

The resulting authentication section might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>tokenExchange</string>
 <key>tokenExchange</key>
 <dict>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>b39ba08d30d54e24970332fcdffec3a7</string>
 <key>clientSecret</key>
 <string>23953fe8-76ed-4c89-a5cb-6042db10cfaf</string>
 </dict>
 <key>basic</key>
 <dict>
 <key>mobileBackendID</key>
 <string>8d3744b8-cab2-479c-998b-ebba2c31560f</string>
 <key>anonymousKey</key>
 <string>ZFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</string>

Chapter 3
Configure SDK Properties

3-5

 </dict>
 </dict>
</dict>

Call Mobile APIs
Once you have added the SDK to your app and configured your OMC.plist file, here
are the general steps for calling APIs from your iOS app:

1. Add an SDK call to your app to load the configuration info.

2. Add an SDK call to your app to handle authentication.

3. Add any other SDK calls that you want to use.

Load the Backend's Configuration
For any calls to Oracle Mobile Hub APIs using the iOS client SDK to successfully
complete, you need to have the mobile backend’s configuration loaded from the app’s
OMC.plist file. You do this using the OMCMobileBackend class:

/**
 * Returns the mobile backend that is configured in OMC.plist file
 */
OMCMobileBackend* mbe = [[OMCMobileManager sharedManager]
mobileBackend];

Authenticate and Log In
Here is some sample code that you can use for authentication through Oracle Mobile
Cloud in your iOS apps. Each sample is based on the OMCAuthorization.h class and
relies on the following imports:

#import "OMCCore/OMCAuthorization.h"
#import "OMCCore/OMCMobileBackend.h"
#import "OMCCore/OMCMobileManager.h"

OAuth Consumer and HTTP Basic
You can use the following method to handle a user logging in with a user name and
password:

- (void) authenticate:(NSString *)userName
 password:(NSString *)password
 completionBlock: (nullable OMCErrorCompletionBlock)
completionBlock;

This method terminates the connection to the service and clears the user name and
password from the iOS keychain:

-(void) logout: (nullable OMCErrorCompletionBlock) completionBlock;

Chapter 3
Call Mobile APIs

3-6

SSO with a Third-Party Token
First, your app needs to get a token from the third-party token issuer. The way you can obtain
the token varies by issuer. For detailed information on obtaining third-party tokens and
configuring identity providers in the service, see Third-Party SAML Tokens.

Once you have the token, use it to authenticate. The code in this example checks to seeif the
token is already stored in the service before logging in again:

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

The default expiration time for storing a third-party token in OMC is 6 hours. You can adjust
this time by changing the Security_TokenExchangeTimeoutSecs policy.

SSO with a Third-Party Token — Staying Logged In
You can also code the app to keep the user logged in, even when closing and restarting the
app.

In the authenticateSSOTokenExchange method, if storeAccessToken is set to YES, the token
is stored in secure store and the user remains logged in until the token expires.

You can use the loadSSOTokenExchange() method in the app launch sequence to load the
token from the keychain. (If a token can’t be retrieved, the method returns NO).

Here’s some code that tries to load a saved token and, if it fails, restarts the authentication
process:

OMCAuthorization* auth;
if ([auth loadSSOTokenExchange]){
 NSLog(@"## Token already found, login skipped.");
 ...
}
else{
 [auth authenticateSSOTokenExchange:thirdPartyToken
 storeAccessToken:YES
 completionBlock:^(NSError * _Nullable error) {

 if(error){
 //Show error popup
 }
 else{
 // Login success.
 ...
 }
 }];
}

When you have the token stored in the secure store, it remains associated with the backend
that the app originally used. Therefore, if the app is updated to use a different mobile backend

Chapter 3
Call Mobile APIs

3-7

(or mobile backend version), you need to clear the saved token (using
clearSSOTokenExchange) and re-authenticate.

Call Platform APIs
Once the backend’s configuration info is loaded into the app, you can make calls to
client SDK classes based on the iOS Core library classes.

The iOS Core library (libOMCCore.a) provides the following key interfaces:

• OMCMobileManager
• OMCMobileBackend (a sub-class of OMCMobileComponent)

• OMCServiceProxy
The root object in the SDK is the OMCMobileManager. The OMCMobileManager manages
the OMCMobileBackend objects.

The OMCMobileBackend object is used to manage connectivity, authentication, and
other transactions between your application and its associated mobile backend,
including calls to platform APIs and any custom APIs you have defined. It manages
calls to platform APIs via subclasses of OMCServiceProxy such as OMCLocation and
OMCStorage.

Here’s an example of using SDK classes to call the Storage API:

#import "OMCMobileBackend.h"
#import "OMCMobileManager.h"
#import "OMCAuthorization.h"
#import "OMCStorage.h"
#import "OMCMobileBackend+OMC_Storage.h"
#import "OMCSynchronization.h"

- (NSData*)dataFromStorageObjectWithID:(NSString*)objectID
collectionID:(NSString*)collectionID {

 // Get mobile backend
 OMCMobileBackend* mbe = [[OMCMobileManager sharedManager]
mobileBackend];

 // Get storage object
 OMCStorage* storage = [mbe storage];

 // Get your collection
 OMCStorageCollection* collection = [storage
getCollection:collectionID];

 // Get your object from your collection
 OMCStorageObject* object = [collection get:objectID];

 // Get the data from payload of your object
 NSData* data = [object getPayloadData];

 return data; }

Chapter 3
Call Mobile APIs

3-8

}

Methods written in Objective-C that are used in the OMC SDK for iOS can also be mapped to
Swift.

Call Custom APIs
The client SDK provides the OMCCustomCodeClient class to simplify the calling of custom
APIs in Oracle Mobile Hub.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an endpoint
where the request payload is JSON or empty and the response payload is JSON or empty.

In addition you can provide a completion handler to be called when the request invocation is
complete (meaning that the handler runs asynchronously).

If the completion handler is set, it will be invoked in the UI (main) thread upon completion of
the method invocation, allowing update of UI items. The completion block will contain the
format-specific data for a JSON object, namely an NSDictionary or NSArray. Use the
completion block for any returned data or errors, HTTP or system.

All of the required Oracle Mobile Hub headers, such as Authorization (assuming the user
has authenticated), will automatically be inserted into the request.

Use of OMCCustomCodeClient might look something like this:

#import "OMCCore/OMCMobileBackend.h"
#import "OMCCore/OMCCustomCodeClient.h"
...

// A GET, PUT, POST, or DELETE method may be specified here - sent or
returned JSON data object may be nil as appropriate.
OMCMobileBackend *backend = [[OMCMobileManager sharedManager] mobileBackend];
OMCCustomCodeClient *ccClient = backend.customCodeClient;
NSDictionary *jsonPayload = @{@"myKey": @"myValue"};
[ccClient invokeCustomRequest: @"API2/endpoint2"
 method: "@PUT"
 data: jsonPayload,
 completion: ^(NSError* error,
 NSHTTPURLResponse *response,
 id responseData) {
 // error will be nil if no problems occurred, otherwise it will
contain the error object
 // response will be complete HTTP response
 // response data will be Map or Array for JSON object if success or
nil if error
}];

Libraries and Dependencies
Libraries

The iOS client SDK contains the following items:

Chapter 3
Libraries and Dependencies

3-9

• Documentation - Contains web-browser based documentation (html.zip) and a
docset for browsing and accessing context-sensitive help from Xcode
(oracle.mobile.cloud.Oracle-Mobile-Cloud-Enterprise-iOS-SDK.docset.zip).
To use html.zip, unzip the file and browse the main page from index.html. To
use the docset, unzip the file into the usual location for Xcode docsets, typically
something like ~/Library/Developer/Shared/Documentation/DocSets, where ~ is
your home directory.

This folder also contains a sample copy of the OMC.plist file that you’ll need to
add to your app and populate with the configuration details for your mobile
backend.

• oracle_mobile_ios_sdk/release-iphoneos - Release versions of the static
libraries and header files. Also contains SyncStore initialization data. The static
libraries are Universal (fat) binaries that contain armv7* code and support both the
iPhone Simulator and real devices. The following static libraries are included:

– libOMCCore.a - The Core static library file shared by all iOS applications.
Contains the common libraries required by all other libraries.

– libOMCLocation.a - The Location library, which lets you access details about
location devices that have been registered in Mobile Hub and the places and
assets they are associated with.

– libOMCNotifications.a - The Notifications static library file, which allows you
to set up your application to receive notifications sent from your mobile
backend.

– libOMCStorage.a - The Storage static library file, which allows you to write
code to access storage collections that are set up with your mobile backend.

– libOMCSynchronization.a - The Data Offline static library file, which allows
you to cache application data when the device running your app is
disconnected from the network, then synchronize the data when the network
connection is reestablished.

Dependencies

The client SDK is modular, so you can package just the libraries that your app needs.
Just be aware of the following dependencies:

• Every app must have the libOMCCore.a static library file.

• If your app uses libOMCStorage.a, you must also include
lilbOMCSynchronization.a.

• If your app uses lilbOMCSynchronization.a, you must also include the
SyncStore.momd folder, which contains initialization data.

Next Steps
Once you have the iOS SDK set up, you can start using it to add features to your app.

• Notifications

• My Profile

• Storage

• Data Offline and Sync

Chapter 3
Next Steps

3-10

• Location

• Database

• App Policies

Chapter 3
Next Steps

3-11

4
Cordova Applications

If you develop hybrid apps based on the Apache Cordova framework, you can use the client
SDK that provides for Cordova. This SDK simplifies authentication with Oracle Mobile Hub
and provides Cordova wrapper classes for Mobile Hub platform APIs as well as libraries for
Data Offline and Sync and Sync Express.

If you are new to Cordova itself and still need to set it up on your system, you can follow the
Getting Started with JET Hybrid Apps tutorial for an end-to-end look at creating a Cordova
app and connecting it with a mobile backend.

Note:

This SDK supports Cordova apps for the iOS and Android platforms. Apps for
Microsoft Windows are not supported.

Get the SDK
To get the client SDK for Cordova, go to the Oracle Digital Assistant and Mobile Cloud
Downloads on OTN.

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile Hub
features, such as platform and custom APIs. For your app to access these resources, it
authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page open.

You’ll need to configure your app with some of this information.

Add the SDK
Assuming a basic app setup, without intervening frameworks, here’s what you would do to
add the Cordova client SDK to an app:

1. If you haven’t already done so, unzip the Cordova SDK zip.

2. Copy mcs.js (and/or mcs.min.js), and oracle_mobile_cloud_config.js into the
directory where you keep your JavaScript libraries.

3. Fill in your backend details in oracle_mobile_cloud_config.js.

4-1

https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:16851,1
http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

4. Add script tags for the SDK and the configuration file in your app’s index.html file:

<script src="lib/mcs/mcs.js"</script>
<script src="app/oracle_mobile_cloud_config.js"</script>

5. If you will be using notifications in your apps, install the oracle-mcs-
notifications-cordova-plugin plugin:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

6. (Optional) For RequireJS environments, load mcs.js in your app using RequireJS.

If your app uses Sync Express, mcs.sync.min.js must be fetched and executed
as the first script in the main page of your app, before any other script. For detailed
instructions on adding Sync Express to your app, see Building Apps that Work
Offline Using Sync Express.

Add Support for Push Notifications
If you want to use push notifications in an app, these additional steps are required.

1. (For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with the OMH service.

2. (For Android) Download the generated Firebase configuration file and put it in the
root of your project.

3. (For Android) If you haven’t already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

4. (For iOS) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

5. Create the app in OMH and notifications profiles for Android and iOS. See Create
a Notifications Profile.

6. In your app code, register for notifications:

...
document.addEventListener("deviceready", handleDeviceReady, false);
...
function handleDeviceReady(){
 MCSNotificationsCordovaPlugin.onTokenRefresh(handleTokenRefresh,
handleError);

Chapter 4
Add the SDK

4-2

https://firebase.google.com/docs/cloud-messaging/android/client

}
...
function handleTokenRefresh(token){
 console.log('NotificationsService Token refreshed', token);
 mcs.mobileBackend.notifications.registerForNotifications(token,
packageName, appVersion, 'FCM')
 .then(handleRegisterForNotifications)
 .catch(handleError);
}

function handleRegisterForNotifications(response){
 console.log('NotificationsService, device registered for
notifications');
}
function handleError(error){
 console.error('NotificationsService Error', error);
}

7. In your app code, subscribe to notifications events:

...
function handleDeviceReady(){

MCSNotificationsCordovaPlugin.onMessageReceived(handleMessageReceived,
handleError);
}
...
function handleMessageReceived(data){
 console.log('NotificationsService Message received', data);
}

function handleError(error){
 console.error('NotificationsService Error', error);
}

Configure SDK Properties
To use the client SDK in a Cordova app, add the oracle_mobile_cloud_config.js
configuration file to the app and fill it in with environment details for your backend . In turn, the
SDK classes use this information to construct HTTP headers for REST calls made to the
service. If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to OMH APIs. See Securing Browser-Based Apps Against Cross-
Site Request Forgery Attacks.

Package the configuration file in the same folder as the mcs.min.js file.

The file is essentially divided into the following parts:

• Properties that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of the
file.

• The mobileBackend property and its contents.

Chapter 4
Configure SDK Properties

4-3

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.NONE,
 "logHTTP": true,
 "oAuthTokenEndPoint": "OAUTH_BASE_URL",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }
 },
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/firstApi/tasks/:id(\\d+)?',
 },
 {
 "path": '/mobile/custom/secondApi/tasks/:id(\\d+)?',
 }
]
 }
};

Here are some notes on the file’s elements.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is mcs.LOG_LEVEL.INFO (only important events are logged).
Other possible values are mcs.LOG_LEVEL.NONE, mcs.LOG_LEVEL.ERROR (only
errors are logged) or mcs.LOG_LEVEL.VERBOSE.

• enableLogger — When set to true, logging is included in your app.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in
requests and responses.

• mobileBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

Chapter 4
Configure SDK Properties

4-4

• mobileBackend/baseUrl — The base URL for all APIs that you call through the backend.
You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of mcs.AUTHENTICATION_TYPES.oauth,
basic, facebook, or token.

– One or more sub-elements containing authentication credentials.

– (Optional) You can add the offlineEnabled key and set its value to true.

See Authentication Properties for details and examples of each authentication type.

For details on sync elements, see Building Apps that Work Offline Using Sync Express.

Authentication Properties
The contents and sub-elements of authentication depend on what kind of authentication
the app will be using.

OAuth
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.oauth.

• At the same level as the type property, create a property called oauth and fill in the
clientID and clientSecret credentials provided by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied but
without the oauth2/v1/token that is appended on the backend’s Settings page.

The resulting authentication element might look something like this:

var mcs_config = {
...
 "oAuthTokenEndPoint": "BASE_OAUTH_URL_WITH_oauth2/v1/token_REMOVED",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }
 }
};

HTTP Basic
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.basic.

• At the same level as the type property, create a property called basic and fill in the
mobileBackendID and anonymousKey that are provided by the backend.

Chapter 4
Configure SDK Properties

4-5

The resulting entries might look something like this:

var mcs_config = {
 ...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.basic,
 "basic": {
 "mobileBackendId": "MOBILE_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type property to mcs.AUTHENTICATION_TYPES.token.

• Fill in the mobileBackendId and anonymousKey that are provided by the backend.

The resulting properties might look something like this:

var mcs_config = {
...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.token,
 "token":{
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Facebook Login
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.facebook.

• Fill in the HTTP Basic auth credentials and/or the OAuth credentials provided by
the backend.

• Fill in the appID for the Facebook app.

• Fill in the relevant scopes.

Chapter 4
Configure SDK Properties

4-6

The resulting authentication entry might look something like this:

var mcs_config = {

 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.facebook,
 "facebook":{
 "appId": "YOUR_FACEBOOK_APP_ID",
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "YOUR_ANONYMOUS_KEY",
 "scopes":
"public_profile,user_friends,email,user_location,user_birthday"
 }
 }
 }
};

Call Mobile APIs
In OMH, a backend is a logical grouping of custom APIs, storage collections, and other
resources that you can use in your apps. The backend also provides the security context for
accessing those resources.

Here are the general steps for using a backend in your Cordova app:

1. Add the client SDK to your app.

2. Fill in the oracle_mobile_cloud_config.js with environment and authentication details
for the backend.

3. Add an SDK call to your app to load the configuration info.

4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Load the Backend's Configuration
Before you can make calls to the service APIs using the Cordova client SDK, you need to
load the configuration for the backend you are going to use. In the following snippet,
mcs_config is the name of the configuration that is defined in the
oracle_mobile_cloud_config.js file that you have added to your app.

mcs.init(mcs_config);

Authenticate and Log In
Here are some examples of using the Cordova client SDK’s Authorization class. These
examples assume you already configured the SDK config file for the type of authentication
you’re using.

Chapter 4
Call Mobile APIs

4-7

OAuth and HTTP Basic
Set the authentication type for the backend to oauth (or basic):

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.oauth)
;

Then add a function that calls Authorization.authenticate on the backend, passes it
a user name and specifies callbacks for success and failure:

mcs.mobileBackend.authorization.authenticate(username,
password).then(callback).catch(errorCallback);

If you want to use anonymous authentication, the method to call is
authenticateAnonymous:

mcs.mobileBackend.authorization.authenticateAnonymous().then(callback).
catch(errorCallback);

SSO with a Third-Party Token
To use SSO with a third-party token, your app first needs to get a token from the third-
party token issuer.

Set the authentication type for the backend to token and then pass the token in the
authorization call:

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token)
;
mcs.mobileBackend.authorization.authenticate(token).then(callback).catc
h(errorCallback);

Facebook
Set the authentication type for the backend to facebook and then call authenticate():

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.facebo
ok);
mcs.mobileBackend.authorization.authenticate().then(callback).catch(err
orCallback);

Secure Browser-Based Apps Against Cross-Site Request Forgery
Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to APIs to protect against Cross-Site Request Forgery
(CSRF) attacks. Do this by setting the Security_AllowOrigin environment to either
disallow (the default value) or to a comma-separated whitelist of trusted URLs from
which cross-site requests can be made. For convenience, during the development of a

Chapter 4
Call Mobile APIs

4-8

browser-based application or during testing of a hybrid application running in the browser,
you can set Security_AllowOrigin to http://localhost:[port], but be sure to update the
value in production.

Call Platform APIs
Once you include the Cordova client SDK libraries in your application, and adjust
configuration settings, you’re ready to use the SDK classes in your apps.

Here’s an example of how you could use these classes to get an object from a Storage
collection in the mobile backend:

mcs.mobileBackend.storage.getCollection(<collection id>)
.then(function(collection){
 return collection.getObject(<object id>, ‘blob’);
})
.then(function(object){
 console.log(object);
})
.catch(function(response){
 console.error(response);
})

Call Custom APIs
The Cordova client SDK provides the CustomCode class to simplify the calling of custom APIs.
You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JSON or empty and the response payload is JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs.mobileBackend.CustomCode.invokeCustomCodeJSONRequest("TaskApi1/tasks/
100" , "GET" , null).then(function(response){
 //The response parameter returns the status code and HTTP payload from
the HTTP REST Call.
 console.log(response);
 // Example: { statusCode: 200, data: {} }
 //Depends on the response format defined in the API.
 }).catch(function(response){
 //The response parameter returns the status code and HTTP payload, if
available, or an error message, from the HTTP REST Call.
 console.log(response);
 /*
 Example:
 { statusCode: 404,
 data: {
 "type":"http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "status":404,"title":"API not found",
 "detail":"We cannot find the API cordovaJSApi2 in Mobile Backend
CordovaJSBackend(1.0). Check that this Mobile Backend is associated with the
API.",
 "o:ecid":"005Bojjhp2j2FSHLIug8yf00052t000Jao, 0:2",
"o:errorCode":"MOBILE-57926", "o:errorPath":"/mobile/custom/cordovaJSApi2/

Chapter 4
Call Mobile APIs

4-9

tasks" } }
 */
 //Depends on the response format defined in the API.
 });

Use TypeScript
It is also possible to use TypeScript objects with the Cordova and JavaScript client
SDKs.

Here are some basic steps and examples for using TypeScript with the SDK. The
examples assume your app is using the Ionic framework (though you can also use
TypeScript without it).

Set Up the SDK
1. Install the SDK in your project by running this command in your project folder:

npm install {path to unzipped SDK location}

2. Add import statements to your service to import SDK types:

import {IMCS} from 'mcs'

3. Create the configuration file for the app:

import {IMCS,
 IOracleMobileCloudConfig,
 IMobileBackendConfig,
 IAuthenticationConfig,
 IBasicAuthConfig,
 IOAuthConfig,
 import * as mcssdk from 'mcs'
const mcs: IMCS = mcssdk;

export const mcsConfig: IOracleMobileCloudConfig = {
 logLevel: mcs.LOG_LEVEL.NONE,
 logHTTP: true,
 oAuthTokenEndPoint: 'OAUTH_URL',
 mobileBackend: <IMobileBackendConfig>{
 name: 'NAME',
 baseUrl: 'BASE_URL',
 authentication: <IAuthenticationConfig>{
 type: mcs.AUTHENTICATION_TYPES.basic,
 basic: <IBasicAuthConfig>{
 mobileBackendId: 'MOBILE_BACKEND_ID',
 anonymousKey: 'ANONYMOUS_KEY'
 }
 }
 }
};

Chapter 4
Use TypeScript

4-10

4. Import the configuration into the app. If the above file is called mcs-config.ts, the import
would look like :

import { mcsConfig } from "../mcs-config";

Call Mobile APIs
1. Add these import statements to your service or component:

import {IMCS} from 'mcs';
import * as mcssdk from 'mcs'; And in your class add declaration
statement:

2. Add the declaration statement in your class:

export class ComponentClass{
 mcs: IMCS = mcssdk;
}

3. Initialize the SDK library with a configuration:

this.mcs.init(mcsConfig);

4. Call backend functionality:

this.mcs.mobileBackend.setAuthenticationType(this.mcs.AUTHENTICATION_TYPES
.basic);
this.mcs.mobileBackend.authorization.authenticate(username, password);

Add Support for Location Services (Ionic Only)

ionic cordova plugin add cordova-plugin-geolocation

Add Support for Push Notifications (Ionic only)
1. (For Android) Register your app for notifications on the Firebase Cloud Messaging (FCM)

console. See Set Up a Firebase Cloud Messaging Client App on Android on Google’s
developer site.

When you generate the configuration file for your app, make sure you choose to enable
the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key are
displayed. These credentials are unique to the mobile app and can’t be used to send
notifications to any other app. You also need these values to get a registration token from
FCM and set up the connection with OMH.

2. (For Android) Download the generated Firebase configuration file and put it in the root of
your project.

Chapter 4
Use TypeScript

4-11

https://firebase.google.com/docs/cloud-messaging/android/client

3. (For Android) If you haven’t already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

4. (For iOS) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates.

5. Create the app and notifications profiles for Android and iOS. See Create a
Notifications Profile.

6. In your app code, register for notifications:

...
MCSNotificationsCordovaPlugin.onTokenRefresh(this.handleTokenRefresh
.bind(this), this.handleError.bind(this));
...
handleTokenRefresh(token: string){
 console.log('NotificationsService Token refreshed', token);

this.mcs.mobileBackend.notifications.registerForNotifications(token,
 packageName, appVersion, 'FCM')
 .then(this.handleRegisterForNotifications.bind(this))
 .catch(this.handleError.bind(this));
}

handleRegisterForNotifications(response: INetworkResponse){
 console.log('NotificationsService, device registered for
notifications');
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

7. In your app code, subscribe to notifications events:

...
MCSNotificationsCordovaPlugin.onMessageReceived(this.handleMessageRe
ceived.bind(this), this.handleError.bind(this));
...
handleMessageReceived(data: any){
 console.log('NotificationsService Message received', data);
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

Libraries
The Cordova client SDK includes the following items:

• jsdocs.zip — The compiled documentation for the library.

Chapter 4
Libraries

4-12

• loki-cordova-fs-adapter — A plugin used for Sync Express feature for Cordova to
extend amount of available storage.

• mcs.js — The uncompressed version of the SDK. This version contains code comments
and is best used as you are developing and debugging your app.

• mcs.sync.js — The uncompressed version of the SDK Data Offline and Sync and Sync
Express libraries.

• mcs.min.js — The compressed version of the SDK. Use this version when you deploy
the completed app.

• mcs.sync.min.js — The compressed version of the SDK Data Offline and Sync and
Sync Express libraries.

• oracle-mcs-notifications-cordova-plugin — A Cordova plugin that enables iOS and
Android notifications.

• oracle_mobile_cloud_config.js — A Mobile Hub configuration file, in which you can
insert environment and authentication details for the mobile backends that your app will
access.

• types — Contains TypeScript definitions for the SDK’s modules and plugins.

Next Steps
Once you have the Cordova SDK set up, you can start using it to add features to your app.

• Authentication in Mobile Hub

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

• App Policies

Chapter 4
Next Steps

4-13

5
JavaScript Applications

If you develop JavaScript-based mobile apps, you can use the provided client SDK for
JavaScript. This SDK simplifies authentication with the service and provides JavaScript
wrapper classes for the platform APIs.

This SDK is primarily geared toward browser-based apps but can also be used for hybrid
frameworks. If you develop Cordova-based apps, use the Cordova SDK.

Get the SDK
To get the client SDK for JavaScript, go to the Oracle Digital Assistand and Mobile Cloud
Downloads page on OTN.

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile Hub
features, such as platform and custom APIs. For your app to access these resources, it
authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page open.

You’ll need to configure your app with some of this information.

Add the SDK
Assuming a basic app setup, without intervening frameworks, here’s what you would do to
add the JavaScript client SDK to an app:

1. If you haven’t already done so, unzip the SDK zip.

2. Copy mcs.min.js (and/or mcs.js) and oracle_mobile_cloud_config.js into the
directory where you keep your JavaScript libraries.

3. Fill in your mobile backend details in oracle_mobile_cloud_config.js.

4. Add script tags for the SDK and the configuration file in your app’s index.html file:

<script src="lib/mcs/mcs.js"</script>
<script src="app/oracle_mobile_cloud_config.js"</script>

5. (Optional) For RequireJS environments, load mcs.js in your app using RequireJS.

In addition to mcs.min.js, if your app uses Sync Express, mcs.sync.min.js must be
fetched and executed as the first script in the main page of your app, before any other
script, including RequireJS. For detailed instructions on adding Sync Express to your
app, see Building Apps that Work Offline Using Sync Express.

5-1

http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

Configure SDK Properties
To use the client SDK in a JavaScript app, add the oracle_mobile_cloud_config.js
configuration file to the app and fill it in with environment details for your backend in
OMH. In turn, the SDK classes use this information to construct HTTP headers for
REST calls made to OMH. For browser-based apps, you need to manage cross-origin
resource sharing (CORS) for access to OMH APIs. See Secure Browser-Based Apps
Against Cross-Site Request Forgery Attacks .

Package the configuration file in the same folder as the mcs.min.js file.

The file is essentially divided into the following parts:

• The mobileBackend property and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

• Properties that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of
the file.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.NONE,
 "logHTTP": true,
 "oAuthTokenEndPoint": "OAUTH_URL",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }
 };
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/firstApi/tasks/:id(\\d+)?',
 },
 {
 "path": '/mobile/custom/secondApi/tasks/:id(\\d+)?',
 }
]
 }
};

Here are some notes on the file’s elements.

Chapter 5
Configure SDK Properties

5-2

• oAuthTokenEndPoint — The URL of the OAuth server from where your application gets
its authentication token. This key needs to be provided for all apps that rely on OAuth to
authenticate. You get this from the backend’s Settings page. The endpoint should be
only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console. The
default value is mcs.LOG_LEVEL.INFO (where only important events are logged). Other
possible values are mcs.LOG_LEVEL.ERROR (only errors are logged) and
mcs.LOG_LEVEL.VERBOSE.

• enableLogger — When set to true, logging is included in your app.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in requests
and responses.

• mobileBackend — An element containing authentication details for your backend and
other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from the
backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the backend.
You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of oauth, basic, facebook, and token.

– One or more sub-elements for authentication types, each containing authentication
credentials.

You can also add the offlineEnabled key and set its value to true.

See Authentication Properties for examples of each authentication type.

For details on sync elements, see Building Apps that Work Offline Using Sync Express .

Authentication Properties
The contents and sub-elements of authentication depend on what kind of authentication
the app will be using.

OAuth
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.oauth.

• At the same level as the type property, create a property called oauth and fill in the
clientID and clientSecret credentials provided by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied but
without the oauth2/v1/token that is appended on the backend’s Settings page.

The resulting authentication element might look something like this:

var mcs_config = {
...
 "oAuthTokenEndPoint": "BASE_OAUTH_URL_WITH_oauth2/v1/token_REMOVED",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",

Chapter 5
Configure SDK Properties

5-3

 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }
 }
};

HTTP Basic
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.basic.

• At the same level as the type property, create a property called basic and fill in
the mobileBackendID and anonymousKey that are provided by the backend.

The resulting entries might look something like this:

var mcs_config = {
 ...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.basic,
 "basic": {
 "mobileBackendId": "MOBILE_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type property to mcs.AUTHENTICATION_TYPES.token.

• Fill in the mobileBackendId and anonymousKey that are provided by the backend.

The resulting properties might look something like this:

var mcs_config = {
...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.token,
 "token":{
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }

Chapter 5
Configure SDK Properties

5-4

 }
 }
};

Facebook Login
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.facebook.

• Fill in the HTTP Basic auth credentials and/or the OAuth credentials provided by the
backend.

• Fill in the appID for the Facebook app.

• Fill in the relevant scopes.

The resulting authentication entry might look something like this:

var mcs_config = {

 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.facebook,
 "facebook":{
 "appId": "YOUR_FACEBOOK_APP_ID",
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "YOUR_ANONYMOUS_KEY",
 "scopes":
"public_profile,user_friends,email,user_location,user_birthday"
 }
 }
 }
};

Calling Mobile APIs
In the service, a backend is a logical grouping of custom APIs, storage collections, and other
resources that you can use in your apps. The backend also provides the security context for
accessing those resources.

Here are the general steps for using a backend in your JavaScript app:

1. Add the client SDK to your app.

2. Fill in the oracle_mobile_cloud_config.js with environment and authentication details
for the backend.

3. Add an SDK call to your app to load the configuration info.

4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Chapter 5
Calling Mobile APIs

5-5

Load the Backend's Configuration
Before you can make calls to APIs using the JavaScript client SDK, you need to load
the configuration for the backend you are going to use. In the following snippet,
mcs_config is the name of the configuration that is defined in the
oracle_mobile_cloud_config.js file that you have added to your app.

mcs.init(mcs_config);

Authenticate and Log In
Here are some examples of how to use the Authorization class of the JavaScript
client SDK in your code. These examples assume you already configured the SDK
config file for the type of authentication you’re using

OAuth and HTTP Basic
Set the authentication type for the backend to oauth (or basic):

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.oauth)
;

Then add a function that calls Authorization.authenticate on the backend, passes it
a user name and specifies callbacks for success and failure:

mcs.mobileBackend.authorization.authenticate(username,
password).then(callback).catch(errorCallback);

If you want to use anonymous authentication, the method to call is
authenticateAnonymous:

mcs.mobileBackend.authorization.authenticateAnonymous().then(callback).
catch(errorCallback);

SSO with a Third-Party Token
To use SSO with a third-party token, your app first needs to get a token from the third-
party token issuer.

Set the authentication type for the backend to token and then pass the token in the
authorization call:

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token)
;
mcs.mobileBackend.authorization.authenticate(token).then(callback).catc
h(errorCallback);

Chapter 5
Calling Mobile APIs

5-6

Facebook
Set the authentication type for the backend to facebook and then call authenticate():

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.facebook);
mcs.mobileBackend.authorization.authenticate().then(callback).catch(errorCall
back);

Secure Browser-Based Apps Against Cross-Site Request Forgery Attacks
If any of your apps will be browser-based, you need to manage cross-origin resource sharing
(CORS) for access to APIs to protect against Cross-Site Request Forgery (CSRF) attacks.
Do this by setting the Security_AllowOrigin environment to either disallow (the default
value) or to a comma-separated whitelist of trusted URLs from which cross-site requests can
be made. For convenience, during the development of a browser-based application or during
testing of a hybrid application running in the browser, you can set Security_AllowOrigin to
http://localhost:[port], but be sure to update the value in production.

Call Platform APIs
Once you include the client SDK libraries in your application, and adjust configuration
settings, you’re ready to use the SDK classes in your apps.

Here’s an example of how you could use these classes to get an object from a Storage
collection in the mobile backend:

mcs.mobileBackend.storage.getCollection(<collection id>)
.then(function(collection){
 return collection.getObject(<object id>, ‘blob’);
})
.then(function(object){
 console.log(object);
})
.catch(function(response){
 console.error(response);
})

Call Custom APIs
The JavaScript client SDK provides the CustomCode class to simplify the calling of custom
APIs. You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JSON or empty and the response payload is JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs.mobileBackend.CustomCode.invokeCustomCodeJSONRequest("TaskApi1/tasks/
100" , "GET" , null).then(function(response){
 //The response parameter returns the status code and HTTP payload from
the HTTP REST Call.
 console.log(response);
 // Example: { statusCode: 200, data: {} }

Chapter 5
Calling Mobile APIs

5-7

 //Depends on the response format defined in the API.
 }).catch(function(response){
 //The response parameter returns the status code and HTTP payload,
if available, or an error message, from the HTTP REST Call.
 console.log(response);
 /*
 Example:
 { statusCode: 404,
 data: {
 "type":"http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "status":404,"title":"API not found",
 "detail":"We cannot find the API cordovaJSApi2 in Mobile
Backend CordovaJSBackend(1.0). Check that this Mobile Backend is
associated with the API.",
 "o:ecid":"005Bojjhp2j2FSHLIug8yf00052t000Jao, 0:2",
"o:errorCode":"MOBILE-57926", "o:errorPath":"/mobile/custom/
cordovaJSApi2/tasks" } }
 */
 //Depends on the response format defined in the API.
 });

Use TypeScript
It is also possible to use TypeScript objects with the Cordova and JavaScript client
SDKs.

Here are some basic steps and examples for using TypeScript with the SDK. The
examples assume your app is using the Ionic framework (though you can also use
TypeScript without it).

Set Up the SDK
1. Install the SDK in your project by running this command in your project folder:

npm install {path to unzipped SDK location}

2. Add import statements to your service to import SDK types:

import {IMCS} from 'mcs'

3. Create the configuration file for the app:

import {IMCS,
 IOracleMobileCloudConfig,
 IMobileBackendConfig,
 IAuthenticationConfig,
 IBasicAuthConfig,
 IOAuthConfig,
 import * as mcssdk from 'mcs'
const mcs: IMCS = mcssdk;

export const mcsConfig: IOracleMobileCloudConfig = {

Chapter 5
Use TypeScript

5-8

 logLevel: mcs.LOG_LEVEL.NONE,
 logHTTP: true,
 oAuthTokenEndPoint: 'OAUTH_URL',
 mobileBackend: <IMobileBackendConfig>{
 name: 'NAME',
 baseUrl: 'BASE_URL',
 authentication: <IAuthenticationConfig>{
 type: mcs.AUTHENTICATION_TYPES.basic,
 basic: <IBasicAuthConfig>{
 mobileBackendId: 'MOBILE_BACKEND_ID',
 anonymousKey: 'ANONYMOUS_KEY'
 }
 }
 }
};

4. Import the configuration into the app. If the above file is called mcs-config.ts, the import
would look like :

import { mcsConfig } from "../mcs-config";

Call Mobile APIs
1. Add these import statements to your service or component:

import {IMCS} from 'mcs';
import * as mcssdk from 'mcs'; And in your class add declaration
statement:

2. Add the declaration statement in your class:

export class ComponentClass{
 mcs: IMCS = mcssdk;
}

3. Initialize the SDK library with a configuration:

this.mcs.init(mcsConfig);

4. Call backend functionality:

this.mcs.mobileBackend.setAuthenticationType(this.mcs.AUTHENTICATION_TYPES
.basic);
this.mcs.mobileBackend.authorization.authenticate(username, password);

Add Support for Location Services (Ionic Only)

ionic cordova plugin add cordova-plugin-geolocation

Chapter 5
Use TypeScript

5-9

Add Support for Push Notifications (Ionic only)
1. (For Android) Register your app for notifications on the Firebase Cloud Messaging

(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMH.

2. (For Android) Download the generated Firebase configuration file and put it in the
root of your project.

3. (For Android) If you haven’t already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

4. (For iOS) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates.

5. Create the app and notifications profiles for Android and iOS. See Create a
Notifications Profile.

6. In your app code, register for notifications:

...
MCSNotificationsCordovaPlugin.onTokenRefresh(this.handleTokenRefresh
.bind(this), this.handleError.bind(this));
...
handleTokenRefresh(token: string){
 console.log('NotificationsService Token refreshed', token);

this.mcs.mobileBackend.notifications.registerForNotifications(token,
 packageName, appVersion, 'FCM')
 .then(this.handleRegisterForNotifications.bind(this))
 .catch(this.handleError.bind(this));
}

handleRegisterForNotifications(response: INetworkResponse){
 console.log('NotificationsService, device registered for
notifications');
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

7. In your app code, subscribe to notifications events:

...
MCSNotificationsCordovaPlugin.onMessageReceived(this.handleMessageRe

Chapter 5
Use TypeScript

5-10

https://firebase.google.com/docs/cloud-messaging/android/client

ceived.bind(this), this.handleError.bind(this));
...
handleMessageReceived(data: any){
 console.log('NotificationsService Message received', data);
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

Libraries
The JavaScript client SDK contains the following items:

• jsdocs.zip — The compiled documentation for the library.

• mcs.js — The uncompressed version of the SDK. This version contains code comments
and is best used as you are developing and debugging your app.

• mcs.sync.js — The uncompressed version of the SDK Data Offline and Sync and Sync
Express libraries.

• mcs.min.js — The compressed version of the SDK. Use this version when you deploy
the completed app.

• mcs.sync.min.js — The compressed version of the SDK Data Offline and Sync and
Sync Express libraries.

• oracle_mobile_cloud_config.js — An Mobile Hub configuration file, in which you can
insert environment and authentication details for the mobile backends that your app will
access.

• types — Contains TypeScript definitions for the SDK’s modules and plugins.

Next Steps
Once you have the JavaScript SDK set up, you can start using it to add Mobile Hub features
to your app.

• Authentication in Mobile Hub

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

• App Policies

Chapter 5
Libraries

5-11

6
Xamarin Android Apps

If you use the Xamarin platform to develop Android apps, you can use the SDK that Oracle
Mobile Hub provides for Xamarin Android apps. This SDK simplifies authentication with
Mobile Hub and provides native wrapper classes for Mobile Hub platform APIs.

Get the SDK
To get the client SDK for Xamarin Android, go to the Oracle Digital Assistant and Oracle
Mobile Cloud Downloads page on OTN.

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile Hub
features, such as platform and custom APIs. For your app to access these resources, it
authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page open.

You’ll need to configure your app with some of this information.

Add the SDK
1. If you haven’t already done so, extract the contents from the SDK zip.

2. In Visual Studio, create a Visual C# Android app.

3. Make sure you can connect to the internet from Visual Studio connection so that NuGet
packages are reachable.

4. Add GCM and Facebook dependencies to your project:

• If a Packages node appears in the Solution Explorer for your project, do the
following:

a. Right-click the Packages node.

b. Type GCM in the search field, select Xamarin.GooglePlayServices.Gcm (not
Crosslight.Xamarin.GooglePlayServices.GCM), and click Add Package. The
remaining GCM dependencies will be added automatically.

c. Accept the terms to add the packages successfully.

d. Add Xamarin.Facebook.Android by searching for it in the NuGet packages and
adding it in the same way you added the GCM packages.

• If a Packages node doesn't appear in the Solution Explorer for your project, do the
following:

6-1

https://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
https://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

a. Select Tools > NuGet Package Manager > Manage NuGet Packages
for Solution.

b. Select the Browse tab.

c. Type GCM in the search field, select Xamarin.GooglePlayServices.Gcm
(not Crosslight.Xamarin.GooglePlayServices.GCM), select the checkbox
for your app, and click Install. The remaining GCM dependencies will be
added automatically.

d. After previewing the changes, click OK.

e. Add Xamarin.Facebook.Android by searching for it in the NuGet
packages and adding it in the same way you added the GCM packages.

5. At the end make sure you have all the below dependencies. If any of them are
missing, search for them in the NuGet package manager.

<packages>
 <package id="Bolts" version="1.4.0.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Animated.Vector.Drawable"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Annotations"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Compat" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Core.UI" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Core.Utils"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.CustomTabs"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Design" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Fragment" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Media.Compat"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Transition"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v4" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v7.AppCompat"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v7.CardView"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v7.RecyclerView"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Vector.Drawable"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Build.Download" version="0.4.7"
targetFramework="monoandroid80" />
 <package id="Xamarin.Facebook.Android" version="4.26.0"
targetFramework="monoandroid80" />
 <package id="Xamarin.Google.ZXing.Core" version="3.3.0"
targetFramework="monoandroid80" />

Chapter 6
Add the SDK

6-2

 <package id="Xamarin.GooglePlayServices.Base" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Basement" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Gcm" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Iid" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Tasks" version="42.1021.1"
targetFramework="monoandroid71" />
</packages>

6. Add the SDK's DLL file to your app by right-clicking the project's References node and
selecting Edit References or Add Reference (depending on which menu item is
available).

• If you select Edit References, click the .NET Assembly tab, and then browse to the
Android.dll file in the extracted SDK zip.

• If you select Add Reference, click the Browse tab, click the Browse button, and
then navigate to the Android.dll file in the extracted SDK zip.

7. Add the configuration file to the app by right-clicking the project's Assets node and
selecting either Add > Add Files or Add > Existing File (depending which is available)
and then navigating to the SDK's oracle_mobile_cloud_config.xml file.

8. Select the node for oracle_mobile_cloud_config.xml so that it's properties are
displayed in the Properties pane. Then make sure that the Build Action property is set to
AndroidAsset.

The next steps will be to fill in the appropriate data in the oracle_mobile_cloud_config.xml
and AndroidManifest.xml files.

Configure SDK Properties
To use the client SDK in an Android app, you need to add a
oracle_mobile_cloud_config.xml configuration file to the app and fill it in with environment
details for your backend in Oracle Mobile Hub. In turn, the SDK classes use this information
to construct HTTP headers for REST calls made to Oracle Mobile Hub.

You package the configuration file in your app’s main bundle in the assets folder at the same
level as the java and res folders. For example, in the sample GettingStarted app, it’s in /
GettingStarted/src/main/assets.

The file is essentially divided into the following parts:

• The mobileBackend element and its contents.

You include this part if you are using a backend with the app. The SDK classes use the
environment and authentication details you specify there to access the backend and
construct HTTP headers for REST calls made to APIs.

• Elements that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These elements generally, but don’t have to, appear at the top of
the file.

Chapter 6
Configure SDK Properties

6-3

The following code sample shows the structure of a
oracle_mobile_cloud_config.xml file.

<config>

 <!--This value is required if you are using OAuth to authenticate
against the mobile backend-->
 <oAuthTokenEndPoint>YOUR_OAUTH_TOKEN_END_POINT<oAuthTokenEndPoint>
 <!--Set to true if you want to get logging information-->
 <enableLogger>true</enableLogger>
 <logLevel>DEBUG</logLevel>
 <!--Whether to log HTTP call request and response bodies and
headers-->
 <logHTTP>true</logHTTP>

 <!-- Include the mobileBackend element and its sub-elements if you
are going
 to be using a backend to access custom and platform APIs.-->
 <mobileBackend>
 <name>MBE_NAME</name>
 <baseUrl>BASE_URL</baseUrl>
 <enableAnalytics>true</enableAnalytics>
 <authentication>
 <!--possible values for type are [oauth, basic, facebook,
tokenExchange]-->
 <type>AUTH_TYPE</type>
 <oauth>
 <clientId>CLIENT_ID</clientId>
 <clientSecret>CLIENT_SECRET</clientSecret>
 <enableOffline>true</enableOffline>
 </oauth>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 <enableOffline></enableOffline>
 </basic>
 <facebook>
 <appId>FACEBOOK_APP_ID</appId>

<scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 </facebook>
 <tokenExchange>
 <! tokenExchange can contain an 'oauth' sub-element or a
'basic' sub-element.
 <oauth>
 <clientId>CLIENT_ID</clientId>
 <clientSecret>CLIENT_SECRET</clientSecret>
 </oauth>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>

Chapter 6
Configure SDK Properties

6-4

 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 <tokenExchange>
 </authentication>
 <!-- additional properties go here -->
 </mobileBackend>

</config>

The values that you need to fill in for a given backend can be found on the Settings and App
Profile pages for that mobile backend.

Here are some more notes on the file’s elements.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application gets
its authentication token. This key needs to be provided for all applications that rely on
OAuth to authenticate. You get this from the backend’s Settings page.

• logLevel — Determines how much SDK logging is displayed in the application's console.
The default value is ERROR. Other possible values (in increasing level of detail) are
WARNING, INFO, and DEBUG. It is also possible to specify NONE.

• enableLogger — When set to true, logging is included in your application.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in requests
and responses.

• mobileBackend — An element containing authentication details for your backend and
other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from the
backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the backend.
You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of oauth, basic, facebook, and
tokenExchange.

– One or more sub-elements for authentication types, each containing authentication
credentials.

You can also add the offlineEnabled key and set its value to true.

• enableOffline — If set to true, offline login will be allowed. This applies only to the
Basic and OAuth login types. For this to work, you also need to add the following to the
application's AndroidManifest.xml file:

<receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

Chapter 6
Configure SDK Properties

6-5

Authentication Properties
The contents and sub-elements of authentication depend on what kind of
authentication the app will be using.

OAuth
• Set the value of the <type> element to oauth.

• Fill in the clientID and clientSecret credentials provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
element and set it to false.

• At the top level of the file, supply the oAuthTokenEndPoint value.

The resulting authentication element might look something like this:

<oAuthTokenEndPoint>http://oam-server.oracle.com/oam/oauth2/tokens</
oAuthTokenEndPoint>

<authentication>
 <type>oauth</type>
 <oauth>
 <clientId>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</clientId>
 <clientSecret>vZMRkgniIbhNUiPnSRT2</clientSecret>
 <enableOffline>false</enableOffline>
 </oauth>
</authentication>

HTTP Basic
• Set the value of the type element to basic.

• Fill in the mobileBackendID and anonymousKey that are provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
sub-element and set it to false.

The resulting authentication element might look something like this:

<authentication>
 <type>basic</type>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</
mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</
anonymousKey>
 <enableOffline>false</enableOffline>
 </basic>
</authentication>

Chapter 6
Configure SDK Properties

6-6

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the <type> element to tokenExchange.

• Create a <basic> sub-element and fill in the OAuth Consumer credentials provided by
the backend.

The resulting authentication element might look something like this:

<authentication>
 <type>tokenExchange</type>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
 <tokenExchange>
</authentication>

Facebook Login
For Facebook login:

• Set the value of the <type> property to facebook.

• Create a <facebook> sub-element.

• Fill in the <appID> for the Facebook app.

• Fill in <scopes> with any relevant Facebook permissions (optional).

• Within <facebook>, created a <basic> element and fill in the HTTP Basic credentials
provided by the backend.

The resulting authentication element might look something like this:

<authentication>
 <type>facebook</type>
 <facebook>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendId>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 <appID>123456789012345</appId>
 <scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 </facebook>
<authentication>

Configure Your Android Manifest File
Permissions for operations such as accessing the network and finding the network state are
controlled through permission settings in your application's manifest file,
AndroidManifest.xml. These permissions are required:

Chapter 6
Configure Your Android Manifest File

6-7

• permission.INTERNET — Allows your app to access open network sockets.

• permission.ACCESS_NETWORK_STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, there are a number of permissions
necessary so the app can get notifications. For a rundown on the available
permissions, see Android Manifest Permissions in the Google documentation.

Add the permissions at the top of your AndroidManifest.xml file, as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="oracle.cloud.mobile.sample" >
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <application>
<provider
 android:name="com.facebook.FacebookContentProvider"

android:authorities="com.facebook.app.FacebookContentProvider4306609538
11847"
 android:exported="true" />
<receiver
 android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 </receiver>

 (.....)
 </application>
</manifest>

Adding the client SDK to your application may require you to configure your
AndroidManifest.xml file to add new permissions or activities. For example, if you
add the Notifications individual SDK library, you may also need to add a new broadcast
receiver.

Call Mobile APIs
Here are the general steps for calling mobile APIs:

1. Add an SDK call to your app to load the configuration info.

Chapter 6
Call Mobile APIs

6-8

http://developer.android.com/reference/android/Manifest.permission.html

2. Add an SDK call to your app to handle authentication.

3. Add any other SDK calls that you want to use.

Load the Backend's Configuration
For any calls to Oracle Mobile Hub APIs using the Android client SDK to successfully
complete, you need to have the backend’s configuration loaded from the app’s
oracle_mobile_cloud_config.xml file. You do this using the MobileManager class:

MobileManager.getManager().getMobileBackend(this)

Authenticate and Log In
Here is some sample code that you can use for authentication through the service in your
Android apps.

OAuth Consumer
First you initialize the authorization agent and set the authentication type to OAUTH.

MobileBackend mobileBackend;
IAuthorizationAgent mAuthorization;
mobileBackend = MobileBackendManager.Manager.GetDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.GetAuthorization(AuthType.Oauth);

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes the
authorization process.

TextView username, password;
username = (AutoCompleteTextView)FindViewById(Resource.Id.username);
password = (EditText)FindViewById(Resource.Id.password);
String userName = username.Text;
String passWord = password.Text;
mAuthorization.Authenticate(mCtx, userName, passWord, new
AuthorizationCallback());

Here’s the definition for the callback.

Authorization CallBack
private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 if (exception != null)
 {
 Logger.Error(TAG, "Exception while receiving the Access Token",
exception);
 }
 else

Chapter 6
Call Mobile APIs

6-9

 {
 Logger.Error(TAG, "Authorization successful");
 }
 }
}

SSO with a Third-Party Token
First, your app needs to get a token from the third-party token issuer.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

IAuthorizationAgent mAuthorization;
MobileBackend mobileBackend;
mobileBackend =
MobileBackendManager.Manager.GetDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.GetAuthorization(AuthType.Tokenauth);

// Check whether credential exists in secure store
Boolean isCredentialLoaded = mAuthorization.LoadSSOTokenExchange(mCtx);

if(isCredentialLoaded){
 // Credentials found in secure store - redirect to main activity
 Logger.Info(TAG, "Credentials got loaded successfully from secure
store.");
 Intent intent = new Intent(mCtx, typeof(ContentActivity));
 StartActivity(intent);

} else {
 // Credentials not found - authenticate using token exchange
 Logger.Info(TAG, "Credentials could not be found in secure
store.");
 mAuthorization.AuthenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);
}

Here’s the callback:

private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 if (exception == null)
 {
 //log event with Analytics
 mAnalyticsAgent.LogEvent("Login with 3rd party token
successfully");
 mAnalyticsAgent.Flush();

 //redirect to another Activity after login
 Intent intent = new Intent(mCtx, typeof(ContentActivity));
 LoginActivity.activity.StartActivity(intent);

Chapter 6
Call Mobile APIs

6-10

 } else {
 Logger.Error(TAG, "Exception during token exchange:", exception);
 LoginActivity.activity.Finish();
 }
 }
}

The default expiration time for storing a third-party token in Mobile Hub is 6 hours. You can
adjust this time by changing the Security_TokenExchangeTimeoutSecs policy.

HTTP Basic
The code for handling login with HTTP Basic is nearly the same as the code for OAuth.

First you initialize the authorization agent and set the authentication type to BASIC_AUTH:

MobileBackend mobileBackend;
IAuthorizationAgent mAuthorization;
mobileBackend = MobileBackendManager.Manager.GetDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.GetAuthorization(AuthType.BasicAuth);

Then you use the Authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes the
authorization process.

TextView username, password;
username = (AutoCompleteTextView)FindViewById(Resource.Id.username);
password = (EditText)FindViewById(Resource.Id.password);
String userName = username.Text;
String passWord = password.Text;
mAuthorization.Authenticate(mCtx, userName, passWord, new
AuthorizationCallback());

Here’s the definition for the callback:

private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 Logger.Debug(TAG, "OnCompletion Auth Callback");
 if (exception != null)
 {
 Logger.Error(TAG, "Exception while receiving the Access Token",
exception);
 }
 else
 {
 Logger.Error(TAG, "Authorization successful");
 }

Chapter 6
Call Mobile APIs

6-11

 }
}

Facebook
First you initialize the authorization agent and set the authentication type to Facebook.

ISocialAuthorizationAgent mAuthorization;
SocialMobileBackend socialMobileBackend;
socialMobileBackend =
SocialMobileBackendManager.Manager.GetDefaultMobileBackend(context);
mAuthorization =
socialMobileBackend.GetSocialAuthorization(SocialAuthType.Facebook);
mAuthorization.SetAuthType(AuthType.Facebook);

Using a CallbackManager object from Facebook’s SDK, initiate authentication.

ICallbackManager callbackManager;
mAuthorization.Setup(context, new FacebookCallback());
callbackManager = mAuthorization.CallBackManager;
mAuthorization.AuthenticateSocial(activity);

Here’s code you can use for the callback that is passed above.

private class FacebookCallback : Java.Lang.Object, IFacebookCallback
{
 public void OnSuccess(Java.Lang.Object loginResult)
 {
 Logger.Error(TAG, "facebook login successful.");
 }

 public void OnCancel()
 {
 }

 public void OnError(FacebookException error)
 {
 }
}

Override the OnActivityResult() method to use the callback.

protected override void OnActivityResult(int requestCode, Result
resultCode, Intent data)
{
 Logger.Debug(TAG, "In OnActivity Result onActivityResult");

 base.OnActivityResult(requestCode, resultCode, data);
 callBackManger.OnActivityResult(requestCode, (int)resultCode,
data);
}

Chapter 6
Call Mobile APIs

6-12

Call Platform APIs
Once the mobile backend’s configuration info is loaded into the app and you have made a call
to get the mobile backend, you can use SDK classes for various platform APIs.

Here are some code snippets that illustrate how to access these APIs with the SDK.

User Management

Getting a User

IAuthorizationAgent authorizationAgent = authentication.Authorization;
authorizationAgent.FetchCurrentUser(new UserRegistrationCallback());
private class UserRegistrationCallback : Java.Lang.Object,
IUserRegistrationCallback
{
 public void OnComplete(ServiceProxyException exception, User user)
 {
 if (exception == null)
 {
 mUser = user;
 setText("User " + mUser.Username + " details have been fetched
successfully.");
 }
 else
 {
 //Handle Error
 }
 }
}

Updating a User

//creating map with properties
IDictionary<string, Object> map = new Dictionary<string,Object>();
map.Add("age", 26);
map.Add("address", "india");
authorizationAgent.UpdateUser(new UserRegistrationCallback(), map);

private class UserRegistrationCallback : Java.Lang.Object,
IUserRegistrationCallback
{
 public void OnComplete(ServiceProxyException exception, User user)
 {

 if (exception == null)
 {
 setText("User " + user.Username + " details have been updated
successfully.");
 }
 else
 {
 /Handle Error

Chapter 6
Call Mobile APIs

6-13

 }
 }
}

Location

Initialization

Location location =
(Location)mobileBackend.GetServiceProxy(Class.FromType(typeof(Location)
);

Places, Devices, and Assets

static Location location;
static LocationPlace place;
static LocationDevice device;
static LocationAsset asset;

location =
(Location)mobileBackend.GetServiceProxy(Class.FromType(typeof(Location)
));

LocationPlaceQuery locationPlaceQuery = location.BuildPlaceQuery();

locationPlaceQuery.Name = "West";

locationPlaceQuery.OrderByAttributeType =
LocationDeviceContainerQuery.LocationDeviceContainerQueryOrderByAttribu
teType.LocationDeviceContainerQueryOrderByAttributeTypeName;
locationPlaceQuery.Format =
LocationObjectQuery.LocationObjectQueryFormatType.LocationObjectQueryFo
rmatTypeShort;

locationPlaceQuery.Execute(new LocationObjectQueryCallback());

LocationDeviceQuery locationDeviceQuery = location.BuildDeviceQuery();

locationDeviceQuery.Name = "Beacon";

locationDeviceQuery.OrderByAttributeType =
LocationDeviceQuery.LocationDeviceQueryOrderByAttributeType.LocationDev
iceQueryOrderByAttributeTypeName;
locationDeviceQuery.Format =
LocationObjectQuery.LocationObjectQueryFormatType.LocationObjectQueryFo
rmatTypeShort;

locationDeviceQuery.Execute(new LocationObjectQueryCallback());

LocationAssetQuery locationAssetQuery = location.BuildAssetQuery();

Chapter 6
Call Mobile APIs

6-14

locationAssetQuery.Name = "Joe";

locationAssetQuery.OrderByAttributeType =
LocationDeviceContainerQuery.LocationDeviceContainerQueryOrderByAttributeType
.LocationDeviceContainerQueryOrderByAttributeTypeName;
locationAssetQuery.Format =
LocationObjectQuery.LocationObjectQueryFormatType.LocationObjectQueryFormatTy
peShort;

locationAssetQuery.Execute(new LocationObjectQueryCallback());

Fetching a Place

private class LocationObjectQueryCallback : Java.Lang.Object,
ILocationObjectsQueryCallback
{

 public void OnComplete(LocationObjectQueryResult queryResult,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }
 else
 {

 foreach (LocationObject locationobject in queryResult.Items)
 {

 if (locationobject.GetType().Equals(typeof(LocationPlace)))
{

 place = (LocationPlace)locationobject;

 location.FetchPlace(place.Id, new
LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, place.Name +" " + place.HasChildren);
 }
 else

Chapter 6
Call Mobile APIs

6-15

if(locationobject.GetType().Equals(typeof(LocationDevice)))
 {

 device = (LocationDevice)locationobject;

 location.FetchDevice(device.Id, new
LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, device.Name + " ");
 }
 else if
(locationobject.GetType().Equals(typeof(LocationAsset)))
 {

 asset = (LocationAsset)locationobject;

 location.FetchAsset(asset.Id, new
LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, asset.Name + " ");
 }

 }
 }
 }
}

private class LocationObjectFetchCallback : Java.Lang.Object,
ILocationObjectFetchCallback
{

 public void OnComplete(LocationObject locationObject,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);

Chapter 6
Call Mobile APIs

6-16

 }
 else
 {
 Logger.Debug(TAG, locationObject.Name);

 }

 lock (obj)
 {
 Monitor.PulseAll(obj);
 }

 }
}

Refreshing

private class LocationObjectQueryCallback : Java.Lang.Object,
ILocationObjectsQueryCallback
{

 public void OnComplete(LocationObjectQueryResult queryResult,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }
 else
 {

 foreach (LocationObject locationobject in queryResult.Items)
 {

 if (locationobject.GetType().Equals(typeof(LocationPlace)))
{

 place = (LocationPlace)locationobject;

 place.Refresh(new LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, place.Name +" " + place.HasChildren);

Chapter 6
Call Mobile APIs

6-17

 }
 else
if(locationobject.GetType().Equals(typeof(LocationDevice)))
 {

 device = (LocationDevice)locationobject;

 device.Refresh(new LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, device.Name + " ");
 }
 else if
(locationobject.GetType().Equals(typeof(LocationAsset)))
 {

 asset = (LocationAsset)locationobject;

 asset.Refresh(new LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, asset.Name + " ");
 }

 }
 }
 }
}

private class LocationObjectFetchCallback : Java.Lang.Object,
ILocationObjectFetchCallback
{

 public void OnComplete(LocationObject locationObject,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }

Chapter 6
Call Mobile APIs

6-18

 else if(locationObject != null)
 {
 Logger.Debug(TAG, locationObject.Name);

 }

 lock (obj)
 {
 Monitor.PulseAll(obj);
 }

 }
}

Storage

Initialization

Storage storage =
(Storage)mobileBackend.GetServiceProxy(Class.FromType(typeof(Storage)));

Getting a Collection

StorageCollection storageCollection =
storage.GetStorageCollection("FullCoverage_Private");
StorageObject storageObject = storageCollection.Get("ab911696-7e61-4fcd-a244-
b26adb6183ba");
string str =
Encoding.UTF8.GetString(Decompress(storageObject.GetPayloadBytes()));

Getting an Object

storageObject = storageCollection.Get("d4400472-b912-4f7a-b4f5-
e32523e5c1f3");
Logger.Debug(TAG, "Storage Object: " + storageObject.DisplayName);

Getting All Objects

IList<StorageObject> list = storageCollection.Get(0, 100, true);

IEnumerator<StorageObject> iEnumerator = list.GetEnumerator();
while(iEnumerator.MoveNext()){
 storageObject = iEnumerator.Current;
 Logger.Debug(TAG, "Storage Object: " + storageObject.DisplayName);

}

Uploading a Text File

Java.Lang.String str = new Java.Lang.String("This is sample txt file");

Chapter 6
Call Mobile APIs

6-19

storageObject = new StorageObject("textfile.txt");
storageObject.SetPayload(str.GetBytes(), "text/plain");
storageCollection.Put(storageObject);

Uploading an Image

System.IO.Stream imageBytes = getFileFromAssets("mcs_oracle.png");

storageObject = new StorageObject("mcs_oracle.png", imageBytes, "image/
jpeg");
var imagePosted = storageCollection.Post(storageObject);

Decompressing

static byte[] Decompress(byte[] data)
{
 using (var compressedStream = new MemoryStream(data))
 using (var zipStream = new GZipStream(compressedStream,
CompressionMode.Decompress))
 using (var resultStream = new MemoryStream())
 {
 zipStream.CopyTo(resultStream);
 return resultStream.ToArray();
 }
}

Notifications

Initialization

LocalBroadcastManager.GetInstance(context)
 .RegisterReceiver(new MBroadcastReceiver(),
 new IntentFilter(NotificationsConfig.RegistrationComplete));

Notifications notifications =
(Notifications)mobileBackend.GetServiceProxy(Java.Lang.Class.FromType(t
ypeof(Notifications)));

Registering for Notifications

bool result = notifications.Initialize(context, "Sender ID");

Broadcast Receiver

private class MBroadcastReceiver : BroadcastReceiver
{

 public override void OnReceive(Context context, Intent intent)
 {

 if (mProgressDialog != null && mProgressDialog.IsShowing)

Chapter 6
Call Mobile APIs

6-20

 {
 mProgressDialog.Dismiss();
 }

 ISharedPreferences prefs =
PreferenceManager.GetDefaultSharedPreferences(context);
 bool sentToken =
prefs.GetBoolean(NotificationsConfig.SentTokenToServer, false);
 if (sentToken)
 {
 Logger.Debug(TAG, "Token retrieved and sent to server! App can
use GCM");
 }
 else
 {
 Logger.Debug(TAG, "An error occurred while either fetching the
InstanceID");
 }

 }
}

Analytics

Initialization

static Analytics analyticsAgent =
 (Analytics)mobileBackend
 .GetServiceProxy(Class.FromType(typeof(Analytics)));
analyticsAgent.SetContext(activity);

Logging an Event

if (analyticsAgent != null)
 analyticsAgent.LogEvent("This is Event No. : " + i);

Setting Context Location

analyticsAgent.SetContextLocation("India", "Telangana", "Hyderabad",
"500081");

Flushing an Event

analyticsAgent.Flush();

App Policies

Loading the App Config and Getting Policies

if (mobileBackend != null)
{

Chapter 6
Call Mobile APIs

6-21

 mobileBackend.LoadAppConfig(new AAppConfigCallBack());
 mProgressDialog = ProgressDialog.Show(activity, "Please Wait",
"App Config is being loaded.");

 lock(obj){
 Monitor.Wait(obj);
 }

 AppConfig oMCAppConfig = mobileBackend.AppConfig;

//Getting String:

 string str = oMCAppConfig.GetString("Test_String", "No value
configured");

 setText("AppConfig: String: " + str);

//Getting Number
 Number number = oMCAppConfig.GetNumber ("Test_number", new
Java.Lang.Double(1.0));

 setText("AppConfig: Number: " + number);

//Getting boolean
 bool boolean = oMCAppConfig.GetBoolean("Test_Boolean", false);

 setText("AppConfig: Boolean: " + boolean);

}

private class AAppConfigCallBack : AppConfigCallback
{
 public override void OnResult(Oracle.Cloud.Mobile.Utils.McsError
error, AppConfig config)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 lock(obj){
 Monitor.PulseAll(obj);
 }
 }
}

Call Custom APIs
The SDK provides the CustomHttpResponse class, the
GenericCustomCodeClientCallBack interface, and the InvokeCustomCodeJSONRequest
method in the authorization classes to simplify the calling of custom APIs in Mobile

Chapter 6
Call Mobile APIs

6-22

Hub. You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JSON or empty and the response payload is JSON or empty.

You use GenericCustomCodeClientCallBack to create a handler for the response (which is
returned in the form of a CustomHttpResponse object.)

Then, to call the custom API, you call
InvokeCustomCodeJSONRequest(GenericCustomCodeClientCallBack restClientCallback,
JSONObject data, String functionName, RestClient.HttpMethod httpMethod) on your
Authorization object.

To make a call to a custom API endpoint, you could use something like this:

IAuthorizationAgent mAuthorization =
MobileBackendManager.Manager.GetDefaultMobileBackend(context).Authorization;

mAuthorization.Authenticate(mActivity, "user1", "pass1", new
AuthorizationCallback());

........
// after the user successfully authenticates, make a call to the custom API
endpoint
mAuthorization.InvokeCustomCodeJSONRequest(new
GenericCustomCodeClientCallBack(), null, "TaskApi/tasks",
RestClient.HttpMethod.Get);

private class GenericCustomCodeClientCallBack : Java.Lang.Object,
IGenericCustomCodeClientCallBack
{
 public void RequestCompleted(CustomHttpResponse response, JSONObject
data, Java.Lang.Exception exception)
 {
 Logger.Debug(TAG, response.HttpStatus + "");
 }
}

Chapter 6
Call Mobile APIs

6-23

7
Xamarin iOS Apps

If you use the Xamarin platform to develop iOS apps, you can use the SDK that Oracle
Mobile Hub provides for Xamarin iOS apps. This SDK simplifies authentication with Mobile
Hub and provides native wrapper classes for Mobile Hub platform APIs.

Get the SDK
To get the client SDK for Xamarin iOS, go to the Oracle Digital Assistant and Oracle Mobile
Cloud Downloads page on OTN.

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile Hub
features, such as platform and custom APIs. For your app to access these resources, it
authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page open.

You’ll need to configure your app with some of this information.

Add the SDK
1. If you haven’t already done so, extract the contents from the SDK zip.

2. In Visual Studio, create a Visual C# iOS app.

3. Add the SDK's DLL file to your app by right-clicking the project's References node and
selecting Edit References, clicking the .NET Assembly tab, and then browsing to the
IOS.dll file in the extracted SDK zip.

4. Add the configuration file to the app by right-clicking the project's root node and selecting
Add > Add Files and then navigating to the SDK's OMC.plist file.

5. Select the node for OMC.plist so that it's properties are displayed in the Properties pane.
Then make sure that the Build Action property is set to BundleResource.

6. Add the SynchStore.momd folder to the app by right-clicking the project's root node and
selecting Add > Add Existing Folder and then navigating to the SDK's SynchStore
folder.

7. For all of the files in the SynchStore.momd folder, make sure that the Build Action
property is set to BundleResource.

The next step will be to fill in the OMC.plist file.

7-1

https://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html
https://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

Configure SDK Properties
To use the client SDK in an iOS app, you need to add the OMC.plist configuration file
to the app and fill it in with environment details for your backend in Oracle Mobile Hub,
as well as other configuration information. In turn, the SDK classes use this
information to help manage authorization, logging, event tracking, data
synchronization, and other features.

You package the configuration file in the root of your app’s main bundle.

The file is essentially divided into the following parts:

• The mobileBackend key and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

• Keys that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of
the file.

Here’s the same file in text form:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd"
<plist version="1.0">
<dict>
 <key>logLevel</key>
 <string>debug</string>
 <key>logHTTP</key>
 <true/>
 <key>oAuthTokenEndPoint</key>
 <string>https://MY_TOKEN_ENDPOINT</string>
 <key>mobileBackend</key>
 <dict>
 <key>name</key>
 <string>EasyShoppingMBE</string>
 <key>baseURL</key>
 <string>https://MY_CLOUD_DOMAIN.oracle.com</string>
 <key>authentication</key>
 <dict>
 <key>type</key>
 <string>oauth</string>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>11dac238ffaa4b029e78e982114642ab</string>
 <key>clientSecret</key>
 <string>5624cbdd-a7c5-4c10-a758-6019a5ab8da8</string>
 <key>enableOffline</key>
 <true/>
 </dict>
 </dict>

Chapter 7
Configure SDK Properties

7-2

 </dict>
</dict>
</plist>

And here is a description of some of the more important entries in the OMC.plist file.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application gets
its authentication token. This key needs to be provided for all apps that rely on OAuth to
authenticate. You get this from the backend’s Settings page. The endpoint should be
only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console. The
default value is error. Other possible values (in increasing level of detail) are warning,
info, and debug. It is also possible to set the value to none.

• logHTTP — When set to true, the SDK logs the headers and bodies of all HTTP requests
and responses.

• mobileBackend — A dictionary entry containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from the
backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the backend.
You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains a dictionary with the following elements:

– The type sub-key, with possible (string) values of oauth, basic, facebook, and
tokenExchange.

– One or more sub-keys for authentication types, containing a dictionary with the
authentication credentials.

Within sub-keys for basic and oauth, you can also add the enableOffline key. By
default, this property is set to true.

Authentication Properties
The contents and sub-elements of the mobileBackend/authentication key depend on what
kind of authentication the app will be using.

OAuth
• Set the value of the type key to oauth.

• Create an oauth sub-key and fill in the clientID and clientSecret credentials provided
by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied but
without the oauth2/v1/token that is appended on the backend’s Settings page.

• Optionally, if you want to disable offline authentication, add the enableOffline sub-key
and set it to false.

Chapter 7
Configure SDK Properties

7-3

The resulting authorization property might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>oauth</string>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>11dac238ffaa4b029e78e982114642ab</string>
 <key>clientSecret</key>
 <string>5624cbdd-a7c5-4c10-a758-6019a5ab8da8</string>
 </dict>
 <key>basic</key>
</dict>

HTTP Basic
• Set the value of the type key to basic.

• Create a basic sub-key and fill in the HTTP Basic credentials (mobileBackendID
and anonymousKey) provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
sub-key and set it to false.

The resulting authentication entry might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>basic</string>
 <key>basic</key>
 <dict>
 <key>mobileBackendID</key>
 <string>a8c6a34f-61bb-4bee-948c-d43dd2c077d7</string>
 <key>anonymousKey</key>
 <string>dXNlcmlkOnBhc3N3b3Jk</string>
 </dict>
</dict>

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type key to tokenExchange.

• Create a tokenExchange sub-key and fill in the OAuth Consumer credentials
provided by the backend.

The resulting authentication section might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>

Chapter 7
Configure SDK Properties

7-4

 <string>tokenExchange</string>
 <key>tokenExchange</key>
 <dict>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>b39ba08d30d54e24970332fcdffec3a7</string>
 <key>clientSecret</key>
 <string>23953fe8-76ed-4c89-a5cb-6042db10cfaf</string>
 </dict>
 <key>basic</key>
 <dict>
 <key>mobileBackendID</key>
 <string>8d3744b8-cab2-479c-998b-ebba2c31560f</string>
 <key>anonymousKey</key>
 <string>ZFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</string>
 </dict>
 </dict>
</dict>

Call Mobile APIs
Once you have added the SDK to your app and configured your OMC.plist file, here are the
general steps for calling APIs from your iOS app:

1. Add an SDK call to your app to load the configuration info.

2. Add an SDK call to your app to handle authentication.

3. Add any other SDK calls that you want to use.

Load the Backend's Configuration
For any calls to Mobile Hub APIs using the iOS SDK to successfully complete, you need to
have the mobile backend’s configuration loaded from the app’s OMC.plist file. You do this
using the OMCMobileBackend class:

OMCMobileBackend oMCMobileBackend =
OMCMobileBackendManager.SharedManager.MobileBackendForName("MBE_FullCoverage"
);

Authenticate and Log In
Here is some sample code that you can use for authentication through Mobile Hub in your
iOS apps.

Chapter 7
Call Mobile APIs

7-5

OAuth
You can use the following method to handle a user logging in with a user name and
password.

OMCAuthorization authorization = oMCMobileBackend.Authorization;
authorization.AuthenticationType = OMCAuthenticationType.OAuth;
authorization.Authenticate(username.Text, password.Text);

This method terminates the connection to Mobile Hub and clears the user name and
password from the iOS keychain:

authorization.Logout(HandleOMCAuthorizationLogoutCompletionBlock);

void HandleOMCAuthorizationLogoutCompletionBlock(NSError nsError)
{
 if(nsError == null){
 Console.WriteLine("Logout success!");
 }
}

HTTP Basic
You can use the following method to handle a user logging in with a user name and
password.

OMCAuthorization authorization = oMCMobileBackend.Authorization;
authorization.AuthenticationType = OMCAuthenticationType.HTTPBasic;
authorization.Authenticate(username.Text, password.Text);

This method terminates the connection to Mobile Hub and clears the user name and
password from the iOS keychain:

authorization.Logout(HandleOMCAuthorizationLogoutCompletionBlock);

void HandleOMCAuthorizationLogoutCompletionBlock(NSError nsError)
{
 if(nsError == null){
 Console.WriteLine("Logout success!");
 }
}

SSO with a Third-Party Token
First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer.

Once you have the token, use it to authenticate. The example below checks to see if
the token is already stored in Mobile Hub before logging in again.

Chapter 7
Call Mobile APIs

7-6

Note:

The default expiration time for storing a third-party token in Mobile Hub is 6 hours.
You can adjust this time by changing the Security_TokenExchangeTimeoutSecs
policy.

OMCAuthorization oMCAuthorization = oMCMobileBackend.Authorization;
oMCAuthorization.AuthenticationType = OMCAuthenticationType.SSOTokenExchange;
NSError nSError = oMCAuthorization.AuthenticateSSOTokenExchange(Token);

oMCAuthorization.AuthenticateSSOTokenExchange(Token,
HandleOMCAuthorizationAuthCompletionBlock);

oMCAuthorization.AuthenticateSSOTokenExchange(Token, true,
HandleOMCAuthorizationAuthCompletionBlock);

oMCAuthorization.AuthenticateSSOTokenExchange(Token, true);

bool iSLoaded = oMCAuthorization.LoadSSOTokenExchange;

oMCAuthorization.ClearSSOTokenExchange();

Facebook
For apps that allow login through Facebook, use:

oMCAuthorization.AuthenticationType = OMCAuthenticationType.Facebook;
oMCAuthorization.AuthenticateSocial(HandleOMCAuthorizationAuthCompletionBlock
);

If you haven’t already set up the app and its mobile backend to use Facebook as the identity
provider, see Facebook Login in Mobile Hub.

Call Platform APIs
Once the mobile backend’s configuration info is loaded into the app and you have made a call
to get the mobile backend, you can make calls to SDK classes to access platform features.

Here are some code snippets that illustrate how to access these APIs with the SDK.

User Management

Getting a User

OMCAuthorization oMCAuthorization = oMCMobileBackend.Authorization;
oMCAuthorization.GetCurrentUser(HandleOMCUserRegistrationCompletionBlockWithU
ser);
void HandleOMCUserRegistrationCompletionBlockWithUser(NSError nSError,
OMCUser oMCUser)

Chapter 7
Call Mobile APIs

7-7

{
 if(nSError == null){
 output.Text = user.FirstName + " User details have been
fetched successfully";
 }
}

Updating a User

user.SetValueForKey(new NSNumber(26),new NSString("age"));
user.SetValueForKey(new NSString("address"), new NSString("india"));
oMCAuthorization.UpdateCurrentUser(user,HandleOMCUserRegistrationComple
tionBlock);

void HandleOMCUserRegistrationCompletionBlock(NSError nSError)
{
 if (nSError == null)
 {
 //user = oMCUser;
 if (user != null)
 {
 if (username.Text == null)
 {
 username.Text = "Welcome " + user.FirstName;
 }
 else output.Text = user.FirstName + " User details have
been fetched successfully";
 }
 }
 else
 {
 output.Text = nSError.ToString();
 }
}

Location

Initialization

OMCLocation oMCLocation = oMCMobileBackend.Location;

Queries for Places, Devices, and Assets

private static OMCLocation oMCLocation;
private static OMCLocationPlace oMCLocationPlace;
private static OMCLocationDevice oMCLocationDevice;
private static OMCLocationAsset oMCLocationAsset;

Chapter 7
Call Mobile APIs

7-8

oMCLocation = oMCMobileBackend.Location;
OMCLocationPlaceQuery oMCLocationPlaceQuery = oMCLocation.BuildPlaceQuery;
oMCLocationPlaceQuery.Name = "West";
oMCLocationPlaceQuery.ExecuteWithCompletionHandler(completionHandler);
OMCLocationAssetQuery oMCLocationAssetQuery = oMCLocation.BuildAssetQuery;
oMCLocationAssetQuery.Name = "joe";
oMCLocationAssetQuery.ExecuteWithCompletionHandler(completionHandler);

OMCLocationDeviceQuery oMCLocationDeviceQuery = oMCLocation.BuildDeviceQuery;
oMCLocationDeviceQuery.Name = "Beacon";
oMCLocationDeviceQuery.ExecuteWithCompletionHandler(completionHandler);

Fetching

Action<OMCLocationObjectQueryResult, NSError> completionHandler = new
Action<OMCLocationObjectQueryResult, NSError>((OMCLocationObjectQueryResult
arg1, NSError arg2) =>
{
 if (arg2 == null)
 {
 OMCLocationObject[] LocationObjects = arg1.Items;
 OMCLocationPlace oMCLocationPlace;
 OMCLocationDevice oMCLocationDevice;
 OMCLocationAsset oMCLocationAsset;

 foreach (OMCLocationObject locationObject in LocationObjects)
 {
 Console.WriteLine("Location Object " + locationObject.GetType()
+ "--> " + i + " is: " + locationObject.ToString());

 if(locationObject.GetType().Equals(typeof(OMCLocationPlace))){

 oMCLocationPlace = (OMCLocationPlace)locationObject;

 oMCLocation.PlaceWithID(oMCLocationPlace.Id_,
placeCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationDevice)))
 {

 oMCLocationDevice = (OMCLocationDevice)locationObject;

 oMCLocation.DeviceWithID(oMCLocationDevice.Id_,
deviceCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationAsset)))
 {

 oMCLocationAsset = (OMCLocationAsset)locationObject;

 oMCLocation.AssetWithID(oMCLocationAsset.Id_,

Chapter 7
Call Mobile APIs

7-9

assetCompletionHandler);
 }
 }
 }
});

private static void assetCompletionHandler(OMCLocationAsset arg0,
NSError arg1)
{
 if (arg1 == null)
 {
 Console.WriteLine("Location Asset " + arg0.ToString());
 }
}

private static void deviceCompletionHandler(OMCLocationDevice arg0,
NSError arg1)
{
 if (arg1 == null)
 {
 Console.WriteLine("Location Device " + arg0.ToString());

 }
}

private static void placeCompletionHandler(OMCLocationPlace arg0,
NSError arg1)
{
 if(arg1 == null){
 Console.WriteLine("Location Place " + arg0.ToString());
 }
}

Refreshing

Action<OMCLocationObjectQueryResult, NSError> completionHandler = new
Action<OMCLocationObjectQueryResult,
NSError>((OMCLocationObjectQueryResult arg1, NSError arg2) =>
{
 if (arg2 == null)
 {
 OMCLocationObject[] LocationObjects = arg1.Items;

 foreach (OMCLocationObject locationObject in LocationObjects)
 {
 Console.WriteLine("Location Object " +
locationObject.GetType() + "--> " + i + " is: " +
locationObject.ToString());

if(locationObject.GetType().Equals(typeof(OMCLocationPlace))){

 oMCLocationPlace = (OMCLocationPlace)locationObject;

Chapter 7
Call Mobile APIs

7-10

oMCLocationPlace.RefreshWithCompletionHandler(placeCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationDevice)))
 {

 oMCLocationDevice = (OMCLocationDevice)locationObject;

oMCLocationDevice.RefreshWithCompletionHandler(deviceCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationAsset)))
 {

 oMCLocationAsset = (OMCLocationAsset)locationObject;

oMCLocationAsset.RefreshWithCompletionHandler(assetCompletionHandler);

 }
 }
 }
});

private static void placeCompletionHandler(NSError arg0)
{
 if (arg0 == null)
 {
 Console.WriteLine("Location Place " + oMCLocationPlace.ToString());
 }
}

private static void deviceCompletionHandler(NSError arg0)
{
 if (arg0 == null)
 {
 Console.WriteLine("Location Device " + oMCLocationDevice.ToString());

 }
}

private static void assetCompletionHandler(NSError arg0)
{
 if (arg0 == null)
 {
 Console.WriteLine("Location Asset " + oMCLocationAsset.ToString());
 }
}

Chapter 7
Call Mobile APIs

7-11

Storage

Initialization

OMCStorage oMCStorage = oMCMobileBackend.Storage;

Getting a Collection

OMCStorageCollection oMCStorageCollection =
oMCStorage.GetCollection("SharedCollection");

Getting an Object

oMCStorageObject = collection.Get("Object Id");

System.Console.WriteLine("Storage Object1: " +
oMCStorageObject.ToString());

Getting All Objects from a Collection

NSMutableArray nSMutableArray = collection.Get(0, 100, true);
OMCStorageObject oMCStorageObject;
if (nSMutableArray != null && nSMutableArray.Count > 0)
{
 for (uint i = 0; i < nSMutableArray.Count; i++){
 oMCStorageObject = nSMutableArray.GetItem<OMCStorageObject>(i);
 System.Console.WriteLine("Storage Object1: " +
oMCStorageObject.ToString());
 }
}

Uploading a Text File

NSData text = "This is a sample Text file";
OMCStorageObject txtFile = new OMCStorageObject("Mytext.txt", text,
"text/plain");

collection.Put(txtFile);

Uploading an Image File

UIImage image = new UIImage("MyImage.png");
NSData data = image.AsPNG();
OMCStorageObject imageFile = new OMCStorageObject("MyImage", data,
"image/png");
collection.Put(imageFile);

Chapter 7
Call Mobile APIs

7-12

Notifications

Initialization

OMCNotifications oMCNotifications = oMCMobileBackend.Notifications;

Registering for Notifications

oMCNotifications.RegisterForNotifications(appDelegate.DeviceToken,
HandleOMC_Notifications_SuccessBlock, HandleOMC_Notifications_ErrorBlock);

void HandleOMC_Notifications_SuccessBlock(NSHttpUrlResponse
nSHttpUrlResponse)
{
 if (nSHttpUrlResponse != null)
 {
 Console.WriteLine("Response from notification Server: " +
nSHttpUrlResponse.StatusCode);

 }
}

void HandleOMC_Notifications_ErrorBlock(NSError nSError)
{
 if (nSError != null)
 {
 Console.WriteLine("Error in fetching mobiel file: " +
nSError.LocalizedDescription);
 }
}

AppDelegate code

public NSData DeviceToken = string.Empty;

public override void RegisteredForRemoteNotifications(UIApplication
application, NSData deviceToken)
{
 DeviceToken = deviceToken; // Do something to storage deviceToken.

 Console.WriteLine("Device Token: " + DeviceToken.ToString());
}

public override void FailedToRegisterForRemoteNotifications(UIApplication
application, NSError error)
{
 Console.WriteLine("FailedToRegisterForRemoteNotifications.. :(");
}

public override void DidReceiveRemoteNotification(UIApplication application,
NSDictionary userInfo, Action<UIBackgroundFetchResult> completionHandler)

Chapter 7
Call Mobile APIs

7-13

{
 ProcessNotification(userInfo, false);

}

void ProcessNotification(NSDictionary options, bool
fromFinishedLaunching)
{
 // Check to see if the dictionary has the aps key. This is the
notification payload you would have sent
 if (null != options && options.ContainsKey(new NSString("aps")))
 {
 //Get the aps dictionary
 NSDictionary aps = options.ObjectForKey(new NSString("aps"))
as NSDictionary;
 string alertTitle = string.Empty;
 string alert = string.Empty;
 string sound = string.Empty;
 int badge = -1;

 //Extract the alert text
 // NOTE: If you're using the simple alert by just specifying
 // " aps:{alert:"alert msg here"} ", this will work fine.
 // But if you're using a complex alert with Localization keys,
etc.,
 // your "alert" object from the aps dictionary will be another
NSDictionary.
 // Basically the JSON gets dumped right into a NSDictionary,
 // so keep that in mind.
 if (aps.ContainsKey(new NSString("alert")))
 alert = (aps[new NSString("alert")] as
NSString).ToString();
 if (aps.ContainsKey(new NSString("alert")))
 alert = (aps[new NSString("alert")] as
NSString).ToString();

 if (options.ContainsKey(new NSString("alertTitle")))
 alertTitle = (options[new NSString("alertTitle")] as
NSString).ToString();

 //Extract the sound string
 if (aps.ContainsKey(new NSString("sound")))
 sound = (aps[new NSString("sound")] as
NSString).ToString();

 //Extract the badge
 if (aps.ContainsKey(new NSString("badge")))
 {
 string badgeStr = (aps[new NSString("badge")] as
NSObject).ToString();
 int.TryParse(badgeStr, out badge);
 }

 if (!fromFinishedLaunching)
 {

Chapter 7
Call Mobile APIs

7-14

 //Manually show an alert
 if (!string.IsNullOrEmpty(alert))
 {
 UIAlertView avAlert = new UIAlertView("Notification", alert,
null, "OK", null);
 avAlert.Show();
 }
 }
 }
}

public override void ReceivedRemoteNotification(UIApplication application,
NSDictionary userInfo)
{
 ProcessNotification(userInfo, false);
}

public override bool FinishedLaunching(UIApplication application,
NSDictionary launchOptions)
{

 Window = new UIWindow(UIScreen.MainScreen.Bounds);

 ViewController viewController = new ViewController("LoginScreen", null);
 Window.RootViewController = viewController;
 Window.MakeKeyAndVisible();

 if (UIDevice.CurrentDevice.CheckSystemVersion(8, 0))
 {
 var notificationSettings =
UIUserNotificationSettings.GetSettingsForTypes(
 UIUserNotificationType.Alert |
UIUserNotificationType.Badge | UIUserNotificationType.Sound, null
);

UIApplication.SharedApplication.RegisterUserNotificationSettings(notification
Settings);
 UIApplication.SharedApplication.RegisterForRemoteNotifications();
 }
 else
 {
 //==== register for remote notifications and get the device token
 // set what kind of notification types we want
 UIRemoteNotificationType notificationTypes =
UIRemoteNotificationType.Alert | UIRemoteNotificationType.Badge;
 // register for remote notifications

UIApplication.SharedApplication.RegisterForRemoteNotificationTypes(notificati
onTypes);
 }

 return true;

}

Chapter 7
Call Mobile APIs

7-15

Analytics

Initialization

OMCAnalytics oMCAnalytics = oMCMobileBackend.Analytics;

Logging an Event

oMCAnalytics.LogEvent("this is test event "+ i +" from xamarin");

Setting Context Location

oMCAnalytics.SetContextLocationCountry("india", "Telangana",
"Hyderabad", "500081");

Flushing an Event

oMCAnalytics.Flush();

App Policies

Loading the App Config and Getting Policies

oMCMobileBackend.AppConfigWithCompletionHandler(HandleOMCAppConfigCompl
etionBlock);

lock(obj){
 Monitor.Wait(obj);
}

OMCAppConfig oMCAppConfig = oMCMobileBackend.AppConfig;

//Getting String

String str = oMCAppConfig.StringForProperty("Test_String", "No value
configured");

Console.WriteLine("oMCAppConfig: String: " + str);

//Getting Number
NSNumber number = oMCAppConfig.NumberForProperty("Test_number", -1);

Console.WriteLine("oMCAppConfig: Number: " + number);

//Getting Boolean
Boolean boolean = oMCAppConfig.BooleanForProperty("Test_Boolean",
false);

Chapter 7
Call Mobile APIs

7-16

Console.WriteLine("oMCAppConfig: Boolean: " + boolean.ToString());

void HandleOMCAppConfigCompletionBlock(OMCAppConfig oMCAppConfig, NSError
arg1)
{
 if(arg1 == null){
 Console.WriteLine("oMCAppConfig: " + oMCAppConfig.ToString());
 }
}

Call Custom APIs
The SDK provides the CustomCodeClient class to simplify the calling of custom APIs in
Mobile Hub. You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint
where the request payload is JSON or empty and the response payload is JSON or empty.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an endpoint
where the request payload is JSON or empty and the response payload is JSON or empty.

In addition you can provide a completion handler to be called when the method invocation is
complete (meaning that the handler runs asynchronously).

Use of CustomCodeClient might look something like this:

oMCMobileBackend.CustomCodeClient.InvokeCustomRequest("mcs_examples_sync_sale
splus/reminders", "get", null, HandleOMCCustomRequestCompletionHandler);

void HandleOMCCustomRequestCompletionHandler(NSError arg0, NSHttpUrlResponse
arg1, NSObject nSObject)
{
 if (nSObject != null)
 {
 System.Console.WriteLine("response object: " + nSObject.ToString());
 }
}

Chapter 7
Call Mobile APIs

7-17

8
Notifications

Oracle Mobile Hub provides a Notifications API to simplify sending notifications to devices
running your mobile apps. As a mobile app developer, you can set up your mobile
applications for notifications and use the Notifications API to send notifications. As a service
developer, you can add implementation code to your custom APIs to trigger notifications.

What Can I Do with Notifications?
Notifications can provide the timely awareness of information and events that mobile users
seek. Notifications are short, specific, targeted messages sent to a mobile application. The
purpose of a notification is usually to tell users that there is new information available. For
example, a user who is running a shopping app might get information about an upcoming
sale.

You can send these targeted messages either on demand or on a predefined schedule to:

• a specific device ID or a collection of device IDs (mostly useful for testing)

• a specific user or a collection of users

• all users and devices associated with a specific mobile backend

• devices or users for a given operating system (iOS, Android or Windows)

Push notifications should not be used to send critical or emergency information, because
network delays and other issues can make deliveries untimely. However, for everyday uses
like sports scores and upcoming sales, notifications are great.

Set Up a Mobile App for Notifications
To make notifications work in your mobile apps, there are several key steps.

1. Install the client SDK for your platform.

2. Get credentials from notification providers to establish your mobile app as a known item
on the network. For detailed instructions, see Get Network Credentials for Notifications.

3. Create notifications profiles to hold the credentials, described in Create a Notifications
Profile.

Next, you need to register an app client and add the notifications profile to it:

1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for
Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to match that
of the profile that you associate with the client.

2. Click to open the side menu and select Development > Notification Profiles.

3. Click Clients.

4. Click New Client.

8-1

5. In the New Client dialog:

• Fill in the Client Display Name and Client Name.

These can be whatever names that will help you identify the client. The former
can have spaces and the latter can’t.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

• Select the Platform (iOS, Android, Windows, or Web).

• Fill in the Version Number field.

This version must match the version number of the app as registered with your
platform vendor.

• Fill in the fully-qualified app ID. You get this from the platform vendor.

For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

If the notifications profile is for the notifications service of the app’s vendor (e.g.
APNS for an iOS app or FCM for an Android app), the app ID (bundle ID for iOS,
package name for Android, or package SID for Microsoft) for the profile must
match the app ID specified for the client. A client can only be associated with a
single SMS profile.

The next step is to set up the app to connect to the notification provider from the
mobile device and establish rules for communication.

Set Up the Device Handshake for Notifications
To allow notifications to be delivered to your mobile app through the network, every
platform requires some form of “device handshake” to register and establish the
protocol for communication.

Set Up a Device Handshake for Android (FCM)
This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

For FCM Notifications, an Android app needs to extend FirebaseMessagingService to
define a service for receiving Notifications. By overriding the onMessageReceived
method, you can perform actions based on the incoming message. For more

Chapter 8
Set Up a Mobile App for Notifications

8-2

information on handling notifications in Android, see Receive Messages on Google FCM
Developers.

In your app’s src/main/AndroidManifest.xml file, just before the closing </application>
tag, register for the Notifications service, as shown below.

<application> ...
<service

android:name="oracle.cloud.mobile.fcmnotifications.MCSFirebaseMessagingServic
e">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT"/>
 </intent-filter>
</service>
</application>

Set permissions to receive and display notifications by inserting these entries in the Android
manifest (somewhere above the <application> entry).

<uses-permission
android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<application>

To establish communication and register for notifications, here’s what the device handshake
might look like in an Android app, using the client SDK:

...
import oracle.cloud.mobile.exception.ServiceProxyException;
import oracle.cloud.mobile.fcmnotifications.Notifications;
import oracle.cloud.mobile.mobilebackend.MobileManager;

public class MainActivity extends Activity {
 private Notifications mNotification;

 @Override protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 this.registerNotificationClient();
}
//method that initializes and returns the Notifications client
private void registerNotificationClient(){
try {
 mNotification =

Chapter 8
Set Up a Mobile App for Notifications

8-3

https://firebase.google.com/docs/cloud-messaging/android/receive

MobileManager.getManager().getMobileBackend(this).getServiceProxy(Notif
ications.class);
 mNotification.initialize(this);
 } catch (ServiceProxyException e) {
 e.printStackTrace();
 }
}
}

Get a FCM Registration Token

You also need the Sender ID to register your app with FCM to get a registration token.
The registration token is passed to the service, which packages it with the notification
to tell Google that your app and the device it runs on are legitimate recipients on the
network. Google provides the Instance ID API to handle registration tokens. See Set
Up a Firebase Cloud Messaging Client App on Android on Google Developers.

To set up a callback on successful registration, you could add code like the example
below:

public void onClick(View view) {
 try {
 //Registration process callback
 BroadcastReceiver mRegistrationBroadcastReceiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 SharedPreferences sharedPreferences =
 PreferenceManager.getDefaultSharedPreferences(context);
boolean sentToken = sharedPreferences
 .getBoolean(NotificationsConfig.SENT_TOKEN_TO_SERVER,
false);
if (sentToken){
 Logger.debug(TAG, "Token retrieved and sent to server! App can
use FCM");
}else{
 Logger.debug(TAG, "An error occurred while registering the
device");
 }
 }
};
//Call on successful registration
LocalBroadcastManager.getInstance(getApplicationContext()).registerRece
iver(
 mRegistrationBroadcastReceiver,
 new IntentFilter(NotificationsConfig.REGISTRATION_COMPLETE));

//Initialization of notifications service
Notifications notifications =
MobileBackendManager.getManager().getDefaultMobileBackend(getApplicatio
nContext()).getServiceProxy(Notifications.class);
boolean result = notifications.initialize(view.getContext());

Chapter 8
Set Up a Mobile App for Notifications

8-4

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

After you’ve set up and registered your app, it can send and receive notifications. For details
and sample code, see the chapter Sending Notifications to and from Your App.
De-Registering a Device
To de-register a device for notifications, here’s what the code might look like in an Android
app, using the client SDK:

//Initialization of notifications service
Notifications notifications =
MobileManager.getManager().getDefaultMobileBackend(getApplicationContext()).g
etServiceProxy(Notifications.class);
boolean result = notifications.deregisterDevice(view.getContext());

Logger.debug(TAG, "unregister " + result);

Set Up a Device Handshake for iOS
As an iOS developer, to make a device handshake happen you need to add this code to your
Xcode project to get a device token, get a notifications object, and register your app for
notifications:

Note that the registration code should be called each time the app starts.

1. Get a device token from Apple.

if([application
respondsToSelector:@selector(registerUserNotificationSettings:)]){
 //use registerUserNotificationSettings for iOS 8 and later
 UIUserNotificationSettings *settings=[UIUserNotificationSettings
settingsForType:(UIUserNotificationTypeBadge
 |UIUserNotificationTypeSound
 |UIUserNotificationTypeAlert) categories:nil];
 [application registerUserNotificationSettings:settings];
} else {
 //We expect deprecation warnings here - this is for iOS 7.1 or before
 [[UIApplication sharedApplication] registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound |
UIRemoteNotificationTypeAlert)];
}

After calling the above lines of code, the Apple Push Notification Service (APNS) will call
one of the delegate methods based on the success or failure to retrieve the device token.
If successful, one of the following methods is called:
didRegisterUserNotificationSettings: (iOS 8 or later) or
didRegisterForRemoteNotificationsWithDeviceToken: (iOS 7.1). In case of an error,
the didFailToRegisterForRemoteNotificationsWithEffor: method is called.

2. Get the Notifications SDK object.

(OMCNotifications *) getOMCNotifications{
 OMCAuthorization *auth = [[[OMCMobileManager sharedManager]
mobileBackend] mobileBackendForName:
 <Name_of_Mobile_Backend_from_OMC.Plist>].authorization;
 OMCNotifications* omcNOtifications=nil;
 NSError* err = [auth authenticate:<Username> password:<Password>];
 if (!err){

Chapter 8
Set Up a Mobile App for Notifications

8-5

 omcNotifications = [[[OMCMobileManager sharedManager]
mobileBackendForName:
 <Name_of_Mobile_Backend_from_OMC.Plist>] notifications];
 }
 return omcNotifications;
}

3. Register for notifications using the Notifications SDK object.

-(void) registerForMCSNotifications:(id) sender {
 // Get notifications object from your mobile backend object.
 OMCNotifications* notifications = [mbe notifications];

 // Call the register api and pass your iOS device's device
token data.
 [notifications registerForNotifications:[self
getDeviceTokenData]
 onSuccess:^(NSHTTPURLResponse *response) {
 NSLog(@"Device registered successfully.");
 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI if-needed.
 }) ;
 } onError:^(NSError *error) {
 NSLog(@"Error registering your device.");
 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI if-needed.
 }) ;
 }];
}

Next, register your mobile app with the associated backend, and enable notifications.

After you’ve registered your app, it can receive notifications from a range of sources.
For details, see Sending Notifications to and from Your App.

Set Up a Device Handshake for Windows
This section assumes you have already registered your mobile app with WNS as
described in the Windows: WNS Credentials chapter.

For details on requesting a channel URI and constructing the notification payload, see
Windows Push Notification Services (WNS) overview.

Next, register your mobile app with the associated backend, and enable notifications.
For detailed instructions, see the Backends chapter.

After you’ve registered your app, it can receive notifications from a range of sources.

Send Notifications to and from Your App
Once you’ve set up and registered your mobile app, you can start sending notifications
and SMS messages.

• Send notifications and cancel scheduled notifications from the UI, which can be
useful for development.

Chapter 8
Send Notifications to and from Your App

8-6

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx

• Use the Notifications API to send notifications to and from apps and devices all over the
place.

You can also check the status of your notifications in the UI or using the Notifications API. For
details, see Troubleshooting Notifications.

Testing Notifications from the UI
The service provides a notifications testing UI that allows you to send scheduled notifications
to a defined set of recipients.

1. Click to open the side menu and select Development > Backends.

2. On the Backends page, select the backend that includes your mobile app and click
Open.

3. Click Notifications.

4. On the Notifications page, click the Send icon.

5. If your device isn’t registered yet, you can access the Device Registry by clicking
Manage Devices.

To register a device for SMS through the UI, you must have consent management
disabled in the associated notifications profile as described in Create a Notifications
Profile. If you register a device for SMS through the UI and it fails, it’s probably a problem
with your Syniverse Developer Community setup. Make sure you completed all the steps
described in Syniverse: SMS Credentials.

6. Enter the notification message you want to send in plain text or a JSON payload. If you
enter JSON, it must conform to the notification provider’s requirements. If it is not valid
JSON, it will be sent as a plain text message.

7. Choose when to send the message.

• To send the notification immediately, leave the default Now.

• To schedule the notification for a later date and time, choose Later and select the
date and time for the notification to be sent.

8. Choose who to send the message to.

• To send the notification to everyone in the mobile backend, leave the default All
notifications-enabled mobile apps that use this backend. A single backend may
contain more than one version of a mobile application, with implementations for
different devices and networks. This option sends to all notification-enabled clients,
regardless of the network or device.

• To define a filter by user name, platform type, device ID, Facebook ID, or any
combination, choose Filtered set of recipients. Under Match all of the following,
select the filter type from the dropdown list:

– Device ID: Send a notification to a single device ID or to multiple device IDs at
the same time. The device ID is a unique number assigned to a mobile device
during the device handshake. For SMS, the device ID is a phone number. In
general, sending a notification to a device ID is useful for testing your application
but not practical in bulk.

– Platform: Send to all recipients running on iOS, Android, Windows or Web.

– Provider: Send to all recipients receiving APNS, FCM, WNS or SMS
notifications.

Chapter 8
Send Notifications to and from Your App

8-7

– User: Send a notification to a single user or to a list of users.

– Facebook Unique ID: Send a notification to a Facebook user, by ID.

If the list of recipients gets too long, click the + button to add another filter and
continue your entries there. Filters can be mixed and matched for additional
selectivity.

9. Click Send.

Once you click Send, you can monitor the status of your notifications in the History
pane.

Cancel a Scheduled Notification from the UI
The only notifications that can be cancelled are those that are scheduled for a future
time.

To cancel a scheduled notification, go to the Scheduled tab in the History pane and
click the X in the corner of the entry you want to remove. You will be prompted to
confirm the cancellation.

Send Notifications Using the Notifications API
You can send notifications to mobile devices from your apps using the Notifications
REST API. Notifications have a maximum limit of 1,000 devices per call.
You can call Notifications REST API endpoints directly or use custom code in your
mobile app. This section details the REST endpoints. For information on using custom
code including examples and sample code, see the Notifications API in the Calling
APIs from Custom Code in the chapter.

To register a device ID for notifications, you can use the UI, the client SDK, or the
Mobile Devices REST API.

The /mobile/system/notifications/notifications endpoint allows you to send
notifications, cancel scheduled notifications, and check the status of sent notifications.

When you send a notification, you can specify any combination of the following for the
payload:

• {"payload":""} A unified payload that includes well-formed JSON for each
supported notification provider (Google, Apple, Windows and Syniverse). For
details, see Sending a Notification Using a Unified Payload.

• {"template":""} A reusable payload template with defined parameters, used to
create payloads for each supported notification provider. The payload template
includes the following optional parameters: title, body, badge, sound and custom.
For details, see Sending a Notification Using a Unified Payload.

• {"message":""} A plain-text message string. For details, see Sending a Text
Message Notification .

The unified payload is used if it exists, then the template, then the message, in that
order.

To send notifications to specific recipients, add an argument after the content of the
payload:

Chapter 8
Send Notifications to and from Your App

8-8

• To send to a user or a list of users, add the users argument. A user can be defined by
firstname:lastname or email address. Multiple users are listed as tokens in an array,
and there’s no limit on the number. For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "users":
["bob@example.com", "sjones@xyz.net", "banana@peelme.com"]}'

• To send to everyone on the same mobile platform, add the platform (IOS, ANDROID,
WINDOWS or WEB). For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "platform": "IOS"}'

• To send to a specific notification provider, add the provider (APNS, FCM, WNS or
SYNIVERSE). For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "provider":
"APNS"}'

• To send to a specific device ID or a list of device IDs, add the notificationTokens
argument. Multiple IDs are listed as tokens in an array, and there’s no limit on the
number. For example:

-d '{"message": "Test of notifications feature.", "notificationTokens":
["2DD2D2-D2DDG44GD-GDGSDFZS3-3-3DFZSDFDS"]}'

To schedule a notification for a future date and time, add the sendOn argument. For example:

-d '{"message": "Come to our discount sale today!", "sendOn":
"2015-06-15T6:00Z"}'

For further details, including HTTP response status codes and full schemas for the request
and response bodies, see the REST API Reference for Oracle Mobile Cloud.

REST

Register a Device ID
The Mobile Devices REST API lets you register the device ID of your mobile app, which can
then be used as a recipient address for sending notifications. This API can also associate a
user with the device ID, so the user name can also be used as a target for notifications.

You can register a device ID (notificationToken) directly and send notifications directly to
that ID. You can also use this API to associate any user with the device ID.

The Mobile Devices REST API includes the following endpoints:

• POST /mobile/platform/devices/register
• POST /mobile/platform/devices/deregister
When you register a device, include these parameters:

• The mobileClient parameter identifies the client in the backend with three properties:

Chapter 8
Send Notifications to and from Your App

8-9

– id: The Application ID assigned by the Google or Apple app store. (This is
different from the "App-Key".)

– version: The version of the mobile client that will receive the notifications,
currently 1.0.

– platform: "IOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

• The notificationProvider parameter defines the service the notificationToken
is used for: "APNS" or "GCS" or “FCM” or "WNS" or "SYNIVERSE".

• The notificationToken parameter defines the token needed by the notification
service for sending calls. This token uniquely identifies the specific instance of a
mobile app associated with a specific device, and is used to ensure that
notifications are sent to the correct recipient. Encode in hexadecimal if necessary.

• The optional user parameter associates the device ID with the user name
provided. If the user parameter isn’t included, the device ID is associated with the
user who is logged in during the registration call. To specify a different user name,
the logged in user must be a team member with either the Administrator or
Developer role. Keep in mind that registering a user name this way doesn’t
validate the entry in the Device Registry. If this results in duplicate user names,
notifications could be sent to multiple users. It’s up to the app to ensure that user
names are unique if that’s a requirement.

This example registers a device with the device ID MyAppToken:

curl -v
 -H "Authorization: Basic
VGVzdE1vYmlsZVVzZXIyYzE4YWRiZjMyMDg0ZWZkOWQyODM0NjA1OGNmExampleAuthStri
ng="
 -H "Oracle-Mobile-Backend-ID: 7cf06198-053e-4311-8186-cae145900d59"
 -H "Content-Type:application/json"
 -d '{"mobileClient": {"id":
"MyClientac3d8baf1aa348b48d80e9b7fd026067","version":
"1.0","platform":
"IOS"},"notificationProvider":"APNS","notificationToken":"03767dea-29ac
-4440-b4f6-75a755845ade","user":"JoeSmith"}'
 http://www.fixitfast.com:8080/mobile/platform/devices/register

If the REST operation to register the device is successful, you can expect to get a
response something like this:

Connected to fixitfast.com port (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'
POST /mobile/platform/devices/register/
Authorization: Basic
VGVzdE1vYmlsZVVzZXIyYzE4YWRiZjMyMDg0ZWZkOWQyODM0NjA1OGNmExampleAuthStri
ng=
User-Agent: curl/7.33.0
Host: fixitfast.com:8080
Accept: application/json
Content-Type: application/json
Oracle-Mobile-Backend-ID: 7cf06198-053e-4311-8186-cae145900d59
Content-Length: 32

Chapter 8
Send Notifications to and from Your App

8-10

upload completely sent off: 32 out of 32 bytes
HTTP/1.1 201 Created

The response includes a JSON payload that contains the device ID for the registered device.

{
 "id": "7cf06198-053e-4311-8186-cae145900d59",
 "user": "JoeSmith",
 "notificationProvider":"APNS",
 "notificationToken":"03767dea-29ac-4440-b4f6-75a755845ade",
 "mobileClient": {"id":
"MyClientac3d8baf1aa348b48d80e9b7fd026067","version": "1.0","platform":
"IOS"},
 "modifiedOn": "2016-05-25T14:58:16.373Z"
}

Send a Text Message Notification
The example below uses the Notifications REST API to send a simple notification to
everyone in the mobile backend. As noted above, the name and password sent in the
Authorization header must be a team member with the necessary permissions.

curl -X POST
 -H "Authorization: basic bWNzOldlbGNvbWUxKg=="
 -H "Accept: application/json"
 -H "Content-Type: application/json; charset=UTF-8"
 -H "Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d"
 -d '{"message": "Hi! Our storewide sale is tomorrow."}'
 http://www.FixItFast.com:8080/mobile/system/notifications/notifications/

If the notification is sent successfully, the response might look like the example below. The
body will be the JSON for the created notification.

Connected to FixItFast.com port (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'
POST /mobile/system/notifications/notifications/ HTTP/1.1
Authorization: Basic bWNzOldlbGNvbWUxKg==
User-Agent: curl/7.33.0
Host: newclothes.com:8080
Accept: application/json
Content-Type: application/json; charset=UTF-8
Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d
HTTP/1.1 201 Created

You could also get a status code of 400 (bad request) or 401 (unauthorized).

Send a Notification Using a Unified Payload
A unified payload allows you to specify a different payload for each supported notification
provider using Notifications REST API. One or more of the following can be defined under the
services property:

• The apns payload must conform to APNS requirements.

Chapter 8
Send Notifications to and from Your App

8-11

• The fcm payload can contain arbitrary JSON properties.

• The wns payload property must contain a well-formed WNS payload.

• The syniverse payload property should contain the string to send as a SMS
message.

The payload template allows you to send provider-specific payloads without defining
the code. For details, see Sending a Notification Using a Payload Template.

The following are simple examples that define payloads for FCM. An FCM object can
contain either a notification object or a data object. A notification object has a
predefined set of user-visible keys described in the FCM documentation. A data object
has custom key-value pairs.

Notification object:

{"notificationTokens": ["xxxxx"],"payload":
 {"services":
 {"fcm":
 {"notification":
 {"title": "Sale On Now!","body": "50% off until Saturday"
 }
 }
 }
 }
}

Data object:

 "notificationTokens": ["xxxxxx"],"payload":
 {"services":
 {"fcm":
 {"data":
 {"acme1": "value1","acme2": "value2"
 }
 }
 }
 }
}

Send a Notification Using a Payload Template
When you use a payload template with the Notifications REST API, the content you
enter is used to create a driver-specific payload for each supported notification
provider. The default payload template includes the following optional parameters.

Parameter Description Data Type Example

title The alert title. If a title
is specified, the body
parameter is also
required.

string "Sale On Now!"

Chapter 8
Send Notifications to and from Your App

8-12

Parameter Description Data Type Example

body The alert body.
If only a body is
specified, the content
is used as the value
for the alert property
in the APNS and FCM
payloads.

string "50% off until
Saturday"

badge A number to badge
the notification with.
Android applications
don’t support badging,
so the number is not
passed in the payload.
If there is a
requirement to pass
the "badge" value, it
can be passed as part
of a custom data
payload.

number 43

sound The sound file to play
with the notification.
Only .wav format is
supported by APNS ,
WNS, and FCM.
• For APNS, the file

must be in the
app bundle.

• For WNS, the file
must be in the
app package (the
"ms-appx:///"
prefix is added
automatically).

• For FCM, the file
can be anywhere.

string "alert.wav"

custom Any required custom
data.

object
{
 "acme1":
"value1",
 "acme2":
["value2",
"value3"]
}

The example below shows a notification sent using FCM that includes all five parameters and
the resulting payload. An FCM object can contain either a notification object or a data object.
A notification object has a predefined set of user-visible keys described in the FCM
documentation. A data object has custom key-value pairs.

This specifies the default template:

{
 "template": {

Chapter 8
Send Notifications to and from Your App

8-13

 "name" : "#default",
 "parameters": {
 "title":"this is the title",
 "body":"this is the body",
 "sound":"alert.wav",
 "badge": 5,
 "custom":
{ "key1": "value1", "key2": "value2", "key3": ["value3.1",
"value3.2"] }
}
 },

With FCM, custom properties are passed in a data object in the generated payload
and the other parameters are passed in a notification object. This example of a
generated payload contains both data and notifications objects for illustrative
purposes. Typically, FMC notifications have either the notification object or the data
object, but not both. Note that because FCM data are name/value pairs, the value for
acme2 was converted from an array to a string.

FCM driver payload:

"fcm": {
 "notification":
{ "title": "this is the title", "body": "this is the body", "sound":
"alert.wav" }
"data":
{ "key1": "value1", "key2": "value2", "key3": "[\"value3.1\",
\"value3.2\"]" }
}

Cancel Scheduled Notifications
To cancel a scheduled notification, send DELETE to /mobile/system/notifications/
notifications/{id} with the ID assigned to the notification you want to cancel. For
this example, the notification ID is 113455.

curl -X DELETE
 -H "Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=="
 -H "Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d"
 -H "Accept: application/json"
 -H "Content-Type: application/json; charset=UTF-8"
 http://www.fixitfast.com:8080/mobile/system/notifications/
notifications/113455

iOS

Register a Device ID
The Mobile Devices REST API lets you register the device ID of your mobile app,
which can then be used as a recipient address for sending notifications. This API can
also associate a user with the device ID, so the user name can also be used as a
target for notifications.

Chapter 8
Send Notifications to and from Your App

8-14

You can register a device ID (notificationToken) and send notifications to that ID. You can
also use this API to associate any user with the device ID.

The Mobile Devices REST API includes the following endpoints:

• POST /mobile/platform/devices/register
• POST /mobile/platform/devices/deregister
When you register a device, include these parameters:

• The mobileClient parameter identifies the client in the backend with three properties:

– id: The Application ID assigned by the Google or Apple app store. (This is different
from the "App-Key".)

– version: The version of the mobile client that will receive the notifications, currently
1.0.

– platform: "IOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

• The notificationProvider parameter defines the service the notificationToken is
used for: "APNS" or "GCS" or “FCM” or "WNS" or "SYNIVERSE".

• The notificationToken parameter defines the token needed by the notification service
for sending calls. This token uniquely identifies the specific instance of a mobile app
associated with a specific device, and is used to ensure that notifications are sent to the
correct recipient. Encode in hexadecimal if necessary.

• The optional user parameter associates the device ID with the user name provided. If the
user parameter isn’t included, the device ID is associated with the user who is logged in
during the registration call.

To specify a different user name, the logged in user must be a team member with either
the Administrator or Developer role. Keep in mind that registering a user name this way
doesn’t validate the entry in the Device Registry. If this results in duplicate user names,
notifications could be sent to multiple users. It’s up to the app to ensure that user names
are unique if that’s a requirement.

This code shows how to register an iOS device for push notifications:

-(void) registerForMCSNotifications:(id) sender {

 // Get notifications object from your mobile backend object.

 OMCNotifications* notifications = [mbe notifications];

 // Call register api and pass the iOS device token data.

 [notifications registerForNotifications:[self getDeviceTokenData]

 onSuccess:^(NSHTTPURLResponse *response) {

 NSLog(@"Device registered successfully.");

 dispatch_async(dispatch_get_main_queue(), ^{

 // Update UI if needed.

Chapter 8
Send Notifications to and from Your App

8-15

 }) ;

 } onError:^(NSError *error) {

 NSLog(@"Error registering your device.");

 dispatch_async(dispatch_get_main_queue(), ^{

//Update UI if needed.

