
Oracle® Cloud
Managing Oracle Mobile Hub

Release 20.2.3
F13025-05
February 2022

Oracle Cloud Managing Oracle Mobile Hub, Release 20.2.3

F13025-05

Copyright © 2018, 2022, Oracle and/or its affiliates.

Primary Author: Jennifer Shipman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Conventions vi

1 An Administrator’s Roadmap to Oracle Mobile Hub

Part I Configuring Oracle Mobile Hub

2 Policies

Define Policies 2-1

Mobile Hub Policy Names 2-2

Policy Scope 2-3

Remove Policies 2-4

3 Credentials (CSF Keys and Certificates)

Manage Keys and Certificates 3-1

Configure a CSF Key 3-1

Configure a Web Service or Token Certificate 3-2

Configure an SSL Certificate 3-2

Disable SSL Hostname Verification 3-2

Add a Token Issuer 3-3

Configure Rules 3-3

Rule Types 3-4

Part II Managing Mobile Hub Artifact Lifecycles

iii

4 Understanding Lifecycles

Draft State 4-1

Published State 4-2

Making Changes After a Backend is Published (Rerouting) 4-3

Versioning 4-5

Delete an Artifact 4-6

Moving an Artifact to the Trash 4-6

Restoring an Artifact 4-9

Restore an Artifact from Administration 4-10

Purging an Artifact 4-10

Purge Artifacts from Administration 4-11

Artifact Lifecycles 4-12

5 Client and App Profile Lifecycle

Publish a Client 5-1

Update the Version Number of a Client 5-1

Create a New Version of a Client 5-2

Move a Client to the Trash 5-2

Restore a Client 5-3

Manage Your Clients and App Profiles 5-3

6 Backend Lifecycle

Backend Lifecycle States 6-1

Publish a Backend 6-1

Update the Version Number of a Backend 6-2

Create a New Version of a Backend 6-3

Move a Backend to the Trash 6-3

Deactivate a Backend 6-3

Restore a Backend 6-4

Manage a Backend 6-4

7 API Lifecycle

Custom APIs and API Implementations 7-1

Publish a Custom API 7-1

Update the Version Number of an API 7-2

Create a New Version of an API 7-2

Move a Custom API to the Trash 7-3

Restore a Custom API 7-3

iv

Manage an API 7-3

8 API Implementation Lifecycle

Publish an API Implementation 8-1

Create a New Version or Updating the Version of an API Implementation 8-2

Move an API Implementation to the Trash 8-3

Restore an API Implementation 8-3

9 Connector Lifecycle

Publish a Connector 9-1

Update the Version Number of a Connector 9-1

Create a New Version of a Connector 9-2

Move a Connector to the Trash 9-2

Restore a Connector 9-2

Manage a Connector 9-3

10

Collection Lifecycle

Publish a Collection 10-1

Update the Version Number of a Collection 10-1

Create a New Version of a Collection 10-2

Move a Collection to the Trash 10-2

Restore a Collection 10-2

Manage a Collection 10-3

Part III Reference

A Oracle Mobile Hub Policies

Mobile Hub Policies and Values A-1

v

Preface

Welcome to Managing Oracle Mobile Hub.

Audience
This guide is intended for administrators who maintain and monitor services in Oracle
Mobile Hub.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
An Administrator’s Roadmap to Oracle Mobile
Hub

Welcome to Oracle Mobile Hub! Mobile Hub is a cloud-based service that provides a unified
hub for developing, publishing, maintaining, monitoring, and analyzing your mobile apps and
the resources that they rely on.

As Mobile Hub administrator, you define policies, configure credentials, and manage
lifecycles of the artifacts created by your team’s developers. Use this guide to help you
understand and manage these features.

• The way Mobile Hub manages artifacts is governed by policies. For details on policies
and how to define them, see Policies.

• CSF keys and security certificates are unique to each instance of Mobile Hub. For details
on configuring credentials, see Credentials (CSF Keys and Certificates).

• Artifact lifecycles are simple but interdependent. For more information on lifecycles and
tips for managing each type of artifact, see Understanding Lifecycles.

• Diagnostics also provide important information for monitoring the health of your instance
and its artifacts. For details about diagnostics, see Diagnostics in Developing
Applications for Oracle Mobile Hub.

1-1

Part I
Configuring Oracle Mobile Hub

This part contains the following chapters:

• Policies

• Credentials (CSF Keys and Certificates)

2
Policies

Policies define properties for artifacts on a global or artifact-specific level. You can use
policies to adjust how artifacts behave even after they are published.

Even though an artifact can’t be changed after it’s published, its behavior can still be affected.
You have the flexibility to adjust policy values to better fit the required behavior of artifacts.
For example, you might be testing that a connector’s endpoints are valid. The timeout values
don’t matter much during the experimental phase, but when you publish the connector,
realistic timeout settings are required. You can adjust the value of the
Network_HttpRequestTimeout policy accordingly.

Only Mobile Hub administrators can modify policies. You can modify policies when you
deploy an artifact (client, backend, custom API, API implementation, connector, or collection)
or by editing the policies.properties file directly from the Administration view. For
information on how to change policy settings, see Define Policies.

In most cases, you should leave the policy’s default settings. Make sure you understand the
scope of a policy before you change it. When you change a policy with global scope, the
value is applied to all relevant artifacts. For details on policy scope, see Policy Scope.

For a list of policies including descriptions, scopes, and default values, see Oracle Mobile
Hub Policies.

Define Policies
Define and modify policies by exporting the current policies.properties file, editing the
property values, and importing the modified file.

1. Click and select Settings from the side menu.

2. Click Policies and then click Export.

3. Make a backup copy of the policies.properties file before you update it. If you find
you've made unintended changes, you can restore policies to their previous state by
importing the backup copy.

4. Open the exported policies.properties file in a text editor, edit the policies as needed,
and save the file.

5. Go back to the Policies page, click Import, and select the modified policies.properties
file.

Here’s an example policies.properties file:

2-1

Mobile Hub Policy Names
Policy names use the format backendName.apiName.policyName
(mbeArtifactIdentity.invocableArtifactIdentity.policyPropertyName):

• backendName binds the policy value to a specific backend.

• apiName binds the policy to an API, API implementation, or connector API.

Note:

When you define a policy that affects an API, you must use a fully-
qualified name, consisting of the API category and the API name (with or
without the version). The API category can be: custom, connector,
platform, or system. For example: myBackend.custom/
myAPI(1.0).propertyName. Policy names for API implementations don’t
include category types. For example, *.myAPIImpl(1.0).

• policyName is the name of the policy (initial-capped and preceded by a category).
For a full list of policies, see Oracle Mobile Hub Policies.

To set the scope of the policy you are defining, set the backendName, apiName and
policyName in the following ways:

• A wildcard denoted by an asterisk (*), which binds the policy to all artifacts of the
particular type.

Chapter 2
Define Policies

2-2

• The artifact name alone, which binds the policy to all artifacts of the particular type with
the specified name. For example, myBackend.

• The artifact name and version, which binds the policy to the artifact of the particular type
with the specified name and version, for example, myBackend(1.0.0).

Policy Scope
Policy scope defines which artifacts use the policy’s settings. Policies can be set globally, by
artifact type, or for a specific artifact. Some policies don’t support all three scopes. For
example, the Connector_Endpoint policy stores the endpoint URL of a specific connector, so
it can only be set at the artifact level. The Network_HttpRequestTimeout policy affects APIs
and connectors, so it can be set globally.

The combination of values in the name defines the scope for the policy.

• Global scope: Set both backendName and the apiName as wildcards so that the policy is
applied globally.

For example: *.*.Logging_Level=800
• Backend scope: Set backendName to a specific backend and set the apiName as a

wildcard so that the policy is applied to all APIs and connectors called in the context of
the given backend. You make this more specific by including the version of the backend.

For example: MyBackend(1.3).*.Logging_Level=800
• API scope: Set backendName to a wildcard and set the apiName to a specific API so that

the policy is applied to that particular API when called in the context of any backend. You
make this more specific by including the version of the API.

For example: *.custom/MyApi(2.0).Logging_Level=800
• API Implementation scope: Set backendName to a wildcard and set the apiName to a

specific API implementation so that the policy is applied to that particular implementation
when called in the context of any backend. You make this more specific by including the
version of the API implementation.

For example: *.MyApiImpl(1.0).Logging_Level=800
• Connector scope: Set backendName to a wildcard and set the apiName to a specific

connector so that the policy is applied to that particular connector when called in the
context of any backend. You make this more specific by including the version of the
connector.

For example: *.connector/MyConnector(2.2).Logging_Level=800
• Fully-qualified API scope: Set the backendName to a specific backend and set the

apiName to a specific API so that the policy is scoped at the fully-qualified API level
whenever the API is called within the scope of the given backend. You make this more
specific by including the version of the backend and the API.

For example: MyBackend(1.3).custom/MyApi(2.0).Logging_Level=800
• Fully-qualified API Implementation scope: Set the backendName to a specific backend

and set the apiName to a specific API Implementation so that the policy is scoped at the
fully-qualified API implementation level whenever the implementation is called within the
scope of the given backend. You make this more specific by including the version of the
backend and the API implementation.

For example: MyBackend(1.3).MyApiImpl(1.0).Logging_Level=800

Chapter 2
Define Policies

2-3

• Fully-qualified Connector scope: Set the backendName to a specific backend and
set the apiName to a specific connector so that the policy is scoped at the fully-
qualified connector level whenever the connector is called within the scope of the
given backend. You make this more specific by including the version of the
backend and the connector.

For example: MyBackend(1.3).connector/MyConnector(2.2).Logging_Level=800

Remove Policies
You can reduce clutter in the policies.properties file by removing policies defined
for obsolete artifacts.

To remove policies:

1. Click and select Settings from the side menu.

2. Click Policies and then click Export.

3. Make a copy of the exported policies.properties file as a backup.

4. Open the file in a text editor and delete the policies you want to remove. Save the
file.

5. Back on the Settings page, select Delete all policies before import.

6. Import the modified policies.properties file.

All the previous policies are deleted, leaving only the policies you imported from the
modified file. If you find you've accidentally deleted the wrong policies, you can restore
policies to their previous state by importing the backup copy of the file.

Chapter 2
Remove Policies

2-4

3
Credentials (CSF Keys and Certificates)

Mobile Hub uses the Credential Store Framework (CSF) to manage credentials, allowing you
to store, retrieve, update, and delete credentials for web services and other apps.