 }) ;

 }];

}

Deregister a Device

// Call register api and pass your iOS device's device token data.

 [notifications deregisterForNotifications:[self getDeviceTokenData]

 onSuccess:^(NSHTTPURLResponse *response) {

 NSLog(@"Device deregistered successfully.");

 dispatch_async(dispatch_get_main_queue(), ^{

// Update UI if-needed.

 }) ;

 } onError:^(NSError *error) {

 NSLog(@"Error deregistering your device.");

 dispatch_async(dispatch_get_main_queue(), ^{

 // Update UI if-needed.

 });

 }];

Cordova/JavaScript/TypeScript

Register a Device ID
The Mobile Devices REST API lets you register the device ID of your mobile app,
which can then be used as a recipient address for sending notifications. This API can
also associate a user with the device ID, so the user name can also be used as a
target for notifications.

Chapter 8
Send Notifications to and from Your App

8-16

You can register a device ID (notificationToken) directly and send notifications directly to
that ID. You can also use this API to associate any user with the device ID.

The Mobile Devices REST API includes the following endpoints:

• POST /mobile/platform/devices/register
• POST /mobile/platform/devices/deregister
When you register a device, include these parameters:

• The mobileClient parameter identifies the client in the backend with three properties:

– id: The Application ID assigned by the Google or Apple app store. (This is different
from the "App-Key".)

– version: The version of the mobile client that will receive the notifications, currently
1.0.

– platform: "IOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

• The notificationProvider parameter defines the service the notificationToken is
used for: "APNS" or "GCS" or “FCM” or "WNS" or "SYNIVERSE".

• The notificationToken parameter defines the token needed by the notification service
for sending calls. This token uniquely identifies the specific instance of a mobile app
associated with a specific device, and is used to ensure that notifications are sent to the
correct recipient. Encode in hexadecimal if necessary.

• The optional user parameter associates the device ID with the user name provided. If the
user parameter isn’t included, the device ID is associated with the user who is logged in
during the registration call. To specify a different user name, the logged in user must be a
team member with either the Administrator or Developer role. Keep in mind that
registering a user name this way doesn’t validate the entry in the Device Registry. If this
results in duplicate user names, notifications could be sent to multiple users. It’s up to the
app to ensure that user names are unique if that’s a requirement.

This code shows how to register a device for push notifications using Cordova/JavaScript/
TypeScript:

...
document.addEventListener("deviceready", handleDeviceReady, false);
...
function handleDeviceReady(){
 MCSNotificationsCordovaPlugin.onTokenRefresh(handleTokenRefresh,
handleError);
}
...
function handleTokenRefresh(token){
 console.log('NotificationsService Token refreshed', token);
 mcs.mobileBackend.notifications.registerForNotifications(token,
packageName, appVersion, 'FCM')
 .then(handleRegisterForNotifications)
 .catch(handleError);
}

function handleRegisterForNotifications(response){
 console.log('NotificationsService, device registered for notifications');
}
function handleError(error){

Chapter 8
Send Notifications to and from Your App

8-17

 console.error('NotificationsService Error', error);
}

Deregister a Device

this.mcs.mobileBackend.notifications
 .deregisterForNotifications(token, packageName, appVersion, 'FCM')
 .then(deregisterSuccess)
 .catch(deregisterError);

function deregisterSuccess(response)
{ console.log(response); }
function deregisterError(response)
{ console.error(response); }

How Are Notifications Sent and Received?
As a mobile application developer, you configure your mobile app to receive
notifications over the network. Once your mobile app is configured and installed on a
device, it connects to its backend to receive notifications. The steps below summarize
the path that a notification takes.

1. You compose a notification, for example, "Hi! Our storewide sale is tomorrow," and
define a recipient for it. You can send the notification to a specific user or device or
set of users or devices, to everyone in the backend, or to a specific device type
(Android, iOS or Windows). You can send the notification immediately or schedule
it to be sent at a later date and time. When you POST a notification, an ID is
created for the message. You can use this ID to cancel a message if it hasn’t been
sent yet.

2. The notification is addressed to the associated device IDs and distributed to the
appropriate push networks for delivery.

3. The notification is received by the mobile application, and the owner of the device
gets it.

The notification service providers and their payload limits are:

• WNS: 5K

• FCM: 4K

• APNS: 4K

• SMS: 1000 bytes

Chapter 8
How Are Notifications Sent and Received?

8-18

What is the Device ID or Notification Token?
The device ID, also known as the notification token, uniquely identifies the specific instance
of a mobile application associated with a specific device. This ID is used to ensure that
notifications are sent to the correct recipient.

A unique device ID is assigned when a mobile app registers a device during the device
handshake. After that point, the ID can be used to identify that specific recipient. Multiple
instances of the same mobile app on the same device have different device IDs. The device
ID changes periodically, but this is handled internally and is transparent to the mobile app.

You can look up the device IDs registered with a mobile app in the Device Registry, from the
Notifications page for the associated backend in the UI. To register a specific device ID to be
used as a recipient address for notifications, you can use the REST API. Keep in mind that
sending a notification directly to a device ID is only useful for testing. There are more efficient
ways to send notifications to a specific group of users, which you can read about in Send
Notifications to and from Your App.

Troubleshoot Notifications
Sending a notification is an asynchronous process. Once you send a notification, it can sit for
minutes, hours, or maybe even days on an Apple, Google or Microsoft server before it gets
delivered to the mobile device. Even if a notification can’t be delivered, there might be no
error message returned. You have no control over a notification once it gets sent, but these
are some common notification problems:

• A secure certificate is missing, expired, or not located in the right place.

• The network credentials for the device don't match the credentials registered.

• A security identifier used in your code doesn’t match the identifier registered with Google,
Apple or Windows, or match what’s defined in your Android manifest or iOS Xcode
project.

• The wrong identifier has been entered into a form. For example, when you register for
notifications in a backend and it asks you for an API Key, you entered the application key
instead.

• An APNS mismatch between production/development flag and certificate, for example
uploading a production certificate but configuring the client saying it's a development
certificate.

Chapter 8
Troubleshoot Notifications

8-19

• In FCM, the wrong API key or Project Number/Sender ID means the user might
have disabled notifications on their device.

The service will automatically unregister the device if a notification is sent to it and the
notification provider reports the device ID as being bad. This can happen in a few
ways:

• The most likely is that the token has expired. A device token lasts between 30 and
90 days depending on the provider. A mobile app should reregister the
notifications token every time the app starts up with both the service and the
notifications provider to refresh it.

• The user deleted the app from their device

• The API key or certificate in the service has gone bad by either expiring, or a new
API key or certificate was requested from Google/Apple and not uploaded.

• The user has reinstalled/updated their OS and hasn’t run the app since reloading
the OS.

• The token was mangled somehow during registration.

Check Notification Status in the UI
Check the History pane, accessible from the Notifications page for your mobile
backend, to find out if your notifications were successfully sent.

Scheduled notifications are displayed in the Scheduled tab. To see a list of sent
notifications, click the Sent tab. If you don’t see the notifications you expect, click
Check for Updates.

The status you see in the History pane reflects the success rate of the notifications
that have been sent. You can quickly tell the status of each notification in the History
pane by the color in the left column:

• Green means that more than 70% of individual notifications in the batch were
accepted by the Apple and/or Google networks.

• Yellow means that less than 70% of individual notifications in the batch were
accepted.

• Red means that the batch failed to send successfully. In most cases, there is a
configuration error that needs to be fixed.

• Blue means a batch of notifications is currently being sent. In most cases, a Blue
indicator appears for only a few moments.

Given the large the number of recipients sent to a popular mobile application, there will
never be 100% success. For example, if a notification is directed to a user that has
recently lost her phone, the Apple or Google network won’t accept the notification for
delivery to the device. The default warning threshold is 70%, but you can change it in
the Notifications_DeviceCountWarningThreshold environment policy.

The Device Manager, also accessible from the Notifications page for your mobile
backend, lists all registered devices for the mobile backend with their device IDs/
notification tokens. If you don’t see your device, the network provider might have
specified that the device ID/notification token is invalid and should be deregistered.
Also, if a device hasn’t been reregistered in 60 days, it will be removed from the
registry. You can click Clear Registry to remove all registered devices from a mobile
backend to facilitate troubleshooting.

Chapter 8
Troubleshoot Notifications

8-20

You can always look at the logs to see if more information about a notification or batch of

notifications is available. Click to open the side menu and select Administration > Logs.
For details on the diagnostics tools available, see the Diagnostics chapter.

Check Notification Status with the Notifications REST API
You can use the Notifications API to check the status of notifications.

Send GET to mobile/system/notifications/notifications with the ID of the notification or
using the status= query parameter. You can check for any notification status: New,
Scheduled, Sending, Error, Warning, or Sent. (The notification must have been successfully
sent.)

The example below checks for scheduled notifications.

curl -i
-X GET
-u team.user@example.com:Password
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce"
http://fif.cloud.oracle.com/mobile/system/notifications/notifications/?
status=Scheduled

If the query is successful, the response will be JSON listing the first 1000 notifications found.
You can specify a range using limit and offset parameters, for example,
limit=100&offset=400 would return notifications 400-499.

{
 "items": [
 {
 "id": 1234,
 "tag": "Marketing",
 "message": "This is the alert message.",
 "status": "Sent",
 "notificationTokens": ["APNSdeviceToken"],
 "createdOn": "2014-04-02T12:34:56.789Z",
 "platformCounts": [
 {
 "platform": "IOS",
 "deviceCount": 1,
 "successCount": 1
 }
],
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications/1234"
 },
 {
 "rel": "self",
 "href": "/notifications/1234"
 }
]
 },
 {

Chapter 8
Troubleshoot Notifications

8-21

 "id": 1235,
 "tag": "System",
 "message": "Update required.",
 "status": "Sent",
 "processedOn": "2014-04-01T12:34:56.789Z",
 "notificationTokens": ["APNSdeviceToken"],
 "platformCounts": [
 {
 "platform": "IOS",
 "deviceCount": 1,
 "successCount": 1
 }
],
 "createdOn": "2014-04-03T58:24:12.345Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications/1235"
 },
 {
 "rel": "self",
 "href": "/notifications/1235"
 }
]
 }
],
 "hasMore": false
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications?offset=0&limit=2"
 },
 {
 "rel": "self",
 "href": "/notifications?offset=0&limit=1000"
 }
]
}

Chapter 8
Troubleshoot Notifications

8-22

9
My Profile

As a mobile app developer, you use the My Profile API to access and update details about
the currently authorized user.

User Types
The information that the API returns depends on what type of user you are inquiring about.
Here are the types of users:

• IDCS users: These users have accounts that are managed by the domain’s Oracle
Identity Cloud Service (IDCS) as described in Mobile Users and Roles.

• Virtual users: These users pass a third-party token for authorization as described in
Enterprise Single Sign-On.

• Social users: These users have logged into the app from Facebook, as described in
Facebook Login.

Get User Profile Information
If your app needs user information, such as full names and roles, you can call the User
Profile API to get that information from their profile.

You have two options for getting a user’s profile:

• You can make a direct REST call as described in this topic and detailed in the Oracle
Mobile Cloud REST API Reference.

• You can call the ums.getMe(httpOptions) method from a custom API implementation.

To get the currently authorized user’s profile via a direct REST call, send a GET request to /
mobile/platform/users/me. Here’s an example of using cURL to send the request:

curl -i \
-X GET \
-u joe.doe@example.com:mypass \
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce" \
https://fif.cloud.oracle.com/mobile/platform/users/me

The contents of the response body depends on the user type:

• When the user is an IDCS user, the response contains the IDCS user information,
including roles.

• When the user is a virtual user, the response contains the user name and roles.

• When the user is a social user, the response contains the user's mobile ID.

9-1

Here’s an example of a response for an IDCS user:

{
 "idcsCreatedBy":{
 "type":"App",
 "display":"instance1",
 "value":"346373e8a",
 "$ref":"https://myIdentity.example.com/admin/v1/Apps/
3463731bd0cc43c7ba1b79a9c6e25e8a"
 },
 "id":"7e56fd80",
 "active":true,
 "displayName":"Joe Doe",
 "idcsLastModifiedBy":{
 "value":"346373e8aa",
 "display":"instance1",
 "type":"App",
 "$ref":"https://myIdentity.example.com/admin/v1/Apps/
3463731bd0cc43c7ba1b79a9c6e25e8a"
 },
 "userName":"jdoe",
 "emails":[
 {
 "primary":true,
 "value":"jdoe@example.invalid",
 "type":"work"
 }
],
 "name":{
 "familyName":"Doe",
 "givenName":"Joe",
 "formatted":"Joe Doe"
 },
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "grants":[
 {
 "value":"89d8b111",
 "grantMechanism":"ADMINISTRATOR_TO_USER",
 "appId":"346373e8a",
 "$ref":"https://myIdentity.example.com/admin/v1/Grants/
89d80073ae7f48838798cc864031b111"
 }
],
 "appRoles":[
 {
 "value":"a31245f1dd",
 "adminRole":false,
 "legacyGroupName":"instance1.ReadWriteRole",
 "appId":"346373e8a",
 "appName":"instance1_app_name",
 "display":"ReadWriteRole",
 "$ref":"https://myIdentity.example.com/admin/v1/AppRoles/
a31245ce4ed94d2a8563d39cd888f1dd"
 }
],

Chapter 9
Get User Profile Information

9-2

 "accounts":[
 {
 "appId":"346373e8a",
 "value":"3819e1be",
 "active":true,
 "$ref":"https://myIdentity.example.com/admin/v1/AccountMgmtInfos/
3819dd966cf34aa593df61809d62e1be"
 }
]
 },
 "schemas":[
 "urn:ietf:params:scim:schemas:core:2.0:User"
]
}

Here’s an example of a response for a virtual user:

{
 "userName":"jdoe",
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "appRoles":[
 {
 "display":"FIF_TECHNICIAN"}
]
 }
}

Here’s an example of a response for a social (Facebook) user:

{
 "userName": "1 :623:165"
}

Get Specific User Information
If your app needs just some pieces of user information, you can call the User Profile API to
get that information from their profile.

To get the information you can call the ums.getUser(options, httpOptions) method from a
custom API implementation.

The contents of the response body depends on the user type:

• When the user is an IDCS user, the response contains the fields that are specified in
options.fields, or, if the options.fields property isn't provided, it contains the IDCS
user information, including attributes.

You can specify that the response contains the values for the following fields:

– id

– email

– firstName

– lastName

Chapter 9
Get Specific User Information

9-3

– username

– attributes

• When the user is a virtual user, the response contains the user name.

• When the user is a social user, the response contains the user's mobile ID.

Here’s an example of using this method to get an IDCS user’s first and last name:

{
 req.oracleMobile.ums.getUser({fields: 'firstName,lastName'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

This example shows the response:

{
 "firstName": "Joe",
 "lastName": "Doe"
}

Update User Profile Information
If your app needs to update an IDCS user's information, such as first name, last name,
email, you can call the User Profile API to update that information in their profile.

Call the ums.getMe(httpOptions) method from a custom API implementation and
specify the fields to update.

Here’s an example of calling this method to update the user’s last name and custom
attribute:

service.put(
 '/mobile/custom/incidentreport/customer',
 function (req, res) {
 req.oracleMobile.ums.updateUser(
 {
 lastName: req.body.lastName,

urn:ietf:params:scim:schemas:idcs:extension:custom:User:custom_attribut
e: req.body.customAttribute
 }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }

Chapter 9
Update User Profile Information

9-4

);
 });

Chapter 9
Update User Profile Information

9-5

10
Storage

Oracle Mobile Cloud provides a Storage API for storing media in the cloud. As a mobile app
developer, you can use this API in your mobile app to store and retrieve objects, such as
files, text, images, and JSON objects.

What Can I Do with Storage?
The Storage API enables your mobile app to store, update, retrieve, and delete media, such
as JSON objects, text files, and images, in collections in your Mobile Hub instance. The
media are stored as opaque objects, which means that each object is stored and retrieved
from the collection by a user- or system-generated GUID (globally unique ID). You use mobile
user roles to control who can read and write the objects in the collection.

Note that this API isn’t intended to act as a database-as-a-service (DBaaS) solution by
storing business data used by external systems, or to host HTML 5 applications like a content
management system (CMS).

Android

Add an Object to a Collection

String text = "This is sample text file";
String name = "sampleText.txt";
StorageObject storageObject = new StorageObject(null, text.getBytes(), "text/
plain");
storageObject.setDisplayName(name);

Fetch an Object
This fetches the storage object from a collection and reads its contents in a stream:

int i=0;
for (StorageObject storageObject: storageObjects) {
 i++;
 InputStream payload = storageObject.getPayloadStream();
 int n;
 char[] buffer = new char[1024 * 4];
 InputStreamReader reader = null;
 try {
 reader = new InputStreamReader(payload, "UTF8");
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 StringWriter writer = new StringWriter();
 assert reader != null;

10-1

 try {
 while (-1 != (n = reader.read(buffer))) {
 writer.write(buffer, 0, n);
 }
 }catch (IOException e){
 e.printStackTrace();
 }
 Logger.debug(TAG, "Storage Object "+i+" "+writer.toString());
}

Get Multiple Objects from a Collection

List<storageObject> storageObjects = null;
try {
 Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageObjects = storageCollection.get(0,10,true);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Get a Shared Collection
This gets a specific shared collection called sharedCollection:

StorageCollection storageCollection= null;
try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageCollection =
storage.getStorageCollection("sharedCollection");
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Retrieve an Object

private Storage mStorage;
private String collectionID = "YOUR_COLLECTION_ID";
private String objectID = "YOUR_OBJECT_ID";

...

try {
 //Initialize and obtain the storage client
 mStorage =
MobileManager.getManager().getDefaultMobileBackend(this).getServiceProx
y(Storage.class);
 //Fetch the collection
 StorageCollection collection =
mStorage.getStorageCollection(collectionID);
 //Fetch the object

Chapter 10
Android

10-2

 StorageObject object = collection.get(objectID);
 //Get the payload
 InputStream payload = object.getPayloadStream();
 //Display the image
 ImageView imageView = (ImageView) findViewById(R.id.imageView);
 imageView.setImageBitmap(BitmapFactory.decodeStream(payload));

} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Update an Object

StorageObject storageObject = null;
try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
storageObject = storageCollection.get("26651715-9259-4676-a035-
df47ef3e7e79");
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

String text = "This is modified text in a text file";

storageObject.setPayload(text.getBytes(), "text/plain");

try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageCollection.put(storageObject);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Upload a New Object to a Collection

try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageCollection.post(storageObject);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

iOS

Add an Object to a Collection

- (void) uploadData{

 NSString* collection_Id = @"myCollection";
 NSString* payload = @"This is a simple text object";

Chapter 10
iOS

10-3

 NSString* contentType = @"text/plain";

 if (payload == nil || [payload isEqualToString:@""])
 {
 NSLog(@"There is nothing to upload");
 }
 else{

 // Get storage object.
 OMCStorage* storage = [mbe storage];

 // Get collection where you want to upload new data.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create new data from payload (in case your payload is not
already in NSData format)
 NSData* payloadData = [payload
dataUsingEncoding:NSUTF8StringEncoding];
 OMCStorageObject* aObject = [[OMCStorageObject alloc]
setPayloadFromData:payloadData

 withContentType:contentType];

 // Post data.
 [aCollection post:aObject];

 NSLog(@"Upload finished");
 }
}

Delete an Object

 NSString* collection_Id = @"";
 // Get your collection
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create/Update an object with the same objectID.
 NSString* objectID = @"object2";
 BOOL isDeleteSuccessful = [aCollection deleteWithKey:objectID];

Download Data to a Collection
This downloads data from any storage collection where:

collectionID is the id for the target collection.

objectID is the id for the target object.

-(void) downloadData{

 NSString* collection_Id = @"";

Chapter 10
iOS

10-4

 NSString* object_Id = @"";

 // Get storage object.
 OMCStorage* storage = [mbe storage];

 // Get your collection
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Get your object from your collection.
 OMCStorageObject* anObject = [aCollection get:object_Id];

 // Get the data from payload of your object.
 NSData* data = [anObject getPayloadData];
 NSLog(@"Download finished");
}

Get a User Isolated Collection

NSString* collection_Id = @"";

 NSString* user_Id = @"";

 // Get user isolated collection.
 OMCStorageCollection* aCollection = [storage getCollection:collection_Id
forUserId:user_Id];

Get Multiple Objects from a Collection

NSString* collection_Id = @"";

 // Get your collection.
 OMCStorageCollection* aCollection = [storage getCollection:collection_Id];

 NSUInteger offset = 0; NSUInteger limit = 10;
 NSArray<OMCStorageObject*>* objects = [collection get:offset
withLimit:limit getAllObjects:NO];

Get Object Data as a Stream

 NSString* collection_Id = @"";

 OMCStorageCollection* aCollection = [storage getCollection:collection_Id];

 NSString* object_Id = @"";

 OMCStorageObject* anObject = [aCollection get:object_Id];

 NSInputStream* inStream = [anObject getPayloadStream];

Chapter 10
iOS

10-5

Retrieve a Storage Object

- (void) downloadData{

 //Fill in IDs for collection and object.
 NSString* collection_Id = @"";
 NSString* object_Id = @"";

 // Get storage object.
 OMCStorage* storage = [mbe storage];

 // Get your collection.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Get your object from your collection.
 OMCStorageObject* aObject = [aCollection get:object_Id];

 // Get the data from your object's payload.
 NSData* data = [aObject getPayloadData];
 NSLog(@"Download finished");
}

Updating an Object

NSString* collection_Id = @"";

 // Get your collection.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create/Update object with the same objectID.
 NSString* objectID = @"";
 NSData* payload = [@"This is updated object" dataUsingEncoding:
NSUTF8StringEncoding];
 OMCStorageObject* object = [[OMCStorageObject alloc]
initPayload:objectID

withData:payload

andContentType:@"plain/text"];
 OMCStorageObject* returnedObject = [aCollection put:object];

Uploading Data to a Collection

-(void) uploadData{
 NSString* collection_Id = @"";
 NSString* payload = @"";
 NSString* contentType = @"";

Chapter 10
iOS

10-6

 if (payload == nil || [payload isEqualToString:@""])
 {
 NSLog(@"There is nothing to upload");
 }
 else{

 // Get the storage object from your MobileBackend object.
 OMCStorage* storage = [mbe storage];

 // Get the collection where you want to upload new data.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create new data from payload (in case your payload is not already
in NSData format).
 NSData* payloadData = [payload
dataUsingEncoding:NSUTF8StringEncoding];
 OMCStorageObject* anObject = [[OMCStorageObject alloc]
setPayloadFromData:payloadData

withContentType:contentType];

 // Post data to the collection.
 [aCollection post:anObject];

 NSLog(@"Upload finished");
 }
}

Cordova, JavaScript, and TypeScript

Add an Object to a Collection

var obj = new mcs.StorageObject(collection);
obj.setDisplayName("XYZ.pdf");
obj.loadPayload("Hello World from Oracle Autonomous Mobile Cloud Enterprise
Cordova SDK", "text/plain");

collection.postObject(obj).then(onSuccess, onFailure);
function onSuccess(collection) {
 console.log(collection);
 return collection;
}

function onFailure(error) {
 console.error(error);
 return Promise.reject(error);
}

Chapter 10
Cordova, JavaScript, and TypeScript

10-7

Delete an Object

collection.deleteObject(objectId)
.then(onDeleteObjectSuccess)
.catch(onDeleteObjectFailure);
function onDeleteObjectSuccess(response) {
 console.log(response);
return response;
}

function onDeleteObjectFailure(error) {
 console.error(error);
 return Promise.reject(error);
}

Fetch an Object
This fetches the storage object from a collection and reads its contents in a stream:

collection.getObject(objectId, 'json')
.then(onGetObjectSuccess)
.catch(onGetObjectFailed);

function onGetObjectSuccess(object)
{ console.log(object);
 return object;
}

function onGetObjectFailed(error)
{ console.error(error);
 return Promise.reject(error);
}

Get a Collection

var backend = mcs.mobileBackend;
backend.storage.getCollection(collectionName)
.then(onGetCollectionSuccess)
.catch(onGetCollectionFailed);

function onGetCollectionSuccess(collection){
 console.log(collection);
 return collection;
}

function onGetCollectionFailed(error) {
 console.error(error);
 return Promise.reject(error);
}

Chapter 10
Cordova, JavaScript, and TypeScript

10-8

Get an Object from a User Isolated Collection
This gets an object from a user isolated collection belonging to another user:

let backend = mcs.mobileBackend;
backend.storage.getCollection(collectionName, userId)
.then(onGetCollectionSuccess)
.catch(onGetCollectionFailed);

function onGetCollectionSuccess(collection) {
 console.log(collection);
 return collection;
}

function onGetCollectionFailed(error){
 console.error(error);
 return Promise.reject(error);
}

Get Multiple Objects from a Collection
Gets a collection, then uses that collection to get multiple objects:

collection.getObjects(2, 3, false)
.then(onSuccess)
.catch(onFailure);

function onSuccess(collection) {
 console.log(collection);
 return collection;
}

function onFailure(error) {
 console.error(error);
 return Promise.reject(error);
}

Update an Object

 collection.getObject(objectId)
.then(onGetObjectSuccess)
.then(onSaveObjectSuccess)
.catch(onGetObjectFail);

function onGetObjectSuccess(response){
 response.name = 'NewName';
 return collection.putObject(response);
}

function onSaveObjectSuccess(response){
 console.log(response);

Chapter 10
Cordova, JavaScript, and TypeScript

10-9

 return response;
}

function onGetObjectFail(error){
 console.error(error);
 return Promise.reject(error);
}

Custom Code

Retrieve and Store Collections and Objects
For information on how custom code can retrieve collection information and store and
retrieve objects, see Accessing the Storage API from Custom Code.

REST API

Storage API Endpoints
The Storage API has endpoints for retrieving, paginating, and ordering collections and
also for retrieving, updating, and removing objects.

Here, we give a brief overview of the Storage API endpoints.

Get a Single Collection
To get the metadata about a collection, such as ID, description, and whether it is user
isolated, call the GET operation on the {collection} endpoint as follows:

GET {baseUri}/mobile/platform/storage/collections/{collection}

For example, for a collection named images:

GET {baseUri}/mobile/platform/storage/collections/images

Chapter 10
Custom Code

10-10

Get All Collections Associated with a Mobile Backend
To get a list of the collections that are associated with a mobile backend, call the GET
operation on the collections endpoint as follows:

GET {baseUri}/mobile/platform/storage/collections

Store an Object
The Storage API has two operations for creating objects. The operation that you use depends
on if you want to specify the object’s ID or you want the ID to be generated automatically.

• To specify the ID, use PUT, and put the ID in the URI as described in Specifying the
Object Identifier. Note that you can use the If-None-Match header to ensure that you
don’t overwrite an object that has the same ID, as described in Creating an Object (If One
Doesn't Already Exist).

• To generate an ID, use POST as described in Generating an Object Identifier .

When you create an object using your own ID, remember that, for shared collections, the ID
must be unique to the collection. For user isolated collections, the ID must be unique to the
user’s space.

Always include the Content-Type header to specify the media type of the object being stored.
This property also specifies the media type to return when the object is requested. If you
don’t include this header, then the content type defaults to application/octet-stream.

Note that Storage doesn’t transform or encode an object. Storage stores the exact bytes that
you send in the request. For example, you can’t send a Base-64 encoded image and store it
as a binary image by including a Content-Type header set to image/jpeg and a Content-
Encoding header set to base64. You can use a custom API to perform the transformation for
you, as shown in the code examples in storage.store(collectionId, object, options,
httpOptions) .

Specify the Object Identifier
When performing a PUT operation, the identifier of the object corresponds to the last value
specified in the URI. For example, to store an object with an ID called part1524:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Create an Object (If One Doesn't Already Exist)
Put the wildcard (*) character in the request's If-None-Match header to force the PUT
operation to create the object with the specified object ID only if no other object exists with
that ID. Specifying the wildcard causes the call to fail if another object already exists with the
same ID. For example:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1542

Headers:
 If-None-Match: *

Chapter 10
REST API

10-11

Generate an Object Identifier
To generate the identifier for an object and then store the object, use the POST
operation. Unlike the PUT operation, there’s no identifier specified at the end of the URI
for a POST operation. For example:

POST {baseUri}/mobile/platform/storage/collections/images/objects

The URI that accesses the newly created object is returned through the Location
header in the response, and the ID attribute is included in the response body.

What Happens When an Object is Created?
When an object is created:

• The content is stored.

• The value of the Content-Type field in the request is stored. (This becomes the
Content-Type field definition returned when the object is requested using a GET
operation.)

• An entity tag (ETag) value is assigned.

• The createdBy value is set to the user ID of the user who performed the create
operation.

• The createdOn value is set to the time the object was stored on the server.

Update an Object
Objects are updated using the PUT operation. For the PUT call, specify the same
identifier that was specified or generated when the object was created. Because
objects are opaque, updating an object completely replaces the previous contents.

What Happens When an Object Is Updated?
When a PUT is performed on an object, the following occurs:

• The content is completely replaced.

• The value of the ETag changes.

• The modifiedBy value is set to the user ID for whom the mobile app performed the
PUT operation.

• The modifiedOn value is set to the time the object was stored on the server.

Optimistic Locking
Optimistic locking is a strategy to use when you want to update an object only if object
was not updated by someone else after you originally retrieved it. To implement this
strategy, do one of the following:

• Put the timestamp of when you last retrieved the object in the If-Unmodified-
Since header.

Chapter 10
REST API

10-12

• Put the object’s ETag in the If-None-Match header.

For example, if the ETag value from the previous call is 2, then the PUT operation in the
following example is performed only when the If-None-Match value of "2" matches the ETag
of the object (part1524). If the versions don’t match, then the call’s PUT operation isn’t
performed and part1524 remains unchanged.

PUT{baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-None-Match: \"2\"

You can get a similar result using If-Unmodified-Since:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-Unmodified-Since: Mon,30 Jun 2014 19:43:31 GMT

Retrieve a List of Objects
To get the metadata about a set of objects in a collection, use the GET operation on the /
collections/{collection}/objects endpoint. This metadata includes the object’s ID, its
name, and size. The metadata also includes the canonical link and self links. For a full list of
properties, see Taking a Look at Object Metadata .

In this example, images is the name of a shared collection.

GET {baseURI}/mobile/platform/storage/collections/images/objects

If the collection is user isolated and you have READ_ALL or READ_WRITE_ALL access, then you
must include the user query parameter and specify which user's objects you want listed, even
if you want to see your own objects (use * to list all user’s objects). Note that you provide the
user’s ID, not the user name. For example:

GET {baseURI}/mobile/platform/storage/collections/images/objects?
user=0cea04ee-9e26-4de3-ad6b-00a66c8d3b96

Page Through a List of Objects
If you don’t want to see all the results, or if you want to get the results in small blocks, use the
limit and offset query parameters to request a subset of items.

Use the limit parameter to restrict the number of items returned. The default is 100. Define
offset as the zero-based starting point for the returned items. The returned JSON body
contains links for retrieving both the next and previous sets of items.

The following example gets the metadata for 50 objects, starting with the 201st object.

Get {baseUri}/mobile/platform/storage/collections/images/objects?
offset=200&limit=50

Chapter 10
REST API

10-13

Order
Use the orderBy parameter to control the order of the returned items. You can specify
which property to order on and specify whether to put the items in ascending (asc) or
descending (desc) order:

Get {baseUri}/mobile/platform/storage/collections/images/objects?
orderBy=contentLength:desc

You can sort by the name, modifiedBy, modifiedOn, createdBy, createdOn, or
contentLength property.

Note that you can order by one property only (either asc or desc).

Query
Use the q query parameter to restrict the list of returned objects to the value specified
for the id, name, createdBy, or modifiedBy attributes.

Get {baseUri}/mobile/platform/storage/collections/images/objects?q=part

The objects returned are based on a case-sensitive, partial match of the id, name,
createdBy, and modifiedBy attributes. With this example, the results might include an
item with an ID of part1524 and an item modified by bonapart.

Retrieve an Object
Use the GET operation to retrieve the entire object. When performing the GET operation,
the identifier (such as part1524 in the following example) is specified at the end of the
URI.

Storage always returns the exact bytes that were stored. If the Accepts header doesn’t
match the Content-Type that the object was stored with, then it returns a 406 status
code.

In this example, the object is returned only if the Etag does not match. You can use
this strategy prevent re-fetching an object if it hasn’t changed.

Get {baseUri}/mobile/platform/storage/collections/images/objects/
part1524

Headers:
 If-None-Match: \"2\"

Chapter 10
REST API

10-14

Delete an Object
To remove an object from a collection, call the DELETE operation. Deleting an object is
permanent. There’s no way to restore an object after you call this operation.

DELETE {baseUri}/mobile/platform/storage/collections/images/objects/part1524

To safely remove an object, use the If-None-Match header with the object’s ETag, or the If-
Unmodified-Since header with the timestamp of when you last retrieved the object:

DELETE {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-None-Match: \"2\"

You can use these headers to prevent overriding a change that another user made after you
originally retrieved the object.

Optimize Performance
You can use the Check If Exists, Get If Newer, and Read Part of an Object (Chunk Data)
strategies discussed next to optimize performance when you retrieve an object:

Check If Exists
To check if an object exists, use the HEAD operation instead of a GET operation. The HEAD
operation returns the same information except for the actual object value.

Put If Absent
You can use the If-None-Match header with a wildcard (*) value in a PUT operation to store
an object only when (or if) it isn’t already included in the collection.

When you use this strategy, the call executes only when the ETag is absent, which is true
only if the object does not exist.

PUT {baseUri}/mobile/platform/storage/collections/profiles/objects/uprofile

Headers:
 If-None-Match: *

In this example, if the uprofile object doesn’t have an ETag, then myProfile.txt is stored
as the uprofile object.

Get If Newer
If you have already retrieved an object, and you want to re-fetch it only if it has changed, use
the GET operation with the If-None-Match or If-Modified-Since header to retrieve the object
only if there has been a change since the last time the object was fetched.

• If-None-Match

Chapter 10
REST API

10-15

This example re-fetches the object only if the ETag is not 2.

GET {baseUri}/mobile/platform/storage/collections/images/objects/
part1542

Headers:
 If-None-Match: \"2\"

• If-Modified-Since

This example re-fetches the object only if it was modified after the date and time
specified. Otherwise, the response status is 304 not modified.

GET {baseUri}/mobile/platform/storage/collections/images/objects/
part1542

Headers:
 If-Modified-Since: Mon, 30 Jun 2014 19:43:31 GMT

Read Part of an Object (Chunk Data)
If the mobile app needs to get a large object like a video file, you can use the Range
header to retrieve a subset of the object. This field lets the mobile app retrieve the data
in chunks, rather than all at once, by requesting a subset of bytes. Using this strategy,
you can start streaming a video, or start displaying the contents of a long list before
you fetch the whole object.

Here are examples of byte-range specifier values:

• First 100 bytes: bytes=0-99
• Second 100 bytes: bytes=100-199
• Last 100 bytes: bytes=-100
• First 100 and last 100 bytes: bytes=0-99,-100
This example gets the first 100 and last 100 bytes of a profile to display a preview of
the object’s contents:

GET {baseUri}mobile/platform/storage/collections/profiles/objects/
uprofile

Headers:
 Range: bytes=0-99,-100

Test Runtime Operations Using the Endpoints Page
You can test client REST calls for collections manually through a command line tool or
utility, from a mobile app running on a device or simulator, or you can use the
Endpoints page to test various operations.

Using the Endpoints page for the Storage API, you can try out basic collection calls,
which would typically be exercised by a mobile app. These endpoints would be called
directly by calling REST APIs, indirectly (by calling the client SDK), or through custom
code. Instead of configuring a device or simulator, or entering the command manually,

Chapter 10
Test Runtime Operations Using the Endpoints Page

10-16

you can test the API by first entering mobile app user credentials and parameters appropriate
to the call and then by clicking Test Endpoint. The page displays the payload and the status
code.

You can access the Endpoints page by clicking Storage in Platform APIs section that is
located at the bottom of the APIs page for a mobile backend. You can also open the page by
clicking Storage in the Platform APIs section at the bottom of the APIs page. (You open this

page by clicking to open the side menu. You then click Development and then APIs).

Manage Collections
Mobile apps can only use collections that are associated with a backend. You can make this
association by adding existing collections to the backend when you create it. You can also
create new collections as part of this process.

You can also use the Storage configuration pages in the service UI to associate a collection
with a backend, as well as create and configure a collection, and define whether the
collection is shared or user isolated.

Shared and User Isolated Collections
A collection is either shared or user isolated.

When a collection is shared, no one owns the collection or an object, and the objects are kept
in a shared space. Those with certain mobile user roles, permissions, and access to the
backend, or anonymous access to the backend associated with the collection, can update an
object. Note that in both shared and user isolated collections, each object has an ID that is
unique to the collection.

When a collection is user isolated, users who have Read-Only (All Users) access can read
objects in other users’ spaces. Users with Read-Write (All Users) access can both read
and write objects in other users’ spaces. Anonymous access is not permitted in user isolated
collections.

Let's look at some examples of this behavior using the following scenarios:

Shared Collection

An online magazine is leveraging the Storage API as a way for authors to submit, change, or
read, articles. They’ve provisioned a shared collection called articles, as shown in the figure
below.

• Ben has contributed articles on bugs and bats, while Art has written about cows and
dogs.

• The dogs article is shared, allowing both Ben and Art to collaborate on it.

• Art and Ben are able to modify any article regardless of who originally submitted it.

• Dee can read all the articles, but she can't make changes.

However, if this shared collection is added to the Security_CollectionsAnonymousAccess
environment policy, then Ben, Art, Dee or anyone who has access to the backend can submit,
change, or read articles.

Chapter 10
Manage Collections

10-17

User Isolated Collection

An online magazine has provisioned a user isolated collection called Articles, as
shown in the following figure.

• Ben and Art can read and edit their articles, and upload new articles as well. They
can’t read or write each other's files.

• Dee can read only her article. Because her role is InactiveAuthor, which gives
her Read-Only permission, she can't upload any new articles.

• Eva, the editor, can make changes to any file and return it to the author's isolated
space.

• Raj, the publisher, can view all the articles, but he can't make changes.

• Because users are isolated, the authors don't have to worry about naming conflicts
with others. Objects in different isolation spaces can have the same name (as is
the case for the “dogs” articles by Dee and Art).

• Eva and Raj can access Ben, Art, and Dee’s objects only by specifying a user
qualification parameter. When Eva wants to make changes to Art’s article, the call
that enables her to write to Art’s user space must include Art’s ID.

Anonymous users don’t have access to user isolated collections. If a user isolated
collection is added to the Security_CollectionsAnonymousAccess environment policy,
it’s just ignored.

Chapter 10
Manage Collections

10-18

Permissions in Shared and User Isolated Collections

You can designate who can access and update objects in a collection by attaching access
permissions to mobile user roles, or for anonymous access, by adding the shared collection
name to the Security_CollectionsAnonymousAccess environment policy.

For example, to include the Articles collection use
Security_CollectionsAnonymousAccess=Articles.

If the collection does not, or cannot permit anonymous access:

• Art and Ben’s Author mobile user role is associated with the Read-Write permission.

– In the shared collection, they can read and update any article within the shared
collection.

– In the user isolated collection, they can read and update their own articles.

• In contrast, Dee has the InactiveAuthor mobile user role, which gives her Read-Only
permission.

– In the shared collection, Dee can read Art’s article about dogs, as well as various
articles from either Art or Ben about bugs, cows, and bats. Unlike Ben or Art, she
can’t delete articles or add new ones.

– In the user isolated collection, she can read her own article about dogs, but she can’t
read Art’s article about dogs.

• For user isolated collections, mobile user roles that are associated with the Read-Only
(All Users) permission can view any object. The Read-Write (All Users) permission
allows users to view and update objects in other users’ spaces. Because her role as
Editor has a Read-Write (All Users) permission, Eva can read and edit various
authors’ files, such as those authored by Ben and Art.

Although different mobile user roles can grant access to the same objects in a collection,
such as Eva (Editor), Ben (Author), and Art (also Author), in the user isolated collection, the
objects remain in their respective isolated spaces.
Note that when anonymous access is allowed on a shared collection, access and the ability
to update an object is granted to any authenticated user as well, regardless of role. This
means adding a collection name to the Security_CollectionsAnonymousAccess environment

Chapter 10
Manage Collections

10-19

policy overrides permissions given through roles. Take care when allowing anonymous
access to a collection. Security is more limited than with role-based permissions.

Storage Configuration
The Storage configuration pages in the UI can help you with a variety of tasks, such as
creating and editing collections, and associating backends with collections.

Storage Configuration for All Collections

There are two Storage configuration pages you can use: Manage all collections in your

instance from the > Mobile Apps >Development>Storage page. Manage
collections for a specific backend from the Storage tab on the backend page.

To open the Storage page for all collections, click > Development>Storage.

Using this page, you can create collections, edit existing ones, associate them with
mobile backends, and publish them.

You can find out when the collections listed were created or updated and which
backends are using them by first selecting a collection and then expanding Used By
and History.

Storage Configuration for a Specific Backend

To manage collections for a specific backend, click > Development>Backends >
Storage. This page shows which collections are associated with the backend and
allows you to create and update associated collections.

Define a Collection
The New Collection dialog lets you name a collection so that it can be identified in
REST calls and designate it as shared or user isolated.

1. Open the Storage page either from a mobile backend or by clicking Storage in the
side menu, and click New Collection.

2. Complete the New Collection dialog:

Chapter 10
Manage Collections

10-20

a. Enter a name for your collection. This name is used to form the Universal Resource
Identifier (URI) for the collection. Within the context of the API call, the collection
name is referred to as the collection ID:

{baseUri}/mobile/platform/storage/collections/{collection ID}

For example, for a collection named FiF_UploadedImages (cloud storage of images
uploaded from mobile apps), the URI call would look like this:

{baseUri}/mobile/platform/storage/collections/FiF_UploadedImages

For a closer look at Storage API syntax, see Storage API Endpoints.

b. Choose the collection type: Shared or User Isolated. You can’t change the
scope of the collection after you’ve set it. For details and examples, see Shared and
User Isolated Collections.

c. If needed, enter a short description for the purpose of the collection, to be displayed
in the list of collections.

3. Click Create.

When you initially create a collection, it’s in a draft state, in version 1.0.

• You can modify the collection name, access permissions, and its contents. Remember,
you can’t change the collection type after it’s created.

• You can version a collection. You might want to increment a collection’s major and minor
version numbers when you publish it or when you add new objects.

• While in the draft state, a collection can be moved to the trash from the More menu.

Chapter 10
Manage Collections

10-21

Collection Metadata
In addition to the basic properties like size (in bytes), and description, the collection
metadata includes the collection name that identifies it for REST calls.

When you create a collection, the Storage API defines it using the following metadata:

Property Value Type Description

description string The short description. This is an optional
value.

id string The collection name, which is used in the
uniform resource identifier (URI). For example:

{baseURI}/mobile/platform/storage/
collections/{collection}
The collection name is case-sensitive,
meaning that mycollection and
Mycollection are two different collections.

Add Access Permissions to a Collection
Collection access is granted through anonymous user settings in the policy file, or
managed by mobile user roles. Once a mobile user role is defined, you can also grant
which roles can read and write objects in the collection. To see what mobile user roles
are available, go to the My Profile UI and click Roles.

Anonymous Access to Collections

Anonymous access is often given to users who just want to check information on an
app without having to log in or needing a defined role. Weather apps, where a user
can check their local weather, are a good example of this.

Likewise, you can grant anonymous access to a shared collection. Once a shared
collection is created, the administrator adds its name to the
Security_CollectionsAnonymousAccess policy. You can then access the shared
collection via the REST API or the client SDK for your mobile platform. Also, if you
want to access this anonymous shared collection from the UI, a workaround is to grant
Read-Write permission to any role on the properties page.

Keep in mind that when you add a shared collection to the policy, both anonymous and
named users have access and read/write privileges to the collection.

Role-based Access to Collections

1. In the Storage page, select a collection and then click Open.

2. In the Properties page, specify one or more mobile user roles for each permission
type.

• Read-Only and Read-Write access apply to all collections (shared or user
isolated).

• You can specify Read-Only (All Users) and Read-Write (All Users)
permissions only if the collection type is user-isolated.

Chapter 10
Manage Collections

10-22

Permission Shared User Isolated

Read-Only Read-only access to all of
the objects in a collection.
For example, both a field
technician and a customer
can read promotional
material like coupons, but
they can’t update them.

Read-only access to a user isolated
collection. When the Read-Only
permission is applied to user isolated
collections, for example, a customer
can view images (like a coupon), but
he can’t update them, or submit
additional ones (only a user with
Read-Write (All Users)
privileges can add an object to the
customer’s user space). Because this
is a user isolated collection, the
customer can view only his images (or
other customer-specific objects that
are intended only for him). The Read-
Only permission also prevents him
from adding additional work orders or
deleting them.

Read-Write A user can override any
object in the collection.

A user can override the objects in his
isolated space. For example, a
customer can update the images of
broken appliances that he’s submitted.
Because this is a user isolated
collection, the images that he can add
(and update) are intended only for
him. Because these images exist in
his isolated space, he can update
these objects, but no one else’s.
Likewise, he can add or delete
images, but can’t do this in anyone
else’s isolated space.

Read-Only (All Users) NA A user can read objects in all spaces.
For example, a field technician can
see the images updated by any
customer, but she can’t update them,
delete them, or add new ones.

Read-Write (All Users) NA A user can override objects in all
spaces. If a field technician has Read-
Write (All Users) permission,
then she can update work orders
submitted by any customer.

By default, mobile users can’t access a collection until they’ve been assigned mobile user
roles that are associated with the Read-Write, Read-Only, Read-Write (All Users) or
Read-Only (All Users) permissions.

Add Objects to a Collection
You can populate a collection with objects.

These steps show how to add an object using the UI. When you add an object from the UI,
the ID is generated automatically. If you want to assign a specific ID to an object, use the
Storage API, the custom code SDK, or the client SDK for your mobile platform. For details,
see Store an Object.

1. On the Storage page, select a collection and click Open.

Chapter 10
Manage Collections

10-23

• If this collection has no objects, click Upload Files and then browse to and
retrieve the object. Click Open.

• If this collection already has objects, click Upload in the Content page. Browse
to and retrieve the object. Click Open.

2. If the collection is shared, click Add. If you have the identity domain administrator
role, you can also upload to user isolated collections. Add the user realm and user
name to the User Name Required dialog, and click Ok. You can only select from
users whose roles have been granted permission to the collection. (Assign these
roles in the Properties page.)

3. To view the object data, select it from the list.

To permanently remove an object from a collection, select it and click Delete.

Object Metadata
When you upload an object, the Content page displays basic metadata, such as size,
content type, version information, and who uploaded it. Using this page, you can also
delete unneeded objects, or filter them. Some functions in user isolated collections are
only available if you have the identity domain administrator role.

Property Value Type Description/Usage

ID string The object name, which is used for operations on a
single object. It is the last value specified in the
URI.

Content Length integer The size, in bytes.

Content Type media type The media type for the data, such as image/jpeg
for a JPEG image, or application/json for
JSON.

ETag string (an integer
in quotes, for
example, "17")

A value that represents the version of the object.
It's used with the If-Match and If-None-Match
HTTP request headers.

Created By user name The name of the user who uploaded the data.

Created On time stamp (In
ISO 8601)

The time that the object was most recently stored
on the server. Time stamps are stored in UTC.

Modify By user name The name of the user who modified the object.

Modified On time stamp (in
ISO 8601)

The time when the server received a request for an
object. Time stamps are stored in UTC.

User ID string For a user isolated collection, the ID of the user
whose space the object is in.

Update the Collection
You can update the name, description and access to a collection. You can’t however,
change the collection type.

1. On the Storage page, select a collection and then click Open.

2. Click Properties. (The Properties page opens by default when you first create a
collection. On subsequent visits, the Content page opens by default.)

3. Change the name, description or access as needed.

Chapter 10
Manage Collections

10-24

4. Click Save.

Offline Data Storage
The client SDK’s Sync Client library, in conjunction with the Storage library, enables mobile
apps to cache a collection’s objects for offline use and performance improvement. The apps
can then use the cached objects instead of re-retrieving them from Storage, as described in
How Synchronization Works with the Storage APIs. If a collection’s content changes
infrequently, then consider enabling those mobile apps to cache the collection’s objects by
selecting Enable the mobile client SDK to cache collection data locally for offline use.

When Enable the mobile client SDK to cache collection data locally for offline use is
selected, the objects that a mobile app retrieves can remain in the cache for the period set in
the Sync_CollectionTimeToLive policy. This value is conveyed to the app through the
Oracle-Mobile-Sync-Expires response header. By default, the timeout period is set for 24
hours (86,400 seconds).

Don’t select this option for time-critical data, where a cached value might be misleading. For
example, if the collection contains current stock prices, you shouldn’t select this option,
because users expect the latest value (or no value at all).

If your mobile app isn’t using the client SDK’s Storage library, and your app is caching
Storage objects, then you can take advantage of the following request and response
headers:

Type Header Description

Request Oracle-Mobile-Sync-Agent When this header is set to true
in the request, then the response
includes either Oracle-Mobile-
Sync-Expires or Oracle-
Mobile-Sync-No-Store.

Response Oracle-Mobile-Sync-
Expires

Specifies when the returned
resource must be marked as
expired. Uses RFC 1123 format,
for example EEE, dd MMM
yyyyy HH:mm:ss z for
SimpleDateFormat. This value
is determined by the
Sync_CollectionTimeToLive
policy.

Response Oracle-Mobile-Sync-No-
Store

When set to true, the client
mustn’t cache the returned
resource.

To learn more about data caching, see Data Offline and Sync .

Associate a Collection with a Backend
Associating a collection makes its contents available to a specific backend. The associated
collection is a dependency.

1. In the Storage page, select a collection.

2. Click More and then select Associate Backends.

Chapter 10
Manage Collections

10-25

3. In the Associate Backends dialog, select one or more backends from the list.

4. Click Add.

In the details pane, you can see any associated backends by expanding Used By.

You can also associate a collection with a backend this way:

1. Open the backend.

2. Click the Storage tab and then choose Select Collections.

3. Choose one or more collections from the Select Collections dialog, and then click
Select.

Remove a Collection from a Backend
You might want to disassociate a collection from a backend so that you can change
the backend's state without affecting the collection. Or you might want to disassociate
the collection and associate a different one.

1. In the Storage page, select a collection.

2. In the Details section on the right, view the Used By list.

3. To delete the association, click the X that follows the backend version number.

4. You’ll be prompted to remove the dependency. Click Remove.

To remove a collection from a backend:

1. Open the backend.

Chapter 10
Manage Collections

10-26

2. Open the Storage page.

3. Click the X adjacent to the collection that you want to remove.

4. In the Confirm Remove Dependency dialog, click Remove.

Chapter 10
Manage Collections

10-27

11
Data Offline and Sync

Mobile app developers can use the Data Offline and Sync features to build a client app that
enables the users to perform critical tasks when offline.

You can use the following APIs to build applications that cache REST resources for offline
use and then synchronize all offline changes with the server when the device goes online
again.

API Platforms Features

Sync Express • Cordova
• JavaScript

• Basic synchronization.
• Easy to use.
• Works with any REST API

where the resource name
alternates between plural
nouns and singular resource
identifiers (rid), such as /
items/{rid}/subitems/
{rid}.

• Requires minimal changes
to existing code.

• Works with any JavaScript
framework.

• When device reconnects,
sends change requests one
resource object at a time.

• Always overwrites the server
version of the object.

Synchronization • Cordova
• JavaScript
• Android
• iOS

• Robust synchronization.
• Works with synchronization-

compliant custom APIs.
• When device reconnects,

sends all changes in one
request.

Building Apps that Work Offline Using Sync Express
The Javascript and Cordova client SDKs feature Sync Express, which enables you to easily
and quickly make your application work offline using your existing REST requests. You can
use this library for REST APIs where the resource name alternates between plural nouns and
singular resource identifiers (rid), such as /items/{rid}/subitems/{rid}.

Add Sync Express to Your App
To use Sync Express in your app, you must complete the following tasks.

• Copy both mcs.sync.min.js and mcs.min.js from the SDK into the directory where you
keep your JavaScript libraries.

11-1

• Use a script element to load mcs.sync.min.js. This must be the first script that
the app fetches and loads unless you add loki-cordova-fs-adapters.js, which
is explained next.

• Use either RequireJS or a script element to load mcs.min.js.

• From the command line, enter the following to add the cordova-plugin-network-
information plugin. This plugin enables Sync Express to detect if the device is
online or offline.

cordova plugin add cordova-plugin-network-information

Install the cordova-plugin-file
When an application attempts to store more REST resources than the device’s cache
size allows, Sync Express throws a QUOTA_EXCEEDED_ERR exception. With Cordova
apps, you can install the cordova-plugin-file to increase the device’s cache size. This
plugin isn’t available for JavaScript web apps.

To install and use the cordova-plugin-file:

1. Enter this command to install the file:

cordova plugin add cordova-plugin-file

2. Copy loki-cordova-fs-adapters.js from the SDK into the directory where you
keep your JavaScript libraries.

3. Add a script element to load loki-cordova-fs-adapter.js. This must be the first
script that the app fetches and loads. Then the app can load mcs.sync.min.js and
mcs.min.js as described above.

Configure Your App to Use Sync Express
To enable Sync Express, add a syncExpress entry to
oracle_mobile_cloud_config.js, and use path elements in the policies array to
identify the endpoints that you want to activate Sync Express for. The name that you
use for a path parameter must exactly match the name of the property that uniquely
identifies a returned object. Use a colon to identify the path parameter, such
as :deptId. Note that a configuration file can have a syncExpress entry for Sync
Express or a sync entry for the Synchronization library, but it can’t have both.

Note:

Synchronization is not fully supported by the Cordova SDK or the JavaScript
SDK. It is only fully supported in the Android and Java SDKs.

Let’s say, for example, that you want to activate Sync Express for all calls to these
endpoints:

• /departments
• /departments/{deptId}

Chapter 11
Building Apps that Work Offline Using Sync Express

11-2

The department database object has these properties:

deptId: number
name: string

The response object for a department collection looks like this:

[
 {
 "deptId": 1,
 "name": "Department 1"
 },
 {
 "deptId": 2,
 "name": "Department 2"
 }
]

The corresponding syncExpress entry would look like this. Notice that you need only one
entry in the configuration file to activate Sync Express for both endpoints.

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackend": {
 "name": "myBackend",
 ...
 }
 "syncExpress": {
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d+)?'
 }
]
 }
};

Now let’s say, for example, that you want to include calls to endpoints with subcollections
(nested entities), such as an employees within a department:

• /departments
• /departments/{deptId}
• /departments/{deptId}/employees
• /departments/{deptId}/employees/{empId}
The employee database object has these properties:

deptId: number
empId: number
name: string

Chapter 11
Building Apps that Work Offline Using Sync Express

11-3

The response object for an employee collection looks like this:

[
 {
 "empId": 1,
 "name": "John Doe"
 },
 {
 "empId": 2,
 "name": "Jane Doe"
 }
]

The corresponding syncExpress entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for all the endpoints.

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackend": {
 "name": "myBackend",
 ...
 }
 "syncExpress": {
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\
\d+)/:_employees?/:empId(\\d+)?'
 }
]
 }
};

Sync Express provides some regular expressions for formulating the path
specification:

• Use a colon (:) plus the property name to indicate either a path parameter or the
name of the property that uniquely identifies each returned object (or both). For
example, for the /departments endpoint, you must include :deptId(\\d+) in the
path specification to indicate the unique identifier for a department resource, even
if the API didn’t have a /mobile/custom/myAPI/departments/{deptId} endpoint.

• Use a question mark (?) to indicate that the path parameter is optional.

• When a path segment represents a collection of children resources (a
subcollection), then you must precede the parameter name with a colon and an
underscore (:_) so that Sync Express stores the response objects in the client
cache as children objects that are associated with the parent object.

• By default, Sync Express assumes that the path parameter is a string. Use (\\d+)
to indicate that the path parameter must be a numeric value.

For example, given the /mobile/custom/myApi/departments/:deptId(\
\d+)/:_employees?/:empId(\\d+)? path specification:

• :deptId specifies a path parameter and also provides the name of the property in
the department object that uniquely identifies a department.

Chapter 11
Building Apps that Work Offline Using Sync Express

11-4

• The ? after :deptId(\\d+) indicates that this and subsequent parameters are not
required. Thus, the path specification applies to these endpoints:

– /mobile/custom/myApi/departments
– /mobile/custom/myApi/departments/{deptId}
– /mobile/custom/myApi/departments/{deptId}/employees
– /mobile/custom/myApi/departments/{deptId}/employees/{empId}

• (\\d+) indicates that the path parameter value must be numeric. If the object’s deptId
property is a string, then you’d use /mobile/custom/myApi/departments/:deptId?
instead.

• (:_employees) identifies a subcollection and indicates that all response objects must be
stored in the client cache as children of the specified deptId.

Configure Your App to Handle items Arrays
If any response bodies wrap a collection in an items property, such as "items":
[{"id:":33},{"id:":34}], then you must add the Oracle REST handler to the syncExpress
entry in the configuration file, as shown in the following example:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackend": {
 "name": "myBackend",
 ...
 }
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d+)?'
 }
]
 }
};

Make Your App Synchronize Offline Changes Automatically
To make an app synchronize offline changes with the server automatically, add code to
refresh the user interface when the device re-connects (goes online) by making explicit REST
calls, which then flush pending changes automatically.

Building Apps that Work Offline Using the Synchronization
Library

Use the Synchronization library from Android and iOS mobile apps to enable the app users to
continue to use the app when offline.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-5

What Can I Do with the Synchronization Library?
When developing Android and iOS client apps, you, as a mobile app developer, might
often take these goals into consideration:

• Enable updates to app data on mobile devices when connectivity is intermittent or
non-existent.

• Improve performance by minimizing the amount of calls and data transported over
the wire.

The client SDK’s Synchronization library, with its data caching, support for offline
operations, and automated synchronization, enables you to achieve these goals when
you access custom API resources. In addition, through declarative policies, you can
design caching and synchronization policies for your custom APIs that you can apply
across your apps, and adjust without having to modify code.

Enable Edits to App Data When the Mobile Device Is Offline

As an example of how you can use the Synchronization library to enable app users to
read, create, update, and delete data when the mobile device is offline, consider some
apps that are designed for the Fix it Fast (FiF) company, which maintains in-house
appliances. The mobile app developer wants to ensure that the apps continue to work
even when there is no internet connection. For example:

• A customer uses an FiF mobile app to fill out the details for an incident report
regarding a basement furnace. She then goes to the basement to take a picture of
the furnace's barcode, attaches it to the report, and taps Send. Even though
there’s no internet connection in the basement, the app should enable the
customer to access, change, and send the incident report. As soon as the device
reconnects to the internet, the app should transmit the report and the attached
photo to the server.

• During the day, a technician reviews her job list, sorts the jobs by priority, driving
distance, and issue type, and adjusts the priorities as needed. As she completes a
job, she attaches notes to the incident report, and she updates the job status. She
expects to be able to do all these tasks even when she doesn't have access to the
internet. When her device is connected, she expects the app to synchronize her
offline modifications with the server, first synchronizing the essential information,
such as job status, and then synchronizing the less essential information, such as
her notes.

• After an unexpectedly long repair, the technician lowers the priority for customer
that is the furthest away, John Doe. Because she is offline, her modifications are
stored in the offline edits in the local cache. During the time she was offline, John
Doe called the office to report that his water heater was now leaking, and the office
changed his priority to high. When the technician goes back on line, the app
synchronizes the updates, and sees that there is a conflict. The app pops up a
notice about the conflict and asks the technician if she still wants to lower the
priority.

To implement these data offline requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
update, and conflict resolution policies in the configuration file.

• To ensure that incident reports from the /incidents resource are always available,
that they can be modified while offline, and that the server is updated with queued

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-6

offline modifications as soon as the device resumes access, the mobile app developer
sets the following policies for the resource:

– Fetch policy: Fetch resources from the server when the client application is online,
and fetch them from the local cache when the app is offline
(FETCH_FROM_SERVICE_IF_ONLINE).

– Update policy: Queue updates if offline and synchronize automatically when the client
app is back online (QUEUE_IF_OFFLINE)).

• To ensure that two technicians don't inadvertently update the same status or priority for
an /incidentstatus resource due to queued offline updates, the mobile app developer
sets the following policy:

– Conflict resolution policy: Don’t overwrite the server’s version with the local version if
there’s a conflict. The edited local version is kept in the offline edits in the local
cache, and the mobile app handles the conflict (PRESERVE_CONFLICT).

This assumes that the code for this custom API returns the ETag that is used to detect
conflicts, and uses the sync.setItem and sync.addItem custom code SDK methods to
build the response.

Improve Performance

As an example of how you can use the Synchronization library to improve performance,
consider the FiF apps that we discussed previously.

• Before leaving the office every morning, the technicians start an FiF app on their tablets,
and pull a list of their jobs for the day. Because the customer information such as name,
phone, and address is static, the app can cache that data upon startup and not re-
retrieve it during the day to improve performance. Other information, such as incident
status and priority, must be kept current.

• Expired data needs to be cleared whenever the app is restarted.

• The finance department designed an API that supplies a customer's default credit card
information. Because the information is fairly static, mobile apps might consider caching
that information to improve performance. However, the finance department wants to
ensure that mobile apps never cache that information.

To implement these performance requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch, expiration,
and eviction policies in the configuration file.

• To cache the information from the /customer resource so that it's retrieved from the
server on startup, and, after that from the local cache only, the mobile app developer sets
the following policies:

– Expiration policy: Mark resources as expired when the client application restarts
(EXPIRE_ON_RESTART).

– Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVICT_ON_EXPIRY_AT_STARTUP).

– Fetch policy: Fetch resource from the server only if it isn’t in the local cache or is
expired (FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY).

• To ensure that the priority and status from the /incidentstatus resource is always
available, but stays as current as possible:

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-7

– Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM_SERVICE_IF_ONLINE).

– Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVICT_ON_EXPIRY_AT_STARTUP).

– Expiration policy: Mark a resource as expired when the client application
restarts. Update the local cache with the latest version from the server the next
time the client application calls the resource (EXPIRE_ON_RESTART).

• To ensure that none of the information from the /creditcards resource is cached,
the custom code that implements this API makes sure that all HTTP responses
include the Oracle-Mobile-Sync-No-Store header set to true.

Synchronization Library Process Flow
To help you understand how the parts fit together, here’s an explanation of how the
Synchronization library does the following:

• Manages objects in the local cache

• Uses synchronization policies to retrieve resources from either the local cache or
the server

• Handles object updates

When the mobile app makes a request through the Synchronization library to get data
from a custom API, the Synchronization library looks at the fetch policy setting to
determine whether to get the objects from the server or the local cache. Whenever the
Synchronization library fetches objects from the server, it refreshes the local cache
with the newly fetched objects.

Depending on the policy settings, the Synchronization library might also periodically
refresh expired items in the local cache using a background process.

When the user edits an object, the following occurs depending on whether the mobile
device is online or offline:

• Online edit: An update request is sent to the server.

• Offline edit: The edited object is stored in the offline edits in the local cache. When
the app goes online, a background process sends a request to update the
resource on the server.

If the conflict resolution policy is CLIENT_WINS, the update request includes an If-
Match header of * so that the server updates the resource without conflict. Otherwise
the request includes an If-Match header that is set to the ETag that was last returned
by the server.

Video: Overview of the Data Offline & Synchronization API
To learn more about how the Synchronization library uses caching to enable a client
app to work offline as well as improve performance, take a look at this video:

Video

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-8

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13339

Android Synchronization Library
This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Hub's Android SDK Reference.

Tip:

The client SDK download page contains an examples zip, which contains the
source code for the SalesPlus app. This app illustrates many of the synchronization
features that are described in this section.

Set Up Your Mobile App for the Android Synchronization Library
1. Ensure that the AndroidManifest.xml file contains the following entries.

WRITE_EXTERNAL_STORAGE lets the Synchronization library maintain the local cache.
ACCESS_NETWORK_STATE lets the Synchronization library determine the connection status.

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

2. Define the synchronization policies for the mobile backend and API endpoints in the
configuration file.

3. As with all mobile apps, instantiate MobileManager, and then instantiate MobileBackend
to manage connectivity, authentication, and other transactions between your application
and its associated mobile backend, including calls to platform and custom APIs.

4. To access the custom APIs from the Synchronization library, get the mobile backend's
synchronization service.

try {
 Synchronization synchronization =
 MobileManager.getManager().
 getMobileBackend(this).
 getServiceProxy(Synchronization.class);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Fetch Resources
After you set up your app to work with data offline, you use the mobile endpoint class to open
endpoints to custom code API resources, and you use fetch builders to synchronize data
retrieval and modifications with the local cache automatically. A fetch builder enables you to
specify how to fetch the data, and then enables you to execute the fetch.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-9

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssda-index

1. To access an endpoint, instantiate MobileEndpoint for that endpoint. This example
instantiates an endpoint for /mobile/custom/incidentreport/incidents.

// open Endpoint
MobileEndpoint endpoint =
 synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 MobileObject.class);

2. (Optional) Add objects or files to the collection. This example adds an object.

MobileObject newObject = endpoint.createObject();
JSONObject payload = new JSONObject();
// Set properties
try {
 payload.put("title", "incident 213");
 ...
} catch (JSONException e) {
 ...
}
newObject.initialize(null, endpoint, payload);
// Add incident
newObject.saveResource(new MobileEndpointCallback() {
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 //This function is called when the request completes
 ...
 }
});

3. Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

• FetchObjectBuilder
• FetchCollectionBuilder
• FetchFileBuilder
Here’s an example of creating a fetch builder for a collection.

FetchCollectionBuilder fetchCollectionBuilder =
endpoint.fetchObjects();

In this example, we want to filter all the incidents for the signed-in technician
(which is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

fetchCollectionBuilder =
fetchCollectionBuilder.withQueryParameter("technician", username);

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-10

Tip:

You can call withQueryParameter as many times as you need to specify all the
query parameters.

4. Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated with
this fetch builder, the request includes the Oracle-Mobile-Diagnostic-Session-ID
header. The mDiagLogFilterTag string variable has been set to a value that uniquely
identifies requests that are made using this fetch builder.

fetchCollectionBuilder.withHeader("Oracle-Mobile-Diagnostic-Session-ID",
mDiagLogFilterTag);

5. Use the builder to execute the fetch.

fetchCollectionBuilder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 //This function is called when the request completes
 ...
 MobileObjectCollection collection = (MobileObjectCollection)
mobileResource;
 }
});

If the fetch policy is to fetch the data from the local cache, such as
FETCH_FROM_SERVICE_ON_CACHE_MISS, then it’s fetched from the local cache if available.
In all other cases, the collection is fetched from the server if the policy allows. If the
noCache setting is false, then the results are saved to a local cache.

6. The raw downloaded JSON object is exposed through the JsonObject property. Use this
property to set the appropriate values.

List objectsList = collection.getObjectsList();
MobileObject incidentMobileObject = (MobileObject) objectsList.get(index);
JSONObject json = incidentMobileObject.getJsonObject();
// This updates incidentMobileObject
json.put("status", "completed");

7. Use one of the MobileObject save methods to save the changes on the server.

incident.saveResource(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 ...
 }
});

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-11

If the device isn’t connected to the internet, and the update policy is
QUEUE_IF_OFFLINE, then the library saves the changes to the local cache. The
Synchronization library sends the changes to the server automatically when the
device reconnects with the internet.

8. Use one of the MobileObject delete methods to delete an object.

incident.deleteResource(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 ...
 }
});

If the device is offline, and the update policy is QUEUE_IF_OFFLINE, then the library
deletes the object in the local cache. It deletes the object on the server when the
client is online again.

Fetch Filtered Resources
You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as mobileResource objects, convert the objects to JSON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the mobileResource objects in the local cache because the objects are just blobs
of data. The solution is to use a custom MobileObject. When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We’ll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom MobileObject class, you can use the
fetch builder’s queryFor method to specify the filter to use in the local cache. Note that
this method is for filtering JSON objects from the local cache. It doesn’t affect the way
that the Synchronization library retrieves results from the server. Whenever you
execute the fetch builder, the library first looks at the fetch policy setting to determine
whether to refresh the local cache. If the policy specifies that it must refresh the local
cache from the server, then it retrieves all the objects, regardless of the filter that you
specify using the queryFor method. Regardless of the fetch policy and whether it
refreshed the local cache, the library then uses the queryFor method to filter the data
in the local cache, and return the filtered results. That is, regardless of whether the
device is online or offline, and regardless of whether the library fetches data from the
server or uses the local cache, the queryFor method filters the results based on the
query property and value.

1. Create a class that extends MobileObject. Add a property for every field that you’ll
use in the app. Then override onDataLoad() and getPropertyNames() and create
getters and setters for the fields. Here’s an example of creating an
IncidentCustomMobileObject class.

public class IncidentCustomMobileObject extends MobileObject {
 private int id;
 private String title;

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-12

 private String technician;
 private String customer;
 private String status;
 private String priority;
 private String createdBy;
 private String createdOn;
 private String modifiedBy;
 private String modifiedOn;

 // This method tells the Synchronization library how to get the
values from the JSON object.
 @Override
 protected void onDataLoad(){
 try{
 if(jsonObject != null){
 title = jsonObject.has("title") ?
jsonObject.getString("title") : "";
 technician = jsonObject.has("technician") ?
jsonObject.getString("technician") : "";
 customer = jsonObject.has("customer") ?
jsonObject.getString("customer") : "";
 status = jsonObject.has("status") ?
jsonObject.getString("status") : "";
 createdBy = jsonObject.has("createdBy") ?
jsonObject.getString("createdBy") : "";
 createdOn = jsonObject.has("createdOn") ?
jsonObject.getString("createdOn") : "";
 modifiedBy = jsonObject.has("modifiedBy") ?
jsonObject.getString("modifiedBy") : "";
 modifiedOn = jsonObject.has("modifiedOn") ?
jsonObject.getString("modifiedOn") : "";
 priority = jsonObject.has("priority") ?
jsonObject.getString("priority") : "";
 }
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 // The Synchronization library uses this method to determine the
column names and data
 // types for the database table for the local cache.
 @Override
 public void getPropertyNames(Map<String,PropertyType> properties,
List<List<String>> indexes){
 properties.put("title", PropertyType.String);
 properties.put("technician", PropertyType.String);
 properties.put("customer", PropertyType.String);
 properties.put("status", PropertyType.String);
 properties.put("createdBy", PropertyType.String);
 properties.put("createdOn", PropertyType.String);
 properties.put("modifiedBy", PropertyType.String);
 properties.put("modifiedOn", PropertyType.String);
 properties.put("priority", PropertyType.String);
 }

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-13

 //Getters and Setters

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getTechnician() {
 return technician;
 }

 public void setTechnician(String technician) {
 this.technician = technician;
 }

 public String getCustomer() {
 return customer;
 }

 public void setCustomer(String customer) {
 this.customer = customer;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

 public String getPriority() {
 return priority;
 }

 public void setPriority(String priority) {
 this.priority = priority;
 }

 public String getCreatedBy() {
 return createdBy;
 }

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-14

 public void setCreatedBy(String createdBy) {
 this.createdBy = createdBy;
 }

 public String getCreatedOn() {
 return createdOn;
 }

 public void setCreatedOn(String createdOn) {
 this.createdOn = createdOn;
 }

 public String getModifiedBy() {
 return modifiedBy;
 }

 public void setModifiedBy(String modifiedBy) {
 this.modifiedBy = modifiedBy;
 }

 public String getModifiedOn() {
 return modifiedOn;
 }

 public void setModifiedOn(String modifiedOn) {
 this.modifiedOn = modifiedOn;
 }

}

2. Open the endpoint for the custom class.

MobileEndpoint endpoint =
 synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 IncidentCustomMobileObject.class);

3. When you create the fetch builder, use the queryFor method to add a query to filter the
results by status.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();
fetchCollectionBuilder = fetchCollectionBuilder.queryFor(
 "status",
 Comparison.Equals,
 "pending");

4. Fetch the data.

fetchCollectionBuilder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource){

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-15

 MobileObjectCollection collection = (MobileObjectCollection)
mobileResource
 }
})

5. The raw downloaded JSON object is exposed through the JsonObject property.
Use this property to access the appropriate values.

Incident incident = (Incident)
collection.getObjectsList().get(index);
JSONObject json = incident.getJsonObject();
json.put("status", "completed");

6. Save and delete objects the same way you save and delete OMCMobileObject
objects.

//Save the object
incident.saveResource (new MobileEndpointCallback(){
});
...
// Delete the object
incident.deleteResource (new MobileEndpointCallback(){
});

Specify Which Resources to Synchronize First
When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the MobileResource class’ pinResource method
to set a resource’s priority (MobileFile, MobileObject, and MobileObjectCollection
inherit from this class).

builder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 mobileResource.pinResource(PinPriority.High);
 }
});

Change a Resource’s Synchronization Policies
When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-16

Change a Fetch Builder’s Synchronization Policy
You can use the fetch builder’s synchronization policy to override an endpoint’s configured
policies. When the library fetches the resource from the server, it saves the fetch builder’s
policy settings with the resource.

1. Create the fetch builder.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();

2. Create a SyncPolicy object and set the policies to override. This example overrides all
the policies:

SyncPolicy policy = new SyncPolicy();
policy.setFetchPolicy(SyncPolicy.FETCH_POLICY_FETCH_FROM_SERVICE_IF_ONLINE
);
policy.setExpirationPolicy(SyncPolicy.EXPIRATION_POLICY_EXPIRE_ON_RESTART)
;
policy.setEvictionPolicy(SyncPolicy.EVICTION_POLICY_EVICT_ON_EXPIRY_AT_STA
RTUP);
policy.setUpdatePolicy(SyncPolicy.UPDATE_POLICY_QUEUE_IF_OFFLINE);
policy.setConflictResolutionPolicy(SyncPolicy.CONFLICT_RESOLUTION_POLICY_C
LIENT_WINS);
policy.setNoCache(false);

3. Set the builder’s synchronization policy.

fetchCollectionBuilder = fetchCollectionBuilder.withPolicy(policy);

Change a Resource Object’s Synchronization Policy
Sometimes, you’ll need to change the synchronization policy for a mobile resource object
(such as a mobile object, mobile collection, or mobile file) before you send an add, update, or
delete to the server. This example sets the mobile resource object’s conflict resolution policy
to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.

1. Get the synchronization policy for the mobile resource object.

SyncPolicy policy = mIncidentMobileObject.getCurrentSyncPolicy();

2. Set the conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS. All other
policies remain as is.

policy.setConflictResolutionPolicy(SyncPolicy.CONFLICT_RESOLUTION_POLICY_C
LIENT_WINS);

3. Set the mobile resource object’s synchronization policy. This change doesn't take affect
until you call saveResource (to perform an add or update). For a delete, you must call
reloadResource for the policy change to take affect before you call deleteResource.

mIncidentMobileObject.setSyncPolicy(policy);

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-17

Detect and Handle Conflicts
When the conflict resolution policy that is in affect for a resource is
PRESERVE_CONFLICT, the Synchronization library doesn’t overwrite the server’s version
with the local version if there’s a conflict. Instead, an edited version is kept in the offline
edits in the local cache, and the mobile app is responsible for handling the conflict,
such as programmatically merging the two versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the Synchronization library
automatically sends Mary’s offline edit to the server. The server responds with a 412
Precondition Failed status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
it makes available both the modified object (from the offline edits in the local cache),
and the current server version to enable you to handle the conflict in your code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. There are two ways to detect and handle
conflicts that occur when a device reconnects:

• Detect and handle conflicts after the library finishes synchronizing offline edits with
the server.

• Detect and handle conflicts when the library sends the offline edit to the server
(when the device is online).

Detect Conflicts After the Library Completes Synchronization
You can detect and handle conflicts after the library finishes synchronizing offline edits
with the server. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

• Use the offlineResourceSynchronized method, as shown here. In this example,
the only mobile endpoint that the mobile app accesses is the incidents endpoint.
The example shows how to handle both custom and generic MobileObject
objects.

synchronization.offlineResourceSynchronized(new
SyncResourceUpdatedCallback() {
 @Override
 public void onResourceUpdated(String uri, MobileResource
mobileResource) {
 if (mobileResource == null) {
 Log.i("offlineResourceSync", "Resource for " + uri +
 "deleted from cache after offline
synchronization");
 return;
 }

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-18

 String result = null;
 if (mobileResource.hasConflict()) {
 result = "with conflicts";
 } else if (mobileResource.hasOfflineUpdates()) {
 result = "with offline update";
 } else if (mobileResource.hasOfflineCommitError()) {
 result = "with error";
 } else {
 result = "successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if (mobileResource instanceof IncidentCustomMobileObject) {

 IncidentCustomMobileObject anIncident =
(IncidentCustomMobileObject) mobileResource;

 Log.i("offlineResourceSync", "Offline edits for " +
anIncident.getTitle()
 + " finished with result :" + result);

 // Incident has been synchronized with the service object.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 } else {

 // Process has finished.
 // MobileObject/MobileFile has been synchronized with the
service object.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }
});

Detect Conflicts When the Library Updates the Cache
You can detect and handle conflicts when the library sends the offline edit to the server (when
the device is online).

• Use the Synchronization cachedResourceChanged method to listen for online updates
and deletes, as shown here. The callback for this method is called for each resource that
the library updates or deletes. Typically, you use this method to detect any resource
change during a background cache refresh so that you can refresh the UI with the
change. However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the library
adds a new resource to the local cache.

Don’t initialize CachedResourceChanged more than once during the lifetime of the
application.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-19

In this example, the only mobile endpoint that the mobile app accesses is the
incidents endpoint. The example shows how to handle both custom and generic
MobileObject objects.

synchronization.cachedResourceChanged(new
SyncResourceUpdatedCallback() {
 @Override
 public void onResourceUpdated(String uri, MobileResource
mobileResource) {
 if (mobileResource == null) {
 Log.i("cachedResourceChanged", "Resource for " + uri +
"deleted from cache");
 return;
 }

 String result = null;
 if (mobileResource.hasConflict()) {
 result = "with conflicts";
 } else if (mobileResource.hasOfflineUpdates()) {
 result = "with offline update";
 } else if (mobileResource.hasOfflineCommitError()) {
 result = "with error";
 } else {
 result = "successfully";
 }

 // If you created a custom MobileObject class, you can
access properties directly
 if (mobileResource instanceof IncidentCustomMobileObject) {

 IncidentCustomMobileObject anIncident =
(IncidentCustomMobileObject) mobileResource;

 Log.i("cachedResourceChanged", "Cache changes for " +
anIncident.getTitle()
 + " finished with result :" + result);

 // Custom object changed in local cache. You can show a
pop up
 // or reload the resources in the UI, such as in the
main thread.
 } else {

 Log.i("cachedResourceChanged", "Cache changes finished
with result :" + result);

 // OMCMobileObject, OMCMobileFile, or
OMCMobileObjectCollection
 // object changed in local cache.
 // You can show a pop up or reload the resources in the
UI,
 // such as in the main thread.

 }

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-20

 }
});

Review and Discard Offline Edits
You might want to enable a mobile user to work offline while they make their changes, and
then switch back to working online when the user has completed making changes, is satisfied
with the end result, and is ready for the Synchronization library to synchronize with the server.
The code examples in this section show how to:

• Switch the app to work-offline mode and switch back to work-online mode.

• List the resources that have been changed while offline.

• Discard all offline edits.

• Discard a resource’s offline edits.

The Synchronization class provides the methods for reviewing and discarding offline edits.
As shown in the following steps, you use its getNetworkStatus and setOfflineMode
methods, along with the SyncNetworkStatus enumeration to switch the work-offline mode on
and off. You use its loadOfflineResources method to get all the offline edits that haven’t
been synchronized with the server, and its discardOfflineUpdates method to discard all
offline edits.

1. At application start-up, instantiate Synchronization and open the mobile endpoint.

try {
 synchronization =

MobileManager.getManager().getMobileBackend(this).getServiceProxy(Synchron
ization.class);
 } catch(ServiceProxyException e) {
 e.printStackTrace();
 }
incidentsEndpoint = synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 MobileObject.class);

2. Add a Switch component to the layout.

<Switch
 android:id="@+id/workOfflineSwitch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 ...
 android:onClick="changeWorkOfflineMode"
 android:text="Work Offline" />

3. Add the changeWorkOfflineMode function, which is called when workOfflineSwitch is
clicked. This method uses the Synchronization getNetworkStatus method to determine
the current network status, and the setOfflineMode method to switch the work-offline
mode on and off. When it calls setOfflineMode, the library synchronizes all offline edits

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-21

with the server automatically. Note that calling setOfflineMode(true) when the
device isn’t connected to the internet has no effect.

public void changeWorkOfflineMode(View view) {
 SyncNetworkStatus syncNetworkStatus =
synchronization.getNetworkStatus();
 try {
 if (syncNetworkStatus == SyncNetworkStatus.SyncOffline) {
 // Because setOfflineMode() is a no-op when the device
 // is offline, don't allow user to switch modes when
offline.
 Toast.makeText(MainActivity.this,
 "No internet connection. " +
 "You can't switch the Work Offline mode
on or off when " +
 "there isn't an internet connection.",
 Toast.LENGTH_SHORT).show();
 } else {
 // Device is not in "real" offline mode.
 // Switch from work online to work offline, or switch
from work offline to work online
 // setOfflineMode(true) sets SyncNetworkStatus to
SyncOfflineTest
 // setOfflineMode(false) sets SyncNetworkStatus to
SyncOnline
 // (if the device is actually online)
 synchronization.setOfflineMode(syncNetworkStatus ==
SyncNetworkStatus.SyncOnline);
 }
 } catch (Exception e) {
 // Handle error
 }
}

4. Add code to the onCreate method to set the switch according to the current mode.

Switch workOfflineSwitch = (Switch)
findViewById(R.id.workOfflineSwitch);

workOfflineSwitch.setChecked(
 synchronization.getNetworkStatus() ==
SyncNetworkStatus.SyncOfflineTest);

5. Add code to display a list of the offline edits. You use the Synchronization
loadOfflineResources method to get the list. In this example, the mobile app
accesses only the incidents endpoint, and all the items in the offline edits list are of
type MobileObject.

//Display a list of offline edits
synchronization.loadOfflineResources(new SyncLocalLoadingCallback()
{
 @Override
 public void onSuccess(List<MobileResource> resources) {
 // This list contains all the MobileResource objects in the

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-22

local edit cache
 // In this app, the only mobile endpoint is for incidents
 // So, only MobileObjects are in the edit cache
 for (MobileResource resource : resources) {
 // Put your code to add the incident to the display list here
 }
 }

 @Override
 public void onError(String errorMessage) {
 //Handle the error
 }
});

6. Add a button to discard all offline edits. Use code like the following to discard the edits.

final Button mDiscardEdits = (Button)
findViewById(R.id.buttonDiscardOfflineEdits);

mDiscardEdits.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 //Discard all offline edits:
 //Deletes all resources in the edit cache,
 //but keeps all resources in the local cache as is
 synchronization.discardOfflineUpdates(new
SyncDiscardOfflineResourceCallback() {
 @Override
 public void onError(String errorMessage) {
 //Handle the error
 }
 });
 }

});

7. The previous step shows how to discard all offline updates. You also can discard offline
updates for a specific resource. You call the resource's reloadResource method with the
discardOfflineUpdates parameter set to true and the reloadFromService parameter
set to false.

In the following code example, arraySelectedResourcesToDiscardOfflineEdits is a list
of resources that were edited while offline and were selected for discarding the edits.

try {
 for (int index = 0; index <
arraySelectedResourcesToDiscardOfflineEdits.length; index++) {

 MobileResource mobileResource =
arraySelectedResourcesToDiscardOfflineEdits[index];
 mobileResource.reloadResource(true, false, new
MobileEndpointCallback() {
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-23

 if (exception != null) {
 // handle exception here
 } else {
 // handle success here
 }
 }
 });

 }
} catch (Exception ex) {
 // handle exception here
}

iOS Synchronization Library
This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Hub's iOS SDK
Reference.

Tip:

The client SDK download page contains an examples zip, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Set Up Your Mobile App for the iOS Synchronization Library
1. Ensure that the correct policies for the mobile backend and API are defined in the

configuration file.

2. As with all mobile apps, instantiate OMCMobileManager, and then instantiate
OMCMobileBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

3. To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

OMCSynchronization* synchronization = [mbe synchronization];
[synchronization initialize];

Fetch Resources
After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-24

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssdi-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssdi-index

1. To access an endpoint, instantiate OMCMobileEndpoint for that endpoint. This example
instantiates an endpoint for /mobile/custom/incidentreport/incidents.

// open Endpoint
OMCMobileEndpoint* endpoint = [
 synchronization openEndpoint:OMCMobileObject.class
 apiName:@"incidentreport"
 endpointPath:@"incidents"
];

2. (Optional) Add objects or files to the collection. This example adds an object.

OMCMobileObject* newObject = [mobileEndpoint createObject];
 // Set properties
 [newObject addOrUpdateJsonProperty:@"title" propertyValue:@"incident
213"];

 [newObject saveResourceOnSuccess:^(id mobileObject) {

 } OnError:^(NSError *error) {

 }];

3. Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

• OMCFetchObjectBuilder
• OMCFetchObjectCollectionBuilder
• OMCFetchFileBuilder
Here’s an example of creating a fetch builder for a collection.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

In this example, we want to get all the incidents for the signed-in technician (which is the
same as the user name). The API provides a query parameter for technician, so we can
tell the builder to add that query parameter to the request:

[builder withParamName:@"technician" paramValue:username];

You can call withParamName as many times as you need to specify all the query
parameters.

4. Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated with
this fetch builder, the request includes the Oracle-Mobile-Diagnostic-Session-ID

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-25

header. The diagLogFilterTag string variable has been set to a value that
uniquely identifies requests that are made using this fetch builder.

[builder setRequestHeaders:[NSDictionary
dictionaryWithObjectsAndKeys: diagLogFilterTag, @"Oracle-Mobile-
Diagnostic-Session-ID", nil]];

5. Use the builder to execute the fetch.

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 // This function is called when the request finishes successfully.
 // Get all the objects from the collection.
 NSArray* collection = [mobileObjectCollection getMobileObjects];

} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

If the fetch policy is to fetch the data from the local cache, such as
FETCH_FROM_SERVICE_ON_CACHE_MISS, then it’s fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

6. The raw downloaded JSON object is exposed through the jsonObject property.
You can use this property to set the appropriate values, or use
addOrUpdateJsonProperty.

OMCMobileObject* incident = [collection objectAtIndex:index];
// You can access raw JSON
NSDictionary* json = [incident jsonObject];
// Or use the addOrUpdateJsonProperty method
[incident addOrUpdateJsonProperty:@"status"
propertyValue:@"completed"];

7. Use one of the OMCMobileObject save methods to save the changes on the server.

[incident saveResourceOnSuccess:^(id object){
 // Block that is called after the request finishes successfully
 ...
}OnError:^(NSError *error){
 // Block that is called after the request finishes with an error
 ...
}];

If the device isn’t connected to the internet, and the update policy is
QUEUE_IF_OFFLINE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-26

8. Use one of the OMCMobileObject delete methods to delete an object.

[incident deleteResourceOnError:^(NSError *error) {

}];

If the device is offline, and the update policy is QUEUE_IF_OFFLINE, then the library deletes
the object in the local cache. It deletes the object on the server when the client is online
again.

Fetch Filtered Resources
You might have an app that filters which items it displays. For example, an FiF app might
want to display all incidents with a status of new. When the device is online, your code can
fetch the items as mobileResource objects, convert the objects to JSON objects, and then
filter the items. However, when the device is offline, your app can’t filter the mobileResource
objects in the local cache because the objects are just blobs of data. The solution is to use a
custom MobileObject. When you do this, the local cache stores the data in a table with a
column for each of the custom object’s fields, which enables your mobile app to query data in
the local cache based on field values. We’ll use the incident list in the FiF example to
illustrate how to do this. In this example, the users must be able to filter the incident list by
status.

When you open a mobile endpoint on a custom MobileObject class, you can use the fetch
builder’s queryForProperty method to specify the filter to use in the local cache. Note that
this method is for filtering JSON objects from the local cache. It doesn’t affect the way that the
Synchronization library retrieves results from the server. Whenever you execute the fetch
builder, the library first looks at the fetch policy setting to determine whether to refresh the
local cache. If the policy specifies that it must refresh the local cache from the server, then it
retrieves all the objects, regardless of the filter that you specify using the queryForProperty
method. Regardless of the fetch policy and whether it refreshed the local cache, the library
then uses the queryForProperty method to filter the data in the local cache, and return the
filtered results. That is, regardless of whether the device is online or offline, and regardless of
whether the library fetches data from the server or uses the local cache, the
queryForProperty method filters the results based on the query property and value.

1. Create a custom mobile object class that extends OMCMobileObject, define all the
properties that you need for your custom mobile object, and synthesize those properties.
Here’s an example of the incident.h header file for an Incident class.

#import <Foundation/Foundation.h>
#import "OMCMobileObject.h"

@interface Incident : OMCMobileObject {

}

// Properties
@property (nonatomic, retain) NSNumber* id
@property (nonatomic, retain) NSString* title;
@property (nonatomic, retain) NSString* customer;
@property (nonatomic, retain) NSString* status;

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-27

@property (nonatomic, retain) NSString* priority;
@end

2. When you initialize the mobile backend's synchronization service, use the
initializeWithMobileObjectEntities method to create database entities for the
Incident custom class.

NSArray* entities = [NSArray arrayWithObjects:[Incident class],
nil];
[synchronization initializeWithMobileObjectEntities:entities];

You can include more than one custom object in the initialization.

3. Open the endpoint for the custom class.

OMMobileEndpoint* endpoint = [
 synchronization openEndpoint:Incident.class
 apiName:@"incidentreport"
 endpointPath:@"incidents"
];

4. When you create the fetch builder, use the queryForProperty method to add a
query to filter the results by status.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

[builder queryForProperty:@"status"
 comparision:Equals
 compareWith:@"pending"];

5. Fetch the data.

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 // This function is called when the request finishes successfully.
 // Get all the objects from the collection.
 NSArray* collection = [mobileObjectCollection getMobileObjects];

} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

6. The raw downloaded JSON object is exposed through the jsonObject property.
You can use this property to set the appropriate values, or you can access the
properties directly.

Incident* incident = [collection objectAtIndex:index];
// You can access raw JSON
NSDictionary* json = [incident jsonObject];
// Or you can access the property directly
incident.status = @"completed";

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-28

7. Save and delete objects the same way you save and delete OMCMobileObject objects.

//Save the object
[incident saveResourceOnSuccess:^(id object){

}OnError:^(NSError *error) {

}];
...
// Delete the object
[incident deleteResourceOnError:^(NSError *error) {

}];

Specify Which Resources To Synchronize First
When a mobile app reconnects with the internet, the library synchronizes the local cache with
the server. If you want the library to synchronize some resources before others, such as
statuses before images, then pin the resources with the applicable priorities.

When you fetch the resource, you use the OMCMobileResource class’ pinResource method to
set a resource’s priority (OMCMobileFile, OMCMobileObject, and OMCMobileObjectCollection
inherit from this class).

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 [mobileObjectCollection pinResource:High];
 // Get all the objects from the collection
 NSArray* objects = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

Change a Resource’s Synchronization Policies
When you fetch a resource, the Synchronization library saves with the resource object the
synchronization policies that are specified in the configuration file. These saved policies are
associated with that resource object for its lifetime. You can change these saved policies
when you fetch the data and before you add, update, or delete a resource.

Change a Fetch Builder’s Synchronization Policy
You can use the fetch builder’s synchronization policy to override an endpoint’s configured
policies. When the library fetches the resource from the server, it saves the fetch builder’s
policy settings with the resource.

1. Create the fetch builder.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-29

2. Create an OMCSyncPolicy object, and then set the policies that you want to
override. This example overrides all the policies:

OMCSyncPolicy* policy = [[OMCSyncPolicy alloc] init];
policy.fetch_Policy = FETCH_POLICY_FETCH_FROM_SERVICE_IF_ONLINE;
policy.expiration_Policy = EXPIRATION_POLICY_EXPIRE_ON_RESTART;
policy.eviction_Policy = EVICTION_POLICY_EVICT_ON_EXPIRY_AT_STARTUP;
policy.update_Policy = UPDATE_POLICY_QUEUE_IF_OFFLINE;
policy.conflictResolution_policy =
CONFLICT_RESOLUTION_POLICY_CLIENT_WINS;
policy.no_cache = false;

3. Set the builder’s synchronization policy.

[builder setSyncPolicy:policy];

Change a Resource Object’s Synchronization Policy
Sometimes, you’ll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.

1. Get the synchronization policy for the mobile resource object. In this example,
anIncident is an OMCMobileObject.

OMCSyncPolicy* policy = [anIncident getCurrentSyncPolicy];

2. Set the conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.
All other policies remain as is.

policy.conflictResolution_policy =
CONFLICT_RESOLUTION_POLICY_CLIENT_WINS;

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResource (to perform an add or update). For a delete, you
must call reloadResource for the policy change to take affect before you call
deleteResource.

[anIncident setSyncPolicy:policy];

Detect and Handle Conflicts
When the resource's conflict resolution policy is PRESERVE_CONFLICT, the
Synchronization library doesn’t overwrite the server’s version with the local version if
there’s a conflict. Instead, it keeps an edited version in the offline edits in the local
cache, and the mobile app is responsible for handling the conflict, such as
programmatically merging the two versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-30

At 5:00, Mary’s device reconnects with the internet, and the library automatically sends
Mary’s offline edit to the server. The server responds with a 412 Precondition Failed status
to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and the
library makes available both the modified object (from the offline edits in the local cache), and
the current server version to enable you to handle the conflict in your code.

If the device is online when the library sends an update or delete to the server, then the
mobile app can handle the conflict as soon as it receives the response. However, when the
user makes edits when the device is offline, there’s no way to know if there are conflicts. You
can't check for conflicts until the device reconnects and the library synchronizes the offline
edits with the server. There are two ways to detect and handle that occur when a device
reconnects:

• Detect and handle the conflicts after the library finishes synchronizing offline edits with
the server.

• Detect and handle conflicts when the library sends the offline edit to the server (when the
device is online).

Detect Conflicts After the Library Completes Synchronization
You can detect and handle conflicts after the library finishes synchronizing offline edits with
the server. After the library finishes synchronizing all offline edits, it calls this method for each
offline edit that it synchronized.

• Use the OMCSynchronization offlineResourceSynchronized method as shown here. In
this example, the only mobile endpoint that the mobile app accesses is the incidents
endpoint. The example shows how to handle both custom and generic MobileObject
objects.

 [sync offlineResourceSynchronized:^(NSString *uri, id mobileResource)
{

 if (!mobileResource) {
 NSLog(@"Resource for %@ deleted from cache after offline
synchronization ", uri);
 return;
 }

 NSString* result = nil;
 if (((OMCMobileResource*) mobileResource).hasConflicts) {
 result = @"with conflicts";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineCommitError) {
 result = @"with error";
 }
 else {
 result = @"successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if([mobileResource isKindOfClass:[Incident class]]) {

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-31

 Incident* anIncident = mobileResource;

 NSLog(@"Offline edits for %@ finished %@.",
anIncident.title, result);

 // Incident has been synchronized with the service
object.
 // You can show a pop up or reload the resources in the
UI,
 // such as in the main thread.

 // When mobileResource is a custom MobileObject class,
 // and hasConflicts is true,
 // then both the MobileObject class and its jsonObject
property
 // contain the local edited copy and the
 // jsonObjectPersistentState property contains the
server copy
 }
 else {

 OMCMobileResource* aMobileResource = mobileResource;
 NSLog(@"Offline edits for resource %@ finished %@",
 aMobileResource.uri, result)

 // OMCMobileObject or OMCMobileFile has been
synchronized
 // with the service object.

 // You can show a pop up or reload the resources in the
UI,
 // such as in the main thread.

 // When mobileResource is an OMCMobileObject,
 // and hasConflicts is true,
 // then its jsonObject property contains the local
edited copy and
 // its jsonObjectPersistentState property contains the
server copy
 }
 }];

Detect Conflicts When the Library Updates the Cache
You can detect and handle conflicts at the time that the library sends the offline edit to
the server (when the device is online).

• Use the OMCSynchronization cacheResourceChanged method to listen for online
updates and deletes, as shown here. The callback for this method is called for
each resource that the library updates or deletes. Typically, you use this method to
detect any resource change during a background cache refresh so that you can
refresh the UI with the change. However, you also can use this method to detect
and handle conflicts when the library synchronizes the offline edits. Note that the
callback is not called when the library adds a new resource to the local cache.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-32

Don’t initialize CachedResourceChanged more than once during the lifetime of the
application.

In this example, the only mobile endpoint that the mobile app accesses is the incidents
endpoint. The example shows how to handle both custom and generic MobileObject
objects.

 [sync cachedResourceChanged:^(NSString *uri, id mobileResource) {

 if (!mobileResource) {
 NSLog(@"Resource for %@ deleted from cache ", uri);
 return;
 }

 NSString* result = nil;
 if (((OMCMobileResource*) mobileResource).hasConflicts) {
 result = @"with conflicts";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineUpdates) {
 result = @"with offline update";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineCommitError) {
 result = @"with error";
 }
 else {
 result = @"successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if([mobileResource isKindOfClass:[Incident class]]) {

 Incident* anIncident = mobileResource;

 NSLog(@"Cache changes for %@ finished %@.", anIncident.title,
result);

 // Custom object changed in local cache. You can show a pop up
 // or reload the resources in the UI, such as in the main
thread.
 }
 else {

 OMCMobileResource* aMobileResource = mobileResource;
 NSLog(@"Cache changes for %@ finished %@.",
 aMobileResource.uri, result);
 // OMCMobileObject, OMCMobileFile, or
OMCMobileObjectCollection
 // object changed in local cache.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-33

 }
 }];

Review and Discard Offline Edits
You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

• Switch the app to work-offline mode and switch back to work-online mode.

• List the resources that have been changed while offline.

• Discard all offline edits.

• Discard a resource’s offline edits.

The OMCSynchronization class provides the methods for working offline, and for
reviewing and discarding offline edits. As shown in the following steps, you use its
GetNetworkStatus and setOfflineMode methods, along with the SyncNetworkStatus
constants to switch the work-offline mode on and off. You use its
loadOfflineResourcesOnSuccess method to get all the offline edits that haven’t been
synchronized with the server, and its discardOfflineUpdatesOnError method to
discard all offline edits. You also can discard a specific resource’s offline updates by
calling the resource’s reloadResource method.

1. Add a button to switch between work-online mode and work-offline mode. Use
code like the following to switch modes when the user clicks the button. You use
the OMCSynchronization GetNetworkStatus method to determine the current
network status, and the setOfflineMode method to switch the work-offline mode
on and off. When you call setOfflineMode(false), the library synchronizes all
offline edits with the server automatically. Note that calling setOfflineMode when
the device isn’t connected to the internet has no effect.

- (IBAction) switchOfflineMode:(id)sender {

 // Get current status
 SyncNetworkStatus networkStatus = [synchronization
getNetworkStatus];

 if (networkStatus == SyncOffline) {

 UIAlertController *myAlertController = [UIAlertController
alertControllerWithTitle:@"Sorry!"
 message:@"You can't switch to Work Offline mode when
there isn't an internet connection."
 preferredStyle:UIAlertControllerStyleAlert];
 UIAlertAction* okBtn = [UIAlertAction
 actionWithTitle:@"OK"

style:UIAlertActionStyleDefault
 handler:^(UIAlertAction *
action)
 {
 [myAlertController

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-34

dismissViewControllerAnimated:YES

 completion:nil];
 }];
 [myAlertController addAction: okBtn];
 [self presentViewController:myAlertController
 animated:YES
 completion:nil];
 }
 else {

 [omcSynchronization setOfflineMode:(networkStatus == SyncOnline)];

 // Get updated status
 networkStatus = [omcSynchronization getNetworkStatus];

 if (networkStatus == SyncOfflineTest) {

 lblNetworkStatus.text = @"Working offline.";

 }
 else {

 lblNetworkStatus.text = @"";
 }
 }
}

2. Add code to display a list of the offline edits. You use the OMCSynchronization
LoadOfflineResourcesAsync() method to get the list. In this example, the mobile app
accesses only the incidents endpoint and all items in the offline edits list are of type
MobileObject.

[omcSynchronization loadOfflineResourcesOnSuccess:^(NSArray
*mobileResources) {

 for (OMCMobileResource* aResource in mobileResources) {
 // Put your code to add the incident to the display list here
 }

} onError:^(NSError *error) {

 // Handle error here.

}];

3. Add a button to discard all offline edits. Use code like the following to discard the edits.

// Discard all offline edits only.
// Resources remain in the cache with their persistent state (that is,
the server version).
[omcSynchronization discardOfflineUpdatesOnError:^(NSError *error) {
 // Handle error here
}

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-35

4. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's reloadResource
method with the discardOfflineUpdates parameter set to YES and the
reloadFromService parameter set to NO.

In the following code example, arraySelectedResourcesToDiscardOfflineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

for (int index = 0; index <
arraySelectedResourcesToDiscardOfflineEdits.count; index++) {

 OMCMobileResource* aResource =
[arraySelectedResourcesToDiscardOfflineEdits objectAtIndex:index];

 [aResource reloadResource:YES
 reloadFromService:NO
 onSuccess:^(id mobileResource) {

 // Offline edits succesfully discarded from
a resource.
 }];
}

Make Custom APIs Synchronizable
If your mobile app uses the Synchronization library to access a custom API offline,
then that API should follow the sync-compatibility guidelines and should return data in
a sync-compatible format. You also need to consider whether to configure
synchronization policies for some or all of its resources.

The steps to design and implement a synchronization-compatible custom API are
summarized in the next sections. For more detailed information, see:

• API Design Considerations

• Endpoint Requirements for Sync Compatibility

• Implementing Synchronization-Compatible APIs

Design a Synchronization-Compatible API
When you use the API Designer to create your custom API, follow these guidelines to
ensure that your API is synchronization compatible.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-36

• The resource name should alternate between plural nouns and singular resource
identifiers (rid). For example: /items/{rid}/subitems/{rid}/.

• For pagination, use the limit and offset query parameters so that the Synchronization
library uses paged downloads correctly. If you don’t need to support pagination, then you
don’t need to specify these parameters.

• Use the orderBy query parameter to specify sorting. For example:
orderBy=propA,propB:desc,propC:asc.

• The API must contain all the necessary endpoints to support data synchronization. For
example, if you have an endpoint that returns a collection, then you must also have an
endpoint that returns a specific item in the collection.

Implement a Synchronization-Compatible API
When you use implement your custom API, follow these guidelines to ensure that your API us
synchronization compatible.

• For GET requests, use the custom code SDK’s setItem and addItem methods in your
API’s custom code to return data in a format that enables the Synchronization library to
more easily cache and synchronize the data in the client’s local cache. Responses must
include the Oracle-Mobile-Sync-Resource-Type header, and, for single items, the ETag
header.

• For PUT and DELETE requests, your code must honor the If-Match header as follows:

– If the header contains an ETag value, and that value doesn’t match the ETag on the
server, then the code must not update or delete the item and must return a 412 HTTP
response status (precondition failed) to indicate that the ETag does not match the
server-side object’s ETag.

– If the header contains a value of * (asterisk), then the server-side's object must be
replaced by the request object (or deleted for a DELETE request).

• For PUT requests, responses must include the Oracle-Mobile-Sync-Resource-Type and
ETag headers. If the item was added, then it must include the Location header. For
example Location: /mobile/custom/incidentreport/incidents/1.

• For POST requests, responses must include the Oracle-Mobile-Sync-Resource-Type,
Location, and ETag headers.

• When you need to control data caching from the server side, use the Oracle-Mobile-
Sync-Evict, Oracle-Mobile-Sync-Expires, and Oracle-Mobile-Sync-No-Store headers
to override client side configuration.

Configure Synchronization Policies for the Custom API
When you define the synchronization policies in the configuration file, consider the custom
API’s resources that you’ll access, and determine which, if any, need special synchronization
policy configuration.

Say, for example, that your default fetch policy is FETCH_FROM_SERVICE_ON_CACHE_MISS. The
custom API might have a resource for which the mobile app always needs the most current
data. In that case, you can use the configuration file to specify the
FETCH_FROM_SERVICE_IF_ONLINE fetch policy for that specific resource. Note that you can
define synchronization policies at the default level and the resource level, and that you can
override these programmatically.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-37

Synchronization Policies

The Synchronization library uses several types of synchronization policies:

• Conflict Resolution Policies define how to handle offline edits if the server’s
version changed after the initial data was fetched from the server. For example, if
another client updated a resource, you might want the app’s updates to overwrite
the other client’s update.

• Eviction Policies designate when to delete expired resources in the local cache.
For example, you might want the app to delete all expired resources when the app
starts. Expiration and eviction policies work together to keep stale resources from
cluttering the cache. You can also use them to prevent users seeing out-of-date
data and, by inference, potentially harmful data. Note that these policies apply only
to resources in the local cache, not to server-side resources.

• Expiration Policies define how and when the Synchronization library marks
resources stored in the local cache as out-dated or stale. For example, you might
want all the resources to expire when the app is restarted so that the app fetches
the latest version of a resource from the server the first time the app uses it in that
session. The expiration policy only marks data, allowing you the option to display
stale data if the app is offline. To delete data, use the eviction policy.

• Fetch Policies define how the Synchronization library determines whether to
retrieve resources from the local cache or from the server. For example, if the
resource changes frequently, you might choose to always retrieve it from the
server unless the client is offline.

• Update Policies define what to do if the app modifies resources when the device is
offline. For example, you might want the app to put all changes that are made
while the device is offline in a queue and then synchronize the changes with the
server when the device goes online again.

In addition to configuring the synchronization policies, you also can configure the
cache settings for a mobile backend. You can configure the maximum size of the
cache and you can specify when and how to perform background cache refreshes.
See Synchronization Configuration Elements.

You can specify synchronization policies for custom API resources at several levels:

• In the app’s configuration file, you can specify default synchronization policies for
all custom API endpoints that the library accesses through a specific mobile
backend.

• In the app’s configuration file, you can specify synchronization policies for specific
custom API endpoints.

• In the custom API implementation, you can specify a resource’s synchronization
policies in a response header.

• In the app, you can specify a resource’s synchronization policies when you fetch
the data.

• In the app, you can specify a resource’s synchronization policies when you add,
update, or delete the resource.

When the Synchronization library fetches a resource from the server, it sets the
resource's synchronization policies according to your configuration, and then saves
those policies with the resource. When you configure a policy at more than one level,

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-38

the library uses precedence rules to determine which policy level to use. For example, a
response-header policy setting takes precedence over a fetch builder’s policy setting. If a
policy isn’t set at the response header or fetch builder level, then the library uses the policy’s
setting from the configuration file. First, the library looks for the policy setting for the path that
matches the fetch builder's endpoint. When there isn’t a policy for the endpoint, then it uses
the configuration file’s default policy. If a policy isn’t specified at any level, then the
Synchronization library’s hard-coded default policy is used. The actual rules are somewhat
more complex than summarized here. For complete details see Synchronization Policy
Levels and Precedence.

When the library does an automatic refresh, it always uses the
FETCH_POLICY_FETCH_FROM_SERVICE fetch policy. For all other policies, the refresh process
honors the response header values, if present, and, when not present, it uses the policies
that were saved with the resource.

When you fetch a resource and the library uses the resource from the cache instead of from
the server, then the resource's policies are not necessarily the policies that you configured for
the object's endpoint. For example, if the resource was fetched using a fetch collection
builder, then the resource's policies are the collection endpoint’s policies and not the object’s
endpoint policies. Thus, you can't be sure what the resource's policies are. A cached
resource’s policies depend on whether it was originally fetched from the server as part of a
collection, as an object, or as part of a refresh.

Define Synchronization Policies and Cache Settings in the Configuration File shows how to
configure default policies for the mobile backend and for endpoints (paths). Define
Synchronization Policies and Cache Settings in a Response Header shows how a custom
API can use headers to control whether the response is cached, when it should expire in the
local cache, and when it should be evicted. The following platform-specific topics show how
to get and change a fetch builder’s policies and get and change a mobile resource’s policies
programmatically:

• Android: Change a Resource’s Synchronization Policies

• iOS: Change a Resource’s Synchronization Policies

Video: Introduction to the Data Offline & Sync Policies
If you want a high-level understanding of how to use synchronization policies to drive data
offline and synchronization capabilities, take a look at this video:

Video

Synchronization Policy Options
Here are the Synchronization library’s policy options for each policy type.

Conflict Resolution Policies
Conflict resolution policies define what to do if, when updating a resource, it’s discovered that
the server version was updated after it was last requested. Say, for example, that the client
app retrieved a resource on startup. Soon after, someone else updated the resource on the
server. If the resource is then updated on the client app, you might want the client updates to
overwrite the updates made by someone else.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-39

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13340

Policy Description

CLIENT_WINS Instructs the Synchronization library to
overwrite the server’s version with the local
version regardless of whether there is a
conflict.

PRESERVE_CONFLICT Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is kept in the offline edits in the local cache,
and the mobile app is responsible for handling
the conflict, such as programmatically merging
the two versions.

SERVER_WINS Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is removed from the offline edits in the local
cache.

Eviction Policies
Eviction policies designate when expired resources in the local cache will be deleted.
For example, you could set the eviction policy to EVICT_ON_EXPIRY_AT_STARTUP so
expired items are deleted when the app starts. Keep in mind that if a user didn’t use
the app for several days and it’s offline when it starts, the local cache could get
cleared.

These policies apply to resources in the local cache only, not to server-side resources.

Policy Description

EVICT_ON_EXPIRY_AT_STARTUP Instructs the Synchronization library to delete
expired resources from the local cache when
the client application restarts, and update the
local cache with the server copy the next time
it's called by the client application. This can
result in an empty cache, but this is
appropriate if the latest resource is required.

MANUAL_EVICTION Instructs the Synchronization library that
resources can’t be deleted from the local
cache automatically. To evict resources
manually, use an API.

Expiration Policies
Expiration policies define how and when the Synchronization library marks resources
stored in the local cache as out-dated or stale. For example, if your resources change
frequently, then you can set the policy to EXPIRE_ON_RESTART to ensure that the local
cache gets cleared periodically, and thus does not become too large.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-40

Policy Description

EXPIRE_ON_RESTART Instructs the Synchronization library to mark a
resource as expired when the client application
restarts. The Synchronization library updates the
local cache with the latest version from the server
the next time it's called by the client application.

EXPIRE_AFTER Instructs the Synchronization library to mark
resources as expired after the specified time (in
seconds) set for the expireAfter parameter.
When you use the EXPIRE_AFTER policy, you
must set a value for the expireAfter property.

NEVER_EXPIRE Instructs the Synchronization library that
resources in the local cache can’t be marked as
expired.

Fetch Policies
Fetch policies define how the Synchronization library determines whether to retrieve
resources from the local cache or from the server. For example:

• If your data doesn’t change often, like a contact’s photo, then a good choice for the fetch
policy is FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY with an EXPIRE_AFTER
expiration policy set to a suitable timeout.

• If data will change very frequently and you always want the most current data, but cached
data is acceptable if the user is offline, then use FETCH_FROM_SERVICE_IF_ONLINE.

Note that setting the noCache property to true in the configuration file, as described in
Synchronization Configuration Elements, tells the Synchronization library to ignore fetch
policies and to not add data to the local cache.

Policy Description

FETCH_FROM_CACHE Instructs the Synchronization library to fetch
resources from the local cache only, not from the
server. Because the Synchronization library
retrieves resources directly from the cache, this
policy can be carried out whether the client
application is online or offline.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_FROM_SERVICE Instructs the Synchronization library to always
fetch resources directly from the server, not from
the local cache. The library can only apply this
policy when the client application is online.

If the app is offline, the Synchronization library
returns null.

FETCH_FROM_SERVICE_IF_ONLINE Instructs the Synchronization library to fetch
resources from the server when the client
application is online, and to fetch them from the
local cache when the app is offline.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-41

Policy Description

FETCH_FROM_SERVICE_ON_CACHE_MISS Instructs the Synchronization library to fetch
resources from the local cache if it is present.

If a collection is empty, or if the requested object
isn’t in the local cache, then the Synchronization
library fetches it from the server. If the app is
offline, then the Synchronization library returns
null.

FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXP
IRY

Instructs the Synchronization library to fetch
resources from the local cache if they are present
and not expired. Make sure to set expireAfter
parameter to a suitable time period.

If a collection is empty or has expired, or if the
resource isn’t in the local cache or has expired,
then the Synchronization library fetches it from the
server. If the app is offline, then it returns null.

FETCH_FROM_CACHE_SCHEDULE_REFRESH Instructs the Synchronization library to fetch
resources from the local cache and schedule a
background refresh to update the cache with the
latest version from the server.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_WITH_REFRESH Instructs the Synchronization library to fetch
resources from the local cache if they exist and
are not expired, and schedule a background
refresh to update the cache with the latest version
from the server.

If a resource is not in the local cache or has
expired, then the Synchronization library fetches it
directly from the server. If the app is offline, then it
returns null.

Update Policies
Update policies define what the app should do if a resource is updated when the client
app is offline.

Policy Description

UPDATE_IF_ONLINE If the client app is offline when the update
request is sent, then the Synchronization
library returns an error.

QUEUE_IF_OFFLINE If the client app is offline when the update
request is sent, then the Synchronization
library queues the operation and updates the
local cache when the client app is back online.

Video: Deep-Dive into the Data Offline & Sync Policies
If you want an overview of the ways you can configure synchronization policies, which
methods take precedence, and the outcomes of the various policies, take a look at this
video:

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-42

Video

Synchronization Policy Levels and Precedence
As described in Synchronization Policy Options, there are several policy types that you can
configure for custom APIs. You can configure these at the following levels, which are listed in
order of precedence, from highest to lowest. Note that the order of precedence applies to
both fetch and save calls to a mobile endpoint and requestWithURI calls to a synchronization
object.

• Response-level policies: The server can use HTTP response headers to transmit
expiration and eviction policies, as described in Define Synchronization Policies and
Cache Settings in a Response Header. The server also can use a header to instruct the
client to not cache a response. These policies take precedence over policies set for all
other levels.