CSF keys are credentials that use basic authentication (user name and password) to certify
the authority of users and system components.

Certificates are electronic documents used to authenticate an individual or organization.
There are a few different kinds of certificates:

• Web Service Certificates are trusted certificates containing only a public key. Web
Service Certificates are stored in the Oracle WSM Keystore.

• Token (Signing) Certificates are standard X509 certificates used to securely sign all
tokens issued by a federation server. For third-party tokens, you configure Token Issuer
Certificate and Signing Authority Certificate information, along with any intermediate
certificates, to establish a chain of trust. For details, see Add a Token Issuer.

• Secure Sockets Layer (SSL) Certificates are trusted certificates that you use to
establish SSL communication with the external service. SSL Certificates are stored in the
Trust Keystore.

CSF keys and certificates are configured from the Settings > Credentials dialog. CSF keys,
certificates, and their values are specific to the Mobile Hub instance where they are defined.

Manage Keys and Certificates
CSF keys and certificates are managed from the Credentials dialog.

As administrator, you manage the credential keys and certificates used by service developers
from To open the Credentials dialog:

1. Click and select Settings > Credentials from the side menu.

2. Click the Keys, Certificates, or Token Issuer tab.

3. Select an alias in the Available Keys or Available Certificates list to view the details of
the key or certificate. Only the CSF keys and certificates that are currently in use are
listed.

• For CSF Keys, select Show only referenced keys with null values to see only keys
that are referenced by artifacts that have no credential values.

• For certificates, click Export to save the selected certificate to a file. You can then
import the certificate for use in another instance.

Configure a CSF Key
You can configure a new CSF key from the Keys tab in the Credentials dialog. You can edit
the description, user name, or password of an existing key, but the key name can’t be
changed after it’s created.

1. Click the Keys tab.

3-1

2. Click Add and provide the following values:

• Unique key name. This name can’t be changed after the key is created.

• User name and password for the external system that requires this key for
access.

3. Save the key.

Configure a Web Service or Token Certificate
You can configure a new web service or token certificate from the Certificates tab in
the Credentials dialog. You can’t edit a certificate after it’s created.

1. Click the Certificates tab.

2. Click Add and provide the following information:

• Alias — Enter a unique name for the certificate.

• Content — Copy the certificate definition into the text field. You can get Web
Service certificate content from the system administrator of the service, or
token certificate content from the remote identity provider.

3. Save the certificate.

When a certificate is uploaded, it takes a few seconds before the certificate is
available. Token certificates can take up to ten minutes.

To delete a certificate, click X by the selected alias in the list of Available Certificates.
You can only delete certificates that you created.

Configure an SSL Certificate
You can configure a new SSL Certificate from the Certificates tab in the Credentials
dialog. You can’t edit a certificate after you’ve created it.

1. Click the Certificates tab.

2. Click Add and provide the following information:

• Alias — Enter a unique name for the certificate.

• Content — Copy the certificate definition into the text field. You can get Web
Service certificate content from the system administrator of the service, or
token certificate content from the remote identity provider.

• Select Trusted SSL Certificate.

3. Save the certificate.

When a certificate is uploaded, it takes a few seconds before the certificate is
available.

To delete a certificate, click X by the selected alias in the list of Available Certificates.
You can only delete certificates that you created.

Disable SSL Hostname Verification
Testing connectors can be difficult when they call an outbound service over SSL. If the
SSL certificate has an incorrect or missing hostname, the developer might not be able
to create the connector or might just have problems with testing.

Chapter 3
Manage Keys and Certificates

3-2

You can make it easier to test a connector by turning off hostname verification for outbound
SSL connections through the Security_IgnoreHostnameVerification policy.

Caution:

Turning off hostname verification is a security risk. Setting this policy to true should
be limited to development. When testing is complete, set the policy back to its
default value of false.

This policy is set globally (*.*.Security_IgnoreHostnameVerification) and will affect all
connectors. Setting the scope for a specific backend or connector is not supported.

For more information on configuring policies, see Policies.

Note:

Even if SSL hostname verification is disabled, you still need to import the SSL
certificate if it's self-signed.

Add a Token Issuer
To authenticate users with third-party tokens, you need to register the token issuers and
associate them with their certificates.

After you’ve added at least one token certificate, use the steps below to add a token issuer
from the Credentials dialog:

1. Click the Token Issuers tab.

2. Click New Issuer.

3. Enter the name of the token issuer in the Name field under Issuer Details.

4. Click Add (+) and select at least one name from the Select Certificate Subject Names
dialog. All the certificates that have been uploaded are listed.

5. Save the token issuer.

6. If the list on the Token Issuers tab doesn’t include your new issuer, click Save in the tab
to update the list.

7. (Optional) Click Rules to configure a rule for a certificate subject name.

Configure Rules
Rules govern how tokens provided by token issuers are processed. If the token provided by a
token issuer doesn’t meet the criteria specified by the rule, the request is rejected.

After you’ve added at least one token certificate and created a token issuer, you can
configure a rule for the certificate subject name from the Token Issuer tab in the Credentials
dialog.

1. On the Token Issuers tab, select a certificate subject name from the list.

Chapter 3
Manage Keys and Certificates

3-3

2. Click Rules. As you add rules, the current number of rules is indicated on the
Rules button.

3. Select Enable Virtual User if you’re configuring rules for users that aren’t
registered.

With virtual users enabled, a token identifies a user with a record in IDCS, but
roles are associated with the user based on the default content in the token,
instead of on information in that account.

4. Under Add a New Rule, select the rule type.

5. Enter the required values for the rule type.

6. Click Add.

If you need to change a rule, just select it, make the updates and click Done. To delete
a rule, select the rule and click X.

Rule Types

Filter Rule

The Filter rule consists of a token attribute and at least one value that must match the
value associated with the token. The name-id attribute represents the username
identified in the token, while the user.tenant.name attribute represents the tenant
name associated with the token.

Use a comma-separated list to enter multiple attribute values for either attribute. If
none of the values match, the token is deemed invalid. A value can contain a wildcard
(*) character.

For example:

• name-id=jack, jill, ann
• user.tenant.name=testing, development
You can configure only one Filter rule per token attribute (that is, you configure one
Filter rule with the name-id attribute and one Filter rule with the user.tenant.name
attribute).

User Mapping Rule

The User Mapping rule defines how tokens are mapped to users, either by user name
or email address. This rule is applicable only to JWT tokens, only if virtual users are
disabled.

The rule consists of a token attribute, name-id, that represents the username identified
in the token, and a user attribute name value of either uid or mail:

• uid is the user’s username in the associated IDCS account (default behavior)

• mail is the user’s email address in the IDCS account

You can configure only one User Mapping rule per issuer certificate name. If you don’t
configure a User Mapping rule, name matching is used (the default behavior).

Chapter 3
Manage Keys and Certificates

3-4

Note:

For SAML tokens the User Mapping rule type is ignored and the default behavior is
to map the username in the token to the username in the associated record.

Default Role Rule

The Default Role rule defines a list of roles to associate with users. This rule is applicable
only if virtual users are enabled.

The rule consists of a list of role names that are assigned to all users presenting tokens
verified using the corresponding token certificate. Use a comma-separated list to enter
multiple attribute values.

For example:role=technician, manager, tester
You can configure only one Default Role rule per issuer certificate name. If you don’t
configure a Default Role rule, no roles are assigned to the requesting user unless you’ve
configured a Role Attribute rule.

Role Attribute Rule

Use the Role Attribute rule to determine which roles to assign by examining the attributes in
the token. If a Role Attribute role is defined, the token is searched for attributes with names
that match any of the values defined in the rule. If matches are detected, the values of those
token attributes are interpreted as roles and assigned to the virtual user. This rule is
applicable only if virtual users are enabled.

The rule consists of a comma-separated list of token attribute names used to derive the roles
that are assigned to users.

For example: employeelevel, QAgroup
You can configure only one Role Attribute rule per issuer certificate name, but you can use
this rule in combination with the Role Mapping rule. If you don’t configure a Role Attribute
rule, no roles are assigned to the requesting user unless you’ve configured a Default Role
rule.

Note:

If you configure both the Default Role rule and the Role Attribute rule and the role
attribute you defined is present in the token, the Default Role rule is ignored.
However, if the defined role attribute isn’t present, the roles specified in the Default
Roles rule are applied to the virtual user. Role Mapping rules can also define which
roles to use when no matches are found.

Role Mapping Rule

The Role Mapping rule associates roles with role attributes in the token identified by the Role
Attribute rule. This rule is applicable only if virtual users are enabled.

The rule consists of an external role name, which is the value that should be found in one or
more token attributes, and a list of roles to which the external role names are mapped. Use a
comma-separated list to enter multiple attribute values.

Chapter 3
Manage Keys and Certificates

3-5

For example: employee=technician, manager, tester
This example maps the external role name, employee, to the existing roles,
technician, manager, tester.

Note:

Role Mapping rules only work in conjunction with Role Attribute rules. If no
Role Attribute rule is defined, Role Mapping rules are ignored. If the names
of the token attributes configured in the Role Attributes rule don’t match the
external role names configured in the Role Mapping rule, the token attributes
are treated as role names and are assigned to the requesting user. If the role
names defined in the rule don’t correspond to any existing roles, the value is
ignored.

You can configure as many Role Mapping rules per issuer certificate as you need, but
only one rule can be configured for each external role name. To map one external role
to multiple roles, use a single rule and include all the roles in a comma-separated list,
as shown in the example above.

Chapter 3
Manage Keys and Certificates

3-6

Part II
Managing Mobile Hub Artifact Lifecycles

This part includes the following chapters:

• Understanding Lifecycles

• Client and App Profile Lifecycle

• Backend Lifecycle

• API Lifecycle

• API Implementation Lifecycle

• Connector Lifecycle

• Collection Lifecycle

4
Understanding Lifecycles

Oracle Mobile Hub provides a UI to simplify lifecycle management of your artifacts. As Mobile
Hub administrator, you use these features to create, maintain and publish backends, APIs
and other artifacts.

An important part of your role as Mobile Hub administrator is managing artifacts from
implementation to production and maintaining them through multiple versions, also known as
lifecycle.

The artifacts you’ll be working with most often are clients, backends, custom APIs, connector
APIs, and collections. In general, the same lifecycle phases apply to all of these artifacts.