• Request-level policies: For requests made through an OMCMobileEndpoint, you can call
the fetch builder’s setPolicy method to set a policy at the request level. For requests
made using the requestWithURI method, you can use the SyncPolicy object to set
policies. Request-level policies take precedence over policies set at the resource and
mobile-backend levels.

• Resource-level policies: In the configuration file, you can define a set of policies and
associate the set with a resource path (URL). You can associate the set with a specific
endpoint, or you can use wildcard characters to associate the set with a resource
hierarchy (/* applies to all resources at the same level, and /** applies to all resources
at the same level and any nested levels), as described later in this section. These policies
take precedence over policies that are set at the mobile-backend level.

When a policy type is defined for more than one resource level, then the precedence is:

– A synchronization policy type that is defined for a specific endpoint takes precedence
over the same policy type setting for a path that has wildcard characters. For
example, if the URL is www.baseuri.com/mobile/custom/incidentreport/
incidents, and an eviction policy is set for both /mobile/custom/incidentreport/
incidents and /mobile/custom/incidentreport/incidents/*, then the eviction
policy for /mobile/custom/incidentreport/incidents takes precedence.

– Policies that are defined for a path that has the /* wildcard take precedence over
policies for a path with the /** wildcard. For example, if the URL is /mobile/custom/
incidentreport/incidents/1, and an eviction policy is set for both /mobile/
custom/incidentreport/incidents/* and /mobile/custom/incidentreport/
incidents/**, then the eviction policy for /mobile/custom/incidentreport/
incidents/* takes precedence.

For information about setting resource-level policies, see Synchronization
Configuration Elements.

• Mobile backend-level default policies. You can override the default policies at the request,
response, and resource levels. These settings take precedence over the Synchronization
library default settings. For information about setting mobile backend-level default
policies, see Synchronization Configuration Elements.

• Synchronization library default settings: For custom APIs, if a policy is not set at the
request, resource, or mobile-backend level, then the Synchronization library default
setting is used.

Here are the default policy settings:

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-43

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13341

Setting Synchronization Library Default Value

conflictResolutionPolicy PRESERVE_CONFLICT
evictionPolicy MANUAL_EVICTION
expirationPolicy EXPIRE_ON_RESTART
expireAfter Maximum integer value

fetchPolicy FETCH_FROM_SERVICE_IF_ONLINE
noCache false
updatePolicy QUEUE_IF_OFFLINE

Define Synchronization Policies and Cache Settings in the Configuration File
You can define the synchronization policies and cache settings programmatically, or
you can use a configuration file. You typically define the policies and cache settings in
the configuration file for the following reasons:

• You can change a policy without needing to change code.

• You can view all your policies in one place.

• If you access the same resource from several places in your code, you can ensure
that all accesses use the same policies.

The name of the configuration file differs by platform:

• Android: /assets/oracle_mobile_cloud_config.xml
• iOS: OMC.plist
• To configure the Synchronization library for the custom API resources that the

backend accesses, add the elements described in the the next section to the
backend's synchronization element in the configuration file.

Synchronization Configuration Elements
There are two types of backend synchronization elements that you can add to a
configuration file: cache settings and synchronization policy settings. You can
configure the policy settings at the resource level and the backend level (default level).

Here's an example of the synchronization section from an OMC.plist file for iOS.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-44

Cache Settings

To configure the cache settings for the mobile backend, add these elements in any order
directly under the mobile backend’s synchronization element. These settings affect both
custom API and storage resources.

Key Description Default

maxStoreSize The maximum size of the local
cache in megabytes. The
Synchronization library stops
storing resources when it
reaches this limit.

100

periodicRefreshPolicy Names the policy that instructs
the Synchronization library when
to refresh cached resources. Use
this attribute for background
refreshes. You can set this to one
of the following options:

• PERIODIC_REFRESH_POLIC
Y_REFRESH_NONE

• PERIODIC_REFRESH_POLIC
Y_REFRESH_EXPIRED_ITEM
_ON_STARTUP

• PERIODIC_REFRESH_POLIC
Y_PERIODICALLY_REFRESH
_EXPIRED_ITEMS

PERIODIC_REFRESH_POLICY_R
EFRESH_NONE

periodicRefreshInterval Sets the interval, in seconds, for
refreshing cached resources in
the background. The interval
should be appropriate to the
policy named by the
periodicRefreshPolicy
attribute.

When the
periodicRefreshPolicy is
PERIODIC_REFRESH_POLICY_P
ERIODICALLY_REFRESH_EXPIR
ED_ITEMS, then the default is
120.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-45

Synchronization Policy Settings

You can add the following synchronization policy settings to the configuration file at the
resource and backend default levels.

• conflictResolutionPolicy
• expirationPolicy
• expireAfter
• evictionPolicy
• fetchPolicy
• noCache

Resource-Level Configuration

Resource-level synchronization policies affect the resources that match the paths you
configure in the policies node (array) for the sychronization element.

You use the path element to identify the resource to associate the policy set with. You
can begin your path with or without the forward slash (/). You can use the path to
specify a policy set for a specific endpoint, or you can use wildcard characters to
associate the policy set with a hierarchy of resources:

• If there are no wildcard characters, then the request URL must match the string
exactly. For example, if <path> is set to /mobile/custom/incidentreport/
incident then www.baseuri.com/mobile/custom/incidentreport/incident
matches, but www.baseuri.com/mobile/custom/incidentreport/incidents does
not.

• /* matches 0 or more characters after the value in <Path> but does not include
lower resources in the hierarchy in the wildcard matching. For example, if <Path>
is set to /mobile/custom/incidentreport/incidents/* then both
www.baseuri.com/mobile/custom/incidentreport/incidents/report and
www.baseuri.com/mobile/custom/incidentreport/incidents/id match, but
www.baseuri.com/incidentreport/incidents/id/attachments does not.

• /** matches 0 or more characters after the value in <Path> including resources
lower in the hierarchy. For example, if <Path> is set to /mobile/custom/
incidentreport/incidents/**, then the following match:

– www.baseuri.com/mobile/custom/incidentreport/incidents
– www.baseuri.com/mobile/custom/incidentreport/incidents/id
– www.baseuri.com/mobile/custom/incidentreport/incidents/id/

attachments
Here’s an example of setting resource-level policies in an OMC.plist file.

<key>synchronization</key>
<dict>
 ...
 <key>policies</key>
 <array>
 <dict>

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-46

 <key>path</key>
 <string>/mobile/custom/incidentreport/technicians/**</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_IF_ONLINE</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>MANUAL_EVICTION</string>
 <key>conflictResolutionPolicy</key>
 <string>SERVER_WINS</string>
 </dict>
 ...
</dict>

Backend-Level Configuration

Backend-level configurations set the backend's default synchronization policies, and are
configured in the defaultPolicy node (array) for the synchronization element. You should
configure a default for each policy type.

Android Example Configuration File

This Android example is an excerpt from the oracle_mobile_cloud_config.xml file.

<mobileBackends>
 <mobileBackend>
 ...
 <synchronization>
 <maxStoreSize>100</maxStoreSize>

<periodicRefreshPolicy>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED_I
TEMS</periodicRefreshPolicy>
 <periodicRefreshInterval>120</periodicRefreshInterval>
 <policies>
 <policy>
 <path>/mobile/custom/incidentreport/technicians/**</path>
 <fetchPolicy>FETCH_FROM_SERVICE_IF_ONLINE</fetchPolicy>
 <expirationPolicy>EXPIRE_ON_RESTART</expirationPolicy>
 <evictionPolicy>MANUAL_EVICTION</evictionPolicy>
 <conflictResolutionPolicy>SERVER_WINS</
conflictResolutionPolicy>
 </policy>
 <policy>
 <path>/mobile/custom/incidentreport/incidents</path>
 <fetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</
fetchPolicy>
 <expirationPolicy>EXPIRE_ON_RESTART</expirationPolicy>
 <evictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</evictionPolicy>
 <conflictResolutionPolicy>SERVER_WINS</
conflictResolutionPolicy>
 <updatePolicy>QUEUE_IF_OFFLINE</updatePolicy>
 <expireAfter>300</expireAfter>
 </policy>
 </policies>
 <defaultPolicy>

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-47

 <fetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS</
fetchPolicy>
 <evictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</
evictionPolicy>
 <expirationPolicy>EXPIRE_AFTER</expirationPolicy>
 <expireAfter>600</expireAfter>
 <conflictResolutionPolicy>CLIENT_WINS</
conflictResolutionPolicy>
 <noCache>false</noCache>
 </defaultPolicy>
 </synchronization>
 </mobileBackend>
</mobileBackends>

iOS Example Configuration File

This iOS example is an excerpt from the OMC.plist file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>mobileBackends</key>
 <dict>
 <key>myBackend/1.0</key>
 <dict>
 <key>synchronization</key>
 <dict>
 <key>maxStoreSize</key>
 <integer>100</integer>
 <key>periodicRefreshPolicy</key>

<string>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED_ITEMS</
string>
 <key>periodicRefreshInterval</key>
 <integer>120</integer>
 <key>policies</key>
 <array>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/technicians/**</
string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_IF_ONLINE</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>MANUAL_EVICTION</string>
 <key>conflictResolutionPolicy</key>
 <string>SERVER_WINS</string>
 </dict>
 <dict>
 <key>path</key>

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-48

 <string>/mobile/custom/incidentreport/incidents</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>EVICT_ON_EXPIRY_AT_STARTUP</string>
 <key>conflictResolutionPolicy</key>
 <string>PRESERVE_CONFLICT</string>
 <key>updatePolicy</key>
 <string>QUEUE_IF_OFFLINE</string>
 </dict>
 </array>
 <key>defaultPolicy</key>
 <dict>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_ON_CACHE_MISS</string>
 <key>evictionPolicy</key>
 <string>EVICT_ON_EXPIRY_AT_STARTUP</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_AFTER</string>
 <key>expireAfter</key>
 <integer>600</integer>
 <key>conflictResolutionPolicy</key>
 <string>CLIENT_WINS</string>
 <key>updatePolicy</key>
 <false/>
 </dict>
 </dict>
 ...
</dict>
</plist>

Define Synchronization Policies and Cache Settings in a Response Header
When you implement a custom API, you can fine tune caching for a response by defining
synchronization policies or basic cache settings in response headers.

To specify the basic synchronization and cache settings for a REST resource use the
following optional HTTP headers: :

Header Description

Oracle-Mobile-Sync-No-
Store

If set to true, the client does not cache the returned resource.

Oracle-Mobile-Sync-
Evict

Specifies the date and time after which the expired resource should be
deleted from the local cache. Uses RFC 1123 format, for example EEE,
dd MMM yyyyy HH:mm:ss z for SimpleDateFormat.

The following synchronization policies are set for the resource object
that is created from the response:

• Eviction policy: EVICT_ON_EXPIRY_AT_STARTUP
• Expiration policy: EXPIRE_AFTER with the expireAfter property

set to date and time provided in the header value

.

Chapter 11
Building Apps that Work Offline Using the Synchronization Library

11-49

Header Description

Oracle-Mobile-Sync-
Expires

Specifies when the returned resource will be marked as expired. Uses
RFC 1123 format, for example EEE, dd MMM yyyyy HH:mm:ss z for
SimpleDateFormat.

Get Cache Hits and Misses
The Synchronization library tracks cache hits and detects if the returned result came
from the cache. Use these OMCSynchronization methods to get data about cache hits
and misses:

• cacheHitCount: Returns the number of cache hits.

• cacheMissCount: Returns the number of cache misses.

How Synchronization Works with the Storage APIs
When your mobile app accesses the Storage APIs, the client SDK automatically works
with the Storage library to refresh and synchronize the storage objects in the local
cache. You don’t need to add any code to enable synchronization with storage.

The client SDK enforces the following synchronization policies for the Storage APIs:

• Conflict resolution policy: SERVER_WINS
• Eviction policy: EVICT_ON_EXPIRY_AT_STARTUP
• Expiration policy: EXPIRE_AFTER 86400 seconds (24 hours).

You can use the Sync_CollectionTimeToLive environment policy to override the
number of seconds after which a Storage object expires. This value is conveyed to
the Storage library through the Oracle-Mobile-Sync-Expires response header.

• Fetch policy: FETCH_FROM_SERVICE_IF_ONLINE
• Update policy: QUEUE_IF_OFFLINE
Just as with the custom API resources, you can use the configuration file to override
the default cache settings for storage resources on a mobile backend basis.

The default cache settings are:

• Maximum storage size in the local cache: 100 MB

• Periodic refresh policy: Don’t automatically refresh cached resources periodically

Chapter 11
How Synchronization Works with the Storage APIs

11-50

12
Location

Use the Location API to access details about location devices, places, and assets that have
been registered in Mobile Hub.

What Can I Do With Location?
Users today expect information to be presented based on their current situation and
individual needs and preferences. One of the most important contextual data points is
location. The impact of location-aware mobile apps on users and businesses is growing
faster every day.

• Everyone uses navigation apps for location data, including getting directions to
restaurants, airports, hospitals, and just about anything else needed in a geographic
area.

• You can implement location-based functionality in a wide range of apps, like focused
queries and location-aware history.

• Your apps can use location data to send notifications targeted to mobile devices in a
geographic area or a certain mobile user or asset only in a specific geographic area.

• Location-aware applications can also contribute a lot to business intelligence and
analytics, including customer profiling and demographics, competitive analysis and
supply chain tracking.

A Few Important Location Terms
Location devices, places and assets provide the tools you need to create location-aware
mobile apps.

• A location device is any device that provides location services, like a Bluetooth proximity
beacon. Location devices transmit an ID within a defined space, so mobile apps can use
these signals to trigger notifications and other actions. The following location protocols
are currently supported:

– AltBeacon is an open source protocol for Bluetooth proximity beacons. For more
information and the full specification, see altbeacon.org and https://github.com/
AltBeacon/spec.

– Eddystone is Google’s open protocol for Bluetooth proximity beacons. For details,
see https://github.com/google/eddystone.

– iBeacon is the Apple protocol for Bluetooth proximity beacons. For details, see
https://developer.apple.com/ibeacon/.

• A place is a physical location associated with one or more location devices.

• An asset is a mobile physical object that’s associated with one or more location devices.

12-1

Android

Query for Location Objects
The LocationQuery class in the Android SDK allows you to construct queries for
location devices, places and assets.

Below is an example of using the Android SDK to query for a place by name:

Location location =
MobileManager.getManager().getDefaultMobileBackend(mActivity).getServic
eProxy(Location.class);
Object lock = new Object();

String searchString = "store";
final AtomicReference<String> searchString = "store";
final AtomicReference<LocationObjectQueryResult> mResult = new
AtomicReference<LocationObjectQueryResult>();
final AtomicReference<ServiceProxyException> mError = new
AtomicReference<ServiceProxyException>();

// search by name
// sort results by name, in ascending order
// results will be in "short" format
LocationPlaceQuery query = location.buildPlaceQuery();
query.setName(searchString);
query.setOrderByAttributeType(LocationDeviceContainerQuery.LocationDevi
ceContainerQueryOrderByAttributeType
 .LocationDeviceContainerQueryOrderByAttributeTypeName);
query.setFormat(LocationObjectQuery.LocationObjectQueryFormatType.Locat
ionObjectQueryFormatTypeShort);

do{
 query.execute(new LocationObjectsQueryCallback(){
 @Override
 void onComplete(LocationObjectQueryResult result,
ServiceProxyException exception){
 mError.set(exception);
 mResult.set(result);

 synchronized(lock){
 lock.notifyAll();
 }
 }
 });

 synchronized(lock) {
 lock.wait();
 }

 if(mError.get() != null){
 //handle error
 }

Chapter 12
Android

12-2

 else{
 for(LocationObject object : mResult.get().getItems()){
 LocationPlace place = (LocationPlace) object;
 // process each place...
 }
 }

 query = mResult().get().getNextQuery();

} while(mResult.get() != null && mResult.get().hasMore());

Retrieve a Location Object
Here’s how to use a place ID to retrieve the properties for the place:

Location location =
MobileManager.getManager().getDefaultMobileBackend(mActivity).getServiceProx
y(Location.class);
Object lock = new Object();

final AtomicReference<LocationObjectQueryResult> mResult = new
AtomicReference<LocationObjectQueryResult>();
final AtomicReference<LocationPlace> mError = new
AtomicReference<LocationPlace>();

// query for all places
// sort results by name, in ascending order
// results will be in "short" format
LocationPlaceQuery query = location.buildPlaceQuery();
query.setName(searchString);
query.setOrderByAttributeType(LocationDeviceContainerQuery.LocationDeviceCont
ainerQueryOrderByAttributeType
 .LocationDeviceContainerQueryOrderByAttributeTypeName);
query.setFormat(LocationObjectQuery.LocationObjectQueryFormatType.LocationObj
ectQueryFormatTypeShort);

query.execute(new LocationObjectsQueryCallback(){
 @Override
 void onComplete(LocationObjectQueryResult result, ServiceProxyException
exception){
 mResult.set(result);

 synchronized(lock){
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}

// take the first item from the results
// it will be in "short" format...

Chapter 12
Android

12-3

LocationPlace place = (LocationPlace) mResult.get().getItems().get(0);

// ...now, fetch the "entire" place directly
location.fetchPlace(place.getID(), new LocationObjectQueryCallback(){
 @Override
 void onComplete(LocationObject object, ServiceProxyException
exception){
 LocationPlace detailedPlace = (LocationPlace) object;
 mPlace.set(detailedPlace);

 synchronized(lock){
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}
// process place...
Log.i(TAG, "place name is " + mPlace.get().getName());

If you’ve already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

...
// take the first item from the results
// it will be in "short" format...
LocationPlace place = (LocationPlace) mResult.get().getItems().get(0);

// ...now, refresh the place
place.refresh(new LocationObjectFetchCallback(){
 @Override
 void onComplete(LocationObject object, ServiceProxyException
exception){
 if(exception != null)
 //handle error

 synchronized(lock) {
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}
// process place...
Log.i(TAG, "place name is " + place.getName());

Chapter 12
Android

12-4

iOS

Query for Location Objects
The OMCLocationQuery class in the iOS SDK allows you to construct queries for location
devices, places and assets.

Below is an example of using the iOS SDK to query for a place by name.

OMCLocation* location = [[OMCMobileManager sharedManager] location];

NSString* searchString = @"store";

// search by name
// sort results by name, in ascending order
// results will be in "short" format
OMCLocationPlaceQuery* query = [location buildPlaceQuery];
query.name = searchString;
query.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
query.format = OMCLocationObjectQueryFormatTypeShort;

__block OMCLocationPlaceQueryResult* result;
do {
 result = nil;
 __block NSError* error = nil;
 __block BOOL executing = YES;
 [query executeWithCompletionHandler:^(OMCLocationPlaceQueryResult*
result_, NSError* error_) {
 result = result_;
 error = error_;
 executing = NO;
 }];

 while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
 }

 if (error) {
 // handle error...
 } else {
 for (OMCLocationPlace* place in result.items) {
 // process each place...
 NSLog(@"place name: %@", place.name);
 }
 }
 query = result.nextQuery;
} while ((result != nil) && result.hasMore);

For more information on place queries, see Query for Places.

Chapter 12
iOS

12-5

Retrieve a Location Object
This example uses the place ID to retrieve the properties for the place:

OMCLocation* location = [[OMCMobileManager sharedManager] location];

// query for all places
// sort results by name, in ascending order
// results will be in "short" format
OMCLocationPlaceQuery* query = [location buildPlaceQuery];
query.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
query.format = OMCLocationObjectQueryFormatTypeShort;

__block OMCLocationPlaceQueryResult* result = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[query executeWithCompletionHandler:^(OMCLocationPlaceQueryResult*
result_, NSError* error_) {
 result = result_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
}

// take the first item from the results
// it will be in "short" format...
OMCLocationPlace* shortPlace = result.items.firstObject;

// ...now, fetch the "entire" place directly
__block OMCLocationPlace* place = nil;
error = nil;
executing = YES;
[location placeWithID: shortPlace.id_
completionHandler:^(OMCLocationPlace* place_, NSError* error_) {
 place = place_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
}

// process place...
NSLog(@"place name: %@", place.name);

Chapter 12
iOS

12-6

If you’ve already retrieved an object, you can use an SDK refresh method to get the latest
properties. The code below uses refresh to retrieve the latest properties for a place:

...
// take the first item from the results
// it will be in "short" format...
OMCLocationPlace* place = result.items.firstObject;

// ...now, refresh the place
error = nil;
executing = YES;
[place refreshWithCompletionHandler:^(NSError* error_) {
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
}

// process place...
NSLog(@"place name: %@", place.name);

Retrieve iBeacon Identifiers
The first step to monitoring a place that uses beacons is to retrieve the beacon identifiers, as
shown in this example:

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileManager sharedManager] location];
OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];

queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlaceQ
uery *,OMCLocationPlace *>* queryResult, NSError * _Nullable queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 [place devicesWithCompletionHandler:^(NSArray<OMCLocationDevice *>
*locationDevices, NSError * error) {
 // Following code assumes 1 device for place
 OMCLocationDevice *device = [locationDevices firstObject];
 OMCLocationIBeacon *beacon = (OMCLocationIBeacon*)device.beacon;
 NSUUID *beaconUuid = beacon.uuid;

Chapter 12
iOS

12-7

 CLBeaconMajorValue beaconMajor =
(CLBeaconMajorValue)beacon.major.integerValue;
 CLBeaconMinorValue beaconMinor =
(CLBeaconMinorValue)beacon.minor.integerValue;

 CLBeaconRegion *beaconRegion = [[CLBeaconRegion
alloc]initWithProximityUUID:beaconUuid major:beaconMajor
minor:beaconMinor identifier:@"MyBeaconRegion"];
 beaconRegion.notifyOnEntry = YES;
 beaconRegion.notifyOnExit = YES;

 beaconRegion.delegate = // Assign instance of
CLLocationManagerDelegate to handle beacon events

 [locationManager startMonitoringForRegion:beaconRegion]; //
Invokes CLLocationManagerDelegate didEnterRegion/didExitRegion
 [locationManager
startRangingBeaconsInRegion:beaconRegion]; // Invokes
CLLocationManagerDelegate inRegion
 }];
}];

Define a Geofence
You can use a geofence to define a monitoring area as a place, as shown here:

CLLocationManager *locationManager = [[CLLocationManager alloc]
init]; // iOS CoreLocation object

OMCLocation* location = [[OMCMobileManager sharedManager]
location];
OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];

queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact
match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder =
OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocation
PlaceQuery *,OMCLocationPlace *>* queryResult, NSError * queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 OMCLocationGeoCircle *geocircle = (OMCLocationGeoCircle *)
[place address];
 OMCLocationGeoPoint *geopoint = [geocircle center];

 CLLocationDegrees latitude = [[geopoint latitude]doubleValue];
 CLLocationDegrees longitude = [[geopoint
longitude]doubleValue];

Chapter 12
iOS

12-8

 CLLocationDistance radius = [[geocircle radius]doubleValue];
 CLLocationCoordinate2D coordinate =
CLLocationCoordinate2DMake(latitude, longitude);

 CLCircularRegion *circularRegion = [[CLCircularRegion
alloc]initWithCenter:coordinate radius:radius
identifier:@"MyGeofenceRegion"];
 circularRegion.notifyOnEntry = YES;
 circularRegion.notifyOnExit = YES;

 circularRegion.delegate = // Assign instance of
CLLocationManagerDelegate to handle events

 [locationManager startMonitoringForRegion:circularRegion]; //
Invokes CLLocationManagerDelegate didEnterRegion/didExitRegion
 }];
}];

Retrieve Custom Attributes
Many location objects use custom attributes. The iOS SDK makes it easy to access these
properties, as shown in the examples below.

Retrieve a Custom Attribute for a Place

The iOS SDK example below retrieves a custom attribute for a place:

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileManager sharedManager] location];
OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];
queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlaceQ
uery *,OMCLocationPlace *>* queryResult, NSError * queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 NSString *myCustomProperty = [place
attributeForKey:@"MyCustomProperty"];
 NSLog(@"My Custom Property = %@", myCustomProperty);
}];

Chapter 12
iOS

12-9

Retrieve a Custom Attribute for a Location Device

The iOS SDK example below is very similar to the one above, but uses
OMCLocationDevice to retrieve a custom attribute for a beacon:

OMCLocation* location = [[OMCMobileManager sharedManager] location];
// Query iBeacon
OMCLocationDeviceQuery *queryDevice = [location buildDeviceQuery];
NSUUID *uuid = [[NSUUID alloc] initWithUUIDString:@"0AC59CA4-
DFA6-442C-8C65-22247851344C"];
NSNumber *major = @4;
NSNumber *minor = @200;
queryDevice.beacon = [OMCLocationIBeacon iBeaconWithUUID:uuid
major:major minor:minor];

[queryDevice
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocation
DeviceQuery *,OMCLocationDevice *>* queryResult, NSError * queryError)
{
 OMCLocationDevice *device = queryResult.items.firstObject;

 // Retrieve device/beacon custom property
 NSString *customProperty = (NSString *) [device
attributeForKey:@"MyCustomProperty"];
}];

REST API - Location

Query for Location Devices, Places and Assets
The Location API allows you to write complex queries for location devices, places and
assets. You can call the REST endpoint directly or use one of the SDKs to construct a
query.

The available query parameters depend on the object type.

Querying for Location Devices
Query for location devices using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/devices?name={name} to query by
the device name.

• POST {baseUri}/mobile/platform/location/devices/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the device in the UI.
Not case sensitive.

Chapter 12
REST API - Location

12-10

Parameter Description

description Filters results by a partial match of this string
with the description defined for the device in
the UI. Not case sensitive.

search Filters results by a partial match of this string
with the name or description defined for the
device in the UI. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the device in the UI.

protocol Filters results by device protocol type(s):
• iBeacon
• altBeacon
• eddystone

associatedAssetId The asset ID to search for. (Returns location
devices associated with the specified asset.)

listOfDevices An array of device IDs to search for.

iBeacon_uuid The UUID of the iBeacon device(s) to search
for.

iBeacon_major The major version of the iBeacon device to
search for.

iBeacon_minor The minor version of the iBeacon device to
search for.

altBeacon_id1 ID1 of the altBeacon to search for.

altBeacon_id2 ID2 of the altBeacon to search for.

altBeacon_id3 ID3 of the altBeacon to search for.

eddystone_namespace The namespace of the Eddystone device to
search for.

eddystone_instance The instance of the Eddystone device to
search for.

eddystone_url The URL of the Eddystone device to search
for.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending

• :desc for descending

For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the device id, name,
description, attributes, createdOn and
createdBy, as well as the place ID and
identifying details about the device. Specify
short to return only the device id, name,
description and protocol.

Chapter 12
REST API - Location

12-11

iBeacon

{
 "protocol":"iBeacon",
 "iBeacon_major": "2.0",
 "iBeacon_minor": "2.2",
 "iBeacon_uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D"
}

If the query is successful, the response will be 200, and the body will include the
matching location device and its associated place or asset if it has one. For example:

{
 "items": [
 {
 "id": 15,
 "createdOn": "2015-11-11T21:15:34.341+0000",
 "createdBy": "thomas.smith@fif.com",
 "modifiedOn": "2015-11-11T21:15:34.341+0000",
 "modifiedBy": "thomas.smith@fif.com",
 "name": "RC_WH_01_F01_B003",
 "description": "Beacon on 1st Floor in FixItFast Warehouse in
Redwood City",
 "place": {
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "EquipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/internal-tools/1.0/envs/dev/location/places/
9876"
 },
 {
 "rel": "self",
 "href": "/internal-tools/1.0/envs/dev/location/places/
9876"
 }
]
 },
 "beacon": {
 "iBeacon": {
 "major": "2.0",
 "minor": "2.2",
 "uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D"

Chapter 12
REST API - Location

12-12

 }
 },
 "attributes": {
 "manufacturer": "Gimbal",
 "status": "Active",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Public"
 },
 },
 "totalResults": 1,
 "offset": 0,
 "limit": 20,
 "count": 1,
 "hasMore": false
}

The example below queries for altBeacon devices with “Warehouse” in the name or
description and specifies the short response format, ordered by name, with a limit of 5 items.

{
 "protocol":"altBeacon",
 "orderBy":"name",
 "limit":"5",
 "format":"short",
 "search":"Warehouse"
}

If the query is successful, the response is 200 and the body contains just the id, name,
description and protocol for the 5 returned devices.

{
 "items":[
 {
 "id":33,
 "name":"RC_WH_01_B09_C004",
 "description":"Beacon on 2nd Floor in FixItFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":12,
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon on 1st Floor in FixItFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":61,
 "name":"RC_WH_01_F01_B008",
 "description":"Beacon on 2nd Floor in Fix*tFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {

Chapter 12
REST API - Location

12-13

 "id":58,
 "name":"RC_WH_02_F01_B011",
 "description":"Beacon on 1st Floor in FixitFast Warehouse
in Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":114,
 "name":"RC_WH_01_K22_A999",
 "description":"Beacon on 3rd Floor in FixitFast Warehouse
in Redwood City",
 "protocol":"altBeacon"
 }
],
 "totalResults":5,
 "offset":0,
 "limit":5,
 "count":5,
 "hasMore":false
}

Querying for Places
Query for places with specific parameters using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/places?name={name} to query by the
place name.

• POST {baseUri}/mobile/platform/location/places/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the place in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the place in the
UI. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the place in the UI. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the place in the UI.

label Filters results by a partial match of this string
with the label specified for the place in the UI.
Not case sensitive.

listOfPlaces An array of place IDs to search for.

descendantOf Specify a place ID to search for direct
descendants.

Chapter 12
REST API - Location

12-14

Parameter Description

nearestTo Specify a gpsPoint (latitude, longitude) to
return the closest place. This parameter can’t
be combined with other query parameters.

inGeoFence Specify a gpsCircle (latitude, longitude,
radius) to return all places within that
geofence.

descendantDevices Set to true to include the
descendantDevices property in the results,
which lists the devices associated with this
place and all its child places. These results are
always in short format.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending

• :desc for descending

For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the place id, name, description,
attributes, label, creation and modification
data, as well as the place address, and a list of
the devices within the place and the place’s
parent. Specify short to return only the place
id, name, description and label.

{
 "label":"block 1",
 "inGeoFence": {
 "gpsCircle": {
 "latitude": 37.488179,
 "longitude": -122.229011,
 "radius": 32186
 }
 },
 "orderBy":"name:asc",
 "limit":100
}

If the query is successful, the response will be 200, and the body will include an array of
matching places. In this example, only two places matched the query:

{
 "items": [

Chapter 12
REST API - Location

12-15

 {
 "id": 16,
 "createdOn": "2016-03-08T22:09:19.968+0000",
 "createdBy": "joe",
 "modifiedOn": "2016-03-08T22:09:19.968+0000",
 "modifiedBy": "joe",
 "name": "l1b1",
 "label": "lot 1 block 1",
 "parentPlace": 15,
 "description": "Lot 1 block 1 New City",
 "hasChildren": false,
 "address": {
 "gpsCircle": {
 "longitude": -120.87449998,
 "latitude": 37.98560003,
 "radius": 29999.99999997
 }
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/16"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/16"
 }
]
 },
 {
 "id": 17,
 "createdOn": "2016-03-08T22:09:20.065+0000",
 "createdBy": "joe",
 "modifiedOn": "2016-03-08T22:09:20.065+0000",
 "modifiedBy": "joe",
 "name": "l2b1",
 "label": "lot2 block 1",
 "parentPlace": 15,
 "description": "Lot 2 block 1 New City",
 "hasChildren": false,
 "address": {
 "gpsPolygon": {
 "vertices": [
 {
 "longitude": -121.7845,
 "latitude": 37.8453
 },
 {
 "longitude": -120.9853,
 "latitude": 37.1248
 },
 {
 "longitude": -121.7758,
 "latitude": 37.6983
 }

Chapter 12
REST API - Location

12-16

]
 }
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/17"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/17"
 }
]
 }
],
 "totalResults": 2,
 "offset": 0,
 "limit": 100,
 "count": 2,
 "hasMore": false
}

{
 "includeDescendantsInResult": "direct",
 "orderBy" : "name",
 "offset" : 0,
 "limit" : 10,
 "format" : "short"
}

If the query is successful, the response will be 200, and the body will include only the first
level descendants. In this example, only three descendants matched the query:

{
 "places": [
 {
 "id": 3331,
 "name": "FixitFast Redwood City HQ Campus",
 "label": "campus",
 "description": "1st Floor in FixitFast Warehouse in Redwood City"
 "children": [
 {
 "id": 3334,
 "name": "Building #1 FixitFast Redwood City HQ Campus",
 "description": "Building #1 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 },
 {
 "id": 3335,
 "name": "Building #2 FixitFast Redwood City HQ Campus",
 "description": "Building #2 on FixitFast Redwood City

Chapter 12
REST API - Location

12-17

Headquarters Campus",
 "label": "building",
 "children": []
 },
 {
 "id": 3336,
 "name": "Building #3 FixitFast Redwood City HQ
Campus",
 "description": "Building #3 on FixitFast Redwood
City Headquarters Campus",
 "label": "building",
 "children": []
 }
 }
]
}

Querying for Assets
Query for assets with specific parameters using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/assets?name={name} to query by the
asset name.

• POST {baseUri}/mobile/platform/location/assets/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the asset in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the asset in the
UI. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the asset in the UI. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the asset in the UI.

label Filters results by a partial match of this string
with the label specified for the asset in the UI.

listOfAssets An array of asset IDs to search for.

associatedDeviceId A device ID to search for. Returns the asset
associated with this device ID. When you use
this query parameter, don't combine it with
other parameters.

nearestTo Specify a gpsPoint (latitude, longitude) to
return the closest asset. Can’t be combined
with other parameters.

inGeoFence Specify a gpsCircle (latitude, longitude,
radius) to return all assets within that
geofence.

Chapter 12
REST API - Location

12-18

Parameter Description

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending

• :desc for descending

For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the asset id, name, description,
attributes, label, creation and modification
data, as well as the associated place, and the
IDs of associated devices. Specify short to
return only the asset id, name, description and
label.

{
 "label":"bed",
 "attributes":{
 "EquipmentManufacturer":"Example Company"
 },
 "orderBy":"createdOn:asc",
 "format":"long"
}

If the query is successful, the response will be 200, and the body will include an array of
matching assets:

{
 "items":[
 {
 "id":333,
 "createdBy":"jdoe",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":244
 },
 "devices":[
 3409
],
 "attributes":{

Chapter 12
REST API - Location

12-19

 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 }
 },
 {
 "id":888,
 "createdBy":"jdoe",
 "createdOn":"2015-10-16T09:24:41.354Z",
 "modifiedOn":"2015-10-16T09:24:41.354Z",
 "modifiedBy":"jdoe",
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":360
 },
 "devices":[
 658
],
 "attributes":{
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 }
 }
],
 "totalResults":2,
 "offset":0,
 "limit":100,
 "count":2,
 "hasMore":false
}

Retrieve Location Objects and Properties
Use the Location API to retrieve location devices, places and assets and their
associated properties.

The following REST endpoints allow you to retrieve location objects:

• Location devices: GET {baseUri}/mobile/platform/location/devices
• Assets: GET {baseUri}/mobile/platform/location/assets
• Places: GET {baseUri}/mobile/platform/location/places
You can retrieve an object by ID or by name:

• To retrieve an object by ID, include the ID in the path, for example: GET
{baseUri}/mobile/platform/location/devices/12345.

• To retrieve an object by name, pass the name of an existing object to the endpoint
in the name query parameter, for example GET {baseUri}/mobile/platform/
location/devices?name=RC_WH_01_F01_B001.

Chapter 12
REST API - Location

12-20

Set Up Location Devices, Places and Assets
To set up a location in Mobile Hub, define the related places and/or assets and register the
associated location devices in the UI under Development>Location. You can also use the
Location Management API to create, update and delete location devices, places and assets
from custom code.

Define Places
A place is a physical location associated with one or more location devices. You can define
places through the UI individually or by uploading a CSV file. You can also use the Location
Management API to create, update and delete places from custom code. Read more at
Location Management API .

1. Click to open the side menu and select Mobile Apps > LocationDevelopment >
Location.

2. From the Places tab, click New Place to define a place using the UI. This tab shows all
the places defined. To edit an existing place, select it in the list and click Edit .

3. If you are creating a new place, enter a name, and an optional label and description. If
you enter a new label, it will be saved and can be used to categorize other places,
location devices and assets. Click Create.

4. On the Overview tab of the new Location Place Editor, enter the GPS coordinates for the
place. You can also define a geofence by radius or polygon. To associate the place with
another existing place, select that place from the Parent dropdown.

5. Click the Attributes tab to define custom attributes for the place. Create new attributes or
copy them from an existing place. You can use attributes to associate a content URI with
the place, for example a coupon or flier that a mobile app downloads when the user is
nearby. Attributes can also be used to filter results in queries that use the Location
Platform API.

6. Click the Devices tab to associate location devices with the place. You can register a
new device from the Registering Location Devices page, or select from location devices
already registered. A device can be associated with a single place or asset, not both. By
default, only the devices for the current place are displayed, but you can expand the list
by checking the box Show all devices associated with children of this place.

7. When you are done configuring the place, click Save.

If a place has descendants, click > at the end of the table row to navigate to them.

Upload Places Using a CSV File
You can upload multiple places using a CSV file.

1. From the Location : Places page, click Upload Places.

2. Browse to the .csv file and click Upload.

The CSV file for uploading places must follow this format:

#version=1.0
#name,#label,#description,#GPSPoint,#GPSCircle,#GPSPolygon,#list of
Attributes

Chapter 12
Set Up Location Devices, Places and Assets

12-21

name,label,description,lat:lon,lat:lon:radius,lat1:lon1;lat2:lon2;la
t3:lon3,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one type of place:

• For specific GPS coordinates (GPSPoint), include the latitude and longitude.

• For a circle geofence (GPSCircle), include the latitude and longitude of the
center point, and the radius. In Oracle Spatial, GPS circles are converted to
polygons, which might cause the radius to be recalculated.

• For a polygon geofence (GPSPolygon), include the latitude and longitude for
each corner of the polygon.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below defines a GPSPoint.

#version=1.0
#name,#label,#description,#GPSPoint,#GPSCircle,#GPSPolygon,#list of
Attributes
FixitFast Redwood City Warehouse,Warehouse,FixitFast Warehouse in
Redwood City,37.8453:-121.7845,,,key1=val1,prop2=val2,prop3=val3

Note that the expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If you use
another application to edit your CSV files, confirm that the encoding is correct in a
text editor before uploading the file.

Define Location Assets
An asset is a physical object that’s associated with one or more location devices,
typically something mobile and valuable like a forklift or hospital bed. You can define
location assets through the UI individually or by uploading a CSV file. You can also use
the Location Management API to create, update and delete location assets from
custom code.

1. Click to open the side menu and select Development > Location.

2. From the Assets tab, click New Asset to define a location asset using the UI. This
tab shows all the assets defined. To edit an existing asset, select it in the list and
click Edit Asset.

3. If you are creating a new asset, enter a name, and a label and description if you
choose. Labels will be saved and can be used to categorize other location assets.
If the device(s) you want to associate with the asset are already registered, you
can select them on this page. (A device can be associated with a single place or
asset, not both.) Click Create.

4. On the Overview tab of the Location Asset Editor, you can update your entries.

5. Click the Attributes tab to define custom attributes for the asset. Create new
attributes or copy them from an existing asset. You can use attributes to associate
a content URI with the asset, for example a coupon or flier that a mobile app

Chapter 12
Set Up Location Devices, Places and Assets

12-22

downloads when the user is nearby. Attributes can also be used to filter results in queries
that use the Location Platform API.

6. When you are done configuring the asset, click Save.

Upload Assets Using a CSV File
You can upload multiple assets using a CSV file.

1. From the Location : Assets page, click Upload asset file.

2. Browse to the .csv file and click Upload.

The CSV file for uploading assets must follow the following format:

#version=1.0
#name,#description,#label,#list of Attributes
Name,Description,label,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that starts
with # is considered a comment line and is ignored.

The data starts on line 3, as shown in the example below. Make sure to include commas
for any empty properties to define the entry correctly.

#version=1.0
#name,#description,#label,#list of Attributes
RC_WH_01_F01_B023,Beacon #23 in the FixItFast Warehouse in Redwood
City,beacon,
FiF Warehouse Forklift #6,MyMed DA332
forklift,forklift,EquipmentManufacturer=MyMed,MyMed serial
number=OU812-9845873
Hospital Bed #233,MyMed model 1225 hospital bed,hospital
bed,EquipmentManufacturer=MedBed,SJId=6754843090

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to use a text editor
to edit CSV files. Opening a CSV file in Excel or another spreadsheet application can
corrupt the encoding or add extra lines. If you use another application to edit your CSV
files, confirm that the encoding is correct in a text editor before uploading the file

Register Location Devices
A location device is any device that provides location services, like a Bluetooth proximity
beacon. You can define location devices through the UI or by uploading a CSV file.

1. Click to open the side menu and select Development >Location.

2. From the Devices tab, click New Device to register a location device using the UI. This
tab shows all the location devices defined. To edit an existing device, select it in the list
and click Edit. (You can also register devices from the Devices tab in the Location Places
Editor.)

3. If you are creating a new location device, enter a name and a description. Select the
Protocol:

• altBeacon

Chapter 12
Set Up Location Devices, Places and Assets

12-23

• Eddystone

• iBeacon

Note that the protocol can’t be changed after a device is registered.

Click Create.

4. On the Overview tab of the Location Device Editor, enter the identifying
information for the location device. The required values depend on the selected
protocol:

• For iBeacon, enter the UUID, Minor and Major values.

• For altBeacon, enter ID1, ID2 and ID3.

• For Eddystone, enter the Namespace, Instance and URL.

If the place and/or asset you want to associate with the device is already defined,
select it from the dropdown list. A device can be associated with a single place or
asset, not both.

5. Click the Attributes tab to define custom properties for the device. Create new
attributes or copy them from an existing device. You can use attributes to
associate a content URI with the device, for example a coupon or flier that a
mobile app downloads when the user is nearby. Attributes can also be used to
filter results in queries that use the Location Platform API.

6. When you are done configuring the device, click Save.

Upload Location Devices Using a CSV File
You can upload multiple location devices using a CSV file.

1. From the Location > Devices page, click Upload Devices.

2. Browse to the .csv file and click Upload.

The CSV file for uploading devices must follow the following format:

#version=1.0
#name,#description,#uuid,#major,#minor,#id1,#id2,#id3,#namespace,#in
stance,#url,#list of Attributes
Name,Description,uuid,major,minor,id1,id2,id3,namespace,instance,url
,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one protocol type.
The required properties depend on the protocol type:

• For iBeacon, include uuid, major and minor properties.

• For altBeacon, include id1, id2 and id3 properties.

• For Eddystone, include the namespace, instance and URL.

Chapter 12
Set Up Location Devices, Places and Assets

12-24

Make sure to include commas for any empty properties to define the entry correctly. For
example, the CSV file below registers an iBeacon location device by defining values for
the uuid, major and minor properties.

#version=1.0
#name,#description,#uuid,#major,#minor,#id1,#id2,#id3,#namespace,#instance
,#url,#list of Attributes
RC_WH_01_F01_B001,Beacon on 1st Floor in FixitFast Warehouse in Redwood
City,B9407F30-F5F8-466E-
AFF9-25556B57FE6D,1.0,1.1,,,,,,,key1=val1,key2=val2,key3=val3

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to use a text editor
to edit CSV files. Opening a CSV file in Excel or another spreadsheet application can
corrupt the encoding or add extra lines. If you use another application to edit your CSV
files, confirm that the encoding is correct in a text editor before uploading the file.

Chapter 12
Set Up Location Devices, Places and Assets

12-25

13
Database

Database APIs help you create and manage database tables for use in mobile apps. As a
service developer, you can call the Database Access API from custom API implementations
to create and access database tables, and use the Database Management API to manage
and view table metadata.

What Can I Do with Database APIs?
As noted above, there are two database APIs:

• The Database Access API, which is available only from custom code implementations
using the custom code SDK, lets you to create and access database tables. For security
reasons, you can’t call this API from client apps. To try out calls to this API, open a
custom API, go to the Custom Catalog, and then click Database Access.

• The Database Management API can be accessed through custom code
implementations and HTTP REST calls to manage table metadata and deploy tables. To

try out calls to this API from the UI, click to open the side menu, and click
Development > APIs. In the Platform APIs section at the bottom of the APIs page, click
Database Management.

This chapter discusses how to use these Database APIs to perform common tasks. For more
details on using the platform APIs, see REST APIS for Oracle Mobile Cloud.

Database Access API
All your mobile apps’ interactions with the Database Access API are made through custom
API implementations. You can’t access this API directly from client apps. This section covers
how to use the custom code SDK in a custom API implementation to interact with the
database. To learn about designing APIs, see Custom API Design.

To learn about implementing a custom API, see Implementing Custom APIs.

For complete details for each custom code SDK database method, see Accessing the
Database Access API from Custom Code.

Call the Database Access API from Custom Code
Before we delve into how to implement a custom API to perform database tasks, let’s go over
a simplified description of how to call the Database Access API from custom code. Here we
talk about some API operations that you learn about later. While they may not make sense
now, these steps should give you some context for how you use the operations that you will
learn about.

To call the Database Access API from custom code, you add endpoints (resources) and
operations (methods) to the custom API, and then you add route definitions to your custom
code implementation for the custom API. We are going to talk about how to implement the
route definitions in the custom code.

13-1

To call the API from your custom code:

1. Add the route definition to the custom code.

You implement a route definition by calling the service method for the API’s
endpoint operation. Say, for example, that your API has a GET operation for the /
mobile/custom/FIF_Incidents/incidents endpoint. To implement this from your
custom code, you call service.get(). The service method’s arguments are the
URI and a function that takes both the request object and the response object as
arguments. For example:

service.get(
'/mobile/custom/FIF_Incidents/incidents', function (req, res) {
 // your code goes here
});

2. From the route definition, call the appropriate req.oracleMobile.database
method to send your request to the Database Access API, such as get(),
getAll(), or insert(). Database Access API describes the available methods
and the arguments that each method takes, and provides example code.

Here’s a complete route definition. This route definition calls the getAll() method,
which, in turn, calls the Database Access API’s GET /mobile/platform/database/
objects/{table} operation. When the getAll() method receives a response from
the API, it calls either the result function or the error function, depending on
whether an error occurred.
Notice that the first argument is the name of the table, and that the second
argument is a JSON object that contains a fields property. This instructs the
getAll() method to return only the customer and status fields.

/**
 * GET CUSTOMER AND STATUS FOR ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
 }
);
 });

The response to this call would look like this:

{
 "items":[
 {
 "status":"Open",
 "customer":"Lynn Smith"
 },

Chapter 13
Database Access API

13-2

 {
 "status":"Completed",
 "customer":"John Doe"
 }
]
}

Create and Restructure Database Tables
You might think that before you can access a database table, you need to first add it to the
schema. However, you can create a new table simply by adding a row to the table. This
action is referred to as a implicit table creation.

You use the following methods to insert rows into a table:

• insert(): Add one or more rows.

• merge(): Add or update one or more rows.

When you call these methods for a table that doesn’t exist, a new table with the row(s) is
created by deriving the table specifications from information in the object and options
arguments.

To specify the table structure:

• Call either insert() or merge(), both of which require table and object arguments. In
the object argument, which is a JSON object, include all the columns that you want in
the table, and provide mock or real data for each column. The column type and size are
based on the content. For example, if the value is 100 then the column will be
NUMBER(3,0). Don’t worry about the size being too small. If you later post 3.25, the
column is resized to NUMBER(5,2), which is large enough for both 100 and 3.25. Also
don’t worry about adding all the columns that you need. If you later decide you want more
columns, then add the new columns to a JSON object and send it in an insert() or
merge() call. The table will be restructured automatically to add the new columns.

Note that the maximum size for a string column is 4000 characters. If you need to store a
larger string, then you can use the Storage API.

Here’s an example of the JSON object:

{
 "incidentReport": 1,
 "title": "Water heater is leaking",
 "customer": "Lynn Smith",
 "address": "200 Oracle Parkway Redwood City, CA 94065",
 "phone": "(555) 212-4567",
 "technician": "jwhite",
 "status": "Open",
 "notes": "lynnf|Initial incident report description",
 "priority": 1,
 "imageLink": "http://link.to.storage"
}

• By default, a set of predefined columns are added and populated automatically whenever
you add or update a record using insert() or merge().

Chapter 13
Database Access API

13-3

If you don’t want all these columns in your table, then use the extraFields
property in the optional options argument to specify which columns to include,
such as createdOn,createdBy (be sure to include id if you aren’t specifying a
primary key). If you later decide you want to add more predefined columns, you
can just add them to the extraFields property the next time you add a row.
If you don’t want any of these columns, then set the extraFields property to none.
However, if you don’t add any predefined columns when you create the table, then
you can’t add any later.

The predefined fields are:

– id: The row key. This column is added only if both the primaryKeys and
extraFields properties are absent. The id is an integer set and incremented
automatically.

– createdBy: Who created it.

– createdOn: When it was created.

– modifiedBy: When it was last modified.

– modifiedOn: Who modified it last.

The dates are in W3C date-time format, and include hours, minutes, seconds, and
a decimal fraction of a second (YYYY-MM-DDThh:mm.ss.SSSZ).

• If you want a primary key, use the primaryKeys property in the options argument
to specify which columns to use for the primary key. For example,
incidentReport,technician. Note that the order that you list the fields is the
order that you use when you retrieve or update a row. Because you can’t retrieve
the primary key order from the table metadata, make sure that you document the
order of the primary fields.

You can see code examples for these two methods in the next section.

The following table summarizes what aspects of a table can be changed implicitly:

Object Can It Change?

Table Name No. The name is set when the table is first created.

Primary Key No. The primary key is defined when the table is created.

Predefined Columns Yes. You can allow predefined columns in the table when it’s
created by the call. However, you can’t add these predefined
columns at a later point if the table was not originally intended
to use them. If predefined columns are allowed, then any of
them (other than id, that is) can be added by subsequent
calls.

Columns Yes. Although columns are created with the table, subsequent
calls can add columns. These calls can also alter the column
size. However, you can’t change the column type after the
table has been created.

You can also disable implicit table creation. If the Database_CreateTablesPolicy
environment policy is neither allow (the default setting) nor implicitOnly, adding a
row to a non-existent table will fail.

Chapter 13
Database Access API

13-4

Add and Update Table Rows
You use the insert() and merge()methods to add and update rows:

• insert() adds one or more rows.

• merge() adds or updates one or more rows. Whether an add or update is performed
depends on whether the table uses id or primary key fields to uniquely identify rows.

– id field: If you include an id property in the object, then the matching row is updated
if it exists. Otherwise a new row is added.

– Primary key fields: If the table uses primary key fields, the matching row is updated if
it exists. Otherwise, a new row is added.

Note that if you submit a batch of rows, then all the rows must have the same set of columns.

To call either of these methods:

• Pass the table name in the first argument.

• If the table doesn’t exist, and you want to limit which predefined columns to include, set
the extraFields property in the options argument. For example:

options =
 {'extraFields' : 'createdOn,createdBy'}

If you want all the predefined columns, omit this property. If you don’t want any
predefined columns, set it to none. It doesn’t hurt to include it in subsequent adds, but
make sure you include it in your first add if you don’t want the full set of predefined
columns.

• If the table doesn’t exist, and you want to specify a primary key, make sure you set the
primaryKeys property in the options argument. For example:

options =
 { 'primaryKeys' : 'incidentReport,technician' }

The primary key list must be URL encoded.

• Put the row data in the request body in JSON format. The JSON object can contain data
for one row or several rows.

Here is an example of data for one row:

{
 "status" : "Open",
 "code" : "3"
}

Here is an example of data for multiple rows:

[
 {
 "status":"Open",
 "code":3},

Chapter 13
Database Access API

13-5

 {
 "status":"Completed",
 "code":9}
]

Here’s an example of using the insert() method to add two rows to the FIF_Status
table. The first argument is the table name, and the second argument is the object
argument, which contains the rows to add to the table. The third argument is the
options argument, which specifies to not add any extra (predefined) fields, and to
create a primary key based on the code field.

service.post('/mobile/custom/incidentreport/initStatus', function
(req, res) {
 req.oracleMobile.database.insert(
 'FIF_Status',
 [
 {
 "status": "Closed",
 "code": "0"},
 {
 "status": "Completed",
 "code": "9"}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
});

Retrieve Table Rows
You can retrieve a single table row by its primary key or ID, and you can retrieve a set
of table rows.

To retrieve a row by its primary key or ID, call the get() method. You use the keys
argument to identify the row that you want.

• If the table uses the id column for the row key, then set keys to the row’s ID.

• If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be
listed in that order, such as: ['5690','jwhite'].

Chapter 13
Database Access API

13-6

Here’s an example of using the get() method to retrieve a row from the FIF_Incidents table.
The first argument is the table name, and the second argument is the keys argument:

/**
 * GET INCIDENT BY ID
 */
service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response body looks like this:

{
 "items":[
 {
 "id":168,
 "title":"Oven not working",
 "technician":"jwhite",
 "status":"Open",
 "customer":"John Doe",
 "incidentReport":"5690",
 "createdBy":"jdoe",
 "createdOn":"2015-11-16T23:42:18.281823+00:00"
 }
]
}

To get a set of rows from a table, call the getAll() method.

• To filter the rows, add the columns to search on and the values to match to the qs
property in the optional httpOptions argument. For example, this requests all the
incident reports for the technician J. White:

httpOptions.qs = {technician : 'jwhite'};

• To specify which columns to return, use the fields property in the options argument.

For example, to get a quick phone list:

options={'fields' : 'customer,phone'}

Chapter 13
Database Access API

13-7

Here’s an example of using getAll() to retrieve the customer and status fields for all
rows in the FIF_Incidents table that match the query string that’s specified in
httpOptions.qs.

/**
 * GET ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 httpOptions={};
 httpOptions.qs = {technician : 'jwhite'};
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}, httpOptions).then(
 function (result) {
 rres.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response body looks like this:

{"items":[
 {"title":"Water heater is leaking",
 "technician":"jwhite",
 ,"customer":"Lynn Smith"
 ...
 "incidentReport":25
 "createdOn":"2015-03-05T12:10:15.171284-07:00"},
 {"title":"Dryer doesn't dry",
 "technician":"jwhite",
 ,"customer":"Lynn Smith"
 ...
 "incidentReport":67
 "createdOn":"2015-08-07T14:22:37.171284-07:00"}
]}

Delete Table Rows
To delete a row, you call the delete() method.

You use the keys argument to identify the row that you want to delete.

• If the table uses the id column for the row key, then set keys to the row’s ID.

• If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be
listed in that order, such as: ['5690','jwhite'].

Chapter 13
Database Access API

13-8

Here’s an example of deleting a row from the FIF_Incidents table. The first argument to the
delete() method is the table name, and the second argument is the keys argument.

/**
 * DELETE INCIDENT BY ID
 */
service.delete('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.delete(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(error.statusCode, error.error);
 }
);
 });

If the table has a primary key, then the response body looks like this:

{ "rowCount" : 1 }

If the id is the key value for the table, then the response body looks like this:

{"items":[{"id":42}]}

Execute SQL on a Table
If neither delete(), get(), getAll(), insert(), nor merge() let you perform the database
operation that you need to do, then use the sql method.

The sql method lets you execute SQL statements such as insert(), update(), merge(),
delete(), or select(). You can use this method for complex actions, such as when you
need to join tables, use aggregate functions like count() and sum(), or use a where clause to
delete a set of rows.

Note that you can’t use the sql method to create a table or add columns to it. You must either
use the insert() or merge() methods to create and restructure the table implicitly, or use the
Database Management API to create and re-recreate it explicitly, as described in Database
Management API. In addition, the predefined fields are not populated automatically when you
use sql.

To use the the sql method:

• Set the required sql argument to the SQL statement that you want to execute. For
example:

SELECT COUNT("incidentReport") "reportCount"
FROM "FIF_Incidents" WHERE "status" = :status

Chapter 13
Database Access API

13-9

See Preventing SQL Injection to learn about precautions that you should take
when you write the SQL statement.

• If your SQL statement takes parameters, then you need to pass them in the
required bindings argument, which is a JSON object. For example, if you use the
SQL statement shown for the sql argument, then you would set bindings to
{status:'Open'}. If the SQL statement doesn’t use parameters, then use null or
{}.

Here’s an example of executing a SQL statement. In this example, the sql argument is
set to a SQL statement that counts the number of rows in the FIF_Incidents table with
a status of Open.

/**
 * Get Count of Open Incidents
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.sql(
 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = :status',
 {status: 'Open'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Passing Parameters to the SQL Statement
You might want to let users specify some of the values in the SQL statement. For
example, you might want your custom API to have a GET /incidents/count operation,
which counts the number of incidents for a given status, and let the user specify which
status to count by passing it as a request parameter. You use the bindings argument
to pass the parameter to the executeSQL() method.

There are two ways to reference parameters in the SQL statement:

• Use the :name syntax to reference parameters by name. This is the preferred
method. For example:

Select SELECT COUNT("incidentReport") "reportCount"
 FROM "FIF_Incidents" WHERE "status" = :status

To pass the named parameter, you use a JSON object like this:

bindings = {status:'Open'}

Chapter 13
Database Access API

13-10

• Use the ? syntax to reference parameters by the generic names arg1, arg2, arg3, and so
on. This is called an anonymous parameter. For example:

Select SELECT COUNT("incidentReport") "reportCount"
 FROM "FIF_Incidents" WHERE "status" = ?

To pass the anonymous parameter, you use a JSON object like this:

bindings = {arg1:'Open'}

Note that unlike anonymous parameters, named parameters can be bound at multiple places
in a SQL statement. In the following example, the named parameters :TITLE
and :TOTAL_GROSS are bound twice: once if there’s an UPDATE and once if there’s an INSERT.

MERGE INTO "Movies" t0
 USING
 (SELECT :TITLE "TITLE" FROM DUAL) t1
 ON
 (t0."TITLE" = t1."TITLE")
 WHEN MATCHED THEN
 UPDATE SET t0."TOTAL_GROSS" = :TOTAL_GROSS
 WHEN NOT MATCHED THEN
 INSERT (t0."TITLE", t0."TOTAL_GROSS") VALUES (:TITLE, :TOTAL_GROSS)

If you use anonymous parameters, then you must use a different generic parameter for each
occurrence. For example, with the following SQL statement, you must pass in 4 parameters:
arg1 and arg3 provide the title, and arg2 and arg4 provide the total gross:

MERGE INTO "Movies" t0
 USING
 (SELECT ? "TITLE" FROM DUAL) t1
 ON
 (t0."TITLE" = t1."TITLE")
 WHEN MATCHED THEN
 UPDATE SET t0."TOTAL_GROSS" = ?
 WHEN NOT MATCHED THEN
 INSERT (t0."TITLE", t0."TOTAL_GROSS") VALUES (?, ?)

Here’s an example of how to execute a SQL statement that has a parameter.

/**
 * Get Count of Incidents for a Given Status
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.sql(
 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = :status',
 {status: 'Open'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },

Chapter 13
Database Access API

13-11

 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Labeling Calculated Columns in Select Statements
As with all response bodies for this endpoint, the response body for a SELECT
statement is in JSON format. To make it easier to extract a calculated value from the
JSON object, always label the functions. Take, for example, the following SQL
statement:

SELECT SUM("incidentReport") FROM "FIF_Incidents"

The JSON response looks like this:

{ "SUM(\"incidentReport\")" : 678 }

In this example, the function is labeled reportCount:

SELECT SUM("incidentReport") "reportCount" FROM "FIF_Incidents"

The JSON response looks like this:

{ "reportCount" : 678 }

Preserving Case in SQL Statements
By default, Oracle Database is case-insensitive. However, the tables and columns that
you create using the Database Access API are case-sensitive. Therefore, you must
enclose the table name, columns, and labels in SQL statements in double quotation
marks ("..."). Otherwise, the call might not return any rows.

Say, for example, that your SQL statement is:

Select incidentReport from FIF_Incidents

Because the table and column names are not protected by double quotation marks,
the SQL statement will not work as expected. You might get a status of 400 with a
message that the table or view does not exist or that there is an invalid identifier.

Instead, use:

Select "incidentReport" from "FIF_Incidents"

Preventing SQL Injection
SQL injection is an attack technique that allows hackers access to databases by co-
opting user input with a SQL block that can be interpreted by a backend database. To

Chapter 13
Database Access API

13-12

prevent this type of attack, you must ensure that SQL statements are never passed to the
custom code from a mobile app. The SQL statements allowed by the Database Access API
must reside in the custom code.

Here are some common SQL injection considerations:

• Passing SQL as User Input

• Preventing SQL Injection with Bind Parameters

Preventing Passing SQL to the Execute SQL Operation
Don’t let users pass SQL into your custom code for use in the executeSQL() method or the
POST /mobile/platform/database/sql operation.

For example, don’t write code like the following example, which lets users put a SQL
statement in the SQL header, and then pass that SQL statement to be executed. Instead,
hard-code the SQL statement, and use parameters when necessary.

/**
 * Example of Code that Lets
 * Users Inject SQL
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.sql(
 req.headers.sql
).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Preventing SQL Injection with Bind Parameters
In this example, a hacker can pass an escaped SQL block in the status field of an input entry
form:

/**
 * Example of Code that Lets
 * Users Inject SQL
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.sql(
 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = ' +
 req.body.status
).then(
 function (result) {
 res.status(statusCode).send (result.result);

Chapter 13
Database Access API

13-13

 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

To prevent this type of attack, use parameters as shown in this example:

service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.executeSQL(
 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = ' +
 :status,
 {status: 'Open'}
).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Database Management API
In addition to the Database Access API, there’s also a Database Management API,
which lets you manage the tables that you created through the Database Access API.
This API lets you view table metadata, create, drop, and re-create tables.

You can access the Database Management API through custom API implementations

and HTTP REST calls. To try out calls to the API, click to open the side menu.
Next, click Mobile Apps Developmentthen APIs. In the Platform APIs section located
at the bottom of the page, click Database Management .

Create a Table Explicitly
You can create a table from a JSON object using the POST method for the /mobile/
system/databaseManagement/tables endpoint. To restructure a table, use the PUT
method for the same endpoint. The PUT method drops the existing table and re-creates
it.

To create a table explicitly:

1. If you want to include predefined columns in the table, set the Oracle-Mobile-
Extra-Fields header to a comma-separated list of the columns to include from
amongst id, createdBy, createdOn, modifiedBy, and modifiedOn. If you don’t
want any of these columns, specify none. The id column, which is a row key, is
added to the table only if no primary key is specified.

2. Create the JSON object for the request body. The JSON attributes are:

Chapter 13
Database Management API

13-14

• name: The table name.

• columns: An array of the table columns. For each column, specify:

– name: The column name.

– type: The data type. The binary data type is not supported.

– size: (Optional) The size or precision of the column.

– subSize: (Optional) For decimal columns, the scale of the column, meaning the
number of places after the decimal point.

• primaryKeys: An array of column names.

• requiredColumns: An array of column names.

3. Call the POST method for the /mobile/system/databaseManagement/tables endpoint.

Here’s an example of a JSON object for creating a table. When used in a POST request, a
table called Movies is created with the specified columns and primary key.

{ "name" : "Movies",
 "columns": [
 {"name": "title", "type": "string", "size": 50},
 {"name": "synopsis", "type": "string"},
 {"name": "inTheaters", "type": "boolean"},
 {"name": "releaseDate", "type": "dateTime"},
 {"name": "runningTime", "type": "integer", "size": 3},
 {"name": "totalGross", "type": "decimal", "size": 10, "subSize": 2}],
 "primaryKeys" : ["title"],
 "requiredColumns": ["title", "releaseDate"]
}

The Database Management API creates and executes the following SQL statement based on
this request. In this case, the Oracle-Mobile-Extra-Fields request header was set to none,
so the table does not have any predefined fields.

CREATE TABLE "Movies" (
 "title" VARCHAR2(50) NOT NULL,
 "synopsis" VARCHAR2(4000),
 "inTheaters" CHAR(1),
 "releaseDate" TIMESTAMP NOT NULL,
 "runningTime" NUMBER(3,0),
 "totalGross" NUMBER(10,2),
 CONSTRAINT "Movies_PK" PRIMARY KEY ("title"))

This example also illustrates some of the data types allowed by the Database Management
API and the Database Access API:

Type Description Size / Subsize Database Type

string A JSON string Maximum of 4000 bytes VARCHAR2
dateTime An ISO- or date-

formatted JSON string
TIMESTAMP

Chapter 13
Database Management API

13-15

Type Description Size / Subsize Database Type

boolean A JSON boolean CHAR(1) “1” true,
“0” false

decimal A JSON number Precision (the total
number of digits).
Optional. / Scale
(number of decimal
digits). Optional.

• NUMBER
• NUMBER(size)
• NUMBER(*,subsiz

e)

integer A JSON number with no
decimal digits

NUMBER(size,0) and
NUMBER(*0)

The size and subSize attributes are optional. Don’t provide them for columns of type
dateTime and boolean. As a best practice, unless you have a valid business
constraint, don't provide size or subSize for integers and decimals because doing so
limits what values are acceptable and makes it harder to resize the column. When
possible, allow the database to size and store the value as efficiently as possible.
However, you should provide the size attribute for string columns. The maximum size
for a string column is 4000 characters. If you need to store a larger string, then you
can use the Storage platform to store the object.

Chapter 13
Database Management API

13-16

14
Analytics

Oracle Mobile Hub provides an Analytics API to help you measure patterns in app
performance and usage. As a business development manager or mobile program manager,
you can use analytics to find out how to improve your apps.

What Can I Do With Analytics?
Use Analytics to gain insight into how (and how often) users use a mobile app at any given
time. The analytics reports generated enable you to see an application's adoption rate, and
find out which functions are used the most (or the least).

How the Analytics Reports Are Created
Mobile Hub creates analytics reports from events, which describe how users interact with the
mobile app.

A mobile app developer can track the mobile app’s entire usage by raising events in the
mobile app code. For example, a mobile app for repair technicians might track events like
Work Order Dispatched, Work Order Accepted, Work Order Resolved, and Work Order on
Hold. To add further detail to an event, you can define properties that describe an event’s
characteristics. For the Work Order on Hold event, for example, you might add properties for
Customer Not Home or Parts on Order.

Tip:

Mobile program managers should decide which aspects of an app to track by
events early in the app development process.

Mobile backends receive events from the REST calls made from mobile apps. A mobile app
makes a single call, which includes a JSON payload that describes the events along with
such contextual information like a user’s location, the start and end of a user session, and
details about the user’s mobile device. You can craft the payload yourself if you use straight
REST calls, or use the mobile client SDK to construct one for you. The SDK defines the user
session and automatically applies the user and system context that allows Mobile Hub to
generate reports that describe the number of users of the app, and how (and from where)
they’re using it.While the SDK enables Analytics to automatically generate reports that tell
you how many users your app has, or how much time they’re spending on it, you must define
events in the mobile app’s code if you want to see these reports.

Enable Your Mobile Apps to Report Event Data
Mobile Hub creates analytics reports from information conveyed in JSON payloads. The calls
that deliver the JSON payload to the Analytics API, which records event data, can be either

14-1

straight REST calls or REST calls made through the mobile client SDK. In either case,
Mobile Hub uploads and stores the JSON payload and then graphs it in a report.

Describing Analytics Events in JSON

The JSON payload describes the context for mobile app users in terms of both their
mobile devices and the events that track user interactions. These types of events are
known as custom events. A JSON payload has one or more of these custom events,
and is also constructed from a context event that provides user and system details, a
start session event, and end session event. The custom events are grouped within the
session events to describe an analytic session.

Within the mobile app code, developers can determine the point at which the app
flushes the custom events that have accumulated on the mobile device to the Mobile
Hub server. This content is considered to be a session that can be logged.
Theoretically, an analytic session can remain open for longer than a single batch
update to the Mobile Hub server. In other words, sessions can vary in length according
to your event logging use case: a session might be created to track event data for a
single action or a set of actions that comprise a task. You can also use a session to log
the entire span of user interactions within a user session. That said, the length of an
analytic session generally does not, and should not, equal that of a user session.
Instead, create analytic sessions that are short and concise. By keeping these
sessions crisp, you’ll maintain system performance and accurate event reporting.The
mobile client SDK tracks analytic sessions on a file system, which means that a file
grows as you add more events to a session.

Taking a Look at the JSON Payload

Within a JSON payload, events have the following properties:

• A name of fewer than 100 characters.

• A unique string defined for the sessionID property, which associates an event with
a particular session. If you create your own JSON, you must assign a unique string
to this property. The mobile client SDK ensures uniqueness by adding a text string
punctuated by hyphens known as a Universally Unique Identifier (UUID).

• A time stamp: Events are ordered by time stamp (though not strictly, because
events can share the same time stamp). The mobile client SDK generates the time
stamp automatically.

A JSON payload posted to Mobile Hub may look something like this:

[
 {
 "name":"context",
 "type":"system",
 "timestamp":"2013-04-12T23:20:54.345Z",
 "properties":{
 "userName":"jimSmith",
 "model":"iPhone5,1",
 "longitude":"-122.11663",
 "latitude":"37.35687",
 "timezone":"-14400",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28",

Chapter 14
Enable Your Mobile Apps to Report Event Data

14-2

 "carrier":"AT&T"
 }
 },
 {
 "name":"sessionStart",
 "type":"system",
 "timestamp":"2013-04-12T23:20:55.052Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce"
 },
 {
 "name":"PurchaseFailed",
 "type":"custom",
 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "properties":{
 "cartContent":"WIDGET",
 "cartPrice":"$50,000"
 }

 {
 "name":"sessionEnd",
 "type":"system",
 "timestamp":"2013-04-12T23:25:55.052Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce"
 }

]

Every JSON payload must begin with a context event. In the preceding example, this event is
indicated by "name":"context" and includes properties that describe the current context of
the mobile app, such as user name and the longitude and latitude. The context event is
associated with each event that follows it, such as the session start and end events that
demarcate a session. It is also associated with events raised in the mobile app code, such as
PurchaseFailed in the preceding example. Although you can add this context to events using
straight REST calls, the mobile client SDK adds both session and device context information
to the payload automatically.

Creating Your Own JSON Payload

If you don’t use the mobile client SDK, keep these tips in mind when composing the JSON
payload:

• Start each payload with a context event (indicated by "name":"context").

• Add a context event whenever the device's context changes — typically when the
longitude, latitude, or username properties need to change.

• You can randomly add the events within the payloads, but you must associate every
event raised in the mobile app code with sessionStart and sessionEnd events just like
PurchaseFailed in the preceding example, as noted by “type”:”custom”.

Ensure that these events share the same sessionID value. When events have the same
sessionID value, the server can approximate the session even if part of the payload (like
the endSession definition) isn’t recorded by the database.

Chapter 14
Enable Your Mobile Apps to Report Event Data

14-3

Mobile Hub responds with a 202 status code (Accepted) when it receives a complete
and syntactically correct REST call. Otherwise, it returns 400 (Bad Request) or 405
(Method not Allowed) responses.

Why Should I Use the Mobile Client SDK?

The mobile client SDK:

• Automatically defines the start and end of sessions and manages them using the
UUIDs that it assigns to the sessionID property.

• Adds the context event at the beginning of each payload.

• Adds such device properties as the username, latitude, and longitude for
context events. On the server, the longitude and latitude values are translated
into city, country, postal code, and street.

• Marks events raised in mobile app code as custom (which is described in Tracking
Sessions and Logging Events for Mobile Apps) or system for session or context
events. The SDK also adds a timeStamp to each event.

Adding Location Properties to the context Event
The Oracle eLocation Service (maps.oracle.com) derives location from the longitude
and latitude properties in the JSON request body. These properties only work if your
mobile apps are used in countries where Oracle eLocation Service is available. For
countries where Oracle eLocation Services is unavailable, you can still enable Mobile
Hub to record the location data that allows countries to display in the Dashboard map
by adding location-related properties to the context event.

To enable requests to support country data, add any combination for the following
properties to the context event:

• locality — The mobile device's locality, such as city, township, or village.

• region — The mobile device's region, such as state, canton, or province.

• postalCode — The mobile device’s postal code.

• country — The mobile device’s GPS country. For some countries in the Asia-
Pacific region, you can use a two-letter identifier, such as JP (Japan), CN (China),
or KR (South Korea).

Do not include longitude and latitude in the context event if you define any of
these properties. For example:

{
 "name":"context",
 "type":"system",
 "timestamp":"2013-04-12T23:23:34.345Z",
 "properties":{
 "userName":"GDoe321",
 "locality":"Aomi",
 "region":"Kanto",
 "postalCode":"135-0064",
 "country":"JP",
 "timezone":"-14400",
 "carrier":"AT&T",
 "model":"iPhone5,1",

Chapter 14
Enable Your Mobile Apps to Report Event Data

14-4

 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28"
 }

Integrate Analytics into a Mobile App Using the Mobile Client
SDK

The oracle-cloud-mobile-analytics.jar and the libOMCAnalytics.a libraries included in
the mobile client SDK enable mobile apps deployed on Android and iOS devices to post
events to the Analytics API. These libraries become available to your mobile app when you
download the mobile client SDK and integrate it into the mobile app. See Connect Your App
to a Mobile Backend. .

Understand Different Types of Analytics Reports
The Analytics reports plot the frequency of incoming events against specified time periods.
These reports enable you to spot patterns in mobile app usage and performance.

Reports Uses

Events Find out how users use your app. You select which events you
want to track in the mobile app code. You can add additional
events by calling the Analytics API from custom code. See
Tracking Sessions and Logging Events for Mobile Apps.

You can build conversion funnels that let you trace user
participation through a workflow path. See Improving User
Retention with Funnel Analysis.

API Calls Count

API Calls Response Time

Track app usage and performance, as well as how apps use
Mobile Hub.

New Users

Active Users

Session Count

Session Duration

Enables you to answer such questions about engagement as:

• Is the app gaining or losing users?
• How often do users use the app and how long are the user

sessions?

My Reports Stores your saved report definitions.

Access the Analytics Reports
Click to open the side menu and then Mobile Hub to open the dashboard. From here, you
can quickly explore the following:

• API Calls: See the number of calls to your app and the response times over various time
periods.

• Events: Track customer events, like putting an item into a cart and checking out.

• Funnels: Discover what events customers complete on their way to a goal, like making a
purchase or signing up for promos.

Chapter 14
Integrate Analytics into a Mobile App Using the Mobile Client SDK

14-5

• Users: Find out who your new and active users are, and group them by properties
such as their zip code or country.

• Sessions: Learn how often and how long users are in your app.

• My Reports: Save analytics data insights as a report so you can return to it later.

While Mobile Hub displays data gathered from all of the mobile backends by default,
you can use the menus to isolate the activity for all versions of a selected mobile
backend or API.

Unless you have mobile cloud administrator privileges, you can see only the analytics
reports generated in environments to which you have been granted access. For
example, if you have access to only the Development environment, then you can't see
the usage and traffic data for mobile backends in the Production environment.

The dashboard summarizes the user base and activity on a per-day basis. Click the
bar charts to access more detailed reports that help you draw conclusions about the
API traffic or app adoption rate. Accessing these reports from the menu lets you also
view detailed data on app use.

Tip:

For each report type (except funnels), you can view data plotted as a line
graph or as a grouped bar chart by toggling the display options at the bottom
of the page.

API Calls Reports
Click the API Calls menu to access the API endpoint reports. The API endpoint reports
track all of the APIs, or a particular API, over a specified period of time. The volume of
received calls indicates how much an app utilizes the Mobile Hub platform (and
consequently, how widely used the app may be). Selecting a time frame allows you to
see when traffic picks up or drops off. You can also drill down to specific endpoints to
see how frequently they have been called and the corresponding response times.

Mobile Hub automatically generates analytics data whenever an API is called. This
data accumulates over time and can use up all the available database space, which
can severely affect service. To mitigate the issue, have your mobile cloud administrator
modify the Analytics_ApiCallEventCollectionEnabled policy in the
policies.properties in your environment. Setting this policy to false turns off
automatic event generation. To avoid losing service, set this policy to false before
your storage capacity reaches full.

Chapter 14
API Calls Reports

14-6

API Calls Count
The reports for API Calls Count let you view the traffic for one, or many, APIs for a selected
period of time. The report includes both successful and failed calls.

API Calls Response Time
measures the response time (in milliseconds) for an API call as starting when the server
receives the request and ending when the call returns the data to the mobile app. The
response time includes the time dispatching the call. You can compare the response time for
one (or all), APIs for a selected period of time. The bar graph compares the response time
against the number of calls.

Events Report
The Events report lets you focus on how to improve the mobile app user experience and how
to explore business opportunities. For example, the Events report can show you not only how
frequently users use an app's search function, but how frequently users perform searches on
specific devices and operating systems. By filtering an event with the device and operating
system properties, you can see when usage of the app on a specific platform or device has
outpaced usage on another. Declining usage across an entire platform may indicate that the
application requires optimization for that platform.

Events reports aren’t limited to assessments of how a mobile app performs. You can also use
them to spot inefficiencies in your company’s processes, such as its supply chain
orchestration. To get an idea, say you are part of a mobile project team for an appliance
repair company. Its repair technicians use mobile apps to accept or reject the work orders
dispatched to them. They can also update the status of the work order from open to closed,
or from open to on hold. You need to investigate why orders are left pending, or closed by
frustrated customers. To do this, you can draw some conclusions by viewing an event and
filtering it by its properties. Because your mobile app developer raised events in the app’s
code to reflect the workflow outlined by your work order processing use case, Mobile Hub can
graph the occurrence of work orders on hold. From this report, you can also see the reasons

Chapter 14
Events Report

14-7

that prevent the fulfillment of an order from the properties defined for this event, such
as Parts Ordered.

To gain business intelligence, you can filter a report using the properties specific to an
event to discover user behavior and trends. For example, filters let you find out which
products customers search for most often. By cross-referencing this against the
location-specific reports for a mobile app, you can target your workforce, training, or
marketing efforts accordingly.

Events
Mobile Hub plots the events against time. You can select from among events and then
segment your search reports by creating filters. After you create a filter, click Done.

Mobile Hubapplies the event name and the time-stamp properties as the default
properties for the Events report. You can filter events by the following properties, which
is then applied automatically to events that are raised in the mobile app code:

• Device-related properties

– Operating system

– Operating system name

– Operating system version

– Operating system build

– Device model

– Device manufacturer

– Carrier

• Location Properties:

– Country

– State

– City

– Postal code

User and Session Reports
The user and session reports not only show you how many customers use a mobile
app, but also how long they use it. Are applications gaining users? Does the time
users spend using the app reflect its purpose?

When users authenticate, Mobile Hub gathers the events and plots the data points for
these reports that you use to spot trends both over time and by location. You can
group the data in these reports using the following properties:

• Client application

• Country

• State

Chapter 14
User and Session Reports

14-8

• City

• Postal code

Analytics creates reports for users only when sessions are used in the mobile app code.

User Reports
If you have a number of mobile apps deployed in the field, you can use the New User and
Active User reports to find out which ones are gaining traction with new users, which are
sustaining their user base, and which are losing users.

Why User Counts Can Vary
Mobile Hub approximates user counts through user IDs and device IDs.

For the events sent from mobile apps, Mobile Hub identifies a user through a user ID (a
property provided by the OAuth token) or the mobile client SDK's Device ID header (Oracle-
Mobile-DEVICE-ID) when the user ID is not known (for example, for mobile apps that do not
require authentication). Although the Device ID reflects a user (not the device manufacturer)
it isn’t always interchangeable with the user ID: a single user might access the same app
using different devices (that is, a single user logging in from two devices will be counted as
two users). Because Mobile Hub uses the Device ID in the absence of a user ID, the user
counts are an approximation for mobile apps that allow both authenticated and
unauthenticated (that is, anonymous) users.

User Session Reports
The Session Count and Session Duration reports describe user engagement.

These reports reveal the time users spend on a mobile app, not only in terms of the number
of sessions, but also how much time users spend on the app. Although a session may be
seen as starting when a user brings an app to the front on the device's springboard and
ending when it's sent to the back, the concept of session may differ in terms of platform and
implementation, as described in Defining Sessions.

The user session reports let you assess if the app elicits the appropriate level of user
interaction. In other words, are user sessions intended to be short, as they are for apps giving
time and weather updates, or long, as they would be for shopping apps?

New Users
The New Users report lets you see the number of users (authenticated or anonymous) for
any (or all) mobile apps over a selected period of time.

When Mobile Hub receives an event from a previously unknown user (or from a device if the
user is anonymous), it notes the existence of a new user. Keep in mind that the New Users
report may not reflect the exact number of users if it includes both mobile apps that require
user authentication along with ones that allow users to access services anonymously.

Chapter 14
User and Session Reports

14-9

Active Users
Mobile Hub considers a user as active if it has previously received event data from the
user or the device.

The Active Users report lets you see the number of active users for any (or all) mobile
apps over a selected period of time. To find out the usage rate for a mobile app, you
first select it from the dropdown list and then select the Mobile Application property.
This property lets you compare the usage of two or more mobile apps. For reports that
include mobile apps which require authentication along with those that don't, the
number of actual users may not be accurate. See Why User Counts Can Vary.

Tip:

You can use the Mobile Application property to compare the adoption rate
for different versions of a mobile app.

Chapter 14
User and Session Reports

14-10

Session Count
The Session Count report lets you see how many times a mobile app has been used over a
selected period of time and location.

Session Duration
The Session Duration report lets you see the minimum, maximum, and average session
times for one, or all, mobile apps over a selected period of time and location.

Chapter 14
User and Session Reports

14-11

Improve User Retention with Funnel Analysis
Conversion funnels let you compare how many users start a workflow (say, a checkout
process, a user registration process, or a lead generation) against how many actually
complete it. A funnel segments a workflow into a sequence of steps designed to guide
users to some goal (or conversion). Typically, users drop off at each step of a
workflow; many may begin a checkout process, for example, but comparatively few
complete it. Funnel analytics show you the conversion rate for a workflow by showing
the number of users who drop off at various points. For funnel analysis to be
meaningful, you need to think about how events can be assembled into work flows
early in the development process. Defining the appropriate events allows the right data
to be collected.

Because funnels show you where users lose interest, you can use them to improve a
process or identify bugs in a workflow. Further, because you construct funnels from the
events raised for a mobile app, you can see where and why users are dropping off by
analyzing the event properties.

Chapter 14
Improve User Retention with Funnel Analysis

14-12

Create a Funnel
To create a funnel, you first select a mobile app that has been released long enough so that a
meaningful amount of event data can be collected. After you select the app, the events
defined for it become available so that you can build a funnel from them.

1. Select a date range.

2. Add the events in sequential order to form the funnel steps.

Mobile Hub automatically displays the conversion rate for each event that you select. By
selecting these events, you can view their properties. Use the filter and group by
functions to analyze these properties.

Analyze Funnels
After you've selected all of events for the process, take a look at the conversion rate. You can
select an event and then drill down on the property.

Tip:

If the conversion rates indicate a large decrease, select more events to find out
why.
For example, for a user registration workflow, select a signup failed event and then
select the detail view for the event. Use the filter and group by options in the
detailed report. You can group by system and custom properties. For example,
grouping the data by the property, reason, lets you to see event data sorted by the
attributes defined for this property, Duplicate User ID and Incomplete Data.

Chapter 14
Improve User Retention with Funnel Analysis

14-13

You can take an iterative approach to refining your funnel. For example, deploy your
app long enough to collect a significant amount of data and then tweak the app
accordingly. Redeploy for a second round of adjustments and then select another date
range.

Create Custom Analytics Reports
As a mobile program manager, you can keep an eye on the usage and health of your
mobile app on an ongoing basis by creating a suite of custom reports that you can run
whenever you want. Mobile Hub.

Say that you’ve launched the Fix-It-Fast (FiF) app in three cities. For each locale, you
also want to find out daily peak usage times and also segment the user data by age
group. To do this, you’d create a set of reports for the FiF app that include a New
Users report, an Active Users report as well as a daily Session Duration report and an
API calls report. Mobile Hub enables you to keep these reports on hand, organize
them, update them, or delete reports that you no longer need. And you can create new
reports as needed.

Mobile Hub organizes your custom reports into My Reports. To open My Reports:

1. Select the environment for your reports and then click to open the side menu.

2. Click Analytics to open the reports drawer.

3. Select My Reports.

The My Reports page lists all of the reports that you’ve created for a particular
environment. That is, this page shows only the reports that you’ve created, not those
created by someone else. Not only do your reports belong only to you, but they also

Chapter 14
Create Custom Analytics Reports

14-14

belong to the environment in which you created them. You can’t share a report across
environments. Instead, you have to replicate a report for each environment.

How Do I Create a Custom Analytics Report?
You can save your custom report definitions while you’re looking at an analytics page, or from
the My Reports page.

To create a report directly from a report page:

You can also create a report from the My Reports page. Click New Report and then complete
the dialog.

Complete the dialog by giving the report definition a name and an optional description. You
also need to choose the type of report and the mobile backend (either All Backends or a
specific mobile backend).

If you have no report definitions saved in My Reports, you can use this same dialog to create
one. To access this dialog, click New Report.

My Reports
The My Reports page displays all the report definitions (reports) that you’ve created for a
specific environment. From this page, you can organize your reports, run them, update them,
and delete them.

Mobile Hub creates a tile for each report definition. The front of each tile lists the information

that you provided when you created the report definition. Clicking flips the tile over to
reveal some additional information provided by Mobile Hub, such as the name of the mobile
app, the reporting period, and the type of report. The information on the back of the tile varies
depending on the type of report that you’ve defined. For example, an event report includes
not only the mobile app name and the reporting period, but the selected endpoint as well.

Chapter 14
Create Custom Analytics Reports

14-15

Each tile has a menu which enables you to run, edit, or delete a report.

You can rearrange the reports to suit your needs by dragging and dropping the tiles.
For example, if you have a report you want to run first thing every morning, you can
drag it to the first position (right next to the New Report tile). You can also adjust the
display using these options:

• Any Backend—Displays all of the reports that you’ve created (including those
created using the All Backends filter).

• All Backends—Narrows the display to only the reports created using the All
Backends filter.

• By mobile backend—Displays only the reports created for a specific mobile
backend.

How Do I Run a Custom Report?

To run a report, first click and then click Run.

The report opens on the My Reports page. Depending on the number of tiles in the
page, you may need to scroll down to see it.

Chapter 14
Create Custom Analytics Reports

14-16

How Do I Edit a Custom Report?

If you need to change something about your report, first click and then click Edit.

You can’t change the report type, but you can change the report name, description, reporting
period and any filtering criteria. When you’ve made your changes, click Save. Click Reset to
revert the report definition to its original state.

Track Sessions and Log Events for Mobile Apps
The analytics libraries of the mobile client SDK enable the monitoring and measuring of any
event that has been defined for the mobile app.

Knowing which item the user added to a shopping cart is better than just knowing that a user
put some unnamed item in the cart. Likewise, you'd want to know which products users
search for rather than just knowing that they've performed a search. To add this level of detail
to your analysis, you can create events. You can further segment reports by adding
properties that describe these events in terms of something that characterizes the event itself
or an activity related to the event. Here’s an example of what an event looks like in JSON
form (which is the payload format for the underlying REST calls that send event data to the
service).

[
 ...
 {
 "name":"PurchaseFailed",
 "type":"custom",

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-17

 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "properties":{
 "cartContent":"WIDGET",
 "cartPrice":"$50,000"
 }
 ...

]

The mobile client SDK provides you with a shorter route to generating analytics reports
than does writing a straight REST call. After you’ve linked the mobile app to the
platform-specific SDK, you can enable analytics reporting for your app by adding code
that calls the analytics library and designates the beginning of the session before
flushing the events to the server.

Create Events and Sessions Using the iOS Library
The libOMCAnalytics.a library includes classes for logging the events and sessions
from an iOS mobile app. You can also use the classes from this library to track
successful and failed posts.

Sessions provide a means of grouping the events raised in the mobile app code, as
the events logged between the start and end of a particular session belong to that
session. As discussed further in Designating Sessions, you can call instance methods
for starting and ending sessions as well as logging events to the service’s server.

Call the Analytics Service
To call the Analytics service, import the OMCMobileBackend+OMC_Analytics.h and the
OMCAnalytics.h header files in addition to the ones noted in Call the APIs Using the
iOS SDK.

Designate Sessions
You can designate sessions by calling the startSession and endSession methods on
the OMCAnalytics object. The endSession method automatically flushes events, but
you can flush events explicitly by calling the flush method, which will post the
currently outstanding events to the service’s server.

Tip:

Use the flush method if you have a large number of events that are logged
between the start and end of a session.

The signatures for the startSession and endSession methods are as follows:

@interface OMCAnalytics : OMCServiceProxy

/** The Analytics service's delegate. */
@property (nonatomic, weak) id<OMCAnalyticsDelegate> delegate;

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-18

/**
 Starts an Analytics service session. If a session is already in progress,
then it continues. A new session is not created.
 */
[analytics startSession];

/**
 Stops the current Analytics service session. Does nothing if a session is
not in progress.
 */
 [analytics endSession];
/**
 Logs an Analytics service event with the specified name. If a session is
not in progress,
it starts a session. Copies the specified name before returning.
 @param name the event name
 */
- (void)logEvent:(NSString*)name;

/**
 Logs an Analytics service event with the specified name and properties.
 If a session is not in progress, then it starts a session.
 Copies the specified name and properties before returning.
 @param name the event name
 @param properties a dictionary of arbitrarily named properties for the event
 */
- (void)logEvent:(NSString*)name properties:(NSDictionary*)properties;

/**
 Uploads all the posted events to the OMC Mobile Analytics REST service.
 */
- (void)flush;

@end

The startSession begins with the first logged event (even if no session has been started).
The endSession method flushes events to the service’s server.

Associate a Session With Your Mobile App Being in the Foreground
A user session might correspond to the length of time that a user spends on the mobile app
when it runs in the foreground. To associate Analytics sessions when your mobile app is
running in the foreground, your app delegate should subclass
OMCAnalyticsApplicationDelegate. Doing this will automatically log the start of a session
when the mobile app moves the foreground and log the end of the session when the mobile
app moves to the background. In general, you don’t need to call either startSession or
endSession, as these are added automatically.

Add Custom Properties to Events
You can describe an event more fully by adding one or more custom properties as key-value
pairs.

Both the key and the value must be strings.

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-19

You can add custom properties to an event by calling the logEvent:properties:
method and by passing a dictionary of property key-value pairs. For example:

[Analytics logEvent:@"Event name"];
properties:@{"customProp1":"value1", @"customProp2":@"value2"}];

Caution:

The following custom property names are reserved and can't be used for
your event property names.

• Carrier
• Count
• Country
• Day
• Hour
• Locality
• Manufacturer
• Minutes
• MobileAppKey
• Model
• Month
• OS
• OSVersion
• OSBuild
• PostalCode
• Region
• Week
• Year

Receive the Status of Event Posts
As an optional feature, you can implement the OMCAnalyticsDelegate protocol to
receive notifications when the OMCAnalytics object posts events to the Analytics
REST service successfully or encounters errors. To do this, you must register a
delegate, an object that implements OMCAnalyticsDelegate with the OMCAnalytics
object. For example:

OMCAnalytics* analytics = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend analytics];

analytics.delegate = myDelegate;

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-20

You can implement one or both of the following instance methods to receive event status:

• Notifies the delegate that the OMCAnalytics object successfully posted events to the
Analytics REST service.

(void)analytics:(OMCAnalytics*)analytics
 didPostEvents:(NSURLRequest*)request
 response:(NSHTTPURLResponse*)response
 responseData:(NSData*)responseData;

• Notifies the delegate that the OMCAnalytics object encountered a specified error.

 (void)analytics:(OMCAnalytics*)analytics
didFailWithError:(NSError*)error

Create Events and Sessions Using the Android Library
The oracle-cloud-mobile-analytics.jar library includes the Analytics and Event classes
that enable mobile apps to post events.

To enable the Mobile Hub to record your mobile app’s event data, this JAR must be placed in
the libs directory of your project.

The Analytics class is a singleton client object that exposes the Analytics API and has the
startSession, endSession, logEvent, and flush methods. To start and end the sessions,
which group events, and upload the events to the server, call these methods in your mobile
app’s code.

Method Description

startSession (Context context) Creates a new session.

logEvent (String name) Adds a new event. The logEvent method starts a
session automatically if one doesn’t already exist.

logEvent (Event Event) Adds an existing event.

endSession (Context context) Ends the current session.

flush Uploads events to the Mobile Hub’s server. Calling
the endSession or flush methods uploads all of
the buffered events to the Mobile Hub server. All
event data is stored locally in JSON file until one
of these methods is called. If a mobile app is
offline, then it posts this file when it reconnects
with the service’s server.

The Context parameter in the startSession and endSession methods is the Android
Context class. See the Android Developers website http://developer.android.com.

Tip:

For long-running mobile apps, calling the flush method periodically not only
reduces the size of the payload in the JSON file posted to the Mobile Hub server,
but also keeps the server up to date.

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-21

http://developer.android.com

The following code snippet shows how to call the Analytics class methods.

public final class Analytics extends ServiceProxy {
 // Creates a new session and generates an $sessionStart Event.
 public void startSession(Context context);

 // Ends the current session and generates a $sessionEnd Event.
 public void endSession(Context context);

 // Adds a new Event object.
 public Event logEvent(String name);

 // Adds an existing Event object.
 public Event logEvent(Event event);

 // Forces the upload of buffered Events.
 public void flush();
}

The Event class’ methods create new events and their properties. As listed in the
following table, this class also has events for returning information about an event, like
its timestamp or its name.

Method Description

Event(String name, Date timestamp,
Map<String, String> properties)

Creates the new event.

addProperty (String name, String
value)

The key-value pairs are managed by the
HashMap interface. Call this method to add the
key-value for a property to the existing map of
event properties.

getProperty Returns the properties associated with the
event.

getProperties Returns a property.

getName Returns the name of the event.

getTimeStamp Returns the date on which the event was
recorded.

The following code snippet shows how to call these methods.

public final class Event {
 // Creates a new Event. Time stamp and properties can be null.
 public Event(String name, Date timestamp, Map<String, String>
properties)

 // Sets a key/value property for the Event.
 public Event addProperty(String name, String value);

 // Returns the Event's name.
 public String getName();

 // Returns the Event's properties.
 public HashMap<String, String> getProperties();

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-22

 // Returns the timestamp of the Event.
 public Date getTimestamp();

See Taking a Look at Events and Sessions in Android Apps for examples of using these
methods, as well as guidelines on how the mobile app code can reference a mobile backend
and the Analytics service.

Take a Look at Events and Sessions in Android Apps
The following code samples show how to call the Analytics class’ method to add an event
called “ShoppingCartCancelled” to your mobile app code:

...

Analytics analytics = mbe.getServiceProxy(Analytics.class);

client.startSession(this); // "this" is the Android View.
//...
client.logEvent("ShoppingCartCanceled");
//...
client.endSession(this);

...

Instead of adding a series of lines, you can add an event as well as properties as a single,
fluent line of code:

...
mbe.getServiceProxy(Analytics.class).
 logEvent(new Event(this, "ShoppingCartCanceled").
 addProperty("cartSize", "2").
 addProperty("cartValue", "$50,000"));
...

Some general steps to follow when adding events to your Android app:

1. Add a reference to the MobileBackendManager class to access to the default moblie
backend (which is specified in the oracle_mobile_cloud_config.xml file):

try {

 MobileBackendManager mbem = mobileBackendManager.getmanager();
 MobileBackend mbe = mbem.getDefaultMobileBackend(this);

2. Because you need to log a custom event, you must reference the Analytics service:

Analytics analytics = mbe.getServiceProxy(Analytics.class);

3. Create the event by calling the event constructor and pass in the name of the event, such
as "Work Order on Hold":

4. Call the logEvent method and pass the event:

5. Call the flush method to post events to the Mobile Hub server.

Chapter 14
Track Sessions and Log Events for Mobile Apps

14-23

Tip:

To end the session and post all of the events to the Mobile Hub server,
call endSession instead.

Define Sessions
Sessions, which can group events together, can vary in length: a session may
represent the entire lifespan of an application, or a function within the application.
Within your code, you can specify the start and end of sessions, as illustrated by the
ShoppingCartCancelled event shown in Create Events and Sessions Using the
Android Library and the Purchase Start and Purchase Failed events in Create
Events and Sessions Using the iOS Library . If you don't specify the start of a session,
the analytics libraries in the mobile client SDK create an implied session.

Export Event Data
The Analytics Export API lets you return event data or API call metadata as a JSON
object, which you can then import into a third-party tool. You may also want to export
event data before you permanently delete it by purging it from one or more mobile
backends.

For example, say you want to export data for a custom event called
MeanTimeResolution, which measures performance data for your team. To find out
how your team stacks up against an industry benchmark, you’d post a call to the
Analytics Export API to return the custom event data. Using a third-party tool, you can
mash up the MeanTimeResolution event data with the benchmark data and create
reports.

How Do I Request Event and API Logging Data?

You can return data as a JSON object by issuing a POST call to {baseUri}/mobile/
system/analyticsExport.

• If you are using basic authentication to connect to the mobile backend, see
Authenticate with HTTP Basic in Direct REST Calls.

• If you have OAuth enabled as the authentication mechanism for the mobile
backend, see Authenticate with OAuth in Direct REST CAlls

If you plan to use a third-party tool to pull the analytic data on a nightly basis, you
could use cURL or some other tool to run the automated job. Here’s some example
cURL code for basic authentication:

curl -i
-X POST
-u team.user@example.com:Welcome123
-d @export.json
-H "Content-Type: application/json; charset=utf-8"
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce"
http://fif.cloud.oracle.com/mobile/system/analyticsExport

Chapter 14
Export Event Data

14-24

In the request body, you can specify whether you want to return custom events, or data from
the API History Log by defining the required parameter, exportType. You can also limit the
number of items returned in the JSON object and set the date range for the reporting period.
A request body might look like this:

{
 "startDate": "2015-04-12",
 "endDate": "2015-05-12",
 "exportType": "Events",
 "name": "IncidentRaised",
 "offset": 0,
 "limit": 1000
}

Here are the request body properties.

Request Body
Parameters

Mandatory? Description Example

startDate and
endDate

No. If you don’t define
these values, then
Mobile Hub Mobile Hub
applies these default
values:
• startDate —The

first timestamp of
the first event or
API call record.

• endDate —The
current system time
and date.

The start and end of the
reporting period,
expressed as YYYY-MM-
DD.

"startDate":
"2015-04-12",
"endDate":
"2015-05-12",

exportType Yes The type of data that
you want to export: API
calls or custom events.

"exportType":
"APICalls",
"exportType":
"Events",

name No Depends on the value
for exportType:
• For APICalls, refer

to the names listed
in the menus for the
API Endpoint
reports.

• For Events, the
name of a custom
event. Use the
menus in Events
report.

• For an API:
“name”:
“Analytics
Collector”,

• For a custom event:
“name”:
“IncidentRaised
”,

offset No The zero-based index of
the first item that’s
returned. The default
value is zero (0).

"offset": 0

Chapter 14
Export Event Data

14-25

Request Body
Parameters

Mandatory? Description Example

limit No The maximum number
of items returned by
your call. If you set a
limit that’s too high, then
Mobile Hub substitutes
a limit of 1000 (the
default value).

"limit": 500

A portion of the thousand items in the JSON payload that’s returned by the call in the
preceding example (a request for a custom event called IncidentsRaised) might look
like this:

{
 "items":[
 {
 "name":"IncidentRaised",
 "type":"custom",
 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "component":"Incidents",
 "mobileApplicationKey":"cd4b13b5-608c-4a18-9ef4-341fe4873063",
 "deviceId":"cd4b13b5-608c-4a18-9ef4-asdfasd",
 "backendName":"FixitFastCustomer",
 "backendversion":"1.0",
 "userName":"JDoe123",
 "locality":"San Francisco",
 "region":"CA",
 "country":"US",
 "postalCode":"95549",
 "timezone":"-14400",
 "carrier":"Verizon",
 "model":"iPhone5,1",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28",
 "customProperties":{
 "Appliance Manufacturer":"Abc Corp",
 "Model Number":"M1234"
 }
 },
 ...
],
 "hasMore":true
}

The request body for a platform API (the Analytics Collector) might look like this:

{
 "startDate": "2015-04-12T01:20:55.052Z",
 "endDate": "2015-05-12T01:20:55.052Z",

Chapter 14
Export Event Data

14-26

 "exportType": "APICalls",
 "name": "Analytics Collector",
 "offset": 0,
 "limit" : 1000
}

A portion of the returned JSON payload might look like this:

{
 "items": [
 {
 "backendName": "FixItFastTechnician",
 "backendVersion": "1.0",
 "apiName":"analytics",
 "apiVersion": "1.0",
 "apiImplementationName": "analytics",
 "apiImplementationVersion": "1.0",
 "resourcePath": "/events",
 "requestMethod": "POST",
 "requestTime": "2013-04-12T23:20:56.523Z",
 "executionTime": 20,
 "responseCode": "202",
 "responseMessage": "",
 "responseErrorId": "",
 "responseErrorMessage": "",
 "type": "ServiceableREST",
 "ecid": "f2cd201e-535b-48d7-afe2-e85a1f30406b-00007b19",
 "rid": "0",
 "parameters" : {
 "x": "x1",
 "y": "y1"
 }
 }
 ...
],
 "hasMore": true
}

Purge Analytics Data
You can purge analytics data through either the service UI or your application. Whichever
method you choose, note that purging analytics data permanently removes it from the
selected mobile backend(s). Data that has been purged can not be restored.

Purging Data through the Mobile Hub UI

First, export your data using the Export Data API before performing the purge.

Administrators must be assigned to the Mobile Deploy role to purge analytics data through
the UI. To avoid server conflicts, you can run only one purge job at a time. Any purge request
made while a purge is in progress is ignored.

1. On the side menu, select Settings, then Data Management.

2. Select the date range to purge analytics data.

Chapter 14
Purge Analytics Data

14-27

Click the calendar icon to select the date. The default time is 12 am, but you can
change it by clicking the clock icon.

3. Select All mobile backends, or individual backends.

4. Once you enter a date range and at least one mobile backend, click Purge.

Look for the results of the purge action under Purge History. The time to complete a
purge action varies depending on the size of the purge job. Large purge jobs can take

some time to complete. Wait at least five to ten minutes before refreshing () the
purge history to see the latest purge information.
Purging Data from an Application
Use the Analytics Data Management (ADM) API to make calls from your application to
permanently purge data from selected backends. Purge means this API both deletes
the data and “shrinks” the database that stores it in order to free up more space.

Like the purging feature you can use from the UI, the ADM API uses authentication,
roles, and realms for security. Administrators assigned to the Mobile System role can
purge Mobile Hub analytics data with the ADM API. You access this API through the
mobile client SDK, or directly through REST calls. To avoid server conflicts, you can
run only one purge job at a time. The service ignores purge requests made while a
purge is in progress.

To access the Analytics Data Management API through the mobile client SDK, use a
backend manager class.

Troubleshoot Analytics Reports
Mobile Hub generates analytics reports based on artifacts created on the Mobile
Hubserver, events defined in the mobile app code, and by the mobile client SDK.
Depending on these factors, none, or all, of the reports may be available.

Problem Solution

No reports When you first log into Mobile Hub, there
aren’t any reports because you have yet to
create a mobile backend for the mobile app.

Chapter 14
Troubleshoot Analytics Reports

14-28

Problem Solution

Only the API Calls Count and API Calls
Response Time appear, but there are no user,
session, or event reports.

Mobile Hub creates two sets of mobile
analytics reports: reports for server activity
and reports for sessions and events defined in
the mobile app’s code. In this case, only the
calls from testing the endpoints are recorded,
because no data has yet been sent from the
mobile app.

Only the endpoint reports are available if
you’ve just created a mobile backend, but
haven’t yet registered a mobile app as its client
app. While you can call the endpoints of
Custom Code APIs directly by testing them,
Mobile Hub can’t chart session or events
reports because these calls don’t originate
from a registered mobile app, whose code
defines event and sessions.

Mobile Hub creates user, session, and event
reports when a registered mobile app that
uses the mobile client SDK (or has sessions
defined in its code) calls the Analytics API.
Keep in mind that if there isn't a mobile app to
provide events, then there will be no data for
funnel reports. In this case, Mobile Hub
displays a page that says, “You have no
analytics data for this mobile backend.”

API calls generate analytics data, eventually
using up database space resulting in system
issues or loss of service.

Mobile Hub automatically generates analytics
data for every API invocation. This data
accumulates over time and can use up all
available database space, which can result in
system instability or even complete loss of
service.

Before storage capacity reaches full, modify
the
Analytics_ApiCallEventCollectionEnab
led policy by setting the policy to false to
prevent automatic generation of analytics data
with each API call.

Chapter 14
Troubleshoot Analytics Reports

14-29

15
Live Experience

Add Live Experience to Your Apps
Live Experience allows you to design secure digital customer engagements and include them
in your apps. You can add video, audio, or screen share, as well as screen spotlighting and
annotation during video and screen sharing sessions. These features enable communication
with your customer service reps, repair techs, or anyone you’d like to have live interactions
with.

Prerequisites

Before you configure Live Experience in your environment, ask your Live Experience system
administrator for the Live Experience endpoint, client ID, and client secret. The system
administrator obtained the client ID and secret when the account was configured.

Configure Live Experience

You must configure Live Experience before you can enable backends to use it.

1. In the Mobile Hub UI, click Settings > Credentials > Live Experience.

2. Provide the Live Experience endpoint, client ID, and client secret that you obtained from
your Live Experience system administrator.

Enable a Backend to Use Live Experience

To enable Live Experience for a backend:

1. Go to Development > Backends and open the backend.

2. Click Settings.

3. Switch Live Experience on.

15-1

Configure Your App to Connect It to Live Experience

1. After your app authenticates with the backend, set AMCE_AUTH_TOKEN and
BASE_URL.

2. Use the Live Experience Integration REST API to get an access token for starting
a Live Experience session:

Android

// Gets the Live Experience Access Token
 private void loginLiveExperience() {
 HttpURLConnection urlConnection = null;
 try {
 URL url = new URL("https://pmmobiledemo1-
bots4saas.mobile.ocp.oraclecloud.com/mobile/platform/lx/token?
client_type=LIVE_EXPERIENCE");
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setDoOutput(true);
 mobileBackend =
MobileManager.getManager().getMobileBackend(mCtx);
 urlConnection.setRequestProperty ("oracle-mobile-backend-id",
mobileBackend.getConfig().getParser().getString("mobileBackendId"));
 urlConnection.setRequestProperty ("Authorization",
mobileBackend.getAuthorization().getAccessToken());
 int status = urlConnection.getResponseCode();
 InputStream in = new
BufferedInputStream(urlConnection.getInputStream());
 String response = readStream(in);
 JSONObject jObj = new JSONObject(response);
 String access_token = jObj.getString("access_token");

Chapter 15
Add Live Experience to Your Apps

15-2

 Log.i("Access token: ", access_token);

 SharedPreferences prefs = getSharedPreferences(Constants.LOG_TAG,
Context.MODE_PRIVATE);

prefs.edit().putString(getString(R.string.access_token_live_experience),
access_token).apply();

 // Pass access_token to the authentication method...
 } catch (Exception jse) {
 Toast.makeText(LoginActivity.this, "Exception: " +
jse.getMessage(), Toast.LENGTH_LONG).show();
 jse.printStackTrace();
 System.err.println(jse.getMessage());
 } finally {
 if (urlConnection != null) {
 urlConnection.disconnect();
 }
 }
 }
}

iOS

// Gets the Live Experience Access Token
let rqst = NSMutableURLRequest(url: URL(string: BASE_URL + "/mobile/
platform/lx/token?client_type=LIVE_EXPERIENCE")!)
let session = URLSession.shared
rqst.httpMethod = "POST"

rqst.addValue("application/json", forHTTPHeaderField: "Accept")

_ = session.dataTask(with: rqst as URLRequest,
 completionHandler: {data, response, error -> Void in
 guard let data = data, let _ = response, error == nil else { return }

 do {
 if let json = try JSONSerialization.jsonObject(with: data) as?
 [String: Any] {
 let access_token = json["access_token"] as? [[String: Any]] ?? []
 print(access_token)

 // Pass the access_token to the Live Experience authentication
method.
 ...
 }
 } catch let error as NSError {
 print(error)
 }
})

For details about the Live Experience Integration REST API, see REST API Reference
for Oracle Mobile Hub - Platform APIs.

Chapter 15
Add Live Experience to Your Apps

15-3

3. Use the access token to start Live Experience, as described in Configure the Live
Experience Mobile Android Component and Configure the Live Experience Mobile
iOS Component.

4. Once the app is configured, open it on a device and click the camera icon to
launch a Live Experience session.

Chapter 15
Add Live Experience to Your Apps

15-4

16
App Policies

As a mobile app developer, you can use the App Policies API to create read-only custom
properties in a mobile backend and access them in your application with REST calls.

What Are App Policies and What Can I Do With Them?
App policies are custom properties that you can define and adjust in a mobile backend and
then reference from your apps through a simple REST call. Once you have defined an app
policy, you can update its value anytime, even after you have published the mobile backend.
This lets you make changes to the appearance and behavior of a deployed app without
having to update the app itself.

Here are some of the things that you might use app policies for:

• Determining when a given feature is enabled in the app. For example, an app for a
retailer might have a feature to display a section for holiday sales that should only be
displayed when there is a current sale.

• Fonts, colors, names of images to use, and other things that are typically stored as part
of an app’s configuration.

• Timeout values for network calls. Having an app policy for this can allow your mobile
cloud administrator to tune app responsiveness based on prevailing network
performance.

Set an App Policy
1. Click to open the side menu and select Development > Backends.

2. Open the backend. (Select it and click Open.)

3. Click the App Policies tab.

4. Click New Policy, fill in the property name, type, value, and description, and then click
Create.

The new app policy appears in a table on the page.
You can later use the Edit and Delete buttons in the table to edit the policy or remove it
entirely. After the mobile backend has been published, you can still change a policy’s value,
but you can not add, delete, or rename policies or change the policy type.
You can only set app policies and change their values from within the Mobile Hub user
interface. You can’t do this programmatically from app code.

16-1

Android

Retrieve App Policies
To fetch app policies for your Android apps for the first time, you use the
MobileBackend object’s getAppConfig() method to return all app policies as a
JSONObject:

JSONObject appPolicies =
oracle.cloud.mobile.mobilebackend.MobileManager
 .getManager().getMobileBackend().getAppConfig(
);

Once you have fetched the app policies, you can query the app config for the values of
individual properties.

To return the value of a specific app policy of type String, where myPolicyName is the
name of the policy and “No policy configured” is the string returned if myPolicyName
doesn’t exist:

String myPolicyValue =
oracle.cloud.mobile.mobilebackend.MobileManager.getManager()
 .getMobileBackend().getAppConfig().getString(myP
olicyName, "No policy configured");

To load a new app policy asynchronously and make a network call:

mobileBackend.loadAppConfig(new AppConfigCallback() {
 @Override
 public void onResult(McsError error, AppConfig config) {

To return the value of a specific app policy of type string where test_string is the
name of the policy if exists and returns the value of null if test string doesn’t exist:

 String testString = config.getString("test_string", null);

To return the value of a specific app policy of type Integer, where test_int is the
name of the policy and 0 is the value returned if Test_int doesn’t exist:

 int testInt = config.getInt("test_int", 0);

To return the value of a specific app policy of type Boolean, where test_bool is the
name of the policy and false is the value returned if test_bool doesn’t exist:

Boolean testBool = config.getBoolean("test_bool", false);

Chapter 16
Android

16-2

To return the value of a specific app policy of type Double, where test_double is the name of
the policy and 0.0 is the value returned if test_double doesn’t exist:

 double testDouble = config.getDouble("test_double", 0.0);

To return the value of a specific app policy of type Number, where test_number is the name of
the policy and 0.0 is the double value returned if test_number doesn’t exist. Works for both
double and single integer values. Returns exact value with which it is initialized:

Number testNumber = config.getNumber("test_number", 0.0);

To return a local copy of the app policy, and returns an empty app policy object if the app
policy doesn't exist:

AppConfig config = mobileBackend.getAppConfig();

iOS

Retrieve App Policies
To fetch app policies for your iOS apps for the first time, you use an ansynchronous callback.
Here’s some code that will fetch the app config from the mobile backend and loop until the
network call returns with either the app config or an error:

OMCMobileBackend* mbe = [[OMCMobileManager sharedManager] mobileBackend];

__block OMCAppConfig* appConfig = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[_mbe appConfigWithCompletionHandler:^(OMCAppConfig* appConfig_, NSError*
error_) {
 appConfig = appConfig_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
}

if (error != nil) {
 return;
}

Chapter 16
iOS

16-3

Once you have fetched the app policies, you can query the app config for the values of
individual properties. You can also insert an optional parameter to return a value if the
policy is not found.

NSString* welcome = [appConfig stringForProperty:@"welcome"
default:@"bogus"];
int timeout = [appConfig integerForProperty:@"TIMEOUT" default:42];
boolean enabled = [appConfig booleanForProperty:@"enableLocation"
default:NO];

Cordova

Retrieve App Policies
To fetch app policies for your Cordova apps, call loadAppConfig() on your mobile
backend object, e.g.

mcs.mobileBackend.loadAppConfig(success, error);

JavaScript

Retrieve App Policies
To fetch app policies , call loadAppConfig() on your mobile backend object:

mcs.mobileBackend.loadAppConfig(success, error);

REST

Retrieve App Policies
Using the following call, you can retrieve all of the app policies associated with a
mobile backend.

GET {BaseURL}/mobile/platform/appconfig/client

The response body is a JSON object containing all of the app policies configured for
that mobile backend. For example, if the mobile backend contains
fifTechReqTimeout, fifTechWelcomeMsg, and fifTechBgImage policies, the response
might look something like this:

{
 "fifTechReqTimeout":100000,
 "fifTechWelcomeMsg":"Hello",
 "fifTechBgImage":"/mobile/platform/storage/collections/appObjects/
objects/bgImage42"
}

Chapter 16
Cordova

16-4

From there, you can process them in your app code.

Update an App Policy Value in a Published Mobile Backend
Even after a mobile backend has been published, you can still change the value of an app
policy. However, you can not change its name or type.

1. Click to open the side menu and select Development > Backends.

2. Open the mobile backend. (Select it and click Open.)

3. Click the App Policies tab.

4. In the table of app policies, select the policy and click Edit.

5. Edit the value and click Save.

Chapter 16
Update an App Policy Value in a Published Mobile Backend

16-5

17
Backends

Oracle Mobile Hub is built around the concept of backends, which enable you to develop and
deploy groupings of APIs that are designed to support a specific set of mobile apps. You can
then associate one or more apps with the backend to access those APIs.

What Are Backends and How Can I Use Them?
In Mobile Hub, a backend is a secure grouping of APIs and other resources for a set of apps.
Within a backend, you select the APIs that you want available for those apps. For any apps
that you want to receive notifications, you can also register the appropriate credentials for the
given network (e.g. APNS or FCM) in the backend.

You can have multiple backends, each serving a set of applications. In addition, you can have
APIs that are used by multiple backends.

When an app accesses APIs through Mobile Hub, it is always in the context of a backend.
The app authenticates with credentials (OAuth Consumer or HTTP Basic Authentication)
specific to the backend or through an identity provider (or social login provider) that is
mediated by your backend.

What's the Backend Development Process?
Generally speaking, using Mobile Hub to develop apps involves these steps:

• Getting the Mobile Hub client SDK for your target platform to simplify the use of platform
features such notifications, storage, sync, and location.

• Developing any custom APIs that your app may need.

• Creating a backend and populating it with any APIs and other resources that the app will
need.

• Configuring apps to connect to the backend.

The development model is flexible, allowing you to largely work in parallel on APIs, backends,
and apps.

Create and Populate Backends
You create and populate backends directly in Mobile Hub. Once you have created a backend,
you can:

• Assign roles that can be used to access the backend.

• Associate APIs and Storage collections with the backend.

• Set up profiles for the apps that will use the backend.

17-1

Create a Backend
You create a backend to serve as a secure gateway between your app and Mobile
Hub features, such as platform and custom APIs. For your app to access these
resources, it authenticates with a backend.

1. Click to open the side menu and select Development > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You’ll need to configure your app with some of this information.

Backend Authentication and Connection Info
The following authentication and connection details are generated when you create a
backend and are displayed on the backend’s Settings page:

• Access Keys

You can use these to control access to the backend. They are unique for each
backend.

– OAuth Consumer keys are generated in the form of a client ID and a client
secret.

– HTTP Basic Authentication keys are generated for you in the form of a
backend ID and an anonymous key.

If you suspect that these credentials have been compromised (such as by an
application handling them insecurely), click Refresh to replace the credentials with
new ones, or click Revoke to cancel the existing credentials without generating
replacements.

Note:

Think twice before refreshing or revoking credentials, since these actions
will block any calls that any existing apps make through the backend. To
get the apps working properly again after credentials have been revoked
or refreshed, you need to rebuild the apps with the new credentials and
redeploy them.

• Environment URLs

– The Base URL is needed for all API calls. This URL is unique for each
instance that you have provisioned.

– The OAuth Token Endpoint is the URL that your app needs to make OAuth
token requests.

– The OAuth Authorize Endpoint is the URL that your app can use to get an
authorization code to exchange for an OAuth access token.

Chapter 17
Create and Populate Backends

17-2

Note:

You can also find the environment URLs and some other useful data by clicking

 to open the side menu, selecting Development, and clicking Instance
Details.

For details on using these and other authentication methods, see Authentication in Mobile
Hub.

To make it easier to incorporate these details in your apps, use the client SDKs for your app
platforms. See Client SDKs.

Role-Based Backends
You provide an additional layer of security for a backend (and, by extension, the resources it
represents) by making it role-based and then designating user roles that enable access.

1. Click to open the side menu and select Development > Backends.

2. Open the backend that you want to make role-based.

3. In the left navigation for the backend, click Security.

4. Set the Role-based Access switch to the ON position.

5. In the Roles field, select any roles that you want to associate with the backend.

See Mobile Users and Roles for info on how roles work.

Note:

If your app uses Facebook login, Role-based Access needs to be turned OFF.

Associate APIs with a Backend
Once you have a backend, you can use the API Catalog to select the custom APIs you want
to access through that backend. The API Catalog provides detail on each API endpoint and
its documentation, as well as an opportunity to test the endpoint with mock data to see what it
does.

Platform APIs (for Storage, Notifications, Location, etc.) are automatically available in your
backends.

1. Click to open the side menu and select Development > Backends.

2. Select your backend and click Open.

3. In the left navbar, click APIs.

4. Click Select APIs.

5. Optionally, click an API’s name to view its endpoints.

At this stage, you can click Test Endpoint to see how the API works with mock data.

6. Click the + (Add) icon for each API that you want to include.

Chapter 17
Create and Populate Backends

17-3

Associate Storage Collections with a Backend
You can associate a backend with collections so that your apps can work with data in
those collections using the Storage API.

To associate your backend with an existing collection:

1. Click to open the side menu and select Development > Backends.

2. Select your backend and click Open.

3. In the left navbar of the backend, click Storage.

4. Click Select Collections.

5. Start typing the name of the collection that you want to add, select the collection
from the drop-down list, and click Select.

Notification Profiles and Client Apps
If you are using notifications in an app, you can create a notifications profile to manage
the network credentials. You can then register the client app in Mobile Hub and
associate it with the notifications profile and a given backend.

Setting up a notifications profile and registering the client app accomplishes the
following things:

• Enables you to store the ID that is needed for the app store.

• Enables the app to receive notifications via Mobile Hub.

• Simplifies lifecycle management of the app and its associated backend and related
artifacts.

How Notification Profiles Work
You use notifications profiles to store credentials for notification services that you use
in your apps. After you create a notification profile, you can associate it with a client
that you have registered for an app and associated with a backend.

How App Clients Work
Here are the principles behind app clients:

• A client represents a single version of a single app binary.

For example, if you have both iOS and Android versions of an app, you would
register a client for each. Similarly, if you provide an upgraded version of the app,
you would register a new client to hold its metadata.

• When you register a client, you specify metadata such as the application ID that is
required by the platform vendor’s app store, the app version number, and a profile
that contains notifications credentials.

• A client can only be associated with one version of a backend.

This means that when you create a new version of a backend, that backend
doesn’t inherit any clients that you associated with the previous version of the

Chapter 17
Notification Profiles and Client Apps

17-4

backend. So, as you create new versions of your mobile apps that use a new version of a
backend, you should create corresponding clients.

• A client can be published and deployed in a way similar to other artifacts. When a client is
deployed, its backend and other dependencies are deployed with it.

Get Network Credentials for Notifications
To enable your app to send and receive notifications via Mobile Hub, you create an app
profile and configure an associated notifications profile with the appropriate network
credentials. Here's how to get the network credentials for the different platforms.

Android: Google API Key
Configuring an Android mobile app for notifications requires getting a Google API Key
through Firebase Cloud Messaging (FCM).

1. Set up your Android mobile application in FCM according to the instructions at Set Up a
Firebase Cloud Messaging Client App on Android on Google’s developer site.

This page includes detailed instructions and a link to generate the required configuration
file for your project, as well as information on using the Instance ID API to create and
update registration tokens.

When you generate the configuration file for your app, make sure you choose to enable
the Cloud Messaging service.

2. In the Android app’s AndroidManifest.xml file, within the <application> node, add the
following entries:

<service
android:name="oracle.cloud.mobile.notifications.McsRegistrationIntentServi
ce" android:exported="false" />
<service
android:name="oracle.cloud.mobile.notifications.GcmTokenRefreshListenerSer
vice" android:exported="false">
<intent-filter>
<action android:name="com.google.android.gms.iid.InstanceID" />
</intent-filter>
</service>

Google Play Services must be added as a dependent library in the application's build file,
or these services will be flagged in error.

When generation is complete, the Project Number (aka Sender ID) and API Key are
displayed. You need these credentials to register the mobile app for notifications in Mobile
Hub. They are unique to the mobile app and can’t be used to send notifications to any other
app. You also need these values to get a registration token from FCM and set up the
connection with Mobile Hub.

Note:

It is still possible to use Google Cloud Messaging (GCM), but you should configure
new apps with FCM. See Migrate a GCM Client App for Android to Firebase Cloud
Messaging on Google Developers.

Chapter 17
Notification Profiles and Client Apps

17-5

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm

iOS: Apple Secure Certificates
Notifications make special use of Apple's network, so Apple wants extra security
protections. In addition to the certificate used to set up your account, you need one of
the following secure certificates:

• Apple Push Notification service SSL (Sandbox) certificate for developing and
testing your application with notifications while you do development. Sandbox
certificates are intended for automated QA environments where devices don’t
change often. In most cases, spam filters should be disabled.

• Apple Push Notification service SSL (Production) certificate for releasing your
application to Apple’s App Store. Apple requires this certificate before you can ship
your app to the public, but you can wait until your app is finished to get it.

You need your certificate to register the mobile app for notifications in Mobile Hub. It is
unique to the mobile app and can’t be used to send notifications to any other app.
Once you have configured these extra certificates, you can get a device token from
Apple and set up communication with Mobile Hub, described in Set Up A Device
Handshake for iOS.

The steps for getting a Sandbox or Production certificate are very similar to the steps
you used to get the first secure certificate when you set up your app. This section
assumes that you already set up your Apple developer account, got the required
secure certificate, and set up an Application ID and a Provisioning Profile. For further
details on using notifications in iOS, see the Local and Remote Notification
Programming Guide on http://developer.apple.com.

1. If you didn’t enable notifications in your provisioning profile when you created your
App ID, go back and enable it now.

2. Get your certificate(s) from the Apple Developer Center. Use the App ID you set
up when you created your app. Follow Apple’s direction to create a Certificate
Signing Request (CSR) file, then export it to a .p12 file to upload it to Mobile Hub.
Do not password protect the .p12 secure certificate. (Leave the password field
blank when you save the .p12 file.)

Windows: WNS Credentials
Configuring a Windows mobile app for notifications requires a unique set of credentials
for Windows Push Notification Service (WNS). This section assumes you have a
Microsoft Developer account.

The following credentials are required to authenticate with WNS:

• Client ID (also called the Package SID)

• Client Secret (also called a secret key)

To get these credentials, register your mobile app in the Windows Store Dashboard,
accessible from the Windows Dev Center. For details on WNS, see WNS Overview on
MSDN.

You need these credentials to register the mobile app for notifications in Mobile Hub.
They are unique to the mobile app and can’t be used to send notifications to any other
app.

Chapter 17
Notification Profiles and Client Apps

17-6

http://developer.apple.com/
https://developer.microsoft.com/en-us/windows
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx

Syniverse: SMS Credentials
To send Short Message Service (SMS) messages using the Syniverse Messaging Service,
the first step is to establish a profile on the Syniverse Developer Community, where you
subscribe to the service, register your app, and get credentials.

Create a Profile on the Syniverse Developer Community
1. Go to the Syniverse Developer Community (developer.syniverse.com).

2. Click Sign Up in the top right corner of the site and enter the requested information.

3. If you have an invitation code from a company in the Syniverse Developer Community
enter that into "Company invite code" field. If not, ignore this step.

4. Read and accept the Terms of Service.

5. Check the Captcha box and answer the challenges to prove you aren’t a robot.

6. Click Create profile.

7. When the confirmation email arrives, click the link in the email and verify your user
credentials.

Subscribe to the Syniverse Messaging Service
To use SMS in your apps using the SMS short code you got from Syniverse, you need to
subscribe to the Syniverse Messaging Service.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click your user name in the top right corner and select Company. Verify that your
accounts have a billing address associated with them.

3. Navigate to Service Offerings > Messaging Offering and click Subscriptions.

4. Click Subscribe and select “Initial account for [Your username]”

a. Read and accept the Terms of Service.

b. Select Confirm.

c. Verify that your account is listed in Subscriptions.

5. If you’re using a Syniverse-provisioned public channel to test messages, you also need to
add test phone numbers to the associated whitelist. (Whitelisting is only necessary when
testing SMS to U.S. or Canada phone numbers and isn’t required for production apps.)

a. Click your user name in the top right corner and select Company.

b. On the Company page, click the Whitelist tab.

c. Click Add phone number and enter your phone number in the ITU-T E.164 format
(i.e., +11234567890).

d. Click Send confirmation code to send a randomly generated number to the phone
number in a text message.

e. Retrieve the confirmation code from the text message and enter it in the
Confirmation code field. Click Add to confirm the phone number whitelist.

f. Verify that your phone number is included in the whitelist table with "Validated" status.

Chapter 17
Notification Profiles and Client Apps

17-7

https://developer.syniverse.com/
https://developer.syniverse.com/

Register Your App and Get Credentials
Before messages can be sent through the Syniverse Messaging Service, there must
be an application configured in the SDC platform. Once your app is registered, you
can generate the required credentials.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click Applications.

3. Click New application.

In the dialog:

a. Give your application a name and description and click Save.

b. Click the gear icon next to your app name and select Edit.

c. Click SDC Self Service and make sure all the options are selected.

d. Click Account & APIs and select the "Initial account for [Your username]"
from the Account dropdown.

Turn on the following services: Messaging, SDC Gateway Services, Event
Subscription Services, Voice & Messaging and Whitelisting Services.

e. Click Save.

4. Generate the required credentials:

a. From the Applications page, click the gear icon next to your app name and
select Edit.

b. Click Application permissions.

c. Make sure Require user token validation is unchecked.

d. Click the first check box next to your app name to give your application full
entitlements.

e. Click Auth Keys to generate the credentials.

f. Copy and store the keys to a safe place on your computer.

g. Click Save.

Create a Notifications Profile
You create notifications profiles to hold notification credentials that your apps need.

To create a notifications profile:

1. Click to open the side menu and select Development > Notification Profiles.

2. Click Profiles.

3. In the New Profile dialog:

• Fill in the Name. This can be whatever name that will help you identify the
profile most easily.

• Select the Notification Service.

• Fill in the rest of the dialog with the information required by the notification
service.

Chapter 17
Notification Profiles and Client Apps

17-8

https://developer.syniverse.com/

For Apple Push Notification Services (APNS), you need to register a certificate
obtained from the Apple Developer portal.

For Firebase Cloud Messaging (FCM), you must register server credentials obtained
from the Developers Console for an Android application. (However, providing the
package name is optional, because credentials may or may not be scoped to a
specific app.)

For Windows Notification Service (WNS), you register your app in the Windows Store
Dashboard to get the credentials required to authenticate with the Windows
Notification Service.

For Syniverse (SMS), fill in the required fields:

– Channel ID or sender address. A channel represents a collection of sender
addresses, for example, a set of SMS short codes that can be used to send text-
based messages. A sender address can be any long code, short code or
alphanumeric ID that applications can send SMS messages from. You can use
your own sender address or purchase a sender address owned by Syniverse.
When sending messages via a channel, the Syniverse Messaging API service
chooses the most appropriate sender address for each message and recipient.
To get a Syniverse-provisioned test channel ID for testing SMS in the U.S. or
Canada, go to your Syniverse Dashboard > Service Offerings > Messaging
Accounts > Public Channels (U.S. apps must use the “US MT Test Channel”). To
test in the U.S. or Canada, you also need to whitelist test phone numbers as
described in.

– The authentication keys you got from Syniverse: Consumer Key, Consumer
Secret and Access Token.

– By default, consent management is handled by Syniverse, but if you want your
app to handle consent management or you want to register devices through the
UI, deselect Consent Management Enabled.

4. Click Create.

Once a notifications profile is created, you can add it to a client by opening the client,
selecting its Profiles tab, and clicking Select Profile.

You can add a profile to any client whose platform is valid for the profile's notification service
and whose application ID matches that of the profile. If an FCM or GCM profile does not
specify a package name, the profile may be used with any Android client.

Register an App Client
1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for

Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to match that
of the profile that you associate with the client.

2. Click to open the side menu and select Development > Notification Profiles.

3. Click Clients.

4. Click New Client.

5. In the New Client dialog:

• Fill in the Client Display Name and Client Name.

Chapter 17
Notification Profiles and Client Apps

17-9

These can be whatever names that will help you identify the client most easily.
The former can have spaces and the latter can’t.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

• Select the Platform (iOS, Android, Windows, or Web).

• Fill in the Version Number field.

This version must match the version number of the app as registered with your
platform vendor.

• Fill in the fully-qualified app ID. You get this from the platform vendor.

For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a backend to associate with the client from the
Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

If the notifications profile is for the notifications service of the app’s vendor (e.g.
APNS for an iOS app or FCM for an Android app), the app ID (bundle ID for iOS,
package name for Android, or package SID for Microsoft) for the profile must
match the app ID specified for the client. A client can only be associated with a
single SMS profile.

What Can I Change in a Backend?
If you haven’t yet published your backend, you can change the following parts of the
backend at any time:

• Notification profiles

• Custom APIs (and their implementations)

• Any connector APIs that are called from custom API implementations

• Storage collections

• App policies

Once you have published a backend, its content is frozen. At that point, you would
need to create a new version of the backend to make any changes. An exception is
app policies. Though you can’t change the list of app policies in a published backend,
you can change their values.

Chapter 17
What Can I Change in a Backend?

17-10

Connect Your App to a Backend
Once you have a backend set up and an app registered with that backend, you need to
configure your app code to access the backend.

Connecting your app to a backend involves these basic steps:

• Adding the client SDK libraries to your app. (This step is optional, but highly
recommended.)

• Adding a configuration file to your app to hold environment information that your app
needs to access the backend. The SDK classes that you use to make calls to the
backend use the values in this file so that you don’t have to manually include them in
each of your calls.

• Adding calls to Mobile Hub APIs in your app.

The APIs available include Mobile Hub platform APIs and any custom APIs that you or
other members of your team have developed in Mobile Hub.

• Testing your app.

Chapter 17
Connect Your App to a Backend

17-11

18
Mobile Users and Roles

You can set up users for your apps in one of these ways:

• In Oracle Identity Cloud Service (IDCS).

• Through a third-party identity provider (IdP).

• By using Facebook Login.

For users provisioned in IDCS or a third-party identity provider (IdP), you can set up role-
based security by doing the following:

1. Creating user roles in Mobile Hub.

2. Applying roles to backends and APIs.

3. Assigning the roles to the users.

For details on integrating with a third-party IdP or Facebook, see Authentication in Mobile
Hub.

Add Users and Groups in IDCS
Unless you are using a 3rd-party IdP or Facebook as your identity store, you add users by
creating user accounts with Oracle Identity Cloud Service (IDCS). You can create IDCS
groups to organize users and assign roles.

You must have an identity domain administrator role in IDCS to add mobile users. If you don’t
have this role, ask your service administrator for help.

1. Log in to Oracle Identity Cloud Service (IDCS) and click Users or click the Users tab in
Oracle Cloud My Services.

2. Click Add.

3. Enter the first name and last name of the user in the corresponding fields.

• If the user is going to log in with a user name, enter the user name in the User Name
field and enter the user’s email address in the Email field.

Be sure to clear the Use the email address as the user name option, which makes
the user name the same as the user’s email address.

• If the user is going to log in using an email address, make sure the Use the email
address as the user name option is checked and enter the email address for the
user account in the User Name/Email field.

4. Click Next if you want to assign the user to a group or click Finish. To assign a group,
select the groups that you want to assign to this user account and click Finish.

5. From the Details page displayed for the new user, click the Access tab.

6. Search for your Mobile Hub mobile core application and click Assign.

Repeat this step for each application the user should have access to.

18-1

If you don’t know the name of your Mobile Hub mobile core application, you can

find it in Mobile Hub by clicking to open the side menu, selecting
Development, clicking Instance Details, and taking note of the IDCS App Name.

Other Ways to Add Users
If you have many users to assign, you can use IDCS groups to assign access. For
details on using groups, see Managing Oracle Identity Cloud Service Groups in
Administering Oracle Identity Cloud Service.

IDCS also provides a REST API for creating and managing users and groups,
described in REST API for Oracle Identity Cloud Service.

Create Mobile Roles
Mobile user roles allow you to define permissions for your backends and APIs. You
can define as many roles as you need, and you can assign multiple roles to the same
user.

To create mobile user roles:

1. In Mobile Hub, click to open the side menu and select Development > Roles.

2. Click + New Role to add a role.

Assign Roles for Users That Are Set Up in IDCS
Enter a short description of your topic here (optional).

For mobile users that are set up in IDCS, you assign roles (to individual users or
groups of users) through IDCS or My Services:

1. From the Users tab, click Applications.

2. Select your Mobile Hub mobile core application, then select the Application
Roles tab.

3. For each role, click Action > Assign Users. Select one or more users from the
Role window and click Assign.

Roles for Users That Are Set Up in a 3rd-Party IdP
There are several ways to assigns roles to users who provisioned in 3rd-party IdP. See
Associate Roles with a SAML Token and Associate Roles with a JWT Token.

Role-Based Backends and APIs
Once you’ve defined roles, use them to:

• Restrict access to a backend as explained in Role-Based Backends.

• Restrict access to custom APIs as described in Set Access to the API.

Chapter 18
Create Mobile Roles

18-2

Permissions Required for Platform APIs
The types of users that can access a platform API, the way they can access it, and the roles
they need to access it vary by API. Here’s a quick rundown:

API Access and Required Permissions

Analytics • Accessible to IDCS, virtual, and social users
from both client app code (either via REST or
client SDK) and custom API implementation
code.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

App Policies • Accessible to IDCS, virtual, and social users
from both client app code (either via REST or
client SDK) and custom API implementation
code.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

Database Access • Accessible to IDCS, virtual, and social users.
For security reasons, you can call these
operations only from custom API
implementations by using the custom code
SDK. You can't make direct requests from
client applications.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

Database Management • Accessible to team members with either the
Administrator or Developer role.

Live Experience (get access token) • Accessible to IDCS, virtual, and social users.
• For IDCS users, must have a role associated

with the mobile backend if the backend is role
based.

Location • Accessible to IDCS, virtual, and social users
from both client app code (either via REST or
client SDK) and custom API implementation
code.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

Location Management • Accessible to team members with the
Administrator role.

My Profile • Accessible to the current authorized IDCS,
virtual, and social user from both client app
code (either via REST or client SDK) and
custom API implementation code.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

Chapter 18
Permissions Required for Platform APIs

18-3

API Access and Required Permissions

Notifications (device registration) • Accessible to IDCS, virtual, and social users
from both client app code (either via REST or
client SDK) and custom API implementation
code.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

Notifications (create, delete, and return) • Accessible to team members with either the
Administrator or Developer role.

Storage • Accessible to IDCS, virtual, and social users
from both client app code (either via REST or
client SDK) and custom API implementation
code.

• For IDCS and virtual users, must have a role
associated with the mobile backend if the
backend is role based.

• Access depends on whether the given
collection is shared or isolated, whether it's
listed in the
Security_CollectionsAnonymousAccess
environment policy, and whether you need
READ or READ_WRITE access.

Chapter 18
Permissions Required for Platform APIs

18-4

19
Authentication in Mobile Hub

In Oracle Mobile Hub, all resources are secured and can only be accessed via API calls
made by authenticated users that are authorized to access those resources. As a mobile app
developer, you enable one or more authentication methods for a mobile backend, associate
the APIs that you want to use with that backend, and then write app code using one of those
authentication methods.

The authentication methods available are:

• OAuth Consumer

• HTTP Basic

• Enterprise Single Sign-On (SSO)

This method includes variants for browser-based SSO and use of third-party tokens.

• Facebook Login

Before getting into the specifics of each authentication method, let’s go over how
authentication relates to authorization:

• Authentication is the process of ensuring a user is who he or she claims to be, usually
based on a user name and password, and often in combination with other credentials.

• Authorization is the process of determining whether a user has access to given
backends and APIs, based on permissions granted to the user via roles.

OAuth Consumer Authentication in Mobile Hub
The ability to use OAuth 2.0 as your authentication mechanism is built in to all backends and
enabled by default. Whenever you create a backend, the OAuth Consumer keys are
generated for you.

For details on the access keys and backend details provided, see Backend Authentication
and Connection Info.

Once you have these keys, you can use them in your apps. When using Client SDKs for a
given mobile platform, you insert these access keys in the configuration file provided by the

19-1

SDK and then the SDK uses them when constructing calls to REST APIs associated
with the backend. If you are coding the REST calls manually, see Authenticate with
OAuth in Direct REST Calls.

OAuth authentication in Mobile Hub is handled by Oracle Identity Cloud Service
(IDCS), which supports the standard OAuth grant types: authorization code, implicit,
resource owner password credentials, and client credentials.

HTTP Basic Authentication in Mobile Hub
The ability to use HTTP Basic as your authentication mechanism is built in to all
backends and enabled by default.

To enable or disable HTTP Basic as an authentication method:

1. Open the backend and select the Settings page.

2. Under Access Keys, set the HTTP Basic switch to ON or OFF.

When switched to ON, the access keys that you need are displayed.

Once you have these keys, you can use them in your apps. When using Client SDKs
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticate with HTTP Basic in Direct REST Calls.

For details on the access keys and environment details provided, see Backend
Authentication and Connection Info.

Enterprise Single Sign-On in Mobile Hub
If you want to use your own identity provider (IdP) for users of your apps, you can use
Mobile Hub’s single sign-on (SSO) support to create a trust relationship with that IdP in
Mobile Hub so that those users from that IdP can log in to those apps. This is
particularly useful if you’re rolling out apps for your company’s employees and you
want them to be able to sign into the apps using their existing employee login
credentials. Similarly, this could work for consumer applications where the customers
already have user accounts for corresponding web applications.

You can set up SSO to work through the following mechanisms:

• SAML or JWT tokens from a 3rd-party IdP. The app obtains a token from a 3rd-
party IdP that is registered in Mobile Hub as a trusted token issuer, makes an API
call to the Mobile Hub token exchange endpoint, and receives back a Mobile Hub-
issued token, which you include as a bearer token on each subsequent Mobile
Hub API call. The client SDKs support this token exchange.

In the case of JWT tokens, Mobile Hub uses the OpenID Connect discovery
protocol.

• Browser-based SSO using IDCS as the IdP. Oracle Identity Cloud Service is the
IdP. The app uses OAuth 2.0’s authorization code grant to get an authorization
token. The client SDKs currently do not provide support for this grant type.

Third-Party SAML and JWT Tokens
Mobile Hub supports the use of SAML and JWT tokens in the following ways:

Chapter 19
HTTP Basic Authentication in Mobile Hub

19-2

• With zero footprint SSO, where no user accounts are stored in Oracle Cloud. Instead, all
of the information for the user, including user roles, is derived from the third-party token.
Such users are referred to as virtual users.

• With a token that identifies a user that has been provisioned in both Oracle Identity Cloud
Service (IDCS) and the third-party IdP. Roles are associated for the user based on
information provided in IDCS.

SAML Tokens and Virtual Users
If you have users set up in a third-party IdP that supports the SAML 2.0 spec, you can
authenticate those users in Mobile Hub via SAML tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in IDCS):

1. You configure your backend to use HTTP Basic authentication. (This is required for you
to be able to get the token.)

You do this by selecting the backend in Mobile Hub, selecting the backend’s Settings
page, and setting the switch for HTTP Basic Authentication to ON.

2. Your administrator configures the IdP to generate a SAML token when the user logs in.

3. Your administrator registers the third-party token issuer and one or more token
certificates in Mobile Hub.

As part of this process, she can also associate Mobile Hub roles with tokens in one of the
following ways:

• By designating Mobile Hub roles to be associated with all tokens based on a given
certificate.

• By deriving role names (that match existing Mobile Hub roles) from given token
attributes.

• By mapping given token attribute values to existing Mobile Hub roles (where the
attribute values don’t already match the Mobile Hub names).

4. You code your app to do the following:

a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an Mobile Hub token exchange endpoint to get an Mobile Hub-
issued token in return.

c. Use the Mobile Hub token for all subsequent API calls to Mobile Hub.

Configure SAML Tokens for Virtual Users
To enable the authentication of virtual users via SAML tokens, you need to create a SAML
app in your IdP. This is a special app that mediates the creating and passing of the SAML
tokens.

Though the workflow varies by IdP, you generally need to do the following key tasks:

1. Create a SAML 2.0 app.

2. Configure the SAML 2.0 app by specifying the following:

a. Redirect URL.

You’ll configure your app to use the redirect URL to obtain the token. How the token
is obtained depends on the operating system you use (iOS or Android) . Avoid

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-3

entering an address to an actual live site. Use a fictitious address URL
request, for example,
http://hostname/mobile/platform/sso/redirect
Be sure the redirect URL you provide is formed correctly, that is it should
match the expected redirect URL value.

b. Audience.

SAML tokens have the concept of an audience. An audience is the intended
recipient of the SAML response (the token). It restricts the set of URLs against
which the token can be used. You configure the audience to the URL for the
Mobile Hub SSO token endpoint.

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by
opening any mobile backend in Mobile Hub, clicking its Settings tab, and
looking in the Environment URLs section.

c. An assertion that lists the applicable roles for the user.

For concrete examples, see Identity Provider Integration.

Register the Token Issuer in Mobile Hub
Before your apps can use tokens issued by a third-party IdP to authenticate with a
backend, an administrator needs to register the IdP as a token issuer in Mobile Hub.
Here are the steps:

1. In Mobile Hub, click and select Settings > Credentials from the side menu.

2. Click Certificates.

3. Click New Certificate to clear the Certificate Details and provide the following
information:

• In the Alias field, enter a unique identifiable name for the certificate.

• In the Certificate field, paste the definition of the token certificate that was
provided by the identity provider.

4. Click Save.

5. Wait for the token certificate to be propagated in the system. This should take no
longer than 10 minutes.

6. Click the Token Issuers tab.

7. Click New Token Issuer.

8. Enter the name of the token issuer in the Name field under Issuer Details.

9. Click Add Certificate Subject Name (+) .

10. From the Select Certificate Subject Names dialog, select at least one name and
click Save.

Typically the name is the subject name of the token certificate you added
previously.

11. Back on the Token Issuers tab, select Enable Virtual User.

12. In the Username Attribute field, type the name of the token’s attribute that
identifies the user.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-4

13. Optionally, designate user roles and mappings. The next topic has more information on
how this works.

14. Click Save.

Associate Roles with a SAML Token
If you want to set up role-based access for users that authenticate with SAML tokens, you
can do so when registering the token issuer in Mobile Hub. You have the following
possibilities:

• Use roles already defined in the token that match the names of Mobile Hub roles.

You do this by typing a comma-separated list of token attribute names in the Role
Attribute field. The roles are then derived from the values of these attributes.

• If the role names defined in the token don’t match role names defined in Mobile Hub,
provide a mapping between the two.

You do this by:

1. In the Role Attribute field, typing a comma-separated list of token attributes that
contain the role names.

2. Clicking Add Role Mapping Setting (+) to create a mapping between a role derived
from the token with one or more Mobile Hub user roles.

You can create multiple mappings.

• Apply one or more Mobile Hub roles to all tokens issued with a given certificate (unless
roles were applied via the role attribute or Role mapping mechanisms).

You do this by selecting one or more Mobile Hub user roles in the Default Roles field.

Extract the SAML Assertion
After you’ve obtained a SAML token from an IdP, you need to decode it to extract the SAML
assertion from its response. You then GZIP compress that assertion and base64 encode it
again before submitting it to the Mobile Hub token exchange to receive an Mobile Hub token.

One way to extract the assertion is to follow these steps:

1. Open a browser and enter the address for the identity provider:

For example, if you configured a SAML token with AD FS: https://domain_name/
adfs/ls/idpinitiatedsignon
You’re taken to the Test Local Federation page.

2. Enter the user name and password credentials for the user you created and click Sign In.

3. After the page refreshes, select the SAML app you created and click Sign in again.

You are redirected to the endpoint URL and the SAML token is displayed in the browser
URL field.

4. Copy the response beginning with SAML Response=.

5. Since you’ll need to base64 decode and inflate the SAML response, go to a SAML
decoder tool such as SAML Decoder at https://www.samltool.com/decode.php.

6. Go to the base64 Decode and Inflate page and paste the response into the Decode and
Inflate XML field.

7. Click DECODE AND INFLATE XML.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-5

https://www.samltool.com/decode.php

8. Extract the SAML assertion from the XML field.

9. Gzip compress the extracted assertion.

10. Base64 encode the assertion.

Now you can call the token exchange, pass the assertion, and receive the Mobile Hub
token.

Use a SAML Token to Authenticate with Mobile Hub
Once you have obtained a valid SAML token, you can use it to authenticate with
Mobile Hub. You do so by passing the token to Mobile Hub’s token exchange endpoint.
In exchange, you get an OAuth token issued by Mobile Hub that can be used for
subsequent API calls during the session.

Mobile Hub’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Cordova and JavaScript

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token)
;
mcs.mobileBackend.authorization.authenticate(token).then(callback).catc
h(errorCallback);

Code the SAML Token Exchange Manually
If you are not using a client SDK, you need to manually code your app to exchange
that token for a Mobile Hub token, with which you then authenticate.

1. In the app’s login sequence, call the Mobile Hub token exchange endpoint to
exchange the third-party token for a Mobile Hub-issued OAuth token:

• The token exchange request is a simple GET request with no parameters.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-6

• It must include an Authorization header of the form:

Authorization: Bearer external-token
• It must also include the oracle-mobile-backend-id header with the value of the

Basic Auth mobile backend ID for the backend that you’re using.

The token exchange endpoint is formed by starting with the base URL for your
environment (which you can get from the Settings page of a mobile backend) and
appending /mobile/platform/sso/exchange-token.

2. In all REST calls to Mobile Hub APIs, include the given token in the Authorization
header.

The header takes the form Bearer access-token.

The access-token value includes the mobile backend ID from the original request so you
don’t have to include the ID in a separate header.

JWT Tokens and Virtual Users
If you have users set up in a third-party IdP that supports JWT, you can authenticate those
users in Mobile Hub via JWT tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in IDCS):

1. You configure your backend to use HTTP Basic authentication. (This is required for you
to be able to get the token.)

You can do this by selecting the backend in Mobile Hub, selecting the backend’s
Settings page, and setting the switch for HTTP Basic Authentication to ON.

2. Your administrator configures the IdP to generate a JWT token when the user logs in.

3. Your administrator registers the third-party token issuer via a policy in Mobile Hub.

As part of this process, she can also associate Mobile Hub roles with tokens in one of the
following ways.

• By designating Mobile Hub roles to be associated with all tokens based on a given
certificate.

• By deriving role names (that match existing Mobile Hub roles) from given token
attributes.

• By mapping given token attribute values to existing Mobile Hub roles (where the
attribute values don’t already match the Mobile Hub names).

4. You code your app to do the following:

a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an Mobile Hub token exchange endpoint to get an Mobile Hub-
issued token in return.

c. Use the Mobile Hub token for all subsequent API calls to Mobile Hub.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-7

Note:

This mode of integrating with an IdP is based on enhanced features that are
specific to working with JWT tokens (such as JWKS support) and includes
other features, such as the ability to configure allowed audience values and
username attribute. You can also use the process that is used for integrating
with SAML-based IdPs, though this provides you with less flexibility. See
SAML Tokens and Virtual Users.

Register a JWT Token Issuer in Mobile Hub
Before your apps can use JWT tokens issued by a third-party IdP to authenticate with
a backend, an administrator needs to register the IdP as a token issuer in Mobile Hub.
Here’s how it works:

1. You create a configuration that holds information that is needed to integrate with
the token issuer. This integration takes the form of a JSON object.

2. You flatten the configuration into a single line.

3. Have your administrator insert the configuration as the value of the
Security_AuthTokenConfiguration policy.

See Defining Policies in Managing Oracle Mobile Hub.

Example: Minimal IdP Configuration
Here is an example of a configuration file that covers a basic use case, where:

• The user name can be derived from the token’s sub claim.

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using Mobile Hub’s virtual user (zero footprint) capability so that you don’t
need to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

• User roles are specified in a token attribute named roles.

• The token’s audience (aud) claim is set to the JWT auth token endpoint for your
Mobile Hub instance (BASE-URL/mobile/platform/auth/token) so there is no
need to override the default audience validation behavior.

{
 "issuers": [
 {
 "issuerName": "TOKEN-ISSUER-URL",
 "jwks": {
 "discoveryUri": "TOKEN-ISSUER-URL/.well-known/openid-
configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-8

]
}

Example: IdP Configuration with Audience
Here is an example of a configuration file that covers a basic use case, where:

• The user name can be derived from the token’s sub claim.

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using Mobile Hub’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Identity Cloud Service (IDCS).

• User roles are specified in a token attribute named roles.

• The token’s audience (aud) claim is set to GUID-12345678-ABCD-EFAB-
CDEF-123456789ABC (which is a value that does not match Mobile Hub’s auth token
endpoint).

{

 "issuers": [
 {
 "issuerName": "TOKEN-ISSUER-URL",
 "audience": [
 "GUID-12345678-ABCD-EFAB-CDEF-123456789ABC"
],
 "jwks": {
 "discoveryUri": "TOKEN-ISSUER-URL/.well-known/openid-configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

Example: IdP Configuration with Audience and Username Attribute
Here is an example of a configuration file that covers a basic use case, where:

• The username is specified in the unique_name claim (rather than the sub claim).

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using Mobile Hub’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Identity Cloud Service (IDCS).

• User roles are specified in a token attribute named roles.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-9

• The token’s audience (aud) claim is set to GUID-12345678-ABCD-EFAB-
CDEF-123456789ABC (which is a value that does not match Mobile Hub’s auth token
endpoint).

{

 "issuers": [
 {
 "issuerName": "BASE-TOKEN-ISSUER-URL",
 "usernameAttribute": "unique_name",
 "audience": [
 "GUID-12345678-ABCD-EFAB-CDEF-123456789ABC"
],
 "jwks": {
 "discoveryUri": "BASE-TOKEN-ISSUER-URL/.well-known/openid-
configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

Associate Roles with a JWT Token
If you want to set up role-based access for users that authenticate with JWT tokens,
you do so when registering the token issuer in Mobile Hub via the
Security_AuthTokenConfiguration policy. You have the following possibilities:

• Use roles already defined in the token that match the names of Mobile Hub roles.

You do this by creating a roleAttributes array for the issuer and populate it with
claims in the token that you want to derive roles from.

• If the role names defined in the token don’t match role names defined in Mobile
Hub, provide a mapping between the two.

You do this by:

1. Creating a roleAttributes array for the issuer and populate it with claims in
the token that you want to derive roles from.

2. Creating a roleMappings array rule to create a mapping between a role
derived from the token (via the roleAttributes array) with one or more
Mobile Hub user roles.

You can create multiple mappings.

• Apply one or more Mobile Hub roles to all tokens issued with a given certificate
(unless roles were already applied via roleAttributes or roleMappings).

You do this by creating a defaultRoles array.

• Apply one or more Mobile Hub roles to all tokens issued with a given certificate
(whether or not roles were already applied via roleAttributes or roleMappings).

You do this by creating an issuerRoles array.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-10

Convert a JSON Object to One Line
You might find it useful to have some tools to convert JSON objects from multi-line objects to
single-line objects and vice versa. Here are some examples of Python commands that you
can use for that purpose,

To output the JSON content in file /scratch/jsmith/authTokenConfig.json as a single line:

cat /scratch/jsmith/authTokenConfig.json | python -c 'import
json,sys;obj=json.load(sys.stdin);print json.dumps(obj);'

To output the JSON content in file /scratch/jsmith/authTokenConfig.json in “pretty print"
form:

cat /scratch/jsmith/authTokenConfig.json | python -c 'import
json,sys;obj=json.load(sys.stdin);print json.dumps(obj, indent=4,
sort_keys=False);'

JWT Configuration Reference
Here are the fields that can be used in the JSON object that serves as the configuration for a
JWT identity provider.

Root Fields

• issuers — Required. A JSON array of trusted issuers objects. Each trusted issuer is
defined as a JSON object, with a combination of the following fields.

• policyMinReloadInterval — Optional. If a token exchange request is received, and the
specified issuer is not found in the configuration cache, the configuration cache will
automatically be reloaded from the stored policy in order to check for changes, unless the
amount of time since the last configuration cache reload is less than the
policyMinReloadInterval. The default value for this interval is 10 seconds. The
policyMinReloadInterval configuration field can be used to override the default value
with a specified integer value in seconds.

• policyMaxReloadInterval — Optional. If a token exchange request is received, if the
elapsed time since the last time the configuration cache was reloaded is in excess of
policyMaxReloadInterval, the configuration cache will automatically be reloaded from
the stored policy in order to check for changes. The default value for this interval is 120
seconds. The policyMaxReloadInterval configuration field can be used to override the
default value with a specified integer value in seconds.

• certificatesMinReloadInterval — Optional. If a token exchange request is received,
and a required certificate is not found in the certificates cache, the certificates cache will
automatically be reloaded from Oracle Keystore Service (KSS) in order to check for
changes, unless the amount of time since the last certificates cache reload is less than
the certificatesMinReloadInterval. The default value for this interval is 10 seconds.
The certificatesMinReloadInterval configuration field can be used to override the
default value with a specified integer value in seconds.

• certificatesMaxReloadInterval — Optional. If a token exchange request is received, if
the elapsed time since the last time the certificates cache was reloaded is in excess of
certificatesMaxReloadInterval, the certificates cache will automatically be reloaded

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-11

from KSS in order to check for changes. The default value for this interval is 300
seconds. The certificatesMaxReloadInterval configuration field can be used to
override the default value with a specified integer value in seconds.

Issuer Fields

• issuerName — Required. A JSON string which specifies the issuer name. This
value must match the value of the iss claim in tokens from the associated token
issuer.

• enabled — Optional. A JSON boolean which can be used to enable or disable the
token issuer. If the token issuer is disabled, any attempt to exchange a token from
that issuer will fail. The default value is true.

• audience — Optional. A JSON array of string values, specifying valid audience
values for the external token. If the external token contains an aud claim and none
of the associated values exactly matches one of the values in the specified list,
then the external token will be treated as invalid.

The default behavior if this field is not specified (or contains an empty list) is to
compare the aud values in the external token to the following values:

– base-URL

– base-URL/
– base-URL/mobile
– base-URL/mobile/
– base-URL/mobile/platform
– base-URL/mobile/platform/
– base-URL/mobile/platform/auth
– base-URL/mobile/platform/auth/
– base-URL/mobile/platform/auth/token
– base-URL/mobile/platform/auth/token/
If none of the aud values in the external token match any of the above values, the
external token will be treated as invalid.

• virtualUserEnabled — Optional. If true the virtual user (zero footprint) feature is
enabled for this issuer, meaning your users can authenticate with third-party
tokens without having corresponding user accounts in Oracle Cloud. The default
value is false.

• usernameAttribute — Optional. A JSON string specifying the name of a JWT
token claim from which a username is extracted. If no value is provided, the value
of the sub claim will be used as the username.

• requireClientAuth — Optional. A JSON boolean which can be used to configure
whether client authentication is required for this token issuer.

– If the value is true, full client authentication is required.

– If the value is false, a token exchange request can contain a client-id value
in the POST body, with no client_secret value provided. This is intended
only for cases where devices are not able to protect the client_secret.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-12

The default value is true.

• clientIdAttribute — Optional. A JSON string specifying the name of a JWT token
claim which contains the client ID of the OAuth client on the external token issuer which
was used to obtain the external token. If a clientIdAttribute value is specified, the
specified attribute is present in a token, and its value matches the username associated
with the token, then the token exchange request will be rejected, because client tokens
shouldn’t be exchanged for Mobile Hub user tokens.

If no clientIdAttribute value is provided, this check will not be performed.

• tokenTimeoutSeconds — Optional. A JSON integer specifying the token lifetime (i.e. from
iat to exp) in seconds for Mobile Hub tokens issued in exchange for tokens from this
issuer. If this field is not specified, the token lifetime will be governed by the
Security_TokenExchangeTimeoutSecs policy. If the
Security_TokenExchangeTimeoutSecs policy has not been defined, the default token
lifetime is 28800 seconds (i.e. 8 hours).

The token lifetime is also governed by the tokenTimeoutPolicy.

• tokenTimeoutPolicy — Optional. A JSON string specifying the policy used to control the
token lifetime (i.e. from iat to exp) for Mobile Hub tokens issued in exchange for tokens
from this issuer. Three policy values are supported:

– FromTimeoutSecs — The token lifetime is governed by the tokenTimeoutSeconds
value.

– FromExternalToken — The Mobile Hub-issued token will expire at the same time the
external token being exchanged will expire (i.e. tokenTimeoutSeconds is ignored).

– FromExternalTokenLimitedByTimeoutSecs — The Mobile Hub-issued token will
expire at the same time the external token being exchanged or after the token
timeout value, whichever comes first.

If this field is not specified, the token timeout policy lifetime will be governed by the
Security_TokenExchangeTimeoutPolicy policy. If
the Security_TokenExchangeTimeoutPolicy policy has not been defined, the default
token timeout policy is FromTimeoutSecs.

• jwks— Optional. A JSON object which specifies the URI(s) and other configuration
options associated with loading keys and/or certificates from the external token issuer on
the fly.

Use this object if you are using a discovery URI to load keys and/or certificates (and you
are not using a certificateSubjectNames object).

See jwks Fields for the options.

• certificateSubjectNames — Optional. A JSON array of strings containing a list of the
certificate subject names of certificates that have been uploaded into Mobile Hub through
the Settings tab’s Credentials page. (See Register the Token Issuer in Mobile Hub.)

Use this object if you are not using a discovery URI to load keys and/or certificates (and
therefore are not using a jwks object).

• filters — Optional. A JSON array of filter objects. Each filter is defined as a JSON
object, with a combination of these fields:

– name — Required. A JSON string specifying the name of an attribute or claim to
which the filter will be applied.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-13

– type — Optional. A JSON string specifying whether the filter is an include
filter or an exclude filter.

An include filter is satisfied if the token contains a value which matches one or
more of the specified filter values (i.e. presence of a "match" causes the filter
to be satisfied). An exclude filter is satisfied if the token does not contains a
value which matches any of the specified filter values (i.e. absence of a
"match" causes the filter to be satisfied).

The default value is include.

– values — Required. A JSON array of string values which will be compared to
the value of the attribute or claim in the external token as identified by the name
field.

Filter values may contain the * character as a wildcard for matching purposes.

Each filter in the array must be satisfied in order for the external token to be
considered valid.

Note:

If a filter is specified incorrectly or incompletely (e.g. missing name,
invalid type, missing or empty values array) the filter will always be
considered to be not satisfied. The rationale is that the admin who
configured the filter was trying to filter out something, and if we cannot
figure out what that something is, it is better to err on the side of caution,
and reject the external token.

• allowedMbes — Optional. A JSON array of JSON objects which identify mobile
backends can be used with this token issuer.

You can specify a mobile backend including the name and version, or by including
just clientId.

If this field isn’t specified, the issuer can be used with any mobile backend.

Here are the possible entries:

– name — Optional. A JSON string specifying the name of a mobile backend. If
you include this field, you must also include version.

– version — Optional. A JSON string specifying the mobile backend version. If
you include this field, you must also include name.

– clientId — Optional. A JSON string specifying the OAuth client ID of a
mobile backend.

• userMappingAttribute — Optional. A JSON string identifying the user attribute
used to search for an Oracle Cloud user to be associated with the token
exchange.

This attribute is ignored if virtualUserEnabled is set to true.

The string can have one of the following values:

– uid — Search for an Oracle Cloud user whose username matches the
username extracted from the external token.

– mail — Search for an Oracle Cloud user whose primary email address
matches the username extracted from the external token.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-14

The default value is uid.

Note:

If a usernameAttribute hasn’t been configured, the username extracted from
the external token will be the value of the sub claim. If a usernameAttribute
has been configured, the username extracted from the external token will be
the value of the whatever claim is identified by the usernameAttribute value.

• defaultRoles — Optional. A JSON array of strings, where each string is the name of an
Mobile Hub role which should be granted to a virtual user in the case where no
roleAttributes value has been configured or where a roleAttributes value is
configured but the specified attributes are either absent from the external token or are
empty.

• issuerRoles — Optional. A JSON array of strings, where each string is the name of an
Mobile Hub role which should be always granted to a virtual user when a token from this
external issuer is exchanged. The difference between default roles and issuer roles is
that default roles are granted only when no roles have been found during processing of
role attributes, while issuer roles are always granted.

• roleAttributes — Optional. A JSON array of strings where each string is the name of a
token attribute (i.e. claim) which should be searched for role values. If a specified token
attribute is not present in the external token, no roles will be added for that attribute.
Otherwise, the token attribute value will be processed as follows:

– If the token attribute value contains a JSON string, the string value will be granted as
a role, subject to role mapping (see theroleMappings field).

– If the token attribute value contains a JSON array of JSON string values, each of the
string values will be granted as a role, subject to role mapping.

If no roleAttributes array is provided, the external token will not be searched for roles,
and the roles to be granted to the user will be based on defaultRoles and/or
issuerRoles configuration, where provided.

• roleMappings — Optional. A JSON array of role mapping objects, each of which
specifies a mapping from a token role value (i.e. a value obtained from roleAttributes)
and one or more Mobile Hub roles. Use this field when the values derived from role
attributes do not match Mobile Hub role names.

Here are the fields for a role mapping object:

– tokenRole — Required. A JSON string specifying a token role name.

– mappedRoles — Required. A JSON array of string values. Each string value should
match an Mobile Hub role name.

.

jwks Fields

• discoveryUri — Optional. A JSON string specifying the URI from which the token
issuer's discovery information can be loaded. The discovery information provided by the
external token issuer must be in accordance with the following specification:

http://openid.net/specs/openid-connect-discovery-1_0.html

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-15

http://openid.net/specs/openid-connect-discovery-1_0.html

The discovery URI for a token issuer will typically be of the form base-url/.well-
known/openid-configuration, but Mobile Hub does not require this to be the
case.

If a discoveryUri is configured for a token issuer, the Mobile Hub token exchange
service will make a GET request to that URL to obtain the discovery information as
needed. Once the discovery information has been obtained, Mobile Hub will
typically use the jwks_uri value specified in the discovery information to obtain
the issuer's current keys and/or certificates.

If no discoveryUri is configured, then a jwksUri value must be configured.

• jwksUri — Optional. A JSON string specifying the URI from which the token
issuer's JWKS information can be loaded. The information provided by the
external token issuer must be in accordance with the following specification:

https://tools.ietf.org/html/rfc7517

If a jwksUri is configured for a token issuer, the Mobile Hub token exchange
service will make a GET request to that URL to obtain the current keys and/or
certificates for that issuer as needed.

If both a discoveryUri and a jwksUri are specified in the configuration, the
configured jwksUri value will be used, overriding the value in the issuer's
discovery information.

• allowHttp — Optional. A JSON boolean indicating that HTTP discoveryUri and
jwksUri values should be allowed.

For security reasons, discoveryUri and jwksUri values for external token issuers
in production should always use HTTPS URLs, so that the server providing the
information can be verified using its SSL certificate. However, in certain non-
production test scenarios, it may be helpful to allow HTTP URIs to be used.

The default value is false.

• minReloadInterval — Optional. If a token exchange request is received, and the
key and/or certificate needed to validate the external token cannot be found,
Mobile Hub will automatically reload the discovery and JWKS information in order
to check for changes (e.g. key rotation), unless the amount of time since the
discovery/JWKS reload is less than this value (in seconds, expressed as an
integer).

The default value is 60.

• maxReloadInterval — Optional. If a token exchange request is received and if the
elapsed time since the last time the discovery and JWKS information was reloaded
is in excess of this value (in seconds, expressed as an integer), the discovery and
JWKS information will automatically be reloaded from the external token issuer in
order to check for changes.

The default value is 28800 (i.e. 8 hours).

• connectTimeout — Optional. A JSON integer specifying the default connect
timeout for discovery and/or JWKS requests. The default is 30 seconds.

• readTimeout — Optional. A JSON integer specifying the default read timeout for
discovery and/or JWKS requests. The default is 60 seconds

• tlsVersions — Optional. A JSON array of string values, listing the SSL/TLS which
will be allowed when connecting to the external token issuer for Discovery and/or
JWKS requests. Valid version names are:

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-16

https://tools.ietf.org/html/rfc7517

– SSL

– SSLv2

– SSLv3

– TLS

– TLSv1

– TLSv1.1

– TLSv1.2

The default value is ["TLSv1.1", "TLSv1.2"].

Note:

Older SSL/TLS versions are considered insecure, and should be avoided.

• authorizationHeader — Optional. A JSON string specifying an Authorization header
value which should be included in discovery and/or JWKS requests. In most cases,
discovery and JWKS web pages are public and no authorization is required. This
property is intended primarily for test purposes (e.g. when setting up a custom service to
act as a discovery and/or JWKS endpoint).

Obtain a JWT Token Using an Embedded Browser
If you use an embedded browser to obtain JWT tokens, you’ll need to perform the following
actions:

1. Create a delegate object (for iOS) or client (for Android) to intercept the web request that
contains the token. The delegate (or client) implements a method that allows your app to
preview any web requests. For iOS, create a UIWebViewDelegate object. For Android,
create a WebViewClient object.

2. Register the delegate or client object with the embedded browser.

3. Modify the method to look for a redirect URL or a form post URL, depending on how the
IdP is configured to deliver it.

When the specified request is located, the method should extract the token from the
query string (or post body) and indicate to the browser to stop the request and close or
hide the browser.

For either iOS or Android, you’ll need a web view class, a delegate (or client) class, and the
delegate (or client) implementation method name.

For iOS, use the UIWebView object and the UIWebViewDelegate method:

#pragma mark - UIWebViewDelegate

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:
(NSURLRequest *)
request navigationType:(UIWebVeiwNavigationType)navigationType

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-17

For Android, use the WebView client and the WebVewClient method:

public class MainActivity extends Activity {
 private Activity mCtx;
 private static final String TAG = "TokenExchange";
 private String remoteIDPURL = "https://hostname/mobile/
platform/sso/redirect/saml";
 private WebView myWebView = null;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.content_main);
 mCtx = MainActivity.this;
 myWebView = (WebView) findViewById(R.id.webview);
 initWebView();
 }
private class MyBrowser extends WebViewClient {
 @Override
 public void onReceivedSslError(WebView view, SslErrorHandler
handler,
SslError error){
 handler.proceed();
 }
@Override
 public void onPageStarted(WebView view, String url, Bitmap
favicon) {
 super.onPageStarted(view, url, favicon);
 if(url.contains("http://localhost:port")) {
 // get value of SAMLResponse form field

myWebView.loadUrl("javascript:window.HtmlViewer.showHTML" +
"('<html>'+document.getElementsByName('SAMLResponse')[0].value+'</
html>');");
 }
 }
 }
class MyJavaScriptInterface
 {
 @JavascriptInterface
 @SuppressWarnings("unused")
 public void showHTML(String html){
 Log.i(TAG, "===== html is "+html);
 String samlToken = html.substring(html.indexOf("<html>") +
6,
html.indexOf("</html>"));
 Log.i(TAG, "SAML Token = " + samlToken);
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 myWebView.stopLoading();
 myWebView.setVisibility(View.INVISIBLE);
 myWebView.destroy();
 finish();
 }
 });

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-18

 }
 }
private void initWebView(){
 myWebView.setWebViewClient(new MyBrowser());
 myWebView.getSettings().setJavaScriptEnabled(true);
 myWebView.addJavascriptInterface(new MyJavaScriptInterface(),
"HtmlViewer");
 myWebView.getSettings().setLoadWithOverviewMode(true);
 myWebView.getSettings().setUseWideViewPort(false);
 myWebView.loadUrl(remoteIDPURL);
 }
private void showMessage(final String message){
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(mCtx, message, Toast.LENGTH_LONG).show();
 }
 });
 }
}

When the app is launched, it's directed to the remoteIDPURL (the redirect URL). When you
enter your login credentials, the page is redirected. The onPageStarted method intercepts the
response and the showHTML method retrieves the token

Obtain a JWT Token Using a System Browser
If you use a system browser to obtain the token, your app must relinquish control to the
system browser app. When the login process is complete, you’ll need to return control to your
app. You can return control via a redirect to a custom app scheme for which your app has
registered.

For either iOS or Android, you’ll need to perform the following actions:

1. Register the custom scheme for your app as dictated by the operating system. The
custom scheme URL tells the mobile OS that requests to the given scheme should be
sent to your app.

2. Edit your app to handle the redirection. You’ll need to implement a method to handle the
incoming redirect, which contains the token.

Coding Your Android App to Obtain a JWT Token

For Android apps, you need to register a custom URL scheme and then code the app to
handle requests associated with that scheme. You do this by editing the
AndroidManifest.xml file:

<activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 <data android:scheme="http"
 android:host="mytest.com"
 android:pathPrefix="/"/>

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-19

 </intent-filter>
</activity>

The following example shows how to extract the token from the custom URL scheme
in the Android activity class:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.content_main);
 Uri uri = getIntent().getData();
 if(uri != null) {
 String token = uri.getQueryParameter("token");
 Logger.debug(TAG, "token is : " + token);
 }
}

When you open the link to mytest.com, you'll have the option to open the link with the
app. This will launch the Android activity from where the JWT token is retrieved.

Code Your iOS App to Obtain a JWT Token

To obtain a third-party token via a system browser for an iOS app, you need to perform
the following actions:

1. Declare a custom URL scheme by editing the app’s Info.plist configuration file.

The scheme tells the mobile operating system to route to your app the request that
contains the token.

2. Edit your app to implement the method to handle requests associated with that
scheme.

To register a custom URL scheme with your iOS app, you must include the
CFBundleURLTypes in your app’s Info.plist file. CFBundleURLTypes is an array of
dictionaries. Each dictionary defines a URL scheme that the app supports.
CFBundleURLTypes contains the following keys:

• CFBundleURLName - a string that contains the abstract name of the URL scheme.
This name should be unique. To ensure the name is unique, specify it as a reverse
DNS style of identifier, such as com.company.myscheme.

This string is also used as a key in your app’s InfoPlist.strings file. The value
of the key is the human-readable scheme name.

• CFBundleURLSchemes - An array of string s that contain the URL scheme names.
For example: http, mailto, tel, and sms.

Note:

If multiple third-party apps register to handle the same URL scheme,
there’s no way to determine which app is given the scheme.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-20

Here’s an example of how to implement support for the custom URL scheme:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLName</key>
 <string>oracle.cloud.mobile.URLDemo</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>urldemo</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 </dict>
</array>

This stipulates that any URL specifying the scheme, urlScheme, is redirected to your app.

When the iOS system browser encounters a URL with this custom scheme, it launches your
app, if necessary, and passes the URL to your app delegate. To handle incoming URLs, your
app delegate must implement the application:openURL:options: method. For example:

- (BOOL)application:(UIApplication*)application
 openURL:(NSURL*)url
 options:
(NSDictionary<UIApplicationOpenURLOptionsKey,id>*)options
{
 NSLog(@"Open URL: %@", url.absoluteString);
 NSLog(@"Open URL options: %@", options);
 if ([url.scheme isEqualToString:@"urldemo"]) {
 [self viewController].incomingURL = url;
 return YES;
 }
 return NO;
}

This implementation parses the incoming URL and extracts a ‘token’ query argument and
stores it in an instance variable for later use. The implementation assumes the token is
passed via the URL’s query string. Your implementation might differ and the token could be
stored somewhere else in the URL. After your app extracts the token from the URL, the token
can be exchanged for an Mobile Hub-issued token.

If you’re not familiar with creating URL schemes or implementing them in your app, see
Apple’s documentation, specifically Using URL Schemes to Communicate with Apps.

Use a JWT Token to Authenticate with Oracle Mobile Hub
Once you have obtained a valid JWT token, you can use it to authenticate with Mobile Hub.
You do so by passing the token to Mobile Hub’s token exchange endpoint. In exchange, you
get an OAuth token issued by Mobile Hub that can be used for subsequent API calls during
the session.

Mobile Hub’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-21

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1

Android

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Cordova and JavaScript

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token)
;
mcs.mobileBackend.authorization.authenticate(token).then(callback).catc
h(errorCallback);

Code the JWT Token Exchange Manually
Once your mobile administrator has registered an IdP as a token issuer in your
instance and you have code in your app to acquire a 3rd-party token, you can use the
Mobile Hub client SDK for your platform to handle the complete login sequence.

If you are not using a client SDK, you need to code your app to exchange that token
for a Mobile Hub token, with which you then authenticate.

In the app’s login sequence, you call the Mobile Hub token exchange endpoint to
exchange the third-party token for a Mobile Hub-issued OAuth token.

The token exchange request is an HTTP POST request, with an application/x/www-
form-urlencoded request body, to the token exchange URL: base-URL/mobile/
platform/auth/token.

The token exchange request must provide:

• The external token (a.k.a. "user assertion") being exchanged in the form
assertion=external-token.

• Client authentication for the Mobile Hub mobile backend for which a new token is
being requested, to prove that it is a valid user of that mobile backend.

Client authentication can be provided in any of the following ways:

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-22

• Encode the client_id and client_secret in basic auth form in the Authorization header.

In this case, the following headers are required:

Content-Type: application/x/www-form-urlencoded
Authorization: Bearer Base64(client_id:client_secret)

And the body of the POST must contain these values:

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token

• Encode the client_id and client_secret as application/x/www-form-urlencoded
form values in the POST body.

In this case, the following header is required:

Content-Type: application/x/www-form-urlencoded

And the body of the POST must contain these values:

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token
client_id=client-id
client_secret=client-secret

If this option is used, the client_secret can be omitted if the requireClientAuth value
in the configuration is set to false for the given issuer. This option is provided for clients
that are unable to securely protect a client secret value. Even if the client_secret is
omitted, the client_id value must still be provided, in order to identify the Mobile Hub
mobile backend for which a token is being requested.

• Provide a valid client assertion as an application/x/www-form-urlencoded form value in
the POST body.

In this case, the following header is required:

Content-Type: application/x/www-form-urlencoded

And the body of the POST must contain these values, where client-token is client token
obtained from Oracle Cloud for the OAuth client associated with the Mobile Hub mobile
backend for which a user token is being requested.

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token
client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-
bearer
client_assertion=client-token

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-23

If the token exchange is successful, the response will have a 200 status, and will
include an application/json body similar to this:

{

"access_token":"123456789iJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.abcdefiOiJqb2U
iLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ij
p0cnVlfQ.dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk",
 "token_type":"Bearer",
 "id_token":null,
 "expires_in":28800 }

User Mapping from a Third-Party IdP to IDCS
It is also possible to have enable authentication with 3rd-party tokens where there are
matching records for the users in Oracle Identity Cloud Service (IDCS). This enables
you to apply roles to users directly in IDCS.

For this matching to work, the following conditions apply:

• When registering the token issuer in Mobile Hub, your mobile administrator didn’t
select the Enable Virtual User option.

• In SAML tokens, the subject must identify the user’s username as defined in IDCS.

• In JWT tokens, the sub or prn attributes must identify either the user’s username
or email address as defined in IDCS.

User roles can be applied in any of these ways:

• Within IDCS, your administrator can assign such users the roles that are needed
to access the backend and/or APIs.

• In the process of registering the IdP as a token issuer in Mobile Hub, your
administrator can specify one or more mobile roles to give to users authenticated
with this IdP (via the default role rule).

• In the process of registering the IdP as a token issuer in Mobile Hub, your
administrator can create rules to map information extracted from the token (such
as role names) to Mobile Hub mobile roles (via role attribute rules).

If the role names defined in the IdP don’t match the role names defined in Mobile
Hub, your administrator can configure role apping rules to map the token role
names to the Mobile Hub role names.

See Mobile Users and Roles if you need info on setting up user accounts in IDCS.

Browser-Based SSO through Mobile Hub
To enable browser-based single sign-on (SSO) with a third-party identity provider in
Mobile Hub, you need to first set up that identity provider in Oracle Identity Cloud
Service (IDCS). To do so, you need to have an identity domain administrator role in
IDCS.

See Managing Oracle Identity Cloud Service Identity Providers in Administering Oracle
Identity Cloud Service.

To get your apps to work with browser-based SSO:

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-24

1. In Mobile Hub, click to open the side menu and select Development > Backends.

2. Open the backend you want the app to use and click its Settings tab.

3. Copy the OAuth Authorize Endpoint and OAuth Token Endpoint values.

4. Code your app to:

a. Open the OAuth authorize endpoint in a browser, redirect to the login screen of the
third-party identity provider.

b. Upon user login, return the authorization code to the redirect URL you have specified
in the identity provider.

c. Post the returned authorization code to the OAuth token endpoint.

The app should then receive an OAuth token in return.

Test APIs in a Backend with SSO Login
Once you add an API to a mobile backend with SSO login enabled, you can use the API’s
Test page with SSO as the authentication method. This helps you ensure that the API call
works end to end. You can test with the Mobile Hub-issued SSO token or a token from a
third-party provider.

To test a custom API with SSO login:

1. Click and select Development > Backends from the side menu.

2. Select your mobile backend and click Open.

3. In the left navbar of the mobile backend, select APIs.

4. Click the API that you want to test.

5. If the user that you plan to authenticate in the test has not yet been assigned the role that
is needed to access the API, click the Security navigation link and switch Login
Required to OFF.

6. Click the Endpoints navigation link and scroll to the endpoint that you want to test.

7. From the Authentication Method dropdown, select Single Sign-On or Bearer Token.

8. Obtain a valid SSO token for the mobile backend.

9. In the Single Sign-On Token, text field, paste the SSO token.

10. Click Test Endpoint.

If successful, a test response will appear with an appropriate HTTP code, such as 200.

Token Expiration for SSO Login
When you use SSO as your login mode, the token expires after six hours by default, meaning
that the app user will need to log in again after that time. The length of the timeout is
governed by the Security_TokenExchangeTimeoutSecs policy, which is given in seconds.
See Define Policies in Managing Oracle Mobile Hub for information on changing the policy.

Chapter 19
Enterprise Single Sign-On in Mobile Hub

19-25

Facebook Login in Mobile Hub
You can configure mobile backends to enable users to log in through Facebook. This
mode of authentication is particularly useful for apps targeting consumers (as opposed
to employees of your business).

When you enable users to log in to an app through Facebook, you can do the following
things in the app:

• Call any custom APIs that allow access with a social identity login.

• In the implementation code of such custom APIs, use the custom code SDK to call
Mobile Hub platform APIs (with the exception of any APIs that are role-based).

• Register for notifications.

The main steps for setting up an app to use Facebook for login are:

1. Registering the app itself with Facebook.

2. Configuring Facebook login in the mobile backend that the app will be using.

Note:

This mobile backend can only be used for Facebook login. If you wish to
have apps access the mobile backend using different authentication
methods, you must create a separate mobile backend for that purpose.

3. Configuring the app itself to use Facebook for logging in.

4. In the mobile backend, adding custom APIs that allow access through Facebook
login.

Register an App for Login Through Facebook
Before you can enable login through Facebook, you need to register your app with
Facebook using the Facebook SDK for your platform. From the registration process
Facebook will give you a Facebook app ID and secret which you will next configure in
Mobile Hub.

For details, see Facebook’s documentation at https://developers.facebook.com/docs/
apps/register.

Chapter 19
Facebook Login in Mobile Hub

19-26

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

Enable Facebook Login in a Mobile Backend
Once you have registered your app with Facebook, you can enable Facebook login in a
mobile backend.

1. In Mobile Hub, open the mobile backend and select the Settings page.

2. Under Social Login, switch on Facebook.

3. In the Facebook Settings dialog, enter the app ID and app secret that you obtained
when registering the app with Facebook.

4. On the same page, make sure that HTTP Basic authentication is enabled.

(HTTP Basic authentication is needed for the first part of the authentication process when
the app requests the Facebook access token.)

5. Click the backend’s Security tab and make sure that role-based access is not enabled.
(Facebook login only works with anonymous access.)

If you also want to make an app accessible through any other authentication method, create
a separate mobile backend for which Facebook Login is not enabled. Then, in the
configuration file provided by the Mobile Hub client SDK for the given platform (e.g.
OMC.plist for iOS and oracle_mobile_cloud_config.xml for Android), add the details for
that mobile backend. The app can then use both mobile backends, depending on how the
user authenticates.

Configure an App to Use Facebook Login
Once you have registered your app with Facebook and have configured a mobile backend to
work with Facebook login, you can configure your app to log users in with their Facebook
identities. You need to:

• Specify that Facebook is the identity provider.

• Provide the Facebook App ID.

• Provide the mobile backend ID and HTTP Basic anonymous key.

The easiest way to get this working is by using the client SDK for you platform, which enables
you to specify all of the credentials in a single configuration file.

Add APIs to a Mobile Backend with Facebook Login
You can add the following types of APIs to a mobile backend configured for Facebook login.

• Custom APIs that have the Login Required switch set to OFF.

• Custom APIs that have the Login Required switch set to ON and the Social Login
switch set to ON.

• Any Mobile Hub platform APIs endpoints that allow anonymous access. The Analytics
Collector, App Policies, Devices, Mobile Hub, and Location APIs all have endpoints that
can be accessed anonymously. The Database Access API and Notifications API can be
accessed from any custom API, including custom APIs that allow anonymous access.

Keep in mind that APIs that you design for use with Facebook login can not be used with
other authentication types. If you want an API’s functionality to be available for apps with
Facebook login and apps that are based on other types of authentication (such as OAuth,

Chapter 19
Facebook Login in Mobile Hub

19-27

enterprise SSO, or HTTP Basic anonymous access), you need separate variants of
the API, each with the appropriate security settings.

To add an API to a mobile backend with Facebook login:

1. Make sure that the API allows social login. For custom APIs, you can check by
following these steps:

a. Click and select Development > APIs from the side menu.

b. Select the API that you want to add and click Open.

c. In the API Designer, select the Security tab and check the settings.

2. Add the API to the mobile backend:

a. Click and select Development > Backends from the side menu.

b. Select your mobile backend and click Open.

c. In the left navbar of the mobile backend, select APIs.

d. Click Select APIs.

e. Click the + (Add) icon for the API.

Get a Facebook User Access Token Manually
For an app to authenticate through Facebook, it needs to get a user access token from
Facebook. Using the Mobile Hub client SDK for your platform simplifies this process.

However, if you are testing an API with the API tester or another tool (such as cURL or
Postman) or making the REST calls directly from your app, you need to get the user
access token yourself. If you are the person who registered the app with Facebook,
you can do this by following these steps:

1. Log into your Facebook account (the one with which you registered the mobile
app).

2. Navigate to https://developers.facebook.com/tools/accesstoken/ and find your app.

3. Click the You need to grant permissions to your app to get an access token
link to generate the token. A token is generated for you on the next page.

Note:

If you anticipate testing the app over a period of several weeks, you might
find it convenient to extend the validity of your access token. You can do so
by clicking Extend Access Token.

For more information, see Facebook’s documentation on user access tokens at https://
developers.facebook.com/docs/facebook-login/access-tokens#usertokens.

Headers Needed for API Calls with Facebook Authentication
When you call custom APIs from apps that use Facebook login, headers need to be
passed to handle authentication. If you are using Client SDKs for your platform, these

Chapter 19
Facebook Login in Mobile Hub

19-28

https://developers.facebook.com/tools/accesstoken/
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens

headers are constructed for you based on values that you have entered into the SDK’s
configuration file.

If you are making REST calls to the APIs directly from your app (or from a separate tool, such
as cURL), you need to add the following headers in your calls manually:

• Authorization: Basic {anonymousKey}
• Oracle-Mobile-Backend-ID: {mobileBackendID}
• Oracle-Mobile-Social-Identity-Provider : facebook
• Oracle-Mobile-Social-Access-Token : {YOUR_FACEBOOK_USER_ACCESS_TOKEN}

Authentication in Direct REST Calls
When your app uses the Mobile Hub client SDK, you store the authentication credentials in
one place so that you don’t need to manually insert them into each call. In addition, the SDK
handles the encoding of the username and password. However, if you are making the REST
calls directly from your app (or you are testing API calls using another tool, such as cURL or
Postman), you need to handle the authentication in each call. The value you send in the
Authorization header depends on the type of authentication.

Authenticate with OAuth in Direct REST Calls
When you have OAuth enabled as an authentication mechanism for a mobile backend, an
app can authenticate itself by sending the mobile backend’s OAuth credentials (client ID and
client secret) plus a user name and password to get an OAuth access token. If the API that is
being called does not require a logged-in user, then the user name and password are not
needed. The app then uses the OAuth token to make REST calls to APIs in the mobile
backend.

You need the following information from the Settings page for the mobile backend:

• OAuth token endpoint

• Client ID

• Client secret

• Base URL

If the API is configured to require login, you also need the user name and password for a
mobile user.

To construct a REST call to authenticate via OAuth:

1. Send the request to retrieve an access token:

a. Base64 encode the clientID:clientSecret string.

b. Set the Authorization header to Basic client id:client secret-Base64-encoded-
string.

c. Set the Content-Type to application/x-www-form-urlencoded; charset=utf-8.

d. Set the request body to the appropriate grant type and include scope:

• For access without a logged-in user, use:
grant_type=client_credentials&scope=baseURLurn:opc:resource:consumer:
:all

Chapter 19
Authentication in Direct REST Calls

19-29

• For access with a logged-in user, use:
grant_type=password&username=username&password=password&scope=b
aseURLurn:opc:resource:consumer::all. The user name and password
must be URL encoded.

e. POST the request to the OAuth token endpoint. For example, in cURL:

curl -i
-H "Authorization: Basic clientId:clientSecret–encoded-string"
-H "Content-Type: application/x-www-form-urlencoded;
charset=utf-8"
-d
"grant_type=client_credentials&scope=baseURLurn:opc:resource:cons
umer::all"
--request POST oauthTokenEndpoint

2. In the response, find the access_token property, as shown below (the value is
truncated in this example).

{"oracle_client_assertion_type":"urn:ietf:params:oauth:client-
assertion-type:jwt-bearer",
"expires_in":604800,
"token_type":"Bearer",
"oracle_tk_context":"client_assertion",
"access_token":"eyJhbGciOiJ...FIqFiA"}

3. Copy the access_token property’s value into the value of the Authorization
header.

The header takes the form Bearer access_token.

Authenticate with HTTP Basic in Direct REST Calls
When you have HTTP Basic enabled as an authentication mechanism for a mobile
backend, an app can authenticate itself by sending the mobile backend ID, a user
name, and a password. You pass the username and password as a Base64–encoded
string. If the API that is being called is set to allow anonymous access, then you pass
an anonymous access key instead of a user name and password.

Remember, if your app uses the Mobile Hub client SDK, the authentication credentials
are stored in one place so you don’t need to manually insert them.

To authenticate with Mobile Hub using HTTP Basic, you send a method to any
platform endpoint with these headers:

• Oracle-Mobile-Backend-ID: The mobile backend ID is listed on the Settings tab
for the mobile backend.

• Authorization: Basic: For basic authentication this header should include the
mobile user’s name and password encoded in Base64 or the anonymous key. If
the anonymous key is available, it will also be displayed on the Settings tab for the
mobile backend.

For example:

curl -X GET
 -H "Authorization: Basic {Base64 of

Chapter 19
Authentication in Direct REST Calls

19-30

mobileUsername:mobileUserPassword} or {anonymousKey}"
 -H "Oracle-Mobile-Backend-ID: {mobileBackendID}"
 {baseUri}/mobile/platform/users/~

For this call, the response would be one of the following:

• In the case of 200: Success, the payload returned from Mobile Hub contains a JSON
object with the user information.

• In case of an error, a JSON error message is returned.

For help with Base64 encoding, see Base64 Decode and Encode.

Secure Cross-Site Requests to Oracle Mobile Hub APIs
In addition to setting authentication methods, it’s very important that you manage cross-origin
resource sharing (CORS) for access to Mobile Hub APIs. You do so through the
Security_AllowOrigin environment policy.

See Oracle Mobile Hub Policies for a rundown of environment policies and how to use them.

For browser-based applications, particularly those that use Single-Sign On (SSO)
authentication, you should either not allow cross-site access at all or restrict access only to
trusted origins where authorized applications are known to be hosted to mitigate vulnerability
to Cross-Site Request Forgery (CSRF) attacks. If you're not using browser-based
applications, it’s best to use the default value, disallow, for Security_AllowOrigin.

Control cross-site access by setting the Security_AllowOrigin environment policy value to
either disallow (the default value) or to a comma separated list of URL patterns, which
specifies a whitelist of trusted URLs from which cross-site requests can be made. If the origin
of a cross-site request matches at least one of the patterns in the whitelist, the request is
allowed.

For example, the URL value for Security_AllowOrigin might look like this:

https://myexample.com, https://*.example.com, https://*.example2.com
When specifying a URL, note the following:

• You must include the port, unless you are using the default port for the URL scheme. For
example, the pattern http://www.example.com matches the URL http://
www.example.com or the URL http://www.example.com:80, but not http://
www.example.com:8080.

• When specifying values for Security_AllowOrigin, don’t include path parts and don’t
include a trailing forward slash, ‘/’, character. For example, the pattern http://
www.example.com/ won’t match http://www.example.com.

• You can use an asterisk (*) as a wildcard character within a URL segment but it doesn't
apply across dot (.), forward slash (/), or colon (:) characters.

For example, if the URL is https://example.example.com:8080, the following patterns
match:

– https://*.example.com:8080
– https://*.example.com:*
– https://ex*.example.com:*

Chapter 19
Secure Cross-Site Requests to Oracle Mobile Hub APIs

19-31

https://www.base64encode.org/

These patterns, however, won’t match:

– https://*.example.com*
– https://example*.oracle.com:*
These restrictions are designed to prevent matching unintended sites.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Chapter 19
Secure Cross-Site Requests to Oracle Mobile Hub APIs

19-32

20
The Express API Designer

The Express API Designer enables you to create an API using sample data. This data-first
approach lets you build an API quickly and with a minimum of effort. This designer is an
alternative to the API Designer, where less code is generated, but you have more control of
the API definition. Which API Designer Should I Use? gives you a more detailed comparison.

Note:

Mobile Application Accelerator (MAX) is deprecated and may be desupported in a
future release.

How Do You Get Started?
Using the Express API Designer, you get a set of generated endpoints when you paste in a
set of sample data that's formatted as a JSON instance. Within the context of the API
Designer, this collection of endpoints is known as a resource. Resources are the building
blocks of the API.

How Do You Use the API?
With your methods sketched in, you can then start using the API as part of your development
effort by testing its endpoints and taking a look at mock data that it returns. Your service
developers can implement a service for this API using JavaScript and Node. For more design
and customization options, use the API Designer instead. See Custom API Design.

What are Resources?
A resource represents a real world object and the operations that can be performed upon it.
In other words, the GET, POST, and PUT operations on the /incidents endpoint would
simply be known as an “incident”.

Create An API
1. Click the side menu (), choose Development and then APIs.

2. Click New API and then choose Express API.

3. Complete the New Express API dialog by adding the API’s name, its display name, and
the description for the Service Catalog in the MAX Designer. When you’re done, click
Create.

By completing this dialog, you open the Express API Designer. The Express API
Designer defaults to its General page, where you can the change the API name or
description. Now you’re ready to add a resource.

20-1

4. Click Resources in the left navbar, then click New Resource to open the Create
Resource wizard. This is a top-level resource, so you can't use it as a child
resource.

5. Describe your resource by adding a name, a display name, and a brief description.
Enter a display name in plural form for the collection. The name and description
that you enter here display in the Data Palette in MAX.

When you add a resource to your API, Mobile Hub creates a set of CRUD
methods on these endpoints and constructs the JSON request and response
schemas for you as well. To find out more about creating these schemas on your
own, see Create Resources with JSON Schemas, but if you want to see the ones
that Mobile Hub creates for you, click Export RAML () to download a a RAML
file, or toggle between the designer and the RAML document by selecting Enter
RAML Source Display Mode ().

Resources typically have two GET methods: one that returns a single item of an
object, and one that returns multiple items (a collection). If you select Also expose
a collection of these resources, Mobile Hub creates both GET methods and
labels them Find and List, respectively. If your API supports create actions
(POSTs), you need to add a collection.

Not all resources require both GET methods (or other methods that Mobile Hub
creates for you, like POST, PATCH, and DELETE). You can remove any methods
you don’t want from the Express API Designer after you’ve finished creating the
current resource.

6. Click Next and then add JSON arrays or instances of sample data in the Sample
Data page. This is the mock data that helps you test the API. Within MAX, the
mock data helps users visualize their app.

7. If you don’t want to add sample data now, click Finish to exit the Create Resource
wizard and go back to the Express API Designer. You can add fields and sample
data from here later on. Otherwise, click Next to review the fields created from the
sample data.

Chapter 20
Create An API

20-2

Click the Sample Data tab to review the sample date you previously entered. Don’t worry
if field names or labels aren’t exactly what you want. You can edit all these fields from the
Express API Designer after you’re done creating the resource.

8. Click Endpoints and review all the methods created for you. When you return to the API
Designer, you can select the methods that you want your resource to use.

9. Click Finish when you’re done.

After you’ve created your resource, the Express API Designer opens so you can select the
fields and methods you want to use to complete your resource. You can also shape request
and response payloads for your methods. See Complete Your Resources.

To configure security for your API, export the RAML and then import it into the API Designer.

Complete Your Resources
When you click Resources from the Express API Designer navbar (or when you click Finish
from the Create Resource wizard), you end up on the Overview tab in the Express API
Designer, where you refine your resources by doing the following:

• Changing the resource’s display name(s) and description.

• Creating reference or child relationships. You can learn more about peer and child
relationships in Referenced Resources.

• Toggle the Include Resource Collection option to allow (or prevent) the return of
multiple items from a collection. When you select this option, the General tab displays the
methods available to a collection: List (GET /items) and Create (a POST call on a
collection).

These methods display as hyperlinks that open pages for editing the method’s requests
and responses. Request and Response Bodies tells you more about editing methods.

Chapter 20
Create An API

20-3

Add Additional Fields
1. Click the Fields tab.

For each resource, Mobile Hub creates a field called id. You can’t delete this field,
whose role is described in Fields.

2. If your resource needs more fields, click New Field and then complete the dialog
by defining the field name along with the display name and description. If you use
this API in MAX, the field names and descriptions that you enter here display in
the Service Catalog.

In addition to these display-related values, you also use this dialog to specify the
format (string, integer, geolocation coordinates, and so on) expected by this field. By
choosing the Reference field type, you can allow the field to reference the fields
defined for a peer or child resource that’s selected from the Reference Resource list.
You can find out more in Fields.

Shape the Payload for Your Resource
Once you’ve defined the fields for your resource, you’re ready to select which fields
are sent to, and returned from, the service. This is known as shaping the request and
response payloads, which you can do as part of editing the methods.

1. Click a link in the Methods tab to open the Edit Method page.

2. Choose the request or a response type along with media type.

3. Click the Shaped option and move the fields you don't want to include in the
payload from the Selected Fields window to the Available Fields window.

By default, all of the fields are included in the payload. Methods describes custom
methods and payloads.

4. Click OK to save your changes.

Chapter 20
Create An API

20-4

Add More Sample Data
Use the Sample Data tab to add the mock data that helps you test your API. Mock data also
guides MAX users as they map field data to their UI components. While Mobile Hub includes
a row of sample data in the RAML document when you create fields manually for your
resource, it may not reflect the data returned by your service. You can take a look at this
sample data by toggling the RAML display mode option (). An array of Mobile Hub-
generated sample data might look like this:

[
 {
 "id": "id0",
 "amount": "amount0",
 "name": "name0",
 "date": "date0"
 },
 {
 "id": "id1",
 "amount": "amount1",
 "name": "name1",
 "date": "date1"
 },
 {
 "id": "id2",
 "amount": "amount2",
 "name": "name2",
 "date": "date2"
 }
]

To get started populating your resource with sample data:

1. Click New Row.

2. Complete the Create Sample Data dialog.

Because this template lets you enter sample values for all of the fields that you’ve defined
for the resource, your sample data stays in step with the field schema definition.

Referenced Resources
Your resources can reference each other as peers; that is, they occupy the same level.
Suppose your API includes two resources that complement each other but are distinct. For
example, an API that returns CRM (Customer Relationship Management) data might have
two such resources: Accounts and Opportunities. The Accounts resource includes a set of
fields that describe different facets of an account, like the company name and location. The
information returned for these fields may relate to, but doesn’t overlap, the information
returned by Opportunities resource, whose fields return data that allow status meters to
measure the opportunity’s win percent. Your API might include resources that reference each
other in a different way, as a parent-child relationship. The Accounts resource might have a
subsidiary resource called Account Notes, which is wholly dependent on the Accounts
resource. If you deleted the Accounts resource, you’d delete the Account Notes resource
along with it.

Chapter 20
Create An API

20-5

You can include the fields from a referenced resource in the payloads. When the
Opportunities resource references the Accounts resource, for example, its payload for
the Find Opportunities’ 200 response includes account.id and other fields defined for
the Accounts resource.

Referencing Resources
To reference a resource:

1. Click Resources.

2. Click a resource.

3. Click Add () and then choose a child or a parent resource.

Chapter 20
Create An API

20-6

To reference a child resource, first click Add and then complete the Create Resource
dialog. Mobile Hub will create a set of method definitions for the child resource. Next,
choose the child resource from the Resource Name list.

4. Click the Fields tab. Mobile Hub lists the resource with the fields. You can choose this
resource (or other peer or child resources that you’ve reference in the API) for reference
fields.

5. Click the Methods tab and then click one of the links to open the Edit Method page. By
clicking Response–200 in the Edit Method page, you can take a look at the referenced
fields. Request and Response Bodies describes these referenced fields, which are noted
as resource.field name (like accounts.region, for example).

The payloads for the POST and PATCH requests include the reference object itself, not
its individual fields. There are no fields (referenced or otherwise) for either GET request
because they don’t include payloads.

6. Click Save.

After you’ve made your API available to MAX by publishing it, take a look at the MAX
Designer’s Service Catalog to see the various relationships between your resources.

Fields
Fields describe the different aspects of a resource. They are like properties: they describe the
data they hold by type (like a string, number, or reference) and format (date-time, URI, and so

Chapter 20
Create An API

20-7

on). Fields can behave differently depending on context (or more specifically, on the
payload definition).

Note:

The fields that populate list views in MAX are read-only, while the ones used
in form-based create and update screens can accept user input.

The Fields tab lets you take inventory of the fields for a selected object. It’s where you
can create a complete (or canonical) resource by defining all of the possible fields.
After you’ve completed the resource, you can decide which methods can accept and
return a subset of these fields by shaping the payloads in the Methods tab.

Mobile Hub adds the id field for you when you create a resource. Because of its role
as a UUID (universally unique identifier), this field acts as the primary key. You can’t
delete this field, change its field type from a string, or change it from being a primary
key, but by clicking Edit (), you can use the field editor to change its display name
and description to reflect the resource.

Methods
Mobile Hub creates a set of CRUD (Create, Read, Update, and Delete) methods for
you when you create a resource. Using the Methods tab, you can select from among
these methods, add new ones, and shape the request and response payloads.

Chapter 20
Create An API

20-8

While all of the methods are selected by default, they may not all apply to your resource. You
can select the CREATE, POST, or PATCH methods as needed, but because each resource
needs at least one GET endpoint (or two if it’s exposed as a collection), you can’t remove the
GET methods.

Custom methods (which are always POST methods) allow your resource to perform a task or
server-side action that falls outside of the functions enabled by the default set of CRUD
methods. For example, you can define a custom method that enables an upload action on an
Image component. Using the Fix-It-Fast app as an example, you could define an action to
close an incident that’s triggered by a swipe tile. Clicking New Custom Method opens the
Create Custom Method dialog that lets you define a custom method on a nested resource
(which Mobile Hub adds for you).

After you’ve created the method, you can use the Edit Method page to shape the payload of
its request body and add its responses for the 200 status code and the 500 status code. See
Request and Response Bodies.

You can delete a custom method, but you can’t delete any of the default set of methods that
Mobile Hub creates for you.

Request and Response Bodies
The Edit Methods page not only lets you change the method’s display name and description,
but also allows you to shape its request and response bodies by including, or excluding, the
fields that filter the returned data and populate the create, update, list and detail screens. You
can open this page by clicking the method links in the Overview or Methods tabs for a
selected resource, or from the read-only list of all the methods defined for the APIs that
display in the Endpoints tab.

Chapter 20
Create An API

20-9

GET Payloads
There are no request bodies for GET methods; there are only response bodies. The
Edit Methods page lets you select filtering criteria for the data returned for a list or a
detail. In MAX, these surface as query parameters.

For each 200 response, Mobile Hub adds all of the fields that you created for the
resource per the default option, Complete. While you can choose this option for detail
screens, you might want to pare down the payload for a list screen by clicking the
Shaped option. You can then shuttle the fields that you don’t want from the Selected
window to the Available window. When the subset of fields in the Selected window
suits your needs, click OK.

POST and PATCH Payloads
For POST and PATCH requests, you shape the payload with the fields that are sent to
these methods to create or update an item.

Chapter 20
Create An API

20-10

Media Types for Request and Response Bodies
As part of the payload configuration, you can set the content type as application/json,
application/octet-stream, or image/*. For binary streams (needed for image upload),
choose application/octet-stream.

Read-Only Fields
For POST and PATCH fields, you can create read-only fields by shaping the request and
response bodies. By including a field in both the request and response payloads, you allow it
to accept user input. By including it in the response body only, you confine the field to read-
only display.

By default, Mobile Hub adds the ID field to the response body because this field typically
holds a server-generated value that users shouldn’t edit. Other than the ID field, there may be
other cases where your request and response bodies don’t align. For example, to ensure that
users can’t inadvertently compromise the integrity of your data by updating the date field in
an edit screen, you’d first add the field to the response payload’s Selected window and then
update the request payload by shuttling the date field from the Selected window to the
Available window.

Sample Data
The Sample Data tab displays all of the data used by a resource for any purpose. In other
words, the data is not specific to any method. As noted in Create An API, you can add this

Chapter 20
Create An API

20-11

data manually, or derive it from the instances and arrays of sample data that Mobile
Hub uses to generate the both the resource’s fields and the resource itself.

By adding a single JSON instance similar to the following, you can complete the
resource by defining key-value pairs.

{ "desc":"Northern California Data Center",
 "region":"NA",
 "winpercent":95,
 "salesstage":"Closing",
 "revenue":550000,
 "products":"EXA-Data2, A420 Cable, I5 Routers, A10
Switchees",
 "expectedclose":"2016-07-09T02:40:25.328",
 "createddate":"2015-09-05T00:00:00.000"
 }

Tip:

Because Mobile Hub creates the id field for each resource, you don’t need
to include it your JSON.

Mobile Hub does more than just create fields from the JSON: it infers their data types
as well. From the “revenue”: 550000, key-value pair in the above sample, for
example, Mobile Hub can interpret the field type as an integer rather than as a string.

You can create your top-level resources using this data-first approach. By nesting
instances, you can create multiple top-level resources and establish reference
relationships for them. The following example shows how nesting an instance creates
a peer resource called Account:

{ "desc":"Northern California Data Center",
 "region":"NA",
 "winpercent":95,
 "salesstage":"Closing",
 "revenue":550000,
 "products":"EXA-Data2, A420 Cable, I5 Routers, A10
Switchees",
 "expectedclose":"2016-07-09T02:40:25.328",
 "createddate":"2015-09-05T00:00:00.000",
 "account":{"name":"Example Corporation",
 "website":"http://www.example.com",
 "region":"IN",

Chapter 20
Create An API

20-12

 "address":"100 Main St",
 "city":"San Carlos",
 "state":"CA",
 "country":"USA",
 "formattedAddress": "100 Main St, San Francisco,
CA, USA"
 }
 }

Using arrays, you can create top-level resources along with multiple rows of sample data:

[
 {
 "desc": "Anvils",
 "region": "NA",
 "winpercent": 30,
 "salesstage": "appointment",
 "revenue": "35000",
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Acme"
 }
 },
 {
 "desc": "Horns",
 "region": "SA",
 "winpercent": 90,
 "salesstage": "closing",
 "revenue": 25000,
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Road Runner"
 }
 },
 {
 "desc": "Bank Vaults",
 "region": "EU",
 "winpercent": 25,
 "salesstage": "prospect",
 "revenue": 15000,
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Coyote"
 }
 }
]

Note:

You can only create top-level resources with sample data, so you can’t add a child
resource by nesting an array. Referenced Resources tells you how to add child
resources.

Chapter 20
Create An API

20-13

As noted in Complete Your Resources, you can add or remove fields, or change the
field display name and data type using the field editor. Because you need to define a
value for each key, your resource’s GET methods will always return a full set of data.
In cases where this may not reflect real-world scenarios, you can edit your data using
the Sample Data tab. To find out more, see Add More Sample Data.

Use the Express API Designer with MAX
While the Express API Designer can help you jump-start your API development, it’s
also the quickest way for you to develop APIs for use with Mobile Application
Accelerator (MAX).

Note:

Mobile Application Accelerator (MAX) is deprecated and may be
desupported in a future release.

MAX is a web-based development environment for mobile apps that caters to business
users. Resources developed in the Express API designer can be treated as business
objects that can be easily incorporated into MAX apps.

Tip:

If you want hands-on experience with using business objects to build a
mobile app, follow the Create a Mobile App in Record Time with MAX!
tutorial.

How Do I Surface My API in MAX?
After you’ve defined the resources, you can make your API available to MAX by
publishing it. Any API that you publish for use in MAX must include resources, not
endpoint definitions. Because MAX has no concept of endpoints, it can’t discover them
and therefore can’t surface your API for MAX users. To allow mobile apps running on
smartphones (via the MAX App) to access the API, you need to publish both the API
and its implementation. If there are multiple environments, you must deploy the API
and its implementation prior to publishing them.

Note:

Take a look at Exploring Services to find out about more about the role of
business objects in the MAX Designer.

Who Uses MAX?
There are two types of MAX users:

• Mobile Hub developers (mobile app developers and service developers), who use
MAX as part of their testing

Chapter 20
Use the Express API Designer with MAX

20-14

https://apex.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:17437

• Business users, who create line-of-business (LoB) apps.

To create these apps, MAX users don’t need to know platform-specific languages, nor do
they even need to know anything about Mobile Hub in particular: a business user may be
completely unaware that a mobile backend manages the app that he’s building, or that a
custom code API enables his app to use enterprise data.

These users access MAX in different ways: developers access MAX from within Mobile Hub
by clicking MAX Apps in the left navbar. Because they focus on building apps (rather than
the backend services that these apps consume), business users access MAX directly after
they log into Mobile Hub. Unlike Mobile Cloud developers, business users are MAX-only
users: they’re granted the BusinessUser role, so they never see Mobile Hub (and can't log
into it).

Enable Uploadable Images
Users of MAX apps can upload images when the Image component is mapped to a business
object that includes an upload action. You can add this action by creating a custom function
for your business component, which is a POST method on a nested resource. To create this
action:

1. Click Add New Custom Method. The path for this custom method points to a backend
action. For example, the path for the POST might be something like/opportunity/{id}/
uploadpicture.

2. Because you’re sending binary streams through this API, you need to select application/
octet-stream as the media type for this method’s request in the Edit Method page. This
media type signals MAX that this action supports binary streams.

3. In MAX’s Data Mapper, populate the Image component’s Source field with the
appropriate business object field.

4. To enable the action on the mapped field, clear the Read Only option in the Image
component’s Properties page. When you clear this property, MAX superimposes an edit

overlay () on the image component in the Preview. It allows MAX to populate the
Data tab’s Image Update Action menu with actions that support binary streams.

Chapter 20
Use the Express API Designer with MAX

20-15

Tips for User-Friendly Business Objects in MAX
You can help business users pick services and map data by adding metadata in
Mobile Hub.

Chapter 20
Use the Express API Designer with MAX

20-16

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The API metadata entered in the General Page of the
API Designer:
• API Display Name
• Short Description
• icon

The service name and description in the Service
Catalog:

Chapter 20
Use the Express API Designer with MAX

20-17

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The endpoint description and display name for top-level
resources entered in the Endpoints page of the API
Designer:

• Business object name and description in the Data
Palette:

• The Data Source page of the Add Data QuickStart
and the Data Mapper:

Chapter 20
Use the Express API Designer with MAX

20-18

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The property members of the schema definition
(including the description key) that are defined for the
GET response:

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {
 "id": {
 "type": "string",
 "description": "Unique incident
ticket number"
 },
 "problem": {
 "type": "string",
 "description": "Short description
of the incident"

• The field names and descriptions in the Fields tab
of the Data Palette

• The Data page of the Add Data QuickStart and the
Data Mapper:

Chapter 20
Use the Express API Designer with MAX

20-19

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The display name and description for endpoint methods
entered in the Endpoints page of the API Designer:

The Actions tab of the Data Palette:

The title key in the schema:

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "patch-incident",
 "title": "Update Incident",
 "type": "object",

...

 }

The Configure Action page of the Properties Inspector:

Chapter 20
Use the Express API Designer with MAX

20-20

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

GET method Query definitions for the request
parameters entered in the Endpoints page of the API
Designer:

The Query page of the Add Data QuickStart and the
Data Mapper:

Chapter 20
Use the Express API Designer with MAX

20-21

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The $ref definition that point to other top-level
resources in the GET response schema definition.

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {
 ...

 "customer": {
 "$ref": "incident-customer",
 "title": "Details of customer who
logged the incident."
 },
 "location": {
 "$ref": "IncidentLocation",
 "title": "Location where the
incident occurred"
 }

• The Fields tab of the Data Palette. Reference

objects are identified with a chain link ().

• The Data page of the Add Data QuickStart and the
Data Mapper

Chapter 20
Use the Express API Designer with MAX

20-22

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The display name and description for endpoint methods
entered in the Endpoints page of the API Designer:

The Related Objects tab of the Data Palette (under
Reference Objects):

The display name and description for nested resources
that are entered in the Endpoints page of the API
Designer:

The Related Objects tab of the Data Palette (under Child
Objects):

Chapter 20
Use the Express API Designer with MAX

20-23

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

The property members of the schema definition
(including the title key) that are defined for the GET
response for a nested object.

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "incident-activity",
 "title": "Incident Activity",
 "type": "object",
 "description": "A single activity
reported on an incident.",
 "properties": {
 "incidentId": {
 "type": "string",
 "description": "Incident
Identifier that this activity record
belongs to"
 },
 "firstName": {
 "type": "string",
 "description": "The first name
of the person who created the activity"
 },
 "lastName": {
 "type": "string",
 "description": "The person's
last name"
 },

The Data Source page Data pages of the Data Mapper
and the Add Data QuickStart for a detail screen.

Chapter 20
Use the Express API Designer with MAX

20-24

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

Mock data defined for requests and responses in the
API Designer:

{
 "id": "inc-201",
 "problem": "Incident New",
 "description": "I learned that beneath
my goody two shoes lie some very dark
socks.",
 "createdOn": "2015-08-18",
 "lastUpdatedOn": "2015-08-20",
 "picture": "/builtin/images/broken-
water-heater.png",
 "status": "open",
 "priority": "medium",
 "customer": {
 "id": "cus-101",
 "username": "julie.simpson",
 "firstName": "Julie",
 "lastName": "Simpson",
 "mobile": "6505067000",
 "home": "5105552121",
 "email":
"julie.simpson@springtime.com"
 }

• The Live Data view for both the Data Mapper and
the Add Data QuickStart:

• The Preview:

Chapter 20
Use the Express API Designer with MAX

20-25

The metadata that you enter in Mobile Hub... ...Is surfaced here in MAX

Video: An Introduction to Mobile Application Accelerator (MAX)
To see how you can build, test, and publish mobile apps using MAX, take a look at this
video:

Video

Create Resources with JSON Schemas
As an alternative to the Express API Designer, you can build an API with resources
using the API Designer.

If you use the API Designer instead of the Express API Designer, you need to enable
your API to surface in the MAX Designer by creating JSON schema definitions on its
endpoints. These schema define the resources, their fields, and their methods. You
can build these schemas from scratch, or you can import a RAML file (even the one
generated by the Express API Designer). To get a comprehensive view of creating an
API for MAX including adding JSON schemas, go through the tutorial, Shaping MCS
APIs for MAX .

Chapter 20
Create Resources with JSON Schemas

20-26

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:16865
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html

Tip:

Before you read on, take a look at the JSON schema specification.

Fields
To create fields, you need to define JSON schemas for the endpoint requests and responses.

These schemas define the fields as property members, like name and website in the following
example:

{
"$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",
 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
…
}

They also designate the kind of data that the fields can hold and the kind of user input and
actions that they allow.

Chapter 20
Create Resources with JSON Schemas

20-27

http://json-schema.org/documentation.html

Field Types, Formats, and Enums
Define the kind of data that your field holds by using combinations of the JSON
schema type, format, and enum keywords.

Some things to keep in mind:

• Define enumerated values (enums) in the schema so that business users won’t
have to enter them as fixed values in the MAX Designer. For example:

"region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]

• When defining the field format for a date, we recommend UTC (Coordinated
Universal Time):

"properties": {
 "lastUpdatedOn": {
 "type": "string",
 "format": "date-time",
 "description": "When the incident was last updated"
 },

Field Formats
You can add constraints on the values that users enter by adding validators like
required, minlengnth, maxLength, minimum, and maximum to the property:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "postOpportunity",
 "type": "object",
 "allOf": [
 {"$ref": "opportunity"}
],
 "required": [
 "desc",

Chapter 20
Create Resources with JSON Schemas

20-28

 "region"
]
}

For fields that require input in a special format like a phone number, use the pattern keyword
and then define a regular expression:

"pattern": "^(\\([0-9]{3}\\))?[0-9]{3}-[0-9]{4}$"

In the following example, a schema called account that defines all of the base fields for a
business object. Notice the type keyword defines the kind of data allowed in each field
(string).

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",
 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "address": {
 "id": "address",
 "type": "string"
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
}

For a base object, the properties don’t include an ID (defined as aid in the following
example). IDs aren’t present when POST calls create records. Instead, the ID is assigned by
the server. The following schema defines a field for the account ID called aid, which allows

Chapter 20
Create Resources with JSON Schemas

20-29

data to be returned by a GET call. In addition to the account ID, this schema allows all
of fields defined for the account schema as well, because it includes the allOf
keyword and assigns account as the pointer to the ref keyword.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

Child Objects
By defining a schema for a nested resource, you can create a child object. Unlike a
reference (or peer) resource, a child object can’t exist on its own. It only has meaning
within the context of its parent resource.

The following schema defines a child object for the nested resource, /accounts/
{aid}/opportunities. In this example, the canonical (or base) link returns the child
object’s resource (opportunities). The links keyword gives the location for the child
resource, opportunities.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccountOpportunities",
 "type": "array",
 "items": {
 "$ref": "getOpportunities"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/opportunities?aid={aid}"
 }]
}

Tip:

You can have different links defined in an array.

Chapter 20
Create Resources with JSON Schemas

20-30

This example shows a schema on another nested resource, /opportunities/{oid}/notes to
return the notes for a specific opportunity. In this case, the nested resources defines a
grandchild object using the ID (oid) as part of the canonical link:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getOpportunityNotes",
 "type": "array",
 "items": {
 "$ref": "getNotes"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/custom/CRM/notes?oid={oid}"
 }]
}

Fields Behaviors for List, Details, Create, and Update Screens
Field behaviors can be described as summary, creatable, and updatable, that is, whether
fields can accept user input, like those in a create or update screen, or appear as a read-only
field in a list component.

These behaviors – and their related collection, create, read, update, and delete actions – are
based on endpoints. By defining schemas for an endpoint’s request and response, you tell
MAX how it can use these fields to populate the different types of screens created by the
QuickStarts.

Every business object needs at least one endpoint. Some might require more than one. For
example, you can define GET and POST methods on a top-level resource (like /employees).
Its GET method allows users to return all of the fields defined in the schema for the response.
The schema defined for the POST method’s request defines the fields that can be used to
create an item. To return a specific item, define a GET method on a nested resource (/
items/{id}).

Note:

In MAX, POST methods are always used for fields used for create actions. Read
actions are always GET methods.

Chapter 20
Create Resources with JSON Schemas

20-31

Field Behavior Description Used in These
MAX
Components

Method Tips

Collection Returns multiple
items (or records)
of the
object. Calls GET
 on the collection
resource (/
items) to return
all fields. See
Collection
Actions.

• List
Components

• DVT
Components

GET Specify the fields
that you want to
include in the
schema for a
collection
endpoint. Add
mock data field
values for the
request and the
response.

Read Gets a single
item of the
object. Calls GET
 on the item
resource (/
items/{id}) to
return the
properties for an
item. An object
can be a
singleton, in
which case this
calls GET on the
item resource (/
item). See
Collection
Actions.

Detail Screen
(read-only fields
in a Form
component)

GET

Create Creates a single
item of the
object. Calls POS
T on the
collection
resource (/
items) with a
request body that
contains all of the
creatable fields
(which can be
either required or
optional), along
with the user-
provided values.
This returns the
new object with
its new unique ID
(which can be
used
subsequently in a
read action). See
Create Actions.

Create Screen
(form fields)

POST Specify the fields
that should be
included in
Create screens in
the schema. Add
mock data field
values in the
request and
response.

Chapter 20
Create Resources with JSON Schemas

20-32

Field Behavior Description Used in These
MAX
Components

Method Tips

Update Updates a single
item of the
object. Calls PAT
CH on the item
resource (/
items/
{id}) with one or
more updatable p
roperties. See
Update Actions.

Edit Screen (form
fields)

PATCH (and
sometimes, PUT)

Specify the fields
that users can
update in the
schema. Provide
mock data for the
field values for
the request and
response. You
should consider
using the PATCH
method because
it updates the
server with only
the fields that
have been
modified. See
Update Actions
with PUT.

Delete Deletes a single
item of the
object. Calls DEL
ETE on the item
resource (/
items/{id}).
See Delete
Actions.

DELETE

Collection Actions
Typically, collection actions are based on two different GET methods.

One endpoint returns a list of multiple items of the object using the top-level resource. The
other returns a particular item and uses a nested resource. Together, these two endpoint
definitions represent a single resource that supports both the collection and read actions.

This example shows a schema for the response for collection action. In this case it’s a GET
method on the top-level resource, /accounts.

{
 "$schema": "http://json-schema.org/draft-04/schema#",

Chapter 20
Create Resources with JSON Schemas

20-33

 "id": "getAccounts",
 "type": "array",
 "items": {
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 },
 "name": {
 "id": "name",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
 }
}

This example shows the schema for the response of a read action, defined for a GET
action on a nested resource (/accounts/{aid}):

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

Chapter 20
Create Resources with JSON Schemas

20-34

Collections Defined from a Single Resource
You can create a resource that returns a list of items using a GET endpoint on a single
resource. In this case (which is more the exception than the rule), there isn’t an additional
endpoint for retrieving an individual item. In the following example, the Analytics resource has
a collection action that returns a list of metrics (GET /stats). However, it does not use an
endpoint that points to a specific resource (like GET /stats/{sequence}) to return an
individual metric. The JSON response can be an array or an object. Objects include
information about the data set, such as the number of items in the set, a token for the next
set of items, and so on.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "stats",
 "title": "Analytics",
 "type": "object",
 "properties": {
 "metrics": {
 "type": "array",
 "description": "Metrics are individual measurements related to
incident activity, techncian performance",
 "items": {
 "type": "object",
 "properties": {
 "month": {
 "type": "string",
 "description": "Date Dimension for which a data point is
provided"
 },
 "technician": {
 "type": "string",
 "description": "Technician for whom the data is provided."
 },
 "radius": {
 "type": "number",
 "description": "radius in miles from the technician location,
where incidents were reported."
 },
 "incidentsAssigned": {
 "type": "number",
 "description": "Incidents Assigned to Technician"
 },
 "incidentsClosed": {
 "type": "number",
 "description": "Incidents Closed by Technician"
 }
 }
 }
 }
 }
}

Chapter 20
Create Resources with JSON Schemas

20-35

Note:

MAX can only detect objects that have one top-level array. MAX can't detect
the primary collection when an object has more than one top-level array like
metrics2 in the following snippet. In cases like this, the MAX can't make this
collection available for data mapping.

{
 "count": 2,
 "metrics1": [
 {...}
],
 "metrics2": [
 {...}
]
}

Create Actions
You can add a create action by defining a POST method.

You can define the creatable fields in the JSON schemas for both the POST request
and response.

The following example shows a schema for the POST request called postAccount that
defines creatable fields from the referenced account schema. Some of the fields
returned from the account schema are optional, but in this schema, the name and
region are designated as required fields; app users can’t create a new item without
defining them.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "postAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "required": [
 "name",
 "region"
]
}

In addition to these required fields, the allOf keyword allows app users to add values
into any of the fields defined in the account schema (shown below) to create new
items. While the name and region fields (which are also defined in the account
schema) are required, the other fields are optional.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",

Chapter 20
Create Resources with JSON Schemas

20-36

 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "address": {
 "id": "address",
 "type": "string"
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
}

Note:

In MAX, the POST method is the only way to enable create actions. Having a POST
method enables MAX to populate create screens with fields that allow user input
(creatable fields). If a business object doesn’t have a POST method, then app users
won’t be able to create items.

Content Types for Creatable Fields
At runtime, mobile apps return the content types specified in the POST endpoint, which can
be application/json or application/x-www-form-urlencoded. You can specify
application/x-www-form-urlencoded as the content type for a creatable field in the POST
request, but also specify application/json as the content type for the read only fields
returned by the response.

Chapter 20
Create Resources with JSON Schemas

20-37

Read Only Fields
To create read-only fields in a form, define fields in the JSON schema for the POST
response that have no counterparts in the POST request schema. In the following
table, the getAccount schema, which is defined for the POST response, includes the
aid field, which holds the server-generated ID for an account. Because this is a read-
only value, one which app users shouldn’t update, it’s not included in the field
definitions of the POST request schema, postAccount, or the account schema that it
references.

Response Schema Request Schema

{
 "$schema": "http://json-
schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

{
 "$schema": "http://json-
schema.org/draft-04/schema#",
 "id": "postAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "required": [
 "name",
 "region"
]
}

Update Actions
You can allow users to update a field's value by defining a JSON schema on a PATCH
endpoint.

Schemas for PATCH endpoints enable MAX to populate edit screens (and other forms)
with updatable fields. When forms are modified using PATCH, only the fields that users
have updated are sent to the server, not the entire object.

Note:

When you define your PATCH endpoint, always specify the content in the
request body as type as application/json instead of the JSON patch
format (application/json-patch+json).

Update Actions with PUT
In addition to the PATCH method, you can make fields editable by defining a JSON
schemas for the requests and responses of a PUT method.

Chapter 20
Create Resources with JSON Schemas

20-38

Although you can use both PUT and PATCH for update actions, keep in mind that the PUT
method replaces all of the fields defined for a schema object (even if none of them have been
modified). That means that the request payload must include the entire object. The request
payload for the PATCH method, on the other hand, includes only the fields that have
changed. Because of this, we recommend using PATCH (if the service supports it, that is).

Delete Actions
The delete action is defined for an object. It enables users to remove an entire record, not
just a field.

You can define a DELETE method on a nested resource like /accounts/{aid}, for example.

Custom Actions
In addition to the CRUD actions, resources can also have custom actions that require custom
code, transactional semantics, or unique processing on the objects.

In general, custom actions don’t return a payload. Instead, they perform server-side tasks
and return success and failure responses.

Keep the following in mind when you create a custom action:

• Use POST methods for custom actions.

• Create the POST method for a nested resource like /incidents/{id}/closeIncident.

• If needed, define a request body for the POST method.

• Use a JSON hyper-schema links property to define the sub-resource. For example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {...},
 "links": [
 {
 "rel": "self",
 "title": "Incident",
 "href": "/incidents/{id}",
 "method": "GET",
 "targetSchema": {"$ref": "incident"}
 },

Mock Data
Creating mock data for the fields defined in your JSON schemas helps you test the API.
When you define these values, be sure that they align with the fields that you’ve defined in
your schema.

Chapter 20
Create Resources with JSON Schemas

20-39

Note:

Take care when you define your mock data, because Mobile Hub doesn’t
verify mock data against a schema.

Which API Designer Should I Use?
When creating your APIs, you can use either the API Designer or the Express API
Designer. Which you choose boils down to a few important factors:

• If you want full control of the development process, choose the API Designer.

• If you’d rather get going fast with no coding, or you need to develop APIs to use
with the Mobile Application Accelerator (MAX), the Express API Designer is your
best bet.

This table highlights some of the key differences:

Category API Designer Express API Designer

Overview Enables you to define custom
APIs in a visual editor that
gives you control over
endpoint definition and
security. You can also define a
schema, resource types, and
traits. You implement the API
by writing a Node.js module.

Enables you to use sample
data to quickly create APIs
without writing any code.
Based on the sample data you
provide, the designer
generates resources with GET,
POST, PATCH, CREATE, and
DELETE methods.

Chapter 20
Which API Designer Should I Use?

20-40

Category API Designer Express API Designer

Who’s it best for? • Developers who want to
craft, or explicitly design,
a custom API.

• Developers who prefer
working with the details,
such as defining the
method requests and
responses, configuring a
schema, and setting
security

The focus is on flexibility and
control of the development
process.

• Developers needing an
API with only the basic
CRUD operations (create,
read, update or delete),
who want to get up and
running quickly.

• Developers who want to
jump-start their API
designs before switching
to the API Designer for
fine-tuning.

• Developers creating APIs
for use with Mobile
Application Accelerator
(MAX).

The focus is on speed,
creating a spec to export to
the API Designer for further
development, and creating
APIs to use with MAX.

Can use to set secure
access?

Yes. You can add user
authentication and role-based
access to resources.

No. However, you can export
the RAML to the API Designer
and add role-based security
settings with the tools there.

MAX Friendly? Yes. But you must shape the
API to surface in the MAX
Designer by defining the
JSON schema (one built from
scratch, or a RAML file
generated by the Express API
Designer).

Yes. You create an API with an
object-centric focus. This kind
of API can be used out-of-the-
box to build mobile apps with
MAX.

Coding needed? Yes. After you define the
custom API’s REST endpoints
with the API Designer, you
then need to implement
internal logic through Node.js.

No, though you can modify the
generated implementation.

Chapter 20
Which API Designer Should I Use?

20-41

21
Custom API Design

In Oracle Mobile Hub (Mobile Hub), you can create custom REST APIs that can be used by
your mobile apps. If you’re a mobile app developer, use the API Designer to sketch out and
test the endpoints that you define and then have a service developer fill out the details of the
API (add resource types or traits, provide a schema, and set the access to the API and its
endpoints), and implement it in JavaScript. If you’re a service developer, use the API
Designer to explicitly configure a complete API that you can test with mock data. Alternatively,
you can generate custom APIs from a REST or Fusion Applications connectors without
writing any code.

Unlike the Mobile Hub platform APIs, which provide a core set of known services, custom
APIs let you use Node.js to code any service your mobile app needs, published through a
REST interface. You can relay data by using an Mobile Hub connector to a backend service,
which transforms complex data into mobile-friendly payloads. By using custom APIs to build a
catalog of reusable services, you can save lots of time that might otherwise be spent
periodically re-creating and maintaining implementation details in your mobile apps.