Throughout the development and testing phases of a project, artifacts can be created and
edited in a Draft state, then Published (or moved to the trash). All artifacts are automatically
assigned a version of 1.0 when they’re created. During an artifact’s lifecycle, new versions
can be created and updated. Since artifacts are closely related to each other, it’s important to
keep track of dependencies and manage interactions.

This chapter introduces these important lifecycle phases and explains how you can work with
an artifact through each of the phases and manage interactions between associated artifacts.

Draft State
When you create an artifact, whether it’s a client, a collection, a custom API or any other type,
the artifact has a Draft status. With a Draft version of an artifact, you can edit, create a new
version, update an existing version, or remove the artifact (move it to the trash).

While an artifact is in the Draft state, you can experiment with it, modify it as many times as
you need to, and test it thoroughly. You publish the artifact when you’re satisfied with its
configuration.

You can update the version number of an artifact in Draft state or create a new version to
modify, then you can publish the updated artifact or the new version of the artifact.

4-1

Published State
When a specific version of an artifact is final, you can publish it. After it’s published,
that version of the artifact can no longer be edited. If you create a new version of an
artifact that’s in a Draft or Published state, the new version is created in the Draft state.

If there are no dependency issues, a published artifact can be exported to another
instance. If you need to modify the artifact, you can create a new version of it and
modify the new version. Because the new version is in the Draft state, you’ll need to
publish it before you can export it.

You can have multiple versions of an artifact. You can export different versions of an
artifact to different instances.

If you’ve published an artifact by mistake or realize after it’s been published that you
need to make a change, you can create a new version of the artifact and make your
changes to it. When you’re satisfied with the configuration of the new version, you can
publish it. For API implementations, Mobile Hub automatically makes the latest version
the default when the implementation is initially loaded. If the most recent version
loaded isn’t the implementation that you want associated with your API, you must
explicitly specify a previously loaded implementation as the default.

You have the choice of keeping the previous version of an artifact as long as it’s
needed, or moving it to the trash (removing the artifact from the main view). In the
case of a backend, you also have the option of changing its activation state to inactive.
Artifacts in the trash are still accessible at runtime. For example, if you have a backend
that calls My_API and someone moves My_API to the trash, the app can still call the
backend and My_API.

All artifacts can be published independently and some can also be published when
you publish their associated artifacts. For example, you can publish an API
independently or the API can be published when you publish its associated backend.

When you publish an artifact, it’s checked for any dependencies and whether or not
those dependencies are already published. You'll be able to see the list of
dependencies and can decide whether or not to proceed with publishing. If you decide
to publish, any unpublished dependencies may be published too.

This table compares the Draft and Published states, behavior, and dependency
considerations for backends, collections, custom APIs, and connector APIs:

Artifact Type Permissible in
Draft state

Permissible in
Published state

Number of
active versions
per instance

Dependencies

Backend Edit

Create new
version

Update version

Publish

Export/import

Manage
activation

Move to Trash

Create new
version

Manage
activation

Move to Trash

Multiple Collection

Custom APIs

Connector APIs

Roles

Chapter 4
Published State

4-2

Artifact Type Permissible in
Draft state

Permissible in
Published state

Number of
active versions
per instance

Dependencies

Collection Edit

Associate a
backend

Create new
version

Update version

Publish

Export/import

Move to Trash

Create new
version

Move to Trash

Multiple Roles

Custom API Edit

Create new
version

Update version

Publish

Export/import

Move to Trash

Create new
version

Move to Trash

Multiple

(Note: Only one
API version per
backend version)

Roles, Connector
APIs, Custom
APIs

Connector Edit

Create new
version

Update version

Publish

Export/import

Move to Trash

Create new
version

Move to Trash

Multiple None

Making Changes After a Backend is Published (Rerouting)
If you need to make backend fixes to your app, but the app’s backend is already in
production, there is a way that you can incorporate those changes into your app without
having to recompile it — reroute the call to the backend.

Using a policy, you can reroute the call your app makes to the backend to a different backend
that contains the needed fixes. First, publish the backend that contains the fix. Then, set the
Routing_RouteToBackend policy, which lets you specify the original backend and redirect the
call to the target backend with the fixes. Because your app is calling the original backend,
there's no change to the ClientID or ClientSecret, which would require you to recompile the
app binary.

Rerouting the call to a backend is useful when you want to make a minor fix that requires a
change to the backend’s metadata. Some instances where rerouting a published backend is
useful:

• Making modifications to an API or a connector, such as adding an endpoint that you
forgot.

• Changing the access permissions for an API.

• Changing the access permissions for a storage collection.

• Changing the offline sync property of a storage collection.

Chapter 4
Published State

4-3

• Adding a storage collection to a backend, such as when you want to include a
more efficient API implementation that needs storage for caching purposes.

• You have a change to the backend and you want to distribute the backend that
has the fixes to other instances.

Note:

The Routing_RouteToBackend policy should also be set when you’re
exporting or importing a package containing the target backend.

You can set Routing_RouteToBackend to specify that any API calls within the context
of any version of the original backend are routed to the target backend:

• OriginalBackend.*.Routing_RouteToBackend=TargetBackend(X.X)

• OriginalBackend(A.A).*.Routing_RouteToBackend=TargetBackend(X.X)

For example: FiF_Customer.*.Routing_RouteToBackend=FiF_Customer(3.2)
Any API calls sent to any version of FiF_Customer are sent to FiF_Customer, v3.2.

Note:

You can’t use wildcards (*) in version values when setting the
Routing_RouteToBackend policy.

You can also specify a particular version of the backend to route to a specific version
of it. For example:
FiF_Customer(1.3).*.Routing_RouteToBackend=FiF_Customer(3.5)
Any API calls sent to FiF_Customer, v1.3 are sent to FiF_Customer, v3.5.

Note:

If more than one redirect policy is defined for the backend, the policy defined
with the fully-qualified backend takes precedence.

A call can be redirected to any backend, not just another version of the same backend.
For example: FiF_Customer(1.3).*.Routing_RouteToBackend=RepairIt(1.0)
Any API calls to FiF_Customer, v1.3 are sent to the backend RepairIt, v1.0.

You can also create a chain of rerouted calls to a backend. For example, a call to
backend_A can be rerouted to backend_B. A second routing policy could redirect any
calls to backend_B to backend_C. This would result in a call to backend_A being
redirected to backend_C.

Chapter 4
Published State

4-4

Packaging a Rerouted Backend

If you are exporting or importing a backend that is being rerouted, the Dependencies page
includes a "Redirect to" statement that specifies the immediate target backend. Using the
previous example, if a rerouting chain exists, and backend_A is being exported, the
Dependencies page indicates a reroute to backend_B. Also, the policies.properties file
lists only the routing policy for the backend in the package (backend_A).

Conditions for Rerouting a Backend

The following conditions apply whenever you reroute a backend:

• The original backend can be in an inactive state and be rerouted.

• If the app calls the original backend, notifications are sent and devices are registered
using the client credentials associated with the original backend. However, if the app calls
the target backend directly, then the clients from the target backend are used to send the
notifications and register devices.

• If Social Identity is used to access an API and its associated backend is rerouted, the
social authentication provider of the target backend should be selected and the access
token from that provider should be entered in the Authentication section of the API Test
page.

• If the original backend is exported, the target backend is not considered to be a
dependency of the original.

• Generally, if either the original or target backend is included in an export or import
package, the routing policy should be set when the export package is created or when
the contents of the package are imported.

• When a backend is rerouted, the system log records the event. You can see which
backends are being redirected from the log messages.

Versioning
Each time you create an artifact, it’s assigned a version value of 1.0. As long as the artifact is
in a Draft state, you can edit it, update its version, or create a new version (a major or minor
incremental increase). As you develop your artifact, you can change the version's major and
minor values (Major.minor).

When the major version number increments from 3.5 to 4.0 or even 6.0, it indicates that a
significant change has been made to the current instance of the artifact, which likely affects
its relationship to related artifacts. For example, changing the Web Services Description
Language (WSDL) file of a SOAP Connector API would necessitate creating a new custom
API implementation for it. A major change to a backend would also necessitate upgrading
any mobile apps that use it.

After you create an artifact and it’s still in a Draft state, you can change the version number
with the Update Version Number command available from the landing page for your artifact
type. For example, to update the version number for a backend, you can go to the Backends
page and select your backend, select More > Update Version and change the version
number.

App Profile Versions

An app profile represents a specific version of a mobile app binary and the version number
you assign to the app profile should correspond to the mobile app binary that it represents.

Chapter 4
Versioning

4-5

When you create an app profile, you enter the version in the same format as the app
binary. For example, if the app has a version of 3.1.2.3, the version you enter for the
app profile is 3.1.2.3. No default version is applied to a new app profile.

While the app profile is in Draft state, you can update the version. For instance if the
app version changes, you can change the version by opening the app profile and
editing the Version field. After the app profile is published, you can create a new
version through the More > New Version command on the App Profiles page.

Delete an Artifact
Deleting an artifact permanently takes two steps. When you have an artifact that you
don't need anymore, you can move it to the trash where it's kept until you're sure you
want to delete. To delete an artifact permanently, you purge the artifact from the trash.

You can move an artifact that’s in Draft or Published state to the trash. Depending on
whether or not it’s needed later, you can restore it or purge it.

Almost any artifact can be moved to the trash. For details on the conditions for
removing artifacts, see Moving an Artifact to the Trash.

When you restore an artifact, it retains the same state it had when it was moved to the
trash. For details on restoration, see Restoring an Artifact.

Purging is a permanent deletion and is available only from the Administration view. For
details on how to permanently delete an artifact, see Purging an Artifact.

Moving an Artifact to the Trash
Putting an artifact in the trash is considered a temporary deletion, the artifact is
removed from the main view and is inaccessible to other artifacts. You can move an
artifact that’s in Draft or Published state to the trash. Depending on whether or not it’s
needed later, you can restore it or purge it.

You can’t use artifacts that are in the trash because they can’t be accessed, called, or
executed. If you change your mind later or find you do need an artifact in the trash,
you can restore it depending on the deletion policies.

The Asset_AllowTrash and Asset_AllowUntrash policies control the ability to move an
artifact to the trash or restore it. You can set these policies to one of the following
values:

• All
• None
• Draft
• Published
For details on setting policies, see Policies.