If you want to create an API quickly by providing sample data and letting Mobile Hub define a
set of endpoints for you, use the Express API Designer.

API Design Process
The API Designer guides you through the process of creating a custom API.

You can quickly create a draft version of the API in just a few steps:

1. Add the basics (name of the API, the message media type, and a brief description).

2. Define an endpoint by setting a resource and at least one method for it.

3. Set access security.

4. Test your endpoint after you've defined at least one resource.

21-1

You can create mock data to quickly test and validate an endpoint even when you
haven’t completely finished configuring your API. When you define your message
body, you can provide placeholder values to verify that the correct data is being sent or
returned.

Completing Your Custom API
To fully complete your API, use the API Designer to help you add the essential
components for a robust API:

• Provide the API metadata (that is, the basic attributes of the API, which are the
API display name, API name, and short description) or, if you already have a
RAML document that contains the configuration of your API, then you can upload
it to the API Designer. All the information (metadata, resources, methods, and the
schema for the message body) is extracted from the RAML document and loaded
into the API Designer, letting you quickly proceed to testing your endpoints or
editing your API configuration.

• Add one or more root and nested resources.

• Add methods to act on the resources.

• Create a schema to describe the body of data.

• Test your endpoints during design time with sample data and make any changes
as needed.

• Allow anonymous access to your API or specify which roles can access it.

• Add documentation for your custom API

Chapter 21
API Design Process

21-2

Later on, as you create more APIs, you might find that you are repeatedly defining the same
methods, using the same parameters, etc. You can reduce the redundancy by creating
resource types and traits. If your API is still in the draft state, then you can go back into your
configuration and add the resource types and traits that you’ve defined.

Generating Custom APIs for Connectors
Oracle Mobile Hub (Mobile Hub) can generate custom code from connectors to connect to
external services. As a service developer, you can select a Fusion Applications connector or
a REST connector that has been created with a valid descriptor, generate the custom API,
and use the generated API to make it easier to call these services from the implementations
of your custom APIs, or directly from a mobile app.

A connector is a means of enabling a mobile backend to communicate with an external
service such as enterprise system or third-party APIs, which in turn, allows a mobile app to
interact with the functions of that service. A connector API is a configuration for
communicating with a specific external service to send and receive data.

As a service developer, you can generate a custom API that exposes the methods of a
connector API and provides a default implementation, without writing code.

The custom API is generated with an endpoint for each resource in the connector API, and it
is opened in the API Designer for you to continue to specify details of the API, such as roles.
The default implementation, passes through all the requests coming from the generated
custom API to the target connector API, is also generated and assigned to the generated
API. As soon as you have assigned roles to the API if they are required for security on the
connector you can use the implementation to test the API. You can download and modify the
implementation and then upload it.

Creating a Generated Custom API for a Connector

Being able to create a custom API for a connector means that it is much easier to create a
prototype which you use to test a connector. As you find things you want to change, you can
quickly make a change to the connector, and generate a new custom API and
implementation. Once you are satisfied you can generate a final version of the custom API
and implementation.

• First, you develop a REST connector or Fusion Applications connector that is defined
using a descriptor.

• Generate the custom API from the connector. It opens in the API Designer, where you
can define one or more roles or specify the authentication required by the API.

• You can immediately call the generated API from the mobile device. The default
implementation passes through all the requests coming from the generated API to the
target connector API.

• You will probably want to download the implementation and modify it to shape the data
returned.

• You may want to revisit the connector and make changes to the connector resources or
descriptor. If you do you must generate a new custom API and implementation. If you
make changes to the generated custom API, these changes are not reflected in the
connector. You should make the appropriate changes in the connector and then generate
the custom API and implementation again.

Chapter 21
Generating Custom APIs for Connectors

21-3

Limitations of Generated Custom APIs for Connectors

You can only generate a custom API for a REST or Fusion Applications connector
which is defined using a descriptor. You cannot generate a custom API for another
type of connector, or where the REST or Fusion Applications connector does not have
a descriptor.

If you want to send multipart form data or use the http options object, you might need
to replace the callConnector method in the implementation with your own code..

Generate a Custom API from a Connector
Before you can generate your custom API, you must have created the connector that
the API will be configured for. If the connector isn’t valid you’ll see a popup explaining
that you can only generate custom connector API code for:

• REST connectors that use a descriptor URL

• Fusion Applications connectors

Note:

Make sure that you have the descriptor defined for the connector, and that
you have selected the resources and methods you want to generate code
for. The connector should be as complete as possible

1. Click and select Development > APIs from the side menu.

The Connectors page appears. Select the connector API you want to generate
custom code for. You can filter the list to see only the connector APIs that you're
interested in or click Sort to reorder the list.

2. Click More and from the drop-down list, select Generate Custom API.

The Generate Custom API dialog appears.

Chapter 21
Generating Custom APIs for Connectors

21-4

3. Provide the following information for the generated custom API:

a. Title: Enter a descriptive name (an API with an easy-to-read name that clearly
identifies the API makes it much easier to locate in the list of custom APIs).

For example, myCustomAPI.

Note:

The names you give to a custom API (the value you enter in the API name
field) must be unique among custom APIs.

b. Version: Enter a version number.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

c. Name: The title you entered is automatically entered here as the name. You can
change it if you want. This name is used a unique name for your custom API.

By default, this name is appended to the relative base URI as the resource name for
the custom API. You can see the base URI below the Name field.

The custom API name must consist only of alphanumeric characters. It can’t include
special characters, wildcards, slashes /, or braces {}.

If you edit the name for the API here, the base URI is automatically updated.

Other than a new version of this custom connector API, no other custom connector
API can have the same resource name.

d. Description: You can accept the default description, or provide a brief description,
including the purpose of this API.

After you've filled in all the required fields, click Generate.

The draft API is generated and displayed in the General page of the API Designer (see
The API Designer) where you can continue to edit it.

You can find the new custom connector API listed under Development > APIs.

Completing the Custom API
The generated API opens in the API Designer.

• An endpoint exists for all the resources selected in the connector, along with an
implementation that you can use to test the API.

• By default, security is set that login is required and security is enterprise level so you
need to add the roles that can access the API. See Security in Custom APIs

As soon as you assign appropriate roles, you can test the custom API.

Edit the Implementation
The default generated implementation passed through all requests. You can edit the
implementation to shape the data returned, which is useful if there is a lot of data.

1. Click and select Development > APIs from the side menu.

Chapter 21
Generating Custom APIs for Connectors

21-5

The APIs page appears. Select the custom API that you have generated. You can
filter the list to see only the custom APIs that you're interested in or click Sort to
reorder the list.

2. Click the Implementations navigation link, select the implementation which will
have the same name as the custom API, and click Download.

3. The download is a zip file with the default name <custom-api><version>.zip.
Expand it to a suitable location. The implementation files are:

• callConnector.js, passes the client’s request to the connector, and sends
back the connector’s response.

• <custom_api>.js , provides the main body of the scaffolding of the custom
API implementation. You can uncomment lines in this to shape the data
returned from the connector.

• <custom_api>.raml, the RAML definition of the custom API.

• package.json, the package descriptor file.

• ReadMe.md, has a description of the implementation files.

• samples.txt, code samples.

• swagger.json, the Swagger definition of the custom API.

• toolsConfig.json, used by the Mobile Hub command-line development tools.

4. In an appropriate editor, open <custom_api>.js, which is the only file in the
generated implementation which you should edit.

To shape the response from the connector, uncomment the relevant lines and if
necessary change the type and limit. See the service.use examples in the
sample of <custom_api>.js below.

service.use(bodyParser.raw({type: 'application/octet-stream',
limit: '100mb'}));

and

service.use(bodyParser.text({type: 'text/*', limit: '1mb'}));

This is the first few lines of the <custom_api>.js generated implementation file.

// no need to add body-parser as a dependency in package.json -
it's provided by custom code container
var bodyParser = require('body-parser');

// passes client's request to the connector, sends back connector's
response
var callConnector = require('./callConnector.js');

/**
 * Mobile Cloud custom code service entry point.
 * @param {external:ExpressApplicationObject}
 * service
 * @see {@link http://expressjs.com/en/4x/api.html}
 */

Chapter 21
Generating Custom APIs for Connectors

21-6

module.exports = function(service) {

// uncomment if using customizer to customize binary request with content-
type 'application/octet-stream' - it will be parsed into a Buffer and
assigned to req.body. Otherwise these requests streamed through
(recommended approach if no customization is required).
//service.use(bodyParser.raw({type: 'application/octet-stream', limit:
'100mb'}));
// uncomment if using customizer to customize text request with text
content-type - it will be parsed into a string and assigned to req.body.
Otherwise these requests streamed through (recommended approach if no
customization is required).
//service.use(bodyParser.text({type: 'text/*', limit: '1mb'}));

// In the product UI, in Diagnostics -> Logs tab, ServerSetting button
allows to set backend log level: set your mbe log level to FINE (FINER,
FINEST) to see the generated custom code sdk calls.

 service.post('/mobile/custom/sample_api/emps', function(req,res) {
 // uncomment customizer to customize request and/or response
 callConnector(req, res/*,customizer*/);
 });

 service.get('/mobile/custom/sample_api/emps', function(req,res) {
 // uncomment customizer to customize request and/or response
 callConnector(req, res/*,customizer*/);
 });

...

There is a sample customizer in the same generated implementation file. You can edit it and
pass it as a last parameter to callConnector to override the request sent to the connector
and/or the connectors response. See the comments in the code for examples of what you
can do.

// Edit this sample customizer and pass it as a last parameter to
callConnector to override request sent to connector and/or connector's
response.
// Without customizer callConnector streams request to connector, then
connector's response is streamed back to client - recommended approach in
case no customization is required.
var customizer = {
 // allows to customize request sent to connector. If omitted then the
request streamed to the connector - recommended approach in case no request
customization is required.
 request: {
 // used - with post and put only - to customize request body
 // If not specified then request body is streamed directly to the
connector - no need to define this function unless you need to override the
payload.
 body: function(req) {
 console.log('customizer.request.body: req.body = ', req.body);
 var body = req.body;
 // OVERRIDE request body here - substitute this sample code:

Chapter 21
Generating Custom APIs for Connectors

21-7

 if (typeof body == 'string'){
 // to enable string parsing uncomment
service.use(bodyParser.text... - otherwise req.body would never be a
string
 body += ' customized request';
 } else if (typeof body == 'object'){
 if (Buffer.isBuffer(body)){
 // to enable binary parsing uncomment
service.use(bodyParser.raw... - otherwise req.body would never be a
Buffer
 body = Buffer.concat([Buffer.alloc(8, '00000000'),
body]);
 } else {
 // json parsing is enabled by default
 body['customized-request'] = true;
 }
 }
 console.log('customizer.request.body ->', body);
 return body;
 }/*,
 // advanced: uncomment to add options to connector request,
see https://github.com/request/request#requestoptions-callback
 options: function(req) {
 var options = {headers: {myHeader: 'myHeaderValue'}};
 console.log('customizer.request.options ->', options);
 return options;
 }*/
 },

The API Designer
The API Designer helps you configure a custom API with task-specific tabs that you
use to name your API, define its endpoints, set security, add API documentation, add a
schema, define resource types and traits, and test the API.

While you’re configuring the API, you can switch between the Design view and the
Source view. In the Design view (the default view), you enter values in fields. In the
Source view, you manually define the API’s properties in a source code editor. Click
Enter RAML Source Editor Mode to toggle between the Design and Source views.

If you already have a RAML document, then you can import it and edit it in the API
Designer. Click Upload a RAML Document or drag and drop your RAML document in
the New API dialog to download your API definition.

Note:

If you came to the API Designer by clicking the APIs navigation link from a
mobile backend, the feature to upload a RAML document is not available.

Mobile Hub APIs are based on the RESTful API Modeling Language (RAML) standard.
Once you’ve begun to configure your API, Mobile Hub generates a RAML document of
the configuration. See RAML to learn more about it.

Chapter 21
The API Designer

21-8

If you want to work on the RAML document outside of Mobile Hub, you can export it by

clicking Export RAML document at the top of the page.

Spec Out a Custom API
As a mobile developer, you might want to quickly spec out an API for your backend then
configure it later, or hand it to someone like the service developer to complete. You can
construct a functioning API with just a few steps: name your API, define an endpoint, and test
the endpoint. These next steps use a simplified FixItFast example. It doesn’t show you how to
add method parameters, or schemas, or resource types and traits.

1. Click and select Development > Mobile Backends from the side menu.

2. Select the mobile backend that you want to associate the API with from the list of
backends and click Open.

3. Click the APIs navigation link.

4. Select New API > API.

The New API dialog opens. Here’s where you enter the basic information for your API:

Select API to craft a custom API with the API Designer. Or choose Express API to open
the Express API Designer to quickly create a no-code API using sample data you
provide.

a. Enter a name in the API Display Name field that is easy to read and describes your
API. For example, FixItFast Incident Reports. This name appears in the API
Catalog, which other developers can see.

The name you give to a custom API (the values you enter in the API Display Name
and the API Name fields) must be unique. No two custom APIs can have the same
name.

b. Enter a name in the API Name field for the internal name of the API. It’s part of the
metadata of the API, that is, it appears in the custom API URI. It won’t appear in the
API Catalog, so you can use a more concise form of the display name if you choose.
For example, incidentreports.

c. Add a brief description that tells others what the API does.

5. Click Create.

The General page of the API Designer is displayed. If you want to change the name of
your API or its description, then you can do it here.

6. Select the default media type, that is, the content type of the message body. REST APIs
commonly use the application/json or the application/xml media type.

Chapter 21
Spec Out a Custom API

21-9

That’s all you need to do to set the basic information for your API. If you’d like, you
can choose a different icon to associate with the API display name or just go with
the default and select a different icon later.

7. Click Endpoints in the navigation bar to define endpoints for the API.

a. Click New Resource and enter the resource name and the display name of
the resource (the field next to the resource name field). For instance, you
could have contacts as the resource name and Customer contacts as the
display name. Resources are listed by their display names on the left side of
the API Test page. Enter a brief description of the resource so others can
understand what the resource does.

Tip: This image shows a “P” under the Methods link. When a method is
defined for an endpoint, an icon for the method appears below the Methods
link. The icons are a shortcut you can use later to quickly see what methods
are defined for the resource and you can go directly to the method definition
by clicking on an icon.

If you want to add another top-level resource, then click New Resource again
and enter names and descriptions.

b. (Optional) If you want to add a nested resource (a child resource of contacts),
click Add (+) next to the Resource name field. Enter a name, a display name,
and a description of the nested resource. Click Add (+) again to add more
nested resources if you need them.

Endpoints are what really define an API. They are the resources and the
methods that act on those resources.

8. Click Methods next to the resource display name and define a method for the
resource.

For each method, you need to define a request and a response. You can add
parameters to filter the information for the request and response message bodies
if you need them.

Chapter 21
Spec Out a Custom API

21-10

a. Click Add Method, select an operation and, optionally, add a description of the
method in the Description field.

For example, you could select a POST method to create a customer and add “Creates
a customer” as the description. Notice that a POST icon appears next to Add
Method. All methods defined for a resource have icons displayed at the top of the
page. When you want to view or edit a specific method, just click the icon for it.

b. Click Add Media Type and select the format of the request message body, which is
usually JSON or XML.

c. Add a schema (a template of the message body) or an example of the message body
using mock data. Click Example or click Schema to paste the message body.

Here’s an example body you could use for the FixtItFast example:

{
 "AddressLine":"1 Main Street',
 "City":"Anytown",
 "UserName":"user",
 "FirstName":"Jim",
 "LastName":"Smith",
 "PostalCode":"12345"
}

d. Add a response body by clicking Add Response and selecting a response code.
Don’t forget to add a description for the response body.

Using the example, you would select 201 — Created for the POST method and enter
the following description: Request fulfilled, new customer added.

Chapter 21
Spec Out a Custom API

21-11

You can add parameters to filter information for the response body. You can
also enter a response message body. If you’re using the FixItFast example,
then a response body isn’t needed for the POST method.

e. Save your method definitions by going to the top of the Methods page and
clicking Save.

9. Set security access for your API by clicking Endpoints to get back to the
Endpoints page. From there, click the Security navigation link.

10. Switch Login Required to OFF so you don’t have to provide mobile user
credentials or access tokens for authentication and click Save.

Now you’re ready to test your endpoint.

11. Click Test to go to the API testing page.

The endpoints defined for the API are listed on the left side of the page. Click an
endpoint to load it. You can see each method’s request and response
configurations for each resource.

You can check the definition of each method and if you want to modify a parameter
name or an example, enter the change in the box to the right of the field. If you
click Use Example by a message body, then the current body is copied into the
text editor and you can make any changes.

Chapter 21
Spec Out a Custom API

21-12

12. In the Authentication section, select the mobile backend that this API is associated with
and the mobile backend’s version number.

Because you set Login Required to OFF, you don’t need to specify the authentication
method or provide credentials.

If you defined more than one endpoint, then set the default test credentials so you won’t
have to fill out the Authentication field for each method. Click Default API Designer Test
Credentials at the top of the page and select the associated mobile backend and its

version number. When you click Save (), the values are applied to the Authentication
fields of each method.

13. Click Test Endpoint.

You can view the request and response status and data of the test under the Response
Status section. If you used the FixItFast example and your test was successful, then you
should see a 201 status.

That’s all you need to do to spec out your custom API. As long as the API is in a draft state,
you or a teammate can edit the API configuration as needed.

Creating a Complete Custom API
Previously, you learned how to spec out an API using the API Designer. You gave a name to
the API, added at least one resource and method and tested your endpoint. At this point you
have a draft version of the API but it isn’t quite complete. In this section, you’ll fill in more
details (such as defining the method requests and response, adding a schema, and setting
secure access) to make a more robust API. Just in case you’re starting from scratch though

Chapter 21
Creating a Complete Custom API

21-13

or want more details about setting the basics, the complete set of steps to creating a
custom API are presented.

Click and select Development > APIs from the side menu. If an API has already
been created (whether in a Draft or a Published state), you'll see a list of APIs. If no
custom APIs exist, then you'll see a page with the New API button. Click the API you
spec’d out already or click New API to get started.

Set Up Your API
Let’s use the FixItFast example to create a custom API. In this example, you work for
the FixItFast appliance repair company. You need to find a way to track the repair calls
and responses. It would also be helpful to know which technicians are assigned to the
repair jobs. You want to create an API that lists the customer service calls based on
the customer who called to report the problem, the customer location, and the
technician assigned to the job. You’ll create the following API with the following
properties:

• An API called FIFIncidentReports
• A base URI: https://fif.mcs.cloud.oracle.com/mobile/custom/fif-

incidentreport/
• An application/json media type

• An icon to associate with the API display name (a PNG file that we selected)

When you click Create, a Draft state of the API is created and added to the list of
custom APIs.

First, set the basic characteristics for your API by going to the General page.

1. Click and select Development > APIs from the side menu.

2. Select New API > API.

You select API to craft custom APIs with the API Designer.

Express API enables you to create API quickly without having to write any code
as long as you have sample data to provide

If you’re developing mobile apps with the Mobile Application Accelerator (MAX),
the Express API designer is the quickest way to develop APIs for use with MAX.

Note:

Mobile Application Accelerator (MAX) is deprecated and may be
desupported in a future release.

3. Enter a name for the API in the API Display Name field that will appear in the list
of APIs (required).

The display name can contain alphanumeric characters and special characters
(! ? & @ () _ - . ‘ “). The name can’t begin with a space and can’t exceed
100 characters.
The name you give to a custom API (the values you enter in the API Display Name
and the API Name fields) must be unique among custom APIs. For example, if a

Chapter 21
Creating a Complete Custom API

21-14

custom API exists with the API name My API, then you can’t create another custom API
with the same name.

4. Enter a name for the API in the API Name field that will appear in the API configuration
(required).

This name is appended to the relative base URI as the resource name for the API. The
API name must begin with a letter (A - Z) and can contain numbers (0 - 9) and
underscores (_). The name can’t exceed 100 characters. A validation error message is
displayed if you enter a name that’s already in use.

If you edit the name of the API here, then the change will be made automatically to the
resource name in the local URI.

5. Add a brief description of your API and click Create.

You’re taken to the API Designer page where you can complete the basic information for
your API:

• Default media type for the payload (application/json is selected by default, click
the drop-down list to select another type).

• API Catalog Properties to make it easier for you and other developers to locate the
API. Provide a brief description of your API and select an icon to associate with your
API.

If you want to use your own icon, then you can upload an icon (it must be in a PNG
format) or if you’re creative, then you can download Photoshop QuickStart to use an
icon template to create an icon. You should be familiar with using Photoshop to
create an icon. Follow the icon guidelines for sizing and color information. For sizing
information, see the Full Palette Icon section of the ALTA ICON STYLE chapter in the
Oracle Alta Web Design Guide. You’ll need a 48x48 icon image within a 70x70
canvas. For color guidelines, see the Icon Palette section of the ALTA COLORS
chapter of the same guide.

Now that you’ve provided the basic information, it’s time to define endpoints for your API.

Define Endpoints
You create resources to define the endpoints of your API. A resource is the crux of an API. It
has a type, some data associated with it, a relationship to other resources, and contains one
or more methods that act on it. A resource can be nearly anything: an image, a text file, a
collection of other resources, a logical transaction, a procedure, etc.

1. Click the Endpoints navigation link to begin.

2. Click New Resource and add some basic information.

Chapter 21
Creating a Complete Custom API

21-15

http://www.oracle.com/webfolder/ux/middleware/alta_web_icon_guide/Alta-Icon-Style/Full-Palette-Icons.html
http://www.oracle.com/webfolder/ux/middleware/alta_web_icon_guide/Alta-Colors/Icon-Palette.html

Each time you click New Resource, you create a top-level (root) resource. If you
want to add a child (nested) resource, then click Add (+) next to the top-level
resource. Click X to delete a resource.

Note:

See the icons under the Methods links? Each time you define a method
for a resource, an icon for it appears under the Methods link. Use them
as a shortcut to see what methods have already been define for a
resource. Click on an icon to go directly to its definition on the Methods
page.

3. Provide the resource path, which is the URI (relative to the base URI). For
example, if the base URI is /mobile/custom/fif-incidentreport, then you could
add the resource, incidents, that is /mobile/custom/fif-incidentreport/
incidents.

4. Provide the display name, which is a name for the resource that makes it easy to
identify in the API documentation.

Resources are listed by their display names on the left side of the API Test page.

5. Provide a brief description of the resource.

After you enter a description, the URI is displayed below the description field.

6. (Optional) Provide a RAML resource type, which is the resource type
(resourcesType:). You don't need to specify a resource type. If you want to use a
resource type but you don't have one defined, then click the Types link and define
one.

When you create a method for a resource, a symbol for that method appears below
the Methods link. You can immediately see what methods have defined for a resource
if you need to examine a resource definition. Click on an icon to go directly to that
method definition.

Chapter 21
Creating a Complete Custom API

21-16

You can clear the clutter to locate a resource more quickly by switching to Compact Mode
(it's to the right of New Resource). The compact display hides the resource description,
resource type, and path.

Add Methods to Your Resources
Methods are actions that can be performed on a resource. The Methods page shows you one
method at a time. After at least two methods are defined, you can click on the icon for a
method at the top of the page to see its details.

1. Add some methods to the resource by clicking Methods.

If the resource you're defining methods for has path parameters, then they are displayed
above Add Method.

a. (Optional) Click Required if you want the path parameters to be passed with each
method.

The parameter name is displayed.

b. Provide a display name for the parameter and example code.

c. From the drop-down list, select the valid value type for the parameter.

2. Click Add Method and select the method that you want:

Method Description

GET Retrieve or read a resource

POST Create a new resource

PUT Update a resource

DELETE Remove a resource

HEAD Read the HTTPS metadata

PATCH Perform a partial update of a resource

OPTIONS Request information, such as the options or requirements of the resource

After you've selected a method, it’s no longer listed in the method list because you use a
method only once per resource (e.g., you can't define two DELETE methods for a single
resource). An icon for each method that you define is displayed at the top of the page.
Click on a method icon to go directly to its definition.

3. (Optional) You can enter a brief description of the method in the Description field.

4. (Optional) You can enter a display name for the method.

5. (Optional) Provide any traits to apply to the method.

If you don't have any resource traits defined, click <Endpoints to go back to the main
Resources page and click the Traits link to define one. Traits let you define a collection of
similar operations. .

After you’ve defined methods for the resource, you can define the requests and responses for
those methods.

Chapter 21
Creating a Complete Custom API

21-17

Define a Request for the Method
Now that you've selected a method, define the request you're making of the service
that you want to connect to. For instance, if you selected a POST method, then now you
can define what to create. You do this by adding parameters and a request body,
which contains the description of the data to send to the service.

1. Click Request to define a request.

2. Click Add Parameter and select a parameter type: Query or Header. Select
Required if the parameter is required for the method.

a. Give the parameter a name and a display name.

b. Select a valid value type: String, Number, Integer, Date, or Boolean.

c. (Optional) Provide a description of the parameter and an example you can use
when you test the validity of the endpoint. For example, you could have a
resource, incidents, and add a query parameter, contact that takes a
number value, and another parameter, gps that takes a string value:

/incidents:
 get:
 description: |
 Retrieves all incident reports for the filters below.
 queryParameters:
 contact:
 displayName: Contact ID
 description: |
 filter reports by contact
 type: string
 example: |
 lynn@gmail.com

 required: false
 technician:
 displayName: Technician ID
 description: |
 filter reports by technician
 example: "joethetechnician"
 gps:
 displayName: gps
 description: |
 location of contact or technician
 example: "39.355589 -120.652492"

In this example, a GET method is defined with the query parameters, contact,
technician, and location.

d. (Optional) Click More Properties to add nested properties to the parameter.
Click Repeat to add multiples of the current parameter.

e. Click Add Parameter to add another top-level parameter for the method.

3. Depending on the method you selected, click Add Media Type and define the
method body. The body contains the data that you're sending to the server. For
instance if you’re defining a POST method, you’ll need to define the item you’re

Chapter 21
Creating a Complete Custom API

21-18

creating, such as a new customer listing or service request. If you’re defining a GET
method, you don’t need to send a method body so you don’t need to specify a media
type.

a. Select the media type for your method body, that is the format of the message that
you're sending, such as text, images, or web forms.

Depending on the type (for instance, you wouldn't enter a schema for an image type),
you have the option of adding a schema or an example, or both.
When defining a schema, add only the data necessary for the purpose of the
resource. That is, don’t add unnecessary data that will only slow down the
transmission and potentially increase the potential for errors.

b. (Optional) Click Schema and enter a schema (in JSON format) in the editor pane. A
schema is like a template for the body. It's what you use to define the contents of the
message.

c. (Optional) Click Example and enter an example (in JSON format) in the editor pane,
which is used by the mock implementation as a mock response for the method. Using
mock data can help you verify the behavior of your methods. The example shows
mock values for the data being sent in the message body as defined in the POST
method of the incidents resource:

body:
 application/json:
 example: |
 {
 "Title": "Leaking Water Heater",
 "Username": "joh1017",
 "imageLink": "storage/collections/2e029813-d1a9-4957-a69a-
fbd0d7431d77/objects/6cdaa3a8-097e-49f7-9bd2-88966c45668f?
user=lynn1014",
 "Notes": "my water heater is broken"
 }

4. Click Add Media Type to add additional media types. If you decide that you don't want
the method, then click X in the banner to delete it.

Define a Response for the Method
Depending on the request, you may or may not need a response. A response describes the
process for returning results from the service. You might want to define a response that
verifies that the data you requested was returned or you might want a response that just
acknowledges whether or not the request was received. Defining a response is similar to
defining a request. The main difference is that you'll need to select a status code to let you
know the result of the connection.

1. Click Response to define one or more responses.

2. Click Add Response and select the status code that you want returned.

A status code of 200 is provided by default but if that isn’t the code you want, then select
one from the drop-down list.

• 2xx indicates a successful connection

• 3xx indicates a redirection occurred

• 4xx indicates a user error occurred

Chapter 21
Creating a Complete Custom API

21-19

• 5xx indicates a server error occurred

To help whoever uses the API to understand the reason for a potential error in the
API you’re configuring, use an HTTP status code to return code that best matches
the error situation.

3. Provide a description of what the code designates.

4. Click Add Header, select a response Header or Query, provide the name of the
header or query and a display name for the header, and the valid value type for
the header.

5. Click Add Media Type and select the format of the response. Depending on the
media type you select, you can add parameters, schemas, or examples just as
you did for the Request body.

a. For text-based media type (e.g., application/json or text/xml), click
Schema to enter a schema (in JSON format) for the body.

As with the request body, add only pertinent data to the response body. Don’t
include more data than you actually need for the operation.

b. Click Example to add mock data (in JSON format) for your response body.
Use mock data to verify the behavior of your methods before testing with real
data.

c. For form-based media type (e.g., multipart/form-data), click Add
Parameter and select Required if the parameter is mandatory. Then provide a
name and select a value type. Optionally, you can give your parameter a
name.

d. For image-based media type (e.g., image/png), you don’t have to do anything
because there are no schemas or attributes to provide.

The following example shows that a response for the POST method of the incidents
resource was created with a status code of 201 indicating a new resource was
successfully created. The example also shows a return response format of
application/json, a Location header that was added, and the message body
containing mock data:

responses:
 201:
 description: |
 The request has been fulfilled and resulted in a new resource
 being created. The newly created resource can be referenced
 by the URI(s)returned in the entity of the response, with the
 most specific URI for the resource given by a Location header
 field.

 headers:
 Location:
 displayName: Location
 description: |
 Identifies the location of the newly created resource.

 type: string
 example: |
 /20934

 required: true

Chapter 21
Creating a Complete Custom API

21-20

 body:
 application/json:
 example: |
 {
 "id": 20934,
 "title": "Lynn's Leaking Water Heater",
 "contact": {
 "name": "Lynn Adams",
 "street": "45 O'Connor Street",
 "city": "Ottawa",
 "postalcode": "a1a1a1",
 "username": "johnbeta"
 },
 "status": "New",
 "driveTime": 30,
 "priority": "high",
 "notes": "My notes",
 "createdon": "2014-01-20 23:15:03 EDT",
 "imageLink": "storage/collections/2e029813-d1a9-4957-a69a-
fbd0d74331d77/objects/6cdaa3a8-097e-49f7--9bd2-88966c45668f?user=lynn1014"
 }

When you've defined your response, you can decide to test your endpoints or click
<Endpoints in the navigation bar to return to the main Resources page. From there, you can
proceed to another page in the API Designer to create a root, resource types or traits, or add
API documentation.

If you decide you don't want the method, then click X in the banner to delete it.

Test API Endpoints Using Mock Data
You can provide mock data in your request and response message bodies during the design
phase of your API configuration. This lets you examine the context of each call without having
to use real time data or interact with a real time service. For example, to test whether your
code correctly handles an invalid ID, you can add an example in your request body with mock
data containing an invalid ID. When you finish the test, you can replace the example with
other code to test some other aspect of the method.

In the FixItFast example, the mock data in the response body lets you verify if the correct
customer information is being returned. Here’s an example of mock data that the service
developer could create for the response body of the POST operation of the contact resource
in the FixItFast example:

{
 "id": 20934,
 "title": "Lynn's Leaking Water Heater",
 "contact": {
 "name": "Lynn Adams",
 "street": "45 O'Connor Street",
 "city": "Ottawa",
 "postalcode": "ala1a1"
 "username":"johneta"
 }

Chapter 21
Creating a Complete Custom API

21-21

 "status": "new",
 "driveTime": 30,
 "priority": "high",
 "createdon": "2015-04-23 18:12:03 EDT"
}

When you create a custom API, a mock implementation is created automatically. The
mock implementation lets you invoke the API from your mobile application before
you’ve implemented the custom code. This lets you develop and test the mobile
applications and the custom code simultaneously. If you’re satisfied with the
configuration, you can add a real implementation.

Until you create your first implementation, the default implementation is the mock
implementation. After you create a real implementation, it becomes the default
implementation for the API.

Click the Implementations navigation link to upload an implementation or to see any
existing implementations. You can change the default implementation on the
Implementations page. After you upload an implementation, you see a list of existing
implementations, which includes the mock implementation.

Provide a Schema
You have the option of adding a JSON schema, which describes the structure of your
data and is written in JSON. If you want to add a schema, go to the Schema page and
click New Schema. After you've defined at least one schema, you can select one from
the list.

To define a schema, provide:

• The schema name

• The schema definition (in JSON format) in the editor pane, which you can
manually enter or copy and paste into the editor

For example, a schema called schema# is defined as follows:

schemas:
- reports: |
 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "array",
 "description": "Incident Reports array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "description": "Unique id for the incident
report",
 "type": "integer" },
 "title": { "description": "Title for the incident report",
 "type": "string" },
 "createdon": { "description": "Date and time of creation",
 "type": "string" },
 "contact": { "decription": "Contact information of
customer filing the report",
 "type": "object",

Chapter 21
Creating a Complete Custom API

21-22

 "properties": {
 "id" : { "description": "Unique id for the
customer",
 "type" : "string" },
 "name" : { "description": "First and last name
of contact",
 "type" : "string" },
 "street": { "description": "Street address of
contact",
 "type" : "string"},
 "city" : { "description": "City of contact",
 "type" : "string"},
 "postalcode" : { "description" : "Postalcdoe of
contact",
 "type": "string" }
 }
 },
 "status" : { "description": "The current status of the
incident",
 "type" : "string" },
 "priority" : { "description": "The current priority of the
incident",
 "type" : "string" },
 "driveTime" : {"description" : "Calculated field based on
location",
 "type" : "integer"},
 "imageLink" : { "description" : "Link to image from Storage",
 "type": "string" }
 },
 }
 }

Add more schemas to define by clicking New Schema. Click X to delete a schema.

You can define multiple schemas for use with the given API. Schemas are specific to the API
and aren’t shared across other APIs.

Security in Custom APIs
In Mobile Hub, an API is protected through its association with a mobile backend to allow only
authorized users and devices to access the API and its endpoints.

For enterprise applications, you can use HTTP Basic Authentication, OAuth, or SSO OAuth
Token credentials to control user authentication and authorization of access to resources:

• With OAuth, when you create a mobile backend or register with an existing mobile
backend, a set of OAuth consumer keys (that is, client credentials) consisting of a client
ID and client secret are generated for you. The values of these keys are unique to the
mobile backend (for information about authenticating with OAuth, see Authenticate with
OAuth in Direct REST Calls). You authenticate yourself to the OAuth server by providing
your client credentials and receive an access token that is passed in each API call via a
header. Only a user with a valid token can access the API.

Alternatively, you can provide a Single Sign-On OAuth token provided by a remote
identity provider. For information on how to enable single sign-on for a mobile backend,
see Authentication in Mobile Hub.

Chapter 21
Creating a Complete Custom API

21-23

• With HTTP Basic Authentication, when a mobile backend is created, a mobile
backend ID and an anonymous access key are generated for it. You authenticate
yourself to Mobile Hub by providing these items, which are passed in each API call
via a header. You must provide this information to access the API. You can obtain
the mobile backend ID and anonymous access key from the mobile backend
landing page. Select the mobile backend associated with the API and expand the
Keys section. To learn more about authenticating with HTTP Basic, see
Authenticate with HTTP Basic in Direct REST Calls.

• With Social Identity, when you register an app with a social identity provider (for
example, Facebook), an access token is generated by the provider. You
authenticate yourself to Mobile Hub by specifying the social identity provider and
providing the access token.

To find out how to get an access token, see Get a Facebook User Access Token
Manually.

To learn about authentication in Mobile Hub, see Enterprise Single Sign-On in Mobile
Hub.

Set Access to the API
You have the option of requiring developers to login and provide authentication
credentials to access the API.

• Set Login Required to OFF to allow access to the API from a mobile app as an
anonymous user. Also, you won’t need to use authentication credentials on the
API's Test page.

This setting is particularly useful when you’re in the early phases of configuring
your API and you just want to validate some endpoints or when the data being
requested or received is from a service that doesn’t require security.

• Set Login Required to ON to require authenticated access to the API:

Chapter 21
Creating a Complete Custom API

21-24

– Select Enterprise to set access for mobile users who login with their Mobile Hub
username and password or who have configured Single Sign-On authentication
providers.

When you set Login Required to ON and select Enterprise, the API Access and
Endpoint Access fields are exposed and you must select at least one role to access
the API. This ensures that only those mobile users that have the selected role or
roles can access the API endpoints. Click in the Roles field to select one or more
roles.

Optionally, you can further refine access to the API by selecting roles for specific
endpoints. Only mobile users having the role selected for a specific endpoint can
access it. For example, you can allow only users with a Mobile Develop role to
access the DELETE method. Click in the field for each endpoint and select one or
more roles.

See Mobile Hub for information on how roles can be defined.

– Select Social Identity to set access for mobile users who want to use their social
media accounts for authentication.

If you choose this setting, you can save your API configuration and move on to the
Test page. In addition to specifying the mobile backend and its version, you’ll be
asked to select the social authentication provider and provide the access token
generated for you by the selected provider.

You can obtain information about the current mobile and social users by including the
ums.getMe() method in the custom code for the API.

Chapter 21
Creating a Complete Custom API

21-25

Test Your Custom API
To validate your API endpoints, the Test page lets you test with sample response data.
You’ll see a list of all the resources that you’ve defined on the left side of the page. Use
the Filter endpoints field to display only the resources that you want to test. You test
only one endpoint at a time.

Note:

A few things before you start testing your API:

• If Login Required is turned ON and Enterprise is selected, you must
have a role assigned that allows access to the API.

• If Login Required is turned ON and Enterprise or Social Identity is
selected, you must provide values for all fields in the Authentication
section of each method to test it.

• If Login Required is turned OFF, providing authentication credentials is
optional.

• Save your configuration before you test. If you haven’t, then you can
check the Always save before testing option in the Save Before
Testing confirmation dialog that appears when you click Test. That way,
any changes that you make to the API configuration are automatically
saved.

1. If you are in the design phase and just want to see if your endpoints are valid, or if
you want to test multiple endpoints during the session, then set the default API test
credentials.

a. Click Default API Designer Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. Select one the authentication method to use for testing:. Current User, HTTP
Basic, OAuth Consumer, Social, or Single-Sign On or Bearer Token.

d. If Enterprise is selected on the Security page, mobile users must enter their
mobile user credentials (username and password).

Credentials for social identity or for single-sign on are not required.

e. Click Save ().

The mobile user credentials that you enter will be used as the default
credentials for all test calls made within Mobile Hub.

If you need to test only a few methods, skip Step 1 and fill out the fields in the
Authentication section for each method (see Step 5).

2. Select the method that you want to test from the list of endpoints on the left side of
the test page.

Chapter 21
Creating a Complete Custom API

21-26

When you select an endpoint, the method banner for it is displayed with the base URI is
displayed below the operation name. If you provided an alternate name for the operation,
then that name appears, otherwise the default operation name is shown. Only one
method per endpoint is displayed at a time for testing.

3. Click Request.

4. Expand Parameters to view the query or header parameters that you provided.

a. (Optional) Click Example to view the example body, if you provided one. Enter an
alternate example to test with by clicking Use Example. The provided example body
is copied into the text box. You can edit the example as needed.

b. (Optional) Click Schema to view the request body schema if you provided one.

5. Click Response.

6. Expand the status code area and click Example or Schema to review the example or
schema for the response body, if you provided one.

7. Click Request again to enter Authentication information.

8. If Login Required is OFF, click Test Endpoint. Otherwise, skip this step and go to the
next step.

9. Expand Authentication and, if Login Required is ON, select the mobile backend and its
version that are associated with this API and enter your authentication credentials:

• If Enterprise is selected, select the authentication method you want to use for testing
and provide your mobile user credentials.

• If Enterprise is selected and Single Sign-On is enabled for the associated mobile
backend, select Single Sign-On or Bearer Token as the authentication method and
enter either the Mobile Hub-issued SSO OAuth token (hover over the ? icon and
follow the instructions) or the third-party issued SSO token that you obtained from
your trusted remote identity provider.

• If Social Identity is selected, select a social authentication provider and enter the
access token that you got from your provider.

Chapter 21
Creating a Complete Custom API

21-27

Mobile Hub automatically URI encodes the username and password that you
enter. An error can result if the username and password entries contain special
characters (that is, you’ve entered pre-URI encoded values). If you enter values
for these fields that are already encoded, another layer of encoding is added.
During authentication, these values are decoded once, and the original encoded
values are revealed, which will fail authentication so don’t enter URI-encoded
values for username and password.

10. Click Test Endpoint.

Click Request to see the metadata for the transaction, such as header information
and the body of the request. Click Response to see the details of the response
returned. The response code tells you whether or not the connection was
successful.

Test each of your operations and modify them as needed to validate your endpoints, a
Single Sign-On OAuth token or an access token from a social authentication provider.

Create Resource Types
A resource type is a partial resource definition that specifies a description and
methods and their properties. Resources that use a resource type inherit its properties,
such as its methods. You don't have to use a resource type, but if you find that you're
defining resources with the same methods, you can increase efficiency by defining
resource types to reduce the redundancy.
Using the incident report example, you might want to get reports from several
departments (billing, service technicians, and clerks). For each department, you want
to get a list of employees involved with a particular incident and you want the name,
ID, and extension number for each employee. You can define a resource type,
employee_contact that defines a GET method that retrieves all the personnel
information that you need. Instead of defining an employee_contact for each branch of
the company, you can apply the employee_contact resource type to each incident
report resource.

Note:

Resource types can’t be used with nested resources.

You can define multiple resource types for use with the given API. Resource
types are specific to the API and aren’t shared across other APIs.

Adding a resource type through the API Designer is simple:

1. Click Types and then click New Resource Type.

The Types page is displayed:

Chapter 21
Creating a Complete Custom API

21-28

2. Enter a name for the resource type.

For example, a resource type called orderinfo could be used each time appliance parts
are ordered.
Valid resource type names are character strings and can include underscore (_) and
hyphens (-). Camel case is allowed (for example, employeeContact). Don’t include
special characters, such as slashes, asterisks (*), and exclamation points (!).

3. (Optional) Add a description of the type.

4. Enter a brief sentence that describes the purpose of the type in the Usage field, then
enter a description of the type in the Description field.

For example, a resource type called orderinfo , the usage might be: Defines a
standard parts order. The description might be: Always get model’s serial number
and part number.

5. Click Definition to define the resource type in the source editor.

6. Click Save when you’re done defining the type.

7. (Optional) Click Test to test your resource type.

Edit your definition as needed. When you’re finished, return to the Types page to add
another type or navigate to another page in the wizard.

The resource type is added to the list of available resource types for use with the given API.

Create Resource Traits
A trait is a partial method definition that provides method-level properties such as a
description, headers, query string parameters, and responses. Define traits for obtaining
descriptive information like version numbers or vendor information. Methods that use one or
more traits inherit those traits' properties. As with resource types, if you’re defining methods
with the same attributes multiple times, then define a trait to prepopulate a method with
certain attributes. You don't have to use resource traits, but they’re useful if you have several
methods with the same operational structure.

Note:

You can define multiple resource traits for use with the given API. Resource traits
are specific to the API and aren’t shared across other APIs.

Here's how to define a resource trait:

1. In the API Designer, click the Traits navigation link and click New Trait.

The Traits page is displayed:

Chapter 21
Creating a Complete Custom API

21-29

2. Enter a name for the trait.

For example, a resource trait called parts-inventory could define a standard
method of looking up the availability and location of specific parts.
Valid resource trait names are character strings and can include underscores (_)
and hyphens (-). Camel case is allowed (for example, applianceModel). Do not
include special characters, such as slashes, asterisks (*), and exclamation points
(!).

3. Enter a brief sentence that describes the purpose of the trait in the Usage field,
then enter a description of the trait in the Description field.

For example, if you have a trait called parts-inventory, the usage might be:
Apply to GET methods for all part requests. The description might be:
Always determine if parts are in stock and list warehouse locations.

4. Click Definition to define the resource trait in the source editor.

5. Click Save so you don't lose your work.

The resource trait is added to the list of available resource traits for use with the given
API.

Providing API Documentation
A good, even great API is useless without documentation describing it so others can
use the API too. While the API Designer can't write that documentation for you, you
can upload it through the API Designer so that the next time you or someone else
selects this API from the API Catalog, a full description of the API is available (its
purpose, its resources and schemas, the security policies that it uses, and helpful code
comments).

1. In the API Designer, click the Documentation navigation link and click
Documentation.

2. Enter a title for your API document.

3. You can either manually write your API documentation using Markdown syntax in
the source editor or copy and paste your documentation into the editor.

Click Markdown Reference to see how to use Markdown. It lets you write an
easy-to-read plain text that can easily be converted to structurally valid XHTML for
viewing in a browser.

Here’s an example of part of the API documentation for the FIFIncidentReports
API:

Chapter 21
Creating a Complete Custom API

21-30

4. Click Save so you don't lose your work.

You can add more documentation by clicking New Title and adding content in the editor
field for that document. You can replace the default title provided by entering text in the
title field. Each time you click New Title, the title field and editor for the most recent
document is appended below the previous document. When you click Save, only the
current document is displayed. Click a title tab to view that particular document.
To see the API documentation for a specific API, select the API from the API Catalog,
click Test, and then on the Test page, click the Overview tab.

Chapter 21
Creating a Complete Custom API

21-31

How Do I Write in Markdown?
Markdown is a simple set of syntax that you can use to produce basic formatting
structures such as section heads, paragraphs, ordered and itemized lists, block
quotes, and links.

Construct Markdown Output

Header:

Use hash marks (#) to denote
headers

#First-Level Heading

Second-Level Heading

Third-Level Heading

First-Level Heading

Second-Level Heading

Third-Level Heading

Paragraph:

Separate paragraphs with one or
more blank lines.

This is a paragraph.

This is a second paragraph.

This is a paragraph

This is a second paragraph.

Simple List:

Use +, -, or * followed by a space
to denote list items.

List markers are interchangeable.

- list item 1

+ list item 2

* list item 3

- list item 1

- list item 2

- list item 3

Nested List:

Use +, -, or * followed by a space
to denote list items and indent
nested list item by exactly four
spaces.

-list item 1

+ list item 1a

+ list item 1b

-list item 2

- list item1

- list item 1a

- list item 1b

- list item 2

Ordered List:

Precede each item with a
number in a consecutive
sequence followed by a space.

1. list item 1

2. list item 2

* list item 2a

* list item 2b

3. list item 3

1. list item 1

2. list item 2

2a. list item 2a

2b. list item 2b

3. list item 3

Emphasis Italics:

Wrap text with an asterisk (*) or
single underscore.

text

more text

text

more text

Emphasis Bold:

Wrap text with two asterisks (*)
or double underscores.

text

__more text__

text

more text

Inline code:

Use back quotes (`) around the
text.

This is an `inline code` example. This is an inline code example.

Code Block:

Indent each line by four spaces

Format a block of preformatted
code:

This is a code line.

Format a block of preformatted code:

This is a code line.

Links:

Put the link text in brackets,
followed immediately by the URL
in parentheses.

This is an [example link](http://
example.com).

This is an example link.

If you want to find out more about Markdown, see What is Markdown?

Chapter 21
Creating a Complete Custom API

21-32

http://whatismarkdown.com/

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are valid. A
response status other than 2xx doesn't necessarily mean that the test failed. If the operation
was supposed to return a null response, then the response should show a 4xx code.

For every message you send, Mobile Hub tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an Execution
Context ID (ECID) that’s unique for each request. With the ECID and the Relationship ID
(RID), you can use the log files to correlate messages across Oracle Fusion Middleware
components. By examining multiple messages, you can more easily determine where issues
occur. For example, you can retrieve records from Oracle Fusion Middleware Logging using
the call's ECID. From the Administration page, you can click Logs to view logging data.

Depending on your Mobile Hub access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the Request
History page, allowing you to see the context of the message status when you're trying to
trace the cause of an error. Every message sent has a set of attributes such as the time the
event occurred, the message ID, the Relationship ID (RID), and the Execution Context ID
(ECID).

After you've configured your custom API, you can provide an API implementation, that is,
create your own custom code and add it to your mobile backend to access the API.

API Design Considerations
When you configure your custom API, there are some things you can do to ensure you have
a well-formed API, including making sure that URLs and resources are well-formed, that
reasonable read and connect timeouts have been set, and, if you’re providing a RAML file,
that it’s correctly configured.

Here are some things to consider when you configure your API and some detailed
descriptions of more advanced constructs that you can use to refine your API.

Valid URLs
In creating your RESTful API, it's important that you define a valid URL. You can see the URL
for your API as you define it from the API name that you provide and the resources and
methods that you add. To ensure that you have a valid URL, it must adhere to the following
best practice guidelines:

• Provide a relevant and easily identifiable resource name. Using identifiers in your URLs
make for a more understandable resource than using a query string. Which makes more
sense to you, the resource name /customers/2223 or /customers/api?
type=customerid=2223?

• Resources can be grouped into a collection, so make the collection resource name
consistent with the attribute names used to refer to the collection.

For example, if an attribute is a collection of favorite bookmarks, be obvious and name
the collection favoriteBookmarks instead of favoriteLinks.

• Always make the resource names plural nouns and alternate between plural nouns and
singular resource identifiers (rid): /services/1.0/items/{rid}/subitems/{rid}/
For example: /customers/2223/orders/555

Chapter 21
API Design Considerations

21-33

To ensure that the API is sync-compatible, always put the identifier immediately
after its related resource name as shown in the previous example, where 2223 is
the designation of a specific customer and 555 is the designation of a specific
order. A poorly formed URL to indicate a specific customer could look like this: /
customers/orders/2223/555 or /customers/orders/locations/2223.

• Use lowercase for resource names and use camel case for attribute names.

For example: /services/1.0/items?limit=10&totalResults=true
• Keep resource identifiers down to 32 characters or fewer due to the limitations of

some browsers.

• Keep URLs as short as possible. A long rambling URL is difficult to read and all
the more difficult to debug.

• When defining the URL, you can be as concrete or abstract as desired, but you
should use the curly brace {} notation to indicate URI parameters. This makes the
corresponding RAML more detailed and easier to test.

• Ensure that all date formats are in the form: YYYY-MM_DD[THH:mm:ss.sss]Z.

For example: 2014-10-07T18:35:50.123Z
• For pagination, use the limit and offset query parameters so that the

Synchronization library uses paged downloads correctly. If you don’t need to
support pagination, you don’t need to specify these parameters.

• To ensure sync compatibility, use the orderBy query parameter to specify sorting.
For example: “orderBy=propA,propB:desc,propC:asc”. In this example, the
default sort order is by ascending value.

For details on designing sync-compatible custom APIs, see Make Custom APIs
Synchronizable.

• Provide values for query parameters as a URL-encoded JSON string. For
example:

[
 {
 "property":"propertyName",
 //Supports Equals, NotEquals, LessThan, GreaterThan,
LessThanOrEqual,GreaterThanOrEqual
 "comparison":"Equals",
 "value":"Must be a string",
 },
 {
 "property":"Another clause, only support ANDS not ORs",
 ...
 }
]

API Timeouts
Sometimes when an API fails, it’s due to a stream or connection timeout. Stream
timeouts happen when, after a successful connection to the server, data is being
transmitted and the network time outs before all the data can be sent or received.
Connection timeouts happen when the network connection is never made.

Chapter 21
API Design Considerations

21-34

To ensure that connectors have sufficient time to make a connection and that data can be
transmitted, the HTTP read and connection timeouts should have smaller values than the API
timeout.

The Network_HttpRequestTimeout value determines the amount of time spent transmitting
an HTTP request before the operation times out. The default value is 40,000 ms. The value
of this policy can affect your API timeout values, which should be less than the value of the
policy. Note that policy values are specific to a particular environment. The value for this
policy in a development environment can be different from its value in a runtime environment.
Your mobile cloud administrator can increase or decrease the timeout value from the
Administration tab.

If you have mobile cloud administrator privileges, then you can select an environment in the
Administration view and export the policies.properties file to see a list of the current
environment policies and their values. For information about API environment policies and
policy settings, see Mobile Hub Policies and Values. For information about environment
policies in general, see Policies in Managing Oracle Mobile Hub.

API Resources
A key element of an API is the resource. A resource is the conceptual mapping to an entity
or to a set of entities and is identified by its relative base URI. In other words, a resource is a
thing (noun) that’s located at an address to which you want to transmit information or receive
information. It has at least one method (verb) that operates on it. A method is what you use to
retrieve, create, update, or delete a representation of a resource. For example, GET
incidents.

A top-level resource is a resource defined at the root level (also referred to as the root
resource). A resource that’s defined as a child of another resource is a nested resource.
Nested resources let you specify aspects of the parent resource. A nested resource is
identified by its URI relative to the parent resource URI. For example, let’s say you have a
root resource defined as .../incidents, and you have a nested resource, {id}. The API
definition in RAML looks like:

title: FIFIncidentReports
version: 1.0
baseURI: /mobile/custom/fif-incidentreport
protocols: [HTTPS]
mediatType: "application/json"
/incidents:
 displayName: Incident Reports
 get:
 description: |
 Retrieves all incident reports.
.
.
.
/{id}:
 uriParameters:
 id:
 displayName: id
 description: |
 The unique id of the incident report.

Chapter 21
API Design Considerations

21-35

A resource is always preceded with a slash (/), whether it’s a root or nested resource.
For information about constructing a valid RAML document, see RAML.

If you think of a resource as a collection of objects and a nested resource as an item in
that collection, then your resource path shows the parent resource in plural form and a
nested resource in singular form. For example:

.../mobile/custom/fif-incidentreport/incidents/{id}

The root resource is incidents and the instance of an incident is {id}. You can give
the resource an easy-to-read display name on the Endpoints page. If you don't provide
a display name, then the resource URI is used as the name.

A common practice when designing a resource is to have PUT and POST methods
return the same objects that are sent in the request.

URI Parameters
If you want to allow API calls that change or restrict the value of the relative base URI,
then you can override it by setting a base URI parameter. The URI of a resource can
contain parameters, which are variable elements, for example {id}.

Like resources, parameters have a name. The RAML generated for our fif-
incdentreport shows the resource parameter named id, a display name (id,
although the display name doesn't have to be the same as the parameter name), and
a value type (in this example, the value type is integer):

 /{id}:
 uriParameters:
 id: displayName: id
 description: |
 the unique id of the incident report

 type: integer
 required: true
 get:
 description: |
 Retrieves the incident report with the specified id.

You place the path parameter after the resource name. Use a semicolon to separate
multiple parameters. For parameters that can have multiple values, separate the
values with commas.

In the example, the URI parameter /{id} is a variable that identifies a specific incident
report by its ID number. The parameter contains the properties displayName and type.
The URI would look like this:

.../fif-incidentreport/incidents/{id}

If the parameter, id, has a value of 1234, then the resulting URI would look like this:

.../fif-incidentreport/incidents/1234

Chapter 21
API Design Considerations

21-36

Parameters can be added as part of the URI path as a child (nested) resource or added as a
query. There are no hard and fast rules to adding parameters to the URI path versus adding
parameters as a query. One possible consideration is whether the parameter is essential to
the request. For example, to get data for a specific report, you would use an identifier (id) of
the resource in the URI path as shown in the previous fif-incidentreport URI example.

However, if you’re using the parameter as a filter to narrow down the data, then add it in the
query. For example, you would use technician as a query parameter .../fif-
incidentreport/incidents?technician=joe to filter reports only by a particular
technician.

Endpoint Requirements for Sync Compatibility
To ensure optimal synchronization of data when a custom API is used by the Synchronization
library on a client, the custom API must include a specific set of server-side endpoints.

For example, let's say a custom API endpoint is defined that returns a collection of
Department records and is consumed by a client that uses the Synchronization library.
Records are retrieved from the collection endpoint, /Departments, and stored in the client’s
local cache by the library. Later on, the library identifies two records in the cache that require
updating because they’ve expired (/Departments/Finance and /Departments/HR).

In this case, to get the most up-to-date data, the Synchronization library retrieves only the
records that need to be updated, and not the entire collection.

On the server side, via the associated Synchronization library, these endpoints are called
individually on behalf of the client. The data is returned to the client in a single payload and
response, saving multiple round trips for each required object.

To support this, the Synchronization library requires that the custom API includes GET
methods for both the collection resource (GET /{collection}) and the object resource
(GET /{collection}/{objectId}). That is, in our Department example, the following
endpoints are needed:

• GET /Departments
• GET /Departments/{DeptId}
To go a step further, if the offline API collection objects that were retrieved can be modified,
say by the addition, update, or deletion of an object, the Synchronization library calls the
appropriate custom code APIs to enact the change on the objects on the server side. To
support creating, updating, or deleting the object requires that the following types of
endpoints are implemented on the server-side custom API:

• GET /{collection}
• GET /{collection}/{objectId}
• PUT /{collection}/{objectId}
• POST /{collection}
• DELETE /{collection}/{objectId}
The inclusion of the PUT, POST, and DELETE operations are optional. If, for example, your
application never deletes an object in a collection, you don’t need to implement the DELETE
operation.

Chapter 21
API Design Considerations

21-37

Note:

The Synchronization library doesn’t support the PATCH operation.

See Make Custom APIs Synchronizable to learn more about configuring a sync-
compatible custom API.

Schemas
A JSON schema defines the structure of your API in a JSON-based data format. The
JSON schema can be used to validate JSON data. You can define a schema from the
Schema page. Let's look at the schema from the IncidentReports example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "array",
 "description": "Incident Reports array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "description": "Unique id for the incident
report",
 "type": "integer" },
 "title": { "description": "Title for the incident report",
 "type": "string" },
 "createdon": { "description": "Date and time of creation",
 "type": "string" },
 "contact": { "decription": "Contact information for
customer filing the report",
 "type": "object",
 "properties": {
 "id" : { "description": "Unique id for
the customer",
 "type" : "string" },
 "name" : { "description": "First and last
name of contact",
 "type" : "string" },
 "street": { "description": "Street
address of contact",
 "type" : "string"},
 "city" : { "description": "City of
contact",
 "type" : "string"},
 "postalcode" : { "description" :
"Postalcdoe of contact",
 "type": "string" }
 }
 },
 "status" : { "description": "The current status of the
incident",
 "type" : "string" },
 "priority" : { "description": "The current priority of

Chapter 21
API Design Considerations

21-38

the incident",
 "type" : "string" },
 "driveTime" : {"description" : "Calculated field based on
location",
 "type" : "integer"},
 "imageLink" : { "description" : "Link to image from Storage",
 "type": "string" }
 },
 }
 }

This schema contains the following keywords:

• $schema: denotes that this schema is based on the draft v4 specification. It must be
located at the root of the JSON schema. You should always include this keyword in your
JSON schema.

• type: defines a JSON constraint, so the data must be an array.

• description: describes the contents of the schema.

• items: define the items in the array. In an incident report, we want to assign attributes to
each report. In this example, all items are of type object and each object has a set of
properties, such as report ID, title, contact info, status, priority level, etc.

For a complete list of keywords to use in your JSON schema, see http://json-schema.org/.

To add a schema for your API, see Providing a Schema.

RAML
When you create an API using the Mobile Hub interface, the API definition is stored as a
RAML document. RAML is a simple efficient way to describe RESTful APIs. REST stands for
Representational State Transfer (REST) and is a way to perform basic operations (create,
read, update or delete) information on a server using simple HTTP calls.

You can also upload a RAML document that you create from scratch into the API Designer.
The API Designer takes the input that you provide and creates a RAML file that documents
the contents of the custom API. Note that the RAML defines only the API itself, not the
implementation of the API. You must create custom code using JavaScript to implement the
API. For information on how to implement an API, see Implementing Custom APIs.

Note:

The feature to upload a RAML document isn’t available if you came to the API page
by clicking APIs from the navigation list of a mobile backend.

If you upload a RAML file, then the values for the required Name fields are extracted from the
RAML file. You still have to add the short description. At a minimum, your RAML file must
include the API name, a base URI (/mobile/custom/apiname), and a version number.

Chapter 21
API Design Considerations

21-39

http://json-schema.org/

For your RAML file to be valid, it must specify a media type, base URI, the HTTPS
protocol, and a version number:

#%RAML 0.8

title: api_title
version: 1.0
protocols: [HTTPS]
baseURI: /mobile/custom/api_name
mediaType: application/json

Note:

Mobile Hub requires the HTTPS protocol for custom APIs. If you upload a
RAML document that configures the API using the HTTP protocol, then it’s
automatically edited to use HTTPS.

For new a API, a default version of 1.0 is automatically applied when you save the
configuration (unless the mobile cloud administrator has changed the value of the
Asset_DefaultInitialVersion environment policy). However, if you upload an API
configuration, then the version value displayed is taken from the file.

Note:

The version value uses a specific format. Versions are specified with an
integer. For example, in your RAML file specifying version: 2.0 is valid
while version: v2.0 isn’t.

RAML lets you define resource types and traits for describing resources and methods,
which results in a more succinct RESTful API by reducing repetition in the design. The
principle components of a RAML (.raml) document are:

• Basic API information consisting of:

– API Display Name: the easy—to—read name of the API, which appears in the
API list (for example, FIFIncident Reports)

– Base URI: The address of the resource (/mobile/custom for custom APIs)

– API Name: name of the API (fif-incidentreport) in the configuration

– Short description: Brief description of your API

• Resource types and traits, which allow you to characterize resources to avoid
unnecessary repetition in the API definition

• Resources (the conceptual mappings to one or more entities), resource methods,
and schema

To ensure that your RAML document is correctly configured, follow these tips:

Chapter 21
API Design Considerations

21-40

• Although RAML allows both HTTP and HTTPS protocols, Mobile Hub requires the
HTTPS protocol for custom APIs. If you upload a RAML document that configures the
API using the HTTP protocol, then it’s automatically edited to use HTTPS.

• If you define a top-level resource with an empty relative URI (that is, /:), then you can’t
add a subresource to it.

An error message will alert you that the structure is invalid. For example, the following
resource definitions will fail:

/:
 /reports:

You need to make reports a top-level resource:

/:
/reports:

• Top-level resources shouldn’t contain empty relative URI subresources, for example:

/books:
 /:

• Avoid creating duplicate paths, for example:

/reports/{id}:
/reports:
 /{id}:

Multiple subresources in the resource name are valid. For example:

/reports:
 /county/branchid/reportissue:

• Add comments only in a property’s description: field. Adding a comment using a
comment line (for example, #report issue by technician) is not supported by the
RAML source editor. Comments added in a comment line are stripped out by the parser.

For a thorough discussion about RAML, see http://raml.org/.

Edit a Custom API
You can always edit an API as long as it’s in the Draft state. A published API can’t be
changed.

To edit a custom API:

1. Click and select Development > APIs from the side menu.

Now that at least one custom API exists, the APIs page is displayed.

2. Select the draft API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list alphabetically
by name or by last modified date.

Chapter 21
Edit a Custom API

21-41

http://raml.org/

3. Edit the fields for general information, resource, schemas, traits, types, and
security policies as needed.

Each time you create a method for a resource, an icon for the method appears at
the top of the Methods page. Click on one of these icons to go directly to the
method definition:

On the Resources page, icons for the methods defined for the resource are
displayed below the Methods navigation link. You can quickly see what types of
methods have been defined for a resource. Click on an icon to go the method
definition:

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

4. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

5. Test your changes.

Your edited version is still in a Draft state and you can continue to edit your custom
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your custom API. See Publishing a Custom API in Managing Oracle Mobile Hub. If you
need to make a change to a published API, you’ll have to create a new version of it.

Video: End-to-End Custom API Demo
To see the process of designing and developing a custom API, including how it fits in
with a mobile backend and a connector, take a look at this video:

Video

Chapter 21
Video: End-to-End Custom API Demo

21-42

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13057

Troubleshoot Custom APIs
When an incorrect value is entered in a field, a message window displays the error and,
depending on the field, the correct syntax or value type to use. In some cases (such as when
a malformed schema or RAML is uploaded), the error message includes a Show Details link
that displays a description of the error. See View Log Messages.

To learn more about common errors that can occur when you configure custom code, see
Common Custom Code Errors.

Chapter 21
Troubleshoot Custom APIs

21-43

22
Implementing Custom APIs

As a service developer, you use the custom code service to implement the custom APIs that
your team creates for its mobile apps.

What Can I Do with Custom Code?
After you design your custom API in the API designer (or create it by uploading a RAML file),
use JavaScript, the Node library, and the custom code SDK to implement it. Say, for example,
that your mobile app developer has designed the following API, which has one resource (/
incidents), and two endpoints (GET /incidents, and POST /incidents).

#%RAML 0.8
title: IncidentReport
version: 2.0
baseUri: /mobile/custom/incidentreport
...
/incidents:
 displayName: Incident Reports
 get:
 description: |
 Retrieves all incident reports.
...
 post:
 description: |
 Creates a new incident report.

You, as the service developer, implement all the endpoints in the API. That is, you write code
to return incident reports for the first endpoint and to store incident reports for the second
endpoint.

Your custom API implementation can call platform APIs (such as Storage and Notifications),
other custom APIs, and external REST and SOAP web services. And it can access the
external web services either directly or through connectors.

How Does Custom Code Work?
Using the custom code service, you write JavaScript code to implement a custom API. The
coding model is based on Node, which is a JavaScript framework that enables you to write
server-side code and that provides a runtime environment for it. For each API endpoint,
which is the resource (URI) plus the HTTP method such as GET or POST, you need a route
definition that specifies how to respond to a client request to that endpoint. In other words, for
each URI and HTTP method combination in your API, you need to add a JavaScript method
to your custom code that handles the request. Route definitions follow the coding style
promoted by Express, which is a module that runs in Node. We’ll show you how to write these
methods.

22-1

After you’ve written your custom code, you package it as a Node module, and then
upload it.

Note that the purpose of the examples in this chapter is to illustrate how to interface
with the custom code service. The examples are not intended to teach best practices
for writing Node.js REST API implementations.

Foundation of the Custom Code Service
The custom code SDK is available to custom API implementations and is what you
use to call platform APIs, connectors, and other custom APIs, as described in Calling
APIs from Custom Code. In addition, the custom code service is backed by the
following JavaScript libraries, which you can use when you implement your custom
API.

JavaScript
Library

Description

Node Node provides the backbone for the custom code service. When you implement
a custom API, you create a Node.js module.

Behind the scenes, a router module takes care of creating an HTTP server for a
Node instance and routing the HTTP calls that come from the service to the
custom API’s implementation that runs inside the instance. You don’t need to
write code for this.

Request Request is framework for Node that simplifies the making of HTTP calls. The
service wraps Request calls with additional code that’s necessary for the
custom code service.

Express Express is a lightweight web application framework for Node. The custom code
service uses it to expose API endpoints. To implement your custom API, you
write route definitions similar to how you would use Express to write routes for a
web app.

Bluebird The custom code service uses the Bluebird promises library to implement the
promises that the custom code SDK methods return.

Body-parser The custom code service uses this library to parse incoming request bodies.

Http-proxy-
agent

This module provides an http.Agent implementation that connects to a specified
HTTP proxy server.

Https-proxy-
agent

This module provides an http.Agent implementation that connects to a specified
HTTPS proxy server.

Express-
method-
override.

The custom code uses this library to override the method of a request based on
an X-HTTP-Method-Override header, a custom query parameter, or a post
parameter.

Chapter 22
How Does Custom Code Work?

22-2

JavaScript
Library

Description

Agentkeepali
ve

This library is an implementation of http.Agent that keeps connections alive for
some time to reduce the number of times that TCP connections are closed,
which thus saves resources.

As shown in the following table, the default library versions depend on whether your
environment was provisioned from the current release or upgraded from an earlier release.

JavaScript Library Environment Provisioned from
Current Release

Environment Upgraded from
Prior Release

Node 12.16.1 8.9.4

Request 2.83.0 2.74.0

Express 4.16.2 4.14.0

Bluebird 3.5.1 3.4.6

Agentkeepalive 3.3.0 3.1.0

Body-parser 1.18.2 1.15.2

HTTP-proxy-agent 2.0.0 1.0.0

HTTPS-proxy-agent 2.1.0 1.0.0

Method-override 2.3.10 2.3.6

If a custom API implementation isn't compatible with the default library versions for your
environment, use one of the following processes to change the Node version for that
implementation. See CCC_DefaultNodeConfiguration in Mobile Hub Policies and Values for
the available Node versions.

• Add a node property to the configuration section in the custom API implementation's
package.json file as described in Declare the Node Version.

• Ask your mobile cloud administrator to change the node version that is specified by the
appropriate CCC_DefaultNode environment policy. You can set this policy at different
scopes, such as environment scope, mobile backend scope, and API scope. Whenever
you change a CCC_DefaultNode environment policy, any custom API implementation that
uses that default configuration will change to the new version no later than its second
REST request after the version change.

The default maximum body size for all configurations is 1MB.

Video: Node.js Technology Primer
If you don’t have experience with Node.js or you’d simply like to better understand how it
works with the custom code service, take a look at this video:

Video

Set Up Tooling for Custom Code
The custom code service is based on Node. You don’t need to install Node on your system to
create custom API implementations, but you’ll need the tooling that it provides, such as the
Node package manager (npm). Having Node on your system also makes it easier for you to
write the code.

Chapter 22
Set Up Tooling for Custom Code

22-3

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13058

The nodejs.org website provides installers that contain the library and some
command-line tools, such as npm. You may wish to also install an integrated
development environment (IDE) with Node support for features such as syntax
highlighting and code completion. One free option is to install Eclipse (eclipse.org)
and then add the Nodeclipse plug-in (http://nodeclipse.github.io/).

Steps to Implement a Custom API
The main steps for defining and implementing a custom API are the following:

1. Define a custom API as described in Custom APIs.

2. Download a JavaScript scaffold for the API. This scaffold contains stub
implementations for your endpoints.

3. Within the scaffold, fill in the appropriate JavaScript code for each function that
corresponds with a given REST endpoint.

4. Package the finished JavaScript module.

5. Upload the module to the API Designer.

Download a JavaScript Scaffold for a Custom API
After you create your custom API, you can download a scaffold that is based on your
API's RAML document, and then use the scaffold as a quick start for implementing
your custom API.

The scaffold comes in the form of a Node module, the key components of which are
the main JavaScript file that contains stub methods for each endpoint (resource plus
HTTP method), and a package.json file, which serves as the manifest for the module.

To download the scaffold:

1. Click to open the side menu, click Development , and then click APIs.

2. Open the API that you want to download.

3. In the left navigation area of the API Designer, click Implementations.

4. Click JavaScript Scaffold to download the zip file.

5. On your system, unzip the downloaded file.

If you later change the API, then you can download a new scaffold based on the
updated endpoints. However, any coding that you may have done and uploaded
previously won’t be reflected in the new scaffold.

Chapter 22
Steps to Implement a Custom API

22-4

http://nodejs.org
http://eclipse.org
http://nodeclipse.github.io/

Writing Custom Code
The following sections show the constructs that are available to you and how to use them in
your code.

Key JavaScript Constructs in Custom Code
The scaffold zip that you download from the API Designer includes a main JavaScript file,
which contains the key constructs that you need to implement the custom API. Here’s an
example of a main JavaScript file for a custom API, which has these resources (URIs):

• /incidents, which supports the GET and POST HTTP methods

• /incidents/:id, which supports the GET HTTP method

• /incidents/:id/uniquecode, which supports the GET HTTP method

// A
module.exports = function(service) {

 //B
 service.post('/mobile/custom/incidentreport/incidents',
function(req,res) {
 var result = {};
 var statusCode = 201;
 res.status(statusCode).send(result);
 });

 service.get('/mobile/custom/incidentreport/incidents', function(req,res)
{
 var result = {};
 var statusCode = 200;
 res.status(statusCode).send(result);
 });

 service.get('/mobile/custom/incidentreport/incidents/:id',
function(req,res) {
 var result = {};
 var statusCode = 200;
 res.status(statusCode).send(result);
 });

This example illustrates these main constructs:

• (A) module.exports = function (service) {implementation}
The module.exports statement is required at the beginning of all custom API
implementations. It’s used to export an anonymous function with a parameter (service)
through which the custom code service passes the object that’s used to expose your
endpoints. The service parameter is an instance of an Express application object, and
all the object’s functionality is available. Note that in Express example code, this
parameter is often called app. The anonymous function contains all the API’s route
definitions.

Chapter 22
Writing Custom Code

22-5

• (B) Route definitions

A route definition is an Express route method that associates an anonymous
callback function with an endpoint (resource plus HTTP method). Its signature
takes the following form:

service.HttpMethod('URI', function (req, res)

– service is the variable for the custom code service instance (or, in Express
terminology, the application instance), which was defined in the
module.exports = function (service) statement.

– HttpMethod is one of the following methods corresponding to standard REST
methods:

* get
* delete
* head
* options
* patch
* post
* put

– URI refers to resource defined in the API. Notice that while braces identify a
parameter in the API design for the resource, you use a colon to identify a
parameter in the uri. For example, if the resource is /incidentreport/
incidents/{id}, then you use '/mobile/custom/incidentreport/
incidents/:id' for the URI.

– function (req, res) is a callback through which HTTP request and HTTP
response objects are passed. It defines how the API responds to client
requests to that endpoint. The req variable provides access to the data in the
request and you can use the res variable to build the result. Node and
Express provide properties and functions for those two variables, which enable
you to retrieve information about their values and work with them. We talk
about some of these next.

For more information about the req and res objects, see http://
expressjs.com/4x/api.html#request and http://expressjs.com/4x/
api.html#response.

The following example is a route definition for the endpoint GET /incidentreport/
incidents/{id}/uniquecode, which generates a unique code.

service.get(
 '/mobile/custom/incidentreport/incidents/:id/uniquecode',
 function (req, res) {
 console.info('get /incidentreport/incidents/' +
 req.params.id + '/uniquecode');
 res.type('application/json');
 // status defaults to 200
 res.send({'code': req.params.id + '-' + new Date().valueOf()});
 });

Chapter 22
Writing Custom Code

22-6

http://expressjs.com/4x/api.html#request
http://expressjs.com/4x/api.html#request
http://expressjs.com/4x/api.html#response
http://expressjs.com/4x/api.html#response

Notice that the code example uses req.params.id to get the :id value from the URI.
Here are some of the request properties that you typically use in your code:

Property Description

req.body If the request’s content type is application/
JSON or application/x-www-form-
urlencoded then this property contains the
data that was submitted in the request body in
the form of a JavaScript object. For information
about accessing other types of request bodies,
see Access the Body of the Request.

req.headers A map of header names and values. The names
are lower case. Often used to transport extra
information in the request, such as an external
identifier.

req.params An object that contains properties that map to
parameters in the endpoint’s URI. For example,
if the endpoint is attachments/:collection/
objects/:objectid, then you use
req.params.collection and
req.params.objectid to get the parameter
values.
When you use the req.params object to
retrieve a parameter value, you must use the
same case as the parameter in the endpoint.
For example, if the endpoint parameter is {id},
then you must use req.params.id to get the
value, and not req.params.Id.

req.query The query string parameters that are passed in
the URI. For example, if the request is GET /
incidents?q=joe&order=desc then you use
req.query.q and req.query.order to get
the query parameters.

Here are some methods that you typically use to inquire about the request:

Method Description

req.get(field) and req.header(field) Both these methods return the value for the
header named by field. For example,
req.header('content-type'). The match is
case-insensitive.
Note that req.header is an alias for req.get.

req.is(mimeType) Boolean method that you can use to find out if
the request’s Content-Type header matches
the mimeType. For example,
req.is('json').

The custom code service essentially creates Express application objects and then configures
them with service-specific functionality (such as identity propagation and consolidated
logging) before it passes them to the custom API implementation logic for further
configuration. You get preconfigured Express application objects to which you add route-
specific business logic.

Here we discussed only the basic usage of Express features necessary to implement the API
by using routing methods to set up callbacks. However, the entirety of the Express features

Chapter 22
Writing Custom Code

22-7

are available for use in custom code. Consult the Express documentation at http://
expressjs.com/ to learn about the details, such as how to implement URI parameter
parsing, set up multiple callback handlers, and use third-party middleware.

Access the Body of the Request
When requests that are received by the custom code have a content type of
application/x-www-form-urlencoded or application/json, the payload is converted
to a JavaScript object, which is then stored in req.body. For all other types, such as
image/jpeg or text/html, req.body is undefined. Examples of when this occurs is
when the body is a text file or an image. In those cases, when you need to access the
body from the incoming request’s handler, use the data event listener and end event
listener to save the body to a buffer.

The following example shows how to access the body for different content types:

if (req.is('json') || req.is('application/x-www-form-urlencoded'))
 {
 console.info('Request Body: ' + JSON.stringify(req.body));
 } else {
 var data = [];
 // Process a chunk of data. This may be called multiple times.
 req.on('data', function(chunk) {
 // Append to buffer
 data.push(chunk);
 }).on('end', function() {
 // process full message here
 var buffer = Buffer.concat(data);
 // Convert to base64, if required
 // var base64 = buffer.toString('base64');
 });
 }

To learn more about Node.js events and listeners, see https://nodejs.org/api/
events.html#events_events.

Insert Logging Into Custom Code
You can use the Node console object to add logging messages to custom code, as
shown in this example:

console.info(i + ' Request to get ' + url);

These messages appear in the diagnostic logs.

The custom code service wraps the console object to enable finer-grained logging.
The following methods are available for logging messages at different levels:

• console.severe
• console.warning
• console.info
• console.config

Chapter 22
Writing Custom Code

22-8

http://expressjs.com/
http://expressjs.com/
https://nodejs.org/api/events.html#events_events
https://nodejs.org/api/events.html#events_events

• console.fine
• console.finer
• console.finest
By carefully applying log levels to the messages in your code, you can simplify how you
debug and administer the app. This allows you to add good debug messages, and then log
them only as necessary, such as during development or when diagnosing a problem. For
example, you might want to add the following log messages at the suggested log levels:

Log Message Log Level

Function entry and exit Finest

Input, such as parameters that are sent with the
request

Fine

Caught exceptions Severe

Uncaught exceptions Fine

To set the level at which logging is enabled for a backend, from either the mobile backend’s
diagnostics page or the Diagnostics main menu, click Logs, and then click Server Settings.

Node.js has a less granular set of native methods for logging, which are also possible to use.
The logging level of the native Node.js methods console.log and console.dir is equivalent
to console.info. The Node.js method console.warn is equivalent to the custom-code
method console.warning. The Node.js method console.error is equivalent to the custom-
code method console.severe.

When you use console messages to locate problem code, know that the service’s console
calls are nonblocking. That is, there’s no guarantee that logging completes before the next
statement is executed. In the case of a problem that’s caused by an infinite loop, you will
most likely see only the first console message that’s in the block of code before the infinite
loop. Consider the following code, for example:

console.info("Log 1");
var myVar="any string";
console.info("Log 2");
myVar="a different string";
console.info("Log 3");
functionWithInfiniteLoop();

When this code is executed, it’s possible that only Log 1 appears in the diagnostic logs.
Therefore, to locate an infinite loop, you must have just one console message, and you must
put that message where you think it will flag the problem. If it doesn’t flag the problem, then
move the message and run another test until you identify the problem code.

When you suspect an infinite loop, follow these steps:

1. Remove or comment out all console messages.

2. Add a logging statement as the last line before the return.

3. Ensure that the log level for your backend is set to the same level as your logging
statement, such as INFO for a console.info() message.

4. Test the endpoint.

5. Look in the diagnostic logs for your logging statement.

Chapter 22
Writing Custom Code

22-9

6. If you don’t see the message, move the logging statement up one line and test the
endpoint again.

7. Repeat the previous step until the message appears in the log.

At this point, you know that the problem statement is just below the logging
statement.

Tip:

If you have several lines of code, then you can reduce the number of tests by
putting the logging statement in the middle of the code block and then testing
the endpoint. If you don’t get the log message, then put the logging
statement in the middle of the top half. Otherwise, put the logging message
in the middle of the bottom half. Test the endpoint. Repeat the test by
dissecting the code blocks until you have narrowed the test to just two lines
of code.

Local Data Storage
Don’t use the file system that’s associated with the virtual machine running the Node.js
instance to store data, even temporarily. The virtual machines that run Node.js
instances might fluctuate in number, meaning that data written to one instance's file
system might be lost when individual instances are started and stopped.

To store data from custom code, you can use the Database Access API or the Storage
API.

Video: Working with Node - Common Code
For a demonstration of writing Node code to implement custom APIs, take a look at
the Oracle Mobile Platform video series on custom code, starting with this video:

Video

Implementing Synchronization-Compatible APIs
If your mobile app uses the Synchronization library to enable offline use, as described
in Data Offline and Sync, then here’s some information about how to make your
implementation compatible with the library.

Note:

To learn how to design your API so that it is compatible with the
Synchronization library, see Endpoint Requirements for Sync Compatibility
and API Design Considerations.

Video: Working with Custom APIs via Data Offline & Sync
If you want an overview of how to build your custom API to have synchronization-
compliant REST endpoints and data, take a look at this video:

Chapter 22
Implementing Synchronization-Compatible APIs

22-10

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13059

Video

Requirements for a Synchronization-Compatible Custom API
To ensure that the Synchronization library can synchronize with your custom API’s data,
follow these rules:

Method Response Body Response Headers Response HTTP
Status Codes

GET • To return a single
item, use
setItem() to put
the item in the
response, as
described in Return
Cacheable Data.
Note that this
method adds the
Oracle-Mobile-
Sync-Resource-
Type header to the
response and sets
it to item.

• To return a
collection, use
addItem() to add
the items to the
collection, as
described in Return
Cacheable Data.
Note that this
method associates
each item with its
required URI and
ETag and sets the
Oracle-Mobile-
Sync-Resource-
Type header to
collection.

If there’re no items
in the collection,
then you must
return a body with
empty items,
uris, and etags
arrays. For
example:

{
 items:[],
 uris:[],
 etags:[]
}

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a single
item, or
collection for an
array of items. The
setItem() and
addItem()
methods set this
header
automatically for
items and
collections. If the
response body is a
file, you optionally
can set this header
to file.

• ETag: If the
Oracle-Mobile-
Sync-Resource-
Type header is set
to item or file,
then this header
must be set to the
item’s ETag (in
quotes).

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-No-
Store: Optional.
See Specify
Synchronization
and Cache Policies.

No special requirements

Chapter 22
Implementing Synchronization-Compatible APIs

22-11

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13342

Method Response Body Response Headers Response HTTP
Status Codes

PUT If the item stored on the
server is different from
the item in the request
body, such as having a
different ID in the case
of an add or containing
automatically calculated
fields like modifiedOn,
then return the stored
item in the response
body. Otherwise,
returning the item in the
response body is
optional.

• Location: If the
item was added,
then you must
include this header,
which contains the
item’s URI.
Otherwise, this
header is optional.

• ETag: Must contain
the item’s ETag in
quotes.

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a single
object. The
addItem() method
sets this header
automatically. If the
response body is a
file, you optionally
can set this header
to file.

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-No-
Store: Optional.
See Specify
Synchronization
and Cache Policies.

Note that the value in
the If-Match header
value dictates the
actions to take and the
response code to send.
The Synchronization
library sends * in the
If-Match header when
the conflict resolution
policy is CLIENT_WINS.
For all other conflict
resolution policy
configurations (that is,
SERVER_WINS and
PRESERVE_CONFLICT),
it sends the item’s ETag.
If the header isn’t
present or is null, then
assume *.

• If there’s an If-
Match header and
its value isn’t *,
then, if the item’s
ETag doesn’t match
the header’s value,
return 412
Precondition
Failed.

• If the item to be
updated no longer
exists, then do one
of the following:
– If the If-

Match header
is *, then add
the item and
return 201
CREATED

– If there’s an
If-Match
header and its
value isn’t *,
then return 404
NOT FOUND.

• If the item was
successfully
updated, then
return one of the
standard PUT
codes, such as 200
OK or 204 No
Content.

Chapter 22
Implementing Synchronization-Compatible APIs

22-12

Method Response Body Response Headers Response HTTP
Status Codes

POST If the item stored in the
server is different from
the item in the request
body, then include the
stored item in the
response body.
Otherwise, returning the
item in the response
body is optional. For
example, if the server
adds calculated fields
such as createdOn,
then return the stored
item in the response
body.

• Location: Must
contain the item’s
URI.

• ETag: Must contain
the item’s ETag in
quotes.

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a single
object. The
addItem() method
sets this header
automatically. If the
response body is a
file, you optionally
can set this header
to file.

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-No-
Store: Optional.
See Specify
Synchronization
and Cache Policies.

No special requirements

Chapter 22
Implementing Synchronization-Compatible APIs

22-13

Method Response Body Response Headers Response HTTP
Status Codes

DELETE No special requirements No special requirements • If there’s an If-
Match request
header and its
value isn’t *, then if
the ETag of the item
to be deleted
doesn’t match the
header’s value,
return 412
Precondition
Failed.

Note that the
Synchronization
library sends * in
the If-Match
header when the
conflict resolution
policy is
CLIENT_WINS. For
all other conflict
resolution policy
configurations, it
sends the item’s
ETag.

• If the item doesn’t
exist, then you can
return either a 404
Not Found or a
204 No Content.
The
Synchronization
library process is
the same for both
codes.

• If the item was
successfully
deleted, then return
one of the standard
DELETE codes,
such as 200 OK,
202 Accepted, or
204 No Content.

The Synchronization library uses the 412 Precondition Failed HTTP response
status code and the If-Match header to implement conflict resolution policies.
Basically, if the conflict resolution policy is CLIENT_WINS, then the If-Match header is
set to * to indicate that the server must update or delete the resource without conflict.
Otherwise, the If-Match header is set to the item’s ETag, and the custom code is
expected to return 412 Precondition Failed if the ETags don’t match.

Chapter 22
Implementing Synchronization-Compatible APIs

22-14

Tip:

Most methods require an ETag header in the response, and many methods require
that you compare the server version’s ETag with the value in the request’s If-Match
header. There are several node libraries that you can use to create ETags. For
example, the NPM etag library that is available from https://www.npmjs.com/
package/etag.

Return Cacheable Data
The custom code SDK provides the following methods to format your data for use by the
Synchronization library. Using these methods enables the library to optimize synchronization.

oracleMobile.sync Method Description

setItem(response, item) Set the response body to the item.

addItem(response, item, uri, etag) Add the item to a collection, which will be returned
in the response body in a cacheable format.

clear(response) Undoes all calls to setItem and addItem .

For a response with a single JSON object, you use setItem to format the data, as shown in
this example, and you return the ETag value in the ETag header:

var etag = require('etag');
...
service.get('/mobile/custom/incidentreport/incidents/:id/syncUniquecode',
 function (req, res) {
 var item = {'code': req.params.id + '-' + new Date().valueOf()};
 res.setHeader('Etag', etag(JSON.stringify(item)));
 req.oracleMobile.sync.setItem(res,item);
 res.end();
});

For a JSON object that contains an array of items, you use addItem to add each item to the
response, as shown in the next example. Note that addItem attaches a URI and an ETag
value to each item in the response body. The URI must uniquely identify each item.

var etag = require('etag');
...
service.get(
 '/mobile/custom/incidentreport/statusCodes',
 function (req, res) {
 var payload = {'inroute': 'Technician is on the way'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/inroute',
 etag(JSON.stringify(payload))
);
 payload = {'arrived': 'Technician is on premises'};
 req.oracleMobile.sync.addItem(

Chapter 22
Implementing Synchronization-Compatible APIs

22-15

https://www.npmjs.com/package/etag
https://www.npmjs.com/package/etag

 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/arrived',
 etag(JSON.stringify(payload))
);
 payload = {'completed': 'Technician has left premises'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/completed',
 etag(JSON.stringify(payload))
);
 res.end();
 });

The response body for the addItem example looks like this:

{
 "items": [
 {
 "inroute": "Technician is on the way"
 },
 {
 "arrived": "Technician is on premises"
 },
 {
 "completed": "Technician has left premises"
 }
],
 "uris": [
 "/mobile/custom/incidentreport/statusCodes/inroute",
 "/mobile/custom/incidentreport/statusCodes/arrived",
 "/mobile/custom/incidentreport/statusCodes/completed"
],
 "etags": [
 "\"26-5vTpRVIO9SakJoLYEQrQ0Q\"",
 "\"27-+lktOY9aA46ySRE0O/y5Aw\"",
 "\"2c-PSRg8Cxr2rYp/9BftCmDag\""
]
}

When you use setItem and addItem, the response also includes this header:

Chapter 22
Implementing Synchronization-Compatible APIs

22-16

Header Description Type

Oracle-Mobile-Sync-
Resource-Type

If the response body is JSON,
then the value is item if the
JSON object includes a single
item. The value is collection if
the JSON object contains an
array of items. Note that when
the response is a file, you
optionally can set the value to
file. When this header isn’t
included in the response, the
Synchronization library assumes
that the type is file. That is,
when this header is not set, then
the MobileResource that the
Synchronization library
fetchObjectBuilder and
fetchCollectionBuilder
methods return is of type
MobileFile.

String

Specify Synchronization and Cache Policies
For the mobile apps that use the Synchronization library, you might want to override their
settings for whether to cache the data that you return and when to expire and delete the data.
For example, if the data contains private information, you might want to prevent a mobile app
from caching that data. This table shows the Oracle-Mobile-Sync HTTP headers to override
these settings.

Header Description Type

Oracle-Mobile-Sync-Evict Specifies the date and time after
which the expired resource
should be deleted from the app’s
local cache. Uses RFC 1123
format, for example EEE, dd
MMM yyyyy HH:mm:ss z for
SimpleDateFormat.

The following synchronization
policies are set for the resource
object that is created from the
response:

• Eviction policy:
EVICT_ON_EXPIRY_AT_STA
RTUP

• Expiration policy:
EXPIRE_AFTER with the
expireAfter property set
to date and time provided in
the header value

.

Number

Chapter 22
Implementing Synchronization-Compatible APIs

22-17

Header Description Type

Oracle-Mobile-Sync-
Expires

Specifies when to mark the
returned resource as expired.
Uses RFC 1123 format, for
example EEE, dd MMM yyyyy
HH:mm:ss z for
SimpleDateFormat.

Number

Oracle-Mobile-Sync-No-
Store

When set to true, instructs the
client to not cache the resource.

Boolean

Call Web Services and APIs from Custom Code
Your implementation can access these types of APIs and services:

• Platform APIs: The custom code SDK includes methods for accessing the platform
services. For example, you use database.get() to retrieve data from the
Database service.

• Custom APIs: The custom code SDK includes custom methods for interacting with
all the other custom APIs that are in your environment.

• Connector APIs: The custom code SDK includes connector methods for
interacting with connectors.

• External web services: Typically, you create connector APIs with which to interact
with external services, but you also can connect with remote web services directly
from custom code.

If you need to make a third-party web service call that doesn’t require you to shape
the data, and you don’t need integrated diagnostics, tracking, or analytics for that
call, then you might choose to call the service directly instead of setting up a
connector. You can call a web service directly from your custom code using Node
APIs such as the HTTP API. The only supported protocols for making calls to the
Internet from custom code are HTTP and HTTPS. For information about the Node
HTTP API, see nodejs.org/api/http.html.

When deciding whether to use a connector or make a direct call, consider that if the
third-party web service changes its API, then a connector requires just one change,
whereas with direct calls, you must make sure you find and change all the direct calls.
Also, consider that if you’re testing against a test web service, you’ll have to modify the
URLs for the direct calls when you switch to the production service.

Package Custom Code into a Module
After you’ve written custom code to implement an API, and before you upload and
deploy it, follow these steps to package the implementation:

1. Declare the implementation version in the package.json manifest file.

2. Optionally declare the Node version in the package.json file.

3. Declare in the package.json file the API dependencies on other modules.

4. Run the Node.js package manager (npm) to download the dependencies.

5. Put the root folder and its implementation files in a zip file.

Chapter 22
Call Web Services and APIs from Custom Code

22-18

http://nodejs.org/api/http.html

Required Artifacts for an API Implementation
An API implementation is packaged as a zip archive containing, at minimum, the following
artifacts:

• A root directory that has the name of the custom code module.

• The package.json file. Within this file, you specify in JSON format the name of the
module and any dependencies that your custom code has, such as any connector APIs.

By Node convention, this file must be within the root directory.

• At least one JavaScript file that contains the implementation code.

• If there are any additional modules that you are using (in addition to Express and the
base Node features), then a node_modules directory containing those modules.

package.json Contents
Like all npm packages, custom API implementations require that you identify the project and
its dependencies in a package manifest named package.json. Here’s an example of the
syntax and the properties of a package.json file for a custom API implementation:

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "dependencies": {
 "async": "0.9.0"
 },
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/employees" : "3.5.1"},
 "connectors" : {"/mobile/connector/RightNow": "1.0"}
 }
 }
}

The key attributes are the following:

name
A descriptive name for the implementation. The name can contain only characters that can
be used in a URI. It may not start with a period (.) or underscore (_). The value of this

Chapter 22
Package Custom Code into a Module

22-19

attribute in combination with the value of the version attribute must be unique among
all API implementations.

version
The version of the implementation. If you provide a new version of an implementation,
then this attribute should be incremented and the name value should stay the same.

description
An optional description of the implementation.

main
The name of the main JavaScript file that implements the API. If this file isn’t in the
same folder as the package.json file, then use a path name that’s relative to the
package.json folder.

dependencies
The specification of dependencies to other Node modules required for the
implementation. When you have such dependencies, use npm to install those modules
in this directory.

oracleMobile / dependencies / api
The specification of the version for a custom API or a connector API that you
reference in your custom code.

Declare the API Implementation Version
Use the version attribute in the package.json file for the custom code module to
specify the implementation version, as shown in the following example:

{
 "name" : "incidentreport",
 "version" : "1.0.0",
 "description" : "Incident Report Custom API",
 "main" : "incidentreport.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : { },
 "connectors" : {"/mobile/connector/RightNow": "1.0"}
 }
 }
}

If you have previously uploaded an implementation and that implementation is still in
Draft state, then you can continue to upload modified implementations without
incrementing the version number. After you publish a version, that version is final. If
you want to make changes to a published implementation, then you must increment
the version number.

You can publish implementations independently of APIs, and you can increment their
version numbers separately as well. This lets you make changes to a published
implementation, such as minor modifications or bug fixes, without requiring the API
itself to be updated.

To create another version of an API implementation, change the version attribute,
such as "version": "1.0.1", and then upload a zip file of the modified

Chapter 22
Package Custom Code into a Module

22-20

implementation. When you upload a new version of an implementation, it becomes the
default version (active implementation) for that API. You can change the default version in the
API’s Implementations page.

If the new version is backward-compatible, then use a minor incremental increase. For
example, if the previous version is 1.3, then the updated version number could be 1.4 or 1.7.
If the new version isn’t backward-compatible, then use a major incremental increase. For
example, if the previous version is 1.3, then the updated version number could be 2.0 or 2.1.

Declare the Node Version
The CCC_DefaultNodeConfiguration environment policy defines the instance's default node
version. To use a version of the Node library other than the default Node version, add a node
property to the configuration section as shown in this example:

{
 "name" : "incidentreport",
 "version" : "1.0.0",
 "description" : "Incident Report Custom API",
 "main" : "incidentreport.js",
 "oracleMobile" : {
 "configuration" : {
 "node" : "6.10" }
 }
}

Package Additional Libraries with Your Implementation
If your API implementation depends on other JavaScript modules, such as Async, then you
must add them to your custom code zip file. The additional modules aren’t shared across
APIs. For example, you must include the Async module in every implementation package that
uses it. Your implementation can't use any modules that depend on installing a binary
(executable) on the server.

1. In the package.json file for the implementation module, declare the modules that the
implementation module depends on. Specify both the module name and the version
number in the following format:

"dependencies": {
 "<module-name>":"<version-number>",
 "<module-name>":"<version-number>",
},

2. In the directory containing the package.json file for the custom code module, run:

npm install

This command downloads the stated dependencies from the public npm repository and
places them in the node_modules subdirectory.

Chapter 22
Package Custom Code into a Module

22-21

If the module on which you’re creating the dependency is in a folder on your file
system instead of in the public npm repository, add the path to the folder as an
argument to the command:

npm install <folder-name>

For more information on using the npm package manager, see https://
docs.npmjs.com/cli/install.

3. Package the whole folder containing the package.json file in a zip archive.

Upload the Custom Code Module
1. On your system, create a zip archive of the root folder that contains the required

artifacts for the implementation:

• The package.json file

• At least one JavaScript file that contains the implementation code.

• If necessary, a node_modules sub directory that contains the additional
modules that the implementation uses.

2. From the API Catalog, open the custom API that the custom code implements.

3. In the left navigation bar, click Implementations.

4. At the bottom of the API Implementation page, click Upload an implementation
archive, and upload the zip archive.

Tip:

You also can use the Mobile Hub Custom Code Test Tools to upload an
implementation from the command line.

Testing and Debugging Custom Code
You can test and debug your custom code directly within the UI. It’s also possible to
test your custom code outside of the UI.

Test with Mock Data
When you create a custom API, you get a mock implementation, which application
developers can use to test their mobile applications while you are implementing the
custom code. When you call an endpoint for a mock implementation, it returns the
request example, if one has been provided.

The mock implementation is the default implementation until you upload an
implementation. Whenever you upload an implementation, it is automatically deployed
as the default implementation. You can always change this, including reverting to the
mock implementation, for testing purposes. To change the default implementation,
select it on the Implementations page and click Set as Default.

You can create example (mock) data to provide default request and response bodies
for the test UI. You can use either the API Designer or the RAML to add example

Chapter 22
Upload the Custom Code Module

22-22

https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install

(mock) data. To provide an example for an endpoint from the API Designer, from the
Endpoints page, go to the desired method, click either the Requests tab or the Responses
tab, select the appropriate media type, and then enter the mock data in the Example tab.

Here's an example of providing mock data in the RAML.

/status:
 get:
 description: |
 Gets status of specified report.
 responses:
 200:
 description: |
 OK.
 body:
 application/json:
 example: |
 { "code": "New",
 "notes": "My hot water tank's model is AB234"
 }

Test Custom Code from the UI
As soon as you upload your custom API implementation, you can test it.

1. Click Test in the API Designer.

The test page displays all the operations.

2. From the endpoints list, click the operation that you want to test.

3. If the endpoint has parameters, then enter the required parameters and any optional
parameters that you want to test.

4. If the endpoint accepts a request body, then provide the body or click Use Example.

5. Select a backend.

6. Optionally, select an API version.

7. Select the authentication method. If you select Current User, then the authentication
method is OAuth Consumer.

8. If you aren’t using anonymous access, then you must provide a user name and the
password. This user must have been assigned one of the roles that can access the
endpoint. If the endpoint doesn’t have any roles configured for it, then the user must
belong to a role that’s associated with the API. In addition, the user must have one of the
roles that is associated with the backend that you use to test the endpoint. You can see
these roles in the backend’s Security page.

9. Click Test Endpoint.

The Response Status section displays the status and the response. Click Request to see
the request URI and headers.

You also can test an API from the API Catalog and from a backend.

Chapter 22
Testing and Debugging Custom Code

22-23

Debug Offline with the Mobile Hub Custom Code Test Tools
Oracle Mobile Hub offers a set of custom code test tools that you can use to iteratively
debug your custom code. You can download the tools from the downloads page on
OTN.

The core of the tools is an npm module that enables you to run an offline custom code
container, run tests on the code, and package and deploy an implementation back to
Mobile Hub.

Detailed instructions on using the tools are located in the README.MD file that is
packaged within the omce-tools.zip.

Tools for Testing Custom Code Outside the UI
You can use tools that were designed for testing web services to test custom code,
such as cURL.

The way you remotely access an API endpoint depends on the type of authentication
that you want to use. See:

• Authenticate with HTTP Basic in Direct REST Calls

• Authenticate with OAuth in Direct REST Calls

• Get a Facebook User Access Token Manually

• Headers Needed for API Calls with Facebook Authentication

When you create a custom API, a mock implementation is created automatically. You
can use this mock implementation for testing before you implement the custom code.
You also can use the mock implementation to configure a response for a mobile
application test case. After you have uploaded an implementation, you can switch to
the mock implementation for testing purposes by making it the default. For more
information, see Test with Mock Data.

If your request is in a test suite, then you can put the name of the test suite in the
Oracle-Mobile-Diagnostic-Session-ID header. The name appears as the app
session ID in the log messages. This lets you filter the log data on the Logs page by
entering the test suite name in the Search text box. Also, when you are viewing a
message’s details, you can click the app session ID in the message to view all the
messages with that ID. For more information about using the Oracle-Mobile-
Diagnostic-Session-ID header, see How Client SDK Headers Enable Device and
Session Diagnostics.

Note that the API must either allow anonymous access or be associated with at least
one role. If neither of these is true, then you will get an unauthenticated error.

View Custom Code Log Messages
When your API implementation doesn’t return the expected results, use the diagnostic
logs to troubleshoot the problem.

To pinpoint where the error occurred, click to open the side menu. Next, click the
Diagnostics menu, and then click Request History. Next, to find the request, click

View related log entries in the Related column, and then select Log Messages

Chapter 22
Testing and Debugging Custom Code

22-24

http://www.oracle.com/technetwork/topics/cloud/downloads/amce-downloads-4478270.html

Related by API Request. To see a message’s details, click the time stamp. From the
Message Details dialog, you can click the up and down arrows to see all the related log
messages.

You can get to the Request History page from either the Diagnostics menu or a mobile
backend’s Diagnostics page. Note that if there isn’t sufficient information in a request to
enable the service to determine the associated backend, then the related log messages
appear only in the Logs page that is available from the Diagnostics menu.

Every message is tagged with a request correlation ID that associates all messages for a
request. When you view a message’s details, you can click the request correlation ID to see
the other messages for the same request.

If you don’t see any messages that help identify the source of the problem, then you can
change to a finer level for logging messages. From the Logs page, click Server Settings,
change the log level for the mobile backend, and then rerun the test.

Let's use the following endpoint to see how to custom code logging works. In this code, the
database.insert method makes a PUT request to /mobile/platform/database/objects/
FIF_Incidents.

service.post('/mobile/custom/incidentreport/incidents', function (req, res) {
 req.oracleMobile.database.insert('FIF_Incidents', req.body).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(result.statusCode).send(error.error);
 }
);
});

The service always logs a message whenever a call ends, regardless of the log level setting.
In the following figure, the bottom (earliest) message was logged when the POST request to /
platform/database/objects/{table} ended. The top (later) message was logged when the
service.post call to /mobile/custom/incidentreport/incidents ended.

Get Finer-Grained Request and Response Log Messages
To get the maximum amount of log messages, set the log level to FINEST. With this level, the
service logs the following messages:

• A FINEST message, which contains the HTTP verb and URI, whenever a request is
received by any of the custom API’s endpoints

• A FINEST message, which contains the HTTP verb, URI, and status code, whenever a
response is sent by any of the custom API’s endpoints

• A FINEST message, which contains the HTTP verb and URI, whenever a request is sent
to another platform or custom API.

Chapter 22
Testing and Debugging Custom Code

22-25

• A FINEST message, which contains the HTTP verb, URI, and status code,
whenever a response is received from a call to another platform or custom API.

If the CCC_LogBody environment policy is set to true and the log level is FINEST, then
the following occurs:

• If a request body exists, then the FINEST message that contains the request’s
HTTP verb and URI also shows the body.

• If a response body exists and the response status code is less than 400, then the
FINEST message that contains the HTTP verb, URI, and status code for the
response also shows the body.

• If a response body exists and the response status code is 400 or higher, then the
response body is logged in a separate message. Immediately after, it logs the
FINEST message for the response. The message type is either WARNING or SEVERE,
depending on the status code.

Note that setting the log level to FINEST might have a negative effect on performance.

Log Request and Response Bodies
If you would like to see the bodies of the requests and responses, then ask your
mobile cloud administrator to change the CCC_LogBody environment policy to true.
When you do this, the service logs a CCC message whenever a body is passed in a
request or a response as shown here:

When you set the log level to Info, the service logs the request bodies with a
message type of INFO. Response bodies are logged with a message type that
corresponds to the response status. For example, if the response status is 401, then
the log message that contains the response body has a message type of WARNING.

Note that setting the CCC_LogBody environment policy to true might have a negative
effect on performance.

Chapter 22
Testing and Debugging Custom Code

22-26

By default, the body is truncated after 512 characters. Use the CCC_LogBodyMaxLength
environment policy to change the maximum body length. To always include the full message,
no matter how long it is, set CCC_LogBodyMaxLength to -1.

Minimize the Performance Cost of Logging Bodies
If you are concerned about the performance cost of logging bodies, but you want to see the
request and response bodies for exceptional cases, you can configure your instance to log
request and response bodies only when the status code is 400 or higher.

To limit request and response body messages to exceptional cases:

• Set the CCC_LogBody environment policy to true.

• Set the logging level to WARNING or SEVERE.

With these settings, whenever there is a status code of 400 or higher, a message is logged
for both the request and the response. Both messages are logged at the time that the
response is received. The message type is WARNING or SEVERE, depending on the status code.
The message shows the body, if there is one.

Create Custom Log Messages
To help with debugging, you can use the console object from the custom code SDK to insert
logging into your implementation.

Troubleshooting Custom API Implementations
When a test fails for a request, examine the response’s HTTP status code and the returned
data to identify the issue. Status codes in the 200 range indicate success. Status codes in the
400 range indicate a client error where the calling client has done something the server
doesn't expect or won’t allow. Depending on the 4XX error, this may require fixing custom
code, giving a user the necessary privileges, or reconfiguring the server to allow requests of
that type, for example. Status codes in the 500 range indicate that the server encountered a
problem that it couldn't resolve. For example, the error might require reconfiguring server
settings. Here are some common standard HTTP error codes and their meanings:

Status Code Description

400 BAD REQUEST General error when fulfilling the request would cause an
invalid state, such as missing data or a validation error.

401 UNAUTHORIZED Error due to a missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource
is unavailable.

404 NOT FOUND Error due to the resource not being found.

405 METHOD NOT ALLOWED Error that although the requested URL exists, the HTTP
method isn’t applicable.

500 INTERNAL SERVER ERROR General error when an exception is thrown on the server
side.

You can use the request’s log entries to pinpoint where the error occurred as described in
View Custom Code Log Messages. To learn how to identify custom code syntax errors from
the log, see Diagnose Syntax Errors.

Chapter 22
Troubleshooting Custom API Implementations

22-27

If you don’t see any messages that identify the source of the problem, then you can
change to a finer level for logging messages. From the Logs page, click Server
Settings, change the log level for the mobile backend, and then rerun the test. If
you’re troubleshooting custom code, then you can add your own log messages to the
custom code to help identify the code that’s causing the problem. See Insert Logging
Into Custom Code.

Tip:

If, in a request, you set the Oracle-Mobile-Diagnostic-Session-ID header
to an identifier for the suite, that value is displayed in the message detail as
the app session ID. If you click the app session ID in a message detail, then
you can then click the up and down arrows to view all the messages for that
ID. You can also enter the ID in the Search field to display only the log
messages with that ID. For more information about using the Oracle-
Mobile-Diagnostic-Session-ID header, see How Client SDK Headers
Enable Device and Session Diagnostics.

Diagnose Syntax Errors
When a request failure is caused by a syntax error, you can details about that error
from the diagnostic logs.

From the Diagnostic page, find and open the Message Detail dialog box for the syntax
error message, and look at the Message Text , which provides the module and line
number where the error occurred, as shown here:

Chapter 22
Troubleshooting Custom API Implementations

22-28

If you’d like to see the stack traces for custom code syntax errors in request responses, then
ask your mobile cloud administrator to change the CCC_SendStackTraceWithError
environment policy to true. When you do this, you’ll see a request response like the following
example whenever a request results in a syntax error in the custom code. The stack trace
shows the line number where the error occurred.

{"message": "Custom Code Problem: ReferenceError: nonExist is not defined\n
at /scratch/aime/mobile/mobile_ccc/custom_code_modules/
ccc2455344468806884059/incidentreports/incidentreports.js:354:17\n at
callbacks (/scratch/aime/mobile/mobile_ccc/mcs-node-router/node_modules/
express/lib/router/index.js:164:37)\n ..."
}

Common Custom Code Errors
The following topics discuss common errors, possible causes, and solutions.

Custom Code Problem parsing JSON: Error: request entity too large
This error is typically caused by a request body that’s larger than the JSON body parser’s
default maximum input, which is 1MB.

To change the JSON body parser limit for Node 6.10 and later, add this code to the
implementation’s main JavaScript file, and set the desired limit:

var bodyParser = require('body-parser');
module.exports = function(service) {
 service._router.stack[3].handle = bodyParser.json({limit: '2mb'})
};

To change the JSON body parser limit for Node 0.10, add this code to the implementation’s
main JavaScript file, and set the desired limit:

var bodyParser = require('body-parser');
module.exports = function(service) {
 service.stack[3] = { route: "", handle: express.json({limit: '2mb'})
};

Custom Code Problem in oracleMobile.rest callback: Argument error, options.body
When you use a generic REST method from the custom code SDK, the common cause for
this error is assigning a JavaScript object to optionsList.body, where optionsList is
the first parameter in a call to req.oracleMobile.rest.post(optionsList,
handler).

The solution is to do one of the following:

• Store the object in optionsList.json, instead of optionsList.body. This solution
automatically converts the object to a JSON string and sets relevant parts of the request,
such as the content type and length. For example:

optionsList.json = {first: 'John', last: 'Doe'};

Chapter 22
Troubleshooting Custom API Implementations

22-29

• Use JSON.stringify to convert the object to a JSON string before setting the
optionsList.body value. For example:

optionsList.body = JSON.stringify(first: 'John', last: 'Doe'};
optionsList.headers = {'Content-Type': 'application/json');

Your custom code container is in the process of recovering from an unhandled
error in a earlier request

This issue occurs when a previous request results in an uncaught exception. When
you receive this response, rerun the current request. It should succeed as soon as the
system has recovered from the uncaught exception for the previous request.

You should examine the logs for the previous requests to see if you can find the cause
of the uncaught exception.

Connection fails due to untrusted URL
To protect client apps, the service passes all external URLs through McAfee Web
Gateway v7.x/6.9.x (Cloud), which requires that all external URLs are trusted. This
requirement applies to external service URLs for connector APIs as well as those that
you access directly from custom code.

Attempting to connect with an untrusted connector endpoint results in a 403 error,
which might be wrapped in a 500 error.

To resolve the issue, add the untrusted URL to the list of trusted URLS for McAfee
Web Gateway v7.x/6.9.x (Cloud) at http://trustedsource.org/. Note that the
process can take from three to five business days.

database.getAll(table, options, httpOptions) doesn’t return all the rows in a
table

This issue occurs when there are more rows in the table than the Database_MaxRows
environment policy allows the service to return. The default value is 1000.

Ask your mobile cloud administrator to increase the Database_MaxRows value.

This mobile user doesn't have the necessary permissions to call this endpoint
In the UI, open the API and click Security. If Login Required is turned on and
Enterprise is selected, then look at the roles that have been configured. If no roles are
configured, then no one has permission to log in to the mobile backend. If one or more
roles are configured, ensure that the user has a necessary role.

What Happens When a Custom API Is Called?
You might be curious about how the service handles calls to a custom API. Here is a
high-level summary. When the service receives a custom API request, it sends the
request to the custom code service. The custom code service then directs the request
to one of the following:

Chapter 22
What Happens When a Custom API Is Called?

22-30

http://trustedsource.org/

• Custom code container for the API implementation: A container is a Node instance. This
container wraps the custom API implementation with JavaScript that handles tasks such
as server startup, authentication, authorization, and logging. There is one container for
each deployed version of an implementation for each associated mobile backend version.

• Custom code agent: The agent controls the creation and destruction of custom code
containers, controls server startup, and exposes the REST endpoints for creating and
destroying a container.

Basically, a custom API implementation is launched on demand in a container that is
instantiated by the custom code agent. This container, which runs in Node, handles the
requests and returns the responses.

When the custom code calls a platform API or a connector API, it makes the call back
through the service, and then the service routes the call to that API. If the call is to a different
custom API, then the service routes the call to that API’s container if it exists, or it creates the
container and then routes the call to it.

Chapter 22
What Happens When a Custom API Is Called?

22-31

23
Calling APIs from Custom Code

As a service developer, you might want to access platform APIs, connector APIs, and other
custom APIs from your custom code. The custom code SDK provides methods that simplify
making requests to these APIs.

Note that the purpose of the examples in this chapter is to illustrate how to interface with the
custom code service. The examples are not intended to teach best practices for writing
Node.js REST API implementations.

Send Requests to Platform, Connector, and Custom APIs
You use custom code SDK methods to send requests to platform, custom, and connector
APIs. When you call one of these methods, that method makes a RESTful HTTP call to the
API. This SDK makes the HTTP calls mostly transparent to you, but you’ll see that a
method's arguments and its return value are similar to what you would see with a RESTful
HTTP request and response.

The SDK methods follow a common request pattern. There are two response patterns –
stream and promise.

API Request Pattern
The custom code SDK methods that make requests to custom, platform, and connector APIs
follow this pattern:

req.oracleMobile.<service>.<method>(required arguments, options, httpOptions)

The <service> identifies the API that you want to call.

• For platform APIs, this is the name of the platform, such as storage, ums, or
notification.

• For connector APIs, this can be either connectors or connectors.<api>. Later, we
discuss how to choose which one to use.

• For custom APIs, this can be either custom or custom.<api>. Later, we discuss how to
choose which one to use.

You use options to specify optional API-specific properties. The next section discusses the
options properties that are shared by many of these methods. Each method description in
the subsequent sections discusses additional options properties that apply to that method, if
any.

The httpOptions argument is like the Node.js http.request(options) argument. You use
this argument to pass properties not covered by required arguments and options. For
example, if you need to pass the timeout property to specify the number of milliseconds to
wait for a request to respond before terminating the request, then you would pass it in
httpOptions. Another example of when you use httpOptions is to pass query parameters to
a connector. To learn more about http.request(options), go to the API documentation at

23-1

https://github.com/request/request and scroll down to the section entitled
"request(options, callback)".

Tip:

When you use httpOptions.qs to pass the query string, you can use
encodeURIComponent(<string>) for the qs value to ensure that your code
handles multibyte characters.

You can omit the options and httpOptions arguments. When you do so, they are
treated as null values. Any value that you provide in options that affects a parameter
in httpOptions overrides the httpOptions parameter. The methods ignore any
property in the options and httpOptions arguments that they do not support.

You might notice that you don’t need to worry about authentication when you send
requests to custom, platform, and custom APIs from custom code. The service re-uses
the access token that’s passed into the custom code and takes care of authentication
for you. With connectors, if you need to use different credentials for the external
service, you can use options.externalAuthorization to pass the value to be used in
the Authorization header for the external service.

If you need to send direct requests to third-party web services without going through a
connector, use a Node API such as the HTTP API.

API Response Patterns
The return value for a custom code SDK call to an API depends on the value of the
options.outType property.

• If the outType is stream, then, if there’s no error, the return value is a stream that
you can pipe.

• If the outType is undefined or any value other than stream, then the return value is
a promise object.

Handle a Stream
When the response is a stream, then, if there’s no error, the return value is a stream
that you can pipe. Otherwise, you can process the error as shown in this example:

 req.oracleMobile.storage.store('attachments', req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.status).send(error.message);
 })
 .on('response', function (response) {
 console.info('HEADERS received from response:', response.headers);
 })
 .pipe(res);

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-2

For more information about streaming, see https://github.com/request/request.

Handle a Promise
A promise provides access to the result of an asynchronous request. At the time a promise
is returned, the request may or may not have completed. Most custom code SDK methods
return promises. In the following examples, <promiseFunction> represents a custom code
SDK method that returns a promise, such as req.oracleMobile.storage.getCollections.

When you call a promise function, you typically use the then function to handle the success
or failure as shown here:

<promiseFunction>.then(successFunction, errorFunction)

• <promiseFunction> is the call that returns a promise, such as
req.oracleMobile.storage.getCollections in the next code example.

• successFunction is a user-defined function that is called if the prior promise function
resolves successfully. This occurs when the request completes with a response status
code less than 400. The successFunction takes a single argument, which is what the
prior <promiseFunction> returned on success. With custom code SDK methods, this is a
JSON object with the following properties:

– result: The body of the result.

– statusCode: The HTTP status code.

– headers: A JSON object that contains all the HTTP response headers, such as
{accept-charset:'UTF-8',content-type:'application/json'}.

– contentType: The value of the Content-Type header if that header was included in
the response.

– contentLength: The value of the Content-Length header if that header was included
in the response.

• errorFunction is a user-defined function that is called if and when promise function
doesn’t resolve successfully. This is when the response status is equal to or greater than
400, or if there is a severe error. The errorFunction takes a single argument, which is
what the <promiseFunction> returned on error. With custom code SDK methods, this is a
JSON object with the following properties:

– statusCode: The HTTP status code.

– error: The body of the error or the error message.

– headers: All the response HTTP headers.

The then function takes an optional progressFunction argument. However, the custom code
SDK doesn’t use this argument, and you can omit it from the call.

Here’s an example of how to call a custom code SDK method to access a custom, platform,
or connector API and use then to handle the promise that it returns. In this example:

• In this example, the <promiseFunction> is req.oracleMobile.storage.getCollections.
This is a function from the storage component of the custom code SDK, which either
resolves with a successful promise or rejects with an error promise.

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-3

• If getCollections completes successfully, then it passes the successful promise
to the first argument for then, which is function(result).

• If getCollections results in an error, then it passes the error promise to the
second argument, which is function(error).

// Get metadata about the backend's collections.
service.get('/mobile/custom/incidentreport/collections',
 function (req, res) {
 req.oracleMobile.storage.getCollections({sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

A promise and its result can be assigned to a variable. This means that the result can
live longer than the function call alone, allowing you to chain multiple success and
failure functions calls against the result. For example, you can write code like this:

var collections = req.oracleMobile.storage.getCollections({sync:
true});

collections.then(successFunction1, errorFunction1);
...
collections.then(successFunction2, errorFunction2);

Because the custom code SDK uses the Bluebird promises library, we recommend
that you use this library to process these promises. If you only use the then() function
from the promises library, you don’t need to include Bluebird in your package.

There are several promise libraries that you can choose from for your custom code
implementation, but the extent to which they will work with the custom code SDK
promises is not known. To learn more about Bluebird promises, go to https://
github.com/petkaantonov/bluebird.

Invoke Calls Synchronously
When you need to invoke a series of calls in a synchronous manner, waiting for one
operation to complete before starting the next one, then you can take advantage of the
fact that most custom code SDK methods return a promise. A promise handles some
of the complexity of making synchronous calls in an asynchronous environment like
Node, and provides a simple way to handle both success and failure cases through
callback methods.

The simplest way to extract the result of a promise is to use the then function. In your
custom code, you can provide two arguments to the then function.

• A function to invoke on success, which takes a single argument – the success
promise.

• A function to invoke on error, which takes a single argument – the error promise.

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-4

Here’s an example of using the then function to handle the result of a promise function. As
you can see, it has two arguments:

• function(result), which sends the getById result.

• function(error), which sends the error message.

service.get('/mobile/custom/incidentreport/attachments/:id',
 function (req, res) {
 req.oracleMobile.storage.getById('attachments', req.params.id, {sync:
true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

When you need to call more than one API operation from a route definition, you can use then
to chain the calls, so that one call completes successfully before the next one is called. In this
example, the route definition:

1. Posts an incident to the database and returns the result.

2. If the post completes successfully, gets the user info.

3. If the user info is retrieved successfully, posts an analytics event.

Notice that none of the then functions take a second argument (the error function). If an error
(rejected) promise is passed to a then function that doesn’t have a second argument, then
the code skips to the first then function with a second argument. In this example, because
there aren’t any, all errors trickle to the catch function.

service.post('/mobile/custom/incidentreport/incidents',
function (req, res) {

 /* Post the incident and send the response.
 * Then, if the post was successful,
 * get the username,
 * then use the username to post an event.
 *
 **/
 postIncident()
 .then(getUser)
 .then(postEvent)
 .catch(function (errorResult) {
 console.warn(errorResult);
 });

 function postIncident() {
 return req.oracleMobile.database.insert('FIF_Incidents', req.body)
 .then(
 function (successResult) {
 res.status(successResult.statusCode).send(successResult.result);

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-5

 // By default, Bluebird wraps this with a
 // resolved promise
 return {status: "resolved"};
 },
 function (errorResult) {
 res.status(errorResult.statusCode).send(errorResult.error);
 throw errorResult;
 }
);
 };

 function getUser() {
 return req.oracleMobile.ums.getUser({fields: 'username'});
 };

 function postEvent(successResult) {
 var userName = successResult.result.username;
 /*
 * Record the NewIncident event
 */
 var timestamp = (new Date()).toISOString();
 // Events are posted as an array
 var events = [];
 // Put events in context
 events.push(
 {name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {userName: userName}
 });
 // Start the session
 events.push(
 {name: 'sessionStart',
 type: 'system',
 timestamp: timestamp
 });
 // Add the custom event:
 events.push(
 {name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: req.body.customer}
 });
 // End the session:
 events.push(
 {name: 'sessionEnd',
 type: 'system',
 timestamp: timestamp
 });
 // Post the batch of events. Apply the passed-in session ID to all.
 // The postEvent result is returned by this function
 return req.oracleMobile.analytics.postEvent(
 events,
 {sessionId: req.header('oracle-mobile-analytics-session-id')});

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-6

 };
});

Invoke Calls Asynchronously
Promise.join lets you make several asynchronous calls and then use the results after all
calls are complete. The promise that the join returns is an array of the results.

For example, the following code makes three calls to the incidentreport custom API to get
information for the result body. After all calls complete successfully, the then function’s
success handler extracts the necessary information to compile the result, and then sends it.

Note that the join functions aren’t necessarily called in the order in which they occur in the
code. The only guarantee is that all the join functions successfully complete before a
success promise is returned.

/* Promise.join example
 *
 * Promise.join takes multiple promises as arguments.
 * If all promises succeed, then it returns a promise
 * that holds an array of the results of the promises.
 */
var Promise = require("bluebird");
module.exports = function(service) {
 ...
 service.get('/mobile/custom/incidentreport/
join/:custId/:incidentId/:techId', function (req, res) {
 // Three functions that return promises.
 var customer = req.oracleMobile.custom.incidentreport.get(
 "customers/" + req.params.custId, {outType: 'json'});
 var incident = req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.incidentId, {outType: 'json'});
 var technician = req.oracleMobile.custom.incidentreport.get(
 "technicians/" + req.params.techId, {outType: 'json'});

 Promise.join(customer, incident, technician).then(
 function (joinResult) {
 // Anonymous handler that's called if all 3 promises succeeded.
 // Harvest a piece of data from each promise result.
 var report = {
 customerContact: joinResult[0].result.email,
 description: joinResult[1].result.title,
 technicianContact: joinResult[2].result.email};
 res.type('application/json');
 res.status(200).send(report);
 },
 function (error) {
 // Anonymous handler to handle errors
 console.info(error);
 res.status(error.statusCode).send(error.error);
 }
);
 })

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-7

 ...
}

Invoke a Dynamic Set of Calls
Use Promise.all when you have a dynamic set of calls and you must wait until all
calls complete before you take some action. If any of the promises in the array don’t
succeed, then the returned promise is rejected with the reason for rejection.

/* Promise.all example
 *
 * Promise.all takes an array of promises as an argument
(promiseArray).
 * If all promises succeed, then it returns a promise that holds
 * an array of the results from the promiseArray's promises.
 */

var Promise = require("bluebird");
module.exports = function(service) {
...
 service.get('/mobile/custom/
incidentreport/all/:custId/:incidentId/:techId', function (req, res) {
 // Put the functions that return promises in the array
 promiseArray = [];
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "customers/" + req.params.custId, {outType: 'json'}));
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.incidentId, {outType: 'json'}));
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "technicians/" + req.params.techId, {outType: 'json'}));
 // Call Promise.all with the array
 Promise.all(promiseArray).then(
 function (allResult) {
 var report = {
 customerContact: allResult[0].result.email,
 description: allResult[1].result.title,
 technicianContact: allResult[2].result.email};
 res.type('application/json');
 res.status(200).send(report);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
 })
 ...
}

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-8

Create a Function that Returns a Promise
Here are some examples of creating and using functions that return a promise. The first
example shows how to return a resolved promise and a rejected promise.

// Simple function that returns a resolved promise.
// Note the object passed to Promise.resolve is the
// object the promise is resolved with.
function resolve() {
 return Promise.resolve({status: "resolved"});
}

// Simple function that returns a rejected promise.
// The object passed to Promise.reject describes the error.
function reject() {
 return Promise.reject({error: "rejected"});
}

In this example, the compareEtags function takes a successful (resolved) promise as its
argument. It rejects the promise if the request had an ETag header and the ETag for the
result doesn’t match the ETag passed in the header.

var Promise = require("bluebird");
var etag = require('etag');
module.exports = function(service) {
...

 service.get('/mobile/custom/incidentreport/incidents/:id/ifmatch',
function (req, res) {
 function compareEtags(result) {
 thisEtag = result.headers.etag;
 if (req.header('if-match') &&
 thisEtag != req.header('if-match')) {
 return Promise.reject({
 statusCode: 412,
 error: "Precondition Failed" +". If-Match ETag: " + req.header('if-
match') + ", this Etag: " + thisEtag
 })
 } else {
 // result is already a resolved promise
 return result;
 }
 }
 // The custom code SDK get method returns a promise,
 // which is then passed to the custom function compareEtags.
 // On success, compareEtags passes the result from the get.
 // If there's an ETag header, then the function rejects the
 // promise if the result's ETag doesn't match.
 //
 // All rejections are caught by the last then.
 req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.id, {outType: 'json'})
 .then(compareEtags)

Chapter 23
Send Requests to Platform, Connector, and Custom APIs

23-9

 .then(
 function (result) {
 // res.setHeader('Etag',
etag(JSON.stringify(result.result)));
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });
...
}

Common options Properties
Several custom code SDK methods that access APIs accept an optional options
argument, which is a JSON object. Here are the options properties:

Property Description Type Default Value

accept The value for the
Accept header. Use
this property to list the
media types that you
prefer for the response
body. Note that for
most methods, the
media type for a
response body is
application/json.

String Empty, which indicates
no preference for
response type.

contentType The value for the
Content-Type
header. This property
specifies the content
type of the request
body. For most
methods, this is
application/json.

String Empty. Note that if the
inType is json, then
the service sets the
Content-Type
header to
application/json.

Chapter 23
Common options Properties

23-10

Property Description Type Default Value

inType For Storage,
connector API, and
custom API SDK
functions that take a
request body, use this
option to specify
whether the request
body is json or
stream.
If json, then the
method sets the
Content-Type
header to
application/json
automatically.

You typically set this
property when the
custom code builds
the request body that
you are sending to the
API.

String Undefined. If this
property isn’t set, then
the method passes
the request body as is.
The request is
serviced by the Node
Request module,
which accepts a string
or a buffer.

outType The response body
type. The value can be
one of the following:
• json: Convert the

response body to
a JSON object.
Note that if there
are JSON parse
errors, then the
response body
remains a string.

• stream: Return
the response
body in a
readable stream
that can be piped.

• binary: Do not
convert the
response body to
a string.

• encoding:
Convert the
response body to
a string using the
specified
encoding.

This property is
supported only by the
Storage API and the
connector and custom
APIs. All other APIs
use the default
response behavior.

String Undefined. The
response body is
converted to a string
using the UTF8
encoding.

Chapter 23
Common options Properties

23-11

Property Description Type Default Value

encodeURI When true, encodes
the URI and the
following arguments
and properties:

• Encodes table,
keys, fields,
extraFields,
primaryKeys,
and sql
arguments and
properties for
database
methods

• Encodes
collectionId,
mobileName,
objectId,
orderBy, and
user arguments
and properties for
storage
methods.

This option is useful
for multibyte
characters.

Boolean false

Access Mobile Backend Information from Custom Code
Use the req.oracleMobile.mbe.getMbe() method to inquire about the backend that
the request is coming from. Note that this method is synchronous and doesn't return a
promise.

Arguments

This method doesn’t have any required arguments and doesn’t take the options and
httpOptions arguments.

Response

The response body is a JSON object that contains the name, version, and id
properties.

Examples

Here’s an example of the JSON object that the method returns:

{
 name: 'myMBE',
 version: '1.0',
 id: 'ab72abb7-b337-4673-8584-ca5163df5d24'
}

Chapter 23
Access Mobile Backend Information from Custom Code

23-12

Platform APIs
You can use the req.oracleMobile.<service> methods described in the following topics to
call the platform APIs, where <service> identifies the platform that you want to call.

Further details, such as the HTTP response status codes and the schema for the request and
response bodies, can be found in REST API Reference for Oracle Mobile Hub - Platform
APIs.

Analytics Collector API
The Analytics API lets you log runtime events, such as a user submitting an inquiry or placing
an item into a shopping cart, so that you can observe performance and usage patterns.

This API has one method.

analytics.postEvent(events, options, httpOptions)
This method accepts a batch of events and validates them. If they are valid, they are sent to
the Analytics database. If one or more events in a batch are not valid, then no events are
sent to the Analytics database.

When adding events to the batch, keep the following in mind:

• There are two types of events — custom and system. Use the custom events to record
the events that you want to analyze. Use the system events to group your custom events.
Note that if you don't specify the event type, then the event defaults to custom.

• Events are JSON objects. All events must have a name and a timestamp. The component
and properties are optional.

• With custom events, you can add your own custom properties to properties. For
example:

{
 name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: 'Lynn White'}
}

• You can group events by session. For example, a session can mark the beginning and
ending of a function within a mobile app or when an app starts and stops. You start a
session by adding a system event with the name sessionStart. You use a sessionEnd
event to end the session.

You use a user-defined session ID to associate events with a session. You have two
ways to specify a session ID for an event. You can add a sessionId property to an event,
and you can set the options.sessionId property. Here’s examples of starting and

Chapter 23
Platform APIs

23-13

stopping a session. In these examples, the session ID is set explicitly, but you can
also set it using options.sessionId.

{
 name: 'sessionStart',
 type: 'system',
 sessionId: '2d64d3ff-25c7-4b92-8e49-21884b3495ce',
 timestamp: timestamp
}
{
 name: 'sessionEnd',
 type: 'system',
 sessionId: '2d64d3ff-25c7-4b92-8e49-21884b3495ce',
 timestamp: timestamp
}

• If you want to provide context to a session, then precede the sessionStart event
with a system event named context. You can also intersperse context events with
custom events to indicate changes in context, such as a location change. Here’s
an example of a context event:

{
 name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {
 userName: 'joe',
 model: 'iPhone5,1',
 longitude: '-122.11663',
 latitude: '37.35687',
 manufacturer: 'Apple',
 osName: 'iPhone OS',
 osVersion: '7.1',
 osBuild: '13E28',
 carrier: 'ATT'
}

Arguments

events: Required. This is an array of event objects. To learn about the event
properties, see the POST /mobile/platform/analytics/events operation in REST
API Reference for Oracle Mobile Hub - Platform APIs.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Properties:

Property Description Type Default

applicationKey Deprecated. String None

deviceId Identifies the device.
This is the ID that is
returned when you
register the device
with the Mobile
Devices API.

String None

Chapter 23
Platform APIs

23-14

Property Description Type Default

sessionId Specifies a default
session ID. Use a
session ID to group all
events by a user-
defined session.
When present, the
sessionID value in
the event object
overrides this value.

String None

Response

The response body is a JSON object with a message attribute. For example, {"message":"1
events accepted for processing."}

Example

Here’s an example that records events when incidents are created. After it successfully saves
an incident in the database, it gets the user name for the context event, and then it records
the event. This example uses the promises then() function to insure that each API call
completes successfully before invoking the next, as described in Invoke Calls Synchronously.

In this example, the request body looks like this:

{
 title:'Water heater is leaking',
 technician:'jwhite',
 customer:'Lynn Smith'
}

This code expects the request to include the session ID in the Oracle-Mobile-Analytics-
Session-ID header. It sets the options.sessionId property to this value.

service.post('/mobile/custom/incidentreport/incidents/log',
function (req, res) {

 /* Post the incident and send the response.
 * Then, if the post was successful,
 * get the username,
 * then use the username to post an event.
 *
 **/
 postIncident()
 .then(getUser)
 .then(postEvent)
 .catch(function (errorResult) {
 console.warn(errorResult);
 });

 function postIncident() {
 return req.oracleMobile.database.insert('FIF_Incidents', req.body)
 .then(
 function (successResult) {

Chapter 23
Platform APIs

23-15

res.status(successResult.statusCode).send(successResult.result);
 // By default, Bluebird wraps this with a
 // resolved promise
 return {status: "resolved"};
 },
 function (errorResult) {
 res.status(errorResult.statusCode).send(errorResult.error);
 throw errorResult;
 }
);
 };

 function getUser() {
 return req.oracleMobile.ums.getUser({fields: 'username'});
 };

 function postEvent(successResult) {
 var userName = successResult.result.username;
 /*
 * Record the NewIncident event
 */
 var timestamp = (new Date()).toISOString();
 // Events are posted as an array
 var events = [];
 // Put events in context
 events.push(
 {name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {userName: userName}
 });
 // Start the session
 events.push(
 {name: 'sessionStart',
 type: 'system',
 timestamp: timestamp
 });
 // Add the custom event:
 events.push(
 {name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: req.body.customer}
 });
 // End the session:
 events.push(
 {name: 'sessionEnd',
 type: 'system',
 timestamp: timestamp
 });
 // Post the batch of events. Apply the passed-in session ID to all.
 // The postEvent result is returned by this function
 return req.oracleMobile.analytics.postEvent(

Chapter 23
Platform APIs

23-16

 events,
 {sessionId: req.header('oracle-mobile-analytics-session-id')});
 };
});

App Policies API
The App Policies API lets you retrieve the app policies that have been set for the current
backend. For example, a backend might have app policies for the string that appears in an
app’s welcome message, the background color, and a timeout value.

This API has one method.

appConfig.getProperties(httpOptions)
This method retrieves the app policies that have been set for a backend. These are the
policies that you create from the backend’s App Policies page.

Arguments

This method doesn’t have any required arguments and doesn’t take the options argument.

Response

The response body is a JSON object where the name/value pairs represent the app policies.

Examples

Here’s an example of calling this method:

service.get(
 '/mobile/custom/incidentreport/appPolicies',
 function (req, res) {
 req.oracleMobile.appConfig.getProperties().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "fifBgColor": "blue",
 "fifWelcomeMessage": "Hello",
 "fifShowArg": true
}

Chapter 23
Platform APIs

23-17

Database Access API
You can use the Database Access API to retrieve, add, update, and delete rows in a
database table, as well as execute SQL statements.

This API has the following methods:

• database.delete(table, keys, options, httpOptions): Deletes a row.

• database.get(table, keys, options, httpOptions): Retrieves a row from a table.

• database.getAll(table, options, httpOptions): Retrieves specified fields from all
rows in a table.

• database.insert(table, object, options, httpOptions): Adds rows to a table.

• database.merge(table, object, options, httpOptions): Adds or updates rows in a
table.

• database.sql(sql, args, options, httpOptions): Executes an SQL statement.

database.delete(table, keys, options, httpOptions)
This method lets you delete a row from the table.

Arguments

table: Required. String. The name of the database table to delete the row from.

keys: Required. String. If the table’s row key is id, then provide the id value.
Otherwise, provide the primary key values in the order in which the primary keys were
specified when the first row was added to the table (which resulted in the creation of
the table). Use an array for a composite key. For example, if the options.primaryKeys
property was set to incidentReport,technician when the table was created, then the
values must be listed in that order, such as ['5690','jwhite'].

options: Optional. JSON object. This object can have the following property in
addition to those listed in Common options Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
keys values. This
option can be useful
for multibyte values.

Boolean false

Response

The response body is a JSON object. If the table’s row key is id, then the response is
an array that contains the deleted row’s id value. Otherwise, the response is the
rowCount indicating if 0 or 1 row was deleted.

Chapter 23
Platform APIs

23-18

Examples

Here’s an example of calling the method to delete a record with the id specified in the
request URI:

service.delete('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.delete(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{"items":[{"id":42}]}

Note that if you have defined primary keys for the table (instead of using the system-defined
id column for the row key), then the response shows the rowCount of the deleted rows. For
example:

{
 "rowCount": 1
}

database.get(table, keys, options, httpOptions)
This method lets you retrieve a row from a table.

Arguments

table: Required. String. The name of the database table to retrieve the row from.

keys: Required. String. If the table’s row key is id, then provide the id value. Otherwise,
provide the primary key values in the order in which the primary keys were specified when
the first row was added to the table (which resulted in the creation of the table). Use an array
for a composite key. For example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be listed in
that order, such as ['5690','jwhite'].

options: Optional. JSON object. This object can have the following property in addition to
those listed in Common options Properties:

Chapter 23
Platform APIs

23-19

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
keys values. This
option can be useful
for multibyte values.

Boolean false

expectSingleResul
t

Set to true to return
an object instead of an
array and to return
404 (not found) if the
row for the specified
keys doesn’t exist.

Boolean false

Response

By default, the response body is a JSON object containing an items array with just
one item, which contains the column names and corresponding values. To return a
single object, include options.expectSingleResult in the request and set it to true.

Examples

Here’s an example of calling the method to retrieve the row with the id specified in the
request URI. Because the expectSingleResult option is omitted, the response body
will contain an array, and the response status will always be 200.

service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{
 "items":[
 {
 "id":2,
 "createdBy":"jdoe",
 "createdOn":"2018-01-31T20:14:24.4948+00:00",
 "modifiedBy":"jdoe",
 "modifiedOn":"2018-01-31T20:14:24.4948+00:00",
 "title":"Water heater is leaking",
 "technician":"jwhite",
 "status":"Open",
 "customer":"Lynn Smith",
 "incidentReport":"7890"

Chapter 23
Platform APIs

23-20

 }
]
}

Here’s an example of including the expectSingleResult option with a value of true. The
response body will contain an object, and the response status will be 404 if the row doesn’t
exist.

service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id, {expectSingleResult: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{
 "id": 2,
 "createdBy": "jdoe",
 "createdOn": "2018-01-31T20:14:24.4948+00:00",
 "modifiedBy": "jdoe",
 "modifiedOn": "2018-01-31T20:14:24.4948+00:00",
 "title": "Water heater is leaking",
 "technician": "jwhite",
 "status": "Open",
 "customer": "Lynn Smith",
 "incidentReport": "7890"
}

database.getAll(table, options, httpOptions)
This method lets you retrieve the specified fields from all the rows in a table.

Note that the Database_MaxRows environment policy restricts the number of rows that the
service returns for this call. The default value is 1000. Ensure that this value is sufficient for
your needs. If your request doesn’t return all the rows that you expected, ask your mobile
cloud administrator to increase the Database_MaxRows value.

Arguments

table: Required. String. The name of the tables to retrieve the rows from.

options: Optional. JSON object. This object can have the following properties in addition to
those listed in Common options Properties:

Chapter 23
Platform APIs

23-21

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
fields values. This
option can be useful
for multibyte values.

Boolean false

fields A comma separated
list of the fields to
return. For example,
customer, status.

String If you omit this
argument, then the
method returns all
fields.

Response

The response body is a JSON object containing an items array, where each item
represents a row, and contains the column names and corresponding values.

Examples

Here’s an example of calling the method to retrieve the customer and status fields
from the FIF_Incidents table:

service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{
 "items":[
 {
 "status":"Open",
 "customer":"Lynn Smith"
 },
 {
 "status":"Completed",
 "customer":"John Doe"
 }
]
}

Chapter 23
Platform APIs

23-22

The /database/objects/{table} resource supports a query parameter to filter by column
values which rows to retrieve. This example uses the httpOptions argument to pass a
request query string that filters the results for a matching technician.

service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 httpOptions={};
 httpOptions.qs = {technician : 'jwhite'};
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {}, httpOptions).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

database.insert(table, object, options, httpOptions)
This method lets you add one or more rows to a table.

When the Database_CreateTablesPolicy environment policy is allow, then the following
actions can occur:

• If the table doesn't exist, then it is created.

• If a column doesn’t exist, then the table is altered to include it.

• If the value is larger than the column size, then the column is resized.

Ask your mobile cloud administrator about the Database_CreateTablesPolicy environment
policy setting.

Arguments

table: Required. String. The name of the database table to add the row to.

object: Required. JSON object containing the table data. If you’re adding one row, then you
can use this format:

{
 status : 'Open',
 code : '3'
}

If you’re adding multiple rows, then use this format:

[
 {
 status:'Open',
 code:3},
 {
 status:'Completed',

Chapter 23
Platform APIs

23-23

 code:9}
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table,
extraFields, and
primaryKeys values.
This option can be
useful for multibyte
values.

Boolean false

extraFields For an implicit table
creation, optionally
provide a comma-
separated list that
specifies which
predefined columns to
include in the table
from amongst id,
createdBy,
createdOn,
modifiedBy, and
modifiedOn. For
example,
createdOn,created
By.
To not include any
predefined columns,
specify none.

String To include all the
predefined columns,
do not include this
property. Note that the
id column is added to
the table automatically
if both the
primaryKeys and
extraFields
properties are absent.

Chapter 23
Platform APIs

23-24

Property Description Type Default

primaryKeys For an implicit table
creation, provide a
URL-encoded,
comma-separated list
specifying which
attributes of the JSON
object in the request
body constitute the
table's primary key.
For example,
lastName,firstNam
e.

N

o

t

e

:

B
e
c
a
u
s
e
y
o
u
c
a
n
’t
r
e
t
r
i
e
v
e
t
h
e
p
r
i
m
a
r
y

String If you do not specify a
primary key, then the
service adds an id
column to the table,
and generates the
column's values
automatically, as long
as you don’t also
include extraFields
without id in the list.

Chapter 23
Platform APIs

23-25

Property Description Type Default

k
e
y
o
r
d
e
r
f
r
o
m
t
h
e
t
a
b
l
e
m
e
t
a
d
a
t
a
,
m
a
k
e
s
u
r
e
t
h
a
t
y
o
u
d
o
c
u
m
e
n
t
t
h
e

Chapter 23
Platform APIs

23-26

Property Description Type Default

o
r
d
e
r
o
f
t
h
e
p
r
i
m
a
r
y
f
i
e
l
d
s
.

Response

The response body is a JSON object. If the table is indexed on id, then the response is an
array of the new rows’ id values. Otherwise, the response is the rowCount of the records
added.

Examples

Here’s an example of calling the method to add two rows. If the table doesn’t exist, then the
service creates it. This table doesn’t have extra fields, and its primary key is code:

service.post('/mobile/custom/incidentreport/initStatus', function (req, res)
{
 req.oracleMobile.database.insert(
 'FIF_Status',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 23
Platform APIs

23-27

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

database.merge(table, object, options, httpOptions)
This method lets you add or update rows in a table. Whether the operation performs
an add or update depends on whether the table uses id or primary key fields to
uniquely identify rows.

• id field: If you include an id property in the table data in the object argument,
then the operation performs an update. Otherwise it adds the row.

• Primary key fields: If the table uses primary key fields, then the operation performs
an update if a row exists with matching primary key values. Otherwise, it adds the
row.

Note that if you submit a batch of rows, all the rows must have the same set of
columns.

When the Database_CreateTablesPolicy environment policy is allow, then the
following actions can occur:

• If the table doesn't exist, then it is created.

• If a column doesn’t exist, then the table is altered to include it.

• If the value is larger than the column size, then the column is resized.

Ask your mobile cloud administrator about the Database_CreateTablesPolicy
environment policy setting.

Arguments

table: Required. String. The name of the database table to add the row to.

object: Required. JSON object containing the table data. If you’re adding one row,
then you can use this format:

{
 status : 'Open',
 code : '3'
}

Chapter 23
Platform APIs

23-28

If you’re adding multiple rows, then use this format:

[
 {
 status:'Open',
 code:'3'},
 {
 status:'Completed',
 code:'9'}
]

options: Optional. JSON object. This object can have the following properties in addition to
those listed in Common options Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table,
extraFields, and
primaryKeys values.
This option can be
useful for multibyte
values.

Boolean false

extraFields For an implicit table
creation, optionally
provide a comma-
separated list that
specifies which
predefined columns to
include in the table from
amongst id,
createdBy,
createdOn,
modifiedBy, and
modifiedOn. For
example,
createdOn,createdBy
.
To not include any
predefined columns,
specify none.

String To include all the
predefined columns, do
not include this property.
Note that the id column
is added to the table
automatically if both the
primaryKeys and
extraFields
properties are absent.

Chapter 23
Platform APIs

23-29

Property Description Type Default

primaryKeys For an implicit table
creation, provide a URL-
encoded, comma-
separated list specifying
which attributes of the
JSON object in the
request body constitute
the table's primary key.
For example,
lastName,firstName.
Because you can’t
retrieve the primary key
order from the table
metadata, make sure
that you document the
order of the primary
fields.

String If you do not specify a
primary key, then the
operation adds an id
column to the table, and
generates the column's
values automatically, as
long as you don’t also
include extraFields
without id in the list.

Response

The response body is a JSON object. If the table is indexed on id, then the response
is an array of the new rows’ id values. Otherwise, the response is the rowCount.

Examples

Here’s an example of calling the method to add or update two rows. If the table doesn’t
exist, then the operation creates it. This table doesn’t have extra fields, and its primary
key is code:

service.post('/mobile/custom/incidentreport/initStatus', function
(req, res) {
 req.oracleMobile.database.merge(
 'FIF_Status',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 23
Platform APIs

23-30

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

database.sql(sql, args, options, httpOptions)
This method lets you execute an SQL statement, such as INSERT, UPDATE, MERGE,
DELETE, or SELECT. You can use this method for complex actions, such as when you need
to join tables, use aggregate functions like COUNT() and SUM(), or use a WHERE clause to
delete a set of rows.

Unlike the other database methods, this operation doesn’t alter your schema automatically.
For example:

• If the table doesn't exist, then it isn’t created.

• If a column doesn’t exist, then the table isn’t altered to include it.

• If the value is larger than the column size, then the column isn’t resized.

The Database_MaxRows environment policy restricts the number of rows that the service
returns for this call. The default value is 1000. Ensure that this value is sufficient for your
needs. If your request doesn’t return all the rows that you expected, ask your mobile cloud
administrator to increase the Database_MaxRows value.

Arguments

sql: Required. String. The SQL statement to execute. Examples:

INSERT into Statuses (status, code) values (:status, :code)

SELECT SUM("totalGross") "salesByGenre", "genre" FROM "Movies" GROUP BY
"genre"

SELECT COUNT("incidentReport") "reportCount" FROM "FIF_Incidents" WHERE
"status" = :status

args: Optional. If your SQL statement takes parameters, then pass them in this JSON object.

To execute the SQL statement once with a single set of parameters, use this format for the
args argument:

{
 status : 'Open',
 code : '3'
}

Chapter 23
Platform APIs

23-31

To execute the SQL statement multiple times, use this format for the args argument:

[
 {
 status:'Open',
 code:3},
 {
 status:'Completed',
 code:9
 }
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the SQL
statement. This option
can be useful for
multibyte values.

Boolean false

Response

The response body is a JSON object. The structure of the JSON object depends on
the SQL verb and whether the table has a primary key. For example, here’s a
response body for a SELECT statement:

{"items":[{ "code" : 3}] }

Here’s an example of a response body for an INSERT, DELETE, UPDATE, OR
MERGE where the table has a primary key:

{ "rowCount" : 2 }

Here’s an example of a response body for an INSERT, DELETE, UPDATE, OR
MERGE where the row key is the id column:

{"items":[{"id":42},{"id":43}]}

Examples

Here’s an example of calling the method to insert rows:

service.post('/mobile/custom/incidentreport/status', function (req,
res) {
 req.oracleMobile.database.sql(
 'insert into Statuses (status, code) values (:status, :code)',
 [
 {
 status: 'Closed',
 code: '0'},

Chapter 23
Platform APIs

23-32

 {
 status: 'Completed',
 code: '9'}
]).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

Location API
The Location API lets you query about location devices, their assets, and the places where
they’re located.

This API has the following methods:

• location.assets.getAsset(id, httpOptions): Retrieves the asset that matches the ID or
name.

• location.assets.query(queryObject, httpOptions): Retrieves the assets that match the
query parameters that you specify in the request body.

• location.devices.getDevice(id, httpOptions): Retrieves the device that matches the ID or
name.

• location.devices.query(queryObject, httpOptions): Retrieves the devices that match the
query parameters that you specify in the request body.

• location.places.getPlace(id, httpOptions): Retrieves the place that matches the ID or
name.

• location.places.query(queryObject, httpOptions): Retrieves the places that match the
query parameters that you specify in the request body.

location.assets.getAsset(id, httpOptions)
Call this method to retrieve the asset that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

Chapter 23
Platform APIs

23-33

• String that contains the ID of the asset to retrieve.

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the asset with the matching name.

Response

The response body is a JSON object that follows the Asset schema that is shown for
the GET /mobile/platform/location/assets and GET /mobile/platform/location/
assets/{id} operations in REST API Reference for Oracle Mobile Hub - Platform
APIs

Examples

Here’s an example of calling this method to retrieve an asset by ID.

service.get(
 '/mobile/custom/incidentreport/assets/:id',
 function (req, res) {
 req.oracleMobile.location.assets.getAsset(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve an asset by name.

service.get(
 '/mobile/custom/incidentreport/assets/:name',
 function (req, res) {

req.oracleMobile.location.assets.getAsset({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id":111,
 "createdOn":"2015-08-06T18:37:59.424Z",
 "createdBy":"jdoe",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",

Chapter 23
Platform APIs

23-34

 "name":"RC_WH_01_F01_B023",
 "label":"forklift",
 "description":"Forklift in the FixItFast Warehouse in Redwood City",
 "lastKnownLocation":{
 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 {
 "id":345,
 "createdOn":"2015-08-06T18:37:59.424Z",
 "createdBy":"jdoe",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "modifiedBy":"tsmith",
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon in FixitFast Warehouse in Redwood City",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 },
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/345"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/345"
 }
]
 }
],
 "attributes":{
 "EquipmentManufacturer":"Abc Company",
 "beaconID":"AE2924505-66045"
 },
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/111"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/111"

Chapter 23
Platform APIs

23-35

 }
]
}

location.assets.query(queryObject, httpOptions)
Call this method to retrieve the assets that match the query parameters that you
specify in queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/assets/
query operation in REST API Reference for Oracle Mobile Hub - Platform APIs. If you
don’t have any query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Asset schema that is shown for the POST /mobile/platform/location/assets/query
operation in REST API Reference for Oracle Mobile Hub - Platform APIs. The result
also contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns all assets that have the string 1225
in the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/assets,
 function (req, res) {
 req.oracleMobile.location.assets.query({"search":"1225"}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "devices":[

Chapter 23
Platform APIs

23-36

 {
 "id":3401,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/3401"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/3401"}
],
 "attributes":{
 "manufacturer":"Example Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"hospital bed",
 "lastKnownLocation":{
 "placeId":244},
 "id":333,
 "createdBy":"jdoe",
 "name":"hospital bed #233",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/333"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/333"}
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"},
 "description":"model 1225 hospital bed"},
 {
 "devices":[
 {
 "id":648,
 "createdBy":"jdoe",

Chapter 23
Platform APIs

23-37

 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-
AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
648"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/
648"}
],
 "attributes":{
 "manufacturer":"Example Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"hospital bed",
 "lastKnownLocation":{
 "placeId":360},
 "id":888,
 "createdBy":"jdoe",
 "name":"hospital bed #233",
 "createdOn":"2015-10-16T09:24:41.354Z",
 "modifiedOn":"2015-10-16T09:24:41.354Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/888"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/888"}
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"},
 "description":"model 1225 hospital bed"}
],
 "totalResults":2,
 "offset":0,
 "count":2,

Chapter 23
Platform APIs

23-38

 "hasMore":false
}

location.devices.getDevice(id, httpOptions)
Call this method to retrieve the device that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the device to retrieve.

• JSON object that contains either the id property or the name property, where the property
value indicates the search value. If the object contains both properties, then the SDK
retrieves the device with the matching name.

Response

The response body is a JSON object that follows the Location device schema that is shown
for the GET /mobile/platform/location/devices and GET /mobile/platform/location/
devices/{id} operations in REST API Reference for Oracle Mobile Hub - Platform APIs.

Examples

Here’s an example of calling this method to retrieve a device by ID.

service.get(
 '/mobile/custom/incidentreport/devices/:id',
 function (req, res) {
 req.oracleMobile.location.devices.getDevice(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve a device by name.

service.get(
 '/mobile/custom/incidentreport/devices/:name',
 function (req, res) {
 req.oracleMobile.location.devices.getDevice({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 23
Platform APIs

23-39

Here’s an example of the response body:

{
 "id": 12345,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-08T07:22:44.654Z",
 "modifiedBy": "tsmith",
 "name": "RC_WH_01_F01_B001",
 "description": "Beacon on 1st Floor in FixitFast Warehouse in
Redwood City",
 "place":
 {
 "id": 111,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-06T18:37:59.424Z",
 "modifiedBy": "jdoe",
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "parentPlace": 42,
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "equipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/111"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/111"
 }
]
 },
 "beacon": {
 "iBeacon" : {
 "uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major": "1.0",
 "minor": "1.1"
 }
 },
 "attributes" : {
 "manufacturer": "Abc Company",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D"
 "status": "Active",
 "visibility": "Public"
 },

Chapter 23
Platform APIs

23-40

 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/12345"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/12345"
 }
]
}

location.devices.query(queryObject, httpOptions)
Call this method to retrieve the devices that match the query parameters that you specify in
queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For details,
see the body parameter for the POST /mobile/platform/location/devices/query operation
in REST API Reference for Oracle Mobile Hub - Platform APIs. If you don’t have any query
parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the Location
device schema that is shown for the POST /mobile/platform/location/devices/query
operation in REST API Reference for Oracle Mobile Hub - Platform APIs The result also
contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns the devices that have the string
warehouse in either the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/devices,
 function (req, res) {
 req.oracleMobile.location.devices.query({{ "search": "Warehouse"}}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 23
Platform APIs

23-41

Here’s an example of the response body:

{
 "items":[
 {
 "id":33,
 "name":"RC_WH_01_B09_C004",
 "description":"Beacon on 2nd Floor NW in FixItFast
Warehouse in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":12,
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon on 1st Floor SE in FixItFast
Warehouse in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":61,
 "name":"RC_WH_01_F01_B008",
 "description":"Beacon on 2nd Floor SW in FixItFast
Warehouse in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":58,
 "name":"RC_WH_02_F01_B011",
 "description":"Beacon on 1st Floor NW in FixitFast
Warehouse in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":114,
 "name":"RC_WH_01_K22_A999",
 "description":"Beacon on 3rd Floor NW in FixitFast
Warehouse in Redwood City",
 "protocol":"altBeacon"}
],
 "totalResults":5,
 "offset":0,
 "count":5,
 "hasMore":false
}

location.places.getPlace(id, httpOptions)
Call this method to retrieve the place that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the place to retrieve.

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the place with the matching name.

Chapter 23
Platform APIs

23-42

Response

The response body is a JSON object that follows the Place schema that is shown for the
GET /mobile/platform/location/places and GET /mobile/platform/location/places/
{id} operations in REST API Reference for Oracle Mobile Hub - Platform APIs.

Examples

Here’s an example of calling this method to retrieve a place by ID.

service.get(
 '/mobile/custom/incidentreport/places/:id',
 function (req, res) {
 req.oracleMobile.location.places.getPlace(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve a place by name.

service.get(
 '/mobile/custom/incidentreport/places/:name',
 function (req, res) {
 req.oracleMobile.location.places.getPlace({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id": 111,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-06T18:37:59.424Z",
 "modifiedBy": "jdoe",
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "parentPlace": 42,
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,

Chapter 23
Platform APIs

23-43

 "longitude": -121.1566
 }
 },
 "attributes" : {
 "equipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/111"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/111"
 }
]
}

location.places.query(queryObject, httpOptions)
Call this method to retrieve the places and, optionally, the associated devices that
match the query properties that you specify in the queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/places/
query operation in REST API Reference for Oracle Mobile Hub - Platform APIs. If you
don’t have any query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Place schema that is shown for the POST /mobile/platform/location/places/query
operation in REST API Reference for Oracle Mobile Hub - Platform APIs. The result
also contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns all places that have the string
warehouse in the name or description (case-insensitive). By default, the response
includes the children array, which contains information about descendent places. In
this request, the includeDescendantsInResult property is set to none. Therefore the
request doesn't include that array.

service.get(
 '/mobile/custom/incidentreport/places',
 function (req, res) {

Chapter 23
Platform APIs

23-44

req.oracleMobile.location.places.query({"search":"warehouse","includeDescenda
ntsInResult":"none" }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "devices":[
 {
 "id":12345,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
12345"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/12345"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"FixItFast Warehouse",
 "id":112,
 "createdBy":"jdoe",
 "name":"FixItFast Redwood City Warehouse",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",

Chapter 23
Platform APIs

23-45

 "address":{
 "gpsPoint":{
 "latitude":122,
 "longitude":37}},
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/places/112"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/places/112"}
],
 "attributes":{
 "hours":"9am-6pm"},
 "hasChildren":false,
 "parentPlace":42,
 "description":"FixItFast Warehouse in Redwood City"},
 {
 "devices":[
 {
 "id":111,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-
AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
111"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/
111"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"},
 {
 "id":222,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B996",

Chapter 23
Platform APIs

23-46

 "createdOn":"2015-08-08T18:37:59.424Z",
 "modifiedOn":"2015-08-12T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-
AFF9-25552345908234DD0",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/222"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/222"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 2nd Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"FixItFast Warehouse",
 "id":325,
 "createdBy":"jdoe",
 "name":"FixItFast Palo Alto Warehouse",
 "createdOn":"2015-08-06T19:27:59.424Z",
 "modifiedOn":"2015-08-06T19:27:59.424Z",
 "address":{
 "gpsCircle":{
 "latitude":123,
 "longitude":37,
 "radius":300}},
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/places/325"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/places/325"}
],
 "attributes":{
 "hours":"9am-6pm"},
 "hasChildren":false,
 "parentPlace":42,
 "description":"FixItFast Warehouse in Palo Alto"}
],
 "totalResults":2,
 "offset":0,
 "count":2,

Chapter 23
Platform APIs

23-47

 "hasMore":false
}

Location Management API
The Location Management API lets you create, update, and delete location devices,
places, and assets.

This API has the following methods:

• location.assets.register(assets, context, httpOptions): Creates one or more assets.

• location.assets.remove(id, context, httpOptions): Deletes assets.

• location.assets.update(id, asset, context, httpOptions): Updates a single asset.

• location.devices.register(devices, context, httpOptions): Creates one or more
location devices.

• location.devices.remove(id, context, httpOptions): Deletes location devices.

• location.devices.update(id, device, context, httpOptions): Updates a single location
device.

• location.places.register(places, context, httpOptions): Creates one or more places.

• location.places.remove(id, context, httpOptions): Deletes places.

• location.places.removeCascade(id, context, httpOptions): Deletes the place that
matches the ID as well as all its child places.

• location.places.update(id, place, context, httpOptions): Updates a single place.

location.assets.register(assets, context, httpOptions)
This method lets you create one or more assets.

Arguments

assets: Required. JSON object that follows the request root schema (Assets Array)
that is shown for the POST /mobile/system/locationManagement/assets operation in
REST API Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 "items":[
 {
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":244
 },
 "devices":[
 1111
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"
 }

Chapter 23
Platform APIs

23-48

 }
]
}

context: This argument is ignored.

Response

The response body, which shows the stored assets, is a JSON object that follows the
response root schema (Assets Array) that is shown for the POST /mobile/system/
locationManagement/assets operation in REST API Reference for Oracle Mobile Hub -
Platform APIs.

Examples

Here’s an example of calling this method.

service.post('/mobile/custom/incidentreport/assets', function (req, res) {
 req.oracleMobile.location.assets.register(req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {
 "id": 12,
 "createdOn": "2016-11-05T02:33:36.154Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-05T02:33:36.154Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": null,
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/12"
 },
 {

Chapter 23
Platform APIs

23-49

 "rel": "self",
 "href": "/mobile/platform/location/assets/12"
 }
]
 }
]
}

location.assets.remove(id, context, httpOptions)
Use this method to delete assets.

Arguments

id: Required. IDs of the assets to remove. This argument can be either a single value
or an array of values.

context: This argument is ignored.

Response

If you provide a single value, then the service doesn’t return a response body. The
status code is 204 if the asset was deleted and 404 if it doesn’t exist.

If you provide an array of IDs, then the status code is 200 for a successful request.
The response contains a batch object with an array of responses for the individual
delete requests. For schema details, see the Delete Multiple Assets operation in REST
API Reference for Oracle Mobile Hub - Platform APIs.

Here’s an example:

{
 "batch":[
 {
 "body":{
 "id":353,
 "message":"asset was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":354,
 "message":"asset was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":355,
 "message":"asset not found."},
 "code":404}
]
}

Chapter 23
Platform APIs

23-50

Examples

In this example, if the id query parameter contains multiple IDs, then it converts the query
string into an array.

service.delete('/mobile/custom/location/assets', function(req,res) {
 var contextObject = {};
 var id = req.query.id.split(',');
 if (id.length == 0){
 id = req.query.id;
 }
 req.oracleMobile.location.assets.remove(
 id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

location.assets.update(id, asset, context, httpOptions)
This method lets you update an asset.

Arguments

id: Required. The ID of the asset. This ID must be an existing asset ID.

asset: Required. JSON object that follows the request root schema (Asset) that is shown for
the PUT /mobile/system/locationManagement/assets/{id} operation in REST API
Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 "lastKnownLocation":{
 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 11
]
}

context: This argument is ignored.

Chapter 23
Platform APIs

23-51

Response

The response body, which shows the updated asset, is a JSON object that follows the
response root schema (Asset) that is shown for the PUT /mobile/system/
locationManagement/assets/{id} operation in REST API Reference for Oracle
Mobile Hub - Platform APIs.

Examples

Here’s an example of calling this method.

service.put('/mobile/custom/incidentreport/assets/:id', function (req,
res) {
 req.oracleMobile.location.assets.update(
 req.params.id, req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T21:26:38.318Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:18:24.157Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": {
 "gpsPoint": {
 "longitude": -121.1566,
 "latitude": 37.5548
 }
 },
 "devices": [
 {
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T18:01:18.531Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {

Chapter 23
Platform APIs

23-52

 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Active",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Public"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
 }
],
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/11"
 }
]
}

location.devices.register(devices, context, httpOptions)
This method lets you create one or more devices.

Arguments

devices: Required. JSON object that follows the request root schema (Devices Array) that is
shown for the POST /mobile/system/locationManagement/devices operation in REST API
Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 "items":[
 {
 "name":"RC_WH_01_F01_B006",

Chapter 23
Platform APIs

23-53

 "description":"Beacon on 2nd Floor in FixitFast Warehouse
in Redwood City",
 "asset":333,
 "beacon":{
 "altBeacon":{
 "id1":"B9407F30-F5F8-466E",
 "id2":"AFF9",
 "id3":"25556B57FE6D"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 }
 }
]
}

context: This argument is ignored.

Response

The response body, which shows the stored devices, is a JSON object that follows the
response root schema (Devices Array) that is shown for the POST /mobile/system/
locationManagement/devices operation in REST API Reference for Oracle Mobile
Hub - Platform APIs.

Examples

Here’s an example of calling this method.

service.post('/mobile/custom/incidentreport/devices, function (req,
res) {
 req.oracleMobile.location.devices.register(
 req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {

Chapter 23
Platform APIs

23-54

 "id": 10,
 "createdOn": "2016-11-08T15:54:51.603Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T15:54:51.603Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B006",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in Redwood
City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status": "Active",
 "visibility": "Public"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/10"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/10"
 }
]
 }
]
}

location.devices.remove(id, context, httpOptions)
Use this method to delete devices.

Arguments

id: Required. IDs of the devices to remove. This argument can be either a single value or an
array of values.

context: This argument is ignored.

Response

If you provide a single value, then the service doesn’t return a response body. The status
code is 204 if the device was deleted and 404 if it doesn’t exist.

If you provide an array of IDs, then the status code is 200 for a successful request. The
response contains a batch object with an array of responses for the individual delete
requests. For schema details, see the Delete Multiple Devices operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Chapter 23
Platform APIs

23-55

Here’s an example:

{
 "batch":[
 {
 "code":200,
 "body":{
 "id":121,
 "message":"device was deleted successfully."
 }
 },
 {
 "code":200,
 "body":{
 "id":122,
 "message":"device was deleted successfully."
 }
 },
 {
 "code":404,
 "body":{
 "id":123,
 "message":"device not found."
 }
 }
]
}

Examples

In this example, if the id query parameter contains multiple IDs, then it converts the
query string into an array.

service.delete('/mobile/custom/location/devices', function(req,res) {
 var contextObject = {};
 var id = req.query.id.split(',');
 if (id.length == 0){
 id = req.query.id;
 }
 req.oracleMobile.location.devices.remove(
 id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 23
Platform APIs

23-56

location.devices.update(id, device, context, httpOptions)
This method lets you update a device.

Arguments

id: Required. The ID of the device. This ID must be an existing device ID.

device: Required. JSON object that follows the request root schema (Device) that is shown
for the PUT /mobile/system/locationManagement/device/{id} operation in REST API
Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 "attributes":{
 "status":"Inactive",
 "visibility":"Private"
 }
}

context: This argument is ignored.

Response

The response body, which shows the updated device, is a JSON object that follows the
response root schema (Device) that is shown for the PUT /mobile/system/
locationManagement/devices/{id} operation in REST API Reference for Oracle Mobile Hub
- Platform APIs.

Examples

Here’s an example of using this method.

service.put('/mobile/custom/incidentreport/device/:id', function (req, res) {
 req.oracleMobile.location.device.update(req.params.id, req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:45:47.545Z",
 "modifiedBy": "anAdministrator",

Chapter 23
Platform APIs

23-57

 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "asset": {
 "id": 11,
 "createdOn": "2016-11-08T21:26:38.318Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:18:24.157Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": {
 "gpsPoint": {
 "longitude": -121.1566,
 "latitude": 37.5548
 }
 },
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/11"
 }
]
 },
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Inactive",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Private"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }

Chapter 23
Platform APIs

23-58

]
}

location.places.register(places, context, httpOptions)
This method lets you create one or more places.

Arguments

places: Required. JSON object that follows the request root schema (Places Array) that is
shown for the POST /mobile/system/locationManagement/places operation in REST API
Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 "items":[
 {
 "name":"FixItFast Redwood City Warehouse",
 "label":"FixItFast Warehouse",
 "parentPlace":42,
 "description":"FixItFast Warehouse in Redwood City",
 "address":{
 "gpsPoint":{
 "latitude":122,
 "longitude":37
 }
 },
 "devices":[
 12345
],
 "attributes":{
 "hours":"9am-6pm"
 }
 }
]
}

context: This argument is ignored.

Response

The response body, which shows the stored places, is a JSON object that follows the
response root schema (Places Array) that is shown for the POST /mobile/system/
locationManagement/places operation in REST API Reference for Oracle Mobile Hub -
Platform APIs.

Examples

Here’s an example of calling this method.

service.post('/mobile/custom/incidentreport/places', function (req, res) {
 req.oracleMobile.location.places.register(req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);

Chapter 23
Platform APIs

23-59

 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {
 "id": 10,
 "createdOn": "2016-11-08T17:55:21.816Z",
 "createdBy": "john.doe",
 "modifiedOn": "2016-11-08T17:55:21.816Z",
 "modifiedBy": "john.doe",
 "name": "FixItFast Redwood City Warehouse",
 "label": "FixItFast Warehouse",
 "description": "FixItFast Warehouse in Redwood City",
 "hasChildren": false,
 "address": {
 "gpsPoint": {
 "longitude": 37,
 "latitude": 89
 }
 },
 "attributes": {
 "hours": "9am-6pm"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/10"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/10"
 }
]
 }
]
}

location.places.remove(id, context, httpOptions)
Use this method to delete places.

Arguments

id: Required. IDs of the places to remove. This argument can be either a single value
or an array of values.

Chapter 23
Platform APIs

23-60

context: This argument is ignored.

Response

If you provide a single value, then the service doesn’t return a response body. The status
code is 204 if the place was deleted and 404 if it doesn’t exist.

If you provide an array of IDs, then the status code is 200 for a successful request. The
response contains a batch object with an array of responses for the individual delete
requests. For schema details, see the Delete Multiple Places operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Here’s an example:

{
 "batch":[
 {
 "body":{
 "id":222,
 "message":"place was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":223,
 "message":"place was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":224,
 "message":"place not found."},
 "code":404}
]
}

Examples

In this example, if the id query parameter contains multiple IDs, then it converts the query
string into an array.

service.delete('/mobile/custom/location/places, function(req,res) {
 var contextObject = {};
 var id = req.query.id.split(',');
 if (id.length == 0){
 id = req.query.id;
 }
 req.oracleMobile.location.places.remove(
 id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);

Chapter 23
Platform APIs

23-61

 res.status(error.statusCode).send(error.error);
 }
);
});

location.places.removeCascade(id, context, httpOptions)
Use this method to delete a parent place and all its child places.

Arguments

id: Required. The ID of the place. This ID must be an existing place ID.

context: This argument is ignored.

Examples

In this example, if the cascade query parameter is true, then the method calls
removeCascade() instead of remove().

service.delete('/mobile/custom/location/places/:id', function(req,res)
{
 var contextObject = {};
 var removeFunc = req.oracleMobile.location.places.remove;
 if (req.query.cascade == 'true') {
 removeFunc = req.oracleMobile.location.places.removeCascade;
 }
 removeFunc(
 req.params.id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
)
 });

location.places.update(id, place, context, httpOptions)
This method lets you update a place.

Arguments

id: Required. The ID of the place. This ID must be an existing place ID.

Chapter 23
Platform APIs

23-62

place: Required. JSON object that follows the request root schema (Place) that is shown for
the PUT /mobile/system/locationManagement/place/{id} operation in REST API
Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 "address":{
 "gpsPoint":{
 "latitude":-121.1566,
 "longitude":37.5548
 }
 },
 "devices":[
 1111
]
}

context: This argument is ignored.

Response

The response body, which shows the updated place, is a JSON object that follows the
response root schema (Place) that is shown for the PUT /mobile/system/
locationManagement/places/{id} operation in REST API Reference for Oracle Mobile Hub -
Platform APIs.

Examples

Here’s an example of calling this method.

service.put('/mobile/custom/incidentreport/place/:id', function (req, res) {
 req.oracleMobile.location.place.update(req.params.id, req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T23:36:55.371Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T23:37:45.576Z",
 "modifiedBy": "anAdministrator",
 "name": "FixItFast Redwood City Warehouse",
 "label": "FixItFast Warehouse",
 "description": "FixItFast Warehouse in Redwood City",
 "hasChildren": false,

Chapter 23
Platform APIs

23-63

 "address": {
 "gpsPoint": {
 "longitude": 37,
 "latitude": 89
 }
 },
 "devices": [
 {
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:45:47.545Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Inactive",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Private"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
 }
],
 "attributes": {
 "hours": "9am-6pm"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/11"
 }
]
}

Chapter 23
Platform APIs

23-64

Mobile Devices API
Use this API to configure which devices that are running a mobile app can receive
notifications.

This API has the following methods:

• devices.deregister(device, httpOptions): Deregister a mobile client instance that no longer
needs to receive notifications..

• devices.register(device, httpOptions): Register a mobile client instance that receives
notifications.

devices.deregister(device, httpOptions)
Call this method to deregister a a mobile client instance that no longer needs to receive
notifications.

Arguments

device: Required. JSON object that follows the root (mobile client instance) request schema
that’s shown for the POST /mobile/platform/devices/deregister operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Examples

Here’s an example of calling this method to deregister a device.

service.post(
 '/mobile/custom/incidentreport/devices/deregister',
 function (req, res) {
 req.oracleMobile.devices.deregister(
 {
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "platform": "IOS"
 }
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 23
Platform APIs

23-65

devices.register(device, httpOptions)
Call this method to register a new device.

Arguments

device: Required. JSON object that follows the root (mobile client instance) request
schema that’s shown for the POST /mobile/platform/devices/register operation in
REST API Reference for Oracle Mobile Hub - Platform APIs.

Response

The response body is a JSON object that follows the root (mobile client instance)
response schema that’s shown for the POST /mobile/platform/devices/register
operation in REST API Reference for Oracle Mobile Hub - Platform APIs.

Examples

Here’s an example of calling this method to register a device.

service.post(
 '/mobile/custom/incidentreport/devices/register',
 function (req, res) {
 req.oracleMobile.devices.register(
 {
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "version": "1.0",
 "platform": "IOS"
 }
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id": "27fee547-bdd0-4688-9497-475ec5ed0dfd",
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "user": "joe",
 "version": "1.0",
 "platform": "IOS"

Chapter 23
Platform APIs

23-66

 },
 "modifiedOn": "2015-06-17T18:37:59.424Z"
}

My Profile API
The My Profile API let you get information about the current mobile, virtual, or social user.

This API has the following methods:

• ums.getMe(httpOptions): Retrieves information about the current user. For mobile and
virtual users, it retrieves the user’s roles.

• ums.getUser(options, httpOptions): Retrieves the specified fields for the current mobile
user, or, for social and virtual users all fields. For mobile users, you can retrieve the user
name, first name, last name, and email address, as well as the fields in the user's profile
from Oracle Identity Cloud Service.

• ums.getUserExtended(options, httpOptions): This operation is deprecated.

• ums.updateUser(fields, options, httpOptions): Updates the currently authorized mobile
user's information. You can update the firstName, lastName, and email properties as
well as all the properties that are defined in the Oracle Identity Cloud Service User
schema except for the username property.

ums.getMe(httpOptions)
This method lets you retrieve the information about the currently authorized user.

• When the user is a mobile user, this operation retrieves the user’s information from
Oracle Identity Cloud Service.

• When the user is a virtual user, this operation retrieves the user name and roles. To learn
about virtual users, see Configure SAML Tokens for Virtual Users.

• When the user is a social user (that is, signed in using social identity), this operation
retrieves the user's ID. To learn about social users and social identity, see Facebook
Login in Mobile Hub.

Response

If the current user is a social user, then the response body includes the generated userName,
as shown in this example. To learn more about social identity see Facebook Login in Mobile
Hub.

{
 "userName": "1 :623:165"
}

If the current user is a virtual user, then the response body includes the username and
appRoles, as shown in this example.

{
 "userName":"jdoe",
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "appRoles":[
 {

Chapter 23
Platform APIs

23-67

 "display":"FIF_TECHNICIAN"
 }
]
 }
}

In all other cases, the response body contains the same response as provided by
Oracle Identity Cloud Service. For example:

{
 "idcsCreatedBy":{
 "type":"App",
 "display":"instance1",
 "value":"346373e8a",
 "$ref":"https://myIdentity.example.com/admin/v1/Apps/
3463731bd0cc43c7ba1b79a9c6e25e8a"
 },
 "id":"7e56fd80",
 "active":true,
 "displayName":"Joe Doe",
 "idcsLastModifiedBy":{
 "value":"346373e8aa",
 "display":"instance1",
 "type":"App",
 "$ref":"https://myIdentity.example.com/admin/v1/Apps/
3463731bd0cc43c7ba1b79a9c6e25e8a"
 },
 "userName":"jdoe",
 "emails":[
 {
 "primary":true,
 "value":"jdoe@example.invalid",
 "type":"work"
 }
],
 "name":{
 "familyName":"Doe",
 "givenName":"Joe",
 "formatted":"Joe Doe"
 },
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "grants":[
 {
 "value":"89d8b111",
 "grantMechanism":"ADMINISTRATOR_TO_USER",
 "appId":"346373e8a",
 "$ref":"https://myIdentity.example.com/admin/v1/Grants/
89d80073ae7f48838798cc864031b111"
 }
],
 "appRoles":[
 {
 "value":"a31245f1dd",
 "adminRole":false,

Chapter 23
Platform APIs

23-68

 "legacyGroupName":"instance1.ReadWriteRole",
 "appId":"346373e8a",
 "appName":"instance1_app_name",
 "display":"ReadWriteRole",
 "$ref":"https://myIdentity.example.com/admin/v1/AppRoles/
a31245ce4ed94d2a8563d39cd888f1dd"
 }
],
 "accounts":[
 {
 "appId":"346373e8a",
 "value":"3819e1be",
 "active":true,
 "$ref":"https://myIdentity.example.com/admin/v1/AccountMgmtInfos/
3819dd966cf34aa593df61809d62e1be"
 }
]
 },
 "urn:ietf:params:scim:schemas:idcs:extension:custom:User": {
 "custom_attribute": "1076270704"
 },
 "schemas":[
 "urn:ietf:params:scim:schemas:core:2.0:User"
]
}

Examples

Here’s an example of calling this method:

req.oracleMobile.ums.getMe().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

ums.getUser(options, httpOptions)
This method retrieves the specified fields for the current mobile user, or, for social and virtual
users, all fields. For mobile users, you can retrieve the user name, first name, last name, and
email address, as well as the user's profile from Oracle Identity Cloud Service.

• When the user is a mobile user, this operation retrieves the fields that are specified in
options.fields, or, if the options.fields property isn't provided, it retrieves the user
name, first name, last name, email address, and the user's profile from Oracle Identity
Cloud Service.

• When the user is a virtual user, this operation retrieves the user name. To learn about
virtual users, see Configure SAML Tokens for Virtual Users.

Chapter 23
Platform APIs

23-69

• When the user is a social user (that is, signed in using social identity), this
operation retrieves the user's ID, identity provider, and access token. To learn
about social users and social identity, see Facebook Login in Mobile Hub.

Arguments

options: Optional. JSON object. For mobile users, this object can have the following
property in addition to those listed in Common options Properties:

Property Description Type Default

fields Specifies which user
properties to get. For
example, you can set
options.fields to
firstName,lastNam
e to retrieve just those
two values. Add
attributes to the list
to get the user's profile
from Oracle Identity
Cloud Service. This
property is ignored if
the current user
signed in using virtual
or social identity.

String None

Response

If the current user is a social user, then the response body includes the generated
username as well as the mobileExtended.identityProvider properties, as shown in
this example. To learn more about social identity see Facebook Login in Mobile Hub.

 "username": "1 :623:165",
 "mobileExtended": {
 "identityProvider": {
 "facebook": {
 "accessToken":"CAAI...YZD"
 }
 }
 }

If the current user is a virtual user, then the response body includes the username, as
shown in this example.

 "username": "a24x"

In all other cases, the response body is a JSON object that contains one or more of
the following properties, depending on the value of the request’s options.fields
property.

• id
• email
• firstName

Chapter 23
Platform APIs

23-70

• lastName
• username
• attributes
The response body also contains links to the API endpoint for the resource.

Examples

Here’s an example of calling this method to get the user’s first and last name. In this
example, the user is a mobile user:

req.oracleMobile.ums.getUser({fields: 'firstName,lastName'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

This example shows the response that you get when you set the options.fields property to
firstname,lastname:

{
 "firstName": "Joe",
 "lastName": "Doe"
}

Here's an example of calling this method to get the fields from the users profile in Oracle
Identity Cloud Service.

req.oracleMobile.ums.getUser({fields: 'attributes'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

This example shows the response that you get when you set the options.fields property to
attributes:

{
 "attributes": {
 "id": "2e63bfeea6a14101b91256b4036dff94",
 "displayName": "Joe Doe",
 "emails": [
 {
 "primary": false,
 "secondary": false,
 "value": "joe.doe@oracle.com",

Chapter 23
Platform APIs

23-71

 "type": "recovery",
 "verified": false
 }
],
 "name": {
 "givenName": "Joe",
 "familyName": "Mobile User",
 "formatted": "Test Mobile User"
 },
 "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User": {
 "employeeNumber": "245562716"
 },
 "urn:ietf:params:scim:schemas:idcs:extension:custom:User": {
 "custom_attribute": "1076270704"
 },
 "schemas": [
 "urn:ietf:params:scim:schemas:core:2.0:User",
 "urn:ietf:params:scim:schemas:extension:enterprise:2.0:User",
 "urn:ietf:params:scim:schemas:idcs:extension:custom:User"
]
 }
}

ums.getUserExtended(options, httpOptions)
This operation has been deprecated.

To get user information, use ums.getMe(httpOptions) or ums.getUser(options,
httpOptions) instead.

ums.updateUser(fields, options, httpOptions)
This operation updates the currently authorized mobile user's information. You can
update the firstName, lastName, and email properties as well as all the properties
that are defined in the Oracle Identity Cloud Service User schema except for the
username property.

Arguments

fields: Required. A JSON object that contains the fields to update. For example:
{lastName: 'Doe'}.

options: Optional. A JSON object as described in Common options Properties.

Response

The response body is a JSON object that follows the root response schema that’s
shown for the PUT /mobile/platform/users/{username} operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Chapter 23
Platform APIs

23-72

Examples

Here’s an example of calling this method to update the user’s last name and custom attribute.

service.put(
 '/mobile/custom/incidentreport/customer',
 function (req, res) {
 req.oracleMobile.ums.updateUser(
 {
 lastName: req.body.lastName,

urn:ietf:params:scim:schemas:idcs:extension:custom:User:custom_attribute:
req.body.customAttribute
 }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Notifications API
You can use the Notifications API to send a message to the mobile app users, such as an
alert about an upcoming event or news that the user might be interested in. You can specify a
target for the message such as a device, user, or operating system, and you can schedule
the message. You can also inquire about notifications, and delete scheduled notifications that
haven’t been sent.

This API has the following methods:

• notification.getAll(context, options, httpOptions): Retrieves all notifications.

• notification.getById(id, context, options, httpOptions): Retrieves a notification for a
specific notification ID.

• notification.post(notification, context, options, httpOptions): Creates a notification.

• notification.remove(id, context, options, httpOptions): Deletes a notification.

Note that when you access the Notifications API endpoints directly through REST requests,
the user that you specify in the Authorization header must be a team member (not a mobile
user) who has the Administrator or Developer role.

notification.getAll(context, options, httpOptions)
This method lets you retrieve the notifications that match your criteria. Only the notifications
that match ALL the criteria are returned.

Arguments

context: This argument is ignored.

Chapter 23
Platform APIs

23-73

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Properties:

Property Description Type Default

createdOnOrAfter Criteria: Filter by
createdOn on or after
the given UTC date/
time (in YYYY-DD-
MM[Thh:mm]Z format).

String None

createdOnOrBefore Criteria: Filter by
createdOn on or
before the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

limit The maximum number
of items to be
returned. If the
requested limit is too
large, then a lower
limit is substituted.

Integer None

offset The zero-based index
of the first item to
return.

Integer None

orderBy Specifies the ordering
for the query
operations. The
default sort order is
ascending by ID. The
format is: "orderBy"
"=" 1#(attr [":" "asc" |
"desc"]), where the
attr parameter may
be id, status, tag,
platform, sendOn,
createdOn, or
processedOn.

String None

processedOnOrAfte
r

Criteria: Filter by
processedOn on or
after the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

processedOnOrBefo
re

Criteria: Filter by
processedOn on or
before the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

Chapter 23
Platform APIs

23-74

Property Description Type Default

q Filter results based on
a case-insensitive
partial match of this
string with the tag. For
example, q=market
returns notifications
with tag equal to
Marketing,
marketing, and
markets.

String None

sendOnOrAfter Criteria: Filter by
sendOn on or after the
given UTC date/time
(in YYYY-DD-
MM[Thh:mm]Z format).

String None

sendOnOrBefore Criteria: Filter by
sendOn on or before
the given UTC date/
time (in YYYY-DD-
MM[Thh:mm]Z format).

String None

status Criteria: Filter by
status

String None

tag Criteria: Filter by tag String None

Response

The response body is a JSON object that follows the notificationPaging schema that is
shown for the GET /mobile/system/notifications/notifications operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Examples

Here’s an example of calling this method:

service.get('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 req.oracleMobile.notification.getAll()
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body.

{
 "items": [
 {

Chapter 23
Platform APIs

23-75

 "id": 2,
 "message": "Incident Updated: Broken Dryer",
 "users": [
 "J Doe"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:58:04.465Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/2"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/2"
 }
]
 },
 {
 "id": 3,
 "message": "Incident Updated: Malfunctioning Air Conditioner",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:58:07.413Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/3"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/3"
 }
]
 }
],
 "hasMore": false,
 "limit": 2,
 "count": 2,
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/?
offset=0&limit=2"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/"
 }

Chapter 23
Platform APIs

23-76

]
}

notification.getById(id, context, options, httpOptions)
This method lets you retrieve a specific notification by its ID.

Arguments

id: Required. String or integer. The generated notification ID.

context: This argument is ignored.

options: Optional. JSON object as described in Common options Properties.

Response

The response body is a JSON object that follows the notification schema that is shown for
the GET /mobile/system/notifications/notifications/{id} operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Examples

Here’s an example of calling the method to get a notification:

service.get('/mobile/custom/incidentreport/notifications/:id',
 function (req, res) {
 req.oracleMobile.notification.getById(req.params.id)
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body.

{
 "id": 1,
 "message": "Incident Updated: Leaky Faucet",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:44:45.708Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/1"
 },

Chapter 23
Platform APIs

23-77

 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/1"
 }
]
}

notification.post(notification, context, options, httpOptions)
This method lets you create a notification.

Arguments

notification: Required. JSON object that follows the notificationCreate schema
that is shown for the POST /mobile/system/notifications/notifications operation
in REST API Reference for Oracle Mobile Hub - Platform APIs. Here’s an example:

{
 message:'This is the alert message.',
 tag:'Marketing',
 notificationTokens:['APNSdeviceToken']
}

context: This argument is ignored.

options: Optional. JSON object as described in Common options Properties.

Response

The return value includes this header:

Header Description Type

Location Canonical resource URI for
the notification.

String

The response body, which shows the stored notification, is a JSON object that follows
the notification schema that is shown for the POST /mobile/system/
notifications/notifications operation in REST API Reference for Oracle Mobile
Hub - Platform APIs.

Examples

In this example of posting a notification, the request body would look like this:
{incidentName: 'Leaky Faucet', customerName: 'Lynn Smith'}.

service.post('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 var notification = {
 sendOn: '2016-06-25T6:00Z',
 message: 'Incident Updated: ' +
 req.body.incidentName,
 users: [req.body.customerName]
 };
 req.oracleMobile.notification.post(notification)

Chapter 23
Platform APIs

23-78

 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body.

{
 "id": 1,
 "message": "Incident Updated: Leaky Faucet",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "sendOn": "2016-06-25T06:00Z",
 "status": "New",
 "createdOn": "2015-06-24T21:44:45.708Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/1"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/1"
 }
]
}

notification.remove(id, context, options, httpOptions)
This method lets you delete a notification. You can delete a notification only if its status is
Scheduled.

Arguments

id: Required. String or integer. The generated notification ID.

context: This argument is ignored.

options: Optional. JSON object as described in Common options Properties.

Example

Here’s an example of calling this method:

service.delete('/mobile/custom/incidentreport/notifications/:id',
 function (req, res) {
 req.oracleMobile.notification.remove(req.params.id)

Chapter 23
Platform APIs

23-79

 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Storage API
The Storage API lets you store mobile application objects in the cloud. An object can
be text, JSON, or a binary object such as an image. These objects are grouped by
collection.

This API has the following methods:

• storage.doesCollectionExist(collectionId, options, httpOptions): Indicates if a
collection exists, and, optionally, whether its ETag matches.

• storage.doesExist(collectionId, objectId, options, httpOptions): Indicates if an
object exists, and, optionally, whether its ETag matches.

• storage.getAll(collectionId, options, httpOptions): Returns the metadata for every
object in a collection.

• storage.getById(collectionId, objectId, options, httpOptions): Retrieves an object
and its metadata.

• storage.getCollection(collectionId, options, httpOptions): Retrieves metadata about
a collection.

• storage.getCollections(options, httpOptions): Returns metadata about each
collection that is available through the mobile backend.

• storage.remove(collectionId, objectId, options, httpOptions): Removes an object
from a collection.

• storage.store(collectionId, object, options, httpOptions): Adds an object and
automatically assigns an ID for it.

• storage.storeById(collectionId, objectId, object, options, httpOptions): Adds or
updates an object based on an ID that you specify.

storage.doesCollectionExist(collectionId, options, httpOptions)
You can use this method to determine whether a collection exists. You can also use it
to see if the collection matches (or does not match) an ETag.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Properties:

Chapter 23
Platform APIs

23-80

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId value.
This option can be
useful for multibyte
values.

Boolean false

ifMatch The call returns true
only if the ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifNoneMatch The call returns true
only if the ETag of the
corresponding object
does not match one of
the values specified by
this property.

String None

Response

This method returns a Boolean value.

Example

The following example uses this method to verify that the collection exists before it stores an
object in it.

req.oracleMobile.storage.doesCollectionExist('attachments').then(
 function(result){
 if (result) {
 req.oracleMobile.storage.store('attachments', {id: 'incident412-pic'},
{inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 } else {
 res.status(404).send('Storage has not been configured for this app.
Please contact your admin.');
 };
 },
 function(error){
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Platform APIs

23-81

storage.doesExist(collectionId, objectId, options, httpOptions)
You can use this method to determine whether an object exists. You can also use it to
see if the object matches (or does not match) an ETag, or if it was modified after a
specified date.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The object being accessed. If the object was stored using
the storage.storeById() method, then this is the ID that was provided as the id
argument, and, if the object was stored using the storage.store() method, then the
ID was generated. When looking at the object metadata, this argument value
corresponds to the metadata’s id attribute.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Properties:

Property Description Type Default

contentDispositio
n

This property lets you
specify the value of
the Content-
Disposition
response header.

String None

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

Chapter 23
Platform APIs

23-82

Property Description Type Default

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in this
property. You can use
this property to reduce
the amount of data
that is transported by
not re-retrieving data if
it hasn’t changed.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified by
this property. You can
use this property to
reduce the amount of
data that is
transported by not re-
retrieving data if it
hasn’t changed.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property.

Date None

Chapter 23
Platform APIs

23-83

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to inquire
about objects in
another user’s space.

Response

This method returns a Boolean value.

Example

In this example, the code calls doesExist to see if the stored object still has the same
ETag as when it was last retrieved ("1").

req.oracleMobile.storage.doesExist('attachments', 'incident412-pic',
{ifMatch: '\"' + 1 + '\"'}).then(
 function (result) {
 res.status(200).send('Object has not changed.');
 },
 function (error) {
 res.status(412).send('Object was modified by someone else.');
 }
)

storage.getAll(collectionId, options, httpOptions)
This method returns the metadata for every object in a collection.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Properties:

Chapter 23
Platform APIs

23-84

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
orderBy, and user
values. This option can
be useful for multibyte
values.

Boolean false

limit The maximum number
of items to be returned.
If the requested limit is
greater than 100, then
100 is used instead.

Integer None

offset The zero-based index of
the first item to return.

Integer None

orderBy Use this property to sort
the results by name,
modifiedBy,
modifiedOn,
createdBy,
createdOn, or
contentLength. You
can append :asc
or :desc to specify
whether to sort in
ascending or
descending order. For
example,
modifiedOn:desc.

String None

q The items that are
returned are based on a
case-insensitive partial
match of the id, name,
createdBy or
modifiedBy property of
an item. For example, if
you set this property to
sam, it could return an
object with an id of
axsam3 and an object
with a createdBy of
SAMANTHA.

String None

sync When this property is
present and has a value
of true, then the return
value contains the
information required by
the Synchronization
library to cache the data
locally for offline use.
You can get this value
from the Oracle-
Mobile-Sync-Agent
request header, when
present.

Boolean false

Chapter 23
Platform APIs

23-85

Property Description Type Default

totalResults When this property is
present with a value of
true, then the response
body contains the
totalResults attribute
with a value that
represents the total
number of items in the
collection. By default,
the response does not
contain this value.

Boolean false

user This is the ID (not the
user name) of a user.
Use * (wildcard) to get
all users. This query
parameter allows a user
with READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may access
only their own space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you have
READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to inquire about
objects in another user’s
space.

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Oracle-Mobile-Sync-
Resource-Type

The Synchronization library
uses this header.

String

The response body is a JSON object that follows the response body schema that is
shown for the GET /mobile/platform/storage/collections/{collection}/objects
operation in REST API Reference for Oracle Mobile Hub - Platform APIs.

Chapter 23
Platform APIs

23-86

Examples

Here’s an example of calling this method. The response lists the objects by modified date, in
descending order. Because the sync property is set to true, the client app can cache the
response.

// Get metadata about the objects in the attachments collection.
// List most recently modified first.
service.get('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 req.oracleMobile.storage.getAll('attachments',
 {orderBy: 'modifiedOn:desc', sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body:

{
 "items":[
 {
 "eTag":"\"2\"",
 "id":"incident412-pic",
 "createdBy":"jdoe",
 "name":"Incident Picture",
 "createdOn":"2014-11-20T19:57:04Z",
 "modifiedOn":"2014-11-20T19:58:09Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/profile-pic"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects/profile-pic"
 }
],
 "contentType":"image/png",
 "contentLength":937647
 },
 {
 "eTag":"\"1\"",
 "id":"incident131-pic",
 "createdBy":"jsmith",
 "name":"Incident Picture",

Chapter 23
Platform APIs

23-87

 "createdOn":"2014-11-20T18:27:02Z",
 "modifiedOn":"2014-11-20T18:27:02Z",
 "modifiedBy":"jsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments/objects/0683d48b-fdc5-4397-8ca2-824e2b0cae65"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/
attachments/objects/0683d48b-fdc5-4397-8ca2-824e2b0cae65"
 }
],
 "contentType":"image/jpeg",
 "contentLength":5266432
 }
],
 "hasMore":true,
 "limit":2,
 "offset":4,
 "count":2,
 "totalResults":7,
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=4&limit=2&orderBy=name:asc&totalResults=true"
 },
 {
 "rel":"prev",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=2&limit=2&orderBy=name:asc&totalResults=true"
 },
 {
 "rel":"next",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=6&limit=2&orderBy=name:asc&totalResults=true"
 }
]
}

storage.getById(collectionId, objectId, options, httpOptions)
This method retrieves an object and its metadata from a collection based on the object
identifier.

Chapter 23
Platform APIs

23-88

Arguments

collectionId: Required. String. The name of the collection. When you look at the metadata
for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The object being accessed. If the object was stored using the
storage.storeById() method, then this is the ID that was provided as the id argument, and,
if the object was stored using the storage.store() method, then the ID was generated.
When looking at the object metadata, this argument value corresponds to the metadata’s id
attribute.

options: Optional. JSON object. This object can have these properties in addition to those
listed in Common options Properties:

Property Description Type Default

contentDisposition This property lets you
specify the value of the
Content-Disposition
response header.

String None

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option can
be useful for multibyte
values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifModifiedSince Date and time in HTTP-
date format. For
example, Mon, 30 Jun
2014 19:43:31 GMT.
The request completes
successfully only if the
object was modified
after the date specified
in this property. You can
use this property to
reduce the amount of
data that is transported
by not re-retrieving data
if it hasn’t changed.

Date None

Chapter 23
Platform APIs

23-89

Property Description Type Default

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified by
this property. You can
use this property to
reduce the amount of
data that is transported
by not re-retrieving data
if it hasn’t changed.

String None

ifUnmodifiedSince Date and time in HTTP-
date format. For
example, Mon, 30 Jun
2014 19:43:31 GMT.
The request completes
successfully only if the
object wasn't modified
after the date specified
in this property.

Date None

range This property lets you
request a subset of
bytes. For example,
bytes=0–99 gets the
first 100 bytes.

String None

sync When this property is
present and has a value
of true, then the return
value contains the
information required by
the Synchronization
library to cache the data
locally for offline use.
You can get this value
from the Oracle-
Mobile-Sync-Agent
request header, when
present.

Boolean false

Chapter 23
Platform APIs

23-90

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may access
only their own space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you have
READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to get an object
from another user’s
space.

Response

The return value includes these headers:

Header Description Type

Accept-Ranges This header indicates that byte
ranges may be provided when
requesting an object resource.

String

Cache-Control Describes how the result may be
cached.

String

Content-Disposition This response header is returned
if the options argument
included the
contentDisposition property.
The value for the response
header is the same as the value
for the property.

String

Content-Length The size of the object in bytes. Number

Content-Type The media type of the object,
such as image/jpeg.

String

Etag Each item has an ETag value.
This value changes each time
the item is updated. The value
includes the starting and ending
quotation marks (for example,
"2").

String

Last-Modified The date and time when the
resource was last modified. This
date is in RFC-1123 format. For
example, Fri, 29 Aug 2014
12:34:56 GMT.

Date

Chapter 23
Platform APIs

23-91

Header Description Type

Oracle-Mobile-Canonical-
Link

A relative URI that you can use
to uniquely reference this object.

String

Oracle-Mobile-Created-By The user name of the user who
created the object.

String

Oracle-Mobile-Created-On The date and time, in ISO 8601
format (for example,
2014-06-30T01:02:03Z), when
the object was created.

String

Oracle-Mobile-Modified-By The user name of the user who
last modified the object.

String

Oracle-Mobile-Modified-On The date and time, in ISO 8601
format (for example,
2014-06-30T01:02:03Z), when
the object was last modified.

String

Oracle-Mobile-Name The display name for the object. String

Oracle-Mobile-Self-Link A relative URI that you can use
to uniquely reference this object
within the specified isolation
level.

String

Oracle-Mobile-Sync-
Expires

This header is used by the
Synchronization library.

String

Oracle-Mobile-Sync-No-
Store

This header is used by the
Synchronization library.

Boolean

The response body is the stored object.

Example

Here is an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getById('attachments', 'incident412-notes',
{sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

storage.getCollection(collectionId, options, httpOptions)
This method returns metadata about a particular collection.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

Chapter 23
Platform APIs

23-92

options: Optional. JSON object. This object can have these properties in addition to those
listed in Common options Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId value.
This option can be
useful for multibyte
values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified by
this property.

String None

sync When this property is
present and has a value
of true, then the return
value contains the
information required by
the Synchronization
library to cache the data
locally for offline use.
You can get this value
from the Oracle-
Mobile-Sync-Agent
request header, when
present.

Boolean false

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may be
cached.

String

Etag Each item has an ETag value.
This value changes each time
the item is updated. The value
includes the starting and ending
quotation marks (for example,
"2").

String

The response body is a JSON object that follows the Collection schema that is shown for
the GET /mobile/platform/storage/collections/{collection} operation in REST API
Reference for Oracle Mobile Hub - Platform APIs.

Chapter 23
Platform APIs

23-93

Examples

Here’s an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getCollection('attachments', {sync:
true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body:

{
 "id":"attachments",
 "description":"Attachments for technician notes.",
 "contentLength":6205619,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments"}
]}

storage.getCollections(options, httpOptions)
This method returns metadata about each collection that is available through the
mobile backend.

Arguments

options: Optional. JSON Object. This object can have these properties in addition to
those listed in Common options Properties:

Property Description Type Default

limit The maximum number
of items to be
returned. If the
requested limit is too
large, then a lower
limit is substituted.

Integer None

offset The zero-based index
of the first item to
return.

Integer 0 (zero)

Chapter 23
Platform APIs

23-94

Property Description Type Default

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

totalResults When this property is
present with a value of
true, then the then
the response body
contains the
totalResults
property with a value
that represents the
total number of items
in the collection. By
default, this property is
not returned.

Boolean false

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may be
cached.

String

Oracle-Mobile-Sync-
Resource-Type

The Synchronization library uses
this header.

String

The response body is an array of items in JSON format that follows the Collection Array
schema that is shown for the GET /mobile/platform/storage/collections operation in
REST API Reference for Oracle Mobile Hub - Platform APIs.

Example

Here is an example of calling this method. Because the sync property is set to true, the client
app can cache the response.

req.oracleMobile.storage.getCollections({sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);

Chapter 23
Platform APIs

23-95

 }
);

Here’s an example of a response body:

{
 "items":[
 {
 "id":"logs",
 "description":"Application logs.",
 "contentLength":0,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
logs"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/logs"}
]},
 {
 "id":"attachments",
 "description":"Attachments for technician notes.",
 "contentLength":6205619,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/
attachments"}
]}
],
 "hasMore":false,
 "limit":100,
 "offset":0,
 "count":2,
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections?
offset=0&limit=100"}
]}

storage.remove(collectionId, objectId, options, httpOptions)
This method removes an object from a collection based on the object identifier.

Chapter 23
Platform APIs

23-96

Arguments

collectionId: Required. String. The name of the collection. When you look at the metadata
for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The ID of the object to remove.

options: Optional. JSON object. This object can have these properties in addition to those
listed in Common options Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option can
be useful for multibyte
values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property. You can use
this property to ensure
that the operation
succeeds only if the
object wasn't modified
after you last requested
it.

String None

ifModifiedSince Date and time in HTTP-
date format. For
example, Mon, 30 Jun
2014 19:43:31 GMT.
The request completes
successfully only if the
object was modified
after the date specified
in property.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified by
this property.

String None

Chapter 23
Platform APIs

23-97

Property Description Type Default

ifUnmodifiedSince Date and time in HTTP-
date format. For
example, Mon, 30 Jun
2014 19:43:31 GMT.
The request completes
successfully only if the
object wasn't modified
after the date specified
in this property. You can
use this property to
ensure that the
operation succeeds only
if no one modified the
object after that time.

Date None

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may access
only their own space.

String If you are removing an
object in a shared
collection, there is no
default.
If you removing an
object in an isolated
collection, and you have
READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to remove
objects from another
user’s space.

Example

This example removes an object from the attachments collection:

service.delete('/mobile/custom/incidentreport/attachments/:id',
 function (req, res) {
 req.oracleMobile.storage.remove('attachments', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 23
Platform APIs

23-98

storage.store(collectionId, object, options, httpOptions)
This method lets you store an object and have an identifier automatically assigned to it.

Arguments

collectionId: Required. String. The name of the collection. When you look at the metadata
for the collection, this value corresponds to the metadata’s id value.

object: Required. Text, JSON object, file, or binary object. The object to store.

options: Optional. JSON object. This object can have the following properties in addition to
those listed in Common options Properties. Note that the contentType property plays an
important role for Storage, because that also specifies the mediat type to when the object is
requested. If you don't include the content, then the content-type defaults to application/
octet-stream.

Property Description Type Default

contentLength The size of the object in
bytes.

Number If the object is a string or
a buffer, then the default
is object.length.
Otherwise, the default is
the sum of its members’
lengths.

contentType The media type of
object being stored. This
property also specifies
the media type to return
when the object is
requested.

String If the inType is json,
then the Content-Type
header is set to
application/json
automatically.
Otherwise, the default
isapplication/
octet-stream.

encodeURI Set to true to URI-
encode the
collectionId,
mobileName, and user
values. This option can
be useful for multibyte
values.

Boolean false

mobileName The display name for
the object. If you don't
include the display
name, the name is set to
the object identifier that
this method generates
automatically.

String None

Chapter 23
Platform APIs

23-99

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may access
only their own space.

String If you are storing an
object in a shared
collection, there is no
default.
If you storing an object
in an isolated collection,
and you have
READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to store objects
in another user’s space.

Response

The return value includes this header:

Header Description Type

Location The URI that corresponds to
the newly created object.

String

The response body is a JSON object that follows the schema shown for the response
body for the POST /mobile/platform/storage/collections/{collection}/objects
operation in REST API Reference for Oracle Mobile Hub - Platform APIs.

Examples

In this example, requests can contain JSON objects, files, plain text, images, and so
forth. If the input is a JSON object then it must set inType to json, and pass in
req.body for the object. Otherwise, it sets inType to stream, and passes in req for the
object.

service.post('/mobile/custom/incidentreport/attachments',
function (req, res) {
 if (req.is('json')) {
 // Must specify JSON because there is no stream to pipe from req
 // as Express has read it into json and put it in req.body.
 req.oracleMobile.storage.store('attachments', req.body,
 {
 mobileName: 'Technician Notes',
 inType: 'json',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)

Chapter 23
Platform APIs

23-100

 })
 .pipe(res);
 } else {
 // For streaming, send req instead of req.body
 req.oracleMobile.storage.store('attachments', req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 }
});

In this example, the request body contains a Base-64 encoded image. The code converts it to
a binary image before storing it. The request body would look like this:

{
 imageName: 'brokenWaterHose',
 base74EncodedImage: '/9j/4AAQSkZJRg...AFFFFAH/2Q=='
}

// Base 64
service.post('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 // convert Base-64 encoded image to binary image
 image = new Buffer(req.body.base64EncodedImage);
 req.oracleMobile.storage.store('attachments', image,
 {
 contentType: 'image/jpeg',
 mobileName: req.body.imageName
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
)
 })

Here’s an example of a response body:

{
 "eTag":"\"1\"",
 "id":"a95edb6f-539d-4bac-9ffa-78ff16b20516",
 "createdBy":"jdoe",
 "name":"Technician Notes",
 "createdOn":"2014-11-20T15:53:05Z",

Chapter 23
Platform APIs

23-101

 "modifiedOn":"2014-11-20T15:53:05Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/a95edb6f-539d-4bac-9ffa-78ff16b20516"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects/a95edb6f-539d-4bac-9ffa-78ff16b20516"
 }
],
 "contentType":"application/json",
 "contentLength":9377
}

storage.storeById(collectionId, objectId, object, options, httpOptions)
This method stores an object based on an ID that you specify. You can use it to add an
object using your own ID instead of one that is generated automatically, or to update
an existing object.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. If you are adding an object, this is the ID to store the
object under. If you are updating an object, this is the ID of the object you are
replacing.

object: Required. Text, JSON object, file, or binary object. This is the object to store.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Properties.

Property Description Type Default

contentLength The size of the object
in bytes.

Number If the object is a string
or a buffer, then the
default is
object.length.
Otherwise, the default
is the sum of its
members’ lengths.

contentType The media type of
object being stored.
This property also
specifies the media
type to return when
the object is
requested.

String If the inType is json,
then the Content-
Type header is set to
application/json
automatically.
Otherwise, the default
isapplication/
octet-stream.

Chapter 23
Platform APIs

23-102

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
objectId,
mobileName, and
user values. This
option can be useful
for multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property. You can use
this property to ensure
that the operation
succeeds only if the
object wasn't modified
after you last
requested it.

String None

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in property.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified by
this property.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property. You can use
this property to ensure
that the operation
succeeds only if no
one modified the
object after that time.

Date None

Chapter 23
Platform APIs

23-103

Property Description Type Default

mobileName The display name for
the object. If you don't
include the display
name, the name is set
to the object identifier.

String None

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are storing an
object in a shared
collection, there is no
default.
If you storing an object
in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to store
objects in another
user’s space.

Response

The response body is a JSON object that follows the schema shown for the response
body for the PUT /mobile/platform/storage/collections/{collection}/objects/
{object} operation in REST API Reference for Oracle Mobile Hub - Platform APIs.

Examples

In this example, the request can contain JSON objects, files, plain text, images, and so
forth. If the input is a JSON object then it must set inType to json, and pass in
req.body for the object. Otherwise, it sets inType to stream, and passes in req for the
object.

service.put('/mobile/custom/incidentreport/attachments/:id',
function (req, res) {
 if (req.is('json')) {
 // Must specify JSON because there is no stream to pipe from req
 // as Express has read it into json and put it in req.body.
 req.oracleMobile.storage.storeById('attachments', req.params.id,
req.body,
 {
 contentLength: req.body.length,
 mobileName: 'Technician Notes',
 inType: 'json',
 outType: 'stream'
 })
 .on('error', function (error) {

Chapter 23
Platform APIs

23-104

 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 } else {
 // For streaming, send req instead of req.body
 req.oracleMobile.storage.storeById('attachments', req.params.id, req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 }
});

Here’s an example of a response body:

{
 "eTag":"\"2\"",
 "id":"incident412-notes",
 "createdBy":"jdoe",
 "name":"Technician Notes",
 "createdOn":"2014-11-20T15:57:04Z",
 "modifiedOn":"2014-11-20T15:58:09Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
incident412-notes"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
incident412-notes"}
],
 "contentType":"application/json",
 "contentLength":9377
}

Call a Connector API from Custom Code
To use a connector, you must create a custom API and implement code that calls the SDK’s
connector methods.

The custom code SDK provides two namespaces for sending requests to connectors:

• oracleMobile.connectors.<connector>: To use the methods in this namespace, you
must explicitly declare a connector dependency in package.json. The automatically
generated implementations use this namespace.

Chapter 23
Call a Connector API from Custom Code

23-105

• oracleMobile.connectors: To use the methods in this namespace, you don’t
need to explicitly declare a connector dependency in package.json .

There are several reasons for declaring the dependency in package.json, such as
making it easier to track dependencies, and ensuring that dependent APIs are
published when you publish your API. Here's an example:

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "oracleMobile" : {
 "dependencies" : {
 "connectors" : {"/mobile/connector/geocoder": "1.0"}
 }
 }
}

Both namespaces provide methods for each HTTP operation, as shown in this table:

HTTP Method oracleMobile.connectors
Signature

oracleMobile.connectors.<conne
ctor> Signature

GET get(connector,
resourceName, options,
httpOptions)

get(resourceName, options,
httpOptions)

PUT put(connector,
resourceName, object,
options, httpOptions)

put(resourceName, object,
options, httpOptions)

POST post(connector,
resourceName, object,
options, httpOptions)

post(resourceName, object,
options, httpOptions)

DELETE del(connector,
resourceName, options,
httpOptions)

del(resourceName, options,
httpOptions)

HEAD head(connector,
resourceName, options,
httpOptions)

head(resourceName, options,
httpOptions)

OPTIONS options(connector,
resourceName, options,
httpOptions)

options(resourceName,
options, httpOptions)

PATCH patch(connector,
resourceName, object,
options, httpOptions)

patch(resourceName, object,
options, httpOptions)

You use the Network_HttpPatch environment policy to control the behavior of PATCH
requests.

• HEADER sends a POST request with an X-HTTP-Method-Override header set to
PATCH. This enables you to send PATCH requests when the target server doesn’t
support the PATCH method.

Chapter 23
Call a Connector API from Custom Code

23-106

• LEGACY sends a PATCH request with an X-HTTP-Method-Override header set to PATCH.

• METHOD sends a PATCH request without an X-HTTP-Method-Override header set to PATCH.
This is the default.

Here’s an example of using a policy setting to change the policy for MyRESTConnector:

*.connector/MyRESTConnector(1.0).Network_HttpPatch=HEADER

The method's optional options argument can have the following connector properties in
addition to the common options properties.

Property Description Type Default

externalAuthorization If you haven’t configured a security
policy for the connector, then put the
Authorization value for the external
service in the
options.externalAuthorization
property. When this property is present,
the connector sets the outgoing
Authorization header with the value
in options.externalAuthorization
property before it sends the request to
the external service.

String None

versionToInvoke The version of the connector.
When you use the
oracleMobile.connectors
namespace, you must include this
option if the API version is not declared
in package.json.

When you use the
oracleMobile.connectors.<connec
tor> namespace, the API version must
be declared in package.json, and you
optionally can use this property to
override that version.

String The version that is
declared in the
package.json file.
When you use the
oracleMobile.conne
ctors.<connector>
namespace, the API
version must be
declared in
package.json.

Here’s an example of calling the /mobile/connector/globalweather connector using the
oracleMobile.connectors namespace:

req.oracleMobile.connectors.post('globalweather', 'GetWeather', body,
{inType: 'json', versionToInvoke: '1.0'}).then(
 function (result) {
 console.info("result is: " + result.statusCode);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.info("error is: " + error.statusCode);
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Call a Connector API from Custom Code

23-107

Here’s an example of calling the /mobile/connector/globalweather connector using
the oracleMobile.connectors.<connector> namespace.

req.oracleMobile.connectors.globalweather.post('GetWeather', body,
{inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

If your connector is a REST API that you created using a valid descriptor, then you can
create the custom API and its implementation automatically. From the Connectors
page, select the connector, click More and then click Generate Custom API. If you
use the automatic-generation feature, you typically don’t need to know how to use the
SDK’s connector methods described here unless you are using the customizer
method that is in the generated code. For example, you might need to use a
customizer to pass options.externalAuthorization. Sometimes, you might need to
replace a call to the callConnector method with your own code, such as when you
need to send multipart form data or the http options object.

Call a REST Connector
You need the connector name and the resource name to call a REST API connector.
You form the resource name by removing the base URI from the endpoint. Say, for
example, that your git connector maps to https://example.com. To call https://
example.com/{owner}/{repo}/contents/{path}, set the resourceName to {owner}/
{repo}/contents/{path}.

You also need to pass the authorization in either options.externalAuthorization or
httpOptions.headers['oracle-mobile-external-authorization'] .

Here’s an example of sending a PUT request to a REST connector:

service.put('/mobile/custom/incidentreport/connectors/git/:owner/:repo/
contents/:path',
 function (req, res) {
 req.oracleMobile.connectors.idmsamples.put(
 'repos/' + req.params.owner + '/' + req.params.repo + '/
contents/' + req.params.path,
 req.body,
 {externalAuthorization: req.header('external-authorization'),
inType: 'json'},
 null).then(
 function (result) {
 // include the target service's response headers
 res.set(result.headers);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }

Chapter 23
Call a Connector API from Custom Code

23-108

);
});

You use the httpOptions object to pass headers and query parameters to a connector.

A connector to a REST web service can have rules that set default query parameters. If you
specify values for those same parameters, then your values take precedence and override
the default parameters in the connector rules.

Here’s an example of passing query parameters and headers in the httpOptions object:

service.get('/mobile/custom/incidentreport/connectors/git/:owner/:repo/
contents/:path',
 function (req, res) {
 req.oracleMobile.connectors.idmsamples.get(
 'repos/' + req.params.owner + '/' + req.params.repo + '/contents/' +
req.params.path,
 {externalAuthorization: req.header('external-authorization')},
 {qs: {"branch": req.query.branch}, headers: {"accept":
req.header('accept')}}
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Tip:

When you use httpOptions.qs to pass the query string, you can use
encodeURIComponent(<string>) for the qs value to ensure that your code handles
multibyte characters.

Call a SOAP Connector
The body for a message that you send to a SOAP connector must be in either the XML or
JSON form of a SOAP envelope, with an optional Header, a required Body, and an optional
Fault.

JSON requests are translated automatically to XML, and XML responses are translated to
JSON. This means that you can interact with SOAP services without having to work with
XML. If you choose to provide the message in XML, then remember to do the following:

• To request that the response body is in XML format, set options.accept to application/
xml.

• When the request body is in XML format, set options.contentType to application/xml;
charset=utf-8.

Chapter 23
Call a Connector API from Custom Code

23-109

• The XML in a request body must be wrapped in a SOAP envelope, which must
include any necessary SOAP headers, as shown in this example. If you configured
a security policy on a connector that requires a SOAP header to be sent in the
message, That header is added automatically so you don’t need to include it in
your message.

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>
 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

To see a sample message for a connector’s operation, go to the Test page for the
connector, select the operation, and then click Examples.

Note that with SOAP connectors, if your options.contentType property doesn’t
specify the character set, then UTF-8 is assumed.

Here’s an example of calling a connector to a SOAP service. In this example, the
request body is in JSON format:

service.get('/mobile/custom/incidentreport/connectors/
numberConvert/:number/words',
function (req, res) {
 var body = {
 Header: null,
 Body: {
 "NumberToWords": {
 "ubiNum": req.params.number
 }
 }
 };
 req.oracleMobile.connectors.post('numberConvert', 'words', body,
 {inType: 'json', versionToInvoke: '1.0'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 23
Call a Connector API from Custom Code

23-110

Call a Connector that Requires Form Data
If a connector’s operation requires a content type of multipart/form-data, use Multer to
pass the form data to the connector. Multer is a library for Node.js that handles multipart form
data.

To call a connector with a request body of type multipart/form-data:

1. Add multer as a dependency in package.json, as shown in the following example, and
then run npm install.

{
 "name": "sendformdata",
 "version": "1.0.0",
 "description": "Sends form data to a connector API.",
 "main": "sendformdata.js",
 "dependencies": {
 "multer": "latest"
 },
 ...
}

2. In the custom code, add the following statements:

var multer = require('multer');
var storage = multer.memoryStorage();
var upload = multer({storage: storage});

Multer adds the following objects to the incoming request body when it is of type
multipart/form-data:

• body: Contains the text fields that are in the form.

• files: Contains the files that are uploaded using the form.

3. In the method for the operation, pass upload.array as the second argument and provide
the name of the form’s file parameter and the maximum number of uploaded files. For
example:

service.post('/mobile/custom/SendFormData/upload', upload.array("avatar",
12), function (req, res)

4. Extract the content from the body and files objects and pass it to the connector via the
httpOptions.formData object. Note that you must make the file object look like a stream.

Here’s an example. In this example, the POST /mobile/custom/SendFormData/upload
operation requires the following form parameters:

• username, which is of type text.

• avatar, which is of type file.

var multer = require('multer');
var storage = multer.memoryStorage();
var upload = multer({storage: storage});

Chapter 23
Call a Connector API from Custom Code

23-111

module.exports = function (service) {

 service.post('/mobile/custom/SendFormData/upload',
upload.array("avatar", 12), function (req, res) {

 // Because the uploaded file is a buffer in memory, you must
modify it
 // to look like a stream before you send it to the connector.
 var uploadedFile = {
 value: req.files[0].buffer,
 options: {
 filename: req.files[0].originalname,
 contentType: req.files[0].mimetype
 }
 };

 var formData = {
 username: req.body.username,
 avatar: uploadedFile
 };

 // FormData is the name of the connector.
 // The formData object is passed in the httpOptions argument.
 // The options.contentType is set to multipart/form-data
automatically.
 req.oracleMobile.connectors.FormData.post("upload", null, null, {
 formData: formData
 }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 });
 });
};

For information about Multer, see https://www.npmjs.com/package/multer.

Pass Headers to the Target Service
With the exception of the following headers, you must use httpOptions.headers to
pass headers and their values:

• Authorization: If the connector doesn’t have a connector Authorization header
rule, or if you don’t want to use the rule’s default value, then you must pass the
authorization information in either the options.externalAuthorization property
or the httpOptions.headers['oracle-mobile-external-authorization']
property, as shown here.

• Connection: Don’t set this header.

• Content-Length: Don’t set this header.

Chapter 23
Call a Connector API from Custom Code

23-112

https://www.npmjs.com/package/multer

• Host: Don’t set this header.

• User-Agent: Don’t set this header.

The original request’s Accept value isn’t passed to the target service. To pass that value to
the target service, use either the httpOptions.headers.accept property or the
options.accept property.

The headers that you pass in your request override any related default values that are set by
connector rules.

Here’s an example that passes headers to the target service:

 var httpOptions={'headers':{}};
 // You must pass the Accept header if you don't want to use the target
server's default.
 if (req.header('accept')) {
 // You can pass the accept value using options.accept or
httpOptions.header, as shown here:
 httpOptions.headers.accept = req.header('accept');
 };
 // If the connector doesn't have an Authorization rule,
 // or if you don't want to use the rule's default,
 // pass the authorization information using options.externalAuthorization
or
 // httpOptions.headers.oracle-mobile-external-authorization.
 // Note the ['']syntax to prevent the hyphen from being interpreted as a
minus.
 if (req.header('external-authorization')) {
 httpOptions.headers['oracle-mobile-external-authorization'] =
 req.header('external-authorization');
 };
 // Pass any custom headers
 if (req.header('if-none-match')) {
 httpOptions.headers['if-none-match'] = req.header('if-none-match');
 };
 req.oracleMobile.connectors.git.get('repos/fixItFast/incidentreport/
contents/README.md',
 null,
 httpOptions).then(
 function (result) {
 // include the target service's headers
 res.set(result.headers);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Override SSL Settings for Connectors
You might encounter issues with external services, such as the service has an invalid SSL
certificate or it redirects the request but it doesn't preserve the cookies over the redirect.

Chapter 23
Call a Connector API from Custom Code

23-113

To resolve these issues, you use the options argument to customize the outgoing
HTTP requests, which go through a proxy. You can get the proxy from
req.oracleMobile.proxy.httpProxy. Here’s an example of how to override the
strictSSL setting in order to ignore SSL validation issues.

var res = {};
var options = {
 uri: req.body.externalURI,
 strictSSL: false,
 proxy: 'http://' + req.oracleMobile.proxy.httpProxy
}
req(options).pipe(res);

To learn more about request options, see https://github.com/request/
request#requestoptions-callback.

Call a Custom API from Custom Code
The custom code SDK provides two namespaces for sending requests to other custom
APIs:

• oracleMobile.custom.<apiName>: To use the methods in this namespace, you
must explicitly declare in package.json a dependency on the custom API.

• oracleMobile.custom: To use the methods in this namespace, you don’t need to
explicitly declare in package.json a dependency on the custom API.

There are several reasons for declaring the dependency in package.json, such as
making it easier to track dependencies, and ensuring that dependent APIs are
published when you publish your API. Here's an example:

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/motd" : "1.0"}
 }
 }
}

Both namespaces provide methods for each HTTP operation, as shown in this table:

HTTP Operation oracleMobile.custom
Method

oracleMobile.custom.<apiNa
me> Method

GET get(apiName,
resourceName, options,
httpOptions)

get(resourceName,
options, httpOptions)

Chapter 23
Call a Custom API from Custom Code

23-114

HTTP Operation oracleMobile.custom
Method

oracleMobile.custom.<apiNa
me> Method

PUT put(apiName,
resourceName,
object, options,
httpOptions)

put(resourceName,
object, options,
httpOptions)

POST post(apiName,
resourceName,
object, options,
httpOptions)

post(resourceName,
object, options,
httpOptions)

DELETE del(apiName,
resourceName, options,
httpOptions)

del(resourceName,
options, httpOptions)

HEAD head(apiName,
resourceName, options,
httpOptions)

head(resourceName,
options, httpOptions)

OPTIONS options(apiName,
resourceName, options,
httpOptions)

options(resourceName,
options, httpOptions)

PATCH patch(apiName,
resourceName,
object, options,
httpOptions)

patch(resourceName,
object, options,
httpOptions)

The optional options argument can have the versionToInvoke property in addition to the
common options properties.

Property Description Type Default

versionToInvoke The version of the
custom API.
When you use the
oracleMobile.custom
namespace, you must
include this option if the
API version is not
declared in
package.json.

When you use the
oracleMobile.custom
.<apiName>
namespace, the API
version must be
declared in
package.json, and
you optionally can use
this property to override
that version.

String The version that is
declared in the
package.json file.

Chapter 23
Call a Custom API from Custom Code

23-115

Here are examples of how to call another custom API from custom code using both
namespaces . These examples call the motd custom API, and send a POST request to
its years/{year}/months/{month}/days resource.

 /**
 * oracle.Mobile.custom.<apiName> namespace example:
 *
 * <namespace>.post(<resource>, <body>, <options>)
 *
 * Note: Because it uses the
 * oracleMobile.custom.<apiName> namespace,
 * the dependency on the motd API must
 * be specified in package.json.
 * options.versionToInvoke isn't required. You can use
 * it to override the version that is declared in
 * package.json.
 */
 req.oracleMobile.custom.motd.post(
 'years/2018/months/1/days',
 req.body,
 {inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

 /**
 * oracle.Mobile.custom namespace example:
 *
 * post(<namespace>, <resource>, <body>, <options>)
 *
 * You must include the versionToInvoke option if
 * the API isn't declared in package.json.
 */
 req.oracleMobile.custom.post(
 'motd',
 'years/2018/months/1/days',
 req.body,
 {versionToInvoke: '1.0', inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Call a Custom API from Custom Code

23-116

Specify the API Version in Calls to Custom and Connector APIs
When you call connector APIs or other custom APIs, you must always specify the API
version. You can specify the API version in one of the following ways:

• Explicitly state the version dependency in the implementation’s package.json file, as
shown here. You must do this if you are using methods in the
oracleMobile.connectors.<connector> or oracleMobile.custom.<apiName>
namespace.

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/motd" : "1.0"},
 "connectors" : {"/mobile/connector/geocoder": "1.0"}
 }
 }
}

In this example, a call to any method in the oracleMobile.custom.motd namespace uses
version 1.0 by default.

• Include the options.versionToInvoke property in the request and set it to the version
that you want to use (represented as a string). If you specify the version number this way,
then it overrides what you may have specified in the package.json file.

req.oracleMobile.custom.post(
 'motd',
 'years/2018/months/1/days',
 req.body,
 {versionToInvoke: '1.0', inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

If you are using a method from the generic oracleMobile.rest namespace, put the
version in the Oracle-Mobile-API-Version header instead of the
options.versionToInvoke property.

When you declare dependencies using the package.json file, then it’s easier to keep track of
those dependencies than when you use the options.versionToInvoke property to declare
dependencies. When you use package.json for this purpose, the API Designer displays the
dependencies in a table below the list of implementations. When you prepare to publish your
API, you’re prompted to publish any unpublished dependent APIs.

Chapter 23
Specify the API Version in Calls to Custom and Connector APIs

23-117

However, if you use the options.versionToInvoke property to declare the version of a
dependent API, the API Designer won’t be aware of that dependency and won’t
prompt you with information when you publish the calling API. In this case, you’ll need
to remember to publish the dependent API yourself.

Legacy Generic REST Methods
Earlier versions of the custom code SDK used oracleMobile.rest methods to access
custom, platform, and connector APIs. To ensure backwards compatibility, these
methods continue to be available.

The legacy methods take two options: optionsList, which you use to pass request
details, and handler, which is an optional function to be executed by the method. If
you don’t include the handler argument, then the method returns a promise. A
promise represents the result of an asynchronous request. At the time it is issued, the
request may or may not have completed. You typically use a promise with the then
function.

If the handler function makes calls to other custom, platform, or connector APIs, then
you must follow Request.js conventions as described at https://github.com/
request/request.

This API has legacy and asynchronous methods for each HTTP operation, as shown
in the next table. The difference between the legacy and asynchronous methods is that
asynchronous methods don’t have a handler argument. They always return a
promise.

HTTP Operation oracleMobile.rest Methods

GET get(optionsList, handler)
getAsync(optionsList)

PUT put(optionsList, handler)
putAsync(optionsList)

POST post(optionsList, handler)
postAsync(optionsList)

DELETE del(optionsList, handler)
delAsync(optionsList)

HEAD head(optionsList, handler)
headAsync(optionsList)

OPTIONS options(optionsList, handler)
optionsAsync(optionsList)

PATCH patch(optionsList, handler)
patchAsync(optionsList)

Here’s an example of using an oracleMobile.rest method to access the Database
Service API. Notice how it uses optionsList to pass in the URI and query string, and
to convert the request body to JSON.

// The request body looks like this
// {title:'Water heater is leaking',
technician:'jwhite',customer:'Lynn Smith'}
service.post('/mobile/custom/incidentreport/incidents',

Chapter 23
Legacy Generic REST Methods

23-118

function (req, res) {

 var optionsList = {
 uri: '/mobile/platform/database/objects/FIF_Incidents',
 qs: req.query,
 json: req.body,
 headers: {
 'Oracle-Mobile-Extra-Fields': 'createdBy,createdOn'
 }
 };

 req.oracleMobile.rest.post(optionsList, function (error, response, body) {
 var message = error ? error.message : body;
 res.status(response.statusCode).send(message);
 });
});

optionsList Argument
You use the optionsList argument to pass request details in oracleMobile.rest calls, such
as the URI, the body, and the headers. Here are some examples of the options that you can
configure:

body
This option contains the body for a patch, post, or put request. The value must be a Buffer
or a String unless OptionsList.json is set to true. If OptionsList.json is true, then the
body must be a JSON-serializable object. See also the json option in this list.

headers
This option contains a list of HTTP headers. For example:

optionsList.headers=
{Content-Type : 'application/json;charset=UTF-8'};

Note:

When you use the json option, you do not need to provide the Content-Type
header. For all other cases, when the request has a body, include this header and
specify the charset.

json
This option can be used in two ways:

• To hold a JavaScript object. In this case, when the request is sent, the object is
converted to JSON and put in the HTTP body, and the Content-Type: application/
json header is added automatically.

• To indicate, by setting the value to true, that the optionsList.body value is a JavaScript
object. In this case, when the request is sent, the optionsList.body value is converted

Chapter 23
Legacy Generic REST Methods

23-119

to JSON and put in the HTTP body, and the Content-Type: application/
json;charset=UTF-8 header is added automatically.

timeout
This option specifies the number of milliseconds to wait for a request to respond
before terminating the request. If you don’t provide this option, then the timeout value
defaults to the time out that’s specified by the Network_HttpRequestTimeout
environment policy.
The value shouldn’t be greater than the Network_HttpRequestTimeout environment
policy for the environment that the implementation is deployed to. Ask your cloud
administrator for the value of this policy setting.
If the target URI is a connector, then the value should be greater than the
Network_HttpConnectTimeout and Network_HttpReadTimeout policies for the
connector. These values are displayed on the connector’s configuration page.

uri
This required option contains the URL fragment that uniquely identifies the API to call.
For example:

/mobile/platform/storage/collections/coll1/objects

In addition to the options listed here, you can provide any of the options that are
specified by the Request.js API. Go to the API documentation at https://
github.com/request/request and scroll down to the section entitled
"request(options, callback)".

Learn About Your Instance's Custom, Platform, and
Connector APIs

You can use the API catalog to learn about the platform, custom, and connector APIs.