While it’s in the trash, an artifact in Draft state can’t be published, and any
dependencies of that artifact can’t be published regardless of whether or not those
dependencies are in the trash. If you restore it, an artifact in Draft state can then be
published.

Chapter 4
Delete an Artifact

4-6

Note:

When an artifact is removed, its associated policies are removed along with the
artifact and its dependencies. If the artifact is restored, the policies are also
restored.

Upstream and Downstream Dependencies

You can move an artifact that's in Draft or Published state to the trash, but there are some
conditions based on whether dependencies are involved. An artifact that’s called by another
artifact has an upstream dependency. An artifact that calls another artifact has a downstream
dependency. If an artifact has dependencies that are active (not in the trash), you need to
resolve the relationships to those dependencies before you can move the artifact to the trash.

For example, say you created an API called MyAPI. The backend that calls it, MyBackend, is
the upstream dependency ofMyAPI. The API calls its implementation, MyAPIImpl, is the
downstream dependency of MyAPI.

Below are the common dependency scenarios that affect whether or not you can move an
artifact to the trash, and whether or not dependencies of that artifact are also moved to the
trash:

Case 1, Artifact is a dependency of a published artifact: If the artifact you want to remove
is a dependency of a published artifact, you can't move the artifact in question to the trash
because it would break its relationship with the published artifact. If you need to move the
artifact to the trash, you must break the relationship between the artifacts first. For example,
you want to move MyAPI to the trash but you can’t because it’s a dependency of MyBackend,
which is published. You have to break the relationship by moving MyBackend to the trash first,
then moving MyAPI to the trash. If you need MyBackend, you can create a new version of it
before moving the previous version to the trash.

Case 2, Artifact has tightly-coupled dependencies: If the artifact you want to remove has
tightly coupled dependencies, moving it to the trash will remove the artifact with its

Chapter 4
Delete an Artifact

4-7

dependencies. For example, if you need to remove an API that’s associated with a real
implementation or a connector API and its implementation, moving the API to the trash
will also remove the implementation. (If the API is associated with a mock
implementation, the relationship is broken and only the API is moved to the trash.)

Case 3, Artifact has dependencies: If the artifact that you want to move to the trash
has dependencies that aren’t tightly coupled, you must disassociate the artifact from
its dependencies before you can move it to the trash. Only first-level upstream and
downstream dependencies are considered. If there are any second-level
dependencies (for example, the API’s implementation calls a connector), you’ll have to
be aware of those relationships and resolve them prior to moving the artifact to the
trash.

If the artifact has a dependency on a role, the artifact can be moved to the trash but
not the role. Rule of thumb: Roles can’t be trashed.

The following table lists the dependencies involved in a move to the trash. For each
artifact type, it lists 1) the dependencies that are moved to the trash with the artifact, 2)
the possible dependencies that may be associated with the artifact but are not moved
to the trash with the artifact, 3) and any published upstream dependencies that would
prevent a move to the trash.

Table 4-1 Dependencies Involved in a Move to the Trash

Artifact Dependencies
Moved to the Trash

Dependencies Not
Moved to the Trash

Published Upstream
Dependency That
Prevents a Move to
the Trash

Client None Backend

App Profile

None

Backend None APIs

Collections

Client

API API Implementation

Note: mock
implementations can’t
be moved to Trash.

Backend

API implementations
that invoke the API

Roles – Any role
associated with the
API is revoked. Roles
can’t be moved to
Trash.

Backend

API Implementation None API that is
implemented

APIs that are called by
the implementation

API that lists the
implementation as
active

Collection None Backend

Roles – Any role
associated with the
collection is revoked.
Roles can’t be moved
to Trash.

Backend

Connector None Backend

API implementations
that call the connector.

None

Chapter 4
Delete an Artifact

4-8

Restoring an Artifact
You might find that you need an artifact that’s been moved to the trash. Restored artifacts
retain the same state they had when they were moved to the trash. That is, an artifact in Draft
state that was moved to the trash will still be in Draft state when restored.

As with moving an artifact to the trash, restoring an artifact has some considerations:

• If the artifact has no naming or version conflict, you can restore it by simply clicking the

Trash () and selecting Restore from Trash from the Trash drawer () and confirming
the restoration action.

• If duplicate artifacts exist (that is, artifacts with the same name and version) and one of
these artifacts is in the trash, you can’t restore the artifact. You must resolve the conflict
first in one of the following ways and then restore the artifact:

– Move the active artifact to the trash and restore the one already in the trash.

– Change the version of the active artifact and then restore the one in the trash.

The following table lists the types of artifacts that can be restored and which dependencies
are restored from the trash with each type of artifact. The last column lists the possible
upstream and downstream dependencies of the artifact that are not in the trash and that
could be affected by the restoration. These items are displayed in the Restore dialog as
information only.

Artifact Dependencies Restored With
Artifact

Possible Artifact
Dependencies Not in the Trash

Client None Backend

Backend None APIs

Collections

API Role Backend

API Implementation (non-mock)

API implementation that calls the
API

API Implementation None API that is implemented

Collection Role Backend

Connector None Backend

Detailed instructions for restoring an artifact in the trash are included for each artifact type in
the chapters that follow.

Chapter 4
Delete an Artifact

4-9

Restore an Artifact from Administration
You can restore an artifact from the Trash menu as described above, or you can
restore deleted artifacts from the Administration view.

1. Click and select Settings from the side menu.

2. Click Deleted Artifacts.

3. Filter the list by selecting the type of artifacts you want to see. The default value is
All Artifacts.

You can also use the Filter field to further refine the list:

• By the name of the artifact.

• By version number.

• By the name of the person who moved the artifact to the trash.

4. Click the checkbox for each artifact you want to restore and click Restore.

To select all the items in the table at once, click the checkbox next to Artifact in
the table header. Click again to clear all selections.

Artifact selection isn’t persistent across pages. You can restore only the selected
artifacts on the current page. If you want to restore artifacts listed across multiple
pages, you’ll have to restore the artifacts on the current page and then go to the
next page.

Purging an Artifact
So how do you permanently delete an artifact? You must be a mobile cloud
administrator and you purge it via the Deleted Artifacts tab from the Administration
view. When an artifact is purged, it no longer appears in the list of trashed items and
can’t be restored.

Just as dependencies can affect restoring an artifact, they affect purging an artifact
from the trash. If the artifact you want to purge has downstream dependencies, those
dependencies are deleted along with the artifact. For example, when you purge an API
in the trash, its implementation is deleted as well.

Chapter 4
Delete an Artifact

4-10

If the artifact is a downstream dependency of another artifact, you need to resolve the
dependency with the other artifact before you can purge it.

The following table shows you which dependencies will be purged with a each type of artifact.

Artifact Type Dependencies Purged with the
Artifact

Dependencies Not Purged
with the Artifact

Backend None APIs

Collections

API API implementations

Roles

Backends

Mock API Implementations

API Implementation None API implemented by the
implementation

Connector None Backends

Collection Roles Backends

API implementations that call the
connector

Purge Artifacts from Administration
To permanently remove an artifact, you need to purge it from the trash. You can only purge
artifacts from the Administration view.

1. Click and select Settings from the side menu.

2. Click Deleted Artifacts.

By default, the list shows all artifacts in the trash. Artifacts are displayed in a descending
order of when items were moved to the trash. You can change the display to list artifacts
in alphabetical order of the person who moved the artifacts to the trash or by comments.

3. Filter the list by selecting the type of artifacts you want to see. The default value is All
Artifacts.

You can also use the Filter field to further refine the list:

• By the name of the artifact.

• By version number.

• By the name of the team member who moved the artifact to the trash.

You can also sort the order of the items in the trash by artifact, type, time the item was
moved to the trash, or by the person who moved the item to the trash.

Chapter 4
Delete an Artifact

4-11

4. Click the checkbox of each artifact that you want to purge and click Purge.

To select all the items in the table at once, click the checkbox next to Artifact in
the table header. Click again to clear all selections.

Artifact selection isn’t persistent across pages. You can purge only the selected
artifacts on the current page. If you want to purge artifacts listed across multiple
pages, purge the artifacts on the current page and then go to the next page.

Artifact Lifecycles
Clients, backends, APIs, and other artifacts in Mobile Hub each have an independent
lifecycle.

In most respects, how an artifact is managed after it’s created is the same regardless
of whether it’s a client, backend, collection, connector API, or a custom API. You‘ve
learned how to create an artifact, then modify it, and test it. Now that you have a viable
artifact, it’s time to publish it, perhaps create new versions or update existing versions
and eventually deploy it to another environment for others to test and use.

There are some key details unique to different types of artifacts. The following
chapters show you how to take each type of artifact through its lifecycle phases:

• Client and App Profile Lifecycle

• Backend Lifecycle

• API Lifecycle

• API Implementation Lifecycle

• Connector Lifecycle

• Collection Lifecycle

Chapter 4
Artifact Lifecycles

4-12

5
Client and App Profile Lifecycle

If your mobile app uses push notifications or you want to use analytics to examine and
improve your app, you need a client. You associate the client, which represents a backend
binary, with a backend. Use profiles to store notification credentials that can be shared
between your clients. Clients go through similar lifecycle phases as other artifacts with a few
differences, detailed in this chapter.

Mobile Hub can help you manage client lifecycle. You can publish and export a client. You
can modify its version number and move it to the trash when you don’t need it anymore.
Clients are top-level artifacts and their relationships with backends can affect how both types
of artifacts are exported, imported, and moved to the trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle, see
Understanding Lifecycles.

Publish a Client
When you’re satisfied with a client configuration, you can publish it, but only if it’s associated
with a backend.

1. Click and select Development > App Profiles from the side menu.

2. Select the client that you want to publish.

3. Click Publish.

Dependencies are checked. If the associated backend is in Draft state, the confirmation
dialog lists it and informs you that it will be published with the client. If the backend is
already published, no dependencies are shown.
If the backend has downstream dependencies in Draft state, those dependencies will
also be published. For example, MyAppProfile 1.1 references MyMobileBackend 1.0.
MyMobileBackend has dependencies on published MyAPI2.2 and unpublished MyAPI2.4.
When you publish MyAppProfile 1.1, the confirmation dialog only lists
MyMobileBackend1.0 as a dependency but MyAPI2.4 is also published.