To access the API catalog, click to open the side menu and then select APIs.

• To see the endpoints for a platform API, scroll to the bottom of the API Catalog,
and then select the API.

• To see the endpoints for a custom API or connector API, open a custom API, click
Implementations, and then click Custom Code API Catalog. From the Show list,
select Connector APIs or select Mobile APIs depending on the API type, and
then select the API to view its endpoints.

In addition to the API Catalog, REST API Reference for Oracle Mobile Hub - Platform
APIs provides information about the platform APIs. For example, it provides cURL
examples as well as details about request and response bodies and headers.

Chapter 23
Learn About Your Instance's Custom, Platform, and Connector APIs

23-120

24
Connectors

In Oracle Mobile Hub, you use connectors to simplify calls to external services, such as
enterprise systems and third-party APIs.

Mobile Hub provides connector types for REST, SOAP, Oracle Integration Cloud Service
(ICS), and Oracle Fusion Applications.

What Is a Connector API?
A connector API is an interface for connecting to an external service. Connectors APIs give
you a standard way to connect to external services and at the same time benefit from Mobile
Hub’s built-in security, diagnostics, and analytics features.

Each connector is based on a configuration where you define any connection details, security
policies, and rules for things such as default parameter values and proxy path.

You can call a connector API with a simple REST call from the implementation code of a
custom API.

REST Connector APIs
You can create connector APIs to connect to external REST services. You can then call these
connector APIs from the implementations of your custom APIs.

How REST Connector APIs Work
A REST connector API is an intermediary API for calling REST endpoints in enterprise
systems or third-part APIs. The connector API takes the form of a configuration that gives
your apps a standard way to connect to these REST services and take advantage of the
security, diagnostics, and other features provided by Mobile Hub.

The connector communicates and passes information between the client and the server
using the HTTPS protocol. The information passed can be in the form of XML or JSON (but
only in JSON for services based on Swagger descriptors).

The REST Connector API wizard walks you through creating REST Connector APIs, from
specifying a remote service and setting security policies to testing your endpoints.

Why Use Connectors Instead of Direct Calls to External Resources?
Using a REST Connector API provides you with the following benefits over making direct
calls from your app code to external resources:

• Allows for simplified declarative connection and policy configuration.

• With a Swagger descriptor, determines the available resources and creates endpoints for
you.

24-1

• Provides you with extensive diagnostic information as its tightly integrated with the
Mobile Hub diagnostics framework. Any outbound REST calls made through
connector APIs are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Create a REST Connector API
Use the REST Connector API wizard to create, configure, and test your connector API.

To get a basic working connector API, you can provide as little as a name for the
connector API and a URL to the external service.

From there, you can:

• Define rules to form specific requests or responses for the data that you want to
access.

• Configure client-side security policies for the service that you’re accessing.

• Test the connection and test the results of calls made to the connection.

You must create a custom API and implementation to enable your apps to call the
connector APIs.

Basic Connector Setup
You can create a functioning connector by completing the first two pages in the REST
Connector API wizard.

1. Click and select Development > APIs from the side menu.

2. Click REST (if this is the first connector API to be created) or New Connector and
from the drop-down list, select REST.

3. Identify your new REST Connector API by providing the following:

a. API Display Name: The name as it will appear in the list of connector APIs.

b. API Name: The unique name for your connector API.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. Short Description: This description will be displayed on the Connectors page
when this API is selected.

4. Click Create.

Chapter 24
REST Connector APIs

24-2

5. In the General page of the REST Connector API dialog, set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent on
waiting to read the data. If you don’t provide a value, the default value of 20 seconds
is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0mms means an infinite timeout is permitted.

The HTTP timeout values must be less than the Network_HttpRequestTimeout
policy, which has a default value of 40,000 ms.

If you have a mobile cloud administrator role in addition to your service developer
role, you can open the policies.properties file to see the value for the network
policies for the current environment from the Administrator view. Otherwise, ask your
mobile cloud administrator for the values.

6. Click Descriptor and enter the connection info for the service.

If you provide a Swagger descriptor URL, the available resources are identified and
displayed, and you can select which ones you want.

Note:

Only standard internet access ports 80 and 443 are supported. Connection to a
service can't be made using a custom port.

7. Click Save.

8. Optionally, click Test, select authentication credentials, and make test calls to the service.

From there, you can further configure the connector in the following ways:

• (If you have provided a descriptor on the Descriptor page) navigate to the Resources
page and select the methods for the exposed resources.

• Define rules.

• Set security policies.

To be sure your connector API configuration is valid, you should test it thoroughly (not just
from the Connector API Test page) before publishing it. That is, you should also test the
custom API (with its implementation) that uses this connector API. Essentially, if you’re ready
to publish the connector API, you should also be ready to publish the custom API that calls it.

Rules
You set rules to define the interactions between your mobile app and a service. Rules provide
a way for you to add default parameter values for all calls to resources on the service, calls to
a specific proxy path, and calls for certain types of operations (verbs). This helps enforce
consistent syntax of the URL string, saves the custom code developer from having to insert
these values, and makes it possible to track the different calls through analytics.

You can create one or more rules. Each rule can have one or more parameters of type Query
and Header.

If no rules are applied, all calls are passed through the proxy to the existing service.

Chapter 24
REST Connector APIs

24-3

1. (If the connector is not already open) click and select Development > APIs
from the side menu.

2. Select the connector API that you want to edit and click Open.

3. Select Roles.

4. Click New Rule.

5. Click Add Parameter and select a Query or Header parameter type and enter the
query or header name, and its value.

Note:

Although you can define rules to set certain headers by default, the rules
aren’t applied if the client that called the connector directly through
custom code or indirectly, such as from a web browser or mobile app,
has already set the same headers.

In particular, setting the format of the request body is usually done in the
custom code with the Content-Type header, not as a REST Connector
rule. Similarly, setting the format of the response body is also done in the
custom code with the Accept header, not as a REST Connector rule.

You can add as many parameters to a rule as you want but it's better not to
overload a rule with too many operations. A simpler rule construct is easier to
troubleshoot.

6. Expand Resources and edit the remote URL to provide a resource for the rule to
be applied to. The base URL value is what you entered in the setting basic
information step and it can’t be edited.

7. Select Do not apply to lower level resources if you want the rules applied only
to the resource level specified in the Remote URL.

8. (Optional) Unselect the HTTP methods that you don’t want applied to rules that
you just defined. By default, all methods are selected.

9. (Optional) Click New Rule to create another rule.

Note:

If you define a rule that conflicts with another rule, the first rule applied
takes precedence and the conflicting rule is ignored.

When you're done, click Save and then Next (>) to go to the next step in
configuring your connector API.

Chapter 24
REST Connector APIs

24-4

The description of the rule that you just defined is shown in the Rule banner just above the
Default Parameters section. For example, let's say the following values have been provided:

• Remote URL = https://maps.googleapis.com/maps/api/directions/json?
origin=los+angeles&destination=seattle

• Local URI = myMapAPI
• Rule with the following parameter: Query:key:A3FAEAJ903022
• GET and PUT HTTP methods

The rule description would read as follows:

For GET to https://maps.googleapis.com/maps/api/directions/json?
origin=los+angeles&destination=seattle available at myMapAPI/directions, Include
Query:key=A3FAEAJ903022.

If no rules were created, the description would simply read:

For ALL METHODS to https://maps.googleapis.com/maps/api/directions available at
myMapAPI, No default parameters will be applied.

Now you have a base URI that maps to the existing service. Using our example:

mobile/connector/myMapAPI/directions/json?origin=los+angeles&destination=seattle
maps to https://maps.googleapis.com/maps/api/directions/json?
origin=los+angeles&destination=seattle

Security Policies and Overriding Properties
Before you finalize your connector API, you should consider how to handle its security. You
can use either security policies or authorization headers. Selecting a security policy that
describes the authentication scheme of the service to which you’re connecting to is the
recommended approach.
If you want to use headers, see Security and REST Connector APIs.

Every security policy has properties, called overrides, which you can configure. One reason
to override a policy configuration property is to limit the number of policies that you have to
maintain: rather than creating multiple policies with slightly varied configurations, you can use
the same generic policy and override specific values to meet your requirements.

To select a security policy and set the policy overrides:

1. (If the connector is not already open) click and select Development > APIs from the
side menu.

2. Select the connector API that you want to edit and click Open.

3. Select Security.

Chapter 24
REST Connector APIs

24-5

4. Select the security policy from the list of available policies and click the right arrow
to move it to the Selected Policies list.

Select only a single policy for your connector API. A description of a selected
policy is displayed below the list. To find out more about the supported security
policy types for the REST Connector API, see Security Policy Types for REST
Connector APIs.

5. Specify overrides, if applicable, to the selected policy if you don't want to use the
default values.

To override a property, enter or select a value other than the default. For a
description of policy properties, see Security Policy Properties.
To set a Credential Store Framework (CSF) Key value, see Setting a CSF Key. To
learn about credential keys and certificates, see CSF Keys and Web Service
Certificates.

6. Click Save to save your work or Save and Close to save your work and exit the
REST Connector API wizard.

7. Click Next (>) to go to the next step, testing the connector, Test in Advanced
Mode.

Set a CSF Key
If you want to authenticate the user, you must set the csf-key property. You must set
the csf-key property if you’ve selected http_basic_auth_over_ssl_client_policy,
http_samle20_token_bearer_client_policy, or
http_samle20_token_bearer__over_ssl_client_policy.

Note:

If you set the csf-key and the security policy has a subject.precedence
property, that property should be set to false. If you need to set
subject.precedence to true, you must also set the
propagate.identity.context property. In the latter case, don’t set csf-key.

Chapter 24
REST Connector APIs

24-6

Click Keys in the csf-key field in the Security Overrides section to open the Select or
Create a New API Key dialog.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list.

When you select the key, its name appears in the Key Name field. Click Select to add
the key. The other fields in the CSF Key Details pane are used only when creating a key.

• Create a new basic (CSF) credentials key.

To create a new CSF key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create the key,
you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and password (the user credentials) for the service to which you are
connecting.

Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list.

The key name value will appear as the override value on the Security page.

If you want to edit some aspect of an existing CSF key, select it from the Available Keys list
and modify the fields as needed.

Test in Advanced Mode
The advanced test page lets you manually set path parameters, add headers, and the
request and response payloads.

To manually configure a connector test:

1. Click the Test navigation link.

2. If you provided a descriptor, turn Test in Advanced Mode to On.

The advanced test page displays automatically if you provided a remote service url.

3. Select the HTTP method that you want to test from the drop-down list.

4. Specify any resource path parameters in the Local URI field as needed for testing
purposes. For example:

directions/json?origin=los+angeles&destination=seattle

The field is automatically prefixed with the local URI that you defined when you entered
an API name. Following our example, the full contents of the field would look like this:

myMapAPI /directions/json?origin=los+angeles&destination=seattle

Notice that if you defined any rules, the Rules Applied field (below the Body field)
displays numbers that correspond to the rules that are applicable for the selected

Chapter 24
REST Connector APIs

24-7

operation. The Remote URL field shows the exact string that will be passed to the
service for the test.

5. Add one or more request or response HTTP headers as needed.

These headers are for testing purposes only and won't be added to your REST
Connector API configuration.

6. Click in the HTTP Body field to create your message body (the payload) in the
source editor.

For example:

{
 "status":"ZERO_RESULTS",
 "routes":[]
}

Keep the content of the message body relevant to the purpose of the connector,
that is, don’t bloat the message by adding extraneous data. Including only
pertinent data in the message body facilitates quick transmission of the request or
response.

7. If the service that you're connecting to requires authentication, open the
Authentication section and enter your mobile user credentials for each method
you test. If you’re using default test credentials, you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation that you’ve defined, you may have to enter specific credentials for
each operation or you might be able to use one set of credentials for all the
methods to authenticate your connector with the service.

8. Click Save as current mobile backend default credentials to save the user
name and password that you provide as the default.

9. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current Mobile Hub session.

10. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and modify the test parameters.

11. Click Done when you’ve finished testing your endpoints.

Getting the Test Results
Test results are displayed at the bottom of the Test REST API page. The result
indicator is the response status:

• 2xx: indicates a successful connection

Chapter 24
REST Connector APIs

24-8

• 3xx: indicates a redirection occurred

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

201 CREATED Successful creation through either a PUT or POST operation.

204 NO CONTENT Successful connection but no response body (used for DELETE and
UPDATE operations).

400 BAD REQUEST General error when fulfilling the request, causing an invalid state,
such as missing data or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

404 NOT FOUND Error due to the resource not being found.

405 METHOD NOT ALLOWED Error that although the requested URL exists, the HTTP method isn’t
applicable.

409 CONFLICT Error due to potential resource conflict caused, for example, by
duplicate entries

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side.

Click Request to see the metadata for the transaction, such as header information and the
body of the request.

Click Response to see the details of the response returned.

Test each of your operations and modify them as needed to validate your endpoints.

After your connector API is tested and published, you can go to the Connectors page to see
analytical information about it, such as how often the connector is being called and what apps
are using the connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are valid. A
response status other than 2xx doesn't necessarily mean the test failed. If the operation was
supposed to return a null response, a response should show a 4xx code.

By examining multiple messages, you can more easily determine where issues occur. For
every message that you send, Mobile Hub tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an Execution
Context ID (ECID) that’s unique for each request. With the ECID and the Relationship ID
(RID), you can use the log files to correlate messages across Oracle Fusion Middleware
components. Click Logs on the Administration page to view logging data. You can also
retrieve records from Oracle Fusion Middleware Logging using the call's ECID.

Depending on your Mobile Hub access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the Request
History page, allowing you to see the context of the message status when you're trying to
trace the cause of an error. Every message sent has a set of attributes such as the time the

Chapter 24
REST Connector APIs

24-9

event occurred, the message ID, the Relationship ID (RID), and the Execution Context
ID (ECID).

Security and REST Connector APIs
Mobile Hub gives you the flexibility to configure a secure connection to external
services through the use of security policies or authorization headers.

Here are the different ways that you can configure a REST Connector API to
communicate with a secured service:

• Configure a security policy.

On the Security tab of the REST Connector UI, decide which policies describe how
the external service that you’re communicating with is secured, and configure it as
necessary. Configuring a security policy is the recommended practice and takes
precedence over setting or configuring authorization headers.

• Set the Oracle-Mobile-External-Authorization header on each request.

If you decide not to configure a security policy, then the next best course of action
is to set the Oracle-Mobile-External-Authorization header for every request
that the connector makes. When calling a connector API through custom code, an
Mobile Hub-specific authorization header is automatically set as the
Authorization header. This original Authorization header that’s set on the
connector API request is used to pass only Mobile Hub authorization and is never
passed through to the external service call. If you set Oracle-Mobile-External-
Authorization on the request, the value of this header will be set as
Authorization on the request to the external service. Set an Oracle-Mobile-
External-Authorization header only when the service that you’re connecting to
is secured in a way that isn’t described by an existing security policy. It won't take
effect if one is configured. Passing the Oracle-Mobile-External-Authorization
header in the connector request takes precedence over an Authorization header
rule.

When setting this header, include BASIC to denote HTTP Basic Authorization or
BEARER to denote OAuth. For OAuth, setting this header is applicable in cases
where the OAuth token is passed by way of the Authorization header, such as in
the following cases:

– A REST connector is used to call another Oracle Cloud service. The same
access token that was used to authenticate with Mobile Hub is reused to
authenticate with the other service.

– An access token generated by a service is passed to an Mobile Hub custom
code call and set on a REST connector call to obtain the information about the
individual who received the access token as part of an enterprise mashup.

– A person logs on to Facebook and obtains a Facebook access token. The
token is passed to an Mobile Hub custom code call and set on a REST
connector call to retrieve the person’s friends list.

• Configure a rule for the Authorization header.

Lastly, when the Authorization header isn't already being set by other means,
you can create a rule to apply a default Authorization header. On the Rules tab
of the REST Connector UI, create a rule of type Header for Authorization and
provide a value. This approach isn’t recommended as usually the Authorization
header is dynamic or contains sensitive information (passwords). All sensitive

Chapter 24
REST Connector APIs

24-10

information should be stored in a CSF key, which is why you should configure a security
policy when possible.

Security Policy Types for REST Connector APIs
You'll need to set a security policy to protect the information you want to send or receive
unless the service you’re accessing isn't a secure service or doesn’t support security policies,
in which case, you can’t set a security policy for the connector. When determining what
policies to set, consider whether the connection to the service involves transmitting
proprietary or sensitive information. Adding a security policy ensures the authentication and
authorization of the data transmitted.

From the Security page, you can select one or more Oracle Web Services Manager (Oracle
WSM) security policies, including OAuth2, SAML, and HTTP Basic Authentication.

Security Policy Type Description

OAuth2 and the Client Credential Flow Mobile Hub supports OAuth2, a system where an
Authentication server acts as a broker between a
resource owner and the client who wants to
access that resources. Of the different flows
(security protocols) offered by OAuth2, the Client
Credentials Grant Flow is used in Mobile Hub to
secure REST connections. This flow is used when
the client owns the resources (that is, the client is
the resource owner).

HTTP Basic Authentication HTTP Basic authentication allows an HTTP user
agent to pass a user name and password with a
request. It's often used with stateless clients,
which pass their credentials on each request. It
isn't the strongest form of security though as basic
authentication transmits the password as plain text
so it should only be used over an encrypted
transport layer such as HTTPS.

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of authentication
and authorization credentials among a client, an
identity provider, and a service provider. The client
makes a request of the service provider. The
service provider verifies the identity of the client
from the identity provider. The identity provider
obtains credentials from the client and passes an
authentication token to the client, which the client
then passes to the service provider. The identity
provider verifies the validity of the token for the
service provider and the service provider responds
to the client.

Ask yourself the following questions to determine what kinds of security policies you need:

• What are the basic requirements of your security policy? Do you need to only
authenticate or authorize users, or do you need both?

• If you need only authentication, do you need a specific type of token and where will the
token be inserted?

Chapter 24
REST Connector APIs

24-11

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a
property that sets a CSF key or a Web Service Certificate. In Mobile Hub, the Oracle
Credential Store Framework (CSF) is used to manage credentials in a secure form. A
credential store is a repository of security data (credentials stored as keys) that certify
the authority of users and system components. A credential can hold user name and
password combinations, tickets, or public key certificates. This data is used during
authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog.

A Web Service Certificate allows the app to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. You override a
certificate key by selecting an alias from the drop-down list. The certificate key
available in some security policies for a REST Connector API is the
keystore.sig.csf.key, which is the alias for this property that’s mapped to the alias
of the key used for signing.

Important:

For security policies for REST Connector APIs, don’t override the default
value for the keystore.sig.csf.key property. Currently, orakey is the only
valid value for all certificate keys.

Not all security policies contain the same properties. When you select a policy, you can
see which properties are listed in the Policy Overrides. For example, if you selected
http_basic_auth_over_ssl_client_policy, then you’ll see that the policy contains
the csf-key property but none of the certificate keys. However, if you selected
http_saml20_token_bearer_over_ssl_client_policy, then you’ll see both the csf-
key and the keystore.sig.csf.key certificate key.

It isn’t necessary to set all the overrides for a policy; however, you should be familiar
enough with the security policies that you’ve selected to know which overrides to set
for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It’s also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s

Chapter 24
REST Connector APIs

24-12

been updated with user name and password credentials by the mobile cloud administrator.

Query and Header Parameters
A Query parameter is the most common type of parameter. Use it to filter, sort, and search for
information. Add a question mark (?) to the end of the URL followed by a name-value pair.
For example:

/directions/distance?origin=Los+Angeles&destination=Seattle

The query specifies that the information wanted is the distance from one location
(origin=Los+Angeles) to another (destination=Seattle).

You can see in the example above that the space in the query parameter, Los Angeles, is
encoded by a plus sign, (+). The Url_PercentEncodeQueryParameterSpaces policy
determines how spaces in query parameters are encoded. If set to true, a space is encoded
as a percent sign, (%). If set to false (the default value), a space is encoded as a plus sign
(+).

For example, if Url_PercentEncodeQueryParameterSpaces is set to true , the outbound URL
would be .../distance?origin=Los%Angeles&destination=Seattle.

Note:

If you specify a parameter in the custom code and you also specify that same
parameter in a REST connector rule, the parameter in the custom code takes
precedence and overrides the parameter’s value defined in the rule.

Query parameters are usually set in rules, however, you can have query parameters in the
remote URL. In such cases, there’s a precedence order for how the parameters are
combined at runtime. See Setting Query Parameters in Remote URLs.

Use a Header parameter for outgoing requests. REST headers are a means of providing
HTTP metadata. For example, the header, Expires, can be used to specify the amount of
time after which a response is considered stale.

Set Query Parameters in Remote URLs
You can add query parameters to the remote URL. If the remote URL contains a query
parameter and you’re adding query parameters to the runtime resource through rules, then
there is a precedence order of how the parameters are combined:

1. If you're adding a remote URL that has a query parameter U?qp=a to a runtime
resource /r, the query parameter should come after the runtime resource.

For example, if you have the remote URL directions?origin=Pasadena and want to
specify the runtime resource /zones, the full URL should be directions/zones?
origin=Pasadena. Note that a simple concatenation of the URL isn’t done.

2. If you're combining a remote URL with a query parameter U?qp=a with a default rule
qp=b , both query parameters should come after the URL.

Chapter 24
REST Connector APIs

24-13

For example, if you have a remote URL directions/zones?origin=Pasadena and
you want to add the default rule destination=Anaheim, the resulting URL should
be directions/zones?origin=Pasadena&destination=Anaheim. It’s orthogonal to
rules.

3. 3. If you're combining a remote URL U?qp=a with a runtime request /r?qp=c, the
request parameter is appended to the URL.

For example, if you add the request /r?date=2015–04_07T14:30:00.000Z to the
remote URL directions/zones?origin=Pasadena, the result isdirections/
zones?origin=Pasadena&date=2015–04_07T14:30:00.000Z.

About Adding Parameters
Parameters can be added as part of the URI path as a child (nested) resource or
added as a query. There are no hard and fast rules as to whether to add parameters to
the URI path or to add the parameters in a query. One possible consideration is
whether the parameter is essential to the request. For example, you could use an
identifier, id, to the directions resource in the URI path to get data for a specific area.
If you’re using the parameter as a filter to narrow down the data, then add it in the
query. For example, you could define office as a query parameter, .../directions/
zones?office=Inglewood, to filter locations of offices only in the Inglewood area.

Besides the remote URL, you can set parameters in the following ways:

• Setting a rule

• Defining a request body

• Defining a test endpoint

• Creating custom code

The parameters are considered to be URL-encoded. If a parameter isn’t already URL-
encoded, it will be encoded when sent to the external service.

Edit a REST Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed. You’ll have to create a
new version of a published connector and make your changes to the new version.

To edit a REST Connector API:

1. Click and select Development > APIs from the side menu.

2. Select the draft connector API that you want to edit and click Open.

3. Click Refresh () if you’re using the same descriptor and just want to get the
latest resources.

4. Click Save to test your changes immediately or click Save and Close to save your
current changes and finish the rest of your changes later.

5. Test your changes.

Chapter 24
REST Connector APIs

24-14

Use Your REST Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the data
returned from the call to the connector.

You have two options for creating such a custom API for a REST connector API:

• Generate a custom API for the connector, as described in Generating Custom APIs for
Connectors.

This only works for connector APIs that are based on a descriptor URL.

• Design a custom API and add calls to the connector in the custom API’s implementation
code as described in Call a Connector API from Custom Code.

When you implement a custom API, you can view the available connectors in the API Catalog
tab in the API Designer. While creating your custom API, you might find it beneficial to open
the Test page of the connector API so that you can refer to any headers, parameters, and
schemas that you’ve configured for the connector API.

Troubleshoot REST Connector APIs
System message logs are great sources for getting debugging information. Depending on
your role, you or your mobile cloud administrator can go to Administration in the side menu
and click Logs to see any system error messages or click Request History to view the client
(4xx) and server (5xx) HTTP error codes for the API's endpoints and the outbound connector
calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can add
the URL to the list of trusted URLs at trustedsource.org. To learn more about what happens
when you use an untrusted service URL and other common errors that can occur when
configuring your connector API, see Common Custom Code Errors.

Issues can also arise when connecting to an external service such as when the service has
an invalid SSL certificate or the request is redirected but the cookies aren’t preserved over
the redirect. You can resolve these issues by using the options argument in custom code to
customize the outgoing HTTP requests. See Override SSL Settings for Connectors for
details.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If you
need to use an older version of a SSL protocol to connect to an external system that doesn't
support the latest versions of SSL, you can specify the SSL protocol to use for the connector
by setting the Security_TransportSecurityProtocols environment policy. The policy takes
a comma-separated list of TLS/SSL protocols, for example: TLSv1, TLSv1.1, TLSv1.2. Any
extra space around the protocol names is ignored. You can use the SSLv2Hello protocol to
debug connectivity issues with legacy systems that don't support any TLS protocol. Note that
this policy can’t be used to enable SSLv3 endpoints. See Mobile Hub Policies and Values for
a description of the policy and the supported values. Be aware that this policy must be
manually added to a policies.properties file that you intend to export.

Chapter 24
REST Connector APIs

24-15

http://trustedsource.org/

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

SOAP Connector APIs
You can create connector APIs to connect to SOAP services. You can call these
connector APIs from the implementations of your custom APIs.

How SOAP Connector APIs Work
A SOAP connector API is an intermediary API for calling SOAP endpoints. The
connector API takes the form of a configuration that gives your apps a standard way to
connect to these SOAP endpoints and take advantage of the security, diagnostics, and
other features provided by Mobile Hub.

The key steps to creating a SOAP connector API are establishing a connection to an
external system, examining and selecting a set of possible interactions, and then
modeling them into a reusable API.

The SOAP Connector API wizard walks you through creating SOAP connector APIs,
from specifying the WSDL location of a remote service, setting a port, setting security
policies, to testing your endpoints.

Why Use SOAP Connectors Instead of Direct Calls to External
Resources?

• Allows for simplified declarative connection and policy configuration.

• Allows calls to an external service, along with security policy setup and
credentials, to be encapsulated and used consistently across the mobile API.

• Provides automatic translation of JSON requests to XML and XML responses to
JSON, enabling you to interact with SOAP services without having to work
expressly with XML. In addition, it provides you with the ability to provide the
SOAP envelope itself, giving you the choice of using XML or JSON.

• Lets you dynamically modify HTTP timeout properties via the user interface
without having to bring down the service. This feature is particularly beneficial
when the external SOAP service or network connectivity suffers a slowdown.

• Provides you with extensive diagnostic information as its tightly integrated with the
Mobile Hub diagnostics framework. Any outbound calls made through connector
APIs are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

Chapter 24
SOAP Connector APIs

24-16

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Create a SOAP Connector API
Use the SOAP Connector API wizard to quickly configure your connector API by providing a
name and description, specifying a port, setting security policies, and testing it.

Creating a connection to an existing SOAP service can be a simple two-step operation:

1. Name your connector API.

2. Provide the WSDL of the external service.

You also have the ability to configure client-side security policies for the service that you’re
accessing and testing and checking the results of your connection.

A timeout can occur when downloading a large WSDL file or when connecting to a WSDL
over high latency networks, which prevents the creation of the SOAP Connector API. To
ensure the WSDL is downloaded, set the following environment policies before you create
the API:

• *.*.Network_HttpConnectTimeout
• *.*.Network_HttpReadTimeout
Set these policies in the development environment in which you’re creating the SOAP
Connector API. A mobile cloud administrator can export the policies file from the
Administration view, edit these values, and import the modified file back to the development
environment.

These policies affect only the connector APIs during design time. The timeout values that you
set while configuring a connector API take effect during runtime.

As soon as it’s created, your connector API appears in the list of connector APIs. When at
least one connector API exists, you’re taken directly to the Connector API landing page when
you click Connectors from the side menu. From there, you can select the connector API you
want and edit it, publish it, create a new version or update an existing version, or move it to
the trash.

To call a connector API, you can create a custom API and configure the API’s implementation
to call the connector.

Set the Basic Information for Your SOAP Connector API
Before you begin configuring your connector, you must provide some initial basic information
like the connector API name, the address to the remote service, and a brief description:

1. Click and selectDevelopment > APIs from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll see
icons for each of the connector APIs that you can create. If at least one connector API
exists, you'll see the a list of all the connector APIs. You can filter the list to see only the
connector APIs that you're interested in or click Sort to reorder the list.

2. Click SOAP or New Connector and select SOAP from the drop-down list.

Each time you create a SOAP Connector API, the New SOAP Connector API dialog
appears. This is where you enter the basic information for your new connector API.

Chapter 24
SOAP Connector APIs

24-17

3. Identify your new SOAP Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myOrderApi.

The names you give to a connector API (the value you enter in the API name
field) must be unique among connector APIs.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API.

For example, myorderapi.

By default, this name is appended to the base URI as the resource name for
the connector API. You can see the base URI below the API Name field.

The connector API name must consist only of lowercase alphanumeric
characters. It can’t include special characters, wildcards, slashes /, or curly
braces {}. A validation error message is displayed if you enter a name that’s
already in use.

If you enter a different name for the API here, the change will automatically be
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. WSDL Location: Enter the address of the existing SOAP service that this
connector API will call. For example: http://example.com/incidentreport/
reports.wsdl
You can also copy and paste a WSDL address into this field.

When specifying a port in the URL, only standard internet access ports 80 and
443 are supported. Connection to a service can't be made using a custom
port.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured
correctly, the connection will fail.

d. Short Description: Provide a brief description, including the purpose of this
API.

The character count below this field lets you know many characters you can
add.

Chapter 24
SOAP Connector APIs

24-18

http://trustedsource.org/

After you've filled in all the required fields, click Create, which displays the General
page of the SOAP Connector API dialog.

4. Set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent on
waiting to read the data. If you don’t provide a value, the default value of 20 seconds
is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0mms means an infinite timeout is permitted.

The HTTP timeout values must be less than the Network_HttpRequestTimeout
policy, which has a default value of 40,000 ms.

If you have a mobile cloud administrator role in addition to your service developer
role, you can open the policies.properties file to see the value for the network
policies for the current environment from the Administrator view. Otherwise, ask your
mobile cloud administrator for the values.

5. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, the click Save and
Close. You can always click Cancel at the top of the General, Port, and Security wizard
pages to cancel that particular configuration operation. You’ll be taken back to the
Connector APIs page.

6. Click Next (>) to go to the next step in configuring your connector API.

After the basic information is provided, you can specify the interaction details for your
connector.

You can always edit your configuration when it's in a Draft state; however, after you
publish your connector API, no changes can be made to it. You can make changes by
creating a new version of an existing connector API.

Select a Port
The services and their associated ports that are available for the WSDL that you provided are
listed on the Port page. A port is a set of actions that define the collaboration and interaction
with a web service. A service defines the operations and structures of the WSDL and
exposes those operations as explicit endpoints. Although a WSDL can contain multiple ports,
the SOAP Connector API can only use a single port at a time. If you need to expose more
than one port, you must create one SOAP Connector API for each port.

On the Port page, you select a single port that lists the available operations for that service.
Optionally, you can provide alternate names for those operations to make them more
meaningful or easier to read.

1. Click the Port navigation link at the top of the SOAP Connector API wizard.

2. Select a port from the service you want in the list.

Chapter 24
SOAP Connector APIs

24-19

You can select only one port. Filter the list by entering a string in the Filter field
and click the magnifying glass .

The endpoint field is populated with the service and port endpoint (URL) that are
extracted from the WSDL. By default, the original operation name of the SOAP
service is used to form the REST resource at which the functionality of the
operation would be exposed by the SOAP Connector API.

For example, an operation, CreateIncident, of the service, IncidentReport and
port, ReportPort, can be mapped to the REST resource: /mobile/connector/
myIncidentReportAPI/CreateIncident.

This is the resource path to which custom code would send requests to. You could
expose it differently if you wanted to, for example as the REST resource: /mobile/
connector/myIncidentReportAPI/Create.

If you save the connector configuration without explicitly selecting a port, the first
available port for the WSDL is selected for you by default. This action ensures
your connector configuration is complete and valid for testing purposes. You can
always change the port as long as the connector is in Draft state.

3. (Optional) Rename one or more operations to make them more meaningful.

All the operations available in the selected port are listed.

Each operation is mapped to the relative base URI that you entered. For example: the
operation Create maps to Create resource.

Click Next (>) to go to the next step in configuring your connector API.

Set Security Policies and Overriding Properties for SOAP Connector APIs
Select one or more security policies that describe the authentication scheme of the
service to which you’re connecting. The security policies have properties, called
overrides, which you can configure. One reason to override policy configuration
properties is to limit the number of policies that you have to maintain: rather than
creating multiple policies with slightly varied configurations, you can use the same
generic policy and override specific values to meet your requirements.

You don’t need to set all the overrides for a policy; however, you should be familiar
enough with a security policy to know which overrides to set.

1. Click the Security navigation link at the top of the SOAP Connector API wizard.

Chapter 24
SOAP Connector APIs

24-20

2. Select one or more security policies from the list of available policies and click the right
arrow to move them to the Selected Policies list.

For example, you might want to have wss10_message_protection_client_policy for
message protection and wss_username_token_client_policy for authentication.
Although you can move all the policies to the Selected Policies list, it’s unlikely that all
policies are required for your connector API.

3. Select a policy to read its description.

4. Specify any other overrides, if applicable, to the selected policy if you don't want to use
the default values.

To override a policy property, enter or select a value other than the default.

5. Click Save to save your work or Save and Close to save your work and exit the SOAP
Connector API wizard.

Before you can test your connection, you must save your configuration. If you proceed to
the testing page without saving the API configuration, you'll see a dialog asking you to
save it. You can check the Always save before testing option to automatically perform a
save operation for you every time you go to the Testing page.

6. Click Next (>) to go to the next step, testing the connector API.

Set a CSF Key

Click Keys in the csf-key field in the Security Overrides section to open the Select or
Create a New API Key dialog.

Chapter 24
SOAP Connector APIs

24-21

Provide an CSF key in one of the following ways:

• Select an existing key from the Available Keys list (a description of the selected
key is displayed below the list). The list displays only the basic credentials keys
supported by the given policy property.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new CSF credentials key.

To create a new key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and the password (the user credentials) for the service to
which you are connecting. Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list. You can create another key by
clicking New Key or edit an existing one. Save toggles to Select allowing you to
select a key in the list. Click Cancel to quit the task.

The key name value will appear as the override value on the Security page. Note
that the value of the key that you create pertains only to the environment in which
it’s set.

If you want to edit some aspect of an existing credentials (CSF) key, select it from the
Available Keys list and modify the fields as needed.

Set a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key and
keystore.enc.csf.key because orakey is the only valid value for all of these
certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias. Only mobile cloud administrators can create a new Web Service
Certificate. If you don’t know the alias for the certificate you want, ask your mobile
cloud administrator for the alias.

Testing a SOAP Connector API
Now that you've defined your connector API, you might want to verify your endpoints
and ensure that you’re able to receive the expected results from the web service.
Testing a connection is also an optional step but can save you time by identifying and
fixing problems with your endpoints using the mock JSON body provided before you
finalize the connector API.

Chapter 24
SOAP Connector APIs

24-22

Test Your Connector
Now its time to validate your connector. The Test page lets you test the connection to a
service using sample response data. You’ll see a list of all the operations that you defined for
the port.

1. Click the Test navigation link.

2. Select the operation that you want to test.

The base URI is displayed below the operation name. If you provided an alternate name
for the operation, that name appears, otherwise the default operation name is shown.

3. Click Examples to see Request, Response, and Fault payload examples (in JSON
format).

These examples are generated based on the request and response definitions in the
WSDL file and can’t be edited. The request and response examples display a message
body. Fault examples may show one or more faults depending on the operation. They
display the error messages returned.

For example, here is what a sample GET request looks like:

{
 "Header": null,
 "Body": {
 "GetIncidentById" : {
 "IncidentId" : 2
 }
 }
 }
}

Here is the request in XML:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Header/>
 <soapenv:Body>
 <beta:GetIncidentById>
 <beta:IncidentId>2</beta:IncidentId>
 </beta:GetIncidentById>
 </soapenv:Body>
</soapenv:Envelope>

4. (Optional) Click Add HTTP Header to add one or more HTTP headers to apply to the
operation.

You can select a predefined header or a custom header. For each header, select a
header name and provide a value.

These headers are for testing purposes only and won't be added to your SOAP
Connector API configuration.

The default format for the request body and the response body is JSON. You can set the
format of one or both to XML if you prefer.

Chapter 24
SOAP Connector APIs

24-23

5. Use the sample JSON body provided to test your connector or create your XML
body in the source editor. A JSON sample body that you can edit is generated for
you from the operation that you’ve defined. For example:

 "Body" : {
 "CreateIncident" : {
 "Title" : "new title",
 "EmailAddress" : "jack@oracle.com",
 "ImageLink" : "http://example.com/something"
 }
 }

For comparison, here's what the body looks like in XML:

 <soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Body>
 <beta:CreateIncident>
 <beta:Title>new title</beta:Title>
 <beta:EmailAddress>jack@oracle.com</beta:EmailAddress>
 <beta:ImageLink>something</beta:ImageLink>
 </beta:CreateIncident>
 </soapenv:Body>
 </soapenv:Envelope>

Click in the editor and enter your own body (in JSON or XML format) if you prefer.

6. If you’ve selected a SAML-based security policy, open the Authentication section
and enter your mobile user credentials for each method that you test. If you’re
using default test credentials (Step 7), you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation you’ve defined, you may have to enter specific credentials for each
operation or you might be able to use these credentials for all the methods to
authenticate your connector with the service.

7. Click Save as current mobile backend default credentials to save the user
name and password you provide as the default.

8. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current Mobile Hub session.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and to change the header types and values and test
body.

Chapter 24
SOAP Connector APIs

24-24

10. Repeat Steps 1 through 4 for each method.

11. Click Done when you’ve finished testing your endpoints.

You’re returned to the Connector APIs page.

Get the Test Results
After the test is run, the results are displayed at the bottom of the Test SOAP Connector API
page. The result indicator is the response status:

• 2xx - indicates a successful connection

• 3xx - indicates a redirection occurred

• 4xx - indicates a user error occurred

• 500 - indicates an internal server error

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side or when
the service returns a SOAP fault response.

Click Request to see the metadata for the transaction, such as header information and the
body of the request.

Click Response to see the details of the response returned. The response code tells you
whether the connection was successful.

Test each of your operations and modify them as needed to validate your endpoints. After
your connector API is tested, published, and deployed, you can go to the Connectors page to
see analytical information about it, such as how often the connector is being called and what
apps are using the connector.

Get Diagnostic Information
You can view the response code and returned data to determine if your endpoints are valid. A
response status other than 2xx doesn't necessarily mean the test failed. If the operation was
supposed to return a null response, a response should show a 4xx code.

By examining multiple messages, you can more easily determine where issues occur. For
every message that you send, Mobile Hub tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID include an Execution
Context ID (ECID) that’s unique for each request. With the ECID and the Relationship ID
(RID), you can use the log files to correlate messages across Oracle Fusion Middleware
components. By examining multiple messages, you can more easily determine where issues
occur. For example, you can retrieve records from Oracle Fusion Middleware Logging using
the call's ECID. From the Administration page, you can click Logs to view logging data: the
connector API call received by a single MBE outbound connector API call.

Depending on your Mobile Hub access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the Request

Chapter 24
SOAP Connector APIs

24-25

History page allowing you to see the context of the message status when you're trying
to trace the cause of an error. Every message sent has a set of attributes such as the
time the event occurred, the message ID, the Relationship ID (RID), and the Execution
Context ID (ECID).

SOAP Connector API Design Tips
When you configure your SOAP Connector API, you want to ensure that you have a
well-formed API. You want to make a valid SOAP Connector API but you should create
an API that can be used and understood by others as well.

Here are some design recommendations to consider when you define a SOAP
Connector API:

• Most important, test your connector using the Test page after it’s created and at
every update.

• When setting the read and connection timeouts for the connector API, you should
set them for a shorter duration than the API timeout. See API Timeouts.

• Provide an HTTPS endpoint wherever possible.

• When calling SOAP services protected with HTTP Basic Authentication, you
should configure the appropriate security policies on the Security page and store
credentials in a CSF key instead of providing the credentials from custom code.

• While writing custom code to call SOAP Connector APIs, make use of the sample
request and response payloads available in the Test page of the SOAP Connector
API wizard. See API Timeouts.

• Keep the payload content relevant to the purpose of the connector, that is, don’t
bloat the payloads by adding extraneous data. Include only pertinent data in the
message body to facilitate quick transmission of the request or response.

• When you're working with complex WSDLs, refer to How Does XML Get
Translated into JSON? for a discussion of JSON translator limitations.

• Date formats should follow the ISO-8601 International Standard for date and time:
YYYY-MM_DD[THH:mm:ss.sss]Z. For example: 2014-10-07T18:35:50.123Z (see
Date and Time Formats for a description of the standard).

How Does XML Get Translated into JSON?
The WSDL file, which describes the service that you want to access, is an XML-based
protocol. The WSDL contains the XML schemas that define the structure of the SOAP
XML requests and responses.

While XML is a standard means of defining SOAP messages, it’s cumbersome and not
well-suited to data-interchange. JSON is the preferred format because it’s a lightweight
and easy-to-read and write data interchange format (compared to XML). It’s much
easier to handle JSON in (Node.js-based) custom code than XML. Here’s a
comparison of XML and JSON features:

XML JSON

Human readable Easier to read and write for developers and machines

Provides a structure to data
making it more informative

Same as XML

Chapter 24
SOAP Connector APIs

24-26

http://www.w3.org/TR/NOTE-datetime

XML JSON

Easily processed due to
simplicity of data structure

Even simpler structure making it even easier to process

Structure of the data must be
translated into a document
structure

Structure is based on arrays and records

To make the transmission of data via SOAP Connector APIs possible, Mobile Hub uses a
JSON translator. The JSON translator uses a set of mapping conventions when converting a
JSON request into XML prior to passing the information to a remote service and translates
the XML response back into JSON to be passed on to the mobile app.

Mobile Hub provides sample JSON messages that you can use as a template to construct
JSON requests and process JSON responses. A sample payload (body), which gets created
for you based on the information in the WSDL, is also translated into JSON.

If you choose to provide your own XML sample payload, then you should adhere to the
mapping conventions of XML to JSON to ensure a successful translation. The next section
demonstrates those mapping conventions.

Using XML Instead of JSON
Using JSON isn’t required. You might prefer to use XML instead or you might encounter XML
schema constructs that aren’t supported by the translator. You can still interact with the
connector using XML requests and responses.

The response format is determined by the Accept header in custom code, which has a default
value of application/json. To set the format of the request body, add the XML request body
and set the contentType header in the custom code to application/xml; charset=utf-8. If
you want the response in XML format, change the accept header value to application/xml.
For example,

/**
 * The following example calls the 'CreateIncident' resource
 * on a SOAP connector named '/mobile/connector/RightNow'.
 * The request and response are in XML and not JSON.
 *
 */
var options = {
 contentType: 'appplication/xml;charset=UTF-8',
 accept: 'application/xml'
};

//Here we suppose an XML message has been
//stored in the XML variable
var body = xml;

req.oracleMobile.connectors.RightNow.post('CreateIncident', body,
options).then(
 function(result){
 //result.result contains the response XML
 res.status(result.statusCode, result.result);
 },

Chapter 24
SOAP Connector APIs

24-27

 function(error){
 res.status(500, error.error);
 }
);

Remember to wrap your XML in a SOAP envelope. Your XML request must contain
the entire SOAP envelope (including any SOAP headers):

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>
 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If you configured a security policy on the connector that requires a SOAP header to be
sent in the message, that header is added automatically to the envelope you provide
so you don’t need to include it in your message. You can see an example of an XML
request wrapped in a SOAP envelope in Test Your Connector.

Security Policy Types for SOAP Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive unless the service you’re accessing isn't a secure service or doesn’t support
security policies, in which case, you can’t set a security policy for the connector.

When determining what policies to set, consider whether connection to the service
involves transmitting proprietary or sensitive information. A few reasons for adding
security policies are:

• Ensuring confidentiality by encrypting messages

• Ensuring the integrity of the data transmitted by using digital signatures

• Authenticating the source or destination

From the Security section, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including SAML, Username Token, and HTTP Basic
Authentication. Oracle WSM supports a wide range of security standards, including
Authentication Policies and Authorization.

Security Policy Type Description

HTTP Basic Authentication HTTP Basic authentication allows an HTTP user agent to pass
a user name and password with a request. It's often used with
stateless clients, which pass their credentials on each request. It
isn't the strongest form of security though because basic
authentication transmits the password as plain text so it should
be used only over an encrypted transport layer such as HTTPS.

Chapter 24
SOAP Connector APIs

24-28

Security Policy Type Description

Security Assertion Markup
Language (SAML)

SAML is an XML-based open standard data format that allows
the exchange of authentication and authorization credentials
among a client, an identity provider, and a service provider. The
client makes a request of the service provider. The service
provider verifies the identity of the client from the identity
provider. The identity provider obtains credentials from the client
and passes an authentication token to the client, which the
client then passes to the service provider. The identity provider
verifies the validity of the token for the service provider and the
service provider responds to the client.

Username Token A username token is supplied by a web services client as a
means of identifying the requestor by using a user name, and
optionally by using a password or password-equivalent to the
web services provider.

Ask yourself the following questions to determine what kinds of security policies you need:

• What are the basic requirements of your security policy? Do you need to authenticate or
authorize users? Do you require only message protection, do you need both?

• If you need only authentication, do you need a specific type of token and where will the
token be inserted?

• If you need both authentication and message protection, will message protection be
handled in the transport layer?

For a list of supported security policies, see Security Policies for SOAP Connector APIs.

For descriptions of security policy properties that you can override, see Security Policy
Properties.

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a property
that sets a CSF key or a Web Service Certificate. In Mobile Hub, the Oracle Credential Store
Framework (CSF) is used to manage credentials in a secure form. A credential store is a
repository of security data (credentials stored as keys) that certify the authority of users and
system components. A credential can hold user name and password combinations, tickets, or
public key certificates. This data is used during authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web service
and other apps. A CSF key is a credentials key. It uses simple authentication (composed of
the user name and the password for the system to which you’re connecting) to generate a
unique key value. You can select an existing CSF key or create one through the Select or
Create a New API Key dialog.

A Web Service Certificate allows the client to securely communicate with the web service. It
can be a trusted certificate (that is, a certificate containing only a public key) or a certificate
that contains both public and private key information. Web Service Certificates are stored in
the Oracle WSM keystore. You set the overrides by selecting an alias from the drop-down list
for the following properties:

• keystore.recipient.alias: The alias for this property is used to identify the certificate in
the keystore.

Chapter 24
SOAP Connector APIs

24-29

• keystore.sig.csf.key: The alias for this property is mapped to the alias of the
key used for signing. If no value is selected, the default value, orakey, is used (for
this release, the only valid value for this property is orakey).

• keystore.enc.csf.key: The alias for this property is mapped to the alias of the
private key used for decryption. If no value is selected, the default value, orakey,
is used (for this release, the only valid value for this property is orakey).

Not all security policies contain all three properties. When you select a policy, you can
see which properties are listed in the Policy Overrides. For example, if you selected
wss11_username_token_with_message_protection_client_policy, you’ll see that
you need to set only keystore.recipient.alias . However, if you selected
wss10_username_token_with_message_protection_client_policy, you’ll need to set
all three properties.

It isn’t necessary to set all the overrides for a policy; however, you should be familiar
enough with the security policies that you’ve selected to know which overrides to set
for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Editing a SOAP Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed.

To edit a SOAP Connector API:

1. Click and selectDevelopment > Connectors from the side menu.

Since at least one connector API exists, the Connectors page is displayed.

2. Select the draft SOAP Connector API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list
alphabetically by name or by last modified date.

3. Edit the fields for general information, ports, and security policies as needed.

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

4. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

5. Test your changes.

Chapter 24
SOAP Connector APIs

24-30

Your edited version is still in a Draft state and you can continue to edit your connector API
until you’re satisfied with the configuration. At that point, you’re ready to publish your
connector API. A published connector API can’t be changed. If you need to make changes,
you can create a new version of the connector API.

Use Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the data
returned from the call to the connector.

The syntax for a call to a connector API is the same as you would use when calling any other
API from custom API implementation code.

When you implement a custom API, you can view the available connectors in the API Catalog
tab in the API Designer. While creating your custom API, you might find it beneficial to open
the Test page of the connector API so that you can refer to any headers, parameters, and
schemas that you’ve configured for the connector API.

Troubleshoot SOAP Connector APIs
System message logs are great sources for getting debugging information. Depending on
your role, you or your mobile cloud administrator can go to Administration in the side menu
and click Logs to see any system error messages or click Request History to view the client
(4xx) and server (5xx) HTTP error codes for the API's endpoints and the outbound connector
calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can add
the URL to the list of trusted URLs at trustedsource.org.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If you
need to use an older version of a SSL protocol to connect to an external system that doesn't
support the latest versions of SSL, you can specify the SSL protocol to use for the connector
by setting the Security_TransportSecurityProtocols environment policy. The policy takes
a comma-separated list of TLS/SSL protocols, for example: TLSv1, TLSv1.1, TLSv1.2. Any
extra space around the protocol names is ignored. You can use the SSLv2Hello protocol to
debug connectivity issues with legacy systems that don't support any TLS protocol. Note that
this policy can’t be used to enable SSLv3 endpoints. Be aware that this policy must be
manually added to a policies.properties file that you intend to export.

Be aware when setting the policy that older protocols are vulnerable to security exploits.

Chapter 24
SOAP Connector APIs

24-31

http://trustedsource.org/

SOAP Connector API Scope
To be sure you’re creating a valid SOAP Connector API in Mobile Hub, keep in mind
the following WSDL constraints:

• Only SOAP version 1.1 and WSDL version 1.2 are supported.

• Only the WS-Security standard is supported. Other WS-* standards, such as WS-
RM or WS-AT, aren’t supported.

• Only document style and literal encoding are supported.

• Attachments aren’t supported.

• Of the possible combinations of input and output message operations, only input-
output operations and input-only operations are supported. These operations are
described in the Web Services Description Language (WSDL) Version 1.2
specification.

ICS Connector APIs
Oracle Mobile Hub (Mobile Hub) enables you to create Integration Cloud Service (ICS)
connector APIs to access on-premises and cloud services through ICS. You can then
call these connector APIs from the implementations of your custom APIs.

You can also use SOAP connector APIs to connect to enterprise services. However,
using ICS together with ICS connector APIs has the following advantages:

• You write far less code.

• You connect to services more because the integrations are done for you.

• You let the connector API handle the details of interacting with Oracle Integration
Cloud Service.

ICS also makes it easy to map business objects from one application to another. For
example, a service can be created that synchronizes data from a purchase order
between Oracle Sales Cloud to an Oracle CPQ (Configure, Price, and Quote) Cloud
application.

How ICS Connector APIs Work
ICS connector APIS enable you to access services that you have exposed in
Integration Cloud Service (ICS).

ICS itself is a service designed to simplify connectivity between your services and
applications, both cloud-based and on premises. When you work with ICS, you work
with integrations that connect applications and map data between them.

You create an ICS connector API with the ICS Connector wizard, in which you enter
the SOAP proxy for the integration. Once you have done so, you are shown a list of
integrations that correspond with that proxy and can select one. For each ICS
integration, there is a single operation per endpoint. After you select the integration,
you can proceed to test the endpoint.

Once you have created an ICS connector API, you can call it from the implementation
of a custom API.

Chapter 24
ICS Connector APIs

24-32

https://www.w3.org/TR/2002/WD-wsdl12-20020709/

Note:

Only SOAP-based integrations are supported.

ICS Connector API Flow
Here’s the process for designing an ICS connector API:

1. Create ICS Connector API. You create an unbound ICS connector API with the
Integration Cloud Service Connector API wizard.

2. Authenticate with ICS Instance (Design Time Credentials). You pass design time
credentials to connect to the ICS instance. These credentials are the username and
password received when you subscribe to the Oracle Integration Cloud Service.

3. Connect to the ICS Instance. Mobile Hub locates the ICS instance via the service URL
provided.

4. Discover the Integrations. When authentication is confirmed, a list of active integrations
in the ICS instance is displayed.

5. Select an Integration. You select an integration instance from a list of the integrations.

6. Access the Integration (Runtime Credentials). You pass credentials to allow access to
the runtime instance of the integration. Runtime credentials are the username and
password you received from the ICS administrator that allow you to run the integration.

7. Test the ICS Connector API. You test the endpoint using mobile user credentials.

Here’s how the connector API works at runtime:

Chapter 24
ICS Connector APIs

24-33

1. The custom code implementation of one of your custom APIs calls the connector
API. Information is then passed to the connector implementation, and the
implementation extracts the payload from the request.

2. A connection is made to the ICS service via the service URL. The service verifies
the design-time credentials passed to it and the active integrations are exposed.

3. Runtime credentials are passed from ICS to either the on-premises agent or to a
single cloud service to access the selected service integration.

4. Information is passed back through the integration (and, for on-premises
applications, via the on-premises agent) to the connector API and back to the
custom API.

Create an ICS Connector API
Creating an ICS Connector API consists of four stages:

1. Creation: You’ve named the API and provided a description. Once created the
API exists in a Draft state.

2. Connection: You’ve provided the URL to the ICS service and your design time
credentials, which give you access to the ICS service.

Note:

The design time credentials can be saved so you only need to do it once
per ICS instance. It’s important to note that you can only use the
credentials that you saved. That is, if other developers want to access
this instance, they’ll have to enter their own credentials at least once
themselves.

Chapter 24
ICS Connector APIs

24-34

3. Discovery: Mobile Hub locates the ICS service and obtains instances of the active
integrations available from the service.

4. Configure: You’ve selected (or created) a CSF key for the security policy and provided
your runtime credentials.

5. Test: Now you can test your endpoint to validate the connection to the service.

Set the Basic Information for Your ICS Connector API
Before you begin configuring your connector, you must provide some initial basic information
like the connector API name, a brief description, and connection timeout settings.

1. Click and select Development > APIs.

The Connectors page appears. If no connector APIs have been created yet, you'll see a
REST Connector icon, a SOAP Connector icon, and an ICS Connector icon. If at least
one connector API exists, you'll see a list of all the connector APIs. You can filter the list
to see only the connector APIs that you're interested in or click Sort to reorder the list.

2. Click ICS (if this is the first connector API to be created) or New Connector and from the
drop-down list, select ICS.

Each time you create an ICS Connector API, the New ICS Connector API dialog appears.
This is where you enter the basic information for your new connector API.

3. Identify your new ICS Connector API by providing the following:

• API Display Name: Enter a descriptive name (an API with an easy-to-read name
that qualifies the API makes it much simpler to locate in the list of connector APIs).

For example, myICSService.

For new connectors, a default version of 1.0 is automatically applied when you save
the configuration.

• API Name: Enter a unique name for your connector API. The default value is a
simplified form of the value that you entered for the API Display Name.

Chapter 24
ICS Connector APIs

24-35

For example, myICSService.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

The connector API name must consist only of alphanumeric characters. It
can’t include special characters, wildcards, slashes /, or braces {}. A validation
error message is displayed if you enter a name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

• Short Description: Provide a brief description, including the purpose of this
API.

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

4. Click Create.

Tthe General page of the ICS Connector API wizard is displayed.

5. Set the timeout values if needed.

Connecting to the ICS instance can take several minutes. You can increase the
timeout values to reduce the chances of a connection time out but be aware that
the values that you apply at design time are also applied at runtime when the
connector calls on the instance. If you do set timeout values, be sure to save your
edits to the General page before proceeding to the next step of the wizard.

Note:

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value for the network policies for the
environment that you’re working in from the Administrator page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Mobile Hub Policies and Values.

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0 mms means an infinite timeout is permitted.

Chapter 24
ICS Connector APIs

24-36

6. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and Close.
You can always click Cancel at the top of the General, Integration, and Runtime Security
pages to cancel that particular configuration operation. You’ll be taken back to the
Connector APIs page.

7. Click Next (>) to go to the next step in configuring your connector API.

After the basic information is provided, you can specify the interaction details for your
connector API.

You can always edit your configuration when it's in a Draft state. You can make changes to a
connector API that's in the Published state by creating a new version of it. For information on
creating a new version, see Creating a New Version of a Connector.

Connecting to an Integration Cloud Service Instance
This is where you select the Integration Cloud Service (ICS) instance that you want or create
a connection to an ICS instance. If this is the first time that you’re creating an ICS connector
API, the Select Connection drop-down list won’t be available and you’ll have to create a
connection to the instance.

Making a connection consists of the following phases:

• Selecting or creating an ICS instance and authentication

• Connecting to the server hosting the active integrations

• Selecting the active integration

You perform or observe these operations on the Integrations page of the Integration Cloud
Service Connector API wizard.

Select or Create an ICS Instance Connection
1. If at least one integration instance exists, select an integration instance from the Select

Connection drop-down list; otherwise, go to Step 2 to create an instance.

Chapter 24
ICS Connector APIs

24-37

2. Enter a name to identify this Integration Cloud Service instance in the Connection
Name field.

This name will be added to the list of integration instances.

3. Enter the address of the server that hosts the integrations in the Service URL
field.

You get the URL of the service from the service administrator of the Oracle Cloud
Integration Service. The URL takes the form hostname/ics.
You can save time by verifying that the URL you’re providing is trusted at
trustedsource.orgs, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

4. Enter your user name and password that you were given to access the integration.

These are the design time credentials that enable you to access the Oracle
Integration Cloud Service. These are the user name and password you received
when you subscribed to the service.

5. Select Remember My Credentials so that the next time you select or create an
integration instance, your credentials are already preloaded.

These credentials are specific to the individual Mobile Hub user and aren’t
provided if another Mobile Hub user tries to access the same integration instance.

6. Click Connect.

After you’ve created an integration instance, you’ll be able to select it from the Select
Connection drop-down list the next time you come back to the wizard.

Select an Active Integration
When the connection to the server hosting the integrations is made, the Integrations
page of the wizard displays all the active integrations where a single cloud service or
on-premises solution is exposed as an integration-friendly API. Non-active integrations
or integrations that push events from one cloud service or on-premises solution to
another aren’t listed. Each integration is displayed with its name, version, and
description.

1. Filter the list by entering part of its name, description, or integration type.

You can sort the list in either ascending or descending order based on name,
creation date, last update, or type.

2. Select the integration you want.

Chapter 24
ICS Connector APIs

24-38

http://trustedsource.org/

Click the information icon to see details about the integration including a link to the WSDL
for the integration.

Note:

Remember, that currently, only SOAP-based integrations are supported.

3. Click Save.

4. Click Next (>) to go to the next step in configuring your connector API.

Edit the ICS Connector API
If you go to the RunTime Security page and change your mind about the integration you
selected, you can go back and select a different integration. The list of integrations you see
might not be the latest available though. If you do go back, be sure to refresh the page before
selecting another integration. Also, you’ll have to re-authenticate yourself to access the list of
integrations if you didn’t save your credentials previously.

Once you’ve moved on to the Test page, you won’t be able to go back to the Integrations
page to select a different integration. If you return to the Integrations page from the Test page,
you’ll see only the integration that you’ve selected.

Chapter 24
ICS Connector APIs

24-39

1. Click Integrations in the navigation links at the top of the wizard.

The page displays only the integration you originally selected.

2. Click Refresh on the Integration page of the wizard.

3. Confirm the refresh action.

The Integrations page is displayed at the authentication phase. The connection
name and service URL you provided previously are shown as information only.

4. If you previously selected the Remember My Credentials option, click Connect.

If you didn’t select that option, enter your design time user credentials and click
Connect.
Credentials are saved securely in the Mobile Hub backend. You only need to save
them once for that user’s devices and browsers. Note that no sensitive information
is stored locally.

5. Select the active integration you want from the list after the connection is
completed.

6. Click Save.

7. Click Next (>) to go to the next step in configuring your connector API.

Set Runtime Security for the ICS Connector API
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Provide a CSF Key in one of the following ways:

• Click Select Existing and select an existing key from the Available Keys list in the
Select or Create a New API Key dialog. A description of the selected key is
displayed below the list. The list displays only the keys supported by the client
policy, which could be http_basic_auth_over_ssl_client_policy,
wss_http_token_over_ssl_client_policy,or
wss_username_token_over_ssl_client_policy.

Chapter 24
ICS Connector APIs

24-40

When you select the key, its name appears in the Key Name field. Click Select to add
the key. The other fields in the CSF Key Details pane are used only when creating a key.

• Create a new basic (CSF) credentials key directly on the Security page.

You can create a new key, or you can click Select Existing and create the key in the
Select or Create a New API Key dialog.

Regardless of which security policy is used, the ICS adapter API determines the correct
authentication mode. Once you’ve configured the ICS Connector API for a given ICS
instance, the runtime credentials that you provided for that instance are remembered the next
time you configure an ICS Connector API.

Create a New CSF Key
1. Click the Security navigation link.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create the key,
you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter your runtime credentials for the service to which you are connecting.

Contact your ICS administrator to obtain the credentials used to call the Oracle
Integration Cloud Service at runtime. Most likely, you’ll only need to do this once per ICS
instance (all integrations are called with the same app credentials).

5. Repeat the password in the confirmation field.

6. Click Save to continue working in the dialog.

Click Save and Close to save your actions and return to the Security page. Click Cancel
to quit the task.

The key name value will appear as the override value on the Security page. Note that the
value of the key that you create pertains only to the environment in which it’s set.
If you want to edit some aspect of an existing CSF key, select it from the Available Keys list
and modify the fields as needed.

If you’ve already selected a key but then decide to create a new key, click Clear Selected to
clear all the fields.

Test the ICS Connector API
When you’ve finished configuring your ICS Connector API, test the endpoint:

1. Click the Test navigation link.

There is only one endpoint per integration. The resource banner displays the method, the
resource name, and the URI of service.

2. Expand Examples to see examples of a request, response, and fault payloads that were
obtained from the WSDL.

Chapter 24
ICS Connector APIs

24-41

When you select a connection, all the fields on the page are populated with data
for that connection with the exception of credentials.

If this is the first time a connection is being created, skip this step and go to Step
3.

3. Add one or more request or response HTTP headers as needed.

4. Click in the HTTP Body field to create your message body (the payload) in the
source editor. For example:

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Object",
 "description":"An object for this service",
 "type":"object"
}

5. Provide your runtime credentials for testing this endpoint:

a. Enter the name of the mobile backend associated with this connector API.

Chapter 24
ICS Connector APIs

24-42

b. Enter the version of the mobile backend.

c. (Optional) Enter your mobile user credentials, that is, your runtime credentials.

6. (Optional) Click Save as current mobile backend default credentials to allow the ICS
Connection API to remember your credentials. Only your credentials will be stored.
These credentials are applied when you test another ICS Connector API, REST or SOAP
Connector API, or a custom API.

7. Click Test Endpoint.

Test Endpoint toggles to Cancel Test. If you want to stop the test for any reason, click
Cancel Test.

8. Click Done when you’ve finished testing your endpoint.

You’re returned to the Connectors APIs page.

If you want to make changes to the testing parameters, click Reset to clear all the fields.

Getting the Test Results
Test results are displayed at the bottom of the Test ICS API page. The result indicator is the
response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

The following table lists the most common status messages you’ll see:

Status Code Description

200 OK Successful connection.

Chapter 24
ICS Connector APIs

24-43

Status Code Description

400 BAD REQUEST General error when fulfilling the request, causing
an invalid state, such as missing data or a
validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

403 FORBIDDEN Error due to user not having authorization or if the
resource is unavailable.

500 INTERNAL SERVER ERROR General error when an exception is thrown on the
server side.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned. The response code tells
you whether or not the connection was successful.

After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

For every message that you send, Mobile Hub tags it with a correlation ID. A
correlation ID associates your request with other logging data. The correlation ID
includes an Execution Context ID (ECID) that’s unique for each request. With the ECID
and the Relationship ID (RID), you can use the log files to correlate messages across
Oracle Fusion Middleware components. By examining multiple messages, you can
more easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your Mobile Hub access permissions, you or your mobile cloud
administrator can view the client and server HTTP error codes for your API's endpoints
on the Request History page allowing you to see the context of the message status
when you're trying to trace the cause of an error. Every message sent has a set of
attributes such as the time the event occurred, the message ID, the Relationship ID
(RID), and the Execution Context ID (ECID).

Security and ICS Connector APIs
HTTP Basic Authentication is used for runtime security. Basic authentication allows an
HTTP user agent to pass a user name and password with a request and is often used
with stateless clients, which pass their credentials on each request.

ICS Connector APIs use one of the following security policies:

Chapter 24
ICS Connector APIs

24-44

• http_basic_auth_over_ssl_client_policy. It includes the username and password
credentials in the HTTP header for outbound client requests. This policy verifies that the
transport protocol is HTTPS.

• wss_http_token_over_ssl_client_policy. The username and password credentials are
included in the HTTP header for outbound client requests. Also a timestamp is sent to the
SOAP security header. If the connector detects that the ICS integration that’s being
connected to is protected by the wss_http_token_over_ssl_service_policy, the
connector uses the corresponding client policy. This policy verifies that the transport
protocol is HTTPS.

• wss_username_token_over_ssl_client_policy. The username and password
credentials are passed as SOAP headers and are added automatically by the connector.
If the security policy is defined in the WSDL for a SOAP-based integration, this is the
policy that’s used. This policy verifies that the transport protocol is HTTPS.

Although you can set the Oracle-Mobile-External-Authorization header in custom code to
configure a secure connection, it isn’t necessary since authorization to connect to a service is
set when configuring the ICS Connector API.

CSF Keys
In Mobile Hub, the Oracle Credential Store Framework (CSF) is used to manage credentials
in a secure form. A credential store is a repository of security data (credentials stored as
keys) that certify the authority of users and system components. CSF lets you store, retrieve,
update, and delete credentials (security data) for a web service and other apps.

A CSF key is a credentials key. It uses simple authentication (composed of the user name
and the password for the system to which you’re connecting) to generate a unique key value.
You can select an existing CSF key or create one through the Select or Create a New API
Key dialog.

CSF keys and their values are specific to the environment in which they’re defined. That is, if
the Development environment is selected, then only the CSF keys and certificates for the
security policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in another environment, such as
Staging. It’s also possible for keys with the same key name but with different values to exist in
multiple environments.

A CSF key can be deployed to another environment, however, because CSF keys are unique
to an environment, only the key name and description are carried over to the target
environment. You won’t be able to use that key in the new environment until it’s been updated
with user name and password credentials by the mobile cloud administrator.

Use Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the data
returned from the call to the connector.

Chapter 24
ICS Connector APIs

24-45

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshoot ICS Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to the Administration view
and click Logs to see any system error messages or click Request History to view
the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

Here are some areas of particular interest when troubleshooting:

• Security Errors are Occurring

Take a look at the integration WSDL and see if you can determine what security
policy is being used. Use the SOAP connector directly to create a connector API
and test with different security policies.

• An Integration Isn’t Showing Up

Go to Oracle Integration Cloud Service and look at your integrations there. The
status must be activated, and the source connection type should be SOAP.

• Constructing a Valid ICS Instance URI

Your instance URI must begin with https:// and should end in /ics. Look for the
Email that you received when your user account was provisioned for the ICS
instance. From there, you can find the URI to reach the ICS UI. The same URI
should be used to create the connection in Mobile Hub.

• Identifying Where the Failure Is Occurring

As with other connectors generally finding where a fault was thrown can be
difficult. A 401 or 404 for instance could be returned by the test endpoint, Mobile
Hub itself, the ICS instance that Mobile Hub is connecting to, or the system to
which ICS is connecting.

401 and 404 errors are difficult because they return no message body that might
indicate where the error occurred. However, the headers associated with a 401
and 404 error can sometimes act as a signature to indicate where it originated
from. Likewise, trace the end-to-end flow by searching for corresponding log
entries at each step in the flow.

• Can’t Make a Connection Using Default Protocols

Chapter 24
ICS Connector APIs

24-46

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system that
doesn't support the latest versions of SSL, you can specify the SSL protocol to use for
the connector by setting the Security_TransportSecurityProtocols environment policy.
The policy takes a comma-separated list of TLS/SSL protocols, for example: TLSv1,
TLSv1.1, TLSv1.2. Any extra space around the protocol names is ignored. You can use
the SSLv2Hello protocol to debug connectivity issues with legacy systems that don't
support any TLS protocol. Note that this policy can’t be used to enable SSLv3 endpoints.
Be aware that this policy must be manually added to a policies.properties file that you
intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to security
exploits.

Fusion Applications Connector APIs
Oracle Mobile Hub (Mobile Hub) enables you to create Fusion Applications (FA) Connector
APIs to connect to Oracle Fusion Applications. As a service developer, you can create
connector APIs to make it easier to call these external services from the implementations of
your custom APIs.

A Fusion Applications Connector API enables a mobile backend to use and expose data from
one or more resources available from an Oracle Fusion Applications instance.

How Fusion Applications Connector APIs Work
A Fusion Applications Connector API enables a mobile backend to use and expose data from
resources available from Fusion-based software-as-a-service (SaaS) instances, such as
Oracle Human Capital Management Solution (HCM), Oracle Supply Chain Management
(SCM), and Oracle Customer Relationship Management Solution (CRM). These suites of
modular services help you with customer and employee management, sales and supply
chain management, and more.

Use the Fusion Applications Connector API wizard to quickly and easily create a connector
API with a customized selection of resources from a Fusion Applications service or Fusion-
based service.

Here are the some of the advantages to using a Fusion Applications Connector API:

• Makes it easier for customer to explore Fusion-based services through resource
discovery.

• Makes it easier for you to see all the resources, child resources, and resource attributes
available in a given resource instance.

• Lets you provide easy to identify and comprehend user-friendly names and descriptions
for the resources and their attributes in the connector.

• Provides a rich test client that lets you test with Fusion Applications query parameters.

Chapter 24
Fusion Applications Connector APIs

24-47

Fusion Applications Connector API Flow
Here’s how the design-time flow for a Fusion Applications Connector API design-time
goes:

1. Connector Creation phase. An unbound Fusion Applications Connector API is
created with the Fusion Applications Connector API wizard.

2. Connection phase. Design time credentials are passed and a connection to the
Fusion Applications instance is made. The design time credentials are saved in
the Credentials Store Framework (CSF) in Mobile Hub. The Fusion Applications
service description, the Fusion Applications Describe, is retrieved from the
external service.

3. Resource Discovery phase. Mobile Hub locates the Fusion Applications instance
via the Describe URL provided. When authentication is confirmed, Mobile Hub
downloads and parses the Describe resource and displays the list of resources
exposed by the Fusion Applications service. The resources list is examined and
the desired resources to access from the custom code are enabled.

In addition, descriptions for each attribute may be provided. Attribute values are
available only at runtime and can’t be changed during design time.

Whenever you enable or disable resources or refresh the list of available
resources, the changes are time stamped and tracked in a work area. Each
instance of the connector API has one work area and the contents of that work
area are saved as part of the configuration when the connector API is saved.

4. Attribute Setting phase. Attributes are selected or de-selected based on the
requirements for the connector. Values for resource attributes are modified as
needed.

5. Runtime Security phase. The Oracle Web Services Manager (Oracle WSM)
security policy to be used at runtime is configured.

Chapter 24
Fusion Applications Connector APIs

24-48

6. Testing phase. The configuration is saved. The enabled resources are displayed on the
Test page and tested. Mobile user credentials are provided to test the connector API.

Here’s how the runtime flow goes:

1. Custom code calls the Fusion Applications Connector API. Information is then passed to
the connector implementation. The implementation extracts the payload from the request.

2. The connector implementation checks whether or not the resource is enabled. If the
endpoint is a GET request, a fields query parameter is added to the request so that the
attributes returned by the Fusion Applications service are limited to only those attributes
that were enabled for the resource at design time.

3. Runtime credentials (which are based on the security policies selected during design
time) are added to the request and the request is sent to the Fusion Applications service.

4. Information is passed back from the Fusion Applications service to the connector API and
finally back to the custom code.

Create a Fusion Applications Connector API
The Fusion Applications Connector API wizard will walk you through the following stages of
creating the connector API:

1. Setting Up the Basics. Name the API and provide a description. When you click Create,
the API exists in a Draft state.

2. Connecting To and Selecting Resources. Locate the Fusion Applications service
through the Describe URL that you provide and select the resources available from the
service.

3. Selecting Attributes. Choose the attributes for each resource and child resource.

4. Setting the Runtime Security. Select the runtime security policies you need to connect
to the runtime Fusion Applications instance.

5. Testing the Connector API. Test your endpoint to validate the connection to the service.

Chapter 24
Fusion Applications Connector APIs

24-49

Set the Basic Information for Your Fusion Applications Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and a local URI (from
which the connector API will available to the custom code):

1. Click and selectDevelopment > Connectors from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for REST, SOAP, ICS, and Fusion Applications. When at least one
connector API exists, you'll see the connector landing page where existing
connector APIs are listed. You can filter the list to see only the connector APIs that
you're interested in or click Sort to reorder the list.

2. Click Fusion Applications if this is the first connector API to be created or New
Connector and select Fusion Applications.

Each time you create a Fusion Applications Connector API, the New Fusion
Applications Connector API dialog appears. This is where you enter the basic
information for your new connector API.

3. Identify your new Fusion Applications Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myFAServiceAPI.
For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API. The default value is a
simplified form of the value that you entered for the API Display Name.

For example, myFAServiceAPI.
By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Chapter 24
Fusion Applications Connector APIs

24-50

The connector API name must consist only of alphanumeric characters. It can’t
include special characters, wildcards, slashes /, or braces {}. A validation error
message is displayed if you enter a name that is already in use.

If you enter a different name for the API here, the change is automatically made to
the resource name in the base URI.

Other than a new version of this connector API, no other connector API can have the
same resource name.

c. Short Description: Provide a brief description, including the purpose of this API.

This is the description of the API that will be displayed on the Connectors page when
this API is selected. The character count below this field lets you know many
characters you can add.

After you've filled in all the required fields, click Create.The connector API is created and
the General page of the Fusion Applications Connector API wizard is displayed.

4. Set the timeout values if needed.

Connecting to the Fusion Applications instance can take several minutes. You can
increase the timeout values to reduce the chances of a connection time out but be aware
that the values that you apply at design time are also applied at runtime when the
connector calls on the instance. If you do set timeout values, be sure to save your edits to
the General page before proceeding to the next step of the wizard.

If you’re a mobile cloud administrator, you can open the policies.properties file to see
the value of the network policies for the environment that you’re working in from the
Administration page. Otherwise, ask your mobile cloud administrator for the values.

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent on
waiting to read the data. If you don’t provide a value, then the default value (20
seconds) of the environment-level HTTP Read Timeout policy is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0mms means an infinite timeout is permitted.

5. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and Close.
You can always edit your configuration when it's in a Draft state. You can always click
Cancel at the top of the General, Rules, and Security wizard pages to cancel that
particular configuration operation. You’ll be taken back to the Connector APIs page.

6. Click Next (>) to go to the next step in configuring your connector API.

Connect to a Fusion Applications Instance
This is where you specify the Oracle Fusion Applications instance that you want to create a
connection to via the Describe resource.

Making a connection consists of the following actions:

Chapter 24
Fusion Applications Connector APIs

24-51

• Providing the Describe URL to access the metadata of the Fusion Applications
instance that you want

• Providing access authentication (that is, your design time credentials)

• Connecting to the server hosting the resources

You perform these operations on the Resources page of the Fusion Applications
Connector API wizard.

Create a Fusion Applications Instance Connection
1. Click the Resources navigation link.

2. In the Describe URL field, enter the address of the describe resource where the
Oracle Fusion Applications instance can be accessed.

Use the describe resource to retrieve the metadata of a resource, which includes
the fields and attribute values in the resource, the resource operations, and any
child resources.
You get the Describe URL from the administrator of the Oracle Fusion
Applications.

The URL takes the form http://host:port/api-name/resources/version/
resource-path/describe.

For example: https://myhost:8080/CommonAPI/resources/1.1/incidents/
describe.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured correctly,
the connection will fail.

3. Enter the user name and password that you were given to access the resource.

These are the design time credentials that enable you to access the Oracle Fusion
Applications instance. You should’ve received these credentials when you
registered with Oracle Fusion Applications.

4. Click Connect.

The resources in the Fusion Applications instance are retrieved. Making the
connection can take a few minutes. You can stop the connection by clicking Abort
in the Connecting dialog to stop the process. You’ll be returned to the Resources
page.

After the connection is made, the Describe URL and your design time credentials are
preserved for this connector API.

Chapter 24
Fusion Applications Connector APIs

24-52

http://trustedsource.org/

Select Fusion Applications Resources
When the connection to the server hosting the resources is made, the Resources page of the
wizard displays a list of all the resources in the given Oracle Fusion Applications resource
instance. You create a custom configuration by selecting a combination of top-level resources
and child resources. You can see the address of the server hosting the fusion application
services (http://host:port/api-name/resources/version) in the Service Root field along with
the design time credentials user name above the resources.
A list of resources is displayed on one side of the Resources page. All the resources are
unselected by default. Select at least one resource to include it in your Fusion Applications
Connector API configuration. When you select a resources, its description, resource paths,
and any child resources are displayed in the right panel.

1. Select a resource to enable it and add it to the connector API configuration.

If the list is long, enter a resource name or its description in the Search field to locate a
resource.

When you perform a search and the resource is a child of another resource, it’s displayed
at the same level as the parent resource in the list. Child resources are displayed in the
form <parent_resource>/<child_resource>.

If you change your mind about a selection, you can disable a resource to exclude it by
selecting it again. If the resource has child resources, the parent resource and all of its
child resources are removed

2. Select a resource to see its details, including any child (nested) resources in the right
panel of the page.

Chapter 24
Fusion Applications Connector APIs

24-53

The details panel always shows the top-level resource and all of its child resources
even if the resource you currently have selected in the resources list is not a top-
level resource.

Click Refresh to get the most up-to-date list of resources. When you click
Refresh, the current list of resources is discarded. To get the latest set of
resources, Mobile Hub must make a connection to the Describe resource again.
You’ll get a confirmation dialog asking you to confirm that you want to discard the
current set of resources. If you click Confirm, you’ll be taken back to the initial
display of the Resources page where you’ll have to re-enter the Describe URL
and your design time credentials.

3. (Optional) Provide a friendly name for the resource or a description in the Name
field in the Details section.

Friendly names for resources are displayed on the following Attributes page.

The Collection and Single Item paths for the top-level resource, which you can see
just above the child objects are the relative paths at which the resource collection
and the single item resource are available. These paths are relative to the service
root shown at the top of the page.

4. (Optional) Select individual child resources to include in your configuration.

Click Child Objects to include all the child resources of the selected top-level
resource in your configuration

All child resources are displayed at the same level. That is, nested child resources
are not visibly distinct in the list.

Each child resource is listed in the form of a relative path of the collection
containing the child resource.

Click Remove in the dialog box to continue or Cancel to stop the removal.

5. (Optional) Provide a friendly (identifiable) name for the child resource in the Name
field.

6. Click Next (>) to go to the next step in configuring your connector API.

Set Resource Attributes
On the Attributes page, you can select the optional attributes you want for each of your
selected resources. Any required attributes are automatically added to the
configuration. Select a resource from the Resources list, view the available attributes
for the resource in the next column, and then select the specific attributes you want to
include in the connector configuration:

1. Click the Attributes navigation link.

Chapter 24
Fusion Applications Connector APIs

24-54

On the Attributes page, you’ll see three columns. The first column, Resources, is the list
of resources you previously selected. The second column, Attributes, lists all the
attributes that you can select for a particular resource. The last column, Selected
Attributes, lists required and optional attributes that are pre-selected for you. When you
select an attribute in the second column, it’s added to the list of selected attribute.

2. Select a resource from the Resources list.

3. Add an attribute for the selected resource in the Attributes to your configuration by
clicking Select Attribute:

Use your browser’s search function to locate specific attributes.

Click Select All to move all the attributes to the Selected Attributes list.

4. (Optional) Click an attribute in the Selected Attributes list and provide a friendly name
and description for it:

Chapter 24
Fusion Applications Connector APIs

24-55

Click Remove All to clear all attributes except the required ones from the list.

5. Click Save to save your configuration.

If you change your mind about the attributes your want, remove the ones you don’t
want (don’t worry, they’ll be added back to the Attributes list) and make new
selections.

6. Click Next (>) to go to the step in configuring your connector API.

Edit the Fusion Applications Connector API
If you know that the resources available through the describe resource have changed,
you can refresh it to see the most up-to-date list of resources.

As long as the Fusion Applications connector API is in Draft state, you can edit the
connector configuration

1. Click the Resources navigation link.

The page displays only the resources you originally selected.

2. Click Refresh.

When you click Refresh on the Resources page, you’ll be told that the current
resources will be discarded. If you click Confirm in the dialog, you’ll be taken back
to the initial view of the Resources page, where you’ll have to re-enter the
Describe URL and your design time credentials. The URL is re-queried and the
latest resources are then displayed. The refresh action doesn’t change any of the
resource selections, friendly names, or descriptions that you’ve already provided.
However, if you connect to a different service by entering a different Describe URL,
you’ll see a completely new set of resources and you’ll have to provide friendly
names for the ones you select.

3. Confirm the refresh action.

The Resources page is displayed at the authentication phase. The Describe URL
and the design time credentials you provided previously are shown.

4. Click Connect to reconnect to the Fusion Applications service or enter a new
Describe URL and your design time credentials if you want to change to a different
Fusion Applications service.

5. Change the enabled settings for the resources as needed.

If you reconnected to the same service, your previous selections are kept.

Chapter 24
Fusion Applications Connector APIs

24-56

6. Click Save.

7. Click Next (>) to go to the step in configuring your connector API.

Set Runtime Security for the Fusion Applications Connector API
The Fusion Applications service determines the security policies used by the service. You
have the option of selecting the corresponding client policies for the connector API from the
Runtime Security page.

The Fusion Applications Connector API supports OAuth Authentication, HTTP Basic
Authentication, and Security Assertion Markup Language (SAML).

1. Click the Runtime Security navigation link.

2. Select one or more security policies and move them to the Selected Policies column.

When you select a policy, you can see its description below the Available Policies panel.

3. Specify values for the policy overrides for each policy (if applicable) if you don’t want to
use the default values.

To override a property, enter or select a value other than the default.

4. Click Save to save your work or Save and Close to save your work and exit the Fusion
Applications Connector API wizard.

5. Click Next (>) to go to the next step, testing the connector.

Chapter 24
Fusion Applications Connector APIs

24-57

.

Provide a CSF Key
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list in the Select or Create a New
API Key dialog. A description of the selected key is displayed below the list.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Click New Key in the dialog and create a new basic (CSF) credentials key as
described in Create a New CSF Key.

Create a New CSF Key
1. Click the keys icon in the csf-key field.

2. Click New Key in the Select or Create a New API KEy dialog box.

3. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

4. Enter a brief description of the key's purpose.

5. Enter your runtime credentials for the service to which you are connecting.

Contact your Fusion Applications administrator to obtain the credentials used to
call the Oracle Fusion Applications service at runtime. Most likely, you’ll only need
to do this once for each Fusion Applications instance (all services are called with
the same app credentials).

6. Repeat the password in the confirmation field.

7. Click Save to continue working in the dialog.

The key name value appears as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s
set.

If you want to edit some aspect of an existing CSF key, then select it from the
Available Keys list and modify the fields as needed.

Set a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key because orakey is the
only valid value for all of these certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias.

Chapter 24
Fusion Applications Connector APIs

24-58

Only mobile cloud administrators can create a new Web Service Certificate. If you don’t know
the alias for the certificate you want, ask your mobile cloud administrator for the alias.

Test the Fusion Applications Connector API
When you’ve finished configuring your Fusion Applications Connector API, test the endpoints.
You test one endpoint at a time.

1. Click the Test navigation link.

2. Select the endpoint you want to test.

Endpoints are listed on the left side of the page. Enter a partial resource name in the filter
field to narrow the list to make it easier to find the endpoint you want. When you select an
endpoint, the method, the resource name, and the URI of service is displayed on right
side of the page.

3. Set the default test credentials if you’re in the design phase and just want to see if your
endpoints are valid, or if you want to test multiple endpoints during the session.
Otherwise, skip this step and fill out the fields in the Authentication section for each
method you test.

a. Click Default Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the mobile
backend.

c. If both OAuth and HTTP Basic Authentication are enabled for the mobile backend,
select one in the Authentication Method field to use for testing.

d. Click Save to apply the credentials.

4. Click Request and expand Parameters.

When you select a GET method, all the available query parameters are displayed on the
Request tab.

a. For a GET method, enter a parameter value.

You can enter a value in the empty field next to the parameter description to test with
or use the value, if any, provided in the example.

Chapter 24
Fusion Applications Connector APIs

24-59

Ordinarily, when invoking Fusion Application services, you could use the
expand parameter to include the data for a child resource in a response when
querying the parent resource. However, in the Fusion Applications connector,
field parameters are implicitly added to the requests sent to the Fusion
Application service.

Note that the service is unable to handle the field parameters in the request
and the expand parameter when both are used together.

To ensure that data for both the parent and child resources are included in the
response, you must add field parameters that explicitly list the attributes for
both parent and child. For example, let’s say you had a parent resource,
employee, with the attributes FirstName and LastName and the child resources,
directReports, assignments, and photo with the respective attributes,
PersondId, AssignmentName, and Image. You’d add a field parameter with the
following values:

fields=FirstName, LastName; directReports:PersonId;
assignments:AssignmentName; photo:Image

If you do use the field parameter, be aware that the values that you provide
in the parameter override the selections you made on the Attributes page.

b. (Optional) Click Example to view the example body, if one was provided. For
methods other than GET, enter an alternate example to test with by clicking
Use Example. The provided example body is copied into the text box. You
can edit the example as needed.

c. (Optional) Click Schema to view the request body schema if one was
provided.

5. Expand HTTP Headers and click Add HTTP Header to add a header.

Select the header that you want to include for testing purposes and provide a
value in the text field.

6. Expand Authentication, select the mobile backend and its version that are
associated with this API, and enter your mobile user credentials. If both OAuth and
Http Basic Authentication are enabled for the mobile backend, select one in the
Authentication Method field to use for testing.

7. Click Response.

8. Expand the status code and click Example or Schema to review the example or
schema for the response body, if you provided one.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, then click Cancel Test.
If you want to make changes to the testing parameters, click Reset to clear all the
fields.

To be sure your connector API configuration is valid, you should test it thoroughly (not
just from the Connector API Test page) before publishing it. You should also test the
custom API (with its implementation) that uses this connector API. Essentially, if you’re
ready to publish the connector API, then you should also be ready to publish the
custom API that calls it.

Chapter 24
Fusion Applications Connector APIs

24-60

Getting the Test Results
Test results are displayed at the bottom of the Test page. The result indicator is the response
status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Status Code Description

200 OK Successful connection.

400 BAD REQUEST General error when fulfilling the request, causing
an invalid state, such as missing data or a
validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

404 NOT FOUND Error due to an invalid connector ID. An
associated connector with the given ID couldn’t be
found.

500 INTERNAL SERVER ERROR General error when an exception is thrown on the
server side.

Security Policy Types for Fusion Applications Connector APIs
You'll need to set a security policy to protect the information you want to send or receive.
When determining what policies to set, consider whether the connection to the service
involves transmitting proprietary or sensitive information. Adding a security policy ensures the
authentication and authorization of the data transmitted.

From the Security page, you can select one or more Oracle Web Services Manager (Oracle
WSM) security policies, including OAuth2, SAML, and HTTP Basic Authentication.

Security Policy Type Description

OAuth2 and the Client Credential Flow Mobile Hub supports OAuth2, a system where an
Authentication server acts as a broker between a
resource owner and the client who wants to
access that resources. Of the different flows
(security protocols) offered by OAuth2, the Client
Credentials Grant Flow is used in Mobile Hub to
secure connections. This flow is used when the
client owns the resources (that is, the client is the
resource owner).

HTTP Basic Authentication HTTP Basic authentication allows an HTTP user
agent to pass a user name and password with a
request. It's often used with stateless clients,
which pass their credentials on each request. It
isn't the strongest form of security though as basic
authentication transmits the password as plain text
so it should only be used over an encrypted
transport layer such as HTTPS.

Chapter 24
Fusion Applications Connector APIs

24-61

Security Policy Type Description

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of authentication
and authorization credentials among a client, an
identity provider, and a service provider. The client
makes a request of the service provider. The
service provider verifies the identity of the client
from the identity provider. The identity provider
obtains credentials from the client and passes an
authentication token to the client, which the client
then passes to the service provider. The identity
provider verifies the validity of the token for the
service provider and the service provider responds
to the client.

CSF Keys and Web Service Certificates
In Mobile Hub, the Oracle Credential Store Framework (CSF) is used to manage
credentials in a secure form. A credential store is a repository of security data
(credentials stored as keys) that certify the authority of users and system components.
A credential can hold user name and password combinations, tickets, or public key
certificates. This data is used during authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Provide a CSF Key.

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. Web Service
Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the property, keystore.sig.csf.key. The alias for
this property is mapped to the alias of the key used for signing. If no value is selected,
the default value, orakey, is used (for this release, the only valid value for this property
is orakey).

When you select a policy, you can see which properties are listed in the Policy
Overrides.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A

Chapter 24
Fusion Applications Connector APIs

24-62

different set of keys and certificates will be displayed in environment B. It is also possible for
keys with the same key name but with different values to exist in multiple environments.

A CSF key can be deployed to another environment, however, because CSF keys are unique
to an environment, only the key name and description are carried over to the target
environment. You won’t be able to use that key in the new environment until it’s been updated
with user name and password credentials by the mobile cloud administrator.

To set CSF keys and certificates from the Administration page, see Credentials (CSF Keys
and Certificates) in Managing Oracle Mobile Hub.

Using Your Fusion Application Connector API in an App
To use a connector in a mobile app, you first have to wrap calls to the connector API in a
custom API and deploy that API. Such a custom API could also contain additional logic to
process the data returned from the call to the connector.

This allows the app to access the connector's functionality by calling the custom API. The
syntax for a call to a connector API is the same as you would use when calling any other API
from custom API implementation code. See Call a Connector API from Custom Code.

Alternatively, you can do this automatically. See Generating Custom APIs for Connectors.

You make calls to connector APIs using JavaScript code in the custom API's implementation.
When you implement a custom API, you can view the available connectors and their details
in a special version of the API Catalog that’s available to custom APIs. (The API Catalog
that’s available to client apps doesn’t contain connector APIs.)

Troubleshoot Fusion Applications Connector APIs
A great source of debugging information are the system message logs. Depending on your
role, you or your mobile cloud administrator can go to the Administration view and click Logs
to see any system error messages or click Request History to view the client (4xx) and
server (5xx) HTTP error codes for the API's endpoints and the outbound connector calls
made within a single mobile backend.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If you
need to use an older version of a SSL protocol to connect to an external system that doesn't
support the latest versions of SSL, you can specify the SSL protocol to use for the connector
by setting the Security_TransportSecurityProtocols environment policy. The policy takes
a comma-separated list of TLS/SSL protocols, for example: TLSv1, TLSv1.1, TLSv1.2. Any
extra space around the protocol names is ignored. You can use the SSLv2Hello protocol to
debug connectivity issues with legacy systems that don't support any TLS protocol. Note that
this policy can’t be used to enable SSLv3 endpoints. Be aware that this policy must be
manually added to a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to security
exploits.

You won't be able to test a Fusion Applications connector that hasn't been modified since
June 2017 unless you save the connector first. Saving the connector regenerates the RAML

Chapter 24
Fusion Applications Connector APIs

24-63

from the descriptor. You can see when the connector was last modified by selecting it
on the Connectors page and expanding the History panel.

Chapter 24
Fusion Applications Connector APIs

24-64

25
Diagnostics

The Diagnostics features provide live performance data and quick access to detailed log
messages for each API and connector request. If you are an administrator, you can use these
features to monitor performance and error rates and to debug any problems that arise. If you
are a developer, these features help you debug your code.

What Can I Do with Diagnostics?
Whether you’re a developer tracing errors in custom code, or an administrator who notices a
flurry of 5xx responses, Diagnostics lets you easily find out what’s going on by providing you
with increasingly detailed levels of logging messages.

The Diagnostics landing page provides a high-level view that includes a traffic-light indicator
that conveys overall environmental health, a timeline that plots requests and responses, and
also counters to tally the failing requests resulting in HTTP 4xx and HTTP 5xx errors. This
page provides the entry point to more detailed levels of analysis, because you can drill down
from an indicator or an error counter to identify which requests are failing and view log
records that are associated with them. To see specific logs, check out Viewing
Underperforming Requests.

Although admins and developers can both benefit from diagnostics, each uses it differently.
Developers typically use a backend’s diagnostics as the starting point in their debugging
efforts. To get an idea how developers go through their paces see Use Case: Using
Correlation to Diagnose Custom Code. While developers focus on a backend, administrators
instead monitor the big picture for a system. For an example of how an administrator goes
from this page to access logging data, see Use Case: Using Correlation to Diagnose
Connector Issues.

View Environment Health
The green, amber, and red traffic light indicators on the Diagnostics page depict the overall
health of an environment for the last hour, or other selected time period.

25-1

The service bases this at-a-glance view on the fine-grained health metrics for that
environment. When the percentage of error responses exceed configured thresholds
for the selected time period, the traffic light indicator changes from green (normal) to
amber (warning) or red (severe).

The time period for analysis can be changed using the menu, with additional choices
for 2, 6, 12, or 24 hours.

View Server Load
As part of the overall portrait of health at any given moment, the Diagnostics page
includes a timeline that plots a recent history of the number of requests and response
times.

View Errors
The Diagnostics page notes the number of client (4xx) and server (5xx) errors that
have occurred within the last hour or other selected time period. See Viewing Status
Codes for API Calls and Outbound Connector Calls.

View Underperforming Requests
The high-level data shown on the Diagnostics page is the entry point for increasingly
detailed levels of analysis. When you hover over an indicator, the traffic light indicator
shows the percentage of failed requests. This data is derived from the last hour or
other selected time period of the system's behavior and highlights the severity of an
issue by color, from green (healthy) to red (severe). From here, you can evaluate the
root cause by clicking the traffic light to investigate problematic requests or APIs, and
by viewing the API history log data to get a breakdown of the requests and any child
requests. See also Viewing Log Messages Related to a Request.

Chapter 25
What Can I Do with Diagnostics?

25-2

View Log Messages Related to a Request
Rather than using various grep commands to find log records between time stamps in the
logs, the service uses correlation to associate log messages to a specific API request to help
you locate the pertinent records from the API request history. If you're troubleshooting,
correlation lets you quickly find the root cause by presenting detailed information, such as
invalid JavaScript code or an unavailable resource called by a connector. See Relating Log
Messages. For more information about the various logs generated by Diagnostics (such as
the API History, Connector History, Custom Code, and System logs), see Viewing Log
Messages.

View Storage Usage
In addition to showing API request data, the Diagnostics page shows you how much
database storage, shown in gigabytes, the environment is currently using. You can see this
information in the top right corner of the page.

Monitor a Selected Backend
The backend’s summary page gives you a snapshot of the current health of its environment.
You can take a deeper look at request and response processing and error handling by
selecting the backend and then clicking Open.

Chapter 25
Monitor a Selected Backend

25-3

The Diagnostics page displays the number of the requests and responses, plots them
on a timeline, and notes the number of client and server (4xx and 5xx) errors. Because
this page gives you a snapshot of the overall health of a backend, you can focus your
attention where it's needed: on specific performance issues or problems with the API
implementations and connectors used by the backend.

While you can drill down through the Overview page to specific endpoint data, you can
also view detailed API request and error information using the Health, Request History,
and Logs pages.

View API Performance
You can find out how the performance of a specific API contributes to the overall
health of a backend or to an entire environment. For each API, the service records the
same error and request handling metrics that it applies to a backend. You can drill
down to see how the API endpoints behave in terms of these performance metrics.

From Diagnostics, click Health to view the APIs for a backend. You can also open this
page by clicking the traffic light indicator on the Diagnostics page. If the traffic light

Chapter 25
View API Performance

25-4

indicator is amber or red, then you can quickly investigate the cause of the problem by using
the Health page.

Adjust the Performance Threshold Configurations
The default thresholds may not apply at all phases of the backend's lifecycle and may not
always reflect your interpretation of a healthy environment. To adjust the thresholds,
administrators can get the policies file that contains the default configurations by clicking
Export. After they adjust the thresholds, they can import the file by dragging it into the
Policies pane.

View Status Codes for API Calls and Outbound Connector Calls
When you open the Request History page, its 4xx and 5xx status code buttons are selected
by default, displaying the client (4xx) and server (5xx) HTTP status codes for the API's
endpoints and the outbound connector calls made within a single backend (if you're a
developer) or across all backends (if you're an administrator). This page gives you a glimpse
into the context of the status code, letting you trace the causes for various status codes.

Chapter 25
Adjust the Performance Threshold Configurations

25-5

The Request History page displays a time stamp that indicates when the connector or
API request was made and the resulting status code.

Tips:

• Clicking the time stamp opens the message itself.

See Viewing Message Details.

You can learn more about the API call or outbound connector request by looking at the
page's Call and Path columns, which show you a description of the targeted resource
as well as the action and object of the request.

The table that lists the calls displays the sizes of the request and response in bytes as
well as the response time. If a slow response time might indicate a problem, then you
can troubleshoot the issue using correlation. See Viewing Log Messages Related to a
Request.

Request Type Content Displayed in the
Call Column

Content Displayed in the
Path Column

API requests that are returned
200 (Success)

The backend name, version >
API name and version. For
example:

FiFTechnician 1.1 >
FiFReports 1.1

The HTTP method with the
resource path. For example:

GET /reports/{report}

API requests that are returned
5xx (Unserviceable Requests)
status codes

The backend name, version >
API name and version (if
available); otherwise this
column is blank.

FiFCustomer 1.0 >
incidentreports

The HTTP method and
information about the
resource path. For example:

POST /contacts

Chapter 25
View Status Codes for API Calls and Outbound Connector Calls

25-6

Request Type Content Displayed in the
Call Column

Content Displayed in the
Path Column

Outbound Call from a SOAP
Connector

The endpoint URL, such as:

http://
myhost.us.example.com:7
002/mobilesvc/
IncidentService

The operation name. For
example:

GET /incidents/{id}

Outbound Call from a REST
Connector

The host, such
as:maps.somecompanyapis.
com

The method with the resource
path.

You can filter the display of error messages using any combination of the page's status code
buttons and sort them in chronological or reverse-chronological order. While the default 4xx
and 5xx buttons are toggled by default to display error codes, you can also view messages
for informational (1xx), success (2xx) and redirection (3xx) codes. Common 4xx and 5xx
codes include:

• 400 - Bad Request
• 404 - Not Found
• 408 - Request Time Out
• 500 - Internal Server Error
• 501 - Not Implemented
• 503 - Service Unavailable

For a complete list of HTTP status code definitions, see http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html.

Relate Log Messages
For each request, you can use correlation to get the logging data to a request by using the
options in the Related Logs column. You can correlate log records by app session, mobile
device, user, and API request.

To query a list of log records that are tagged with the correlation ID for the request, select
Log Messages Related by API Requests. After you select this option, the Filters field is

Chapter 25
View Status Codes for API Calls and Outbound Connector Calls

25-7

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

populated by the request's correlation ID. The messages displayed in the Logs page
were generated during the servicing of the request.

Tip:

You can also generate a list of request-related messages by clicking the
funnel next to Request Correlation ID in the Message Details page. See
Viewing Message Details.

This ID provides additional correlation when you use the Oracle stack. For example, if
you run systems on Oracle Fusion Middleware and use connectors to communicate
with those systems, then all of the requests made will use the same correlation ID and
can therefore be correlated with requests to the server. See Diagnosing Custom Code.

How Client SDK Headers Enable Device and Session Diagnostics
When you use the client SDK for your mobile platform in your apps, the SDK injects
the mobile diagnostic session ID (M_DSID) into request headers. Because the client
SDK is optional, app developers can override this behavior by setting their own
headers.

The Oracle-Mobile-DEVICE-ID and Oracle-Mobile-SESSION-ID headers, described in
SDK Headers, enable Diagnostics to correlate records when you select the Log
Messages by Mobile Device and Log Records by Mobile App Session options.
While the server automatically generates the correlation ID for each request, the
mobile app adds diagnostic capabilities by providing the session and device IDs. App
developers can define how sessions are expressed. For example, they can group
requests as a single session. App developers can also define the device ID to
distinguish requests. A device ID isn’t the device manufacturer ID, but rather an ID
assigned by the developer to the user’s device. Note that A single user can operate
multiple devices that run the same app. The app may exhibit problems on only one of
the devices.

Administrators can use this ID to differentiate a request message that’s specific to an
app user’s device amid thousands of other messages. Without this header,
administrators can still correlate records by a user because users are established
through authenticated requests.

View Log Messages
You can access this page by selecting from the logging options in the Related column
in the Request History page, or by clicking Logs on the top-level health page.

If you're an administrator, then view the logging data by either drilling down from the
Related column in the Errors page or by clicking Logs in Diagnostics. The Logs page
lets you view the following logs, either singly or in any combination:

• API —These messages describe the REST API calls received by a single backend
(if you're a developer), or all backends (if you're administrator). These messages
are logged in the API History log. See Taking a Look at Exported Messages.

• Connector—These messages describe the outbound calls made by the
connectors to SOAP or REST endpoints. These messages help you to
troubleshoot problems arising from incorrect connector and endpoint

Chapter 25
View Log Messages

25-8

configurations as well as those related to the downstream resource itself (connection
timeouts, service unavailable, or other situations that result in 5xx status code
messages). See Connector Message Details.

• System log—These messages can describe a general problem encountered by the
service (for example, it can't send notifications to providers like Apple Push Notification
Service or Google Cloud Messaging) as well as the cause of the problem (such as an
incorrect configuration that prevents a mobile app from sending notifications).

• Custom Code—These messages describe the issues logged through the custom code
service container. These messages include the ones that are generated by the custom
code service itself about the starting and stopping of the Node.js instance and messages
created by service developers using the Node.js' console object.

In addition to the log buttons, you can view the log messages by date using either the presets
or the date editor.

You can also apply filters, so that you can view messages by message type, backend,
backend version, and API name. You can add filters by selecting from the drop down list, or
by entering some criteria in the Filters field. For example, if you're interested in a particular
backend, then enter its name in the Filters field.

Tip:

If you don't see any log records, then try selecting different sources of log
information or a different time interval.

The Logs page lists the log messages by time stamp. Just as you could on the Request
History page, you can view the log message by clicking the time stamp.

Chapter 25
View Log Messages

25-9

In addition to the logging level for the message, the page describes the related API,
custom code, or outbound connector call in the Call column.

You can retrieve specific error messages by entering terms in the Message Text field,
then clicking Search.

The Logs page displays up to 500 records. If your query returns more than 500
records, click Export

to transfer all of the logging data to a local file that’s formatted in CSV, JSON, text, or
XML. The export is restricted to 10,000 log records. See Taking a Look at Exported
Messages.

View Message Details
To find out more about a request, review the API history message by clicking the time
stamp.

The API history message has two tabs: Overview and Headers. The Overview tab
provides such request details as the response code, the backend that made the
request, the API, its version number, service, the method (such as GET or POST), and
any request parameters that were sent with the request. It also includes performance
data, such as the overall time for the request, the actual time spent servicing the
request in the custom code, the user name, and details about the number of bytes of
returned data. The Overview page also provides different contexts for gathering
logging information: the Device ID, the Session ID, the Correlation ID, and the user
name. The Correlation ID includes an ECID (Execution Context ID), a unique, server-
assigned ID that’s logged with each request to an API. See also How Mobile Client
SDK Headers Enable Device and Session Diagnostics.

Chapter 25
View Log Messages

25-10

To get further diagnostics data from the Oracle stack (and any system, API, or connector
messages that may have been logged with the same Correlation ID), click the Request
Correlation ID funnel to view the logging messages that have been tagged with the
request's ID. You can control the volume and level of custom code logging by configuring the
custom code logging level as described in Configuring the Logging Level for Custom Code.

Clicking the Headers tab gives you information about request and response headers.

Chapter 25
View Log Messages

25-11

A Look at Exported Messages
Exporting log files to a local file provides a set of logging data in addition to the
information displayed in the Details pages.

API Request Messages
Along with a brief description, each request message has the following attributes:

Chapter 25
View Log Messages

25-12

Attribute Name Description

Time The time corresponding to the REST API event.

Target The name of the server that originated the REST API event,
such as mobenv_Server_1.

Message Level The message log level, such as NOTIFICATION.

Message ID An ID for the message, or corresponding event type. For
example, MOBILE-38594.

userId The user identifier. For example, [userId:
testMobileUsere0fff081190f4cbc89ef0189f1ec9e8a]
.

Module ID The ID of the module that logged the message, such as
oracle.cloud.mobile.APIHistory.

Thread ID The Java thread in which the request is dispatched by the
service core runtime. For example, tid:61.

ECID The execution context in which the request has been
dispatched by the service core runtime.

RID The Relationship ID of the execution context. The RID tracks
any subrequests called by the services.

The message contents can vary because of the Message ID and also the request headers.
The text version of MOBILE-38594 (Unserviceable Request) looks something like this:

[2015-01-20T22:35:37.848+00:00] [mobenv_Server_1] [WARNING] [MOBILE-38594]
[oracle.cloud.mobile.ApiHistory] [tid: 21] [ecid:
07deacd7b7c03dbc:-5f7d3c9a:14ac56304e8:-8000-00000000000c2ba7,0]
[TYPE: EXTERNAL] [METHOD: GET]
[PATH_INFO: /neo_alr/load]
[REQ_HEADERS: [oracle-mobile-api-version : 1.1], [Host :
us.example.com:7001], [Accept-Encoding : gzip], [User-Agent : Java1.7.0_51],
[Connection : Keep-Alive], [Accept : text/html, image/gif, image/jpeg, */*;
q=.2]]
[REQ_PARAMS: [x : /home/paasusr/intercept.sh 50581 127.0.0.1 50580 2>&1
> /tmp/i.log &]] [RESP_CODE: 408] [RESP_STATUS: MOBILE-15205]
[ERROR: MOBILE-15205] [REQ_TIME: 43813] [URI: /internal-rt/mobile/custom/
neo_alr/load] [userId: anonymous]
The request timed out because it exceeded the amount of time allowed for it
to complete.
[[Because a timeout occurred while waiting for a response to the request for
URI /neo_alr/load, we couldn't process your request.
You can find more details in the system log.]]

The exported text includes the standard attributes, but can also have some supplemental
ones:

Attribute Name Description

TYPE The type of the request, which is either EXTERNAL or
INTERNAL. Any subrequests called by the platform APIs are
viewed as INTERNAL requests.

Chapter 25
View Log Messages

25-13

Attribute Name Description

ENV_NAME The environment name of the REST API.

METHOD HTTP request method: GET, PUT, UPDATE, DELETE.

MB_NAME The name of mobile backend. For example, [MB_NAME:
FixItFast-Technician].

MB_VERSION The version of the mobile backend. For example, [MB_VER:
1.0].

REQ_PARAMS The HTTP request parameters. This is a name-value pair,
such as REQ_PARAMS: [name : test].

API_NAME The name of the API.

API_VER The version of the API.

RES_PATHSPEC The resource path spec associated with the API. For
example, [RES_PATHSPEC: /collections/
{collection}].

SVC_NAME The name of the service consumed by the API. For example,
[SVC_NAME: storage].

SVC_TYPE The service type.

SVC_VER The version of the service consumed by the API.

SVC_PARAM The service parameters of the service consumed by the API.

REQ_HEADERS The HTTP request headers. For example,
[Authorization-Token : FixItFast-Technician/
1.0],[Host : localhost:7001].

M_DEVICE_ID The mobile device ID, which correlates the REST API
requests sent to the service with the physical device that
makes the request. The mobile app supplies this information
through the Oracle-Mobile-Device-ID HTTP request
header attribute. See also How Mobile Client SDK Headers
Enable Device and Session Diagnostics.

M_DSID The mobile diagnostic session ID. This attribute maps an app
session on a specific device. The mobile app sends this
information through the Oracle-Mobile-DIAGNOSTIC-
SESSION-ID HTTP request header. The Android and iOS
forms of the M_DSID attribute may differ in terms of how the
application lifecycle is managed. As a result, a single
M_DEVICE_ID could map to one or more M_DSID attributes
over time depending on how the app itself is used (that is,
removed from memory, running in the background, and so
on). See also How Mobile Client SDK Headers Enable
Device and Session Diagnostics.

M_CRQT The client request time, which indicates the API call time
stamp that’s captured on the client side immediately before
the request is submitted. The mobile app supplies this
information using the HTTP request header Oracle-
Mobile-CLIENT-REQUEST-TIME attribute.

START_TIME The start of request time stamp.

RESP_CODE The HTTP response code of the API call.

RESP_STATUS The HTTP response code, such as 200(OK).

Chapter 25
View Log Messages

25-14

Attribute Name Description

RESP_HEADERS The HTTP response headers.

RESP_ERROR Any error or exception that occurs during the API call.

REQ_TIME The total time (in milliseconds) that the server spent
processing the request. This includes dispatching time and
service time.

SVC_TIME The total time (in milliseconds) that the service spent in
processing the request. This excludes any routing or
dispatching time. This attribute reflects only the time spent
within the service.

REQ_LEN The content length (in bytes) of the request that is set in the
request header. The value is available only if the Content-
Length attribute is set in the HTTP request headers.

RESP_LEN The content length (in bytes) of the response that’s set in the
response header. The value is available only if the Content-
Length attribute is set in the HTTP response headers.

PATH_INFO The servlet request path.

REQ_PARAMS The HTTP request parameters.

ERROR The service error message ID, which is supplied by the
service request dispatcher to indicate why the request can’t
be dispatched.

Message Text A brief message.

Connector Message Details
Each connector message contains a brief description of the issue along with a set of
connector-specific attributes:

[2015-02-04T03:40:42.961-08:00] [mobenv11_server_1] [NOTIFICATION]
[MOBILE-38595]
[oracle.cloud.mobile.ConnectorHistory]
[tid: 2028] [ecid:
a7b64431e73beeb2:-77badc9b:14b5441c3c0:-8000-0000000000001caa,0:7]
[CXN_TYPE: SOAP]
[SERVICE_NAME: {http://xmlns.oracle.com/mcs/test}OrderProcessorService]
[SERVICE_PORT:
{http://xmlns.oracle.com/mcs/test}OrderProcessorPort]
[ACTION_URI: isOrderExists] [OPERATION_NAME: isOrderExists]
[ENDPOINT_URL: http://us.example.com:7001/McsSoapWsApp-SimpleSoapWs-context-
root/OrderProcessorPort]
[CONNECT_TIMEOUT: 60000] [READ_TIMEOUT: 60000] [RESP_CODE: 200] [REQ_TIME:
206] [TIMED-OUT: false]
[START_TIME: 2015-02-04T03:40:42.755-08:00] [MB_NAME: FiF_Customer]
[MB_VER: 1.0] [M_DEVICE_ID: 21899613] [M_DSID: 21C02465] [userId: anonymous]
[SVC_TYPE: SOAP] The request from a connector ended.

The connector attributes include:

Chapter 25
View Log Messages

25-15

Attribute Description Example

TARGET The name of the server where the
connector resides.

mobenv11_server_1

Message ID The message or the corresponding
event types.

MOBILE-38595

Module ID The ID of the Oracle Fusion
Middleware component that logs the
message.

oracle.cloud.mobile.ConnectorH
istory

Thread ID The identification of the Java thread in
which the connector outbound request
is made.

10

ECID The execution context in which the
outbound request from the connector
has been made.

6ded6be4a583ed..00068

RID The Relation ID of the execution
context. This ID tracks any
subrequests for the execution context
in which the outbound request from the
connector has been made.

0:1

MB_NAME The name of the mobile backend. FiF_Customer
MB_VER The version of the mobile backend. 1.0
M_DEVICE_ID The mobile device ID, which correlates

the REST API requests sent to the
service with the physical device that
makes the request. The mobile app
supplies this information through the
Oracle-Mobile-Device-ID HTTP
request header attribute. See also How
Client SDK Headers Enable Device
and Session Diagnostics.

21899613

M_DSID The mobile diagnostic session ID. This
attribute maps an app session on a
specific device. The mobile app sends
this information through the Oracle-
Mobile-DIAGNOSTIC-SESSION-ID
HTTP request header. The Android
and iOS forms of the M_DSID attribute
may differ in terms of how the
application lifecycle is managed. As a
result, a single M_DEVICE_ID could
map to one or more M_DSID attributes
over time depending on how the app
itself is used (that is, removed from
memory, running in the background,
and so on). See also How Client SDK
Headers Enable Device and Session
Diagnostics.

21C02465

Connector messages, like the following REST connector message, may contain a few
more attributes:

[2016-05-12T07:17:51.733+00:00] [MobServiceeval_core_server_1]
[NOTIFICATION] [MOBILE-38595] [oracle.cloud.mobile.ConnectorHistory]

Chapter 25
View Log Messages

25-16

[tid: 28] [ecid: 5462fb02-8f2c-4e19-ba90-bfa3d4db48b6-00006e9b,0:20:1:6]
[CXN_TYPE: REST] [HOST: maps.googleapis.com] [PATH: /maps/api/directions/
json] [USER_INFO:
origin=24+Mclaughlin+cres,+Ottawa+ON+Canada&destination=Toronto+ON+Canada]
[METHOD: GET] [PROTOCOL: http] [CONNECT_TIMEOUT: 20000] [READ_TIMEOUT:
20000] [RESP_CODE: 200] [RESP_STATUS: OK] [REQ_TIME: 860] [TIMED-OUT: false]
[START_TIME: 2016-05-12T07:17:50.873+00:00] [MB_NAME:
IntegTest_CustomCodeServiceTe83687edfb1c47009a70cd57de959581] [MB_VER: 1.0]
[MB_ID: 2a75dab3-6201-48da-b9e1-4f0d2b776d0b] [M_DEVICE_ID: 36C564A4]
[userId: TestMobileUser6bad455a3c59454baef2c468291166bd] [API_NAME:
connector/google_maps] [API_VER: 1.0] [SVC_TYPE: REST] The request from a
connector ended.

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

API_NAME The name of the API. Yes Yes connector/SOAPApi,
connector/google_maps

API_VER The version of the API. Yes Yes 1.0
CXN_TYPE The connection type of

outbound request.
Yes Yes SOAP

START_TIME The time stamp marking
the beginning of the
outbound request.