4. Click Publish All.

If the backend is in the trash, you won't be able to publish the client. Cancel the publish
operation, and either restore the backend or associate the client with a different backend.
Then try publishing again.

Usually, once an artifact is published it can't be changed. In the case of clients, you can add
or remove the associated app profiles even if a client is published.

Update the Version Number of a Client
When you create a client, you assign it a version number that is usually the version of the
mobile app that the client represents. You can update its version number at any time if the
client is in a Draft state. This is useful if a change to the binary was made and you need a
new version designation.

5-1

1. Click and select Development > App Profiles from the side menu.

2. Open the client that you want to update from the list.

3. On the Settings page, change the value in the Mobile App Version field.

You'll get a message letting you know if you enter a duplicate version number.

Create a New Version of a Client
You can create a new version of a client regardless of whether it's in a Draft or
Published state. When you create a new version of a client, you’re basically cloning
the client configuration. You can then make changes to the new version. For example,
although a client can be associated with only one instance of a backend, that backend
can reference multiple clients. You could create new versions of a client, where each
version corresponds to a specific platform of a mobile app (iOS, Android, and
Windows), and then edit each client to reference the same backend.
Another reason for creating new versions is to create multiple clients for the same
platform if there are multiple mobile app binaries for the same platform that use the
same backend.

Unlike other artifacts, which require that the version number use the Major.minor
format, the version number for a client should be the same as the mobile app binary
that’s set by the app store. Depending on the version of the mobile app binary, the
version could take the format of Major.minor or include an alphanumeric suffix with or
without parentheses, a hyphen, space, or full stop. For example:

• 1.2

• 1.2 build 3452

• 1.2 (3452)

• 1.2–3452

• 1.2.3 (01–Jun-2016)

1. Click and select Development > App Profiles from the side menu.

2. Select the client and then select More > New Version.

3. Enter a version number in the Mobile App Version field. (The same as the mobile
app binary set by the app store.)

4. Click Save.

The new version is created in a Draft state.

Move a Client to the Trash
Remove a draft or published client by moving it to the trash. If it’s needed later on, you
can restore it from the trash.
Moving a client to the trash does not move the associated backend or any profiles
referenced by the client to the trash.

1. Click and select Development > App Profiles from the side menu.

2. Select the client, then select More > Move to Trash.

3. Click Trash in the confirmation dialog if there are no dependency issues.

Chapter 5
Create a New Version of a Client

5-2

If you think you or someone else might restore it later on, enter a brief comment about
why you're putting this item in the trash.

Restore a Client
starting with v3, topic no longer used in pre-OMC flavors of guide

1. Click and select Development > App Profiles from the side menu.

2. Click Trash ().

3. In the list of items in the trash, select the client and select Restore from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate exists.

Manage Your Clients and App Profiles
When at least one client or app profile exists, you'll be taken to the Clients page every time

you click and select Development > App Profiles from the side menu. On the left side of
the page, you see a list of all the clients, their version numbers, and their Draft or Published
state (clients in the trash aren't displayed).

On the Clients page, you can open, test, publish, and view see the dependencies and history
for your clients:

• Click Open to see details about the selected client.

• Click Publish to change the state of the client.

• Click More to create a new version, export the client to another instance, or move the
client to the trash.

• Click Trash () to see which clients are in the trash.

• Expand Keys to obtain the values for the client ID and the application key.

• Expand Notifications to see which push notifications, if any, are enabled for this app
profile.

On the lower right side of the page, you can view data about the selected client:

• Expand Dependencies to see the backend and app profile that this client references.

Chapter 5
Restore a Client

5-3

Note:

If the backend has downstream dependencies, go to Development >
Backends and view them from the Dependencies section of the selected
backend.

• Expand History to quickly see the latest activity for the client.

Click the Profiles tab to view available app profiles and create new app profiles for
your clients.

Chapter 5
Manage Your Clients and App Profiles

5-4

6
Backend Lifecycle

You created a backend and now it's time to use it. Remember that after you publish it, it
becomes immutable, that is, you can't modify it.

If you want to make a change to a published backend, you create a new version of it.
Because backends are tightly integrated with custom code, APIs, and other objects in Mobile
Hub, you'll need to consider the relationships and dependencies on those objects.

If you want a general introduction to how artifacts interrelate in the overall lifecycle before
exploring the lifecycle of backends, see Understanding Lifecycles.

Backend Lifecycle States
Backends have the following activation states that determine whether they can be updated,
deleted, or whether or not a new version can be created:

• Active: Denotes the version of the backend is valid and active.

• Quiesce: Denotes the version of the backend has become quiet, that is, it no longer
supports new requests, and after all currently running requests are completed, it’s
changed to Inactive. This is a transitional state.

• Inactive: Denotes the version of the backend that’s present but not in an active state
(that is, not usable).

If a user tries to access an API through an inactive backend, a 404 code is returned.

• Deleted: Denotes the version of the backend that’s been moved to the trash and
susceptible to a hard delete (actually removed from the repository).

Note:

Only mobile cloud administrators can purge (that is, permanently delete) an
item in the trash.

Publish a Backend
Follow these steps to publish a backend. When a backend is published, all dependencies that
aren’t yet published must also be published.

1. Click and select Development > Backends from the side menu.

2. Select the backend that you want to publish.

3. Click Publish.

The Confirm Publish dialog opens:

6-1

4. In the Confirm Publish Backend dialog, click Check Dependencies to reveal
whether or not the backend has dependencies and what those dependencies are
so you'll know how to proceed:

• If you don't have dependencies, a confirmation dialog is displayed. Click
Publish.

• If any dependencies are found in the trash, they’re listed. Cancel the publish
operation, restore the dependent items from the trash, and restart the process.

• If there are dependencies in the Draft state, they’re listed in the confirmation
dialog. You have the option to publish all the dependent artifacts along with
your mobile backend. Click Publish All.

Update the Version Number of a Backend
If you created a new version of a backend using the New Version dialog, you can
update its version number if it’s still in a Draft state. This is useful if you need to
designate a different version number for it before you publish it or you’ve made a
change to the configuration and you need a new version designation.

1. Click and select Development > Backends from the side menu.

2. Select the backend you want to update from the list.

3. In the right section, select More > Update Version Number.

4. Enter a version number of the format Major.minor.

The previous version of the backend is displayed next to the field. You'll get a
message letting you know if you've entered an existing version number.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of backends.

Chapter 6
Update the Version Number of a Backend

6-2

Create a New Version of a Backend
When you create a new backend, the version is automatically set to 1.0. As long as the
backend is in a Draft state, you can change any aspect of it. As you develop your backend,
you can change the version's major and minor version values as you see fit.

You can use a published backend as a root for a new version.

1. Click and select Development > Backends from the side menu.

2. Select the published backend.

3. In the right section, select More > New Version.

The new version is created in a Draft state.

If the backend is associated with an API, you can’t associate another version of that API with
the backend, regardless of whether the backend is in a Draft or Published state. You must
create a new version of the backend and associate it with the other API version.

Move a Backend to the Trash
Remove a backend in a by moving it to the trash. A backend in the trash is no longer listed
but it’s still viable, that is, it could continue to serve requests. If the backend is needed later
on, you can restore it from the trash.

If a backend is referenced by a client, you can’t move that backend to the trash. If the
backend is in Draft state, you can disassociate it from the client by opening the backend,
selecting Clients in the navbar and clicking Delete (X) for that client. Then you can move the
backend to the trash.

An alternative to removing a backend is to deactivate it, in which case it no longer services
requests. See Deactivating a Mobile Backend for information.

1. Click and select Development > Backends from the side menu.

2. Select the backend.

3. In the right section, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment about
why you're putting this item in the trash.

If you move a backend to the trash that has been redirected to another backend, the
redirection still occurs.

Deactivate a Backend
If you want to stop access to a backend without deleting it, you can do so by deactivating it. A
deactivated backend can’t service any more requests. Deactivation is most common for
backends in a Published state that have been replaced by newer versions and are no longer
needed.

1. Click and select Development > Backends from the side menu.

Chapter 6
Create a New Version of a Backend

6-3

2. Select your backend and click More > Manage Activation .

3. In the dialog that appears, select Inactive from the drop-down list to deactivate the
backend, or Active to reactivate an inactive backend.

4. Click Save.

If you deactivate a backend that has been redirected to another backend, the
redirection still occurs.

Restore a Backend
1. Click and select Development > Backends from the side menu.

2. Click Trash ().

3. In the list of items in the trash, click by the backend you want and select
Restore from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate exists.

Manage a Backend
When at least one backend exists, you’ll be taken to the Backends page every time

you click and select Development > Backends from the side menu. On the left
side of the page, you see a list of all the backends, their version numbers, and their
Draft or Published state (mobile backends in Trash aren’t displayed).

On the upper right side of the Backends page, you can open, test, publish, see runtime
data about your backend, and get authentication and application key values:

Chapter 6
Restore a Backend

6-4

• Click Trash to see which backends are in the trash.

• Click Open to see details about the selected backend.

• Click Publish to change the state of the backend from Draft to Published.

• Click More to create a new version, update an existing version, change the activation
state, or move the backend to the trash.

• Look in the Metrics section to see the number of calls to the API associated with the
backend and the average response time.

• Expand Keys to obtain the values for the backend ID, anonymous key (click Show), and
the application key for the associated client. Click Manage to configure the associated
clients or create a new client.

On the lower right side of the page, you view data about the selected backend:

• Expand Dependencies to see the artifacts the mobile backend is dependent on.

• Expand Used By to see any associated artifacts that aren’t dependencies.

• Expand History to quickly see the latest activity for the selected backend.

Chapter 6
Manage a Backend

6-5

7
API Lifecycle

The lifecycle stages of custom APIs and API implementations are similar. Both artifacts go
through a design-time phase where each is created, tested, edited, and then published.

When you create a new custom API, its version is automatically set to 1.0 and it’s considered
to be in a Draft state. You can test and edit your draft API as often as needed. As you
develop your API, you can change the version's major and minor values as you see fit, that
is, creating a new version of your API or updating an existing version.

After you've implemented and tested your API, and you’re satisfied with your API
configuration, you can publish it with the understanding that a published API can’t be
changed. To make a change to a published API, create a new version of the API. APIs are
implemented with custom code. For custom APIs, you'll also need to create a new
implementation for the new version.

You can export a draft or published API for use in other instances. Eventually, the API may
become obsolete, and you can move it to the trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle before
exploring the lifecycle of APIs, see Understanding Lifecycles.

Custom APIs and API Implementations

Publish a Custom API
As soon as an API is published, it can’t be changed. You can create a new version of it, but
you cannot edit it.

You must have an implementation associated with the API to publish it. A mock
implementation is provided by default. To associate an implementation other than the mock
implementation, open the API, and click Implementations in the left navigation bar. Select
the implementation you want and click Set as Default.

1. Click and select Applications > APIs from the side menu.

2. Select the draft API that you want to publish.

3. Click Publish.

You can enter a justification for publishing in the Comment field.

When the API is published, you’re returned to the APIs page where you can see the updated
status of your API.

Custom APIs can be published independently of implementations. When you publish an API,
the implementation isn’t published automatically.

7-1

Update the Version Number of an API
If you created a new version of an API using the New Version dialog, you can update
the version number of the API if it’s still in a Draft state. This is particularly useful if you
need to designate a different version number for it before you publish the API.

1. Click and select Development > APIs from the side menu.

2. Select the API you want.

3. Select More > Update Version Number.

4. Enter a version number of the format Major.minor.

The previous version of the API is displayed next to the field. You'll get a message
letting you know if you enter an existing version number.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of APIs.

Create a New Version of an API
You can make a new version of a custom API regardless of whether it’s in a Draft or
Published state. When you create a new version of a custom API, you are basically
cloning the API configuration and making changes to it alone. You can specify the
implementation to associate with the new version of the API. You can upgrade your
custom API easily by creating a new version of it:

1. Click and select Development > APIs from the side menu.

2. Select the API.

You can create a new version of a custom API whether it’s in a Draft or Published
state.

3. In the right section, select More > New Version.

Mobile Hub checks for any dependencies on other APIs and for an associated
implementation.

4. Enter a version number in the format Major.minor.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Create.

A confirmation message is displayed. A draft of the new version is created and is
visible in the API Catalog.

Chapter 7
Update the Version Number of an API

7-2

Move a Custom API to the Trash
Remove a custom API by moving it to the trash. If the API is needed later, you can restore it
from the trash.

1. Click and select Development > APIs from the side menu.

2. Select the custom API you want to remove.

3. In the right section, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment about
why you're putting this item in the trash.

Restore a Custom API
1. Click and select Development > APIs from the side menu.

2. Click Trash ().

3. Make sure APIs is selected in the trash drawer.

4. In the list of items in the trash, click by the API you want and select Restore from
Trash.

5. Click Restore in the confirmation dialog if there are no conflicts.

When you restore an API, its implementations are not restored with it. You’ll have to manually
restore the implementations you want and designate an implementation as the default. Open
the restored API, click Implementations from the navbar, and set an implementation as the
default.
Restoring an artifact can cause conflicts if a duplicate artifact already exists.

Manage an API
After you create a custom API, you’ll want to edit it, publish it, see what implementations are
associated with it, in short, you want to be able to manage the API and examine details of the
APIs created by other service developers. The APIs page gives you access to all these
features.

When at least one custom API exists, you’ll be taken to the APIs page every time you click

 and select Development > APIs from the side menu. On the left side of the page, you’ll
see a list of all the custom APIs except for those in the trash. You can see which APIs are in
the Draft state and which are in the Published state. Every API is listed by its name and
version number.

The right side of the page is where you can open, test, publish, and examine data about your
custom API.

On the upper right side of the APIs page, you can perform the following actions:

• Click Open to view details and settings for the selected custom API.

Chapter 7
Move a Custom API to the Trash

7-3

• Click More to create a new version, update an existing version, or move an API to
the trash.

• Expand Implementations to see what implementations are available, along with
their version numbers and whether they are in a Draft or Published state. Click
Manage to go directly to the Implementations page.

On the lower right side of the page, you view data about the selected API:

• Expand Used By to see the list of the backends that call on the API.

Click All Usages to see the complete list.

• Expand the History section to quickly see the latest activity for the selected
custom API.

Chapter 7
Manage an API

7-4

8
API Implementation Lifecycle

After you have an API implementation in a Draft state that’s configured and tested, you’re
ready to publish it. API implementations go through the same lifecycle phases as APIs, in
addition to being published, new versions can be created, existing versions can be updated,
and obsolete implementations can be moved to the trash.

Remember that after an API implementation is published, it can’t be changed. If you’re still
configuring and testing the implementation, keep it in a Draft state until it’s ready for the next
phase of the lifecycle.

If you want a general introduction to how artifacts interrelate in the overall lifecycle before
exploring the lifecycle of API implementations, see Understanding Lifecycles.

Publish an API Implementation
You can publish an implementation that contains real, non-mock data from the API
Implementation page. Implementations can be published independently of APIs and can have
separate versions as well. This lets you make changes to a published implementation, such
as minor modifications or bug fixes, without requiring the API itself to be updated.

1. Click and select Development > APIs from the side menu.

2. Select the API associated with the implementation that you want to publish.

3. Expand Implementations in the right section and click Manage.

The API Implementation page is displayed:

You can see the list of dependencies by expanding the Dependencies section of the API
Implementation page. The API associated with the implementation and any other APIs or
connectors that the implementation calls are listed. You can see which dependency is in
a Draft state, a Published state, or is unresolved.

8-1

4. Select the implementation and click Publish.

A dependency search is performed. If unresolved dependencies are found, the
implementation can’t be published. Resolve the issue and try publishing the
implementation again.

If any API dependencies are declared through the Oracle-Mobile-API-Version
header instead of through the package.json file, the API Designer isn’t aware of
dependencies declared through the header and won’t prompt you with information
when you publish the calling API. In this case, you must remember to publish the
dependent API yourself.

5. If unpublished dependencies are found, click Publish All to publish all the listed
unpublished artifacts.

If you don’t want to publish all the dependencies with your implementation, click X
to cancel the operation. You can either publish the dependencies individually or
edit your implementation to remove them.

Create a New Version or Updating the Version of an API
Implementation

Implementations can be published independently of APIs and can have separate
versions as well. This lets you make changes to a published implementation, such as
minor modifications or bug fixes, without requiring the API itself to be updated. You can
create a new version of an API Implementation that is in a Draft or Published state. If
you want to make changes to a published implementation, you must create a new
version of it.

If you have previously uploaded an implementation with a given version specified and
that implementation is still in a Draft state, you can replace that version without
incrementing the version number. This might be desirable if you’ve uploaded the
implementation and find, after testing the implementation, that there are further
changes that you need to make before you can publish the changes. After you’ve
published a version, that version is final.

You can also update the version number of an implementation in a Draft state. The
process for both is the same. You set the version attribute in the implementation’s
package.json file.

1. Open the package.json file and change the version attribute. For example,
change “version”:”1.0” to “version”:”1.1”.

2. Upload a zip file of the modified implementation to the associated API version.

Some key points to know about implementation versions are:

Chapter 8
Create a New Version or Updating the Version of an API Implementation

8-2

• Implementation versions are maintained independently of API versions. When you
publish an API, the implementation isn’t published automatically.

• When you upload a new version of an implementation, it becomes the default version
(active implementation) for that API. You can change the default version in the API’s
Implementations page.

• The custom API’s Routing_BindApiToImpl policy defines the association between an API
version and the implementation version.

Move an API Implementation to the Trash
Remove an API implementation by moving it to the trash. If the implementation is needed
later, you can restore it from the trash.

1. Click and select Development > APIs from the side menu.

2. Select the API associated with the implementation.

3. Click Implementations in the API navigation bar.

4. Select the draft API implementation to remove.

5. Click Move to Trash.

Only real implementations (not mock implementations) can be moved to the trash. If
you’re moving the current default implementation to the trash, the next most recent
version of the implementation is automatically set to the default. If no other
implementations exist, the mock implementation is made the default.

6. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment about
why you're putting this item in the trash.

Restore an API Implementation
1. Click and select Development > APIs from the side menu.

2. Select the API associated with the implementation.

3. Click Trash ().

4. Select Implementations in the trash drawer.

5. In the list of items in the trash, click by the implementation you want and select
Restore from Trash.

6. Click Restore in the confirmation dialog if there are no conflicts.

If you’re restoring an implementation that was used by an API, the implementation won’t be
restored as the default (active) implementation for the API. You’ll have to reset the
implementation as the default from the Implementations page (select the API and click
Implementations in the navbar).
Restoring an artifact can cause conflicts if a duplicate artifact already exists.

Chapter 8
Move an API Implementation to the Trash

8-3

9
Connector Lifecycle

The lifecycle stages of all connectors are the same. Each type of connector goes through a
design-time phase where each is created, tested, edited, and then published.

For all connectors, there are the creation phase, the testing and editing phase, and the
publishing phase. When you create a new connector, its version is automatically set to 1.0
and it’s considered to be in a Draft state. In the Draft phase, you can test and edit your API as
often as needed. When you’re satisfied with your connector configuration, publish it with the
understanding that a published connector can’t be changed.

As you develop your connector, you can change the version's major and minor values as you
see fit, that is, creating a new version of your API or updating an existing version. After you've
implemented and tested your connector, you can publish it. Eventually, a connector may
become obsolete, and you can move it to the trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle before
exploring the lifecycle of connectors, see Understanding Lifecycles.

Publish a Connector
Before you can use a connector, you need to publish it:

1. Click and select Development > Connectors .

2. Select the draft connector that you want to publish.

3. Click Publish.

(Optional) You can enter a justification for publishing the connector in the Comment field.

When the connector API is published, you’re returned to the Connectors page where you can
see the updated status of your connector.

Update the Version Number of a Connector
If you created a new version of a connector using the New Version dialog, you can update the
version number of the connector if it’s still in a Draft state. This is particularly useful if you
want to create an alternate version of the current connector or need to designate a different
version number before you publish the connector.

1. Click and select Development > Connectors from the side menu.

2. Select the connector from the list.

3. In the right section, select More > Update Version Number.

4. Enter a version number of the format Major.minor.

The previous version of the connector is displayed next to the field. You'll get a message
letting you know if you've entered an existing version number.

9-1

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of connectors.

Create a New Version of a Connector
You can make a new version of a connector regardless of whether it’s in a Draft or
Published state. When you create a new version of a connector, you’re basically
cloning the connector configuration and making changes to it. You can make minor
changes or expand upon already defined functionality. A major update can result in a
disruption of mobile services to your customers due to invalid values being requested
or returned, an inability to read the same file formats as the previous version, and so
on.