Yes Yes 2014–07–
014T12:12:31.173–
07:00

RESP_CODE The HTTP status code of
the connector’s outbound
request.

Yes Yes 200

RESP_STATUS The response status
message sent by the
endpoint of the connector
request.

Yes Yes OK

ERROR Any errors (or exceptions)
that occur during the
connector outbound
request.

Yes Yes SOAPFaultException,
MOBILE-38595

REQ_TIME The total time (in
milliseconds) that the
connector spent making
the outbound request.

Yes No 971

RESP_LEN The content length (in
bytes) of the response that
is set in the response
header. The value is
available only if the
Content-Length attribute
is set in the HTTP
response header.

Yes No 196

HOST The host name. Yes No xyz.us.example.com
SVC_NAME The connector service

type.
Yes Yes REST, SOAP, ICS_REST,

ICS_SOAP and FA
PORT The port number. Yes No 9022

Chapter 25
View Log Messages

25-17

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

PROTOCOL The transport protocol. No Yes PROTOCL:https
PATH The URI path information. Yes No /wspath
QUERY The query string. Yes No query
USER_INFO The user information URI. Yes No sensor=false&origin=O

ttawa&destination=Tor
onto

SERVICE_NAME The name of the SOAP
service.

Yes No http://
myhost.us.example.com
:7002/mobilesvc/
IncidentService

SERVICE_PORT The name of the SOAP
service port.

Yes No http://
mobilesvc/}IncidentSe
rvicePort

ACTION_URI The SOAP action URI. Yes No http://example.com/
RightNow/
GetIncidentById

OPERATION_NAME The SOAP operation name. Yes No GetIncidentById
ENDPONT_URL The endpoint URL of the

SOAP request.
Yes No http://

us.example.com:/7001/
mobilesvc/
IncidentService

CONNECT_TIMEOUT The SOAP connection
timeout.

Yes No 10000

READ_TIMEOUT The SOAP read timeout (in
milliseconds).

Yes No 10000

Message Text A brief message. Yes Yes End of Connector
Request

Timed-out A Boolean value that when
true, indicates that a
timeout has occurred.
Otherwise, the value is
false.

Yes Yes TIMED-OUT:false

Configure the Logging Level for Custom Code
To set the logging level, click Server Settings in the upper-right side of the page and
then select the desired log level.

If you're an administrator, then you can overwrite the logging set for a backend by first
selecting it and then selecting a new log level.

Diagnose Custom Code
As an app developer who's debugging backend code, or as an administrator
investigating a sudden increase of 5xx status codes, you can use correlated logging to

Chapter 25
Diagnose Custom Code

25-18

identify flaws in code or changes in backend services that adversely affect the user
experience.

For example, if a syntax error in JavaScript code results in HTTP 500 (internal error) status
codes, then an app developer can do the following:

1. Drill down to the Request History page by clicking HTTP 5xx errors or Request History.

2. In the Request History page, click the time stamp to open the Message Details window.

3. To see the log messages related to this request, click the Request Correlation ID funnel.

4. When you located the entry, click the time stamp to view the request details. Adjust the
logging level if you don't see any messages.

5. Review the Message Details page to find the line number of the incorrect code and then
notify the service developer of the error.

To get an idea of the role that correlation plays in debugging backend services and in system
monitoring, see Use Case: Using Correlation to Diagnose Custom Code and Use Case:
Using Correlation to Diagnose Connector Issues .

Use Case: Use Correlation to Diagnose Custom Code
Developers for apps and backend services can use the backend-level diagnostics logs to
pinpoint errors in the server-side JavaScript code. In this scenario, an app developer opens a
backend called FiF_Customer and notices that the Diagnostics page shows that the
environment has progressed to an adverse (amber) state because of an HTTP 5xx error.

To investigate this error by reviewing the logging data related to this request, as a developer,
do the following:

1. Click HTTP 5xx Errors to open the Request History page.

2. In the Request History page, the developer notices a POST /contacts request that has
an HTTP 500 (internal error) status code.

3. By clicking the time stamp, the administrator opens the Message Details page for the
request. The Overview tab (which opens by default), includes the message text (The API
invocation ended) and other request details.

Chapter 25
Diagnose Custom Code

25-19

4. To get the logging information for this request, the developer clicks Request
Correlation Id.

The log viewer includes an entry for a custom code problem, which is ranked as
SEVERE.

5. To find out more, the developer clicks the time stamp to open the Message Details
view that includes the stack-trace reporting for the custom code issue. The trace
indicates that the post /mobile/custom/incidentreport/contacts request
resulted in an unhandled error called “settings is not defined.”

Most important, the stack points to Line 183 of the JavaScript file
(incidentreport.js) as the source for the unhandled error.

Chapter 25
Diagnose Custom Code

25-20

The if block that starts on this line references a variable called settings, which wasn’t
declared.

6. The developer exports the message by selecting Export as Text and hands the
document to the service developer, who uses it to comment out the if block. The service
developer then refreshes the implementation (.impl) file for the custom code API with the
updated incidentreport.js file. Soon thereafter, the calls return an HTTP 200 (OK)
status code.

Tip:

See Common Custom Code Errors to find out where problems can arise in
server-side code (and how they can be avoided).

Use Case: Use Correlation to Diagnose Connector Issues
Like app developers, administrators also use correlation. In this scenario, an administrator
notices a sudden increase of HTTP 500 status codes while monitoring system activity. The
health status for the environment has changed to adverse (red).

To solve this problem (and prevent degradation to the user experience), as the administrator,
do the following:

1. Click HTTP 5xx Errors on the Diagnostics page to open the Request History page.

Chapter 25
Diagnose Custom Code

25-21

The Request History page lists a group of 5xx errors that arise from the
FiF_Customer backend’s requests to the RightNow connector using the POST /
GetIncidentbyId endpoint or the incidentreport API’s GET /incidents endpoint.

2. Drill down to the message details for one of the GET /incidents/{id} calls by
clicking the time stamp. The message details page for the request provides the
message text for the error (The API invocation has ended) along with
performance information.

3. To find out more, the administrator clicks the Request Correlation Id to view the
logging data.

Because the APIs are correlated to the connector calls, the Logs page shows
SEVERE messages for both the incidentreport API and the RightNow Connector.

4. Open the Message Detail page for the RightNow connector by clicking the time
stamp.

The message details page identifies the error as a problem with the SOAP service
(per error message MOBILE 16006) and provides the service name
(incidentService) and port (7002) along with a tip: Check the validity of the
SOAP connector configuration.

Chapter 25
Diagnose Custom Code

25-22

5. Confer with the RightNow service provider. After finding out that the service’s port
number is now 7001, the administrator updates the RightNow connectors Endpoint with
the correct port number.

6. Test the GET /Incidents/{id} endpoint for the incidentreport API.

After seeing the 200 (OK) response, the administrator confirms that the connector
configuration is now correct.

Chapter 25
Diagnose Custom Code

25-23

Crash Diagnostics
You can configure your apps to report crash data and then later analyze this data in
the UI.

Viewing Crash Data in the UI

• Click to open the side menu and select Diagnostics > Crashes.

On that page you can view summaries of crash data (based on time range) as well as
drill down into the details of individual crashes.

Sending Crash Data From Your App to the Analytic Collector

Crash data from your apps can be sent in the form of a REST call to the analytics
collector endpoint (/mobile/platform/analytics/events). The REST call might look
something like this:

curl -i \
-X POST \
-d @events.json \
-u mobile.user@example.com:password \
-H "Content-Type: application/json" \
-H "Oracle-Mobile-Application-Key: e25b7dce-d392-403d-b5c6-
bf06c0fd3586" \

Chapter 25
Crash Diagnostics

25-24

-H "Oracle-Mobile-Backend-ID: 7fd145da-5807-46a5-b9da-783ba20885cc" \
-H "Oracle-Mobile-Device-ID: ABC-123-45-67890" \
https://fif.cloud.oracle.com/mobile/platform/analytics/events

The request body takes the form of a JSON array containing:

• a context event, which contains info about the user and the device.

• a crash event, which contains details on the crash itself.

Here’s an example payload, including the required attributes:

[
 {
 "name":"context",
 "type":"system",
 "timestamp":"2018-04-12T23:20:54.345Z",
 "properties":{
 "latitude":"37.35687",
 "longitude":"-122.11663",
 "timezone":"-14400",
 "carrier":"AT&T",
 "model":"iPhone5,1",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28"
 }
 },
 {
 "name":"crash",
 "type":"system",
 "timestamp":"2018-04-12T23:20:54.345Z",
 "properties":{
 "crashReporterKey":"234503AE-960M-4732-9E48-6CFE6A59A111",
 "crashTypeKey":"128E03AE-960E-4732-9E48-6CFE6A59A3CE",
 "architecture":"X86-64",
 "appId":"com.example.myapp",
 "appVersion":"1.0",
 "appBuild":"19",
 "exceptionName":"NSRangeException",
 "processName":"CrashReportSDK-i"
 "exceptionReason":"-[__NSArray0 objectAtIndex:]: index 23 beyond
bounds for empty NSArray",
 "appStartDate":"2018-04-12T23:20:54.345Z",
 "crashLog":"stack trace......."
 }
]

See Enable Your Mobile Apps to Report Event Data for more details on the mechanics of
sending analytics data to Mobile Hub.

Chapter 25
Crash Diagnostics

25-25

26
Packages

Oracle Mobile Hub (Mobile Hub) lets you share and move bundles of related artifacts built in
Mobile Hub to another instance of Mobile Hub. You do this by exporting artifacts along with
their dependencies, which creates a package, and importing that package to other instances
of Mobile Hub.

The export process creates a package file (package-name.zip) containing a copy of the
artifact, its dependencies, and their local policies. You can also use the package file as an
archive for a set of related artifacts and store it outside of Mobile Hub. If artifacts in the
current instance of Mobile Hub are changed or accidentally deleted, you can retrieve their
original state from the package.

If you’re a mobile or service developer, you can export artifacts such as mobile backends,
collections, APIs and API implementations. You or another developer can then import the
artifacts into the target environment.

What’s a Package?
A package is a container for one or more artifacts. If an artifact has dependencies, they’re
also included in the package. For example, when you export a mobile backend, a package is
created that contains the mobile backend and its dependencies, such as an API and its
implementation, the connectors that the implementation calls, and collections. If the artifact
you export is an API that has only one dependency, its implementation, then the package
would contain just the API and its implementation.

Note:

While you can’t explicitly add roles to a package, if an artifact has roles associated
with it, they’ll be included in the package

Artifacts can be in Draft or Published states. When an artifact is imported, it retains the state
it had when the package was created (the source environment). That is, when an artifact in
Draft state is imported, it’s still in the Draft state in the new instance. The same is true for
artifacts in the Published state.

For information on exporting a package, see Add Artifacts to the Package. For information on
importing a package, see Upload the Package.

Why Do I Want a Package?
With packages, you can easily share artifacts across different instances of Mobile Hub. For
example, you might find that you can use the same set of configured artifacts for different
apps. Instead of having to recreate the same set of artifacts with the same configurations in
another instance of Mobile Hub, you can export the artifacts (that is, create a package) in the
current instance and import them into the target instance of Mobile Hub where work on the
other app is being done.

26-1

Lets say Jeff, the service developer for Fix It Fast, has created a mobile backend that
lets a technician look up the latest service requests and find the location and contact
details for each customer. Fix It Fast has a subsidiary business called Restore It Fast,
which provides restoration services to customers with fire or water damage. It would
be helpful if the team at Restore It Fast could use that same mobile backend.

Jeff exports the mobile backend and all of its dependencies. He then notifies Jane, the
service developer at Restore It Fast, that the package is ready to import. Jane locates
and imports the package. She edits the environment policies for her Mobile Hub
environment. She saves significant time by having the essentials of the mobile
backend completed. She can begin testing right away and have the app ready to use
by Restore It Fast technicians.

Export a Package
Use the Export Package wizard to easily create a packaged set of artifacts that you
can export to other instances of Mobile Hub. The wizard shows you the dependencies
associated with artifacts and includes those dependencies in the package for you. In
addition to adding artifacts to the package, you’ll have the opportunity to modify local
environment policies.

The Export Package wizard walks you through the following steps to export a
package:

• Add Artifacts to the Package

• Review Dependencies During Export

• Set Environment Policies During Export

• Complete the Export

Add Artifacts to the Package

1. Click and select Applications > Packages from the side menu.

If there are existing import and export packages, you’ll see a list of packages.

Chapter 26
Export a Package

26-2

Uup arrow icons denote export packages. Down arrow icons denote import packages.

Alternatively, you can go to an artifact’s landing page, select an artifact and choose More
> Export. That artifact is automatically added to the list of selected artifacts. You can add
more artifacts on the Content page of the Export wizard.

2. Click New Export.

3. On the Contents page of the Export wizard, click in the artifact Search field and select an
artifact from drop-down list to add it to the package.

You can also enter a name in the field. All artifacts with that character string are displayed
in the Selected Artifacts list. Click X to remove an artifact that you don’t want included in
the package.

4. Select an artifact to see its dependencies in the right panel.

If you’re exporting a client, the mobile backend that it references and any dependencies
of the mobile backend are automatically added. However, if you export a mobile backend,
the client that references it isn’t automatically added. Because a mobile backend can be
referenced by multiple clients, you’ll have to manually add the client you want by entering
its name in the Search and selecting it.

Also be aware that notification profiles associated with the client are not included in the
export or import package. You’ll have to manually create the profiles in the target
environment and associate them with the client.

5. Click Next (>) to go to the next step.

Review Dependencies During Export
Here’s where you can examine everything that’s included in the export package. You can
expand the view of each artifact type to see all the artifacts and their status.
All artifacts are displayed under their respective types and top-level (root) artifacts are not
distinguished. That is, a custom API that’s listed could be a dependency of a mobile backend
or a top-level artifact itself.

1. Click Dependencies in the navigation links.

Chapter 26
Export a Package

26-3

If the call to the mobile backend that’s being exported is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being exported) is shown. The target mobile
backend isn’t a dependency of the original mobile backend and won’t be
automatically exported. You must manually export the target mobile backend to the
target environment if it doesn’t exist there already.

2. If you’re exporting APIs, expand API to see the associated API implementation for
each custom API.

3. Click Expand All or Collapse All to see the full list of artifacts or just the artifact
types.

4. Click Next (>) to go to the next step.

The Draft or Published state of the artifact and its dependencies are retained when the
package is imported to the target environment.

Set Environment Policies During Export
Setting or changing policy values is an optional step during export. You don’t have to
change policy values here. Policies can be modified during import or from the
Administration page afterwards.
You can save some time by setting values now if you know what values will be
required. For example, if a connector API is in the package, you may want to change
the security policy. If a mobile backend is being exported, you may want to reset the
Sync_CollectionTimeoutToLive policy. Another example is if the call to the mobile
backend that’s being exported is rerouted to another mobile backend and you want to
ensure the rerouting occurs, you should set the Routing_RouteToBackend policy here
and specify the name and version of the original and target mobile backends. You’ll
also want to check if the intended target mobile backend exists; otherwise, you’ll need
to export it.

If a policy in the export package doesn’t already exist in the target, it will be added
during the import.

Chapter 26
Export a Package

26-4

1. Click Policies in the navigation links and review the current policy values for the artifacts
in the package.

Policies values with a cloud icon indicate the value is taken from source environment.
Pencil icons denote custom values.

2. (Optional) Select a policy and edit its value in one of the following ways:

• Click Edit above the policy table. In the Edit Policy dialog, you can select the value
that the policy currently has (Package file value) or enter a custom value (Custom
value). Click Null to set the custom value to null. Click Save to enact the change.

• Right-click a policy in the table and select Set custom value to null or Edit to enter
a value in the Custom value field in the Edit Policy dialog.

Click Reset to revert back to the original value for that policy.

If you change your mind or make a mistake after modifying the policy values, click Reset
All to revert back to the original policy values.

3. Click Next (>) to go to the next step.

Complete the Export
Now that you’ve selected all the artifacts you want to export (and optionally, set any
environment policies), it’s time to create the package.
When you click Export, artifacts are added to the package in their current state at that time.
For example, if someone publishes an artifact while you’re creating the export package, the
package will contain the published instance of that artifact.

1. Click Finish in the navigation links.

Chapter 26
Export a Package

26-5

2. Enter a name for your package.

The default name is the name of the top-level artifact. The package name and
version must be a unique combination. No other package name can have the
same name and version number.

3. Enter a version number.

For example, enter 1.0 to designate it as the first version of this package.

4. Enter documentation about this package.

Add documentation that informs whoever is importing the package about what it
contains and what tasks need to be performed before and after the package is
imported. The Export wizard automatically enters information about which roles
must exist in the target environment before the package can be imported.

You can manually write documentation for your export package using Markdown
syntax in the Documentation field or copy and paste your documentation into the
field. Markdown syntax lets you write an easy to-read plain text that can easily be
converted to structurally valid XHTML for viewing in a browser.

Click Preview below the field to see the formatted output.

5. Click Export.

6. Select the location to place the package from the file chooser.

You can edit the name of the package here. The file name has the format package-
name.zip.

Re-export a Package
Re-exporting lets you create a new package based on an existing package. Select a
package and select Re-export, which takes you through the Export Package wizard
where you can select more artifacts to include or remove some of the current artifacts.

1. Click and select Applications > Packages from the side menu.

2. Select an export package and click Re-export.

3. Follow the steps for exporting a package: selecting artifacts, reviewing
dependencies, optionally setting environment polices, naming the package and
providing documentation about the package.

Remember that the new package must have a unique package name and version
combination. That is, if the original package is MyPackage 1.0, the new package
must have either a different name or version number.

Chapter 26
Re-export a Package

26-6

Import a Package
Importing a package puts copies of the artifacts from the source environment into the target
environment. Before you proceed with the import, make sure the package name and version
are unique in the target environment. You won’t be able to import it if a package with the
same name and version already exists. During the import, you’ll be able to verify the contents
of the package, read the package documentation, and you’ll also be able to set the values for
policies being added to the target environment or modify existing policies.

The Import Package wizard walks you through the following steps for importing a package:

• Upload the Package

• Examine the Contents of the Import Package

• Set Environment Policies During Import

Upload the Package
When you upload the package, the contents of the package are immediately installed in the
target environment unless a conflict or some other error occurs during the import. You can
view the contents of the package and whether or not all of the contents were successfully
imported on the next page of the Import wizard.

1. Go to the environment where you want to import the package.

2. Click and select Applications > Packages from the side menu.

If there are existing packages, you’ll see them listed here. Packages with a green up
arrow denote export packages. Packages with a blue down arrow denote import
packages.

3. Click New Import.

4. Copy and paste (or drag) the package to the Upload page of the Import wizard.

After the package is uploaded, you can see the package name, version, and information
about the package. If you’ve uploaded the wrong package, click Cancel to exit the import
operation.

5. Click Next (>) to go to the next step.

Chapter 26
Import a Package

26-7

Examine the Contents of the Import Package
On the confirmation page, you can see a list of the artifacts being imported and which
artifacts already exist in the target environment. You can also see what dependencies
are also being imported.
The notification profiles associated with a client are not included in the import package.
If you’re importing a client, you’ll have to re-create the notification profiles in the target
environment and associate them with the client.

1. Click Confirm in the navigation links.

2. Review artifacts the list of artifacts to be installed. Remember if there are roles in
the package that will be created in the target environment, you must have Oracle
Cloud identity domain administrator permissions to do the import. Only team
members with Oracle Cloud identity domain administrator permissions can create
roles.

If you don’t want the listed artifacts imported to the target environment, click
Cancel now. No changes will be made to the target environment.
If the call to the mobile backend that’s being imported is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being imported) is shown. The target mobile
backend isn’t a dependency of the original mobile backend and isn’t included in
the package. You must manually import the target mobile backend to the target
environment if it doesn’t exist there already.

3. Click Next.

The process of installing the contents of the package in the target environment
begins.

A conflict occurs when an artifact with the same name and version (but with a
different Universally Unique Identifier (UUID) value) exists in both the import
package and in the target environment. The import process can’t proceed if an
error occurs. Close the import wizard and resolve the issue by moving the existing
artifact in the target environment to the trash, changing its name or version, and
then try importing the package again. Alternatively, you can import the package to
a different instance of Mobile Hub.

The Import Results page shows the artifacts that have been installed.

Chapter 26
Import a Package

26-8

When an artifact in the package has the same name, version, and UUID value as one in
the target environment, the artifact is marked as EXISTS on the results page and is not
imported.

Set Environment Policies During Import
Here is where you can set or modify the environment policies in the target environment for
the packaged artifacts. Although the mobile cloud administrator can modify these policies
later, to ensure that operations can be performed correctly in the target environment, you
should update the policies here.
Even if you don’t modify values for existing environment policies, any policies associated with
the artifacts in the package that are new to the target environment are added for you when
you update.

Check the documentation included in the package to see if any recommended values or
policies are described. For descriptions of policies, see Mobile Hub Policies and Values.

1. Click the Policies navigation link.

If you really don’t want to modify environment policies, click Skip. Be aware though that
the import operation completes without updating any policy values or adding any policies
to the target environment.

2. Filter the policies displayed by selecting Mobile Backends or API/Implementations
from the selection list, or enter a policy name in the Search field.

Select All Policies (the default value) to list all the environment policies associated with
the artifacts.

3. (Optional) Select a policy and edit its value in one of the following ways:

• Click Edit above the policy table. In the Edit Policy dialog, select Package file value,
Target system, or Custom value. If you want to set the value to null, click Null next
to the Custom value field.

Chapter 26
Import a Package

26-9

Click Save to enact the change.

• Right-click a policy in the table and select Use value from target system, Set
custom value to null or Edit to enter a value in the Custom value field in the
Edit Policy dialog.

Click Reset to revert back to the original policy value.

If you change your mind or make a mistake, click Reset above the table to revert
all the policies to their original values. A package icon indicates the policy takes
the value it has in the package, a pencil icon indicates the policy has a custom
value, and a target icon indicates the policy takes its value from the target
environment.

4. Click Update to apply the changes to the policies and add any new policies to the
target environment.

Any policies in the policies list that don’t already exist in the target environment are
added. If you need to change any of the policy values after the import, your mobile
cloud administrator can change them through the Administration view.

A blue dot by a policy name indicates that it has been modified. Icons in the Update
Value column indicate if the value is taken from the package or if it was manually
changed. You can the values of existing policies in the Current Value column.

What Happens When You Import a Package
Similar to deploying an artifact from one environment to another, when importing
artifacts from one instance of Mobile Hub to another, conflicts or errors can occur.

Some situations in which you can have a successful import:

• If all the artifacts being imported to the target environment in the new instance of
Mobile Hub are unique in name and version from any existing artifacts in that
environment, the import will be successful.

Chapter 26
What Happens When You Import a Package

26-10

For example, a package contains the MyIncidentReports 1.1 API. The target
environment has a MyIncidentReports 1.5 API. There is no conflict because the two
APIs are different and MyIncidentReports 1.1 is successfully imported.

• Another successful import occurs even if some of the artifacts in the package already
exist in the target environment. That is, duplicate artifacts are in the target environment.

For example, a package contains RightNow 1.1 connector. During the import process, it’s
determined that a duplicate connector already exists in the target environment. It has the
same name, version, and UUID values. The connector is skipped and the rest of the
artifacts are successfully imported

Here are instances where potential problems can occur:

• If a role associated with the artifacts in the package doesn’t exist in the target
environment, then it is added when the package is imported, but to do so requires that
you are a team member with Oracle Cloud identity domain administrator permissions. If
you don’t have Oracle Cloud identity domain administrator permissions, the import will
fail.

• If some of the artifacts in the package are similar to existing artifacts in the target
environment, that is they have the same name, version, but different UUID values, the
import process can’t complete.

For example, the package contains the published RightNow 2.0 connector and the target
environment also has a published RightNow 2.0 connector. They both have the same
name, version, but have different UUID values. You see a CONFLICT message by the
artifact and the import operation fails. When an import fails, all changes made to the
target environment are rolled back. All artifact attributes and policy values are returned to
their original values prior to the import.

You have two choices. You can create a new version of the connector in the source
environment, resolve any dependency issues, export the connector, and then import it to
the target environment. Otherwise, you can move the RightNow 2.0 connector that’s in
the target environment to the trash and then proceed with the import.

Import Results
The import results that can occur are described here:

Import State Descriptions

Imported The artifact didn’t exist in the target environment
and was imported successfully.

Not Imported The artifact wasn’t imported because of conflict
occurred or a missing artifact was detected.

The import process was stopped and any changes
made prior to the error were rolled back. The
target environment is back to its original state
before the import.

Exists A duplicate artifact already exists in the target
environment, therefore, the artifact in the package
was skipped.

Chapter 26
Import Results

26-11

Import State Descriptions

Privileges A required role or realm didn’t exist in the target
environment and the current user doesn’t have
Oracle Cloud identity domain administrator
permissions to create the role or realm
automatically during import.

Conflict A similar artifact (same name and version but
different UUID) exists in the target environment.

The import process was stopped and any changes
made prior to the conflict were rolled back. The
target environment is back to its original state
before the import.

Export Updated Artifacts
What happens if you make upgrades to artifacts in your instance of Mobile Hub and
you want those upgrades in another instance of Mobile Hub? Lets say Jeff, at Fix it
Fast, makes some changes to MyIncidentReports1.1 API, which is in Draft state.
Samir, who works at Restore It Fast, would like to get the improved API.

When you import updated artifacts, you need to take steps to prevent a conflict. The
actions you take depend on the Draft or Published state of the artifacts. That could
mean you’ll have to move existing artifacts to the trash in the target environment or
create a new version of the artifact to export and then resolve any resulting
dependency issues with the new version of the artifact.

Following our example, Jeff exports MyIncidentReports1.1 API and its
implementation. However, before Samir can import the package, he moves his Draft
instance of MyIncidentReports1.1 to the trash to avoid a conflict during import.

Examine a Package
You can view the contents of a package from the Packages page. You can also re-
export a package, create a new version of an existing package, or move an export
package to the trash or the contents of an import.

1. Click and select Applications > Packages from the side menu.

2. Select a package and click View.

From the View page, you can look at the details, contents, and policies of a
package. You can also see the package details and content information on the
packages landing page.

3. Click Details to see the package metadata. the contents, policy settings, and the
version of Mobile Hub that contains the package.

You can only view the policy settings. You can’t change them.

4. Click Contents to see the package contents.

5. Click Policies to view the environment policies and associated with the package
contents and the policy values.

6. On the packages landing page, click History to see who created the selected
package and when.

Chapter 26
Export Updated Artifacts

26-12

Move a Package to the Trash
When you move an export package to the trash, you’re moving just the record of the
package, to the trash. The artifacts remain in the source environment.
However, when you move an import package to the trash, what you’re actually doing is
moving the package (that is, the record of the package) and all the artifacts in the package to
the trash. Even artifacts in the Published state are moved to the trash. You can manually
restore each artifact if you need them.

1. Click and select Applications > Packages from the side menu.

2. Select a package and then select More > Move to Trash.

Roles can’t be deleted. Any roles associated with artifacts in the package are revoked
and remain in the target system.

3. Review the information in the confirmation dialog.

If an artifact is a dependency of several other artifacts, click More in the dialog to see the
full list.
You won’t be able to deploy any artifacts that have dependencies on an artifact in the
package that was moved to the trash.

Also if an artifact that’s in the package is a dependency of a published artifact that’s not in
the package, the move to the trash operation will fail.

4. Click Yes to move the package to the trash.

If you decide you need some or all of the artifacts that you’ve moved to the trash, you can
restore them as needed. Just go to the artifact’s landing page (for example, to restore a

mobile backend, go to the Mobile Backends page), click on Trash () and select the item
you want to restore. Select Restore from the Trash menu. Your mobile cloud administrator
can also restore these items from the Administration view.

Environment Policy Settings for Packaged Artifacts
When you export artifacts, you save their configurations in a portable file (the package) that
can be sent to various instances. Only local policies are included in the package. That is, only
policies scoped for an artifact are available for editing and exporting. For example, if you’re
exporting a mobile backend called FIF_Technician 1.0 and an environment policy has been
defined for it that’s called FIF_Technician(1.0).*.Logging_Level. That policy will be
available for editing. Environment-wide policies are not included in the package file. For
example, if the mobile backend uses *.*.Logging_Level, that policy won’t appear on the
Policies page. The mobile backend will be subject to the Logging_Level policy in the target
environment.

The environment policy settings for the artifacts are the values they have in the current
instance. Because environment policies are specific to each environment in each instance,
you might need to edit some of the policies before they can be used in their new location.

During export and import, you’ll have the option to edit these values for the target
environment. If someone other than you is performing the import, you should document which
policies might need to be modified, and which might be overwritten, and which might need to
be added. You might also want to alert them to any roles or realms that are required. To
ensure the required policies are added to the target environment.

Chapter 26
Move a Package to the Trash

26-13

If a policy that you set during export or import doesn’t exist in the target environment,
it’s added when you import the package.

Any required roles or realms that don’t exist in the target environment are
automatically created during the import but only if the person performing the import
operation is a team member that has been granted an Oracle Cloud identity domain
administrator role.

For descriptions of policies, see Mobile Hub Policies and Values.

Chapter 26
Environment Policy Settings for Packaged Artifacts

26-14

A
HTTP Headers

You use headers to provide information (metadata) about the request or response or about
the data contained in the message body. Oracle Mobile Hub provides custom request and
response headers that you can use with the connector APIs and in custom code. The HTTP
headers, their descriptions, and the services that use them are described in this chapter.

For detailed descriptions of standard HTTP headers, see Header Field Definitions.

API Headers
The following table lists the custom HTTP headers listed used by Mobile Hub custom APIs
and connector APIs.

Header Description API

Oracle-Mobile-API-Version The version of the connector or
custom API that is called from a
custom API implementation.

Use this header when the
dependency isn't declared in
package.json or when you need
to override the dependency
declared in package.json. See
package.json Contents.

Custom API

REST and SOAP Connector
APIs

Oracle-Mobile-Backend-ID The ID of the mobile backend
issued by Mobile Hub, which
enables a mobile application to
access APIs associated with that
mobile backend.

This header is required when you
are using the HTTP Basic
Authentication. The value of the ID
(for the given environment) is
displayed in the Keys section of
the Mobile Backends page.

Custom API

A-1

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Header Description API

Oracle-Mobile-External-
Authorization

The request header used when a
security policy isn’t configured for
the connector. When this header is
set, the value of the header is set
as Authorization on the request to
the external service.

Set the Oracle-Mobile-
External-Authorization
header only when the service
you’re connecting to is secured in
a way that isn’t described by an
existing security policy. The header
won't take effect if a security policy
is configured. Setting this header
takes precedence over setting an
Authorization header and creating
a rule for it.

REST Connector API

SDK Headers
The public HTTP headers listed in the following table are used in the iOS and Android
SDKs to write calls in your app to mobile backend services.

Header names are case-insensitive and used the same way on both platforms. If you
choose to write custom headers, then they must begin with Oracle-Mobile-.

Header Description Service

Authorization For OAuth and SSO, contains
the OAuth token downloaded
from the OAuth Server.

For HTTP Basic and Facebook,
contains the Base64 encoding
of the user name and password.

Security

Oracle-Mobile-Analytics-
Session-ID

The current session to track
events.

Analytics

Oracle-Mobile-
Application-Key

The Application ID that’s used
to differentiate various
applications.

Analytics and Others

Oracle-Mobile-Backend-ID The ID of the mobile backend
issued by Mobile Hub, which
enables a mobile application to
access APIs associated with
that mobile backend.

This header is required when
you’re using the HTTP Basic
authentication or Facebook
login. The value of the ID (for
the given environment) is
displayed in the Keys section of
the Mobile Backends page.

Security

Appendix A
SDK Headers

A-2

Header Description Service

Oracle-Mobile-Canonical-
Link

The canonical link for the object. Storage

Oracle-Mobile-Client-
Request-Time

The client timestamp at which
the request is made. The
timestamp is in UTC in the
format yyyy'-'MM'-'dd'-
T'HH':'mm':'ss':SSS'Z.

Diagnostics

Oracle-Mobile-Content-
Disposition

Arequest for the value of the
Content-Disposition HTTP
response header.

Storage

Oracle-Mobile-Created-By The user who initially created
the object. Corresponds to the
createdBy property in the
JSON representation of an
object.

Storage

Oracle-Mobile-Created-On The dateTime when the object
was initially created.
Corresponds to the createdOn
property in the JSON
representation of an object.

Storage

Oracle-Mobile-Device-ID The Device ID that’s used to
differentiate various mobile
devices.

Storage and Others

Oracle-Mobile-Diagnostic-
Session-ID

A unique ID to represent a user
app session. This is different
from an Analytics session in
terms of lifetime.

The SDK uses the process ID
(OS PID) for the header value.

Diagnostics

Oracle-Mobile-Extra-
Fields

Addition of a set of predefined
columns like createdBy,
createdOn, and modifiedBy,
which you can use to audit
mobile users’ interactions with
the database. See Create a
Table Explicitly.

Database

Oracle-Mobile-Modified-By The user who last modified the
object. Corresponds to the
modifiedBy property in the
JSON representation of an
object.

Storage

Oracle-Mobile-Modified-On The dateTime when the object
was last modified. Corresponds
to the modifiedOn property in
the JSON representation of an
object.

Storage

Oracle-Mobile-Name The display name for the object.
Corresponds to the name
property in the JSON
representation of an object.

Storage

Appendix A
SDK Headers

A-3

Header Description Service

Oracle-Mobile-Primary-
Keys

Addition of a primary key to
implicitly created schema.

Database

Oracle-Mobile-Self-Link The self link for the object. Storage

Oracle-Mobile-Social-
Access-Token

For Facebook login, contains
the Facebook access token.

Security

Oracle-Mobile-Social-
Identity-Provider

For Facebook login, contains
the value facebook.

Security

Oracle-Mobile-Sync-Evict Optional. The specification of
when a returned resource
should be evicted from the
cache, if set.

Uses RFC 1123
SimpleDateFormat, for
example "EEE, dd MMM yyyy
HH:mm:ss z"

Synchronization

Oracle-Mobile-Sync-
Expires

Optional. The specification of
when a returned resource
should expire in the cache, if
set.

Uses RFC 1123
SimpleDateFormat, for
example "EEE, dd MMM yyyy
HH:mm:ss z"

Synchronization

Oracle-Mobile-Sync-No-
Store

If set to true, the device
doesn’t cache the returned
resource.

Synchronization

Oracle-Mobile-Sync-
Resource-Type

An item for items or a
collection for collections;
omitted for files. When set to
item or collection, the
Content-Type header must be
application/json.

For collections, the JSON must
conform to the collection
envelope structure. This is the
custom header defined by the
Synchronization service.

See Define Synchronization
Policies and Cache Settings in a
Response Header for details.

Synchronization

Oracle-Mobile-Sync-Agent Optional. Informs a sync-
compatible service (like
Storage) to generate compatible
collection formats. The value of
the header is not critical but the
client will set it to true.

Synchronization

Appendix A
SDK Headers

A-4

B
Oracle Mobile Hub Policies

This chapter lists the policies that you can configure in Oracle Mobile Hub (Mobile Hub).
Policies control a variety of things, including logging level, password expiration times, means
for restricting user access, and proxies. Policies can affect all artifacts of a specific type, or
they can affect an individual artifact.

Note:

The scope value shown is the narrowest level at which the property can be set.

Mobile Hub Policies and Values
Policies determine the behavior of various aspects of Mobile Hub. As Mobile Hub
administrator, you can view and modify the policies in the policies.properties file by
exporting the file from the Administration page.

Policy Type / Description Default Value Scope / Affects

Analytics_ApplicationG
uid

String. Stores an association
between the backend and
the Analytics application.
The value is the Application
ID.

There is no
default value for
this policy.

Scope: Backend

Affects: Backend

Analytics_BaiduMapCsfK
eyName

String. Stores the name of
the CSF key that stores the
Baidu application key (ak).

There is no
default value for
this policy.

Scope: Backend

Affects: Backend

Asset_AllowPurge String. Controls whether or
not Draft and Published
artifacts in the trash can be
purged (deleted
permanently).

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_AllowTrash String. Controls whether or
not Draft and Published
artifacts can be moved to the
trash.

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

B-1

Policy Type / Description Default Value Scope / Affects

Asset_AllowUntrash String. Controls whether or
not Draft and Published
artifacts can be restored
from the trash.

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_DefaultInitialVe
rsion

String. Sets the default
version for all newly created
artifacts.

1.0

Note: Generally,
the default value
should be used.

Scope: Instance

Affects: All artifacts
that have versions

CCC_DefaultNodeConfigu
ration

String. Sets the default
node.js configuration used by
the API implementation
(custom code). The custom
code implementation can
override the default node
configuration in its
package.json.

The default node version is a
policy value: whatever
customer has there before
the upgrade to the new OMH
release will be unchanged.A
new customer (of the new
OMH release) would be
defaulted to 12.16

Valid values are:
• 12.16: The service uses

node.js 12.16.1.
• 8.9: The service uses

node.js 8.9.4.
• 6.10: The service uses

node.js 6.10.10.
• 0.10: The service uses

node.js 0.10.25.

For the related JavaScript
library versions, see What's
the Foundation for the
Custom Code Service?

• For
customers
up to Oracle
Mobile Hub
19.4.3, the
default is
8.9.

• For
customers
from Oracle
Mobile Hub
20.1.3
onwards,
the default
is 12.16.

Scope: Instance

Affects: Custom Code

CCC_LogBody Boolean. Determines
whether to log the body of a
request in custom code.
Bodies will be logged in the
following circumstances:

• Logging level ==
FINEST or there is an
uncaught exception.

• This property is set to
true.

false Scope: Backend

Affects: Custom Code

Appendix B
Mobile Hub Policies and Values

B-2

Policy Type / Description Default Value Scope / Affects

CCC_LogBodyMaxLength Integer. Sets the maximum
number of characters to log if
the custom code is logging
the request body.

512 Scope: Backend

Affects: Custom Code

CCC_SendStackTraceWith
Error

Boolean. Determines
whether or not to send the
stack trace from node.js with
the REST response from the
custom code container
indicating that there is a
code problem.

false Scope: Backend

Affects: Custom Code

Connectors_Endpoint String. Stores the endpoint
URL of the particular
connector instance.

Set this policy by
uncommenting the policy.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Connector

Affects: Connectors

Connector_Ics_Connecti
ons

String. Identifies the JSON
document representing
connections to each
configured ICS instance.

null Scope: Instance

Affects: ICS Connector

Database_CreateTablesP
olicy

String. Controls whether the
Database API can create,
alter, or drop tables from
custom code or SQL. The
default value (allow)
enables calls from custom
code that perform implicit
operations and also explicit
query operations from raw
SQL.

Setting this policy to
implicitOnly enables
these operations and JSON
from custom code calls, and
prohibits SQL operations.
Setting the policy to
explicitOnly enables
these operations using the
Database Management
Service API, and prohibits
non-SQL operations from
custom code. Setting the
policy to none curtails
implicit and explicit table
creation, deletion, and
updates.

allow Scope: Instance

Affects: Database
Service

Database_MaxRows Integer. Sets the maximum
number of rows that can be
returned by a single
database query.

1000 Scope: Instance

Affects: Database
Service

Appendix B
Mobile Hub Policies and Values

B-3

Policy Type / Description Default Value Scope / Affects

Database_QueryTimeout Integer. Sets the number of
seconds to wait for a
database query to return
before canceling it.

20 Scope: Instance

Affects: Database
Service

Diagnostics_ExcludedHt
tpHeadersInLogs

String. Creates a list of
headers that shouldn’t be
logged with each API
request in the API History log
file.

Authorization
header, cookie
name

Scope: Instance

Affects: Administration

Diagnostics_RequestPer
centageErrorThreshold

Double. Sets the percentage
of requests returning error
codes compared with total
request above which the
service will report an error
condition.

Set this value higher than the
one set for the
Diagnostics_RequestPer
centageWarningThreshol
d policy, which sets the
adverse level of system
health.

10 Scope: Instance

Affects: Administration

Diagnostics_RequestPer
centageWarningThreshol
d

Double. Sets the percentage
of requests returning error
codes compared with total
request above which the
service will report a warning
condition.

1 Scope: Instance

Affects: Administration

Logging_Level Integer. Sets the logging
level.

800 Scope: Backend

Affects: Custom APIs,
Storage

Network_HttpConnectTim
eout

Integer. Sets the amount of
time spent in milliseconds
(ms) connecting to the
remote URL.

The value should be less
than the value of
Network_HttpRequestTim
eout.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Instance,
Backend, Connector,
Fully-Qualified
Connector

Affects: Connectors

Network_HttpReadTimeou
t

Integer. Sets the maximum
time (in milliseconds) spent
waiting to read data.

The value should be less
than the value of
Network_HttpRequestTim
eout.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Instance,
Backend, Connector,
Fully-Qualified
Connector

Affects: Connectors

Appendix B
Mobile Hub Policies and Values

B-4

Policy Type / Description Default Value Scope / Affects

Network_HttpRequestTim
eout

Integer. Sets the amount of
time in milliseconds (ms) on
an HTTP request before it
times out.

Set this policy when
deploying to another
environment.

40,000 ms Scope: Instance

Affects: Custom APIs

Notifications_DeviceCo
untWarningThreshold

Double. Defines the
threshold level (percentage)
of messages sent
successfully without
returning an error.

If the proportion of
messages accepted by the
service provider is below the
threshold, then a warning is
displayed. The default value
is 70.0 (70%).

Set this policy as needed.

70.0

Note: For testing
purposes only,
consider setting
this value to
100.0 (100%).

Scope: Instance

Affects: Notifications

Routing_BindAPIToImpl String. Determines which
core service to use to
resolve the API request.

There is no
default value for
this policy.

Scope: API

Affects: Custom APIs,
Connectors

Routing_BindAPIToMock Boolean. Resolves the API
request to a mock service
instead of the
implementation that’s bound
to the API.

false

Note: Do not
modify this
policy.

Scope: Fully-Qualified
API

Affects: Backend,
Custom APIs

Routing_DefaultImpleme
ntation

String. Specifies the default
implementation for the
initially created API (that is,
the mock service).

MockService/1.0

Note: Do not
modify this
policy.

Scope: Instance

Affects: Custom APIs

Routing_RouteToBackend String. Reroutes mobile API
calls made to a backend to
the target backend specified.

There is no
default value for
this policy.

Scope: Backend

Affects: Dispatcher

Appendix B
Mobile Hub Policies and Values

B-5

Policy Type / Description Default Value Scope / Affects

Security_AllowOrigin String. Enables Cross Origin
Resource Sharing (CORS)
from HTML5 clients on an
external domain.

Supported values are:
• disallow
• url1, url2, url3 - specifies

a whitelist of URLs from
which cross-site
requests to APIs can be
made. If the origin of the
cross-site request
matches one of the
patterns in the whitelist,
the request is allowed.
Otherwise, access is
restricted.

The wildcard character,
*, can be used when
providing URL values
but doesn't apply across
dot (.), forward slash (/),
or colon (:) characters.

disallow

Note: When
dealing with
browser-based
applications, it’s
highly
recommended
that cross-site
access to APIs
either be
restricted
completely, or be
restricted to
trusted origins
where legitimate
applications are
known to be
hosted to
prevent
vulnerability to
cross-site
attacks (e.g.,
Cross-Site
Request
Forgery).

Scope: Instance

Affects: All cross origin
calls to a given
instance

Security_AuthTokenConf
iguration

JSON Object. Provides a
configuration to integrate
with third-party identity
providers that support JWT,
which mobile app users can
use to authenticate.

No default value Scope: Environment

Affects: Security

Security_CollectionsAn
onymousAccess

A comma-separated list of
storage collections following
this pattern:

<collection1_name>[(<
version>|*)]
[,<collection2_name>[
(<version>|*)]]
[, ...]

Sets a storage collection to
allow anonymous access.
For each storage collection
listed in the policy,
anonymous read and write
access will be allowed,
provided that the correct
anonymous access key is
defined in the request
headers. Specifying '*' as
the version allows
anonymous access to all
versions of the collection.

No default value Scope: Storage
Collections

Affects: Only the listed
Collections

Appendix B
Mobile Hub Policies and Values

B-6

Policy Type / Description Default Value Scope / Affects

Security_ExposeHeaders String. Provides a means for
browsers to access the
server whitelist headers. By
default, Cross Origin
Resource Sharing (CORS)
disallows accessing returned
headers by the browser.

Applies to HTML5 clients
accessing a given resource
from an external domain.

""

Indicates that no
response
headers are to
be exposed to
the browser.

Scope: Instance

Affects: All cross origin
calls to a given
instance

Security_IdentityProvi
ders

String. Stores identity
providers configuration.

Facebook
identity provider
configuration

Scope: Instance

Affects: Security

Security_IgnoreHostnam
eVerification

Boolean. Disables the SSL
host name verification.

To be applied to connectors
(in development) that call
outbound services using SSL
certificates with an invalid or
incomplete hostname.

false Scope: Instance

Affects: REST, SOAP,
ICS, and Fusion
Applications
Connectors

Security_OwsmPolicy Object. Sets the security
policy used for outbound
security.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Connector

Affects: Connectors

Security_SsoRedirectWh
itelist

String. Lists the URL
patterns for the SSO
redirect_uri parameter
values that are permitted.

disallow Scope: Instance,
Backend

Affects: SSO Token
Relay

Appendix B
Mobile Hub Policies and Values

B-7

Policy Type / Description Default Value Scope / Affects

Security_TokenExchange
TimeoutPolicy

String. Defines the policy
that governs the expiration
time for tokens generated
and issued as a result of
token exchange.

Valid values are:

• FromTimeoutSecs -
token expiry time is
governed by the
Security_TokenExcha
ngeTimeoutSecs
policy.

• FromExternalToken -
token expiry time is set
to the same time as the
external token expiry
time.

• FromExternalTokenLimit
edByTimeoutSecs -
token expiry time is set
to the value determined
from the
Security_TokenExcha
ngeTimeoutSecs policy
or the external token
expiry time, whichever
comes first.

FromTimeoutSe
cs

Scope: Instance

Affects: SSO Token
Exchange

Security_TokenExchange
TimeoutSecs

Integer. Sets the token
expiration time for SSO login.

216000 s Scope: Instance

Affects: SSO Token
Relay

Appendix B
Mobile Hub Policies and Values

B-8

Policy Type / Description Default Value Scope / Affects

Security_TransportSecu
rityProtocols

String. Specifies a list of the
TLS/SSL protocols that
should be used for the
outbound connection for the
specific connector. By
default, only TLSv1.2
protocols are used for
outbound connections. This
property can be used to
override the system defaults
so that connections can be
established to legacy
systems that don't support
new versions of TLS/SSL.

Caution: Use this property
carefully as older protocols
are more vulnerable to
security exploits.

Valid value is a comma
separated list of the
TLS/SSL protocols. Note that
extra spaces around the
protocol names are ignored.
For example, TLSv1,
TLSv1.1, TLSv1.2.

Supported protocols are:
SSLv2Hello, TLSv1,
TLSv1.1, TLSv1.2.

No default value Scope: Connectors,
Fully-qualified
Connectors

Affects: All Connectors

Sync_CollectionTimeToL
ive

Integer. Sets the default
amount of time that data
requested by a mobile app
from a storage collection
remains in the local cache
that’s used by the
Synchronization library.

86400 s

Set this policy as
needed.

Scope: Instance

Affects: Storage

Url_PercentEncodeQuery
ParameterSpaces

Boolean. Controls how
spaces in query parameters
of a URL are encoded. If set
to true encodes spaces as
%20; and encodes them as
+ otherwise. Spaces in other
parts of the URL are always
encoded as %20.

false Scope: Connector

Affects: REST
Connector

Appendix B
Mobile Hub Policies and Values

B-9

C
Security Policies for Connector APIs

Connecting to external services usually requires some degree of authentication and
authorization. When you configure a connector API, you have the option of specifying the
security policies to use when communicating with an external service (except for ICS
Connector APIs where the security policy is determined by the WSDL for SOAP-based
integrations).

Descriptions of the supported Oracle Web Services Manager (Oracle WSM) security policies
for the REST, SOAP, ICS, and Fusion Applications Connector APIs are provided here.
Additionally, the policy properties that you can override are also described along with a
mapping of policy properties to the policies that contain them.

Note that for connector APIs, only client policies are valid.

Security Policies for REST Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for REST
Connector APIs are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_policy Includes user name and password in an HTTP
Basic Authorization header.

http_jwt_token_client_policy Includes a JWT token in the HTTP header. A
JSON Web Token represents claims and is
generally used in Federated Identity systems
where the source and target have mutual trust and
a shared identity realm. The JWT token is create
automatically. The issuer name and subject name
are provided either programmatically or
declaratively through the policy. You can specify
the audience restriction condition for this policy.

http_jwt_token_identity_switch_client_p
olicy

Includes JWT token in the HTTP header. Similar to
http_jwt_token_client_policy but this policy
also performs dynamic identity switching by
propagating a different identity than the one based
on authenticated Subject (mobile user).

http_jwt_token_over_ssl_client_policy Includes a JWT token in the HTTP header. A
JSON Web Token represents claims and is
generally used in Federated Identity systems
where the source and target have mutual trust and
a shared identity realm. The JWT token is created
automatically. The issuer name and subject name
are provided either programmatically or
declaratively through the policy. You can specify
the audience restriction condition for this policy.
This version of the policy enforces that
connections are made over https.

C-1

Security Policy Description

http_saml20_token_bearer_client_policy Includes SAML 2.0 tokens in the HTTP header.
SAML provides single sign-on in that multiple
services can redirect a user to a single identity
provider, which supplies signed assertion tokens.
The SAML token with confirmation method
Bearer is created automatically.

http_saml20_token_bearer_over_ssl_clien
t_policy

Includes SAML 2.0 tokens in the HTTP header.
SAML provides single sign-on in that multiple
services can redirect a user to a single identity
provider, which supplies signed assertion tokens.
The SAML token with confirmation method
Bearer is created automatically. This version of
the policy enforces that connections are made
over https.

oauth2_config_client_policy Provides information about the OAuth2 server,
which preforms authorization and issues the
access tokens.

You must set both this policy and oracle/
http_oauth2_token_client_policy together.

http_oauth2_token_client_policy Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources..

You must set both this policy and oracle/
oauth2_config_client_policy together.

http_oauth2_token_over_ssl_client_polic
y

Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected resources.

You must set both this policy and oracle/
oauth2_config_client_policy together. This
version of the policy enforces that connections are
made over https.

Security Policies for SOAP Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security polices for
SOAP connectors are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes credentials in the HTTP header for
outbound client requests. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

Appendix C
Security Policies for SOAP Connector APIs

C-2

Security Policy Description

wss_http_token_client_policy Includes credentials in the HTTP header for
outbound client requests. The credentials can
be provided either programmatically or through
the current Java Authentication and
Authorization Service (JAAS) subject. This
policy can be applied to any HTTP-based
client. Note: Currently only HTTP Basic
Authentication is supported.

wss_http_token_over_ssl_client_polic
y

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

wss_saml_token_bearer_client_policy Includes the SAML Bearer token in outbound
SOAP request messages. The SAML token is
automatically created and is by default signed
with an enveloped signature. The issuer name
and subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject.

wss_saml_token_bearer_over_ssl_clien
t_policy

Includes SAML tokens in outbound SOAP
request messages. The SAML token with
confirmation method Bearer is automatically
created. The issuer name and subject name
are provided either programmatically or
through the current Java Authentication and
Authorization Service (JAAS) subject. The
policy also verifies that the transport protocol
provides SSL message protection. This policy
can be attached to any SOAP-based client

wss_saml20_token_bearer_over_ssl_cli
ent_policy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token
with confirmation method Bearer is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

Appendix C
Security Policies for SOAP Connector APIs

C-3

Security Policy Description

wss_saml20_token_bearer_over_ssl_not
imestamp_client_policy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token
with confirmation method Bearer is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. The SOAP header contains no
timestamp. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_saml20_token_over_ssl_client_pol
icy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_username_token_client_policy Includes credentials in the WS-Security
UsernameToken header for all outbound
SOAP request messages. Only the plain text
mechanism is supported. The credentials can
be provided either programmatically, through
the Java Authentication and Authorization
Service (JAAS), or by a reference in the policy
to the configured credential store. This policy
can be attached to any SOAP-based client.

wss_username_token_over_ssl_client_p
olicy

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

wss10_message_protection_client_poli
cy

Provides message integrity and confidentiality
for outbound SOAP requests in accordance
with the WS-Security v1.0 standard. It uses
WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key
mechanism for message confidentiality, SHA-1
hashing algorithm for message integrity, and
AES-128 bit encryption. The keystore on the
client side is configured either on a per-
request basis or through the security
configuration. This policy doesn’t authenticate
or authorize the requestor.

Appendix C
Security Policies for SOAP Connector APIs

C-4

Security Policy Description

wss10_saml_hok_token_with_message_pr
otection_client_policy

Provides message-level protection and a
SAML holder of key based authentication for
outbound SOAP messages in accordance with
the WS-Security 1.0 standard. It uses WS-
Security's Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouchers
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss10_saml_token_client_policy Includes SAML tokens in outbound SOAP
request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject.

wss10_saml_token_with_message_protec
tion_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 128
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-128 bit encryption.
The keystore on the client is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouchers
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss10_saml20_token_client_policy Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction can be specified.

Appendix C
Security Policies for SOAP Connector APIs

C-5

Security Policy Description

wss10_saml20_token_with_message_prot
ection_client_policy

Provides message-level protection and SAML
V2.0 based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 and SAML Token profile 1.1 standards. It
uses WS-Security's Basic 128 suite of
asymmetric key technologies, specifically RSA
key mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML V2.0 token, included in
the SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss10_x509_token_with_message_protec
tion_client_policy

Provides message-level protection and
certificate credential population for outbound
SOAP requests in accordance with the WS-
Security 1.0 standard. It uses WS-Security's
Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Authentication credentials are
included in the SOAP message through the
WS-Security binary security token. These
credentials are provided either
programmatically or through the security
configuration

wss10_saml_token_with_message_protec
tion_ski_basic256_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 256
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-256 bit encryption.
This policy uses the Subject Key Identifier (ski)
reference mechanism for an encryption key in
the request and for both signature and
encryption keys in the response. The keystore
on the client is configured either on a per-
request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

Appendix C
Security Policies for SOAP Connector APIs

C-6

Security Policy Description

wss10_username_id_propagation_with_m
sg_protection_client_policy

Enables message-level protection (that is,
integrity and confidentiality) and identity
propagation for outbound SOAP requests
using mechanisms described in WS-Security
1.0. Message protection is provided using WS-
Security's Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for confidentiality, SHA-1 hashing
algorithm for integrity and AES-128 bit
encryption. The keystore on the client side is
configured either on a per request basis or
through the security configuration. Credentials
(only user name) are included in outbound
SOAP request messages via a WS-Security
UsernameToken header. No password is
included. The user name included can be
provided either programmatically, via the
current JAAS Subject or by a reference in the
policy itself to the configured credential store.
This policy can be applied to any SOAP-based
client.

wss10_username_token_with_message_pr
otection_client_policy

Provides message-level protection (message
integrity and confidentiality) and authentication
for outbound SOAP requests in accordance
with the WS-Security v1.0 standard. It uses
WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key
mechanism for message confidentiality, SHA-1
hashing algorithm for message integrity, and
AES-128 bit encryption. The keystore on the
client side is configured either on a per-
request basis or through the security
configuration. Credentials are included in the
WS-Security UsernameToken header in the
outbound SOAP message. Only plain text
mechanism is supported. Credentials can be
provided either programmatically through the
current Java Authentication and Authorization
Service (JAAS) subject, or by a reference in
the policy to the configured credential store.
This policy can be attached to any SOAP-
based client.

Appendix C
Security Policies for SOAP Connector APIs

C-7

Security Policy Description

wss10_username_token_with_message_pr
otection_ski_basic256_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 256
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-256 bit encryption.
This policy uses the Subject Key Identifier (ski)
reference mechanism for encryption key in the
request and for both signature and encryption
keys in the response. The keystore on the
client is configured either on a per-request
basis or through the security configuration. A
SAML token, included in the SOAP message,
is used in SAML-based authentication with
sender vouches confirmation. These
credentials are provided either
programmatically or through the security
configuration.

wss11_x509_username_token_with_messa
ge_protection_client_policy

Provides message-level protection and
certificate-based authentication for outbound
SOAP requests in accordance with the WS-
Security 1.1 standard. Messages are protected
using WS-Security's Basic 128 suite of
symmetric key technologies, specifically RSA
key mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Credentials are included in the
WS-Security binary security token of the
SOAP message. These credentials are
provided either programmatically or through
the security configuration.

wss11_saml_token_identity_switch_wit
h_message_protection_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
requests in accordance with the WS-Security
1.1 standard. Messages are protected using
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration. This policy performs dynamic
identity switching by propagating a different
identity than the one based on an
authenticated Subject. This policy can be
attached to any SOAP-based client.

Appendix C
Security Policies for SOAP Connector APIs

C-8

Security Policy Description

wss11_message_protection_client_poli
cy

Provides message integrity and confidentiality
for outbound SOAP requests in accordance
with the WS-Security 1.1 standard. It uses
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. This policy doesn’t authenticate
or authorize the requestor.

wss11_saml_token_with_message_protec
tion_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
requests in accordance with the WS-Security
1.1 standard. Messages are protected using
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration. This policy can be attached to
any SOAP-based client.

wss11_username_token_with_message_pr
otection_client_policy

Provides message-level protection and
authentication for outbound SOAP requests in
accordance with the WS-Security 1.1
standard. Messages are protected using WS-
Security's Basic 128 suite of symmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Credentials are included in the
WS-Security UsernameToken header of
outbound SOAP request messages. Only the
plain text mechanism is supported. Credentials
are provided either programmatically through
the current Java Authentication and
Authorization Service (JAAS) subject or by a
reference in the policy to the configured
credential store. This policy can be attached to
any SOAP-based client.

Appendix C
Security Policies for SOAP Connector APIs

C-9

Security Policies for ICS Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for ICS
Connector APIs are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes credentials in the HTTP header for
outbound client requests. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_http_token_over_ssl_client_polic
y

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_username_token_over_ssl_client_p
olicy

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

Security Policies for Fusion Applications Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for
REST Connector APIs are described in the following table:

Security Policy Description

wss_http_token_client_policy Includes credentials in the HTTP header for
outbound client requests. The credentials can
be provided either programmatically or through
the current Java Authentication and
Authorization Service (JAAS) subject. This
policy can be applied to any HTTP-based
client. Note: Currently only HTTP Basic
Authentication is supported.

Appendix C
Security Policies for ICS Connector APIs

C-10

Security Policy Description

wss_saml_token_bearer_over_ssl_clien
t_policy

Includes SAML tokens in outbound SOAP
request messages. The SAML token with
confirmation method Bearer is automatically
created. The issuer name and subject name
are provided either programmatically or
through the current Java Authentication and
Authorization Service (JAAS) subject. The
policy also verifies that the transport protocol
provides SSL message protection. This policy
can be attached to any SOAP-based client

oauth2_config_client_policy Provides information about the OAuth2 server,
which preforms authorization and issues the
access tokens.

You must set both this policy and oracle/
http_oauth2_token_client_policy
together.

http_oauth2_token_client_policy Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources..

You must set both this policy and oracle/
oauth2_config_client_policy together.

http_oauth2_token_over_ssl_client_po
licy

Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources.

You must set both this policy and oracle/
oauth2_config_client_policy together.
This version of the policy enforces that
connections are made over https.

Security Policy Properties
Every security policy has a set of attributes that defines it. Some of these attributes can be
overridden (see Setting Security Policies and Policy Overrides for REST Connector APIs and
Setting Security Policies and Policy Overrides for SOAP Connector APIs). The following
table lists the attributes that you can modify and their descriptions:

Property Description

attesting.mapping.structure The mapping attribute used to represent the attesting
entity. Only the DN (distinguished name) is currently
supported. This attribute is applicable only to sender
vouches and then only to message protection use
cases. It isn’t applicable to SAML over SSL policies.

Appendix C
Security Policy Properties

C-11

Property Description

audience.uri Audience restriction. The following conditions are
supported:

• If not set, the service URL is used as the audience
URI

• If set to NONE (case insensitive), the audience URI
is set to null

• If set to a value other than NONE, the audience
URI is set to this value

authz.code The previously obtained OAuth2 authorization code.

csf.key Credential Store key that maps to a user name and
password in the Oracle Platform Security Services
identity store.

csf.map Oracle WSM map in the credential store that contains
the CSF aliases.

federated.client.token The federated identity that enables you to consolidate
the multiple local identities that you’ve configured
among multiple service providers. Allows you to log on
at one service provider site without having to re-
authenticate or re-establish your identity.

include.certificate The signer's certificate.

issuer.name Name of the JWT issuer. The default value is
www.oracle.com

keystore.enc.csf.key The alias and password used for storing the decryption
key password in the keystore. If you set this value, then
you can override it. If you do override this value, then
the key for the new value must be in the keystore. That
is, overriding the value doesn’t free you from the
requirement of configuring the key in the keystore.

keystore.recipient.alias Keystore alias associated with the peer certificate. The
security runtime uses this alias to extract the peer
certificate from the configured keystore and to encrypt
messages to the peer. Valid value is orakey.

keystore.sig.csf.key The alias and password used for storing the signature
key password in the keystore. This property allows you
to specify the signature key on a per-attachment level
instead of at the domain level.

oauth2.client.csf.key The Credential Store Framework key to the OAuth2
client username and password. The client credentials
are the same on every request.

propagate.identity.context Propagation of the identity context from the web service
client to the web service, and then makes it available
("publishes it") to other components for authentication
and authorization purposes. This is applicable to both
SAML and OAuth, but not to HTTP Basic
Authentication.

redirect.uri The redirect URI specified when obtaining the
authorization code (set this property if setting
authz.code).

role SOAP role

saml.assertion.filename Name of the SAML token file.

Appendix C
Security Policy Properties

C-12

Property Description

saml.audience.uri Representation of the relying party, as a comma-
separated URI. This field accepts the following
wildcards:

• * in any location
• /* at the end of the URI
• .* at the end of the URI

saml.enveloped.signature.required Flag that specifies whether the Bearer token is signed
using the domain signature key. You can override the
domain signature key using the private signature key
configured using keystore.sig.csf.key. Set this
flag to false (in both the client and service policy) to
have the Bearer token be unsigned.

saml.issuer.name Name identifier for the issuer of the SAML token.

scope Ability for a user to grant the client application access to
specific resources rather than a blanket
authorization. .Passed to the OAuth2 server token
request

subject.precedence Identification of the authenticated principal. If set to
false, then allows use of a client-specific user name
rather than the authenticated subject. If set to true, then
the user name to create the SAML assertion is obtained
only from the Subject. Similarly, if set to false, the user
name to create the SAML assertion is obtained only
from the csf-key user name property.

token.uri The OAuth2 server's token endpoint URI, which issues
the access tokens.

user.attributes User attributes related to the principal of the SAML
token. Attributes are added as a comma-separated list.
The attribute names that you specify must exactly
match valid attributes in the configured identity store.
The Oracle WSM runtime reads the values for these
attributes from the configured identity store, and then
includes the attributes and their values in the SAML
assertion.

user.roles.include (SOAP) Flag that specifies whether to include SOAP
roles.

(REST) User roles to be included in the token. If set to
true, then the authenticated user roles are included in
the token as private claims. The default is false.

user.tenant.name Reserved for use with Oracle Cloud.

The following table shows which security policies have these attributes:

Property Security Policies Containing the Property

attesting.mapping.structure SOAP security policies:

wss10_saml20_token_with_message_protection_clien
t_policy
wss11_saml20_token_with_message_protection_clien
t_policy

Appendix C
Security Policy Properties

C-13

Property Security Policies Containing the Property

audience.uri REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

authz.code REST security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-14

Property Security Policies Containing the Property

csf.key REST security policies:

http_basic_auth_over_ssl_client_policy
http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
SOAP security policies:

http_basic_auth_over_ssl_client_policy
wss_http_token_client_policy
wss_http_token_over_ssl_client_policy
wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss_username_token_client_policy
wss_username_token_over_ssl_client_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20__token_with_message_protection_clie
nt_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss10_username_token_with_message_protection_cli
ent_policy
wss10_username_token_with_message_protection_ski
_basic256_client_policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
wss11_username_token_with_message_protection_cli
ent_policy
Fusion Applications security policies:

wss_http_token_client_policy
wss_saml_token_bearer_over_ssl_client_policy
ICS security policies:

http_basic_auth_over_ssl_client_policy
ICS security policies:

Appendix C
Security Policy Properties

C-15

Property Security Policies Containing the Property

http_basic_auth_over_ssl_client_policy
Fusion Applications security policies:

wss_http_token_client_policy
wss_saml_token_bearer_over_ssl_client_policy

csf.map REST security policy:

http_jwt_token_identity_switch_client_policy
federated.client.token REST security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

include.certificate REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

issuer.name REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-16

Property Security Policies Containing the Property

keystore.enc.csf.key SOAP security policies:

wss10_message_protection_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_x509_token_with_message_protection_client_
policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss10_username_id_propagation_with_msg_protectio
n_client_policy
wss10_username_token_with_message_protection_cli
ent_policy
wss10_username_token_with_message_protection_ski
_basic256_client_policy
wss11_x509_token_with_message_protection_client_
policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_message_protection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
wss11_username_token_with_message_protection_cli
ent_policy

Appendix C
Security Policy Properties

C-17

Property Security Policies Containing the Property

keystore.recipient.alias SOAP security policies:

wss10_message_protection_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_x509_token_with_message_protection_client_
policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss10_username_id_propagation_with_msg_protectio
n_client_policy
wss10_username_token_with_message_protection_cli
ent_policy
wss10_username_token_with_message_protection_ski
_basic256_client_policy
wss11_x509_token_with_message_protection_client_
policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_message_protection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
wss11_username_token_with_message_protection_cli
ent_policy

Appendix C
Security Policy Properties

C-18

Property Security Policies Containing the Property

keystore.sig.csf.key REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss10_message_protection_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_x509_token_with_message_protection_client_
policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss10_username_id_propagation_with_msg_protectio
n_client_policy
wss10_username_token_with_message_protection_cli
ent_policy
wss10_username_token_with_message_protection_ski
_basic256_client_policy
wss11_x509_token_with_message_protection_client_
policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
wss_saml_bearer_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-19

Property Security Policies Containing the Property

oauth2.client.csf.key REST security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

propagate.identity.context REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
wss_saml_token_bearer_over_ssl_client_policy

redirect.uri REST security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-20

Property Security Policies Containing the Property

role REST security policy:

oauth2_config_client_policy
SOAP security policies:

wss_http_token_client_policy
wss_http_token_over_ssl_client_policy
wss_username_token_client_policy
wss_username_token_over_ssl_client_policy
wss10_message_protection_client_policy
wss10_x509_token_with_message_protection_client_
policy
wss10_username_id_propagation_with_msg_protectio
n_client_policy
wss10_username_token_with_message_protection_cli
ent_policy
wss10_username_token_with_message_protection_ski
_basic256_client_policy
wss11_message_protection_client_policy
ICS security policies:

wss_username_token_over_ssl_client_policy
Fusion Applications security policies:

wss_http_token_client_policy
http_oauth2_config_client_policy

saml.assertion.filename SOAP security policy:

wss10_saml_hok_token_with_message_protection_cli
ent_policy

Appendix C
Security Policy Properties

C-21

Property Security Policies Containing the Property

saml.audience.uri REST security policies:

http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy
saml.enveloped.signature.required REST security policies:

http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-22

Property Security Policies Containing the Property

saml.issuer.name REST security policies:

http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy
scope REST security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-23

Property Security Policies Containing the Property

subject.precedence REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy
token.uri REST security policy:

oauth2_config_client_policy
Fusion Applications security policies:

http_oauth2_config_client_policy

Appendix C
Security Policy Properties

C-24

Property Security Policies Containing the Property

user.attributes REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-25

Property Security Policies Containing the Property

user.roles.include REST security policies:

http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
SOAP security policies:

wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
Fusion Applications security policies:

http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-26

Property Security Policies Containing the Property

user.tenant.name REST security policies:

http_basic_auth_over_ssl_client_policy
http_jwt_token_client_policy
http_jwt_token_identity_switch_client_policy
http_jwt_token_over_ssl_client_policy
http_saml20_token_bearer_client_policy
http_saml20_token_bearer_over_ssl_client_policy
http_oauth2_token_client_policy
http_oauth2_token_over_ssl_client_policy
SOAP security policies:

http_basic_auth_over_ssl_client_policy
wss_http_token_client_policy
wss_saml_token_bearer_client_policy
wss_saml_token_bearer_over_ssl_client_policy
wss_saml20_token_bearer_over_ssl_client_policy
wss_saml20_token_over_ssl_client_policy
wss_username_token_client_policy
wss_username_token_over_ssl_client_policy
wss10_saml_hok_token_with_message_protection_cli
ent_policy
wss10_saml_token_client_policy
wss10_saml_token_with_message_integrity_client_p
olicy
wss10_saml_token_with_message_protection_client_
policy
wss10_saml20_token_client_policy
wss10_saml20_token_with_message_protection_clien
t_policy
wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy
wss11_saml_token_identity_switch_with_message_pr
otection_client_policy
wss11_saml_token_with_message_protection_client_
policy
wss11_saml20_token_with_message_protection_clien
t_policy
wss11_username_token_with_message_protection_cli
ent_policy
ICS security policies:

http_basic_auth_token_over_ssl_client_policy
http_username_token_over_ssl_client_policy
Fusion Applications security policies:

wss_http_token_client_policy
http_oauth2_token_client_policy

Appendix C
Security Policy Properties

C-27

Property Security Policies Containing the Property

http_oauth2_token_over_ssl_client_policy
wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-28

D
Write Swift Applications Using the iOS Client
SDK

You can also use the Mobile Hub iOS client SDK with Swift applications.

Here are the general steps you take to work with Swift and the client SDK, using Xcode as
your IDE:

1. Add the bridging header files.

2. Add the SDK header files and libraries.

3. Add the Objective-C linker flag.

4. Compile and link your app using the iOS client SDK as you would any other iOS project
in Xcode.

Note:

Using the SDK with Swift has all the same dependencies as using the SDK with
Objective-C. For the list of dependencies, see Libraries and Dependencies.

For more information on how to work effectively with Swift and Objective-C, see Apple’s
documentation: https://developer.apple.com/library/content/documentation/Swift/Conceptual/
BuildingCocoaApps/InteractingWithObjective-CAPIs.html.

Add the Bridging Header File
You need to use a bridging header file to import the header files of the Objective-C public
classes that your Swift app calls. All of the available public classes in the Oracle Mobile Hub
client SDK can be found in the SDK’s include folder.

To create a bridging header file in Xcode:

1. Select File > New... > File... and then from iOS/Source choose Header file using the .h
icon. You can give the bridging header file any name you choose.

Depending on the SDK classes that your app uses, the contents should look something
like the following:

#ifndef GettingStartedSwift_Bridging_Header_h
#define GettingStartedSwift_Bridging_Header_h

#import "OMCCore.h"
#import "OMCAuthorization.h"
#import "OMCMobileBackend.h"
#import "OMCMobileManager.h"
#import "OMCServiceProxy.h"
#import "OMCUser.h"

D-1

https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html

#import "OMCStorage.h"
#import "OMCMobileBackend+OMC_Storage.h"
#import "OMCStorageCollection.h"
#import "OMCStorageObject.h"

#import "OMCSynchronization.h"
#import "OMCMobileBackend+OMC_Synchronization.h"
#import "OMCFetchObjectCollectionBuilder.h"
#import "OMCMobileResource.h"
#import "OMCSyncGlobals.h"

#import "OMCAnalytics.h"
#import "OMCMobileBackend+OMC_Analytics.h"

#import "OMCNotifications.h"
#import "OMCMobileBackend+OMC_Notifications.h"

#import "OMCLocation.h"
#import "OMCMobileBackend+OMC_Location.h"

#endif /* GettingStartedSwift_Bridging_Header_h */

2. After you have created the header file, note the location of the file in the Build
Settings for the Objective-C Bridging Header setting.

It’s best to keep the header location specified relative to the project, rather than as
an absolute path, in case the project is shared.

Add the SDK Headers and Libraries to a Swift App
The set of headers and libraries you add depends upon which of the client SDK’s static
libraries you include in your app. At a minimum, you need the libOMCCore.a and
libIDMMobileSDK.a libraries.

To add the SDK headers and libraries:

1. Download and unzip the Oracle Mobile Hub SDK.

2. From the location where you’ve unzipped the SDK files, drag the libraries and
header files you want into your Swift project in Xcode.

The contents of the SDK libraries are hierarchically arranged by category, so you’ll
need to drag over entire folders to preserve the includes of other headers.

3. Under the Build Phases settings, add the static libraries plus the iOS frameworks
required by the IDM library to the Link with Binary Libraries phase.

4. Add the header files to your search path. Under the project settings, configure the
Header Search Paths to include the location of the parent directory of the SDK
folders, that is, the parent directory of libOMCCore.a, libIDMMobileSDK.a, and so
on. Be sure to use a relative path to the project.

5. Edit the bridging header file to include the header files you’ll actually need for your
code.

Appendix D
Add the SDK Headers and Libraries to a Swift App

D-2

This means that you'll also need to add headers that are used by the class you wish to
use.

For example, to make sure that all the methods of OMCAuthorization.h are accessible,
you’d also need to add OMAuthView.h, OMCUser.h and OMDefinitions.h. Without these
files in the bridging header file, some methods and properties of OMCAuthorization won’t
be visible, and the compiler won’t warn you with errors.

Use SDK Objects in Swift Apps
The rules for converting from Objective-C to Swift are well described in the Apple
documentation. For general information on the relationship and usage of these two
languages together, be sure you look there.

Watch out for the following:

• The auto-complete feature of the Code Editor in Xcode generally works well enough to
get you the mappings. However, sometimes it puts the a label in the first parameter that
isn’t supposed to be there. Watch for it if you’re using auto-complete.

• When Objective-C init methods come over to Swift, they take on native Swift initializer
syntax. This means the init prefix is sliced off and becomes a keyword to indicate that
the method is an initializer. See the Apple documentation for complete details.

• Pay special attention to the ! and ? optional parameter specifications, as well as any
parametrized types in the declarations. The optional types are auto-determined by the
compiler when mapping Objective-C to Swift.

You should be able to compile and run your mobile app using Swift and the Oracle Mobile
Hub client SDK on both the Xcode Simulator and an actual device.

Here’s an example of Objective-C and the comparable Swift code that uses the Oracle Mobile
Hub client SDK.

The following Objective-C code to register a device token for Push notifications:

// Get notifications sdk object
OMCNotifications* notifications = [[appDelegate myMobileBackend]
notifications];

// Register device token with MCS server using notifications sdk
[notifications registerForNotifications:[appDelegate getDeviceTokenData]

onSuccess:^(NSHTTPURLResponse *response) {
 NSLog(@"Device token registered successfully on MCS
server");
 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI here
 }) ;
}

onError:^(NSError *error) {
 NSLog(@"Error: %@",
error.localizedDescription);
 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI here

Appendix D
Use SDK Objects in Swift Apps

D-3

 }) ;
}];

might be written in the following way in Swift:

@IBAction func registerForPushNotifications() {

 // Get notifications sdk object
 let notifications = appDelegate.myMobileBackend().notifications();

 // Get device token first, and assign it here
 let deviceTokenData:NSData! = nil;

 // Register device token with MCS server using notifications sdk
 notifications.registerForNotifications(deviceTokenData, onSuccess:
{ (response:NSHTTPURLResponse!) in

 NSLog("Device token registered successfully on MCS server");

 dispatch_async(dispatch_get_main_queue()) {
 // Update UI here
 }

 }) { (error) in

 print("Error: %@", error.localizedDescription);
 };
}

Appendix D
Use SDK Objects in Swift Apps

D-4

E
Supported Browsers and Languages

Supported Browsers
This table describes the minimum requirements for web browsers that Oracle Mobile Hub
supports.

Web Browser Version

Microsoft Internet Explorer 11

Google Chrome 43

Mozilla Firefox 37, 38

Apple Safari 8.0

Supported Languages
Oracle Mobile Hub supports the following languages in its web interface:

• German (de)

• English (en)

• Spanish (es)

• French (fr)

• Italian (it)

• Japanese (ja)

• Korean (ko)

• Portuguese (pt)

• Chinese - Simplified (zh_CN)

• Chinese - Traditional (zh_TW)

E-1

F
Identity Provider Integration

Here are the steps you need to follow to integrate various third-party identity providers with
Mobile Hub.

Use Case: Configuring OKTA to Obtain a SAML Token
Here are the required fields that you must fill-in if you’re configuring a SAML 2.0 app from
OKTA.

Assuming that you have a user role with administrator privileges in OKTA:

1. Log in to OKTA.

2. Click Admin.

3. Go to the Directory tab and specify the users to have access privileges to the application:

• Select People to specify individual users.

• Select Group to specify a group of users.

By setting a group, you can later map a group of individuals to specific Mobile Hub
roles by setting Role Attribute rules in the Keys and Certificates dialog.

• Select Directory Integration, then Add Active Directory to include all the users in
the directory server or, alternatively, select LDAP to include all the users in an LDAP
directory server

4. Go to the Applications tab and click Add Application to create a new SAML 2.0
application.

5. On the General Settings page, configure the SAML application.

You’ll see several fields to fill in. For the token to be viable with Mobile Hub, you must fill-
in the following fields:

• Single Sign-On URL. This is the redirect URL where the response from the third-
party IdP is sent. For example:

https://hostname:####/saml
• Audience URI. This is the intended audience of the SAML assertion and ensures

that you can exchange an externally-issued SAML token that you need to call Mobile
Hub APIs. Set this value to the Mobile Hub SSO token exchange endpoint.

You construct this endpoint by appending /mobile/platform/sso/exchange-token to
your instance’s base URL. You can determine the base URL by opening any mobile
backend in Mobile Hub, clicking its Settings tab, and looking in the Environment
URLs section. For example:

https://hostname:443/mobile/platform/sso/exchange-token

• Group Statement. This is where you can add additional group attributes to the
token. In this field, you can filter which groups to add. There are different types of
filtering options that you can choose from. For instance, if you used a naming

F-1

convention for your group names, you can set an option (Regex or Start with)
to filter groups that begin with a specific prefix.

For example, say you defined several group of users, two groups for FixItFast
employees, FIF-group1 and FIF-group2, and a group for RepairItFast
employees, RIF-group1. If you enter FIF* as a value, only the users in the
FixItFast group are added to the token.

6. Once you’ve configured the app, go to the Single Sign-On page.

This is where you’ll get the token issuer name that you’ll enter into the Token
Issuer panel of the token issuer in Settings > Credentials in Mobile Hub. See
Adding a Token Issuer in Managing Oracle Mobile Hub.

You’ll also want to get token certificate contents from this page and paste them in
the Certificate panel for the certificate in Settings > Credentials. See Configuring
a Web Service or Token Certificate in the same guide.

Use Case: Configuring AD FS to Obtain a SAML Token
Configuring Active Directory Federation Services (AD FS) to obtain a SAML token
involves providing similar information as you would for configuring another identity
provider to obtain the token. You’ll configure an audience, provide a redirect URL to
obtain the token, and configure some rules.

In addition to having access to the AD FS server, you’ll need the following items:

• A defined set of users and groups.

• A Certificate Authority (CA) root certificate and a Signing Certificate from a valid
certificate authority. You’ll import these certificates into your AD FS instance.

These are the token certificates and corresponding private key that are imported
into AD FS so that it can generate and sign SAML tokens. These certificates must
also be added to the Token Certificates panel of the CSF Keys and Certificate
dialog in Mobile Hub so that Mobile Hub can validate the token. These are the
token certificates that will be associated with the token issuer in Mobile Hub.

For testing purposes, you can create a root certificate and a self-signing certificate as
shown in the following examples but don’t use them in a production environment.

Here’s an example of how to create a root certificate:

$ openssl req -x509 -nodes -days 3650 -subj "/C=US/ST=CA/L=Local/
O=SampleCA/OU=Self-Signed/CN=ca.test.local" -newkey rsa:2048 -keyout
testCARootPrivateKey.key -out testCARootCertificate.crt

Here’s an example of how to create a new key pair and the corresponding certificate:

$ openssl req -nodes -days 3650 -subj "/C=US/ST=CA/L=Local/O=SampleCA/
OU=Self-Signed/CN=sts-signing.test.local" -newkey rsa:2048 -keyout
testSigningPrivateKey.key -out testSigningCertificate.csr

$ openssl x509 -req -days 3650 -in testSigningCertificate.csr -
CA ../ca/testCARootCertificate.crt -CAkey ../ca/
testCARootPrivateKey.key -CAcreateserial -out
testSigningCertificate.crt

Appendix F
Use Case: Configuring AD FS to Obtain a SAML Token

F-2

$ openssl pkcs12 -export -out testSigningCertificate.pfx -inkey
testSigningPrivateKey.key -in testSigningCertificate.crt

Creat Users and Groups
You need to create users and assign them to groups in AD FS. In Mobile Hub, these user
groups are mapped to existing Mobile Hub roles. This assumes that you have the AD FS
server installed.

Start AD and add users:

1. Select Tools > Active Directory Users and Computers.

2. Open the Active Directory and Users and Computers folder.

This is the directory where you’ll add users and groups.

3. Right-click the Users folder and select New > User.

4. In the New Object - User dialog, provide a first and last name for each user you add and
the user logon name. The logon name must match the user email address for that user in
Mobile Hub.

For example, if the user is John Smith, and his address is jsmith@local.domain, the
address must match the email address for user John Smith in Mobile Hub.

5. Click Next and then OK to add the user.

Repeat these steps for each user you want to add.

To add a group and assign a user to it:

1. Right-click the Users folder in the Active Directory and Users and Computers
directory and select New > Group.

2. In the New Object - Group dialog, enter a name for the group.

3. Leave the default settings of Global and Security, for Group Scope and Group Type and
click OK.

4. Right-click on the user name in the Active Directory and Users and Computers
directory and select Add to a group....

5. In the Select Group dialog, click Advanced.

6. In the advanced version of the Select Groups dialog, click Find Now.

7. Locate the group name from the Search results list, select it, and click OK.

8. Click OK in the Select Group dialog to complete the group assignment.

To verify that you’ve added the user to the correct group:

1. Click on the group name in the Active Directory and Users and Computers directory
to open the group’s properties dialog.

2. In the properties dialog, click Members and look to see if the user you added is listed.

A group should have a corresponding role in Mobile Hub. The user assigned to the group
would then be assigned to the corresponding Mobile Hub role.

Appendix F
Use Case: Configuring AD FS to Obtain a SAML Token

F-3

Configure the SAML App
After you’ve added your users and groups and have a valid root certificate and signing
certificate, you can configure the SAML token. You’ll begin by adding and configuring a
relying party trust. The relying party defines the way in which AD FS recognizes the
relying party application and issues claims to it.

1. From the Server Manager, select Tools > AD FS Management.

2. In the AD FS window, select Action > Add Relying Party Trust....

3. Click Start in the Add Relying Trust wizard.

4. On the Select Data Source panel, select Enter data about the relying party
trust manually option.

5. Click Next to go to the Specify Display Name panel.

6. Enter the name of your SAML app in the Display Name field.

This app name will be listed in the Trust Relationships > Relying Party Trust
directory after you add it.

7. Click Next to go to the Choose Profile panel.

8. Select AD FS profile (the default value).

This is the profile type that supports the SAML 2.0 protocol.

9. Click Next and Next again to go to the Configure URL panel.

You can upload the signing certificate on the Configure Certificate panel now or
upload it later. You don’t need to upload an encryption certificate unless you want
the SAML assertion encrypted as well as signed. Having an encrypted SAML
assertion can be useful in cases where sensitive data is added to the SAML
assertion claims.

10. Select Enable support for the SAML 2.0 Web SSO protocol and enter the
redirect URL in the Relying party SAML 2.0 SSO service URL field.

The redirect URL is the address where you want the request to post back to so
you can intercept the token.

11. Click Next to go to the Configure Identifiers panel.

12. Enter the SSO token endpoint in the Relying party trust identifier field and click
Add.

You construct this endpoint by appending /mobile/platform/sso/exchange-token
to your instance’s base URL. You can determine the base URL by opening any
mobile backend in Mobile Hub, clicking its Settings tab, and looking in the
Environment URLs section. For example:

https://hostname:443/mobile/platform/sso/exchange-token

This is how you specify the audience for the SAML assertion.

13. Click Next to go to the Configure Multi-factor Authentication Now panel.

Use the default setting, I do not want to configure multi-factor authentication
settings for this relying party trust.

14. Click Next to go to the Choose Issuance Authorization Rules panel.

Appendix F
Use Case: Configuring AD FS to Obtain a SAML Token

F-4

Use the default setting, Permit all users to access this relying party.

15. Click Next to go to the Ready to Add Trust panel, click Next again.

16. Click Finish.

Leave the default setting, Open the Edit Claim Rules dialog for this relying party
trust to continue configuring your SAML app.

17. Click Close to exit the wizard.

The Edit Claim Rules dialog opens when you exit the wizard.

Configure Claim Rules
The next step to configure your SAML app is setting the claim rules. The claim rule specifies
how the values for LDAP attributes are mapped to the outgoing claim type. You’ll use the Add
Transform Claim Rule wizard available from the Edit Claim Rules dialog to add AD claims
and transform NameID transform rule which specify the claims that are sent to the relying
party.

1. Open the Relying Party Trust folder under the Trust Relationships directory and
right-click your app name. Then select Edit Claim Rules.

If you’re continuing on from the previous section, the Edit Claim Rules dialog opens
automatically when you exit the Add Relying Trust wizard.

2. Make sure the Issuance Transform Rules tab is open and click Add Rule to open the
Add Transform Claim Rule wizard.

3. In the Choose Rule Type tab, select the Send LDAP Attributes as Claims template
from the drop-down list.

4. Click Next to go to the Configure Claim Rule tab.

5. Enter a claim rule name. For example, AD Claims.

6. Select Active Directory as the Attribute store.

In the next set of steps, you’ll map the LDAP attributes to the outgoing claim types:

LDAP Attributes Outgoing Claim Type

E-Mail Addresses E-Mail Address

Token-Groups-Unqualified Name Group

User-Principal-Name Common Name

7. Open the LDAP Attributes list and select E-Mail Addresses.

8. Open the Outgoing Claim Type list and select E-Mail Address.

9. Repeat steps 7 and 8 to map Token-Groups-Unqualified Name to Group and to map
User-Principal-Name to Common Name.

10. Click Finish.

Configure Transform Rules
You set transform rules to map incoming claim types to outgoing claim types and specify the
action that determines what output should occur based on the values from the incoming
claim.

Appendix F
Use Case: Configuring AD FS to Obtain a SAML Token

F-5

1. Open the Edit Claim Rules dialog and open the Issuance Transform Rules tab.

2. Click Add Rule to open the Add Transform Claim Rule wizard.

3. In the Choose Rule Type tab, select Transform an Incoming Claim.

4. Click Next to go to the Configure Claim Rule tab.

5. Perform the following actions on this tab:

• Enter Transform NameID for the transform claim rule.

• Select EMAIL ADDRESS for the incoming claim type.

• Select Name ID for the outgoing claim type.

• Leave as unspecified the ingoing and outgoing nameID formats.

• Select the Pass through all claim values option.

6. Click Finish.

7. Click Apply and OK in the Edit Claim Rules dialog.

Specify the Signature Verification Certificate
You must specify the signature verification certificates for requests from the relying
party trust.

1. Open the Relying Party Trusts folder, right-click your app name, and select
Properties.

2. In the properties dialog for your app, select Signature and click Add.

3. In the Select a Request Signature Verification Certificate dialog, navigate to the
directory where you stored (or created) the signing certificate and select the
certificate.

4. Click Open.

5. (Optional) Click the Endpoints tab in the app properties dialog and review the
SAML assertion endpoints.

Click the endpoint URL to view its details in the Edit Endpoint dialog. The
endpoint type should be SAML Assertion Consume. Set the Binding field for the
type of SAML response to receive:

• If the client expects a POST, set Binding to POST.

• If the client expects to receive the SAML Response as a GET parameter, set
Binding to Redirect.

Note:

There can be issues using a redirect in the case of long assertions
because some browsers have limits to the length of the URL.

Appendix F
Use Case: Configuring AD FS to Obtain a SAML Token

F-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 A Developer’s View of Oracle Mobile Hub
	Client SDKs
	Features for Your Apps
	Custom APIs
	Backends
	Security

	2 Android Apps
	Get the SDK
	Create a Backend
	Add the SDK
	Configure SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Configure Your Android Manifest File
	Call Mobile APIs
	Load the Backend's Configuration
	Authenticate and Log In
	OAuth Consumer
	SSO with a Third-Party Token
	SSO with a Third-Party Token — Staying Logged In
	HTTP Basic
	Facebook

	Call Platform APIs
	Call Custom APIs

	Libraries and Dependencies
	Next Steps

	3 iOS Applications
	Get SDK
	Create a Backend
	Add the SDK
	Configure SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange

	Call Mobile APIs
	Load the Backend's Configuration
	Authenticate and Log In
	OAuth Consumer and HTTP Basic
	SSO with a Third-Party Token
	SSO with a Third-Party Token — Staying Logged In

	Call Platform APIs
	Call Custom APIs

	Libraries and Dependencies
	Next Steps

	4 Cordova Applications
	Get the SDK
	Create a Backend
	Add the SDK
	Add Support for Push Notifications

	Configure SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Call Mobile APIs
	Load the Backend's Configuration
	Authenticate and Log In
	OAuth and HTTP Basic
	SSO with a Third-Party Token
	Facebook

	Secure Browser-Based Apps Against Cross-Site Request Forgery Attacks
	Call Platform APIs
	Call Custom APIs

	Use TypeScript
	Set Up the SDK
	Call Mobile APIs
	Add Support for Location Services (Ionic Only)
	Add Support for Push Notifications (Ionic only)

	Libraries
	Next Steps

	5 JavaScript Applications
	Get the SDK
	Create a Backend
	Add the SDK
	Configure SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Calling Mobile APIs
	Load the Backend's Configuration
	Authenticate and Log In
	OAuth and HTTP Basic
	SSO with a Third-Party Token
	Facebook

	Secure Browser-Based Apps Against Cross-Site Request Forgery Attacks
	Call Platform APIs
	Call Custom APIs

	Use TypeScript
	Set Up the SDK
	Call Mobile APIs
	Add Support for Location Services (Ionic Only)
	Add Support for Push Notifications (Ionic only)

	Libraries
	Next Steps

	6 Xamarin Android Apps
	Get the SDK
	Create a Backend
	Add the SDK
	Configure SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Configure Your Android Manifest File
	Call Mobile APIs
	Load the Backend's Configuration
	Authenticate and Log In
	OAuth Consumer
	SSO with a Third-Party Token
	HTTP Basic
	Facebook

	Call Platform APIs
	User Management
	Location
	Storage
	Notifications
	Analytics
	App Policies

	Call Custom APIs

	7 Xamarin iOS Apps
	Get the SDK
	Create a Backend
	Add the SDK
	Configure SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange

	Call Mobile APIs
	Load the Backend's Configuration
	Authenticate and Log In
	OAuth
	HTTP Basic
	SSO with a Third-Party Token
	Facebook

	Call Platform APIs
	User Management
	Location
	Storage
	Notifications
	Analytics
	App Policies

	Call Custom APIs

	8 Notifications
	What Can I Do with Notifications?
	Set Up a Mobile App for Notifications
	Set Up the Device Handshake for Notifications
	Set Up a Device Handshake for Android (FCM)
	Set Up a Device Handshake for iOS
	Set Up a Device Handshake for Windows

	Send Notifications to and from Your App
	Testing Notifications from the UI
	Cancel a Scheduled Notification from the UI

	Send Notifications Using the Notifications API
	REST
	Register a Device ID
	Send a Text Message Notification
	Send a Notification Using a Unified Payload
	Send a Notification Using a Payload Template
	Cancel Scheduled Notifications

	iOS
	Register a Device ID

	Cordova/JavaScript/TypeScript
	Register a Device ID

	How Are Notifications Sent and Received?
	What is the Device ID or Notification Token?

	Troubleshoot Notifications
	Check Notification Status in the UI
	Check Notification Status with the Notifications REST API

	9 My Profile
	User Types
	Get User Profile Information
	Get Specific User Information
	Update User Profile Information

	10 Storage
	What Can I Do with Storage?
	Android
	Add an Object to a Collection
	Fetch an Object
	Get Multiple Objects from a Collection
	Get a Shared Collection
	Retrieve an Object
	Update an Object
	Upload a New Object to a Collection

	iOS
	Add an Object to a Collection
	Delete an Object
	Download Data to a Collection
	Get a User Isolated Collection
	Get Multiple Objects from a Collection
	Get Object Data as a Stream
	Retrieve a Storage Object
	Updating an Object
	Uploading Data to a Collection

	Cordova, JavaScript, and TypeScript
	Add an Object to a Collection
	Delete an Object
	Fetch an Object
	Get a Collection
	Get an Object from a User Isolated Collection
	Get Multiple Objects from a Collection
	Update an Object

	Custom Code
	Retrieve and Store Collections and Objects

	REST API
	Storage API Endpoints
	Get a Single Collection
	Get All Collections Associated with a Mobile Backend
	Store an Object
	Specify the Object Identifier
	Create an Object (If One Doesn't Already Exist)
	Generate an Object Identifier
	What Happens When an Object is Created?

	Update an Object
	What Happens When an Object Is Updated?
	Optimistic Locking

	Retrieve a List of Objects
	Page Through a List of Objects
	Order
	Query

	Retrieve an Object
	Delete an Object
	Optimize Performance
	Check If Exists
	Put If Absent

	Get If Newer
	Read Part of an Object (Chunk Data)

	Test Runtime Operations Using the Endpoints Page
	Manage Collections
	Shared and User Isolated Collections
	Storage Configuration
	Define a Collection
	Collection Metadata
	Add Access Permissions to a Collection

	Add Objects to a Collection
	Object Metadata

	Update the Collection
	Offline Data Storage
	Associate a Collection with a Backend
	Remove a Collection from a Backend

	11 Data Offline and Sync
	Building Apps that Work Offline Using Sync Express
	Add Sync Express to Your App
	Install the cordova-plugin-file
	Configure Your App to Use Sync Express
	Configure Your App to Handle items Arrays
	Make Your App Synchronize Offline Changes Automatically

	Building Apps that Work Offline Using the Synchronization Library
	What Can I Do with the Synchronization Library?
	Synchronization Library Process Flow
	Video: Overview of the Data Offline & Synchronization API
	Android Synchronization Library
	Set Up Your Mobile App for the Android Synchronization Library
	Fetch Resources
	Fetch Filtered Resources
	Specify Which Resources to Synchronize First
	Change a Resource’s Synchronization Policies
	Change a Fetch Builder’s Synchronization Policy
	Change a Resource Object’s Synchronization Policy

	Detect and Handle Conflicts
	Detect Conflicts After the Library Completes Synchronization
	Detect Conflicts When the Library Updates the Cache

	Review and Discard Offline Edits

	iOS Synchronization Library
	Set Up Your Mobile App for the iOS Synchronization Library
	Fetch Resources
	Fetch Filtered Resources
	Specify Which Resources To Synchronize First
	Change a Resource’s Synchronization Policies
	Change a Fetch Builder’s Synchronization Policy
	Change a Resource Object’s Synchronization Policy

	Detect and Handle Conflicts
	Detect Conflicts After the Library Completes Synchronization
	Detect Conflicts When the Library Updates the Cache

	Review and Discard Offline Edits

	Make Custom APIs Synchronizable
	Design a Synchronization-Compatible API
	Implement a Synchronization-Compatible API
	Configure Synchronization Policies for the Custom API

	Synchronization Policies
	Video: Introduction to the Data Offline & Sync Policies
	Synchronization Policy Options
	Conflict Resolution Policies
	Eviction Policies
	Expiration Policies
	Fetch Policies
	Update Policies

	Video: Deep-Dive into the Data Offline & Sync Policies
	Synchronization Policy Levels and Precedence
	Define Synchronization Policies and Cache Settings in the Configuration File
	Synchronization Configuration Elements
	Cache Settings
	Synchronization Policy Settings
	Resource-Level Configuration
	Backend-Level Configuration
	Android Example Configuration File
	iOS Example Configuration File

	Define Synchronization Policies and Cache Settings in a Response Header

	Get Cache Hits and Misses

	How Synchronization Works with the Storage APIs

	12 Location
	What Can I Do With Location?
	A Few Important Location Terms

	Android
	Query for Location Objects
	Retrieve a Location Object

	iOS
	Query for Location Objects
	Retrieve a Location Object
	Retrieve iBeacon Identifiers
	Define a Geofence
	Retrieve Custom Attributes

	REST API - Location
	Query for Location Devices, Places and Assets
	Querying for Location Devices
	Querying for Places
	Querying for Assets

	Retrieve Location Objects and Properties

	Set Up Location Devices, Places and Assets
	Define Places
	Upload Places Using a CSV File

	Define Location Assets
	Upload Assets Using a CSV File

	Register Location Devices
	Upload Location Devices Using a CSV File

	13 Database
	What Can I Do with Database APIs?
	Database Access API
	Call the Database Access API from Custom Code
	Create and Restructure Database Tables
	Add and Update Table Rows
	Retrieve Table Rows
	Delete Table Rows

	Execute SQL on a Table
	Passing Parameters to the SQL Statement
	Labeling Calculated Columns in Select Statements
	Preserving Case in SQL Statements
	Preventing SQL Injection
	Preventing Passing SQL to the Execute SQL Operation
	Preventing SQL Injection with Bind Parameters

	Database Management API
	Create a Table Explicitly

	14 Analytics
	What Can I Do With Analytics?
	How the Analytics Reports Are Created
	Enable Your Mobile Apps to Report Event Data
	Adding Location Properties to the context Event

	Integrate Analytics into a Mobile App Using the Mobile Client SDK
	Understand Different Types of Analytics Reports
	Access the Analytics Reports
	API Calls Reports
	API Calls Count
	API Calls Response Time

	Events Report
	Events

	User and Session Reports
	User Reports
	Why User Counts Can Vary

	User Session Reports
	New Users
	Active Users
	Session Count
	Session Duration

	Improve User Retention with Funnel Analysis
	Create a Funnel
	Analyze Funnels

	Create Custom Analytics Reports
	How Do I Create a Custom Analytics Report?
	My Reports
	How Do I Run a Custom Report?
	How Do I Edit a Custom Report?

	Track Sessions and Log Events for Mobile Apps
	Create Events and Sessions Using the iOS Library
	Call the Analytics Service
	Designate Sessions
	Associate a Session With Your Mobile App Being in the Foreground
	Add Custom Properties to Events
	Receive the Status of Event Posts

	Create Events and Sessions Using the Android Library
	Take a Look at Events and Sessions in Android Apps

	Define Sessions

	Export Event Data
	Purge Analytics Data
	Troubleshoot Analytics Reports

	15 Live Experience
	Add Live Experience to Your Apps

	16 App Policies
	What Are App Policies and What Can I Do With Them?
	Set an App Policy
	Android
	Retrieve App Policies

	iOS
	Retrieve App Policies

	Cordova
	Retrieve App Policies

	JavaScript
	Retrieve App Policies

	REST
	Retrieve App Policies

	Update an App Policy Value in a Published Mobile Backend

	17 Backends
	What Are Backends and How Can I Use Them?
	What's the Backend Development Process?
	Create and Populate Backends
	Create a Backend
	Backend Authentication and Connection Info
	Role-Based Backends
	Associate APIs with a Backend
	Associate Storage Collections with a Backend

	Notification Profiles and Client Apps
	How Notification Profiles Work
	How App Clients Work
	Get Network Credentials for Notifications
	Android: Google API Key
	iOS: Apple Secure Certificates
	Windows: WNS Credentials
	Syniverse: SMS Credentials
	Create a Profile on the Syniverse Developer Community
	Subscribe to the Syniverse Messaging Service
	Register Your App and Get Credentials

	Create a Notifications Profile
	Register an App Client

	What Can I Change in a Backend?
	Connect Your App to a Backend

	18 Mobile Users and Roles
	Add Users and Groups in IDCS
	Other Ways to Add Users

	Create Mobile Roles
	Assign Roles for Users That Are Set Up in IDCS
	Roles for Users That Are Set Up in a 3rd-Party IdP
	Role-Based Backends and APIs
	Permissions Required for Platform APIs

	19 Authentication in Mobile Hub
	OAuth Consumer Authentication in Mobile Hub
	HTTP Basic Authentication in Mobile Hub
	Enterprise Single Sign-On in Mobile Hub
	Third-Party SAML and JWT Tokens
	SAML Tokens and Virtual Users
	Configure SAML Tokens for Virtual Users
	Register the Token Issuer in Mobile Hub
	Associate Roles with a SAML Token
	Extract the SAML Assertion
	Use a SAML Token to Authenticate with Mobile Hub
	Code the SAML Token Exchange Manually

	JWT Tokens and Virtual Users
	Register a JWT Token Issuer in Mobile Hub
	Example: Minimal IdP Configuration
	Example: IdP Configuration with Audience
	Example: IdP Configuration with Audience and Username Attribute
	Associate Roles with a JWT Token
	Convert a JSON Object to One Line
	JWT Configuration Reference
	Root Fields
	Issuer Fields
	jwks Fields

	Obtain a JWT Token Using an Embedded Browser
	Obtain a JWT Token Using a System Browser
	Coding Your Android App to Obtain a JWT Token
	Code Your iOS App to Obtain a JWT Token

	Use a JWT Token to Authenticate with Oracle Mobile Hub
	Code the JWT Token Exchange Manually

	User Mapping from a Third-Party IdP to IDCS

	Browser-Based SSO through Mobile Hub
	Test APIs in a Backend with SSO Login
	Token Expiration for SSO Login

	Facebook Login in Mobile Hub
	Register an App for Login Through Facebook
	Enable Facebook Login in a Mobile Backend
	Configure an App to Use Facebook Login
	Add APIs to a Mobile Backend with Facebook Login
	Get a Facebook User Access Token Manually
	Headers Needed for API Calls with Facebook Authentication

	Authentication in Direct REST Calls
	Authenticate with OAuth in Direct REST Calls
	Authenticate with HTTP Basic in Direct REST Calls

	Secure Cross-Site Requests to Oracle Mobile Hub APIs

	20 The Express API Designer
	How Do You Get Started?
	How Do You Use the API?
	What are Resources?
	Create An API
	Complete Your Resources
	Add Additional Fields
	Shape the Payload for Your Resource
	Add More Sample Data
	Referenced Resources
	Referencing Resources

	Fields
	Methods
	Request and Response Bodies
	GET Payloads
	POST and PATCH Payloads
	Media Types for Request and Response Bodies

	Read-Only Fields
	Sample Data

	Use the Express API Designer with MAX
	How Do I Surface My API in MAX?
	Who Uses MAX?
	Enable Uploadable Images
	Tips for User-Friendly Business Objects in MAX
	Video: An Introduction to Mobile Application Accelerator (MAX)

	Create Resources with JSON Schemas
	Fields
	Field Types, Formats, and Enums
	Field Formats

	Child Objects
	Fields Behaviors for List, Details, Create, and Update Screens
	Collection Actions
	Collections Defined from a Single Resource

	Create Actions
	Content Types for Creatable Fields
	Read Only Fields

	Update Actions
	Update Actions with PUT

	Delete Actions
	Custom Actions

	Mock Data

	Which API Designer Should I Use?

	21 Custom API Design
	API Design Process
	Completing Your Custom API

	Generating Custom APIs for Connectors
	Generate a Custom API from a Connector
	Completing the Custom API
	Edit the Implementation

	The API Designer
	Spec Out a Custom API
	Creating a Complete Custom API
	Set Up Your API
	Define Endpoints
	Add Methods to Your Resources
	Define a Request for the Method
	Define a Response for the Method
	Test API Endpoints Using Mock Data
	Provide a Schema
	Security in Custom APIs
	Set Access to the API

	Test Your Custom API
	Create Resource Types
	Create Resource Traits
	Providing API Documentation
	How Do I Write in Markdown?

	Getting Diagnostic Information

	API Design Considerations
	Valid URLs
	API Timeouts
	API Resources
	URI Parameters

	Endpoint Requirements for Sync Compatibility
	Schemas
	RAML

	Edit a Custom API
	Video: End-to-End Custom API Demo
	Troubleshoot Custom APIs

	22 Implementing Custom APIs
	What Can I Do with Custom Code?
	How Does Custom Code Work?
	Foundation of the Custom Code Service
	Video: Node.js Technology Primer

	Set Up Tooling for Custom Code
	Steps to Implement a Custom API
	Download a JavaScript Scaffold for a Custom API
	Writing Custom Code
	Key JavaScript Constructs in Custom Code
	Access the Body of the Request
	Insert Logging Into Custom Code
	Local Data Storage
	Video: Working with Node - Common Code

	Implementing Synchronization-Compatible APIs
	Video: Working with Custom APIs via Data Offline & Sync
	Requirements for a Synchronization-Compatible Custom API
	Return Cacheable Data
	Specify Synchronization and Cache Policies

	Call Web Services and APIs from Custom Code
	Package Custom Code into a Module
	Required Artifacts for an API Implementation
	package.json Contents

	Declare the API Implementation Version
	Declare the Node Version
	Package Additional Libraries with Your Implementation

	Upload the Custom Code Module
	Testing and Debugging Custom Code
	Test with Mock Data
	Test Custom Code from the UI
	Debug Offline with the Mobile Hub Custom Code Test Tools
	Tools for Testing Custom Code Outside the UI
	View Custom Code Log Messages
	Get Finer-Grained Request and Response Log Messages
	Log Request and Response Bodies
	Minimize the Performance Cost of Logging Bodies
	Create Custom Log Messages

	Troubleshooting Custom API Implementations
	Diagnose Syntax Errors
	Common Custom Code Errors
	Custom Code Problem parsing JSON: Error: request entity too large
	Custom Code Problem in oracleMobile.rest callback: Argument error, options.body
	Your custom code container is in the process of recovering from an unhandled error in a earlier request
	Connection fails due to untrusted URL
	database.getAll(table, options, httpOptions) doesn’t return all the rows in a table
	This mobile user doesn't have the necessary permissions to call this endpoint

	What Happens When a Custom API Is Called?

	23 Calling APIs from Custom Code
	Send Requests to Platform, Connector, and Custom APIs
	API Request Pattern
	API Response Patterns
	Handle a Stream
	Handle a Promise
	Invoke Calls Synchronously
	Invoke Calls Asynchronously
	Invoke a Dynamic Set of Calls
	Create a Function that Returns a Promise

	Common options Properties
	Access Mobile Backend Information from Custom Code
	Platform APIs
	Analytics Collector API
	analytics.postEvent(events, options, httpOptions)

	App Policies API
	appConfig.getProperties(httpOptions)

	Database Access API
	database.delete(table, keys, options, httpOptions)
	database.get(table, keys, options, httpOptions)
	database.getAll(table, options, httpOptions)
	database.insert(table, object, options, httpOptions)
	database.merge(table, object, options, httpOptions)
	database.sql(sql, args, options, httpOptions)

	Location API
	location.assets.getAsset(id, httpOptions)
	location.assets.query(queryObject, httpOptions)
	location.devices.getDevice(id, httpOptions)
	location.devices.query(queryObject, httpOptions)
	location.places.getPlace(id, httpOptions)
	location.places.query(queryObject, httpOptions)

	Location Management API
	location.assets.register(assets, context, httpOptions)
	location.assets.remove(id, context, httpOptions)
	location.assets.update(id, asset, context, httpOptions)
	location.devices.register(devices, context, httpOptions)
	location.devices.remove(id, context, httpOptions)
	location.devices.update(id, device, context, httpOptions)
	location.places.register(places, context, httpOptions)
	location.places.remove(id, context, httpOptions)
	location.places.removeCascade(id, context, httpOptions)
	location.places.update(id, place, context, httpOptions)

	Mobile Devices API
	devices.deregister(device, httpOptions)
	devices.register(device, httpOptions)

	My Profile API
	ums.getMe(httpOptions)
	ums.getUser(options, httpOptions)
	ums.getUserExtended(options, httpOptions)
	ums.updateUser(fields, options, httpOptions)

	Notifications API
	notification.getAll(context, options, httpOptions)
	notification.getById(id, context, options, httpOptions)
	notification.post(notification, context, options, httpOptions)
	notification.remove(id, context, options, httpOptions)

	Storage API
	storage.doesCollectionExist(collectionId, options, httpOptions)
	storage.doesExist(collectionId, objectId, options, httpOptions)
	storage.getAll(collectionId, options, httpOptions)
	storage.getById(collectionId, objectId, options, httpOptions)
	storage.getCollection(collectionId, options, httpOptions)
	storage.getCollections(options, httpOptions)
	storage.remove(collectionId, objectId, options, httpOptions)
	storage.store(collectionId, object, options, httpOptions)
	storage.storeById(collectionId, objectId, object, options, httpOptions)

	Call a Connector API from Custom Code
	Call a REST Connector
	Call a SOAP Connector
	Call a Connector that Requires Form Data
	Pass Headers to the Target Service
	Override SSL Settings for Connectors

	Call a Custom API from Custom Code
	Specify the API Version in Calls to Custom and Connector APIs
	Legacy Generic REST Methods
	optionsList Argument

	Learn About Your Instance's Custom, Platform, and Connector APIs

	24 Connectors
	What Is a Connector API?
	REST Connector APIs
	How REST Connector APIs Work
	Why Use Connectors Instead of Direct Calls to External Resources?
	Create a REST Connector API
	Basic Connector Setup
	Rules
	Security Policies and Overriding Properties
	Set a CSF Key

	Test in Advanced Mode
	Getting the Test Results
	Getting Diagnostic Information

	Security and REST Connector APIs
	Security Policy Types for REST Connector APIs
	CSF Keys and Web Service Certificates
	Query and Header Parameters
	Set Query Parameters in Remote URLs
	About Adding Parameters

	Edit a REST Connector API
	Use Your REST Connector API in an App
	Troubleshoot REST Connector APIs

	SOAP Connector APIs
	How SOAP Connector APIs Work
	Why Use SOAP Connectors Instead of Direct Calls to External Resources?
	Create a SOAP Connector API
	Set the Basic Information for Your SOAP Connector API
	Select a Port
	Set Security Policies and Overriding Properties for SOAP Connector APIs
	Set a CSF Key
	Set a Web Service Certificate

	Testing a SOAP Connector API
	Test Your Connector
	Get the Test Results
	Get Diagnostic Information

	SOAP Connector API Design Tips
	How Does XML Get Translated into JSON?
	Using XML Instead of JSON
	Security Policy Types for SOAP Connector APIs
	CSF Keys and Web Service Certificates
	Editing a SOAP Connector API
	Use Your Connector API in an App
	Troubleshoot SOAP Connector APIs
	SOAP Connector API Scope

	ICS Connector APIs
	How ICS Connector APIs Work
	ICS Connector API Flow
	Create an ICS Connector API
	Set the Basic Information for Your ICS Connector API
	Connecting to an Integration Cloud Service Instance
	Select or Create an ICS Instance Connection
	Select an Active Integration
	Edit the ICS Connector API
	Set Runtime Security for the ICS Connector API
	Create a New CSF Key
	Test the ICS Connector API
	Getting the Test Results
	Getting Diagnostic Information

	Security and ICS Connector APIs
	CSF Keys
	Use Your Connector API in an App
	Troubleshoot ICS Connector APIs

	Fusion Applications Connector APIs
	How Fusion Applications Connector APIs Work
	Fusion Applications Connector API Flow
	Create a Fusion Applications Connector API
	Set the Basic Information for Your Fusion Applications Connector API
	Connect to a Fusion Applications Instance
	Create a Fusion Applications Instance Connection
	Select Fusion Applications Resources
	Set Resource Attributes
	Edit the Fusion Applications Connector API
	Set Runtime Security for the Fusion Applications Connector API
	Provide a CSF Key
	Create a New CSF Key
	Set a Web Service Certificate

	Test the Fusion Applications Connector API
	Getting the Test Results

	Security Policy Types for Fusion Applications Connector APIs
	CSF Keys and Web Service Certificates
	Using Your Fusion Application Connector API in an App
	Troubleshoot Fusion Applications Connector APIs

	25 Diagnostics
	What Can I Do with Diagnostics?
	View Environment Health
	View Server Load
	View Errors

	View Underperforming Requests
	View Log Messages Related to a Request
	View Storage Usage

	Monitor a Selected Backend
	View API Performance
	Adjust the Performance Threshold Configurations
	View Status Codes for API Calls and Outbound Connector Calls
	Relate Log Messages
	How Client SDK Headers Enable Device and Session Diagnostics

	View Log Messages
	View Message Details
	A Look at Exported Messages
	API Request Messages
	Connector Message Details

	Configure the Logging Level for Custom Code

	Diagnose Custom Code
	Use Case: Use Correlation to Diagnose Custom Code
	Use Case: Use Correlation to Diagnose Connector Issues

	Crash Diagnostics

	26 Packages
	What’s a Package?
	Why Do I Want a Package?
	Export a Package
	Add Artifacts to the Package
	Review Dependencies During Export
	Set Environment Policies During Export
	Complete the Export

	Re-export a Package
	Import a Package
	Upload the Package
	Examine the Contents of the Import Package
	Set Environment Policies During Import

	What Happens When You Import a Package
	Import Results
	Export Updated Artifacts
	Examine a Package
	Move a Package to the Trash
	Environment Policy Settings for Packaged Artifacts

	A HTTP Headers
	API Headers
	SDK Headers

	B Oracle Mobile Hub Policies
	Mobile Hub Policies and Values

	C Security Policies for Connector APIs
	Security Policies for REST Connector APIs
	Security Policies for SOAP Connector APIs
	Security Policies for ICS Connector APIs
	Security Policies for Fusion Applications Connector APIs
	Security Policy Properties

	D Write Swift Applications Using the iOS Client SDK
	Add the Bridging Header File
	Add the SDK Headers and Libraries to a Swift App
	Use SDK Objects in Swift Apps

	E Supported Browsers and Languages
	Supported Browsers
	Supported Languages

	F Identity Provider Integration
	Use Case: Configuring OKTA to Obtain a SAML Token
	Use Case: Configuring AD FS to Obtain a SAML Token
	Creat Users and Groups
	Configure the SAML App
	Configure Claim Rules
	Configure Transform Rules
	Specify the Signature Verification Certificate