1. Click and select Development > Connectors from the side menu.

2. Select a connector from the list.

You can create a new version of a connector whether it is in a Draft or Published
state

3. In the right panel, select More > New Version.

4. Enter a version number in the format Major.minor.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Create.

A confirmation message is displayed. A draft of the new version is added to the
Connector page.

Move a Connector to the Trash
Remove a connector by moving it to the trash. If the connector is needed later, you
can restore it from the trash.

1. Click and select Development > Connectors from the side menu.

2. Select the connector.

3. In the right section, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Restore a Connector
1. Click and select Development > Connectors from the side menu.

Chapter 9
Create a New Version of a Connector

9-2

2. Click Trash ().

3. In the list of items in Trash, click by the connector you want and select Restore from
Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists.

Manage a Connector
After you create a connector, you’ll want to edit it, publish it, see what artifacts are associated
with it, in short, you want to be able to manage the connector and examine details of the
connectors created by other service developers. The Connectors page gives you access to
all these features.

When at least one connector exists, you’ll be taken to the Connectors page every time you

click and select Development > Connectors from the side menu. On the left side of the
page, you see a list of all the connectors except for those in the trash. You can see which
connectors are in the Draft or Published state. Every connector is listed by its name and
version number.

The right side of the Connectors page is where you can open, test, publish, or examine data
about the connector:

On the right side of the page, you can perform the following actions:

• Click Open to see details about the selected connector.

• Click More to create a new version, update an existing version, or move an connector to
the trash.

• Expand Used By to see the list of the implementations that call on the connector.

• Expand History to quickly see the latest activity for the connector.

Chapter 9
Manage a Connector

9-3

10
Collection Lifecycle

The collection lifecycle involves moving from the Draft state to the Published state.

After you publish a collection, it can’t be modified. While you can publish a collection and also
create a new version of a collection, you can also remove a collection as described in Move a
Collection to the Trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle before
exploring the lifecycle of collections, see Understanding Lifecycles.

Publish a Collection
You create a collection within the context of a backend. When you’re satisfied with that
collection, you can publish it.

1. Click and select Development > Storage from the side menu.

2. Select the collection you want to publish.

3. In the Details section on the right, click Publish.

You can publish a draft collection whenever you feel that it’s complete. After it's published,
however, it can't be changed.

A collection can also be published involuntarily when a backend associated with a collection
is published. If the associated collection isn’t yet published, it will be published automatically
to support the backend.

When a collection is published:

• Its metadata (its description and access roles) are frozen. To update the collections
metadata, you must create a new version.

• The major version (given the version that you arbitrarily defined) is incremented.

• It’s no longer in your personal development space. It’s available for anyone with the
proper permissions to associate with a backend.

• Instance data isn’t moved with the collection.

Instance data (such as actual user objects or actual collection objects stored in
collections) is typically created at runtime, or by user scripts or code as part of a
configuration. It isn't moved with the collection.

Update the Version Number of a Collection
When you update a version, the new number is backward-compatible and the collection
history continues.

1. Click and select Development > Storage from the side menu.

2. Select a collection.

10-1

3. In the Details section, select More > Update Version Number.

4. Specify an optional comment and click Update.

The collection history reflects the incremented number.

Create a New Version of a Collection
You can’t copy a collection, but you can save yourself some time by creating a new
version of an existing collection. If you create a new version, you’ll have the same
data. It is possible to rename the collection and reset the version as long as the
collection is in a Draft state.

If you want a collection that starts with 1.0 and that has the same data as another
collection, you must make a new collection and import the data.

When you create a new version number, an independent collection is spawned from
that point with a new history that’s unrelated to the previous collection. Any data is
carried forward to the new version.

A collection can’t have more than one version of an object.

1. Click and select Development > Storage from the side menu.

2. Select a collection.

3. In the Details section on the right, select More > New Version.

4. Specify an optional comment and click Update.

Move a Collection to the Trash
Remove a collection by moving it to the trash. Moving a collection to the trash means
it’s no longer listed but it’s still viable. If the collection is needed later, you can restore
it.

1. Click and select Development > Storage from the side menu.

2. Select the collection you want to remove.

3. In the Details section on the right, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Although only a mobile cloud administrator can purge a collection (eliminate it
permanently), you can delete an object in a collection using the command-line
operation, DELETE.

Restore a Collection
1. Click and select Development > Storage from the side menu.

2. Click Trash ().

Chapter 10
Create a New Version of a Collection

10-2

3. In the list of items in the trash, click by the collection you want and select Restore
from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists.

Manage a Collection
After you create a collection, you’ll want to edit it, publish it, and in short, manage the
collection and examine details of collections created by other mobile developers. The Storage
page gives you access to all these features.

When at least one collection exists, you’ll be taken to the Storage page every time you click

 and select Development > Storage from the side menu. On the left side of the page,
you’ll see a list of all the collections except for those in the trash. You can see which
collections are in the Draft state and which are in the Published state. Every collection is
listed by its name and version number.

The upper right side of the page is where you can open, test and publish the selected
collection:

• Click Open to see details about the selected collection.

• Click Publish to change the state of your collection from Draft to Published.

• Click More to create a new version, update an existing version, associate the collection
with a backend, or move a collection to the trash.

On the lower right of the page, you can examine usage and history details:

• Expand Used By to see which backends are associated with the collection. To
disassociate the selected collection from an artifact that uses it, click X next to the
artifact’s name.

• Expand the History section to quickly see the latest activity for the selected collection.

Chapter 10
Manage a Collection

10-3

Part III
Reference

• Oracle Mobile Hub Policies

A
Oracle Mobile Hub Policies

This chapter lists the policies that you can configure in Oracle Mobile Hub (Mobile Hub).
Policies control a variety of things, including logging level, password expiration times, means
for restricting user access, and proxies. Policies can affect all artifacts of a specific type, or
they can affect an individual artifact.

Note:

The scope value shown is the narrowest level at which the property can be set.

Mobile Hub Policies and Values

Policies determine the behavior of various aspects of Mobile Hub. As Mobile Hub
administrator, you can view and modify the policies in the policies.properties file by
exporting the file from the Administration page.

Policy Type / Description Default Value Scope / Affects

Analytics_ApplicationG
uid

String. Stores an association
between the backend and
the Analytics application.
The value is the Application
ID.

There is no
default value for
this policy.

Scope: Backend

Affects: Backend

Analytics_BaiduMapCsfK
eyName

String. Stores the name of
the CSF key that stores the
Baidu application key (ak).

There is no
default value for
this policy.

Scope: Backend

Affects: Backend

Asset_AllowPurge String. Controls whether or
not Draft and Published
artifacts in the trash can be
purged (deleted
permanently).

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_AllowTrash String. Controls whether or
not Draft and Published
artifacts can be moved to the
trash.

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

A-1

Policy Type / Description Default Value Scope / Affects

Asset_AllowUntrash String. Controls whether or
not Draft and Published
artifacts can be restored
from the trash.

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_DefaultInitialVe
rsion

String. Sets the default
version for all newly created
artifacts.

1.0

Note: Generally,
the default value
should be used.

Scope: Instance

Affects: All artifacts
that have versions

CCC_DefaultNodeConfigu
ration

String. Sets the default
node.js configuration used by
the API implementation
(custom code). The custom
code implementation can
override the default node
configuration in its
package.json.

The default node version is a
policy value: whatever
customer has there before
the upgrade to the new OMH
release will be unchanged.A
new customer (of the new
OMH release) would be
defaulted to 12.16

Valid values are:
• 12.16: The service uses

node.js 12.16.1.
• 8.9: The service uses

node.js 8.9.4.
• 6.10: The service uses

node.js 6.10.10.
• 0.10: The service uses

node.js 0.10.25.

For the related JavaScript
library versions, see What's
the Foundation for the
Custom Code Service?

• For
customers
up to Oracle
Mobile Hub
19.4.3, the
default is
8.9.

• For
customers
from Oracle
Mobile Hub
20.1.3
onwards,
the default
is 12.16.

Scope: Instance

Affects: Custom Code

CCC_LogBody Boolean. Determines
whether to log the body of a
request in custom code.
Bodies will be logged in the
following circumstances:

• Logging level ==
FINEST or there is an
uncaught exception.

• This property is set to
true.

false Scope: Backend

Affects: Custom Code

A-2

Policy Type / Description Default Value Scope / Affects

CCC_LogBodyMaxLength Integer. Sets the maximum
number of characters to log if
the custom code is logging
the request body.

512 Scope: Backend

Affects: Custom Code

CCC_SendStackTraceWith
Error

Boolean. Determines
whether or not to send the
stack trace from node.js with
the REST response from the
custom code container
indicating that there is a
code problem.

false Scope: Backend

Affects: Custom Code

Connectors_Endpoint String. Stores the endpoint
URL of the particular
connector instance.

Set this policy by
uncommenting the policy.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Connector

Affects: Connectors

Connector_Ics_Connecti
ons

String. Identifies the JSON
document representing
connections to each
configured ICS instance.

null Scope: Instance

Affects: ICS Connector

Database_CreateTablesP
olicy

String. Controls whether the
Database API can create,
alter, or drop tables from
custom code or SQL. The
default value (allow)
enables calls from custom
code that perform implicit
operations and also explicit
query operations from raw
SQL.

Setting this policy to
implicitOnly enables
these operations and JSON
from custom code calls, and
prohibits SQL operations.
Setting the policy to
explicitOnly enables
these operations using the
Database Management
Service API, and prohibits
non-SQL operations from
custom code. Setting the
policy to none curtails
implicit and explicit table
creation, deletion, and
updates.

allow Scope: Instance

Affects: Database
Service

Database_MaxRows Integer. Sets the maximum
number of rows that can be
returned by a single
database query.

1000 Scope: Instance

Affects: Database
Service

A-3

Policy Type / Description Default Value Scope / Affects

Database_QueryTimeout Integer. Sets the number of
seconds to wait for a
database query to return
before canceling it.

20 Scope: Instance

Affects: Database
Service

Diagnostics_ExcludedHt
tpHeadersInLogs

String. Creates a list of
headers that shouldn’t be
logged with each API
request in the API History log
file.

Authorization
header, cookie
name

Scope: Instance

Affects: Administration

Diagnostics_RequestPer
centageErrorThreshold

Double. Sets the percentage
of requests returning error
codes compared with total
request above which the
service will report an error
condition.

Set this value higher than the
one set for the
Diagnostics_RequestPer
centageWarningThreshol
d policy, which sets the
adverse level of system
health.

10 Scope: Instance

Affects: Administration

Diagnostics_RequestPer
centageWarningThreshol
d

Double. Sets the percentage
of requests returning error
codes compared with total
request above which the
service will report a warning
condition.

1 Scope: Instance

Affects: Administration

Logging_Level Integer. Sets the logging
level.

800 Scope: Backend

Affects: Custom APIs,
Storage

Network_HttpConnectTim
eout

Integer. Sets the amount of
time spent in milliseconds
(ms) connecting to the
remote URL.

The value should be less
than the value of
Network_HttpRequestTim
eout.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Instance,
Backend, Connector,
Fully-Qualified
Connector

Affects: Connectors

Network_HttpReadTimeou
t

Integer. Sets the maximum
time (in milliseconds) spent
waiting to read data.

The value should be less
than the value of
Network_HttpRequestTim
eout.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Instance,
Backend, Connector,
Fully-Qualified
Connector

Affects: Connectors

A-4

Policy Type / Description Default Value Scope / Affects

Network_HttpRequestTim
eout

Integer. Sets the amount of
time in milliseconds (ms) on
an HTTP request before it
times out.

Set this policy when
deploying to another
environment.

40,000 ms Scope: Instance

Affects: Custom APIs

Notifications_DeviceCo
untWarningThreshold

Double. Defines the
threshold level (percentage)
of messages sent
successfully without
returning an error.

If the proportion of
messages accepted by the
service provider is below the
threshold, then a warning is
displayed. The default value
is 70.0 (70%).

Set this policy as needed.

70.0

Note: For testing
purposes only,
consider setting
this value to
100.0 (100%).

Scope: Instance

Affects: Notifications

Routing_BindAPIToImpl String. Determines which
core service to use to
resolve the API request.

There is no
default value for
this policy.

Scope: API

Affects: Custom APIs,
Connectors

Routing_BindAPIToMock Boolean. Resolves the API
request to a mock service
instead of the
implementation that’s bound
to the API.

false

Note: Do not
modify this
policy.

Scope: Fully-Qualified
API

Affects: Backend,
Custom APIs

Routing_DefaultImpleme
ntation

String. Specifies the default
implementation for the
initially created API (that is,
the mock service).

MockService/1.0

Note: Do not
modify this
policy.

Scope: Instance

Affects: Custom APIs

Routing_RouteToBackend String. Reroutes mobile API
calls made to a backend to
the target backend specified.

There is no
default value for
this policy.

Scope: Backend

Affects: Dispatcher

A-5

Policy Type / Description Default Value Scope / Affects

Security_AllowOrigin String. Enables Cross Origin
Resource Sharing (CORS)
from HTML5 clients on an
external domain.

Supported values are:
• disallow
• url1, url2, url3 - specifies

a whitelist of URLs from
which cross-site
requests to APIs can be
made. If the origin of the
cross-site request
matches one of the
patterns in the whitelist,
the request is allowed.
Otherwise, access is
restricted.

The wildcard character,
*, can be used when
providing URL values
but doesn't apply across
dot (.), forward slash (/),
or colon (:) characters.

disallow

Note: When
dealing with
browser-based
applications, it’s
highly
recommended
that cross-site
access to APIs
either be
restricted
completely, or be
restricted to
trusted origins
where legitimate
applications are
known to be
hosted to
prevent
vulnerability to
cross-site
attacks (e.g.,
Cross-Site
Request
Forgery).

Scope: Instance

Affects: All cross origin
calls to a given
instance

Security_AuthTokenConf
iguration

JSON Object. Provides a
configuration to integrate
with third-party identity
providers that support JWT,
which mobile app users can
use to authenticate.

No default value Scope: Environment

Affects: Security

Security_CollectionsAn
onymousAccess

A comma-separated list of
storage collections following
this pattern:

<collection1_name>[(<
version>|*)]
[,<collection2_name>[
(<version>|*)]]
[, ...]

Sets a storage collection to
allow anonymous access.
For each storage collection
listed in the policy,
anonymous read and write
access will be allowed,
provided that the correct
anonymous access key is
defined in the request
headers. Specifying '*' as
the version allows
anonymous access to all
versions of the collection.

No default value Scope: Storage
Collections

Affects: Only the listed
Collections

A-6

Policy Type / Description Default Value Scope / Affects

Security_ExposeHeaders String. Provides a means for
browsers to access the
server whitelist headers. By
default, Cross Origin
Resource Sharing (CORS)
disallows accessing returned
headers by the browser.

Applies to HTML5 clients
accessing a given resource
from an external domain.

""

Indicates that no
response
headers are to
be exposed to
the browser.

Scope: Instance

Affects: All cross origin
calls to a given
instance

Security_IdentityProvi
ders

String. Stores identity
providers configuration.

Facebook
identity provider
configuration

Scope: Instance

Affects: Security

Security_IgnoreHostnam
eVerification

Boolean. Disables the SSL
host name verification.

To be applied to connectors
(in development) that call
outbound services using SSL
certificates with an invalid or
incomplete hostname.

false Scope: Instance

Affects: REST, SOAP,
ICS, and Fusion
Applications
Connectors

Security_OwsmPolicy Object. Sets the security
policy used for outbound
security.

There is no
default value for
this policy.

The initial value
is set when the
connector is
created.

Scope: Connector

Affects: Connectors

Security_SsoRedirectWh
itelist

String. Lists the URL
patterns for the SSO
redirect_uri parameter
values that are permitted.

disallow Scope: Instance,
Backend

Affects: SSO Token
Relay

A-7

Policy Type / Description Default Value Scope / Affects

Security_TokenExchange
TimeoutPolicy

String. Defines the policy
that governs the expiration
time for tokens generated
and issued as a result of
token exchange.

Valid values are:

• FromTimeoutSecs -
token expiry time is
governed by the
Security_TokenExcha
ngeTimeoutSecs
policy.

• FromExternalToken -
token expiry time is set
to the same time as the
external token expiry
time.

• FromExternalTokenLimit
edByTimeoutSecs -
token expiry time is set
to the value determined
from the
Security_TokenExcha
ngeTimeoutSecs policy
or the external token
expiry time, whichever
comes first.

FromTimeoutSe
cs

Scope: Instance

Affects: SSO Token
Exchange

Security_TokenExchange
TimeoutSecs

Integer. Sets the token
expiration time for SSO login.

216000 s Scope: Instance

Affects: SSO Token
Relay

A-8

Policy Type / Description Default Value Scope / Affects

Security_TransportSecu
rityProtocols

String. Specifies a list of the
TLS/SSL protocols that
should be used for the
outbound connection for the
specific connector. By
default, only TLSv1.2
protocols are used for
outbound connections. This
property can be used to
override the system defaults
so that connections can be
established to legacy
systems that don't support
new versions of TLS/SSL.

Caution: Use this property
carefully as older protocols
are more vulnerable to
security exploits.

Valid value is a comma
separated list of the
TLS/SSL protocols. Note that
extra spaces around the
protocol names are ignored.
For example, TLSv1,
TLSv1.1, TLSv1.2.

Supported protocols are:
SSLv2Hello, TLSv1,
TLSv1.1, TLSv1.2.

No default value Scope: Connectors,
Fully-qualified
Connectors

Affects: All Connectors

Sync_CollectionTimeToL
ive

Integer. Sets the default
amount of time that data
requested by a mobile app
from a storage collection
remains in the local cache
that’s used by the
Synchronization library.

86400 s

Set this policy as
needed.

Scope: Instance

Affects: Storage

Url_PercentEncodeQuery
ParameterSpaces

Boolean. Controls how
spaces in query parameters
of a URL are encoded. If set
to true encodes spaces as
%20; and encodes them as
+ otherwise. Spaces in other
parts of the URL are always
encoded as %20.

false Scope: Connector

Affects: REST
Connector

A-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 An Administrator’s Roadmap to Oracle Mobile Hub
	Part I Configuring Oracle Mobile Hub
	2 Policies
	Define Policies
	Mobile Hub Policy Names
	Policy Scope

	Remove Policies

	3 Credentials (CSF Keys and Certificates)
	Manage Keys and Certificates
	Configure a CSF Key
	Configure a Web Service or Token Certificate
	Configure an SSL Certificate
	Disable SSL Hostname Verification

	Add a Token Issuer
	Configure Rules
	Rule Types

	Part II Managing Mobile Hub Artifact Lifecycles
	4 Understanding Lifecycles
	Draft State
	Published State
	Making Changes After a Backend is Published (Rerouting)

	Versioning
	Delete an Artifact
	Moving an Artifact to the Trash
	Restoring an Artifact
	Restore an Artifact from Administration

	Purging an Artifact
	Purge Artifacts from Administration

	Artifact Lifecycles

	5 Client and App Profile Lifecycle
	Publish a Client
	Update the Version Number of a Client
	Create a New Version of a Client
	Move a Client to the Trash
	Restore a Client
	Manage Your Clients and App Profiles

	6 Backend Lifecycle
	Backend Lifecycle States
	Publish a Backend
	Update the Version Number of a Backend
	Create a New Version of a Backend
	Move a Backend to the Trash
	Deactivate a Backend
	Restore a Backend
	Manage a Backend

	7 API Lifecycle
	Custom APIs and API Implementations
	Publish a Custom API
	Update the Version Number of an API
	Create a New Version of an API
	Move a Custom API to the Trash
	Restore a Custom API
	Manage an API

	8 API Implementation Lifecycle
	Publish an API Implementation
	Create a New Version or Updating the Version of an API Implementation
	Move an API Implementation to the Trash
	Restore an API Implementation

	9 Connector Lifecycle
	Publish a Connector
	Update the Version Number of a Connector
	Create a New Version of a Connector
	Move a Connector to the Trash
	Restore a Connector
	Manage a Connector

	10 Collection Lifecycle
	Publish a Collection
	Update the Version Number of a Collection
	Create a New Version of a Collection
	Move a Collection to the Trash
	Restore a Collection
	Manage a Collection

	Part III Reference
	A Oracle Mobile Hub Policies
	Mobile Hub Policies and Values

